xref: /linux/drivers/net/ethernet/intel/e1000e/netdev.c (revision d6fd48ef)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5 
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/pci.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/delay.h>
13 #include <linux/netdevice.h>
14 #include <linux/interrupt.h>
15 #include <linux/tcp.h>
16 #include <linux/ipv6.h>
17 #include <linux/slab.h>
18 #include <net/checksum.h>
19 #include <net/ip6_checksum.h>
20 #include <linux/ethtool.h>
21 #include <linux/if_vlan.h>
22 #include <linux/cpu.h>
23 #include <linux/smp.h>
24 #include <linux/pm_qos.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/aer.h>
27 #include <linux/prefetch.h>
28 #include <linux/suspend.h>
29 
30 #include "e1000.h"
31 #define CREATE_TRACE_POINTS
32 #include "e1000e_trace.h"
33 
34 char e1000e_driver_name[] = "e1000e";
35 
36 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
37 static int debug = -1;
38 module_param(debug, int, 0);
39 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
40 
41 static const struct e1000_info *e1000_info_tbl[] = {
42 	[board_82571]		= &e1000_82571_info,
43 	[board_82572]		= &e1000_82572_info,
44 	[board_82573]		= &e1000_82573_info,
45 	[board_82574]		= &e1000_82574_info,
46 	[board_82583]		= &e1000_82583_info,
47 	[board_80003es2lan]	= &e1000_es2_info,
48 	[board_ich8lan]		= &e1000_ich8_info,
49 	[board_ich9lan]		= &e1000_ich9_info,
50 	[board_ich10lan]	= &e1000_ich10_info,
51 	[board_pchlan]		= &e1000_pch_info,
52 	[board_pch2lan]		= &e1000_pch2_info,
53 	[board_pch_lpt]		= &e1000_pch_lpt_info,
54 	[board_pch_spt]		= &e1000_pch_spt_info,
55 	[board_pch_cnp]		= &e1000_pch_cnp_info,
56 	[board_pch_tgp]		= &e1000_pch_tgp_info,
57 	[board_pch_adp]		= &e1000_pch_adp_info,
58 	[board_pch_mtp]		= &e1000_pch_mtp_info,
59 };
60 
61 struct e1000_reg_info {
62 	u32 ofs;
63 	char *name;
64 };
65 
66 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
67 	/* General Registers */
68 	{E1000_CTRL, "CTRL"},
69 	{E1000_STATUS, "STATUS"},
70 	{E1000_CTRL_EXT, "CTRL_EXT"},
71 
72 	/* Interrupt Registers */
73 	{E1000_ICR, "ICR"},
74 
75 	/* Rx Registers */
76 	{E1000_RCTL, "RCTL"},
77 	{E1000_RDLEN(0), "RDLEN"},
78 	{E1000_RDH(0), "RDH"},
79 	{E1000_RDT(0), "RDT"},
80 	{E1000_RDTR, "RDTR"},
81 	{E1000_RXDCTL(0), "RXDCTL"},
82 	{E1000_ERT, "ERT"},
83 	{E1000_RDBAL(0), "RDBAL"},
84 	{E1000_RDBAH(0), "RDBAH"},
85 	{E1000_RDFH, "RDFH"},
86 	{E1000_RDFT, "RDFT"},
87 	{E1000_RDFHS, "RDFHS"},
88 	{E1000_RDFTS, "RDFTS"},
89 	{E1000_RDFPC, "RDFPC"},
90 
91 	/* Tx Registers */
92 	{E1000_TCTL, "TCTL"},
93 	{E1000_TDBAL(0), "TDBAL"},
94 	{E1000_TDBAH(0), "TDBAH"},
95 	{E1000_TDLEN(0), "TDLEN"},
96 	{E1000_TDH(0), "TDH"},
97 	{E1000_TDT(0), "TDT"},
98 	{E1000_TIDV, "TIDV"},
99 	{E1000_TXDCTL(0), "TXDCTL"},
100 	{E1000_TADV, "TADV"},
101 	{E1000_TARC(0), "TARC"},
102 	{E1000_TDFH, "TDFH"},
103 	{E1000_TDFT, "TDFT"},
104 	{E1000_TDFHS, "TDFHS"},
105 	{E1000_TDFTS, "TDFTS"},
106 	{E1000_TDFPC, "TDFPC"},
107 
108 	/* List Terminator */
109 	{0, NULL}
110 };
111 
112 /**
113  * __ew32_prepare - prepare to write to MAC CSR register on certain parts
114  * @hw: pointer to the HW structure
115  *
116  * When updating the MAC CSR registers, the Manageability Engine (ME) could
117  * be accessing the registers at the same time.  Normally, this is handled in
118  * h/w by an arbiter but on some parts there is a bug that acknowledges Host
119  * accesses later than it should which could result in the register to have
120  * an incorrect value.  Workaround this by checking the FWSM register which
121  * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
122  * and try again a number of times.
123  **/
124 static void __ew32_prepare(struct e1000_hw *hw)
125 {
126 	s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
127 
128 	while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
129 		udelay(50);
130 }
131 
132 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
133 {
134 	if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
135 		__ew32_prepare(hw);
136 
137 	writel(val, hw->hw_addr + reg);
138 }
139 
140 /**
141  * e1000_regdump - register printout routine
142  * @hw: pointer to the HW structure
143  * @reginfo: pointer to the register info table
144  **/
145 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
146 {
147 	int n = 0;
148 	char rname[16];
149 	u32 regs[8];
150 
151 	switch (reginfo->ofs) {
152 	case E1000_RXDCTL(0):
153 		for (n = 0; n < 2; n++)
154 			regs[n] = __er32(hw, E1000_RXDCTL(n));
155 		break;
156 	case E1000_TXDCTL(0):
157 		for (n = 0; n < 2; n++)
158 			regs[n] = __er32(hw, E1000_TXDCTL(n));
159 		break;
160 	case E1000_TARC(0):
161 		for (n = 0; n < 2; n++)
162 			regs[n] = __er32(hw, E1000_TARC(n));
163 		break;
164 	default:
165 		pr_info("%-15s %08x\n",
166 			reginfo->name, __er32(hw, reginfo->ofs));
167 		return;
168 	}
169 
170 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
171 	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
172 }
173 
174 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
175 				 struct e1000_buffer *bi)
176 {
177 	int i;
178 	struct e1000_ps_page *ps_page;
179 
180 	for (i = 0; i < adapter->rx_ps_pages; i++) {
181 		ps_page = &bi->ps_pages[i];
182 
183 		if (ps_page->page) {
184 			pr_info("packet dump for ps_page %d:\n", i);
185 			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
186 				       16, 1, page_address(ps_page->page),
187 				       PAGE_SIZE, true);
188 		}
189 	}
190 }
191 
192 /**
193  * e1000e_dump - Print registers, Tx-ring and Rx-ring
194  * @adapter: board private structure
195  **/
196 static void e1000e_dump(struct e1000_adapter *adapter)
197 {
198 	struct net_device *netdev = adapter->netdev;
199 	struct e1000_hw *hw = &adapter->hw;
200 	struct e1000_reg_info *reginfo;
201 	struct e1000_ring *tx_ring = adapter->tx_ring;
202 	struct e1000_tx_desc *tx_desc;
203 	struct my_u0 {
204 		__le64 a;
205 		__le64 b;
206 	} *u0;
207 	struct e1000_buffer *buffer_info;
208 	struct e1000_ring *rx_ring = adapter->rx_ring;
209 	union e1000_rx_desc_packet_split *rx_desc_ps;
210 	union e1000_rx_desc_extended *rx_desc;
211 	struct my_u1 {
212 		__le64 a;
213 		__le64 b;
214 		__le64 c;
215 		__le64 d;
216 	} *u1;
217 	u32 staterr;
218 	int i = 0;
219 
220 	if (!netif_msg_hw(adapter))
221 		return;
222 
223 	/* Print netdevice Info */
224 	if (netdev) {
225 		dev_info(&adapter->pdev->dev, "Net device Info\n");
226 		pr_info("Device Name     state            trans_start\n");
227 		pr_info("%-15s %016lX %016lX\n", netdev->name,
228 			netdev->state, dev_trans_start(netdev));
229 	}
230 
231 	/* Print Registers */
232 	dev_info(&adapter->pdev->dev, "Register Dump\n");
233 	pr_info(" Register Name   Value\n");
234 	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
235 	     reginfo->name; reginfo++) {
236 		e1000_regdump(hw, reginfo);
237 	}
238 
239 	/* Print Tx Ring Summary */
240 	if (!netdev || !netif_running(netdev))
241 		return;
242 
243 	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
244 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
245 	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
246 	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
247 		0, tx_ring->next_to_use, tx_ring->next_to_clean,
248 		(unsigned long long)buffer_info->dma,
249 		buffer_info->length,
250 		buffer_info->next_to_watch,
251 		(unsigned long long)buffer_info->time_stamp);
252 
253 	/* Print Tx Ring */
254 	if (!netif_msg_tx_done(adapter))
255 		goto rx_ring_summary;
256 
257 	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
258 
259 	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
260 	 *
261 	 * Legacy Transmit Descriptor
262 	 *   +--------------------------------------------------------------+
263 	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
264 	 *   +--------------------------------------------------------------+
265 	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
266 	 *   +--------------------------------------------------------------+
267 	 *   63       48 47        36 35    32 31     24 23    16 15        0
268 	 *
269 	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
270 	 *   63      48 47    40 39       32 31             16 15    8 7      0
271 	 *   +----------------------------------------------------------------+
272 	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
273 	 *   +----------------------------------------------------------------+
274 	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
275 	 *   +----------------------------------------------------------------+
276 	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
277 	 *
278 	 * Extended Data Descriptor (DTYP=0x1)
279 	 *   +----------------------------------------------------------------+
280 	 * 0 |                     Buffer Address [63:0]                      |
281 	 *   +----------------------------------------------------------------+
282 	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
283 	 *   +----------------------------------------------------------------+
284 	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
285 	 */
286 	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
287 	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
288 	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
289 	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
290 		const char *next_desc;
291 		tx_desc = E1000_TX_DESC(*tx_ring, i);
292 		buffer_info = &tx_ring->buffer_info[i];
293 		u0 = (struct my_u0 *)tx_desc;
294 		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
295 			next_desc = " NTC/U";
296 		else if (i == tx_ring->next_to_use)
297 			next_desc = " NTU";
298 		else if (i == tx_ring->next_to_clean)
299 			next_desc = " NTC";
300 		else
301 			next_desc = "";
302 		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
303 			(!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
304 			 ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
305 			i,
306 			(unsigned long long)le64_to_cpu(u0->a),
307 			(unsigned long long)le64_to_cpu(u0->b),
308 			(unsigned long long)buffer_info->dma,
309 			buffer_info->length, buffer_info->next_to_watch,
310 			(unsigned long long)buffer_info->time_stamp,
311 			buffer_info->skb, next_desc);
312 
313 		if (netif_msg_pktdata(adapter) && buffer_info->skb)
314 			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
315 				       16, 1, buffer_info->skb->data,
316 				       buffer_info->skb->len, true);
317 	}
318 
319 	/* Print Rx Ring Summary */
320 rx_ring_summary:
321 	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
322 	pr_info("Queue [NTU] [NTC]\n");
323 	pr_info(" %5d %5X %5X\n",
324 		0, rx_ring->next_to_use, rx_ring->next_to_clean);
325 
326 	/* Print Rx Ring */
327 	if (!netif_msg_rx_status(adapter))
328 		return;
329 
330 	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
331 	switch (adapter->rx_ps_pages) {
332 	case 1:
333 	case 2:
334 	case 3:
335 		/* [Extended] Packet Split Receive Descriptor Format
336 		 *
337 		 *    +-----------------------------------------------------+
338 		 *  0 |                Buffer Address 0 [63:0]              |
339 		 *    +-----------------------------------------------------+
340 		 *  8 |                Buffer Address 1 [63:0]              |
341 		 *    +-----------------------------------------------------+
342 		 * 16 |                Buffer Address 2 [63:0]              |
343 		 *    +-----------------------------------------------------+
344 		 * 24 |                Buffer Address 3 [63:0]              |
345 		 *    +-----------------------------------------------------+
346 		 */
347 		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
348 		/* [Extended] Receive Descriptor (Write-Back) Format
349 		 *
350 		 *   63       48 47    32 31     13 12    8 7    4 3        0
351 		 *   +------------------------------------------------------+
352 		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
353 		 *   | Checksum | Ident  |         | Queue |      |  Type   |
354 		 *   +------------------------------------------------------+
355 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
356 		 *   +------------------------------------------------------+
357 		 *   63       48 47    32 31            20 19               0
358 		 */
359 		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
360 		for (i = 0; i < rx_ring->count; i++) {
361 			const char *next_desc;
362 			buffer_info = &rx_ring->buffer_info[i];
363 			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
364 			u1 = (struct my_u1 *)rx_desc_ps;
365 			staterr =
366 			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
367 
368 			if (i == rx_ring->next_to_use)
369 				next_desc = " NTU";
370 			else if (i == rx_ring->next_to_clean)
371 				next_desc = " NTC";
372 			else
373 				next_desc = "";
374 
375 			if (staterr & E1000_RXD_STAT_DD) {
376 				/* Descriptor Done */
377 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
378 					"RWB", i,
379 					(unsigned long long)le64_to_cpu(u1->a),
380 					(unsigned long long)le64_to_cpu(u1->b),
381 					(unsigned long long)le64_to_cpu(u1->c),
382 					(unsigned long long)le64_to_cpu(u1->d),
383 					buffer_info->skb, next_desc);
384 			} else {
385 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
386 					"R  ", i,
387 					(unsigned long long)le64_to_cpu(u1->a),
388 					(unsigned long long)le64_to_cpu(u1->b),
389 					(unsigned long long)le64_to_cpu(u1->c),
390 					(unsigned long long)le64_to_cpu(u1->d),
391 					(unsigned long long)buffer_info->dma,
392 					buffer_info->skb, next_desc);
393 
394 				if (netif_msg_pktdata(adapter))
395 					e1000e_dump_ps_pages(adapter,
396 							     buffer_info);
397 			}
398 		}
399 		break;
400 	default:
401 	case 0:
402 		/* Extended Receive Descriptor (Read) Format
403 		 *
404 		 *   +-----------------------------------------------------+
405 		 * 0 |                Buffer Address [63:0]                |
406 		 *   +-----------------------------------------------------+
407 		 * 8 |                      Reserved                       |
408 		 *   +-----------------------------------------------------+
409 		 */
410 		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
411 		/* Extended Receive Descriptor (Write-Back) Format
412 		 *
413 		 *   63       48 47    32 31    24 23            4 3        0
414 		 *   +------------------------------------------------------+
415 		 *   |     RSS Hash      |        |               |         |
416 		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
417 		 *   | Packet   | IP     |        |               |  Type   |
418 		 *   | Checksum | Ident  |        |               |         |
419 		 *   +------------------------------------------------------+
420 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
421 		 *   +------------------------------------------------------+
422 		 *   63       48 47    32 31            20 19               0
423 		 */
424 		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
425 
426 		for (i = 0; i < rx_ring->count; i++) {
427 			const char *next_desc;
428 
429 			buffer_info = &rx_ring->buffer_info[i];
430 			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
431 			u1 = (struct my_u1 *)rx_desc;
432 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
433 
434 			if (i == rx_ring->next_to_use)
435 				next_desc = " NTU";
436 			else if (i == rx_ring->next_to_clean)
437 				next_desc = " NTC";
438 			else
439 				next_desc = "";
440 
441 			if (staterr & E1000_RXD_STAT_DD) {
442 				/* Descriptor Done */
443 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
444 					"RWB", i,
445 					(unsigned long long)le64_to_cpu(u1->a),
446 					(unsigned long long)le64_to_cpu(u1->b),
447 					buffer_info->skb, next_desc);
448 			} else {
449 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
450 					"R  ", i,
451 					(unsigned long long)le64_to_cpu(u1->a),
452 					(unsigned long long)le64_to_cpu(u1->b),
453 					(unsigned long long)buffer_info->dma,
454 					buffer_info->skb, next_desc);
455 
456 				if (netif_msg_pktdata(adapter) &&
457 				    buffer_info->skb)
458 					print_hex_dump(KERN_INFO, "",
459 						       DUMP_PREFIX_ADDRESS, 16,
460 						       1,
461 						       buffer_info->skb->data,
462 						       adapter->rx_buffer_len,
463 						       true);
464 			}
465 		}
466 	}
467 }
468 
469 /**
470  * e1000_desc_unused - calculate if we have unused descriptors
471  * @ring: pointer to ring struct to perform calculation on
472  **/
473 static int e1000_desc_unused(struct e1000_ring *ring)
474 {
475 	if (ring->next_to_clean > ring->next_to_use)
476 		return ring->next_to_clean - ring->next_to_use - 1;
477 
478 	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
479 }
480 
481 /**
482  * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
483  * @adapter: board private structure
484  * @hwtstamps: time stamp structure to update
485  * @systim: unsigned 64bit system time value.
486  *
487  * Convert the system time value stored in the RX/TXSTMP registers into a
488  * hwtstamp which can be used by the upper level time stamping functions.
489  *
490  * The 'systim_lock' spinlock is used to protect the consistency of the
491  * system time value. This is needed because reading the 64 bit time
492  * value involves reading two 32 bit registers. The first read latches the
493  * value.
494  **/
495 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
496 				      struct skb_shared_hwtstamps *hwtstamps,
497 				      u64 systim)
498 {
499 	u64 ns;
500 	unsigned long flags;
501 
502 	spin_lock_irqsave(&adapter->systim_lock, flags);
503 	ns = timecounter_cyc2time(&adapter->tc, systim);
504 	spin_unlock_irqrestore(&adapter->systim_lock, flags);
505 
506 	memset(hwtstamps, 0, sizeof(*hwtstamps));
507 	hwtstamps->hwtstamp = ns_to_ktime(ns);
508 }
509 
510 /**
511  * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
512  * @adapter: board private structure
513  * @status: descriptor extended error and status field
514  * @skb: particular skb to include time stamp
515  *
516  * If the time stamp is valid, convert it into the timecounter ns value
517  * and store that result into the shhwtstamps structure which is passed
518  * up the network stack.
519  **/
520 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
521 			       struct sk_buff *skb)
522 {
523 	struct e1000_hw *hw = &adapter->hw;
524 	u64 rxstmp;
525 
526 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
527 	    !(status & E1000_RXDEXT_STATERR_TST) ||
528 	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
529 		return;
530 
531 	/* The Rx time stamp registers contain the time stamp.  No other
532 	 * received packet will be time stamped until the Rx time stamp
533 	 * registers are read.  Because only one packet can be time stamped
534 	 * at a time, the register values must belong to this packet and
535 	 * therefore none of the other additional attributes need to be
536 	 * compared.
537 	 */
538 	rxstmp = (u64)er32(RXSTMPL);
539 	rxstmp |= (u64)er32(RXSTMPH) << 32;
540 	e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
541 
542 	adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
543 }
544 
545 /**
546  * e1000_receive_skb - helper function to handle Rx indications
547  * @adapter: board private structure
548  * @netdev: pointer to netdev struct
549  * @staterr: descriptor extended error and status field as written by hardware
550  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
551  * @skb: pointer to sk_buff to be indicated to stack
552  **/
553 static void e1000_receive_skb(struct e1000_adapter *adapter,
554 			      struct net_device *netdev, struct sk_buff *skb,
555 			      u32 staterr, __le16 vlan)
556 {
557 	u16 tag = le16_to_cpu(vlan);
558 
559 	e1000e_rx_hwtstamp(adapter, staterr, skb);
560 
561 	skb->protocol = eth_type_trans(skb, netdev);
562 
563 	if (staterr & E1000_RXD_STAT_VP)
564 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
565 
566 	napi_gro_receive(&adapter->napi, skb);
567 }
568 
569 /**
570  * e1000_rx_checksum - Receive Checksum Offload
571  * @adapter: board private structure
572  * @status_err: receive descriptor status and error fields
573  * @skb: socket buffer with received data
574  **/
575 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
576 			      struct sk_buff *skb)
577 {
578 	u16 status = (u16)status_err;
579 	u8 errors = (u8)(status_err >> 24);
580 
581 	skb_checksum_none_assert(skb);
582 
583 	/* Rx checksum disabled */
584 	if (!(adapter->netdev->features & NETIF_F_RXCSUM))
585 		return;
586 
587 	/* Ignore Checksum bit is set */
588 	if (status & E1000_RXD_STAT_IXSM)
589 		return;
590 
591 	/* TCP/UDP checksum error bit or IP checksum error bit is set */
592 	if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
593 		/* let the stack verify checksum errors */
594 		adapter->hw_csum_err++;
595 		return;
596 	}
597 
598 	/* TCP/UDP Checksum has not been calculated */
599 	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
600 		return;
601 
602 	/* It must be a TCP or UDP packet with a valid checksum */
603 	skb->ip_summed = CHECKSUM_UNNECESSARY;
604 	adapter->hw_csum_good++;
605 }
606 
607 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
608 {
609 	struct e1000_adapter *adapter = rx_ring->adapter;
610 	struct e1000_hw *hw = &adapter->hw;
611 
612 	__ew32_prepare(hw);
613 	writel(i, rx_ring->tail);
614 
615 	if (unlikely(i != readl(rx_ring->tail))) {
616 		u32 rctl = er32(RCTL);
617 
618 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
619 		e_err("ME firmware caused invalid RDT - resetting\n");
620 		schedule_work(&adapter->reset_task);
621 	}
622 }
623 
624 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
625 {
626 	struct e1000_adapter *adapter = tx_ring->adapter;
627 	struct e1000_hw *hw = &adapter->hw;
628 
629 	__ew32_prepare(hw);
630 	writel(i, tx_ring->tail);
631 
632 	if (unlikely(i != readl(tx_ring->tail))) {
633 		u32 tctl = er32(TCTL);
634 
635 		ew32(TCTL, tctl & ~E1000_TCTL_EN);
636 		e_err("ME firmware caused invalid TDT - resetting\n");
637 		schedule_work(&adapter->reset_task);
638 	}
639 }
640 
641 /**
642  * e1000_alloc_rx_buffers - Replace used receive buffers
643  * @rx_ring: Rx descriptor ring
644  * @cleaned_count: number to reallocate
645  * @gfp: flags for allocation
646  **/
647 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
648 				   int cleaned_count, gfp_t gfp)
649 {
650 	struct e1000_adapter *adapter = rx_ring->adapter;
651 	struct net_device *netdev = adapter->netdev;
652 	struct pci_dev *pdev = adapter->pdev;
653 	union e1000_rx_desc_extended *rx_desc;
654 	struct e1000_buffer *buffer_info;
655 	struct sk_buff *skb;
656 	unsigned int i;
657 	unsigned int bufsz = adapter->rx_buffer_len;
658 
659 	i = rx_ring->next_to_use;
660 	buffer_info = &rx_ring->buffer_info[i];
661 
662 	while (cleaned_count--) {
663 		skb = buffer_info->skb;
664 		if (skb) {
665 			skb_trim(skb, 0);
666 			goto map_skb;
667 		}
668 
669 		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
670 		if (!skb) {
671 			/* Better luck next round */
672 			adapter->alloc_rx_buff_failed++;
673 			break;
674 		}
675 
676 		buffer_info->skb = skb;
677 map_skb:
678 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
679 						  adapter->rx_buffer_len,
680 						  DMA_FROM_DEVICE);
681 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
682 			dev_err(&pdev->dev, "Rx DMA map failed\n");
683 			adapter->rx_dma_failed++;
684 			break;
685 		}
686 
687 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
688 		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
689 
690 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
691 			/* Force memory writes to complete before letting h/w
692 			 * know there are new descriptors to fetch.  (Only
693 			 * applicable for weak-ordered memory model archs,
694 			 * such as IA-64).
695 			 */
696 			wmb();
697 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
698 				e1000e_update_rdt_wa(rx_ring, i);
699 			else
700 				writel(i, rx_ring->tail);
701 		}
702 		i++;
703 		if (i == rx_ring->count)
704 			i = 0;
705 		buffer_info = &rx_ring->buffer_info[i];
706 	}
707 
708 	rx_ring->next_to_use = i;
709 }
710 
711 /**
712  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
713  * @rx_ring: Rx descriptor ring
714  * @cleaned_count: number to reallocate
715  * @gfp: flags for allocation
716  **/
717 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
718 				      int cleaned_count, gfp_t gfp)
719 {
720 	struct e1000_adapter *adapter = rx_ring->adapter;
721 	struct net_device *netdev = adapter->netdev;
722 	struct pci_dev *pdev = adapter->pdev;
723 	union e1000_rx_desc_packet_split *rx_desc;
724 	struct e1000_buffer *buffer_info;
725 	struct e1000_ps_page *ps_page;
726 	struct sk_buff *skb;
727 	unsigned int i, j;
728 
729 	i = rx_ring->next_to_use;
730 	buffer_info = &rx_ring->buffer_info[i];
731 
732 	while (cleaned_count--) {
733 		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
734 
735 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
736 			ps_page = &buffer_info->ps_pages[j];
737 			if (j >= adapter->rx_ps_pages) {
738 				/* all unused desc entries get hw null ptr */
739 				rx_desc->read.buffer_addr[j + 1] =
740 				    ~cpu_to_le64(0);
741 				continue;
742 			}
743 			if (!ps_page->page) {
744 				ps_page->page = alloc_page(gfp);
745 				if (!ps_page->page) {
746 					adapter->alloc_rx_buff_failed++;
747 					goto no_buffers;
748 				}
749 				ps_page->dma = dma_map_page(&pdev->dev,
750 							    ps_page->page,
751 							    0, PAGE_SIZE,
752 							    DMA_FROM_DEVICE);
753 				if (dma_mapping_error(&pdev->dev,
754 						      ps_page->dma)) {
755 					dev_err(&adapter->pdev->dev,
756 						"Rx DMA page map failed\n");
757 					adapter->rx_dma_failed++;
758 					goto no_buffers;
759 				}
760 			}
761 			/* Refresh the desc even if buffer_addrs
762 			 * didn't change because each write-back
763 			 * erases this info.
764 			 */
765 			rx_desc->read.buffer_addr[j + 1] =
766 			    cpu_to_le64(ps_page->dma);
767 		}
768 
769 		skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
770 						  gfp);
771 
772 		if (!skb) {
773 			adapter->alloc_rx_buff_failed++;
774 			break;
775 		}
776 
777 		buffer_info->skb = skb;
778 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
779 						  adapter->rx_ps_bsize0,
780 						  DMA_FROM_DEVICE);
781 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
782 			dev_err(&pdev->dev, "Rx DMA map failed\n");
783 			adapter->rx_dma_failed++;
784 			/* cleanup skb */
785 			dev_kfree_skb_any(skb);
786 			buffer_info->skb = NULL;
787 			break;
788 		}
789 
790 		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
791 
792 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
793 			/* Force memory writes to complete before letting h/w
794 			 * know there are new descriptors to fetch.  (Only
795 			 * applicable for weak-ordered memory model archs,
796 			 * such as IA-64).
797 			 */
798 			wmb();
799 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
800 				e1000e_update_rdt_wa(rx_ring, i << 1);
801 			else
802 				writel(i << 1, rx_ring->tail);
803 		}
804 
805 		i++;
806 		if (i == rx_ring->count)
807 			i = 0;
808 		buffer_info = &rx_ring->buffer_info[i];
809 	}
810 
811 no_buffers:
812 	rx_ring->next_to_use = i;
813 }
814 
815 /**
816  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
817  * @rx_ring: Rx descriptor ring
818  * @cleaned_count: number of buffers to allocate this pass
819  * @gfp: flags for allocation
820  **/
821 
822 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
823 					 int cleaned_count, gfp_t gfp)
824 {
825 	struct e1000_adapter *adapter = rx_ring->adapter;
826 	struct net_device *netdev = adapter->netdev;
827 	struct pci_dev *pdev = adapter->pdev;
828 	union e1000_rx_desc_extended *rx_desc;
829 	struct e1000_buffer *buffer_info;
830 	struct sk_buff *skb;
831 	unsigned int i;
832 	unsigned int bufsz = 256 - 16;	/* for skb_reserve */
833 
834 	i = rx_ring->next_to_use;
835 	buffer_info = &rx_ring->buffer_info[i];
836 
837 	while (cleaned_count--) {
838 		skb = buffer_info->skb;
839 		if (skb) {
840 			skb_trim(skb, 0);
841 			goto check_page;
842 		}
843 
844 		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
845 		if (unlikely(!skb)) {
846 			/* Better luck next round */
847 			adapter->alloc_rx_buff_failed++;
848 			break;
849 		}
850 
851 		buffer_info->skb = skb;
852 check_page:
853 		/* allocate a new page if necessary */
854 		if (!buffer_info->page) {
855 			buffer_info->page = alloc_page(gfp);
856 			if (unlikely(!buffer_info->page)) {
857 				adapter->alloc_rx_buff_failed++;
858 				break;
859 			}
860 		}
861 
862 		if (!buffer_info->dma) {
863 			buffer_info->dma = dma_map_page(&pdev->dev,
864 							buffer_info->page, 0,
865 							PAGE_SIZE,
866 							DMA_FROM_DEVICE);
867 			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
868 				adapter->alloc_rx_buff_failed++;
869 				break;
870 			}
871 		}
872 
873 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
874 		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
875 
876 		if (unlikely(++i == rx_ring->count))
877 			i = 0;
878 		buffer_info = &rx_ring->buffer_info[i];
879 	}
880 
881 	if (likely(rx_ring->next_to_use != i)) {
882 		rx_ring->next_to_use = i;
883 		if (unlikely(i-- == 0))
884 			i = (rx_ring->count - 1);
885 
886 		/* Force memory writes to complete before letting h/w
887 		 * know there are new descriptors to fetch.  (Only
888 		 * applicable for weak-ordered memory model archs,
889 		 * such as IA-64).
890 		 */
891 		wmb();
892 		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
893 			e1000e_update_rdt_wa(rx_ring, i);
894 		else
895 			writel(i, rx_ring->tail);
896 	}
897 }
898 
899 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
900 				 struct sk_buff *skb)
901 {
902 	if (netdev->features & NETIF_F_RXHASH)
903 		skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
904 }
905 
906 /**
907  * e1000_clean_rx_irq - Send received data up the network stack
908  * @rx_ring: Rx descriptor ring
909  * @work_done: output parameter for indicating completed work
910  * @work_to_do: how many packets we can clean
911  *
912  * the return value indicates whether actual cleaning was done, there
913  * is no guarantee that everything was cleaned
914  **/
915 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
916 			       int work_to_do)
917 {
918 	struct e1000_adapter *adapter = rx_ring->adapter;
919 	struct net_device *netdev = adapter->netdev;
920 	struct pci_dev *pdev = adapter->pdev;
921 	struct e1000_hw *hw = &adapter->hw;
922 	union e1000_rx_desc_extended *rx_desc, *next_rxd;
923 	struct e1000_buffer *buffer_info, *next_buffer;
924 	u32 length, staterr;
925 	unsigned int i;
926 	int cleaned_count = 0;
927 	bool cleaned = false;
928 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
929 
930 	i = rx_ring->next_to_clean;
931 	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
932 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
933 	buffer_info = &rx_ring->buffer_info[i];
934 
935 	while (staterr & E1000_RXD_STAT_DD) {
936 		struct sk_buff *skb;
937 
938 		if (*work_done >= work_to_do)
939 			break;
940 		(*work_done)++;
941 		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
942 
943 		skb = buffer_info->skb;
944 		buffer_info->skb = NULL;
945 
946 		prefetch(skb->data - NET_IP_ALIGN);
947 
948 		i++;
949 		if (i == rx_ring->count)
950 			i = 0;
951 		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
952 		prefetch(next_rxd);
953 
954 		next_buffer = &rx_ring->buffer_info[i];
955 
956 		cleaned = true;
957 		cleaned_count++;
958 		dma_unmap_single(&pdev->dev, buffer_info->dma,
959 				 adapter->rx_buffer_len, DMA_FROM_DEVICE);
960 		buffer_info->dma = 0;
961 
962 		length = le16_to_cpu(rx_desc->wb.upper.length);
963 
964 		/* !EOP means multiple descriptors were used to store a single
965 		 * packet, if that's the case we need to toss it.  In fact, we
966 		 * need to toss every packet with the EOP bit clear and the
967 		 * next frame that _does_ have the EOP bit set, as it is by
968 		 * definition only a frame fragment
969 		 */
970 		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
971 			adapter->flags2 |= FLAG2_IS_DISCARDING;
972 
973 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
974 			/* All receives must fit into a single buffer */
975 			e_dbg("Receive packet consumed multiple buffers\n");
976 			/* recycle */
977 			buffer_info->skb = skb;
978 			if (staterr & E1000_RXD_STAT_EOP)
979 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
980 			goto next_desc;
981 		}
982 
983 		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
984 			     !(netdev->features & NETIF_F_RXALL))) {
985 			/* recycle */
986 			buffer_info->skb = skb;
987 			goto next_desc;
988 		}
989 
990 		/* adjust length to remove Ethernet CRC */
991 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
992 			/* If configured to store CRC, don't subtract FCS,
993 			 * but keep the FCS bytes out of the total_rx_bytes
994 			 * counter
995 			 */
996 			if (netdev->features & NETIF_F_RXFCS)
997 				total_rx_bytes -= 4;
998 			else
999 				length -= 4;
1000 		}
1001 
1002 		total_rx_bytes += length;
1003 		total_rx_packets++;
1004 
1005 		/* code added for copybreak, this should improve
1006 		 * performance for small packets with large amounts
1007 		 * of reassembly being done in the stack
1008 		 */
1009 		if (length < copybreak) {
1010 			struct sk_buff *new_skb =
1011 				napi_alloc_skb(&adapter->napi, length);
1012 			if (new_skb) {
1013 				skb_copy_to_linear_data_offset(new_skb,
1014 							       -NET_IP_ALIGN,
1015 							       (skb->data -
1016 								NET_IP_ALIGN),
1017 							       (length +
1018 								NET_IP_ALIGN));
1019 				/* save the skb in buffer_info as good */
1020 				buffer_info->skb = skb;
1021 				skb = new_skb;
1022 			}
1023 			/* else just continue with the old one */
1024 		}
1025 		/* end copybreak code */
1026 		skb_put(skb, length);
1027 
1028 		/* Receive Checksum Offload */
1029 		e1000_rx_checksum(adapter, staterr, skb);
1030 
1031 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1032 
1033 		e1000_receive_skb(adapter, netdev, skb, staterr,
1034 				  rx_desc->wb.upper.vlan);
1035 
1036 next_desc:
1037 		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1038 
1039 		/* return some buffers to hardware, one at a time is too slow */
1040 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1041 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1042 					      GFP_ATOMIC);
1043 			cleaned_count = 0;
1044 		}
1045 
1046 		/* use prefetched values */
1047 		rx_desc = next_rxd;
1048 		buffer_info = next_buffer;
1049 
1050 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1051 	}
1052 	rx_ring->next_to_clean = i;
1053 
1054 	cleaned_count = e1000_desc_unused(rx_ring);
1055 	if (cleaned_count)
1056 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1057 
1058 	adapter->total_rx_bytes += total_rx_bytes;
1059 	adapter->total_rx_packets += total_rx_packets;
1060 	return cleaned;
1061 }
1062 
1063 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1064 			    struct e1000_buffer *buffer_info,
1065 			    bool drop)
1066 {
1067 	struct e1000_adapter *adapter = tx_ring->adapter;
1068 
1069 	if (buffer_info->dma) {
1070 		if (buffer_info->mapped_as_page)
1071 			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1072 				       buffer_info->length, DMA_TO_DEVICE);
1073 		else
1074 			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1075 					 buffer_info->length, DMA_TO_DEVICE);
1076 		buffer_info->dma = 0;
1077 	}
1078 	if (buffer_info->skb) {
1079 		if (drop)
1080 			dev_kfree_skb_any(buffer_info->skb);
1081 		else
1082 			dev_consume_skb_any(buffer_info->skb);
1083 		buffer_info->skb = NULL;
1084 	}
1085 	buffer_info->time_stamp = 0;
1086 }
1087 
1088 static void e1000_print_hw_hang(struct work_struct *work)
1089 {
1090 	struct e1000_adapter *adapter = container_of(work,
1091 						     struct e1000_adapter,
1092 						     print_hang_task);
1093 	struct net_device *netdev = adapter->netdev;
1094 	struct e1000_ring *tx_ring = adapter->tx_ring;
1095 	unsigned int i = tx_ring->next_to_clean;
1096 	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1097 	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1098 	struct e1000_hw *hw = &adapter->hw;
1099 	u16 phy_status, phy_1000t_status, phy_ext_status;
1100 	u16 pci_status;
1101 
1102 	if (test_bit(__E1000_DOWN, &adapter->state))
1103 		return;
1104 
1105 	if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1106 		/* May be block on write-back, flush and detect again
1107 		 * flush pending descriptor writebacks to memory
1108 		 */
1109 		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1110 		/* execute the writes immediately */
1111 		e1e_flush();
1112 		/* Due to rare timing issues, write to TIDV again to ensure
1113 		 * the write is successful
1114 		 */
1115 		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1116 		/* execute the writes immediately */
1117 		e1e_flush();
1118 		adapter->tx_hang_recheck = true;
1119 		return;
1120 	}
1121 	adapter->tx_hang_recheck = false;
1122 
1123 	if (er32(TDH(0)) == er32(TDT(0))) {
1124 		e_dbg("false hang detected, ignoring\n");
1125 		return;
1126 	}
1127 
1128 	/* Real hang detected */
1129 	netif_stop_queue(netdev);
1130 
1131 	e1e_rphy(hw, MII_BMSR, &phy_status);
1132 	e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1133 	e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1134 
1135 	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1136 
1137 	/* detected Hardware unit hang */
1138 	e_err("Detected Hardware Unit Hang:\n"
1139 	      "  TDH                  <%x>\n"
1140 	      "  TDT                  <%x>\n"
1141 	      "  next_to_use          <%x>\n"
1142 	      "  next_to_clean        <%x>\n"
1143 	      "buffer_info[next_to_clean]:\n"
1144 	      "  time_stamp           <%lx>\n"
1145 	      "  next_to_watch        <%x>\n"
1146 	      "  jiffies              <%lx>\n"
1147 	      "  next_to_watch.status <%x>\n"
1148 	      "MAC Status             <%x>\n"
1149 	      "PHY Status             <%x>\n"
1150 	      "PHY 1000BASE-T Status  <%x>\n"
1151 	      "PHY Extended Status    <%x>\n"
1152 	      "PCI Status             <%x>\n",
1153 	      readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1154 	      tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1155 	      eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1156 	      phy_status, phy_1000t_status, phy_ext_status, pci_status);
1157 
1158 	e1000e_dump(adapter);
1159 
1160 	/* Suggest workaround for known h/w issue */
1161 	if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1162 		e_err("Try turning off Tx pause (flow control) via ethtool\n");
1163 }
1164 
1165 /**
1166  * e1000e_tx_hwtstamp_work - check for Tx time stamp
1167  * @work: pointer to work struct
1168  *
1169  * This work function polls the TSYNCTXCTL valid bit to determine when a
1170  * timestamp has been taken for the current stored skb.  The timestamp must
1171  * be for this skb because only one such packet is allowed in the queue.
1172  */
1173 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1174 {
1175 	struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1176 						     tx_hwtstamp_work);
1177 	struct e1000_hw *hw = &adapter->hw;
1178 
1179 	if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1180 		struct sk_buff *skb = adapter->tx_hwtstamp_skb;
1181 		struct skb_shared_hwtstamps shhwtstamps;
1182 		u64 txstmp;
1183 
1184 		txstmp = er32(TXSTMPL);
1185 		txstmp |= (u64)er32(TXSTMPH) << 32;
1186 
1187 		e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1188 
1189 		/* Clear the global tx_hwtstamp_skb pointer and force writes
1190 		 * prior to notifying the stack of a Tx timestamp.
1191 		 */
1192 		adapter->tx_hwtstamp_skb = NULL;
1193 		wmb(); /* force write prior to skb_tstamp_tx */
1194 
1195 		skb_tstamp_tx(skb, &shhwtstamps);
1196 		dev_consume_skb_any(skb);
1197 	} else if (time_after(jiffies, adapter->tx_hwtstamp_start
1198 			      + adapter->tx_timeout_factor * HZ)) {
1199 		dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1200 		adapter->tx_hwtstamp_skb = NULL;
1201 		adapter->tx_hwtstamp_timeouts++;
1202 		e_warn("clearing Tx timestamp hang\n");
1203 	} else {
1204 		/* reschedule to check later */
1205 		schedule_work(&adapter->tx_hwtstamp_work);
1206 	}
1207 }
1208 
1209 /**
1210  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1211  * @tx_ring: Tx descriptor ring
1212  *
1213  * the return value indicates whether actual cleaning was done, there
1214  * is no guarantee that everything was cleaned
1215  **/
1216 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1217 {
1218 	struct e1000_adapter *adapter = tx_ring->adapter;
1219 	struct net_device *netdev = adapter->netdev;
1220 	struct e1000_hw *hw = &adapter->hw;
1221 	struct e1000_tx_desc *tx_desc, *eop_desc;
1222 	struct e1000_buffer *buffer_info;
1223 	unsigned int i, eop;
1224 	unsigned int count = 0;
1225 	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1226 	unsigned int bytes_compl = 0, pkts_compl = 0;
1227 
1228 	i = tx_ring->next_to_clean;
1229 	eop = tx_ring->buffer_info[i].next_to_watch;
1230 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
1231 
1232 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1233 	       (count < tx_ring->count)) {
1234 		bool cleaned = false;
1235 
1236 		dma_rmb();		/* read buffer_info after eop_desc */
1237 		for (; !cleaned; count++) {
1238 			tx_desc = E1000_TX_DESC(*tx_ring, i);
1239 			buffer_info = &tx_ring->buffer_info[i];
1240 			cleaned = (i == eop);
1241 
1242 			if (cleaned) {
1243 				total_tx_packets += buffer_info->segs;
1244 				total_tx_bytes += buffer_info->bytecount;
1245 				if (buffer_info->skb) {
1246 					bytes_compl += buffer_info->skb->len;
1247 					pkts_compl++;
1248 				}
1249 			}
1250 
1251 			e1000_put_txbuf(tx_ring, buffer_info, false);
1252 			tx_desc->upper.data = 0;
1253 
1254 			i++;
1255 			if (i == tx_ring->count)
1256 				i = 0;
1257 		}
1258 
1259 		if (i == tx_ring->next_to_use)
1260 			break;
1261 		eop = tx_ring->buffer_info[i].next_to_watch;
1262 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
1263 	}
1264 
1265 	tx_ring->next_to_clean = i;
1266 
1267 	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1268 
1269 #define TX_WAKE_THRESHOLD 32
1270 	if (count && netif_carrier_ok(netdev) &&
1271 	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1272 		/* Make sure that anybody stopping the queue after this
1273 		 * sees the new next_to_clean.
1274 		 */
1275 		smp_mb();
1276 
1277 		if (netif_queue_stopped(netdev) &&
1278 		    !(test_bit(__E1000_DOWN, &adapter->state))) {
1279 			netif_wake_queue(netdev);
1280 			++adapter->restart_queue;
1281 		}
1282 	}
1283 
1284 	if (adapter->detect_tx_hung) {
1285 		/* Detect a transmit hang in hardware, this serializes the
1286 		 * check with the clearing of time_stamp and movement of i
1287 		 */
1288 		adapter->detect_tx_hung = false;
1289 		if (tx_ring->buffer_info[i].time_stamp &&
1290 		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1291 			       + (adapter->tx_timeout_factor * HZ)) &&
1292 		    !(er32(STATUS) & E1000_STATUS_TXOFF))
1293 			schedule_work(&adapter->print_hang_task);
1294 		else
1295 			adapter->tx_hang_recheck = false;
1296 	}
1297 	adapter->total_tx_bytes += total_tx_bytes;
1298 	adapter->total_tx_packets += total_tx_packets;
1299 	return count < tx_ring->count;
1300 }
1301 
1302 /**
1303  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1304  * @rx_ring: Rx descriptor ring
1305  * @work_done: output parameter for indicating completed work
1306  * @work_to_do: how many packets we can clean
1307  *
1308  * the return value indicates whether actual cleaning was done, there
1309  * is no guarantee that everything was cleaned
1310  **/
1311 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1312 				  int work_to_do)
1313 {
1314 	struct e1000_adapter *adapter = rx_ring->adapter;
1315 	struct e1000_hw *hw = &adapter->hw;
1316 	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1317 	struct net_device *netdev = adapter->netdev;
1318 	struct pci_dev *pdev = adapter->pdev;
1319 	struct e1000_buffer *buffer_info, *next_buffer;
1320 	struct e1000_ps_page *ps_page;
1321 	struct sk_buff *skb;
1322 	unsigned int i, j;
1323 	u32 length, staterr;
1324 	int cleaned_count = 0;
1325 	bool cleaned = false;
1326 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1327 
1328 	i = rx_ring->next_to_clean;
1329 	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1330 	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1331 	buffer_info = &rx_ring->buffer_info[i];
1332 
1333 	while (staterr & E1000_RXD_STAT_DD) {
1334 		if (*work_done >= work_to_do)
1335 			break;
1336 		(*work_done)++;
1337 		skb = buffer_info->skb;
1338 		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1339 
1340 		/* in the packet split case this is header only */
1341 		prefetch(skb->data - NET_IP_ALIGN);
1342 
1343 		i++;
1344 		if (i == rx_ring->count)
1345 			i = 0;
1346 		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1347 		prefetch(next_rxd);
1348 
1349 		next_buffer = &rx_ring->buffer_info[i];
1350 
1351 		cleaned = true;
1352 		cleaned_count++;
1353 		dma_unmap_single(&pdev->dev, buffer_info->dma,
1354 				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1355 		buffer_info->dma = 0;
1356 
1357 		/* see !EOP comment in other Rx routine */
1358 		if (!(staterr & E1000_RXD_STAT_EOP))
1359 			adapter->flags2 |= FLAG2_IS_DISCARDING;
1360 
1361 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1362 			e_dbg("Packet Split buffers didn't pick up the full packet\n");
1363 			dev_kfree_skb_irq(skb);
1364 			if (staterr & E1000_RXD_STAT_EOP)
1365 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1366 			goto next_desc;
1367 		}
1368 
1369 		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1370 			     !(netdev->features & NETIF_F_RXALL))) {
1371 			dev_kfree_skb_irq(skb);
1372 			goto next_desc;
1373 		}
1374 
1375 		length = le16_to_cpu(rx_desc->wb.middle.length0);
1376 
1377 		if (!length) {
1378 			e_dbg("Last part of the packet spanning multiple descriptors\n");
1379 			dev_kfree_skb_irq(skb);
1380 			goto next_desc;
1381 		}
1382 
1383 		/* Good Receive */
1384 		skb_put(skb, length);
1385 
1386 		{
1387 			/* this looks ugly, but it seems compiler issues make
1388 			 * it more efficient than reusing j
1389 			 */
1390 			int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1391 
1392 			/* page alloc/put takes too long and effects small
1393 			 * packet throughput, so unsplit small packets and
1394 			 * save the alloc/put
1395 			 */
1396 			if (l1 && (l1 <= copybreak) &&
1397 			    ((length + l1) <= adapter->rx_ps_bsize0)) {
1398 				ps_page = &buffer_info->ps_pages[0];
1399 
1400 				dma_sync_single_for_cpu(&pdev->dev,
1401 							ps_page->dma,
1402 							PAGE_SIZE,
1403 							DMA_FROM_DEVICE);
1404 				memcpy(skb_tail_pointer(skb),
1405 				       page_address(ps_page->page), l1);
1406 				dma_sync_single_for_device(&pdev->dev,
1407 							   ps_page->dma,
1408 							   PAGE_SIZE,
1409 							   DMA_FROM_DEVICE);
1410 
1411 				/* remove the CRC */
1412 				if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1413 					if (!(netdev->features & NETIF_F_RXFCS))
1414 						l1 -= 4;
1415 				}
1416 
1417 				skb_put(skb, l1);
1418 				goto copydone;
1419 			}	/* if */
1420 		}
1421 
1422 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1423 			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1424 			if (!length)
1425 				break;
1426 
1427 			ps_page = &buffer_info->ps_pages[j];
1428 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1429 				       DMA_FROM_DEVICE);
1430 			ps_page->dma = 0;
1431 			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1432 			ps_page->page = NULL;
1433 			skb->len += length;
1434 			skb->data_len += length;
1435 			skb->truesize += PAGE_SIZE;
1436 		}
1437 
1438 		/* strip the ethernet crc, problem is we're using pages now so
1439 		 * this whole operation can get a little cpu intensive
1440 		 */
1441 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1442 			if (!(netdev->features & NETIF_F_RXFCS))
1443 				pskb_trim(skb, skb->len - 4);
1444 		}
1445 
1446 copydone:
1447 		total_rx_bytes += skb->len;
1448 		total_rx_packets++;
1449 
1450 		e1000_rx_checksum(adapter, staterr, skb);
1451 
1452 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1453 
1454 		if (rx_desc->wb.upper.header_status &
1455 		    cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1456 			adapter->rx_hdr_split++;
1457 
1458 		e1000_receive_skb(adapter, netdev, skb, staterr,
1459 				  rx_desc->wb.middle.vlan);
1460 
1461 next_desc:
1462 		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1463 		buffer_info->skb = NULL;
1464 
1465 		/* return some buffers to hardware, one at a time is too slow */
1466 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1467 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1468 					      GFP_ATOMIC);
1469 			cleaned_count = 0;
1470 		}
1471 
1472 		/* use prefetched values */
1473 		rx_desc = next_rxd;
1474 		buffer_info = next_buffer;
1475 
1476 		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1477 	}
1478 	rx_ring->next_to_clean = i;
1479 
1480 	cleaned_count = e1000_desc_unused(rx_ring);
1481 	if (cleaned_count)
1482 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1483 
1484 	adapter->total_rx_bytes += total_rx_bytes;
1485 	adapter->total_rx_packets += total_rx_packets;
1486 	return cleaned;
1487 }
1488 
1489 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1490 			       u16 length)
1491 {
1492 	bi->page = NULL;
1493 	skb->len += length;
1494 	skb->data_len += length;
1495 	skb->truesize += PAGE_SIZE;
1496 }
1497 
1498 /**
1499  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1500  * @rx_ring: Rx descriptor ring
1501  * @work_done: output parameter for indicating completed work
1502  * @work_to_do: how many packets we can clean
1503  *
1504  * the return value indicates whether actual cleaning was done, there
1505  * is no guarantee that everything was cleaned
1506  **/
1507 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1508 				     int work_to_do)
1509 {
1510 	struct e1000_adapter *adapter = rx_ring->adapter;
1511 	struct net_device *netdev = adapter->netdev;
1512 	struct pci_dev *pdev = adapter->pdev;
1513 	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1514 	struct e1000_buffer *buffer_info, *next_buffer;
1515 	u32 length, staterr;
1516 	unsigned int i;
1517 	int cleaned_count = 0;
1518 	bool cleaned = false;
1519 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1520 	struct skb_shared_info *shinfo;
1521 
1522 	i = rx_ring->next_to_clean;
1523 	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1524 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1525 	buffer_info = &rx_ring->buffer_info[i];
1526 
1527 	while (staterr & E1000_RXD_STAT_DD) {
1528 		struct sk_buff *skb;
1529 
1530 		if (*work_done >= work_to_do)
1531 			break;
1532 		(*work_done)++;
1533 		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1534 
1535 		skb = buffer_info->skb;
1536 		buffer_info->skb = NULL;
1537 
1538 		++i;
1539 		if (i == rx_ring->count)
1540 			i = 0;
1541 		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1542 		prefetch(next_rxd);
1543 
1544 		next_buffer = &rx_ring->buffer_info[i];
1545 
1546 		cleaned = true;
1547 		cleaned_count++;
1548 		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1549 			       DMA_FROM_DEVICE);
1550 		buffer_info->dma = 0;
1551 
1552 		length = le16_to_cpu(rx_desc->wb.upper.length);
1553 
1554 		/* errors is only valid for DD + EOP descriptors */
1555 		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1556 			     ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1557 			      !(netdev->features & NETIF_F_RXALL)))) {
1558 			/* recycle both page and skb */
1559 			buffer_info->skb = skb;
1560 			/* an error means any chain goes out the window too */
1561 			if (rx_ring->rx_skb_top)
1562 				dev_kfree_skb_irq(rx_ring->rx_skb_top);
1563 			rx_ring->rx_skb_top = NULL;
1564 			goto next_desc;
1565 		}
1566 #define rxtop (rx_ring->rx_skb_top)
1567 		if (!(staterr & E1000_RXD_STAT_EOP)) {
1568 			/* this descriptor is only the beginning (or middle) */
1569 			if (!rxtop) {
1570 				/* this is the beginning of a chain */
1571 				rxtop = skb;
1572 				skb_fill_page_desc(rxtop, 0, buffer_info->page,
1573 						   0, length);
1574 			} else {
1575 				/* this is the middle of a chain */
1576 				shinfo = skb_shinfo(rxtop);
1577 				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1578 						   buffer_info->page, 0,
1579 						   length);
1580 				/* re-use the skb, only consumed the page */
1581 				buffer_info->skb = skb;
1582 			}
1583 			e1000_consume_page(buffer_info, rxtop, length);
1584 			goto next_desc;
1585 		} else {
1586 			if (rxtop) {
1587 				/* end of the chain */
1588 				shinfo = skb_shinfo(rxtop);
1589 				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1590 						   buffer_info->page, 0,
1591 						   length);
1592 				/* re-use the current skb, we only consumed the
1593 				 * page
1594 				 */
1595 				buffer_info->skb = skb;
1596 				skb = rxtop;
1597 				rxtop = NULL;
1598 				e1000_consume_page(buffer_info, skb, length);
1599 			} else {
1600 				/* no chain, got EOP, this buf is the packet
1601 				 * copybreak to save the put_page/alloc_page
1602 				 */
1603 				if (length <= copybreak &&
1604 				    skb_tailroom(skb) >= length) {
1605 					memcpy(skb_tail_pointer(skb),
1606 					       page_address(buffer_info->page),
1607 					       length);
1608 					/* re-use the page, so don't erase
1609 					 * buffer_info->page
1610 					 */
1611 					skb_put(skb, length);
1612 				} else {
1613 					skb_fill_page_desc(skb, 0,
1614 							   buffer_info->page, 0,
1615 							   length);
1616 					e1000_consume_page(buffer_info, skb,
1617 							   length);
1618 				}
1619 			}
1620 		}
1621 
1622 		/* Receive Checksum Offload */
1623 		e1000_rx_checksum(adapter, staterr, skb);
1624 
1625 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1626 
1627 		/* probably a little skewed due to removing CRC */
1628 		total_rx_bytes += skb->len;
1629 		total_rx_packets++;
1630 
1631 		/* eth type trans needs skb->data to point to something */
1632 		if (!pskb_may_pull(skb, ETH_HLEN)) {
1633 			e_err("pskb_may_pull failed.\n");
1634 			dev_kfree_skb_irq(skb);
1635 			goto next_desc;
1636 		}
1637 
1638 		e1000_receive_skb(adapter, netdev, skb, staterr,
1639 				  rx_desc->wb.upper.vlan);
1640 
1641 next_desc:
1642 		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1643 
1644 		/* return some buffers to hardware, one at a time is too slow */
1645 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1646 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1647 					      GFP_ATOMIC);
1648 			cleaned_count = 0;
1649 		}
1650 
1651 		/* use prefetched values */
1652 		rx_desc = next_rxd;
1653 		buffer_info = next_buffer;
1654 
1655 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1656 	}
1657 	rx_ring->next_to_clean = i;
1658 
1659 	cleaned_count = e1000_desc_unused(rx_ring);
1660 	if (cleaned_count)
1661 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1662 
1663 	adapter->total_rx_bytes += total_rx_bytes;
1664 	adapter->total_rx_packets += total_rx_packets;
1665 	return cleaned;
1666 }
1667 
1668 /**
1669  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1670  * @rx_ring: Rx descriptor ring
1671  **/
1672 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1673 {
1674 	struct e1000_adapter *adapter = rx_ring->adapter;
1675 	struct e1000_buffer *buffer_info;
1676 	struct e1000_ps_page *ps_page;
1677 	struct pci_dev *pdev = adapter->pdev;
1678 	unsigned int i, j;
1679 
1680 	/* Free all the Rx ring sk_buffs */
1681 	for (i = 0; i < rx_ring->count; i++) {
1682 		buffer_info = &rx_ring->buffer_info[i];
1683 		if (buffer_info->dma) {
1684 			if (adapter->clean_rx == e1000_clean_rx_irq)
1685 				dma_unmap_single(&pdev->dev, buffer_info->dma,
1686 						 adapter->rx_buffer_len,
1687 						 DMA_FROM_DEVICE);
1688 			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1689 				dma_unmap_page(&pdev->dev, buffer_info->dma,
1690 					       PAGE_SIZE, DMA_FROM_DEVICE);
1691 			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1692 				dma_unmap_single(&pdev->dev, buffer_info->dma,
1693 						 adapter->rx_ps_bsize0,
1694 						 DMA_FROM_DEVICE);
1695 			buffer_info->dma = 0;
1696 		}
1697 
1698 		if (buffer_info->page) {
1699 			put_page(buffer_info->page);
1700 			buffer_info->page = NULL;
1701 		}
1702 
1703 		if (buffer_info->skb) {
1704 			dev_kfree_skb(buffer_info->skb);
1705 			buffer_info->skb = NULL;
1706 		}
1707 
1708 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1709 			ps_page = &buffer_info->ps_pages[j];
1710 			if (!ps_page->page)
1711 				break;
1712 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1713 				       DMA_FROM_DEVICE);
1714 			ps_page->dma = 0;
1715 			put_page(ps_page->page);
1716 			ps_page->page = NULL;
1717 		}
1718 	}
1719 
1720 	/* there also may be some cached data from a chained receive */
1721 	if (rx_ring->rx_skb_top) {
1722 		dev_kfree_skb(rx_ring->rx_skb_top);
1723 		rx_ring->rx_skb_top = NULL;
1724 	}
1725 
1726 	/* Zero out the descriptor ring */
1727 	memset(rx_ring->desc, 0, rx_ring->size);
1728 
1729 	rx_ring->next_to_clean = 0;
1730 	rx_ring->next_to_use = 0;
1731 	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1732 }
1733 
1734 static void e1000e_downshift_workaround(struct work_struct *work)
1735 {
1736 	struct e1000_adapter *adapter = container_of(work,
1737 						     struct e1000_adapter,
1738 						     downshift_task);
1739 
1740 	if (test_bit(__E1000_DOWN, &adapter->state))
1741 		return;
1742 
1743 	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1744 }
1745 
1746 /**
1747  * e1000_intr_msi - Interrupt Handler
1748  * @irq: interrupt number
1749  * @data: pointer to a network interface device structure
1750  **/
1751 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1752 {
1753 	struct net_device *netdev = data;
1754 	struct e1000_adapter *adapter = netdev_priv(netdev);
1755 	struct e1000_hw *hw = &adapter->hw;
1756 	u32 icr = er32(ICR);
1757 
1758 	/* read ICR disables interrupts using IAM */
1759 	if (icr & E1000_ICR_LSC) {
1760 		hw->mac.get_link_status = true;
1761 		/* ICH8 workaround-- Call gig speed drop workaround on cable
1762 		 * disconnect (LSC) before accessing any PHY registers
1763 		 */
1764 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1765 		    (!(er32(STATUS) & E1000_STATUS_LU)))
1766 			schedule_work(&adapter->downshift_task);
1767 
1768 		/* 80003ES2LAN workaround-- For packet buffer work-around on
1769 		 * link down event; disable receives here in the ISR and reset
1770 		 * adapter in watchdog
1771 		 */
1772 		if (netif_carrier_ok(netdev) &&
1773 		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
1774 			/* disable receives */
1775 			u32 rctl = er32(RCTL);
1776 
1777 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1778 			adapter->flags |= FLAG_RESTART_NOW;
1779 		}
1780 		/* guard against interrupt when we're going down */
1781 		if (!test_bit(__E1000_DOWN, &adapter->state))
1782 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1783 	}
1784 
1785 	/* Reset on uncorrectable ECC error */
1786 	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1787 		u32 pbeccsts = er32(PBECCSTS);
1788 
1789 		adapter->corr_errors +=
1790 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1791 		adapter->uncorr_errors +=
1792 		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1793 		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1794 
1795 		/* Do the reset outside of interrupt context */
1796 		schedule_work(&adapter->reset_task);
1797 
1798 		/* return immediately since reset is imminent */
1799 		return IRQ_HANDLED;
1800 	}
1801 
1802 	if (napi_schedule_prep(&adapter->napi)) {
1803 		adapter->total_tx_bytes = 0;
1804 		adapter->total_tx_packets = 0;
1805 		adapter->total_rx_bytes = 0;
1806 		adapter->total_rx_packets = 0;
1807 		__napi_schedule(&adapter->napi);
1808 	}
1809 
1810 	return IRQ_HANDLED;
1811 }
1812 
1813 /**
1814  * e1000_intr - Interrupt Handler
1815  * @irq: interrupt number
1816  * @data: pointer to a network interface device structure
1817  **/
1818 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1819 {
1820 	struct net_device *netdev = data;
1821 	struct e1000_adapter *adapter = netdev_priv(netdev);
1822 	struct e1000_hw *hw = &adapter->hw;
1823 	u32 rctl, icr = er32(ICR);
1824 
1825 	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1826 		return IRQ_NONE;	/* Not our interrupt */
1827 
1828 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1829 	 * not set, then the adapter didn't send an interrupt
1830 	 */
1831 	if (!(icr & E1000_ICR_INT_ASSERTED))
1832 		return IRQ_NONE;
1833 
1834 	/* Interrupt Auto-Mask...upon reading ICR,
1835 	 * interrupts are masked.  No need for the
1836 	 * IMC write
1837 	 */
1838 
1839 	if (icr & E1000_ICR_LSC) {
1840 		hw->mac.get_link_status = true;
1841 		/* ICH8 workaround-- Call gig speed drop workaround on cable
1842 		 * disconnect (LSC) before accessing any PHY registers
1843 		 */
1844 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1845 		    (!(er32(STATUS) & E1000_STATUS_LU)))
1846 			schedule_work(&adapter->downshift_task);
1847 
1848 		/* 80003ES2LAN workaround--
1849 		 * For packet buffer work-around on link down event;
1850 		 * disable receives here in the ISR and
1851 		 * reset adapter in watchdog
1852 		 */
1853 		if (netif_carrier_ok(netdev) &&
1854 		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1855 			/* disable receives */
1856 			rctl = er32(RCTL);
1857 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1858 			adapter->flags |= FLAG_RESTART_NOW;
1859 		}
1860 		/* guard against interrupt when we're going down */
1861 		if (!test_bit(__E1000_DOWN, &adapter->state))
1862 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1863 	}
1864 
1865 	/* Reset on uncorrectable ECC error */
1866 	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1867 		u32 pbeccsts = er32(PBECCSTS);
1868 
1869 		adapter->corr_errors +=
1870 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1871 		adapter->uncorr_errors +=
1872 		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1873 		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1874 
1875 		/* Do the reset outside of interrupt context */
1876 		schedule_work(&adapter->reset_task);
1877 
1878 		/* return immediately since reset is imminent */
1879 		return IRQ_HANDLED;
1880 	}
1881 
1882 	if (napi_schedule_prep(&adapter->napi)) {
1883 		adapter->total_tx_bytes = 0;
1884 		adapter->total_tx_packets = 0;
1885 		adapter->total_rx_bytes = 0;
1886 		adapter->total_rx_packets = 0;
1887 		__napi_schedule(&adapter->napi);
1888 	}
1889 
1890 	return IRQ_HANDLED;
1891 }
1892 
1893 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1894 {
1895 	struct net_device *netdev = data;
1896 	struct e1000_adapter *adapter = netdev_priv(netdev);
1897 	struct e1000_hw *hw = &adapter->hw;
1898 	u32 icr = er32(ICR);
1899 
1900 	if (icr & adapter->eiac_mask)
1901 		ew32(ICS, (icr & adapter->eiac_mask));
1902 
1903 	if (icr & E1000_ICR_LSC) {
1904 		hw->mac.get_link_status = true;
1905 		/* guard against interrupt when we're going down */
1906 		if (!test_bit(__E1000_DOWN, &adapter->state))
1907 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1908 	}
1909 
1910 	if (!test_bit(__E1000_DOWN, &adapter->state))
1911 		ew32(IMS, E1000_IMS_OTHER | IMS_OTHER_MASK);
1912 
1913 	return IRQ_HANDLED;
1914 }
1915 
1916 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1917 {
1918 	struct net_device *netdev = data;
1919 	struct e1000_adapter *adapter = netdev_priv(netdev);
1920 	struct e1000_hw *hw = &adapter->hw;
1921 	struct e1000_ring *tx_ring = adapter->tx_ring;
1922 
1923 	adapter->total_tx_bytes = 0;
1924 	adapter->total_tx_packets = 0;
1925 
1926 	if (!e1000_clean_tx_irq(tx_ring))
1927 		/* Ring was not completely cleaned, so fire another interrupt */
1928 		ew32(ICS, tx_ring->ims_val);
1929 
1930 	if (!test_bit(__E1000_DOWN, &adapter->state))
1931 		ew32(IMS, adapter->tx_ring->ims_val);
1932 
1933 	return IRQ_HANDLED;
1934 }
1935 
1936 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1937 {
1938 	struct net_device *netdev = data;
1939 	struct e1000_adapter *adapter = netdev_priv(netdev);
1940 	struct e1000_ring *rx_ring = adapter->rx_ring;
1941 
1942 	/* Write the ITR value calculated at the end of the
1943 	 * previous interrupt.
1944 	 */
1945 	if (rx_ring->set_itr) {
1946 		u32 itr = rx_ring->itr_val ?
1947 			  1000000000 / (rx_ring->itr_val * 256) : 0;
1948 
1949 		writel(itr, rx_ring->itr_register);
1950 		rx_ring->set_itr = 0;
1951 	}
1952 
1953 	if (napi_schedule_prep(&adapter->napi)) {
1954 		adapter->total_rx_bytes = 0;
1955 		adapter->total_rx_packets = 0;
1956 		__napi_schedule(&adapter->napi);
1957 	}
1958 	return IRQ_HANDLED;
1959 }
1960 
1961 /**
1962  * e1000_configure_msix - Configure MSI-X hardware
1963  * @adapter: board private structure
1964  *
1965  * e1000_configure_msix sets up the hardware to properly
1966  * generate MSI-X interrupts.
1967  **/
1968 static void e1000_configure_msix(struct e1000_adapter *adapter)
1969 {
1970 	struct e1000_hw *hw = &adapter->hw;
1971 	struct e1000_ring *rx_ring = adapter->rx_ring;
1972 	struct e1000_ring *tx_ring = adapter->tx_ring;
1973 	int vector = 0;
1974 	u32 ctrl_ext, ivar = 0;
1975 
1976 	adapter->eiac_mask = 0;
1977 
1978 	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1979 	if (hw->mac.type == e1000_82574) {
1980 		u32 rfctl = er32(RFCTL);
1981 
1982 		rfctl |= E1000_RFCTL_ACK_DIS;
1983 		ew32(RFCTL, rfctl);
1984 	}
1985 
1986 	/* Configure Rx vector */
1987 	rx_ring->ims_val = E1000_IMS_RXQ0;
1988 	adapter->eiac_mask |= rx_ring->ims_val;
1989 	if (rx_ring->itr_val)
1990 		writel(1000000000 / (rx_ring->itr_val * 256),
1991 		       rx_ring->itr_register);
1992 	else
1993 		writel(1, rx_ring->itr_register);
1994 	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1995 
1996 	/* Configure Tx vector */
1997 	tx_ring->ims_val = E1000_IMS_TXQ0;
1998 	vector++;
1999 	if (tx_ring->itr_val)
2000 		writel(1000000000 / (tx_ring->itr_val * 256),
2001 		       tx_ring->itr_register);
2002 	else
2003 		writel(1, tx_ring->itr_register);
2004 	adapter->eiac_mask |= tx_ring->ims_val;
2005 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2006 
2007 	/* set vector for Other Causes, e.g. link changes */
2008 	vector++;
2009 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2010 	if (rx_ring->itr_val)
2011 		writel(1000000000 / (rx_ring->itr_val * 256),
2012 		       hw->hw_addr + E1000_EITR_82574(vector));
2013 	else
2014 		writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2015 
2016 	/* Cause Tx interrupts on every write back */
2017 	ivar |= BIT(31);
2018 
2019 	ew32(IVAR, ivar);
2020 
2021 	/* enable MSI-X PBA support */
2022 	ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2023 	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
2024 	ew32(CTRL_EXT, ctrl_ext);
2025 	e1e_flush();
2026 }
2027 
2028 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2029 {
2030 	if (adapter->msix_entries) {
2031 		pci_disable_msix(adapter->pdev);
2032 		kfree(adapter->msix_entries);
2033 		adapter->msix_entries = NULL;
2034 	} else if (adapter->flags & FLAG_MSI_ENABLED) {
2035 		pci_disable_msi(adapter->pdev);
2036 		adapter->flags &= ~FLAG_MSI_ENABLED;
2037 	}
2038 }
2039 
2040 /**
2041  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2042  * @adapter: board private structure
2043  *
2044  * Attempt to configure interrupts using the best available
2045  * capabilities of the hardware and kernel.
2046  **/
2047 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2048 {
2049 	int err;
2050 	int i;
2051 
2052 	switch (adapter->int_mode) {
2053 	case E1000E_INT_MODE_MSIX:
2054 		if (adapter->flags & FLAG_HAS_MSIX) {
2055 			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2056 			adapter->msix_entries = kcalloc(adapter->num_vectors,
2057 							sizeof(struct
2058 							       msix_entry),
2059 							GFP_KERNEL);
2060 			if (adapter->msix_entries) {
2061 				struct e1000_adapter *a = adapter;
2062 
2063 				for (i = 0; i < adapter->num_vectors; i++)
2064 					adapter->msix_entries[i].entry = i;
2065 
2066 				err = pci_enable_msix_range(a->pdev,
2067 							    a->msix_entries,
2068 							    a->num_vectors,
2069 							    a->num_vectors);
2070 				if (err > 0)
2071 					return;
2072 			}
2073 			/* MSI-X failed, so fall through and try MSI */
2074 			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2075 			e1000e_reset_interrupt_capability(adapter);
2076 		}
2077 		adapter->int_mode = E1000E_INT_MODE_MSI;
2078 		fallthrough;
2079 	case E1000E_INT_MODE_MSI:
2080 		if (!pci_enable_msi(adapter->pdev)) {
2081 			adapter->flags |= FLAG_MSI_ENABLED;
2082 		} else {
2083 			adapter->int_mode = E1000E_INT_MODE_LEGACY;
2084 			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2085 		}
2086 		fallthrough;
2087 	case E1000E_INT_MODE_LEGACY:
2088 		/* Don't do anything; this is the system default */
2089 		break;
2090 	}
2091 
2092 	/* store the number of vectors being used */
2093 	adapter->num_vectors = 1;
2094 }
2095 
2096 /**
2097  * e1000_request_msix - Initialize MSI-X interrupts
2098  * @adapter: board private structure
2099  *
2100  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2101  * kernel.
2102  **/
2103 static int e1000_request_msix(struct e1000_adapter *adapter)
2104 {
2105 	struct net_device *netdev = adapter->netdev;
2106 	int err = 0, vector = 0;
2107 
2108 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2109 		snprintf(adapter->rx_ring->name,
2110 			 sizeof(adapter->rx_ring->name) - 1,
2111 			 "%.14s-rx-0", netdev->name);
2112 	else
2113 		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2114 	err = request_irq(adapter->msix_entries[vector].vector,
2115 			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2116 			  netdev);
2117 	if (err)
2118 		return err;
2119 	adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2120 	    E1000_EITR_82574(vector);
2121 	adapter->rx_ring->itr_val = adapter->itr;
2122 	vector++;
2123 
2124 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2125 		snprintf(adapter->tx_ring->name,
2126 			 sizeof(adapter->tx_ring->name) - 1,
2127 			 "%.14s-tx-0", netdev->name);
2128 	else
2129 		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2130 	err = request_irq(adapter->msix_entries[vector].vector,
2131 			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2132 			  netdev);
2133 	if (err)
2134 		return err;
2135 	adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2136 	    E1000_EITR_82574(vector);
2137 	adapter->tx_ring->itr_val = adapter->itr;
2138 	vector++;
2139 
2140 	err = request_irq(adapter->msix_entries[vector].vector,
2141 			  e1000_msix_other, 0, netdev->name, netdev);
2142 	if (err)
2143 		return err;
2144 
2145 	e1000_configure_msix(adapter);
2146 
2147 	return 0;
2148 }
2149 
2150 /**
2151  * e1000_request_irq - initialize interrupts
2152  * @adapter: board private structure
2153  *
2154  * Attempts to configure interrupts using the best available
2155  * capabilities of the hardware and kernel.
2156  **/
2157 static int e1000_request_irq(struct e1000_adapter *adapter)
2158 {
2159 	struct net_device *netdev = adapter->netdev;
2160 	int err;
2161 
2162 	if (adapter->msix_entries) {
2163 		err = e1000_request_msix(adapter);
2164 		if (!err)
2165 			return err;
2166 		/* fall back to MSI */
2167 		e1000e_reset_interrupt_capability(adapter);
2168 		adapter->int_mode = E1000E_INT_MODE_MSI;
2169 		e1000e_set_interrupt_capability(adapter);
2170 	}
2171 	if (adapter->flags & FLAG_MSI_ENABLED) {
2172 		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2173 				  netdev->name, netdev);
2174 		if (!err)
2175 			return err;
2176 
2177 		/* fall back to legacy interrupt */
2178 		e1000e_reset_interrupt_capability(adapter);
2179 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2180 	}
2181 
2182 	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2183 			  netdev->name, netdev);
2184 	if (err)
2185 		e_err("Unable to allocate interrupt, Error: %d\n", err);
2186 
2187 	return err;
2188 }
2189 
2190 static void e1000_free_irq(struct e1000_adapter *adapter)
2191 {
2192 	struct net_device *netdev = adapter->netdev;
2193 
2194 	if (adapter->msix_entries) {
2195 		int vector = 0;
2196 
2197 		free_irq(adapter->msix_entries[vector].vector, netdev);
2198 		vector++;
2199 
2200 		free_irq(adapter->msix_entries[vector].vector, netdev);
2201 		vector++;
2202 
2203 		/* Other Causes interrupt vector */
2204 		free_irq(adapter->msix_entries[vector].vector, netdev);
2205 		return;
2206 	}
2207 
2208 	free_irq(adapter->pdev->irq, netdev);
2209 }
2210 
2211 /**
2212  * e1000_irq_disable - Mask off interrupt generation on the NIC
2213  * @adapter: board private structure
2214  **/
2215 static void e1000_irq_disable(struct e1000_adapter *adapter)
2216 {
2217 	struct e1000_hw *hw = &adapter->hw;
2218 
2219 	ew32(IMC, ~0);
2220 	if (adapter->msix_entries)
2221 		ew32(EIAC_82574, 0);
2222 	e1e_flush();
2223 
2224 	if (adapter->msix_entries) {
2225 		int i;
2226 
2227 		for (i = 0; i < adapter->num_vectors; i++)
2228 			synchronize_irq(adapter->msix_entries[i].vector);
2229 	} else {
2230 		synchronize_irq(adapter->pdev->irq);
2231 	}
2232 }
2233 
2234 /**
2235  * e1000_irq_enable - Enable default interrupt generation settings
2236  * @adapter: board private structure
2237  **/
2238 static void e1000_irq_enable(struct e1000_adapter *adapter)
2239 {
2240 	struct e1000_hw *hw = &adapter->hw;
2241 
2242 	if (adapter->msix_entries) {
2243 		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2244 		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER |
2245 		     IMS_OTHER_MASK);
2246 	} else if (hw->mac.type >= e1000_pch_lpt) {
2247 		ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2248 	} else {
2249 		ew32(IMS, IMS_ENABLE_MASK);
2250 	}
2251 	e1e_flush();
2252 }
2253 
2254 /**
2255  * e1000e_get_hw_control - get control of the h/w from f/w
2256  * @adapter: address of board private structure
2257  *
2258  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2259  * For ASF and Pass Through versions of f/w this means that
2260  * the driver is loaded. For AMT version (only with 82573)
2261  * of the f/w this means that the network i/f is open.
2262  **/
2263 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2264 {
2265 	struct e1000_hw *hw = &adapter->hw;
2266 	u32 ctrl_ext;
2267 	u32 swsm;
2268 
2269 	/* Let firmware know the driver has taken over */
2270 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2271 		swsm = er32(SWSM);
2272 		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2273 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2274 		ctrl_ext = er32(CTRL_EXT);
2275 		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2276 	}
2277 }
2278 
2279 /**
2280  * e1000e_release_hw_control - release control of the h/w to f/w
2281  * @adapter: address of board private structure
2282  *
2283  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2284  * For ASF and Pass Through versions of f/w this means that the
2285  * driver is no longer loaded. For AMT version (only with 82573) i
2286  * of the f/w this means that the network i/f is closed.
2287  *
2288  **/
2289 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2290 {
2291 	struct e1000_hw *hw = &adapter->hw;
2292 	u32 ctrl_ext;
2293 	u32 swsm;
2294 
2295 	/* Let firmware taken over control of h/w */
2296 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2297 		swsm = er32(SWSM);
2298 		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2299 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2300 		ctrl_ext = er32(CTRL_EXT);
2301 		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2302 	}
2303 }
2304 
2305 /**
2306  * e1000_alloc_ring_dma - allocate memory for a ring structure
2307  * @adapter: board private structure
2308  * @ring: ring struct for which to allocate dma
2309  **/
2310 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2311 				struct e1000_ring *ring)
2312 {
2313 	struct pci_dev *pdev = adapter->pdev;
2314 
2315 	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2316 					GFP_KERNEL);
2317 	if (!ring->desc)
2318 		return -ENOMEM;
2319 
2320 	return 0;
2321 }
2322 
2323 /**
2324  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2325  * @tx_ring: Tx descriptor ring
2326  *
2327  * Return 0 on success, negative on failure
2328  **/
2329 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2330 {
2331 	struct e1000_adapter *adapter = tx_ring->adapter;
2332 	int err = -ENOMEM, size;
2333 
2334 	size = sizeof(struct e1000_buffer) * tx_ring->count;
2335 	tx_ring->buffer_info = vzalloc(size);
2336 	if (!tx_ring->buffer_info)
2337 		goto err;
2338 
2339 	/* round up to nearest 4K */
2340 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2341 	tx_ring->size = ALIGN(tx_ring->size, 4096);
2342 
2343 	err = e1000_alloc_ring_dma(adapter, tx_ring);
2344 	if (err)
2345 		goto err;
2346 
2347 	tx_ring->next_to_use = 0;
2348 	tx_ring->next_to_clean = 0;
2349 
2350 	return 0;
2351 err:
2352 	vfree(tx_ring->buffer_info);
2353 	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2354 	return err;
2355 }
2356 
2357 /**
2358  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2359  * @rx_ring: Rx descriptor ring
2360  *
2361  * Returns 0 on success, negative on failure
2362  **/
2363 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2364 {
2365 	struct e1000_adapter *adapter = rx_ring->adapter;
2366 	struct e1000_buffer *buffer_info;
2367 	int i, size, desc_len, err = -ENOMEM;
2368 
2369 	size = sizeof(struct e1000_buffer) * rx_ring->count;
2370 	rx_ring->buffer_info = vzalloc(size);
2371 	if (!rx_ring->buffer_info)
2372 		goto err;
2373 
2374 	for (i = 0; i < rx_ring->count; i++) {
2375 		buffer_info = &rx_ring->buffer_info[i];
2376 		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2377 						sizeof(struct e1000_ps_page),
2378 						GFP_KERNEL);
2379 		if (!buffer_info->ps_pages)
2380 			goto err_pages;
2381 	}
2382 
2383 	desc_len = sizeof(union e1000_rx_desc_packet_split);
2384 
2385 	/* Round up to nearest 4K */
2386 	rx_ring->size = rx_ring->count * desc_len;
2387 	rx_ring->size = ALIGN(rx_ring->size, 4096);
2388 
2389 	err = e1000_alloc_ring_dma(adapter, rx_ring);
2390 	if (err)
2391 		goto err_pages;
2392 
2393 	rx_ring->next_to_clean = 0;
2394 	rx_ring->next_to_use = 0;
2395 	rx_ring->rx_skb_top = NULL;
2396 
2397 	return 0;
2398 
2399 err_pages:
2400 	for (i = 0; i < rx_ring->count; i++) {
2401 		buffer_info = &rx_ring->buffer_info[i];
2402 		kfree(buffer_info->ps_pages);
2403 	}
2404 err:
2405 	vfree(rx_ring->buffer_info);
2406 	e_err("Unable to allocate memory for the receive descriptor ring\n");
2407 	return err;
2408 }
2409 
2410 /**
2411  * e1000_clean_tx_ring - Free Tx Buffers
2412  * @tx_ring: Tx descriptor ring
2413  **/
2414 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2415 {
2416 	struct e1000_adapter *adapter = tx_ring->adapter;
2417 	struct e1000_buffer *buffer_info;
2418 	unsigned long size;
2419 	unsigned int i;
2420 
2421 	for (i = 0; i < tx_ring->count; i++) {
2422 		buffer_info = &tx_ring->buffer_info[i];
2423 		e1000_put_txbuf(tx_ring, buffer_info, false);
2424 	}
2425 
2426 	netdev_reset_queue(adapter->netdev);
2427 	size = sizeof(struct e1000_buffer) * tx_ring->count;
2428 	memset(tx_ring->buffer_info, 0, size);
2429 
2430 	memset(tx_ring->desc, 0, tx_ring->size);
2431 
2432 	tx_ring->next_to_use = 0;
2433 	tx_ring->next_to_clean = 0;
2434 }
2435 
2436 /**
2437  * e1000e_free_tx_resources - Free Tx Resources per Queue
2438  * @tx_ring: Tx descriptor ring
2439  *
2440  * Free all transmit software resources
2441  **/
2442 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2443 {
2444 	struct e1000_adapter *adapter = tx_ring->adapter;
2445 	struct pci_dev *pdev = adapter->pdev;
2446 
2447 	e1000_clean_tx_ring(tx_ring);
2448 
2449 	vfree(tx_ring->buffer_info);
2450 	tx_ring->buffer_info = NULL;
2451 
2452 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2453 			  tx_ring->dma);
2454 	tx_ring->desc = NULL;
2455 }
2456 
2457 /**
2458  * e1000e_free_rx_resources - Free Rx Resources
2459  * @rx_ring: Rx descriptor ring
2460  *
2461  * Free all receive software resources
2462  **/
2463 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2464 {
2465 	struct e1000_adapter *adapter = rx_ring->adapter;
2466 	struct pci_dev *pdev = adapter->pdev;
2467 	int i;
2468 
2469 	e1000_clean_rx_ring(rx_ring);
2470 
2471 	for (i = 0; i < rx_ring->count; i++)
2472 		kfree(rx_ring->buffer_info[i].ps_pages);
2473 
2474 	vfree(rx_ring->buffer_info);
2475 	rx_ring->buffer_info = NULL;
2476 
2477 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2478 			  rx_ring->dma);
2479 	rx_ring->desc = NULL;
2480 }
2481 
2482 /**
2483  * e1000_update_itr - update the dynamic ITR value based on statistics
2484  * @itr_setting: current adapter->itr
2485  * @packets: the number of packets during this measurement interval
2486  * @bytes: the number of bytes during this measurement interval
2487  *
2488  *      Stores a new ITR value based on packets and byte
2489  *      counts during the last interrupt.  The advantage of per interrupt
2490  *      computation is faster updates and more accurate ITR for the current
2491  *      traffic pattern.  Constants in this function were computed
2492  *      based on theoretical maximum wire speed and thresholds were set based
2493  *      on testing data as well as attempting to minimize response time
2494  *      while increasing bulk throughput.  This functionality is controlled
2495  *      by the InterruptThrottleRate module parameter.
2496  **/
2497 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2498 {
2499 	unsigned int retval = itr_setting;
2500 
2501 	if (packets == 0)
2502 		return itr_setting;
2503 
2504 	switch (itr_setting) {
2505 	case lowest_latency:
2506 		/* handle TSO and jumbo frames */
2507 		if (bytes / packets > 8000)
2508 			retval = bulk_latency;
2509 		else if ((packets < 5) && (bytes > 512))
2510 			retval = low_latency;
2511 		break;
2512 	case low_latency:	/* 50 usec aka 20000 ints/s */
2513 		if (bytes > 10000) {
2514 			/* this if handles the TSO accounting */
2515 			if (bytes / packets > 8000)
2516 				retval = bulk_latency;
2517 			else if ((packets < 10) || ((bytes / packets) > 1200))
2518 				retval = bulk_latency;
2519 			else if ((packets > 35))
2520 				retval = lowest_latency;
2521 		} else if (bytes / packets > 2000) {
2522 			retval = bulk_latency;
2523 		} else if (packets <= 2 && bytes < 512) {
2524 			retval = lowest_latency;
2525 		}
2526 		break;
2527 	case bulk_latency:	/* 250 usec aka 4000 ints/s */
2528 		if (bytes > 25000) {
2529 			if (packets > 35)
2530 				retval = low_latency;
2531 		} else if (bytes < 6000) {
2532 			retval = low_latency;
2533 		}
2534 		break;
2535 	}
2536 
2537 	return retval;
2538 }
2539 
2540 static void e1000_set_itr(struct e1000_adapter *adapter)
2541 {
2542 	u16 current_itr;
2543 	u32 new_itr = adapter->itr;
2544 
2545 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2546 	if (adapter->link_speed != SPEED_1000) {
2547 		new_itr = 4000;
2548 		goto set_itr_now;
2549 	}
2550 
2551 	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2552 		new_itr = 0;
2553 		goto set_itr_now;
2554 	}
2555 
2556 	adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2557 					   adapter->total_tx_packets,
2558 					   adapter->total_tx_bytes);
2559 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2560 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2561 		adapter->tx_itr = low_latency;
2562 
2563 	adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2564 					   adapter->total_rx_packets,
2565 					   adapter->total_rx_bytes);
2566 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2567 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2568 		adapter->rx_itr = low_latency;
2569 
2570 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2571 
2572 	/* counts and packets in update_itr are dependent on these numbers */
2573 	switch (current_itr) {
2574 	case lowest_latency:
2575 		new_itr = 70000;
2576 		break;
2577 	case low_latency:
2578 		new_itr = 20000;	/* aka hwitr = ~200 */
2579 		break;
2580 	case bulk_latency:
2581 		new_itr = 4000;
2582 		break;
2583 	default:
2584 		break;
2585 	}
2586 
2587 set_itr_now:
2588 	if (new_itr != adapter->itr) {
2589 		/* this attempts to bias the interrupt rate towards Bulk
2590 		 * by adding intermediate steps when interrupt rate is
2591 		 * increasing
2592 		 */
2593 		new_itr = new_itr > adapter->itr ?
2594 		    min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2595 		adapter->itr = new_itr;
2596 		adapter->rx_ring->itr_val = new_itr;
2597 		if (adapter->msix_entries)
2598 			adapter->rx_ring->set_itr = 1;
2599 		else
2600 			e1000e_write_itr(adapter, new_itr);
2601 	}
2602 }
2603 
2604 /**
2605  * e1000e_write_itr - write the ITR value to the appropriate registers
2606  * @adapter: address of board private structure
2607  * @itr: new ITR value to program
2608  *
2609  * e1000e_write_itr determines if the adapter is in MSI-X mode
2610  * and, if so, writes the EITR registers with the ITR value.
2611  * Otherwise, it writes the ITR value into the ITR register.
2612  **/
2613 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2614 {
2615 	struct e1000_hw *hw = &adapter->hw;
2616 	u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2617 
2618 	if (adapter->msix_entries) {
2619 		int vector;
2620 
2621 		for (vector = 0; vector < adapter->num_vectors; vector++)
2622 			writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2623 	} else {
2624 		ew32(ITR, new_itr);
2625 	}
2626 }
2627 
2628 /**
2629  * e1000_alloc_queues - Allocate memory for all rings
2630  * @adapter: board private structure to initialize
2631  **/
2632 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2633 {
2634 	int size = sizeof(struct e1000_ring);
2635 
2636 	adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2637 	if (!adapter->tx_ring)
2638 		goto err;
2639 	adapter->tx_ring->count = adapter->tx_ring_count;
2640 	adapter->tx_ring->adapter = adapter;
2641 
2642 	adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2643 	if (!adapter->rx_ring)
2644 		goto err;
2645 	adapter->rx_ring->count = adapter->rx_ring_count;
2646 	adapter->rx_ring->adapter = adapter;
2647 
2648 	return 0;
2649 err:
2650 	e_err("Unable to allocate memory for queues\n");
2651 	kfree(adapter->rx_ring);
2652 	kfree(adapter->tx_ring);
2653 	return -ENOMEM;
2654 }
2655 
2656 /**
2657  * e1000e_poll - NAPI Rx polling callback
2658  * @napi: struct associated with this polling callback
2659  * @budget: number of packets driver is allowed to process this poll
2660  **/
2661 static int e1000e_poll(struct napi_struct *napi, int budget)
2662 {
2663 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2664 						     napi);
2665 	struct e1000_hw *hw = &adapter->hw;
2666 	struct net_device *poll_dev = adapter->netdev;
2667 	int tx_cleaned = 1, work_done = 0;
2668 
2669 	adapter = netdev_priv(poll_dev);
2670 
2671 	if (!adapter->msix_entries ||
2672 	    (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2673 		tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2674 
2675 	adapter->clean_rx(adapter->rx_ring, &work_done, budget);
2676 
2677 	if (!tx_cleaned || work_done == budget)
2678 		return budget;
2679 
2680 	/* Exit the polling mode, but don't re-enable interrupts if stack might
2681 	 * poll us due to busy-polling
2682 	 */
2683 	if (likely(napi_complete_done(napi, work_done))) {
2684 		if (adapter->itr_setting & 3)
2685 			e1000_set_itr(adapter);
2686 		if (!test_bit(__E1000_DOWN, &adapter->state)) {
2687 			if (adapter->msix_entries)
2688 				ew32(IMS, adapter->rx_ring->ims_val);
2689 			else
2690 				e1000_irq_enable(adapter);
2691 		}
2692 	}
2693 
2694 	return work_done;
2695 }
2696 
2697 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2698 				 __always_unused __be16 proto, u16 vid)
2699 {
2700 	struct e1000_adapter *adapter = netdev_priv(netdev);
2701 	struct e1000_hw *hw = &adapter->hw;
2702 	u32 vfta, index;
2703 
2704 	/* don't update vlan cookie if already programmed */
2705 	if ((adapter->hw.mng_cookie.status &
2706 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2707 	    (vid == adapter->mng_vlan_id))
2708 		return 0;
2709 
2710 	/* add VID to filter table */
2711 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2712 		index = (vid >> 5) & 0x7F;
2713 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2714 		vfta |= BIT((vid & 0x1F));
2715 		hw->mac.ops.write_vfta(hw, index, vfta);
2716 	}
2717 
2718 	set_bit(vid, adapter->active_vlans);
2719 
2720 	return 0;
2721 }
2722 
2723 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2724 				  __always_unused __be16 proto, u16 vid)
2725 {
2726 	struct e1000_adapter *adapter = netdev_priv(netdev);
2727 	struct e1000_hw *hw = &adapter->hw;
2728 	u32 vfta, index;
2729 
2730 	if ((adapter->hw.mng_cookie.status &
2731 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2732 	    (vid == adapter->mng_vlan_id)) {
2733 		/* release control to f/w */
2734 		e1000e_release_hw_control(adapter);
2735 		return 0;
2736 	}
2737 
2738 	/* remove VID from filter table */
2739 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2740 		index = (vid >> 5) & 0x7F;
2741 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2742 		vfta &= ~BIT((vid & 0x1F));
2743 		hw->mac.ops.write_vfta(hw, index, vfta);
2744 	}
2745 
2746 	clear_bit(vid, adapter->active_vlans);
2747 
2748 	return 0;
2749 }
2750 
2751 /**
2752  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2753  * @adapter: board private structure to initialize
2754  **/
2755 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2756 {
2757 	struct net_device *netdev = adapter->netdev;
2758 	struct e1000_hw *hw = &adapter->hw;
2759 	u32 rctl;
2760 
2761 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2762 		/* disable VLAN receive filtering */
2763 		rctl = er32(RCTL);
2764 		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2765 		ew32(RCTL, rctl);
2766 
2767 		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2768 			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2769 					       adapter->mng_vlan_id);
2770 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2771 		}
2772 	}
2773 }
2774 
2775 /**
2776  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2777  * @adapter: board private structure to initialize
2778  **/
2779 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2780 {
2781 	struct e1000_hw *hw = &adapter->hw;
2782 	u32 rctl;
2783 
2784 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2785 		/* enable VLAN receive filtering */
2786 		rctl = er32(RCTL);
2787 		rctl |= E1000_RCTL_VFE;
2788 		rctl &= ~E1000_RCTL_CFIEN;
2789 		ew32(RCTL, rctl);
2790 	}
2791 }
2792 
2793 /**
2794  * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2795  * @adapter: board private structure to initialize
2796  **/
2797 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2798 {
2799 	struct e1000_hw *hw = &adapter->hw;
2800 	u32 ctrl;
2801 
2802 	/* disable VLAN tag insert/strip */
2803 	ctrl = er32(CTRL);
2804 	ctrl &= ~E1000_CTRL_VME;
2805 	ew32(CTRL, ctrl);
2806 }
2807 
2808 /**
2809  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2810  * @adapter: board private structure to initialize
2811  **/
2812 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2813 {
2814 	struct e1000_hw *hw = &adapter->hw;
2815 	u32 ctrl;
2816 
2817 	/* enable VLAN tag insert/strip */
2818 	ctrl = er32(CTRL);
2819 	ctrl |= E1000_CTRL_VME;
2820 	ew32(CTRL, ctrl);
2821 }
2822 
2823 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2824 {
2825 	struct net_device *netdev = adapter->netdev;
2826 	u16 vid = adapter->hw.mng_cookie.vlan_id;
2827 	u16 old_vid = adapter->mng_vlan_id;
2828 
2829 	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2830 		e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2831 		adapter->mng_vlan_id = vid;
2832 	}
2833 
2834 	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2835 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2836 }
2837 
2838 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2839 {
2840 	u16 vid;
2841 
2842 	e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2843 
2844 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2845 	    e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2846 }
2847 
2848 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2849 {
2850 	struct e1000_hw *hw = &adapter->hw;
2851 	u32 manc, manc2h, mdef, i, j;
2852 
2853 	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2854 		return;
2855 
2856 	manc = er32(MANC);
2857 
2858 	/* enable receiving management packets to the host. this will probably
2859 	 * generate destination unreachable messages from the host OS, but
2860 	 * the packets will be handled on SMBUS
2861 	 */
2862 	manc |= E1000_MANC_EN_MNG2HOST;
2863 	manc2h = er32(MANC2H);
2864 
2865 	switch (hw->mac.type) {
2866 	default:
2867 		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2868 		break;
2869 	case e1000_82574:
2870 	case e1000_82583:
2871 		/* Check if IPMI pass-through decision filter already exists;
2872 		 * if so, enable it.
2873 		 */
2874 		for (i = 0, j = 0; i < 8; i++) {
2875 			mdef = er32(MDEF(i));
2876 
2877 			/* Ignore filters with anything other than IPMI ports */
2878 			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2879 				continue;
2880 
2881 			/* Enable this decision filter in MANC2H */
2882 			if (mdef)
2883 				manc2h |= BIT(i);
2884 
2885 			j |= mdef;
2886 		}
2887 
2888 		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2889 			break;
2890 
2891 		/* Create new decision filter in an empty filter */
2892 		for (i = 0, j = 0; i < 8; i++)
2893 			if (er32(MDEF(i)) == 0) {
2894 				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2895 					       E1000_MDEF_PORT_664));
2896 				manc2h |= BIT(1);
2897 				j++;
2898 				break;
2899 			}
2900 
2901 		if (!j)
2902 			e_warn("Unable to create IPMI pass-through filter\n");
2903 		break;
2904 	}
2905 
2906 	ew32(MANC2H, manc2h);
2907 	ew32(MANC, manc);
2908 }
2909 
2910 /**
2911  * e1000_configure_tx - Configure Transmit Unit after Reset
2912  * @adapter: board private structure
2913  *
2914  * Configure the Tx unit of the MAC after a reset.
2915  **/
2916 static void e1000_configure_tx(struct e1000_adapter *adapter)
2917 {
2918 	struct e1000_hw *hw = &adapter->hw;
2919 	struct e1000_ring *tx_ring = adapter->tx_ring;
2920 	u64 tdba;
2921 	u32 tdlen, tctl, tarc;
2922 
2923 	/* Setup the HW Tx Head and Tail descriptor pointers */
2924 	tdba = tx_ring->dma;
2925 	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2926 	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2927 	ew32(TDBAH(0), (tdba >> 32));
2928 	ew32(TDLEN(0), tdlen);
2929 	ew32(TDH(0), 0);
2930 	ew32(TDT(0), 0);
2931 	tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2932 	tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2933 
2934 	writel(0, tx_ring->head);
2935 	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2936 		e1000e_update_tdt_wa(tx_ring, 0);
2937 	else
2938 		writel(0, tx_ring->tail);
2939 
2940 	/* Set the Tx Interrupt Delay register */
2941 	ew32(TIDV, adapter->tx_int_delay);
2942 	/* Tx irq moderation */
2943 	ew32(TADV, adapter->tx_abs_int_delay);
2944 
2945 	if (adapter->flags2 & FLAG2_DMA_BURST) {
2946 		u32 txdctl = er32(TXDCTL(0));
2947 
2948 		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2949 			    E1000_TXDCTL_WTHRESH);
2950 		/* set up some performance related parameters to encourage the
2951 		 * hardware to use the bus more efficiently in bursts, depends
2952 		 * on the tx_int_delay to be enabled,
2953 		 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2954 		 * hthresh = 1 ==> prefetch when one or more available
2955 		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2956 		 * BEWARE: this seems to work but should be considered first if
2957 		 * there are Tx hangs or other Tx related bugs
2958 		 */
2959 		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2960 		ew32(TXDCTL(0), txdctl);
2961 	}
2962 	/* erratum work around: set txdctl the same for both queues */
2963 	ew32(TXDCTL(1), er32(TXDCTL(0)));
2964 
2965 	/* Program the Transmit Control Register */
2966 	tctl = er32(TCTL);
2967 	tctl &= ~E1000_TCTL_CT;
2968 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2969 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2970 
2971 	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2972 		tarc = er32(TARC(0));
2973 		/* set the speed mode bit, we'll clear it if we're not at
2974 		 * gigabit link later
2975 		 */
2976 #define SPEED_MODE_BIT BIT(21)
2977 		tarc |= SPEED_MODE_BIT;
2978 		ew32(TARC(0), tarc);
2979 	}
2980 
2981 	/* errata: program both queues to unweighted RR */
2982 	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2983 		tarc = er32(TARC(0));
2984 		tarc |= 1;
2985 		ew32(TARC(0), tarc);
2986 		tarc = er32(TARC(1));
2987 		tarc |= 1;
2988 		ew32(TARC(1), tarc);
2989 	}
2990 
2991 	/* Setup Transmit Descriptor Settings for eop descriptor */
2992 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2993 
2994 	/* only set IDE if we are delaying interrupts using the timers */
2995 	if (adapter->tx_int_delay)
2996 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2997 
2998 	/* enable Report Status bit */
2999 	adapter->txd_cmd |= E1000_TXD_CMD_RS;
3000 
3001 	ew32(TCTL, tctl);
3002 
3003 	hw->mac.ops.config_collision_dist(hw);
3004 
3005 	/* SPT and KBL Si errata workaround to avoid data corruption */
3006 	if (hw->mac.type == e1000_pch_spt) {
3007 		u32 reg_val;
3008 
3009 		reg_val = er32(IOSFPC);
3010 		reg_val |= E1000_RCTL_RDMTS_HEX;
3011 		ew32(IOSFPC, reg_val);
3012 
3013 		reg_val = er32(TARC(0));
3014 		/* SPT and KBL Si errata workaround to avoid Tx hang.
3015 		 * Dropping the number of outstanding requests from
3016 		 * 3 to 2 in order to avoid a buffer overrun.
3017 		 */
3018 		reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3019 		reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ;
3020 		ew32(TARC(0), reg_val);
3021 	}
3022 }
3023 
3024 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3025 			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3026 
3027 /**
3028  * e1000_setup_rctl - configure the receive control registers
3029  * @adapter: Board private structure
3030  **/
3031 static void e1000_setup_rctl(struct e1000_adapter *adapter)
3032 {
3033 	struct e1000_hw *hw = &adapter->hw;
3034 	u32 rctl, rfctl;
3035 	u32 pages = 0;
3036 
3037 	/* Workaround Si errata on PCHx - configure jumbo frame flow.
3038 	 * If jumbo frames not set, program related MAC/PHY registers
3039 	 * to h/w defaults
3040 	 */
3041 	if (hw->mac.type >= e1000_pch2lan) {
3042 		s32 ret_val;
3043 
3044 		if (adapter->netdev->mtu > ETH_DATA_LEN)
3045 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3046 		else
3047 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3048 
3049 		if (ret_val)
3050 			e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3051 	}
3052 
3053 	/* Program MC offset vector base */
3054 	rctl = er32(RCTL);
3055 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3056 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3057 	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3058 	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3059 
3060 	/* Do not Store bad packets */
3061 	rctl &= ~E1000_RCTL_SBP;
3062 
3063 	/* Enable Long Packet receive */
3064 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
3065 		rctl &= ~E1000_RCTL_LPE;
3066 	else
3067 		rctl |= E1000_RCTL_LPE;
3068 
3069 	/* Some systems expect that the CRC is included in SMBUS traffic. The
3070 	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3071 	 * host memory when this is enabled
3072 	 */
3073 	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3074 		rctl |= E1000_RCTL_SECRC;
3075 
3076 	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3077 	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3078 		u16 phy_data;
3079 
3080 		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3081 		phy_data &= 0xfff8;
3082 		phy_data |= BIT(2);
3083 		e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3084 
3085 		e1e_rphy(hw, 22, &phy_data);
3086 		phy_data &= 0x0fff;
3087 		phy_data |= BIT(14);
3088 		e1e_wphy(hw, 0x10, 0x2823);
3089 		e1e_wphy(hw, 0x11, 0x0003);
3090 		e1e_wphy(hw, 22, phy_data);
3091 	}
3092 
3093 	/* Setup buffer sizes */
3094 	rctl &= ~E1000_RCTL_SZ_4096;
3095 	rctl |= E1000_RCTL_BSEX;
3096 	switch (adapter->rx_buffer_len) {
3097 	case 2048:
3098 	default:
3099 		rctl |= E1000_RCTL_SZ_2048;
3100 		rctl &= ~E1000_RCTL_BSEX;
3101 		break;
3102 	case 4096:
3103 		rctl |= E1000_RCTL_SZ_4096;
3104 		break;
3105 	case 8192:
3106 		rctl |= E1000_RCTL_SZ_8192;
3107 		break;
3108 	case 16384:
3109 		rctl |= E1000_RCTL_SZ_16384;
3110 		break;
3111 	}
3112 
3113 	/* Enable Extended Status in all Receive Descriptors */
3114 	rfctl = er32(RFCTL);
3115 	rfctl |= E1000_RFCTL_EXTEN;
3116 	ew32(RFCTL, rfctl);
3117 
3118 	/* 82571 and greater support packet-split where the protocol
3119 	 * header is placed in skb->data and the packet data is
3120 	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3121 	 * In the case of a non-split, skb->data is linearly filled,
3122 	 * followed by the page buffers.  Therefore, skb->data is
3123 	 * sized to hold the largest protocol header.
3124 	 *
3125 	 * allocations using alloc_page take too long for regular MTU
3126 	 * so only enable packet split for jumbo frames
3127 	 *
3128 	 * Using pages when the page size is greater than 16k wastes
3129 	 * a lot of memory, since we allocate 3 pages at all times
3130 	 * per packet.
3131 	 */
3132 	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3133 	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3134 		adapter->rx_ps_pages = pages;
3135 	else
3136 		adapter->rx_ps_pages = 0;
3137 
3138 	if (adapter->rx_ps_pages) {
3139 		u32 psrctl = 0;
3140 
3141 		/* Enable Packet split descriptors */
3142 		rctl |= E1000_RCTL_DTYP_PS;
3143 
3144 		psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3145 
3146 		switch (adapter->rx_ps_pages) {
3147 		case 3:
3148 			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3149 			fallthrough;
3150 		case 2:
3151 			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3152 			fallthrough;
3153 		case 1:
3154 			psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3155 			break;
3156 		}
3157 
3158 		ew32(PSRCTL, psrctl);
3159 	}
3160 
3161 	/* This is useful for sniffing bad packets. */
3162 	if (adapter->netdev->features & NETIF_F_RXALL) {
3163 		/* UPE and MPE will be handled by normal PROMISC logic
3164 		 * in e1000e_set_rx_mode
3165 		 */
3166 		rctl |= (E1000_RCTL_SBP |	/* Receive bad packets */
3167 			 E1000_RCTL_BAM |	/* RX All Bcast Pkts */
3168 			 E1000_RCTL_PMCF);	/* RX All MAC Ctrl Pkts */
3169 
3170 		rctl &= ~(E1000_RCTL_VFE |	/* Disable VLAN filter */
3171 			  E1000_RCTL_DPF |	/* Allow filtered pause */
3172 			  E1000_RCTL_CFIEN);	/* Dis VLAN CFIEN Filter */
3173 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3174 		 * and that breaks VLANs.
3175 		 */
3176 	}
3177 
3178 	ew32(RCTL, rctl);
3179 	/* just started the receive unit, no need to restart */
3180 	adapter->flags &= ~FLAG_RESTART_NOW;
3181 }
3182 
3183 /**
3184  * e1000_configure_rx - Configure Receive Unit after Reset
3185  * @adapter: board private structure
3186  *
3187  * Configure the Rx unit of the MAC after a reset.
3188  **/
3189 static void e1000_configure_rx(struct e1000_adapter *adapter)
3190 {
3191 	struct e1000_hw *hw = &adapter->hw;
3192 	struct e1000_ring *rx_ring = adapter->rx_ring;
3193 	u64 rdba;
3194 	u32 rdlen, rctl, rxcsum, ctrl_ext;
3195 
3196 	if (adapter->rx_ps_pages) {
3197 		/* this is a 32 byte descriptor */
3198 		rdlen = rx_ring->count *
3199 		    sizeof(union e1000_rx_desc_packet_split);
3200 		adapter->clean_rx = e1000_clean_rx_irq_ps;
3201 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3202 	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3203 		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3204 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3205 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3206 	} else {
3207 		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3208 		adapter->clean_rx = e1000_clean_rx_irq;
3209 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3210 	}
3211 
3212 	/* disable receives while setting up the descriptors */
3213 	rctl = er32(RCTL);
3214 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3215 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3216 	e1e_flush();
3217 	usleep_range(10000, 11000);
3218 
3219 	if (adapter->flags2 & FLAG2_DMA_BURST) {
3220 		/* set the writeback threshold (only takes effect if the RDTR
3221 		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3222 		 * enable prefetching of 0x20 Rx descriptors
3223 		 * granularity = 01
3224 		 * wthresh = 04,
3225 		 * hthresh = 04,
3226 		 * pthresh = 0x20
3227 		 */
3228 		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3229 		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3230 	}
3231 
3232 	/* set the Receive Delay Timer Register */
3233 	ew32(RDTR, adapter->rx_int_delay);
3234 
3235 	/* irq moderation */
3236 	ew32(RADV, adapter->rx_abs_int_delay);
3237 	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3238 		e1000e_write_itr(adapter, adapter->itr);
3239 
3240 	ctrl_ext = er32(CTRL_EXT);
3241 	/* Auto-Mask interrupts upon ICR access */
3242 	ctrl_ext |= E1000_CTRL_EXT_IAME;
3243 	ew32(IAM, 0xffffffff);
3244 	ew32(CTRL_EXT, ctrl_ext);
3245 	e1e_flush();
3246 
3247 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3248 	 * the Base and Length of the Rx Descriptor Ring
3249 	 */
3250 	rdba = rx_ring->dma;
3251 	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3252 	ew32(RDBAH(0), (rdba >> 32));
3253 	ew32(RDLEN(0), rdlen);
3254 	ew32(RDH(0), 0);
3255 	ew32(RDT(0), 0);
3256 	rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3257 	rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3258 
3259 	writel(0, rx_ring->head);
3260 	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3261 		e1000e_update_rdt_wa(rx_ring, 0);
3262 	else
3263 		writel(0, rx_ring->tail);
3264 
3265 	/* Enable Receive Checksum Offload for TCP and UDP */
3266 	rxcsum = er32(RXCSUM);
3267 	if (adapter->netdev->features & NETIF_F_RXCSUM)
3268 		rxcsum |= E1000_RXCSUM_TUOFL;
3269 	else
3270 		rxcsum &= ~E1000_RXCSUM_TUOFL;
3271 	ew32(RXCSUM, rxcsum);
3272 
3273 	/* With jumbo frames, excessive C-state transition latencies result
3274 	 * in dropped transactions.
3275 	 */
3276 	if (adapter->netdev->mtu > ETH_DATA_LEN) {
3277 		u32 lat =
3278 		    ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3279 		     adapter->max_frame_size) * 8 / 1000;
3280 
3281 		if (adapter->flags & FLAG_IS_ICH) {
3282 			u32 rxdctl = er32(RXDCTL(0));
3283 
3284 			ew32(RXDCTL(0), rxdctl | 0x3 | BIT(8));
3285 		}
3286 
3287 		dev_info(&adapter->pdev->dev,
3288 			 "Some CPU C-states have been disabled in order to enable jumbo frames\n");
3289 		cpu_latency_qos_update_request(&adapter->pm_qos_req, lat);
3290 	} else {
3291 		cpu_latency_qos_update_request(&adapter->pm_qos_req,
3292 					       PM_QOS_DEFAULT_VALUE);
3293 	}
3294 
3295 	/* Enable Receives */
3296 	ew32(RCTL, rctl);
3297 }
3298 
3299 /**
3300  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3301  * @netdev: network interface device structure
3302  *
3303  * Writes multicast address list to the MTA hash table.
3304  * Returns: -ENOMEM on failure
3305  *                0 on no addresses written
3306  *                X on writing X addresses to MTA
3307  */
3308 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3309 {
3310 	struct e1000_adapter *adapter = netdev_priv(netdev);
3311 	struct e1000_hw *hw = &adapter->hw;
3312 	struct netdev_hw_addr *ha;
3313 	u8 *mta_list;
3314 	int i;
3315 
3316 	if (netdev_mc_empty(netdev)) {
3317 		/* nothing to program, so clear mc list */
3318 		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3319 		return 0;
3320 	}
3321 
3322 	mta_list = kcalloc(netdev_mc_count(netdev), ETH_ALEN, GFP_ATOMIC);
3323 	if (!mta_list)
3324 		return -ENOMEM;
3325 
3326 	/* update_mc_addr_list expects a packed array of only addresses. */
3327 	i = 0;
3328 	netdev_for_each_mc_addr(ha, netdev)
3329 	    memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3330 
3331 	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3332 	kfree(mta_list);
3333 
3334 	return netdev_mc_count(netdev);
3335 }
3336 
3337 /**
3338  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3339  * @netdev: network interface device structure
3340  *
3341  * Writes unicast address list to the RAR table.
3342  * Returns: -ENOMEM on failure/insufficient address space
3343  *                0 on no addresses written
3344  *                X on writing X addresses to the RAR table
3345  **/
3346 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3347 {
3348 	struct e1000_adapter *adapter = netdev_priv(netdev);
3349 	struct e1000_hw *hw = &adapter->hw;
3350 	unsigned int rar_entries;
3351 	int count = 0;
3352 
3353 	rar_entries = hw->mac.ops.rar_get_count(hw);
3354 
3355 	/* save a rar entry for our hardware address */
3356 	rar_entries--;
3357 
3358 	/* save a rar entry for the LAA workaround */
3359 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3360 		rar_entries--;
3361 
3362 	/* return ENOMEM indicating insufficient memory for addresses */
3363 	if (netdev_uc_count(netdev) > rar_entries)
3364 		return -ENOMEM;
3365 
3366 	if (!netdev_uc_empty(netdev) && rar_entries) {
3367 		struct netdev_hw_addr *ha;
3368 
3369 		/* write the addresses in reverse order to avoid write
3370 		 * combining
3371 		 */
3372 		netdev_for_each_uc_addr(ha, netdev) {
3373 			int ret_val;
3374 
3375 			if (!rar_entries)
3376 				break;
3377 			ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3378 			if (ret_val < 0)
3379 				return -ENOMEM;
3380 			count++;
3381 		}
3382 	}
3383 
3384 	/* zero out the remaining RAR entries not used above */
3385 	for (; rar_entries > 0; rar_entries--) {
3386 		ew32(RAH(rar_entries), 0);
3387 		ew32(RAL(rar_entries), 0);
3388 	}
3389 	e1e_flush();
3390 
3391 	return count;
3392 }
3393 
3394 /**
3395  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3396  * @netdev: network interface device structure
3397  *
3398  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3399  * address list or the network interface flags are updated.  This routine is
3400  * responsible for configuring the hardware for proper unicast, multicast,
3401  * promiscuous mode, and all-multi behavior.
3402  **/
3403 static void e1000e_set_rx_mode(struct net_device *netdev)
3404 {
3405 	struct e1000_adapter *adapter = netdev_priv(netdev);
3406 	struct e1000_hw *hw = &adapter->hw;
3407 	u32 rctl;
3408 
3409 	if (pm_runtime_suspended(netdev->dev.parent))
3410 		return;
3411 
3412 	/* Check for Promiscuous and All Multicast modes */
3413 	rctl = er32(RCTL);
3414 
3415 	/* clear the affected bits */
3416 	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3417 
3418 	if (netdev->flags & IFF_PROMISC) {
3419 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3420 		/* Do not hardware filter VLANs in promisc mode */
3421 		e1000e_vlan_filter_disable(adapter);
3422 	} else {
3423 		int count;
3424 
3425 		if (netdev->flags & IFF_ALLMULTI) {
3426 			rctl |= E1000_RCTL_MPE;
3427 		} else {
3428 			/* Write addresses to the MTA, if the attempt fails
3429 			 * then we should just turn on promiscuous mode so
3430 			 * that we can at least receive multicast traffic
3431 			 */
3432 			count = e1000e_write_mc_addr_list(netdev);
3433 			if (count < 0)
3434 				rctl |= E1000_RCTL_MPE;
3435 		}
3436 		e1000e_vlan_filter_enable(adapter);
3437 		/* Write addresses to available RAR registers, if there is not
3438 		 * sufficient space to store all the addresses then enable
3439 		 * unicast promiscuous mode
3440 		 */
3441 		count = e1000e_write_uc_addr_list(netdev);
3442 		if (count < 0)
3443 			rctl |= E1000_RCTL_UPE;
3444 	}
3445 
3446 	ew32(RCTL, rctl);
3447 
3448 	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3449 		e1000e_vlan_strip_enable(adapter);
3450 	else
3451 		e1000e_vlan_strip_disable(adapter);
3452 }
3453 
3454 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3455 {
3456 	struct e1000_hw *hw = &adapter->hw;
3457 	u32 mrqc, rxcsum;
3458 	u32 rss_key[10];
3459 	int i;
3460 
3461 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
3462 	for (i = 0; i < 10; i++)
3463 		ew32(RSSRK(i), rss_key[i]);
3464 
3465 	/* Direct all traffic to queue 0 */
3466 	for (i = 0; i < 32; i++)
3467 		ew32(RETA(i), 0);
3468 
3469 	/* Disable raw packet checksumming so that RSS hash is placed in
3470 	 * descriptor on writeback.
3471 	 */
3472 	rxcsum = er32(RXCSUM);
3473 	rxcsum |= E1000_RXCSUM_PCSD;
3474 
3475 	ew32(RXCSUM, rxcsum);
3476 
3477 	mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3478 		E1000_MRQC_RSS_FIELD_IPV4_TCP |
3479 		E1000_MRQC_RSS_FIELD_IPV6 |
3480 		E1000_MRQC_RSS_FIELD_IPV6_TCP |
3481 		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3482 
3483 	ew32(MRQC, mrqc);
3484 }
3485 
3486 /**
3487  * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3488  * @adapter: board private structure
3489  * @timinca: pointer to returned time increment attributes
3490  *
3491  * Get attributes for incrementing the System Time Register SYSTIML/H at
3492  * the default base frequency, and set the cyclecounter shift value.
3493  **/
3494 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3495 {
3496 	struct e1000_hw *hw = &adapter->hw;
3497 	u32 incvalue, incperiod, shift;
3498 
3499 	/* Make sure clock is enabled on I217/I218/I219  before checking
3500 	 * the frequency
3501 	 */
3502 	if ((hw->mac.type >= e1000_pch_lpt) &&
3503 	    !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3504 	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3505 		u32 fextnvm7 = er32(FEXTNVM7);
3506 
3507 		if (!(fextnvm7 & BIT(0))) {
3508 			ew32(FEXTNVM7, fextnvm7 | BIT(0));
3509 			e1e_flush();
3510 		}
3511 	}
3512 
3513 	switch (hw->mac.type) {
3514 	case e1000_pch2lan:
3515 		/* Stable 96MHz frequency */
3516 		incperiod = INCPERIOD_96MHZ;
3517 		incvalue = INCVALUE_96MHZ;
3518 		shift = INCVALUE_SHIFT_96MHZ;
3519 		adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3520 		break;
3521 	case e1000_pch_lpt:
3522 		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3523 			/* Stable 96MHz frequency */
3524 			incperiod = INCPERIOD_96MHZ;
3525 			incvalue = INCVALUE_96MHZ;
3526 			shift = INCVALUE_SHIFT_96MHZ;
3527 			adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3528 		} else {
3529 			/* Stable 25MHz frequency */
3530 			incperiod = INCPERIOD_25MHZ;
3531 			incvalue = INCVALUE_25MHZ;
3532 			shift = INCVALUE_SHIFT_25MHZ;
3533 			adapter->cc.shift = shift;
3534 		}
3535 		break;
3536 	case e1000_pch_spt:
3537 		/* Stable 24MHz frequency */
3538 		incperiod = INCPERIOD_24MHZ;
3539 		incvalue = INCVALUE_24MHZ;
3540 		shift = INCVALUE_SHIFT_24MHZ;
3541 		adapter->cc.shift = shift;
3542 		break;
3543 	case e1000_pch_cnp:
3544 	case e1000_pch_tgp:
3545 	case e1000_pch_adp:
3546 	case e1000_pch_mtp:
3547 	case e1000_pch_lnp:
3548 	case e1000_pch_ptp:
3549 		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3550 			/* Stable 24MHz frequency */
3551 			incperiod = INCPERIOD_24MHZ;
3552 			incvalue = INCVALUE_24MHZ;
3553 			shift = INCVALUE_SHIFT_24MHZ;
3554 			adapter->cc.shift = shift;
3555 		} else {
3556 			/* Stable 38400KHz frequency */
3557 			incperiod = INCPERIOD_38400KHZ;
3558 			incvalue = INCVALUE_38400KHZ;
3559 			shift = INCVALUE_SHIFT_38400KHZ;
3560 			adapter->cc.shift = shift;
3561 		}
3562 		break;
3563 	case e1000_82574:
3564 	case e1000_82583:
3565 		/* Stable 25MHz frequency */
3566 		incperiod = INCPERIOD_25MHZ;
3567 		incvalue = INCVALUE_25MHZ;
3568 		shift = INCVALUE_SHIFT_25MHZ;
3569 		adapter->cc.shift = shift;
3570 		break;
3571 	default:
3572 		return -EINVAL;
3573 	}
3574 
3575 	*timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3576 		    ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3577 
3578 	return 0;
3579 }
3580 
3581 /**
3582  * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3583  * @adapter: board private structure
3584  * @config: timestamp configuration
3585  *
3586  * Outgoing time stamping can be enabled and disabled. Play nice and
3587  * disable it when requested, although it shouldn't cause any overhead
3588  * when no packet needs it. At most one packet in the queue may be
3589  * marked for time stamping, otherwise it would be impossible to tell
3590  * for sure to which packet the hardware time stamp belongs.
3591  *
3592  * Incoming time stamping has to be configured via the hardware filters.
3593  * Not all combinations are supported, in particular event type has to be
3594  * specified. Matching the kind of event packet is not supported, with the
3595  * exception of "all V2 events regardless of level 2 or 4".
3596  **/
3597 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3598 				  struct hwtstamp_config *config)
3599 {
3600 	struct e1000_hw *hw = &adapter->hw;
3601 	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3602 	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3603 	u32 rxmtrl = 0;
3604 	u16 rxudp = 0;
3605 	bool is_l4 = false;
3606 	bool is_l2 = false;
3607 	u32 regval;
3608 
3609 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3610 		return -EINVAL;
3611 
3612 	switch (config->tx_type) {
3613 	case HWTSTAMP_TX_OFF:
3614 		tsync_tx_ctl = 0;
3615 		break;
3616 	case HWTSTAMP_TX_ON:
3617 		break;
3618 	default:
3619 		return -ERANGE;
3620 	}
3621 
3622 	switch (config->rx_filter) {
3623 	case HWTSTAMP_FILTER_NONE:
3624 		tsync_rx_ctl = 0;
3625 		break;
3626 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3627 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3628 		rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3629 		is_l4 = true;
3630 		break;
3631 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3632 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3633 		rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3634 		is_l4 = true;
3635 		break;
3636 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3637 		/* Also time stamps V2 L2 Path Delay Request/Response */
3638 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3639 		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3640 		is_l2 = true;
3641 		break;
3642 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3643 		/* Also time stamps V2 L2 Path Delay Request/Response. */
3644 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3645 		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3646 		is_l2 = true;
3647 		break;
3648 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3649 		/* Hardware cannot filter just V2 L4 Sync messages */
3650 		fallthrough;
3651 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3652 		/* Also time stamps V2 Path Delay Request/Response. */
3653 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3654 		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3655 		is_l2 = true;
3656 		is_l4 = true;
3657 		break;
3658 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3659 		/* Hardware cannot filter just V2 L4 Delay Request messages */
3660 		fallthrough;
3661 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3662 		/* Also time stamps V2 Path Delay Request/Response. */
3663 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3664 		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3665 		is_l2 = true;
3666 		is_l4 = true;
3667 		break;
3668 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3669 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3670 		/* Hardware cannot filter just V2 L4 or L2 Event messages */
3671 		fallthrough;
3672 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3673 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3674 		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3675 		is_l2 = true;
3676 		is_l4 = true;
3677 		break;
3678 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3679 		/* For V1, the hardware can only filter Sync messages or
3680 		 * Delay Request messages but not both so fall-through to
3681 		 * time stamp all packets.
3682 		 */
3683 		fallthrough;
3684 	case HWTSTAMP_FILTER_NTP_ALL:
3685 	case HWTSTAMP_FILTER_ALL:
3686 		is_l2 = true;
3687 		is_l4 = true;
3688 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3689 		config->rx_filter = HWTSTAMP_FILTER_ALL;
3690 		break;
3691 	default:
3692 		return -ERANGE;
3693 	}
3694 
3695 	adapter->hwtstamp_config = *config;
3696 
3697 	/* enable/disable Tx h/w time stamping */
3698 	regval = er32(TSYNCTXCTL);
3699 	regval &= ~E1000_TSYNCTXCTL_ENABLED;
3700 	regval |= tsync_tx_ctl;
3701 	ew32(TSYNCTXCTL, regval);
3702 	if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3703 	    (regval & E1000_TSYNCTXCTL_ENABLED)) {
3704 		e_err("Timesync Tx Control register not set as expected\n");
3705 		return -EAGAIN;
3706 	}
3707 
3708 	/* enable/disable Rx h/w time stamping */
3709 	regval = er32(TSYNCRXCTL);
3710 	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3711 	regval |= tsync_rx_ctl;
3712 	ew32(TSYNCRXCTL, regval);
3713 	if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3714 				 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3715 	    (regval & (E1000_TSYNCRXCTL_ENABLED |
3716 		       E1000_TSYNCRXCTL_TYPE_MASK))) {
3717 		e_err("Timesync Rx Control register not set as expected\n");
3718 		return -EAGAIN;
3719 	}
3720 
3721 	/* L2: define ethertype filter for time stamped packets */
3722 	if (is_l2)
3723 		rxmtrl |= ETH_P_1588;
3724 
3725 	/* define which PTP packets get time stamped */
3726 	ew32(RXMTRL, rxmtrl);
3727 
3728 	/* Filter by destination port */
3729 	if (is_l4) {
3730 		rxudp = PTP_EV_PORT;
3731 		cpu_to_be16s(&rxudp);
3732 	}
3733 	ew32(RXUDP, rxudp);
3734 
3735 	e1e_flush();
3736 
3737 	/* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3738 	er32(RXSTMPH);
3739 	er32(TXSTMPH);
3740 
3741 	return 0;
3742 }
3743 
3744 /**
3745  * e1000_configure - configure the hardware for Rx and Tx
3746  * @adapter: private board structure
3747  **/
3748 static void e1000_configure(struct e1000_adapter *adapter)
3749 {
3750 	struct e1000_ring *rx_ring = adapter->rx_ring;
3751 
3752 	e1000e_set_rx_mode(adapter->netdev);
3753 
3754 	e1000_restore_vlan(adapter);
3755 	e1000_init_manageability_pt(adapter);
3756 
3757 	e1000_configure_tx(adapter);
3758 
3759 	if (adapter->netdev->features & NETIF_F_RXHASH)
3760 		e1000e_setup_rss_hash(adapter);
3761 	e1000_setup_rctl(adapter);
3762 	e1000_configure_rx(adapter);
3763 	adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3764 }
3765 
3766 /**
3767  * e1000e_power_up_phy - restore link in case the phy was powered down
3768  * @adapter: address of board private structure
3769  *
3770  * The phy may be powered down to save power and turn off link when the
3771  * driver is unloaded and wake on lan is not enabled (among others)
3772  * *** this routine MUST be followed by a call to e1000e_reset ***
3773  **/
3774 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3775 {
3776 	if (adapter->hw.phy.ops.power_up)
3777 		adapter->hw.phy.ops.power_up(&adapter->hw);
3778 
3779 	adapter->hw.mac.ops.setup_link(&adapter->hw);
3780 }
3781 
3782 /**
3783  * e1000_power_down_phy - Power down the PHY
3784  * @adapter: board private structure
3785  *
3786  * Power down the PHY so no link is implied when interface is down.
3787  * The PHY cannot be powered down if management or WoL is active.
3788  */
3789 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3790 {
3791 	if (adapter->hw.phy.ops.power_down)
3792 		adapter->hw.phy.ops.power_down(&adapter->hw);
3793 }
3794 
3795 /**
3796  * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3797  * @adapter: board private structure
3798  *
3799  * We want to clear all pending descriptors from the TX ring.
3800  * zeroing happens when the HW reads the regs. We  assign the ring itself as
3801  * the data of the next descriptor. We don't care about the data we are about
3802  * to reset the HW.
3803  */
3804 static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3805 {
3806 	struct e1000_hw *hw = &adapter->hw;
3807 	struct e1000_ring *tx_ring = adapter->tx_ring;
3808 	struct e1000_tx_desc *tx_desc = NULL;
3809 	u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3810 	u16 size = 512;
3811 
3812 	tctl = er32(TCTL);
3813 	ew32(TCTL, tctl | E1000_TCTL_EN);
3814 	tdt = er32(TDT(0));
3815 	BUG_ON(tdt != tx_ring->next_to_use);
3816 	tx_desc =  E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3817 	tx_desc->buffer_addr = cpu_to_le64(tx_ring->dma);
3818 
3819 	tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3820 	tx_desc->upper.data = 0;
3821 	/* flush descriptors to memory before notifying the HW */
3822 	wmb();
3823 	tx_ring->next_to_use++;
3824 	if (tx_ring->next_to_use == tx_ring->count)
3825 		tx_ring->next_to_use = 0;
3826 	ew32(TDT(0), tx_ring->next_to_use);
3827 	usleep_range(200, 250);
3828 }
3829 
3830 /**
3831  * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3832  * @adapter: board private structure
3833  *
3834  * Mark all descriptors in the RX ring as consumed and disable the rx ring
3835  */
3836 static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3837 {
3838 	u32 rctl, rxdctl;
3839 	struct e1000_hw *hw = &adapter->hw;
3840 
3841 	rctl = er32(RCTL);
3842 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3843 	e1e_flush();
3844 	usleep_range(100, 150);
3845 
3846 	rxdctl = er32(RXDCTL(0));
3847 	/* zero the lower 14 bits (prefetch and host thresholds) */
3848 	rxdctl &= 0xffffc000;
3849 
3850 	/* update thresholds: prefetch threshold to 31, host threshold to 1
3851 	 * and make sure the granularity is "descriptors" and not "cache lines"
3852 	 */
3853 	rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3854 
3855 	ew32(RXDCTL(0), rxdctl);
3856 	/* momentarily enable the RX ring for the changes to take effect */
3857 	ew32(RCTL, rctl | E1000_RCTL_EN);
3858 	e1e_flush();
3859 	usleep_range(100, 150);
3860 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3861 }
3862 
3863 /**
3864  * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3865  * @adapter: board private structure
3866  *
3867  * In i219, the descriptor rings must be emptied before resetting the HW
3868  * or before changing the device state to D3 during runtime (runtime PM).
3869  *
3870  * Failure to do this will cause the HW to enter a unit hang state which can
3871  * only be released by PCI reset on the device
3872  *
3873  */
3874 
3875 static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3876 {
3877 	u16 hang_state;
3878 	u32 fext_nvm11, tdlen;
3879 	struct e1000_hw *hw = &adapter->hw;
3880 
3881 	/* First, disable MULR fix in FEXTNVM11 */
3882 	fext_nvm11 = er32(FEXTNVM11);
3883 	fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3884 	ew32(FEXTNVM11, fext_nvm11);
3885 	/* do nothing if we're not in faulty state, or if the queue is empty */
3886 	tdlen = er32(TDLEN(0));
3887 	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3888 			     &hang_state);
3889 	if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3890 		return;
3891 	e1000_flush_tx_ring(adapter);
3892 	/* recheck, maybe the fault is caused by the rx ring */
3893 	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3894 			     &hang_state);
3895 	if (hang_state & FLUSH_DESC_REQUIRED)
3896 		e1000_flush_rx_ring(adapter);
3897 }
3898 
3899 /**
3900  * e1000e_systim_reset - reset the timesync registers after a hardware reset
3901  * @adapter: board private structure
3902  *
3903  * When the MAC is reset, all hardware bits for timesync will be reset to the
3904  * default values. This function will restore the settings last in place.
3905  * Since the clock SYSTIME registers are reset, we will simply restore the
3906  * cyclecounter to the kernel real clock time.
3907  **/
3908 static void e1000e_systim_reset(struct e1000_adapter *adapter)
3909 {
3910 	struct ptp_clock_info *info = &adapter->ptp_clock_info;
3911 	struct e1000_hw *hw = &adapter->hw;
3912 	unsigned long flags;
3913 	u32 timinca;
3914 	s32 ret_val;
3915 
3916 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3917 		return;
3918 
3919 	if (info->adjfine) {
3920 		/* restore the previous ptp frequency delta */
3921 		ret_val = info->adjfine(info, adapter->ptp_delta);
3922 	} else {
3923 		/* set the default base frequency if no adjustment possible */
3924 		ret_val = e1000e_get_base_timinca(adapter, &timinca);
3925 		if (!ret_val)
3926 			ew32(TIMINCA, timinca);
3927 	}
3928 
3929 	if (ret_val) {
3930 		dev_warn(&adapter->pdev->dev,
3931 			 "Failed to restore TIMINCA clock rate delta: %d\n",
3932 			 ret_val);
3933 		return;
3934 	}
3935 
3936 	/* reset the systim ns time counter */
3937 	spin_lock_irqsave(&adapter->systim_lock, flags);
3938 	timecounter_init(&adapter->tc, &adapter->cc,
3939 			 ktime_to_ns(ktime_get_real()));
3940 	spin_unlock_irqrestore(&adapter->systim_lock, flags);
3941 
3942 	/* restore the previous hwtstamp configuration settings */
3943 	e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3944 }
3945 
3946 /**
3947  * e1000e_reset - bring the hardware into a known good state
3948  * @adapter: board private structure
3949  *
3950  * This function boots the hardware and enables some settings that
3951  * require a configuration cycle of the hardware - those cannot be
3952  * set/changed during runtime. After reset the device needs to be
3953  * properly configured for Rx, Tx etc.
3954  */
3955 void e1000e_reset(struct e1000_adapter *adapter)
3956 {
3957 	struct e1000_mac_info *mac = &adapter->hw.mac;
3958 	struct e1000_fc_info *fc = &adapter->hw.fc;
3959 	struct e1000_hw *hw = &adapter->hw;
3960 	u32 tx_space, min_tx_space, min_rx_space;
3961 	u32 pba = adapter->pba;
3962 	u16 hwm;
3963 
3964 	/* reset Packet Buffer Allocation to default */
3965 	ew32(PBA, pba);
3966 
3967 	if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3968 		/* To maintain wire speed transmits, the Tx FIFO should be
3969 		 * large enough to accommodate two full transmit packets,
3970 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
3971 		 * the Rx FIFO should be large enough to accommodate at least
3972 		 * one full receive packet and is similarly rounded up and
3973 		 * expressed in KB.
3974 		 */
3975 		pba = er32(PBA);
3976 		/* upper 16 bits has Tx packet buffer allocation size in KB */
3977 		tx_space = pba >> 16;
3978 		/* lower 16 bits has Rx packet buffer allocation size in KB */
3979 		pba &= 0xffff;
3980 		/* the Tx fifo also stores 16 bytes of information about the Tx
3981 		 * but don't include ethernet FCS because hardware appends it
3982 		 */
3983 		min_tx_space = (adapter->max_frame_size +
3984 				sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3985 		min_tx_space = ALIGN(min_tx_space, 1024);
3986 		min_tx_space >>= 10;
3987 		/* software strips receive CRC, so leave room for it */
3988 		min_rx_space = adapter->max_frame_size;
3989 		min_rx_space = ALIGN(min_rx_space, 1024);
3990 		min_rx_space >>= 10;
3991 
3992 		/* If current Tx allocation is less than the min Tx FIFO size,
3993 		 * and the min Tx FIFO size is less than the current Rx FIFO
3994 		 * allocation, take space away from current Rx allocation
3995 		 */
3996 		if ((tx_space < min_tx_space) &&
3997 		    ((min_tx_space - tx_space) < pba)) {
3998 			pba -= min_tx_space - tx_space;
3999 
4000 			/* if short on Rx space, Rx wins and must trump Tx
4001 			 * adjustment
4002 			 */
4003 			if (pba < min_rx_space)
4004 				pba = min_rx_space;
4005 		}
4006 
4007 		ew32(PBA, pba);
4008 	}
4009 
4010 	/* flow control settings
4011 	 *
4012 	 * The high water mark must be low enough to fit one full frame
4013 	 * (or the size used for early receive) above it in the Rx FIFO.
4014 	 * Set it to the lower of:
4015 	 * - 90% of the Rx FIFO size, and
4016 	 * - the full Rx FIFO size minus one full frame
4017 	 */
4018 	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
4019 		fc->pause_time = 0xFFFF;
4020 	else
4021 		fc->pause_time = E1000_FC_PAUSE_TIME;
4022 	fc->send_xon = true;
4023 	fc->current_mode = fc->requested_mode;
4024 
4025 	switch (hw->mac.type) {
4026 	case e1000_ich9lan:
4027 	case e1000_ich10lan:
4028 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4029 			pba = 14;
4030 			ew32(PBA, pba);
4031 			fc->high_water = 0x2800;
4032 			fc->low_water = fc->high_water - 8;
4033 			break;
4034 		}
4035 		fallthrough;
4036 	default:
4037 		hwm = min(((pba << 10) * 9 / 10),
4038 			  ((pba << 10) - adapter->max_frame_size));
4039 
4040 		fc->high_water = hwm & E1000_FCRTH_RTH;	/* 8-byte granularity */
4041 		fc->low_water = fc->high_water - 8;
4042 		break;
4043 	case e1000_pchlan:
4044 		/* Workaround PCH LOM adapter hangs with certain network
4045 		 * loads.  If hangs persist, try disabling Tx flow control.
4046 		 */
4047 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4048 			fc->high_water = 0x3500;
4049 			fc->low_water = 0x1500;
4050 		} else {
4051 			fc->high_water = 0x5000;
4052 			fc->low_water = 0x3000;
4053 		}
4054 		fc->refresh_time = 0x1000;
4055 		break;
4056 	case e1000_pch2lan:
4057 	case e1000_pch_lpt:
4058 	case e1000_pch_spt:
4059 	case e1000_pch_cnp:
4060 	case e1000_pch_tgp:
4061 	case e1000_pch_adp:
4062 	case e1000_pch_mtp:
4063 	case e1000_pch_lnp:
4064 	case e1000_pch_ptp:
4065 		fc->refresh_time = 0xFFFF;
4066 		fc->pause_time = 0xFFFF;
4067 
4068 		if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4069 			fc->high_water = 0x05C20;
4070 			fc->low_water = 0x05048;
4071 			break;
4072 		}
4073 
4074 		pba = 14;
4075 		ew32(PBA, pba);
4076 		fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4077 		fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4078 		break;
4079 	}
4080 
4081 	/* Alignment of Tx data is on an arbitrary byte boundary with the
4082 	 * maximum size per Tx descriptor limited only to the transmit
4083 	 * allocation of the packet buffer minus 96 bytes with an upper
4084 	 * limit of 24KB due to receive synchronization limitations.
4085 	 */
4086 	adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4087 				       24 << 10);
4088 
4089 	/* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4090 	 * fit in receive buffer.
4091 	 */
4092 	if (adapter->itr_setting & 0x3) {
4093 		if ((adapter->max_frame_size * 2) > (pba << 10)) {
4094 			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4095 				dev_info(&adapter->pdev->dev,
4096 					 "Interrupt Throttle Rate off\n");
4097 				adapter->flags2 |= FLAG2_DISABLE_AIM;
4098 				e1000e_write_itr(adapter, 0);
4099 			}
4100 		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4101 			dev_info(&adapter->pdev->dev,
4102 				 "Interrupt Throttle Rate on\n");
4103 			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4104 			adapter->itr = 20000;
4105 			e1000e_write_itr(adapter, adapter->itr);
4106 		}
4107 	}
4108 
4109 	if (hw->mac.type >= e1000_pch_spt)
4110 		e1000_flush_desc_rings(adapter);
4111 	/* Allow time for pending master requests to run */
4112 	mac->ops.reset_hw(hw);
4113 
4114 	/* For parts with AMT enabled, let the firmware know
4115 	 * that the network interface is in control
4116 	 */
4117 	if (adapter->flags & FLAG_HAS_AMT)
4118 		e1000e_get_hw_control(adapter);
4119 
4120 	ew32(WUC, 0);
4121 
4122 	if (mac->ops.init_hw(hw))
4123 		e_err("Hardware Error\n");
4124 
4125 	e1000_update_mng_vlan(adapter);
4126 
4127 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4128 	ew32(VET, ETH_P_8021Q);
4129 
4130 	e1000e_reset_adaptive(hw);
4131 
4132 	/* restore systim and hwtstamp settings */
4133 	e1000e_systim_reset(adapter);
4134 
4135 	/* Set EEE advertisement as appropriate */
4136 	if (adapter->flags2 & FLAG2_HAS_EEE) {
4137 		s32 ret_val;
4138 		u16 adv_addr;
4139 
4140 		switch (hw->phy.type) {
4141 		case e1000_phy_82579:
4142 			adv_addr = I82579_EEE_ADVERTISEMENT;
4143 			break;
4144 		case e1000_phy_i217:
4145 			adv_addr = I217_EEE_ADVERTISEMENT;
4146 			break;
4147 		default:
4148 			dev_err(&adapter->pdev->dev,
4149 				"Invalid PHY type setting EEE advertisement\n");
4150 			return;
4151 		}
4152 
4153 		ret_val = hw->phy.ops.acquire(hw);
4154 		if (ret_val) {
4155 			dev_err(&adapter->pdev->dev,
4156 				"EEE advertisement - unable to acquire PHY\n");
4157 			return;
4158 		}
4159 
4160 		e1000_write_emi_reg_locked(hw, adv_addr,
4161 					   hw->dev_spec.ich8lan.eee_disable ?
4162 					   0 : adapter->eee_advert);
4163 
4164 		hw->phy.ops.release(hw);
4165 	}
4166 
4167 	if (!netif_running(adapter->netdev) &&
4168 	    !test_bit(__E1000_TESTING, &adapter->state))
4169 		e1000_power_down_phy(adapter);
4170 
4171 	e1000_get_phy_info(hw);
4172 
4173 	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4174 	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4175 		u16 phy_data = 0;
4176 		/* speed up time to link by disabling smart power down, ignore
4177 		 * the return value of this function because there is nothing
4178 		 * different we would do if it failed
4179 		 */
4180 		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4181 		phy_data &= ~IGP02E1000_PM_SPD;
4182 		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4183 	}
4184 	if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) {
4185 		u32 reg;
4186 
4187 		/* Fextnvm7 @ 0xe4[2] = 1 */
4188 		reg = er32(FEXTNVM7);
4189 		reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4190 		ew32(FEXTNVM7, reg);
4191 		/* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4192 		reg = er32(FEXTNVM9);
4193 		reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4194 		       E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4195 		ew32(FEXTNVM9, reg);
4196 	}
4197 
4198 }
4199 
4200 /**
4201  * e1000e_trigger_lsc - trigger an LSC interrupt
4202  * @adapter:
4203  *
4204  * Fire a link status change interrupt to start the watchdog.
4205  **/
4206 static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4207 {
4208 	struct e1000_hw *hw = &adapter->hw;
4209 
4210 	if (adapter->msix_entries)
4211 		ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER);
4212 	else
4213 		ew32(ICS, E1000_ICS_LSC);
4214 }
4215 
4216 void e1000e_up(struct e1000_adapter *adapter)
4217 {
4218 	/* hardware has been reset, we need to reload some things */
4219 	e1000_configure(adapter);
4220 
4221 	clear_bit(__E1000_DOWN, &adapter->state);
4222 
4223 	if (adapter->msix_entries)
4224 		e1000_configure_msix(adapter);
4225 	e1000_irq_enable(adapter);
4226 
4227 	/* Tx queue started by watchdog timer when link is up */
4228 
4229 	e1000e_trigger_lsc(adapter);
4230 }
4231 
4232 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4233 {
4234 	struct e1000_hw *hw = &adapter->hw;
4235 
4236 	if (!(adapter->flags2 & FLAG2_DMA_BURST))
4237 		return;
4238 
4239 	/* flush pending descriptor writebacks to memory */
4240 	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4241 	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4242 
4243 	/* execute the writes immediately */
4244 	e1e_flush();
4245 
4246 	/* due to rare timing issues, write to TIDV/RDTR again to ensure the
4247 	 * write is successful
4248 	 */
4249 	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4250 	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4251 
4252 	/* execute the writes immediately */
4253 	e1e_flush();
4254 }
4255 
4256 static void e1000e_update_stats(struct e1000_adapter *adapter);
4257 
4258 /**
4259  * e1000e_down - quiesce the device and optionally reset the hardware
4260  * @adapter: board private structure
4261  * @reset: boolean flag to reset the hardware or not
4262  */
4263 void e1000e_down(struct e1000_adapter *adapter, bool reset)
4264 {
4265 	struct net_device *netdev = adapter->netdev;
4266 	struct e1000_hw *hw = &adapter->hw;
4267 	u32 tctl, rctl;
4268 
4269 	/* signal that we're down so the interrupt handler does not
4270 	 * reschedule our watchdog timer
4271 	 */
4272 	set_bit(__E1000_DOWN, &adapter->state);
4273 
4274 	netif_carrier_off(netdev);
4275 
4276 	/* disable receives in the hardware */
4277 	rctl = er32(RCTL);
4278 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4279 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
4280 	/* flush and sleep below */
4281 
4282 	netif_stop_queue(netdev);
4283 
4284 	/* disable transmits in the hardware */
4285 	tctl = er32(TCTL);
4286 	tctl &= ~E1000_TCTL_EN;
4287 	ew32(TCTL, tctl);
4288 
4289 	/* flush both disables and wait for them to finish */
4290 	e1e_flush();
4291 	usleep_range(10000, 11000);
4292 
4293 	e1000_irq_disable(adapter);
4294 
4295 	napi_synchronize(&adapter->napi);
4296 
4297 	del_timer_sync(&adapter->watchdog_timer);
4298 	del_timer_sync(&adapter->phy_info_timer);
4299 
4300 	spin_lock(&adapter->stats64_lock);
4301 	e1000e_update_stats(adapter);
4302 	spin_unlock(&adapter->stats64_lock);
4303 
4304 	e1000e_flush_descriptors(adapter);
4305 
4306 	adapter->link_speed = 0;
4307 	adapter->link_duplex = 0;
4308 
4309 	/* Disable Si errata workaround on PCHx for jumbo frame flow */
4310 	if ((hw->mac.type >= e1000_pch2lan) &&
4311 	    (adapter->netdev->mtu > ETH_DATA_LEN) &&
4312 	    e1000_lv_jumbo_workaround_ich8lan(hw, false))
4313 		e_dbg("failed to disable jumbo frame workaround mode\n");
4314 
4315 	if (!pci_channel_offline(adapter->pdev)) {
4316 		if (reset)
4317 			e1000e_reset(adapter);
4318 		else if (hw->mac.type >= e1000_pch_spt)
4319 			e1000_flush_desc_rings(adapter);
4320 	}
4321 	e1000_clean_tx_ring(adapter->tx_ring);
4322 	e1000_clean_rx_ring(adapter->rx_ring);
4323 }
4324 
4325 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4326 {
4327 	might_sleep();
4328 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4329 		usleep_range(1000, 1100);
4330 	e1000e_down(adapter, true);
4331 	e1000e_up(adapter);
4332 	clear_bit(__E1000_RESETTING, &adapter->state);
4333 }
4334 
4335 /**
4336  * e1000e_sanitize_systim - sanitize raw cycle counter reads
4337  * @hw: pointer to the HW structure
4338  * @systim: PHC time value read, sanitized and returned
4339  * @sts: structure to hold system time before and after reading SYSTIML,
4340  * may be NULL
4341  *
4342  * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4343  * check to see that the time is incrementing at a reasonable
4344  * rate and is a multiple of incvalue.
4345  **/
4346 static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim,
4347 				  struct ptp_system_timestamp *sts)
4348 {
4349 	u64 time_delta, rem, temp;
4350 	u64 systim_next;
4351 	u32 incvalue;
4352 	int i;
4353 
4354 	incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4355 	for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4356 		/* latch SYSTIMH on read of SYSTIML */
4357 		ptp_read_system_prets(sts);
4358 		systim_next = (u64)er32(SYSTIML);
4359 		ptp_read_system_postts(sts);
4360 		systim_next |= (u64)er32(SYSTIMH) << 32;
4361 
4362 		time_delta = systim_next - systim;
4363 		temp = time_delta;
4364 		/* VMWare users have seen incvalue of zero, don't div / 0 */
4365 		rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0);
4366 
4367 		systim = systim_next;
4368 
4369 		if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0))
4370 			break;
4371 	}
4372 
4373 	return systim;
4374 }
4375 
4376 /**
4377  * e1000e_read_systim - read SYSTIM register
4378  * @adapter: board private structure
4379  * @sts: structure which will contain system time before and after reading
4380  * SYSTIML, may be NULL
4381  **/
4382 u64 e1000e_read_systim(struct e1000_adapter *adapter,
4383 		       struct ptp_system_timestamp *sts)
4384 {
4385 	struct e1000_hw *hw = &adapter->hw;
4386 	u32 systimel, systimel_2, systimeh;
4387 	u64 systim;
4388 	/* SYSTIMH latching upon SYSTIML read does not work well.
4389 	 * This means that if SYSTIML overflows after we read it but before
4390 	 * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4391 	 * will experience a huge non linear increment in the systime value
4392 	 * to fix that we test for overflow and if true, we re-read systime.
4393 	 */
4394 	ptp_read_system_prets(sts);
4395 	systimel = er32(SYSTIML);
4396 	ptp_read_system_postts(sts);
4397 	systimeh = er32(SYSTIMH);
4398 	/* Is systimel is so large that overflow is possible? */
4399 	if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
4400 		ptp_read_system_prets(sts);
4401 		systimel_2 = er32(SYSTIML);
4402 		ptp_read_system_postts(sts);
4403 		if (systimel > systimel_2) {
4404 			/* There was an overflow, read again SYSTIMH, and use
4405 			 * systimel_2
4406 			 */
4407 			systimeh = er32(SYSTIMH);
4408 			systimel = systimel_2;
4409 		}
4410 	}
4411 	systim = (u64)systimel;
4412 	systim |= (u64)systimeh << 32;
4413 
4414 	if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW)
4415 		systim = e1000e_sanitize_systim(hw, systim, sts);
4416 
4417 	return systim;
4418 }
4419 
4420 /**
4421  * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4422  * @cc: cyclecounter structure
4423  **/
4424 static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc)
4425 {
4426 	struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4427 						     cc);
4428 
4429 	return e1000e_read_systim(adapter, NULL);
4430 }
4431 
4432 /**
4433  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4434  * @adapter: board private structure to initialize
4435  *
4436  * e1000_sw_init initializes the Adapter private data structure.
4437  * Fields are initialized based on PCI device information and
4438  * OS network device settings (MTU size).
4439  **/
4440 static int e1000_sw_init(struct e1000_adapter *adapter)
4441 {
4442 	struct net_device *netdev = adapter->netdev;
4443 
4444 	adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4445 	adapter->rx_ps_bsize0 = 128;
4446 	adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4447 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4448 	adapter->tx_ring_count = E1000_DEFAULT_TXD;
4449 	adapter->rx_ring_count = E1000_DEFAULT_RXD;
4450 
4451 	spin_lock_init(&adapter->stats64_lock);
4452 
4453 	e1000e_set_interrupt_capability(adapter);
4454 
4455 	if (e1000_alloc_queues(adapter))
4456 		return -ENOMEM;
4457 
4458 	/* Setup hardware time stamping cyclecounter */
4459 	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4460 		adapter->cc.read = e1000e_cyclecounter_read;
4461 		adapter->cc.mask = CYCLECOUNTER_MASK(64);
4462 		adapter->cc.mult = 1;
4463 		/* cc.shift set in e1000e_get_base_tininca() */
4464 
4465 		spin_lock_init(&adapter->systim_lock);
4466 		INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4467 	}
4468 
4469 	/* Explicitly disable IRQ since the NIC can be in any state. */
4470 	e1000_irq_disable(adapter);
4471 
4472 	set_bit(__E1000_DOWN, &adapter->state);
4473 	return 0;
4474 }
4475 
4476 /**
4477  * e1000_intr_msi_test - Interrupt Handler
4478  * @irq: interrupt number
4479  * @data: pointer to a network interface device structure
4480  **/
4481 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4482 {
4483 	struct net_device *netdev = data;
4484 	struct e1000_adapter *adapter = netdev_priv(netdev);
4485 	struct e1000_hw *hw = &adapter->hw;
4486 	u32 icr = er32(ICR);
4487 
4488 	e_dbg("icr is %08X\n", icr);
4489 	if (icr & E1000_ICR_RXSEQ) {
4490 		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4491 		/* Force memory writes to complete before acknowledging the
4492 		 * interrupt is handled.
4493 		 */
4494 		wmb();
4495 	}
4496 
4497 	return IRQ_HANDLED;
4498 }
4499 
4500 /**
4501  * e1000_test_msi_interrupt - Returns 0 for successful test
4502  * @adapter: board private struct
4503  *
4504  * code flow taken from tg3.c
4505  **/
4506 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4507 {
4508 	struct net_device *netdev = adapter->netdev;
4509 	struct e1000_hw *hw = &adapter->hw;
4510 	int err;
4511 
4512 	/* poll_enable hasn't been called yet, so don't need disable */
4513 	/* clear any pending events */
4514 	er32(ICR);
4515 
4516 	/* free the real vector and request a test handler */
4517 	e1000_free_irq(adapter);
4518 	e1000e_reset_interrupt_capability(adapter);
4519 
4520 	/* Assume that the test fails, if it succeeds then the test
4521 	 * MSI irq handler will unset this flag
4522 	 */
4523 	adapter->flags |= FLAG_MSI_TEST_FAILED;
4524 
4525 	err = pci_enable_msi(adapter->pdev);
4526 	if (err)
4527 		goto msi_test_failed;
4528 
4529 	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4530 			  netdev->name, netdev);
4531 	if (err) {
4532 		pci_disable_msi(adapter->pdev);
4533 		goto msi_test_failed;
4534 	}
4535 
4536 	/* Force memory writes to complete before enabling and firing an
4537 	 * interrupt.
4538 	 */
4539 	wmb();
4540 
4541 	e1000_irq_enable(adapter);
4542 
4543 	/* fire an unusual interrupt on the test handler */
4544 	ew32(ICS, E1000_ICS_RXSEQ);
4545 	e1e_flush();
4546 	msleep(100);
4547 
4548 	e1000_irq_disable(adapter);
4549 
4550 	rmb();			/* read flags after interrupt has been fired */
4551 
4552 	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4553 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
4554 		e_info("MSI interrupt test failed, using legacy interrupt.\n");
4555 	} else {
4556 		e_dbg("MSI interrupt test succeeded!\n");
4557 	}
4558 
4559 	free_irq(adapter->pdev->irq, netdev);
4560 	pci_disable_msi(adapter->pdev);
4561 
4562 msi_test_failed:
4563 	e1000e_set_interrupt_capability(adapter);
4564 	return e1000_request_irq(adapter);
4565 }
4566 
4567 /**
4568  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4569  * @adapter: board private struct
4570  *
4571  * code flow taken from tg3.c, called with e1000 interrupts disabled.
4572  **/
4573 static int e1000_test_msi(struct e1000_adapter *adapter)
4574 {
4575 	int err;
4576 	u16 pci_cmd;
4577 
4578 	if (!(adapter->flags & FLAG_MSI_ENABLED))
4579 		return 0;
4580 
4581 	/* disable SERR in case the MSI write causes a master abort */
4582 	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4583 	if (pci_cmd & PCI_COMMAND_SERR)
4584 		pci_write_config_word(adapter->pdev, PCI_COMMAND,
4585 				      pci_cmd & ~PCI_COMMAND_SERR);
4586 
4587 	err = e1000_test_msi_interrupt(adapter);
4588 
4589 	/* re-enable SERR */
4590 	if (pci_cmd & PCI_COMMAND_SERR) {
4591 		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4592 		pci_cmd |= PCI_COMMAND_SERR;
4593 		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4594 	}
4595 
4596 	return err;
4597 }
4598 
4599 /**
4600  * e1000e_open - Called when a network interface is made active
4601  * @netdev: network interface device structure
4602  *
4603  * Returns 0 on success, negative value on failure
4604  *
4605  * The open entry point is called when a network interface is made
4606  * active by the system (IFF_UP).  At this point all resources needed
4607  * for transmit and receive operations are allocated, the interrupt
4608  * handler is registered with the OS, the watchdog timer is started,
4609  * and the stack is notified that the interface is ready.
4610  **/
4611 int e1000e_open(struct net_device *netdev)
4612 {
4613 	struct e1000_adapter *adapter = netdev_priv(netdev);
4614 	struct e1000_hw *hw = &adapter->hw;
4615 	struct pci_dev *pdev = adapter->pdev;
4616 	int err;
4617 
4618 	/* disallow open during test */
4619 	if (test_bit(__E1000_TESTING, &adapter->state))
4620 		return -EBUSY;
4621 
4622 	pm_runtime_get_sync(&pdev->dev);
4623 
4624 	netif_carrier_off(netdev);
4625 	netif_stop_queue(netdev);
4626 
4627 	/* allocate transmit descriptors */
4628 	err = e1000e_setup_tx_resources(adapter->tx_ring);
4629 	if (err)
4630 		goto err_setup_tx;
4631 
4632 	/* allocate receive descriptors */
4633 	err = e1000e_setup_rx_resources(adapter->rx_ring);
4634 	if (err)
4635 		goto err_setup_rx;
4636 
4637 	/* If AMT is enabled, let the firmware know that the network
4638 	 * interface is now open and reset the part to a known state.
4639 	 */
4640 	if (adapter->flags & FLAG_HAS_AMT) {
4641 		e1000e_get_hw_control(adapter);
4642 		e1000e_reset(adapter);
4643 	}
4644 
4645 	e1000e_power_up_phy(adapter);
4646 
4647 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4648 	if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4649 		e1000_update_mng_vlan(adapter);
4650 
4651 	/* DMA latency requirement to workaround jumbo issue */
4652 	cpu_latency_qos_add_request(&adapter->pm_qos_req, PM_QOS_DEFAULT_VALUE);
4653 
4654 	/* before we allocate an interrupt, we must be ready to handle it.
4655 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4656 	 * as soon as we call pci_request_irq, so we have to setup our
4657 	 * clean_rx handler before we do so.
4658 	 */
4659 	e1000_configure(adapter);
4660 
4661 	err = e1000_request_irq(adapter);
4662 	if (err)
4663 		goto err_req_irq;
4664 
4665 	/* Work around PCIe errata with MSI interrupts causing some chipsets to
4666 	 * ignore e1000e MSI messages, which means we need to test our MSI
4667 	 * interrupt now
4668 	 */
4669 	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4670 		err = e1000_test_msi(adapter);
4671 		if (err) {
4672 			e_err("Interrupt allocation failed\n");
4673 			goto err_req_irq;
4674 		}
4675 	}
4676 
4677 	/* From here on the code is the same as e1000e_up() */
4678 	clear_bit(__E1000_DOWN, &adapter->state);
4679 
4680 	napi_enable(&adapter->napi);
4681 
4682 	e1000_irq_enable(adapter);
4683 
4684 	adapter->tx_hang_recheck = false;
4685 
4686 	hw->mac.get_link_status = true;
4687 	pm_runtime_put(&pdev->dev);
4688 
4689 	e1000e_trigger_lsc(adapter);
4690 
4691 	return 0;
4692 
4693 err_req_irq:
4694 	cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4695 	e1000e_release_hw_control(adapter);
4696 	e1000_power_down_phy(adapter);
4697 	e1000e_free_rx_resources(adapter->rx_ring);
4698 err_setup_rx:
4699 	e1000e_free_tx_resources(adapter->tx_ring);
4700 err_setup_tx:
4701 	e1000e_reset(adapter);
4702 	pm_runtime_put_sync(&pdev->dev);
4703 
4704 	return err;
4705 }
4706 
4707 /**
4708  * e1000e_close - Disables a network interface
4709  * @netdev: network interface device structure
4710  *
4711  * Returns 0, this is not allowed to fail
4712  *
4713  * The close entry point is called when an interface is de-activated
4714  * by the OS.  The hardware is still under the drivers control, but
4715  * needs to be disabled.  A global MAC reset is issued to stop the
4716  * hardware, and all transmit and receive resources are freed.
4717  **/
4718 int e1000e_close(struct net_device *netdev)
4719 {
4720 	struct e1000_adapter *adapter = netdev_priv(netdev);
4721 	struct pci_dev *pdev = adapter->pdev;
4722 	int count = E1000_CHECK_RESET_COUNT;
4723 
4724 	while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4725 		usleep_range(10000, 11000);
4726 
4727 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4728 
4729 	pm_runtime_get_sync(&pdev->dev);
4730 
4731 	if (netif_device_present(netdev)) {
4732 		e1000e_down(adapter, true);
4733 		e1000_free_irq(adapter);
4734 
4735 		/* Link status message must follow this format */
4736 		netdev_info(netdev, "NIC Link is Down\n");
4737 	}
4738 
4739 	napi_disable(&adapter->napi);
4740 
4741 	e1000e_free_tx_resources(adapter->tx_ring);
4742 	e1000e_free_rx_resources(adapter->rx_ring);
4743 
4744 	/* kill manageability vlan ID if supported, but not if a vlan with
4745 	 * the same ID is registered on the host OS (let 8021q kill it)
4746 	 */
4747 	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4748 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4749 				       adapter->mng_vlan_id);
4750 
4751 	/* If AMT is enabled, let the firmware know that the network
4752 	 * interface is now closed
4753 	 */
4754 	if ((adapter->flags & FLAG_HAS_AMT) &&
4755 	    !test_bit(__E1000_TESTING, &adapter->state))
4756 		e1000e_release_hw_control(adapter);
4757 
4758 	cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4759 
4760 	pm_runtime_put_sync(&pdev->dev);
4761 
4762 	return 0;
4763 }
4764 
4765 /**
4766  * e1000_set_mac - Change the Ethernet Address of the NIC
4767  * @netdev: network interface device structure
4768  * @p: pointer to an address structure
4769  *
4770  * Returns 0 on success, negative on failure
4771  **/
4772 static int e1000_set_mac(struct net_device *netdev, void *p)
4773 {
4774 	struct e1000_adapter *adapter = netdev_priv(netdev);
4775 	struct e1000_hw *hw = &adapter->hw;
4776 	struct sockaddr *addr = p;
4777 
4778 	if (!is_valid_ether_addr(addr->sa_data))
4779 		return -EADDRNOTAVAIL;
4780 
4781 	eth_hw_addr_set(netdev, addr->sa_data);
4782 	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4783 
4784 	hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4785 
4786 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4787 		/* activate the work around */
4788 		e1000e_set_laa_state_82571(&adapter->hw, 1);
4789 
4790 		/* Hold a copy of the LAA in RAR[14] This is done so that
4791 		 * between the time RAR[0] gets clobbered  and the time it
4792 		 * gets fixed (in e1000_watchdog), the actual LAA is in one
4793 		 * of the RARs and no incoming packets directed to this port
4794 		 * are dropped. Eventually the LAA will be in RAR[0] and
4795 		 * RAR[14]
4796 		 */
4797 		hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4798 				    adapter->hw.mac.rar_entry_count - 1);
4799 	}
4800 
4801 	return 0;
4802 }
4803 
4804 /**
4805  * e1000e_update_phy_task - work thread to update phy
4806  * @work: pointer to our work struct
4807  *
4808  * this worker thread exists because we must acquire a
4809  * semaphore to read the phy, which we could msleep while
4810  * waiting for it, and we can't msleep in a timer.
4811  **/
4812 static void e1000e_update_phy_task(struct work_struct *work)
4813 {
4814 	struct e1000_adapter *adapter = container_of(work,
4815 						     struct e1000_adapter,
4816 						     update_phy_task);
4817 	struct e1000_hw *hw = &adapter->hw;
4818 
4819 	if (test_bit(__E1000_DOWN, &adapter->state))
4820 		return;
4821 
4822 	e1000_get_phy_info(hw);
4823 
4824 	/* Enable EEE on 82579 after link up */
4825 	if (hw->phy.type >= e1000_phy_82579)
4826 		e1000_set_eee_pchlan(hw);
4827 }
4828 
4829 /**
4830  * e1000_update_phy_info - timre call-back to update PHY info
4831  * @t: pointer to timer_list containing private info adapter
4832  *
4833  * Need to wait a few seconds after link up to get diagnostic information from
4834  * the phy
4835  **/
4836 static void e1000_update_phy_info(struct timer_list *t)
4837 {
4838 	struct e1000_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4839 
4840 	if (test_bit(__E1000_DOWN, &adapter->state))
4841 		return;
4842 
4843 	schedule_work(&adapter->update_phy_task);
4844 }
4845 
4846 /**
4847  * e1000e_update_phy_stats - Update the PHY statistics counters
4848  * @adapter: board private structure
4849  *
4850  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4851  **/
4852 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4853 {
4854 	struct e1000_hw *hw = &adapter->hw;
4855 	s32 ret_val;
4856 	u16 phy_data;
4857 
4858 	ret_val = hw->phy.ops.acquire(hw);
4859 	if (ret_val)
4860 		return;
4861 
4862 	/* A page set is expensive so check if already on desired page.
4863 	 * If not, set to the page with the PHY status registers.
4864 	 */
4865 	hw->phy.addr = 1;
4866 	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4867 					   &phy_data);
4868 	if (ret_val)
4869 		goto release;
4870 	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4871 		ret_val = hw->phy.ops.set_page(hw,
4872 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4873 		if (ret_val)
4874 			goto release;
4875 	}
4876 
4877 	/* Single Collision Count */
4878 	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4879 	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4880 	if (!ret_val)
4881 		adapter->stats.scc += phy_data;
4882 
4883 	/* Excessive Collision Count */
4884 	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4885 	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4886 	if (!ret_val)
4887 		adapter->stats.ecol += phy_data;
4888 
4889 	/* Multiple Collision Count */
4890 	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4891 	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4892 	if (!ret_val)
4893 		adapter->stats.mcc += phy_data;
4894 
4895 	/* Late Collision Count */
4896 	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4897 	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4898 	if (!ret_val)
4899 		adapter->stats.latecol += phy_data;
4900 
4901 	/* Collision Count - also used for adaptive IFS */
4902 	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4903 	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4904 	if (!ret_val)
4905 		hw->mac.collision_delta = phy_data;
4906 
4907 	/* Defer Count */
4908 	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4909 	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4910 	if (!ret_val)
4911 		adapter->stats.dc += phy_data;
4912 
4913 	/* Transmit with no CRS */
4914 	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4915 	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4916 	if (!ret_val)
4917 		adapter->stats.tncrs += phy_data;
4918 
4919 release:
4920 	hw->phy.ops.release(hw);
4921 }
4922 
4923 /**
4924  * e1000e_update_stats - Update the board statistics counters
4925  * @adapter: board private structure
4926  **/
4927 static void e1000e_update_stats(struct e1000_adapter *adapter)
4928 {
4929 	struct net_device *netdev = adapter->netdev;
4930 	struct e1000_hw *hw = &adapter->hw;
4931 	struct pci_dev *pdev = adapter->pdev;
4932 
4933 	/* Prevent stats update while adapter is being reset, or if the pci
4934 	 * connection is down.
4935 	 */
4936 	if (adapter->link_speed == 0)
4937 		return;
4938 	if (pci_channel_offline(pdev))
4939 		return;
4940 
4941 	adapter->stats.crcerrs += er32(CRCERRS);
4942 	adapter->stats.gprc += er32(GPRC);
4943 	adapter->stats.gorc += er32(GORCL);
4944 	er32(GORCH);		/* Clear gorc */
4945 	adapter->stats.bprc += er32(BPRC);
4946 	adapter->stats.mprc += er32(MPRC);
4947 	adapter->stats.roc += er32(ROC);
4948 
4949 	adapter->stats.mpc += er32(MPC);
4950 
4951 	/* Half-duplex statistics */
4952 	if (adapter->link_duplex == HALF_DUPLEX) {
4953 		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4954 			e1000e_update_phy_stats(adapter);
4955 		} else {
4956 			adapter->stats.scc += er32(SCC);
4957 			adapter->stats.ecol += er32(ECOL);
4958 			adapter->stats.mcc += er32(MCC);
4959 			adapter->stats.latecol += er32(LATECOL);
4960 			adapter->stats.dc += er32(DC);
4961 
4962 			hw->mac.collision_delta = er32(COLC);
4963 
4964 			if ((hw->mac.type != e1000_82574) &&
4965 			    (hw->mac.type != e1000_82583))
4966 				adapter->stats.tncrs += er32(TNCRS);
4967 		}
4968 		adapter->stats.colc += hw->mac.collision_delta;
4969 	}
4970 
4971 	adapter->stats.xonrxc += er32(XONRXC);
4972 	adapter->stats.xontxc += er32(XONTXC);
4973 	adapter->stats.xoffrxc += er32(XOFFRXC);
4974 	adapter->stats.xofftxc += er32(XOFFTXC);
4975 	adapter->stats.gptc += er32(GPTC);
4976 	adapter->stats.gotc += er32(GOTCL);
4977 	er32(GOTCH);		/* Clear gotc */
4978 	adapter->stats.rnbc += er32(RNBC);
4979 	adapter->stats.ruc += er32(RUC);
4980 
4981 	adapter->stats.mptc += er32(MPTC);
4982 	adapter->stats.bptc += er32(BPTC);
4983 
4984 	/* used for adaptive IFS */
4985 
4986 	hw->mac.tx_packet_delta = er32(TPT);
4987 	adapter->stats.tpt += hw->mac.tx_packet_delta;
4988 
4989 	adapter->stats.algnerrc += er32(ALGNERRC);
4990 	adapter->stats.rxerrc += er32(RXERRC);
4991 	adapter->stats.cexterr += er32(CEXTERR);
4992 	adapter->stats.tsctc += er32(TSCTC);
4993 	adapter->stats.tsctfc += er32(TSCTFC);
4994 
4995 	/* Fill out the OS statistics structure */
4996 	netdev->stats.multicast = adapter->stats.mprc;
4997 	netdev->stats.collisions = adapter->stats.colc;
4998 
4999 	/* Rx Errors */
5000 
5001 	/* RLEC on some newer hardware can be incorrect so build
5002 	 * our own version based on RUC and ROC
5003 	 */
5004 	netdev->stats.rx_errors = adapter->stats.rxerrc +
5005 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
5006 	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5007 	netdev->stats.rx_length_errors = adapter->stats.ruc +
5008 	    adapter->stats.roc;
5009 	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
5010 	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
5011 	netdev->stats.rx_missed_errors = adapter->stats.mpc;
5012 
5013 	/* Tx Errors */
5014 	netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5015 	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
5016 	netdev->stats.tx_window_errors = adapter->stats.latecol;
5017 	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
5018 
5019 	/* Tx Dropped needs to be maintained elsewhere */
5020 
5021 	/* Management Stats */
5022 	adapter->stats.mgptc += er32(MGTPTC);
5023 	adapter->stats.mgprc += er32(MGTPRC);
5024 	adapter->stats.mgpdc += er32(MGTPDC);
5025 
5026 	/* Correctable ECC Errors */
5027 	if (hw->mac.type >= e1000_pch_lpt) {
5028 		u32 pbeccsts = er32(PBECCSTS);
5029 
5030 		adapter->corr_errors +=
5031 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
5032 		adapter->uncorr_errors +=
5033 		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
5034 		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
5035 	}
5036 }
5037 
5038 /**
5039  * e1000_phy_read_status - Update the PHY register status snapshot
5040  * @adapter: board private structure
5041  **/
5042 static void e1000_phy_read_status(struct e1000_adapter *adapter)
5043 {
5044 	struct e1000_hw *hw = &adapter->hw;
5045 	struct e1000_phy_regs *phy = &adapter->phy_regs;
5046 
5047 	if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
5048 	    (er32(STATUS) & E1000_STATUS_LU) &&
5049 	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
5050 		int ret_val;
5051 
5052 		ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
5053 		ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
5054 		ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
5055 		ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
5056 		ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
5057 		ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
5058 		ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
5059 		ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
5060 		if (ret_val)
5061 			e_warn("Error reading PHY register\n");
5062 	} else {
5063 		/* Do not read PHY registers if link is not up
5064 		 * Set values to typical power-on defaults
5065 		 */
5066 		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5067 		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5068 			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5069 			     BMSR_ERCAP);
5070 		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5071 				  ADVERTISE_ALL | ADVERTISE_CSMA);
5072 		phy->lpa = 0;
5073 		phy->expansion = EXPANSION_ENABLENPAGE;
5074 		phy->ctrl1000 = ADVERTISE_1000FULL;
5075 		phy->stat1000 = 0;
5076 		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5077 	}
5078 }
5079 
5080 static void e1000_print_link_info(struct e1000_adapter *adapter)
5081 {
5082 	struct e1000_hw *hw = &adapter->hw;
5083 	u32 ctrl = er32(CTRL);
5084 
5085 	/* Link status message must follow this format for user tools */
5086 	netdev_info(adapter->netdev,
5087 		    "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5088 		    adapter->link_speed,
5089 		    adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5090 		    (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5091 		    (ctrl & E1000_CTRL_RFCE) ? "Rx" :
5092 		    (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5093 }
5094 
5095 static bool e1000e_has_link(struct e1000_adapter *adapter)
5096 {
5097 	struct e1000_hw *hw = &adapter->hw;
5098 	bool link_active = false;
5099 	s32 ret_val = 0;
5100 
5101 	/* get_link_status is set on LSC (link status) interrupt or
5102 	 * Rx sequence error interrupt.  get_link_status will stay
5103 	 * true until the check_for_link establishes link
5104 	 * for copper adapters ONLY
5105 	 */
5106 	switch (hw->phy.media_type) {
5107 	case e1000_media_type_copper:
5108 		if (hw->mac.get_link_status) {
5109 			ret_val = hw->mac.ops.check_for_link(hw);
5110 			link_active = !hw->mac.get_link_status;
5111 		} else {
5112 			link_active = true;
5113 		}
5114 		break;
5115 	case e1000_media_type_fiber:
5116 		ret_val = hw->mac.ops.check_for_link(hw);
5117 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5118 		break;
5119 	case e1000_media_type_internal_serdes:
5120 		ret_val = hw->mac.ops.check_for_link(hw);
5121 		link_active = hw->mac.serdes_has_link;
5122 		break;
5123 	default:
5124 	case e1000_media_type_unknown:
5125 		break;
5126 	}
5127 
5128 	if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5129 	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5130 		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5131 		e_info("Gigabit has been disabled, downgrading speed\n");
5132 	}
5133 
5134 	return link_active;
5135 }
5136 
5137 static void e1000e_enable_receives(struct e1000_adapter *adapter)
5138 {
5139 	/* make sure the receive unit is started */
5140 	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5141 	    (adapter->flags & FLAG_RESTART_NOW)) {
5142 		struct e1000_hw *hw = &adapter->hw;
5143 		u32 rctl = er32(RCTL);
5144 
5145 		ew32(RCTL, rctl | E1000_RCTL_EN);
5146 		adapter->flags &= ~FLAG_RESTART_NOW;
5147 	}
5148 }
5149 
5150 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5151 {
5152 	struct e1000_hw *hw = &adapter->hw;
5153 
5154 	/* With 82574 controllers, PHY needs to be checked periodically
5155 	 * for hung state and reset, if two calls return true
5156 	 */
5157 	if (e1000_check_phy_82574(hw))
5158 		adapter->phy_hang_count++;
5159 	else
5160 		adapter->phy_hang_count = 0;
5161 
5162 	if (adapter->phy_hang_count > 1) {
5163 		adapter->phy_hang_count = 0;
5164 		e_dbg("PHY appears hung - resetting\n");
5165 		schedule_work(&adapter->reset_task);
5166 	}
5167 }
5168 
5169 /**
5170  * e1000_watchdog - Timer Call-back
5171  * @t: pointer to timer_list containing private info adapter
5172  **/
5173 static void e1000_watchdog(struct timer_list *t)
5174 {
5175 	struct e1000_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5176 
5177 	/* Do the rest outside of interrupt context */
5178 	schedule_work(&adapter->watchdog_task);
5179 
5180 	/* TODO: make this use queue_delayed_work() */
5181 }
5182 
5183 static void e1000_watchdog_task(struct work_struct *work)
5184 {
5185 	struct e1000_adapter *adapter = container_of(work,
5186 						     struct e1000_adapter,
5187 						     watchdog_task);
5188 	struct net_device *netdev = adapter->netdev;
5189 	struct e1000_mac_info *mac = &adapter->hw.mac;
5190 	struct e1000_phy_info *phy = &adapter->hw.phy;
5191 	struct e1000_ring *tx_ring = adapter->tx_ring;
5192 	u32 dmoff_exit_timeout = 100, tries = 0;
5193 	struct e1000_hw *hw = &adapter->hw;
5194 	u32 link, tctl, pcim_state;
5195 
5196 	if (test_bit(__E1000_DOWN, &adapter->state))
5197 		return;
5198 
5199 	link = e1000e_has_link(adapter);
5200 	if ((netif_carrier_ok(netdev)) && link) {
5201 		/* Cancel scheduled suspend requests. */
5202 		pm_runtime_resume(netdev->dev.parent);
5203 
5204 		e1000e_enable_receives(adapter);
5205 		goto link_up;
5206 	}
5207 
5208 	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5209 	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5210 		e1000_update_mng_vlan(adapter);
5211 
5212 	if (link) {
5213 		if (!netif_carrier_ok(netdev)) {
5214 			bool txb2b = true;
5215 
5216 			/* Cancel scheduled suspend requests. */
5217 			pm_runtime_resume(netdev->dev.parent);
5218 
5219 			/* Checking if MAC is in DMoff state*/
5220 			if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
5221 				pcim_state = er32(STATUS);
5222 				while (pcim_state & E1000_STATUS_PCIM_STATE) {
5223 					if (tries++ == dmoff_exit_timeout) {
5224 						e_dbg("Error in exiting dmoff\n");
5225 						break;
5226 					}
5227 					usleep_range(10000, 20000);
5228 					pcim_state = er32(STATUS);
5229 
5230 					/* Checking if MAC exited DMoff state */
5231 					if (!(pcim_state & E1000_STATUS_PCIM_STATE))
5232 						e1000_phy_hw_reset(&adapter->hw);
5233 				}
5234 			}
5235 
5236 			/* update snapshot of PHY registers on LSC */
5237 			e1000_phy_read_status(adapter);
5238 			mac->ops.get_link_up_info(&adapter->hw,
5239 						  &adapter->link_speed,
5240 						  &adapter->link_duplex);
5241 			e1000_print_link_info(adapter);
5242 
5243 			/* check if SmartSpeed worked */
5244 			e1000e_check_downshift(hw);
5245 			if (phy->speed_downgraded)
5246 				netdev_warn(netdev,
5247 					    "Link Speed was downgraded by SmartSpeed\n");
5248 
5249 			/* On supported PHYs, check for duplex mismatch only
5250 			 * if link has autonegotiated at 10/100 half
5251 			 */
5252 			if ((hw->phy.type == e1000_phy_igp_3 ||
5253 			     hw->phy.type == e1000_phy_bm) &&
5254 			    hw->mac.autoneg &&
5255 			    (adapter->link_speed == SPEED_10 ||
5256 			     adapter->link_speed == SPEED_100) &&
5257 			    (adapter->link_duplex == HALF_DUPLEX)) {
5258 				u16 autoneg_exp;
5259 
5260 				e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5261 
5262 				if (!(autoneg_exp & EXPANSION_NWAY))
5263 					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
5264 			}
5265 
5266 			/* adjust timeout factor according to speed/duplex */
5267 			adapter->tx_timeout_factor = 1;
5268 			switch (adapter->link_speed) {
5269 			case SPEED_10:
5270 				txb2b = false;
5271 				adapter->tx_timeout_factor = 16;
5272 				break;
5273 			case SPEED_100:
5274 				txb2b = false;
5275 				adapter->tx_timeout_factor = 10;
5276 				break;
5277 			}
5278 
5279 			/* workaround: re-program speed mode bit after
5280 			 * link-up event
5281 			 */
5282 			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5283 			    !txb2b) {
5284 				u32 tarc0;
5285 
5286 				tarc0 = er32(TARC(0));
5287 				tarc0 &= ~SPEED_MODE_BIT;
5288 				ew32(TARC(0), tarc0);
5289 			}
5290 
5291 			/* disable TSO for pcie and 10/100 speeds, to avoid
5292 			 * some hardware issues
5293 			 */
5294 			if (!(adapter->flags & FLAG_TSO_FORCE)) {
5295 				switch (adapter->link_speed) {
5296 				case SPEED_10:
5297 				case SPEED_100:
5298 					e_info("10/100 speed: disabling TSO\n");
5299 					netdev->features &= ~NETIF_F_TSO;
5300 					netdev->features &= ~NETIF_F_TSO6;
5301 					break;
5302 				case SPEED_1000:
5303 					netdev->features |= NETIF_F_TSO;
5304 					netdev->features |= NETIF_F_TSO6;
5305 					break;
5306 				default:
5307 					/* oops */
5308 					break;
5309 				}
5310 				if (hw->mac.type == e1000_pch_spt) {
5311 					netdev->features &= ~NETIF_F_TSO;
5312 					netdev->features &= ~NETIF_F_TSO6;
5313 				}
5314 			}
5315 
5316 			/* enable transmits in the hardware, need to do this
5317 			 * after setting TARC(0)
5318 			 */
5319 			tctl = er32(TCTL);
5320 			tctl |= E1000_TCTL_EN;
5321 			ew32(TCTL, tctl);
5322 
5323 			/* Perform any post-link-up configuration before
5324 			 * reporting link up.
5325 			 */
5326 			if (phy->ops.cfg_on_link_up)
5327 				phy->ops.cfg_on_link_up(hw);
5328 
5329 			netif_wake_queue(netdev);
5330 			netif_carrier_on(netdev);
5331 
5332 			if (!test_bit(__E1000_DOWN, &adapter->state))
5333 				mod_timer(&adapter->phy_info_timer,
5334 					  round_jiffies(jiffies + 2 * HZ));
5335 		}
5336 	} else {
5337 		if (netif_carrier_ok(netdev)) {
5338 			adapter->link_speed = 0;
5339 			adapter->link_duplex = 0;
5340 			/* Link status message must follow this format */
5341 			netdev_info(netdev, "NIC Link is Down\n");
5342 			netif_carrier_off(netdev);
5343 			netif_stop_queue(netdev);
5344 			if (!test_bit(__E1000_DOWN, &adapter->state))
5345 				mod_timer(&adapter->phy_info_timer,
5346 					  round_jiffies(jiffies + 2 * HZ));
5347 
5348 			/* 8000ES2LAN requires a Rx packet buffer work-around
5349 			 * on link down event; reset the controller to flush
5350 			 * the Rx packet buffer.
5351 			 */
5352 			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5353 				adapter->flags |= FLAG_RESTART_NOW;
5354 			else
5355 				pm_schedule_suspend(netdev->dev.parent,
5356 						    LINK_TIMEOUT);
5357 		}
5358 	}
5359 
5360 link_up:
5361 	spin_lock(&adapter->stats64_lock);
5362 	e1000e_update_stats(adapter);
5363 
5364 	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5365 	adapter->tpt_old = adapter->stats.tpt;
5366 	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5367 	adapter->colc_old = adapter->stats.colc;
5368 
5369 	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5370 	adapter->gorc_old = adapter->stats.gorc;
5371 	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5372 	adapter->gotc_old = adapter->stats.gotc;
5373 	spin_unlock(&adapter->stats64_lock);
5374 
5375 	/* If the link is lost the controller stops DMA, but
5376 	 * if there is queued Tx work it cannot be done.  So
5377 	 * reset the controller to flush the Tx packet buffers.
5378 	 */
5379 	if (!netif_carrier_ok(netdev) &&
5380 	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5381 		adapter->flags |= FLAG_RESTART_NOW;
5382 
5383 	/* If reset is necessary, do it outside of interrupt context. */
5384 	if (adapter->flags & FLAG_RESTART_NOW) {
5385 		schedule_work(&adapter->reset_task);
5386 		/* return immediately since reset is imminent */
5387 		return;
5388 	}
5389 
5390 	e1000e_update_adaptive(&adapter->hw);
5391 
5392 	/* Simple mode for Interrupt Throttle Rate (ITR) */
5393 	if (adapter->itr_setting == 4) {
5394 		/* Symmetric Tx/Rx gets a reduced ITR=2000;
5395 		 * Total asymmetrical Tx or Rx gets ITR=8000;
5396 		 * everyone else is between 2000-8000.
5397 		 */
5398 		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5399 		u32 dif = (adapter->gotc > adapter->gorc ?
5400 			   adapter->gotc - adapter->gorc :
5401 			   adapter->gorc - adapter->gotc) / 10000;
5402 		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5403 
5404 		e1000e_write_itr(adapter, itr);
5405 	}
5406 
5407 	/* Cause software interrupt to ensure Rx ring is cleaned */
5408 	if (adapter->msix_entries)
5409 		ew32(ICS, adapter->rx_ring->ims_val);
5410 	else
5411 		ew32(ICS, E1000_ICS_RXDMT0);
5412 
5413 	/* flush pending descriptors to memory before detecting Tx hang */
5414 	e1000e_flush_descriptors(adapter);
5415 
5416 	/* Force detection of hung controller every watchdog period */
5417 	adapter->detect_tx_hung = true;
5418 
5419 	/* With 82571 controllers, LAA may be overwritten due to controller
5420 	 * reset from the other port. Set the appropriate LAA in RAR[0]
5421 	 */
5422 	if (e1000e_get_laa_state_82571(hw))
5423 		hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5424 
5425 	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5426 		e1000e_check_82574_phy_workaround(adapter);
5427 
5428 	/* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5429 	if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5430 		if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5431 		    (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5432 			er32(RXSTMPH);
5433 			adapter->rx_hwtstamp_cleared++;
5434 		} else {
5435 			adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5436 		}
5437 	}
5438 
5439 	/* Reset the timer */
5440 	if (!test_bit(__E1000_DOWN, &adapter->state))
5441 		mod_timer(&adapter->watchdog_timer,
5442 			  round_jiffies(jiffies + 2 * HZ));
5443 }
5444 
5445 #define E1000_TX_FLAGS_CSUM		0x00000001
5446 #define E1000_TX_FLAGS_VLAN		0x00000002
5447 #define E1000_TX_FLAGS_TSO		0x00000004
5448 #define E1000_TX_FLAGS_IPV4		0x00000008
5449 #define E1000_TX_FLAGS_NO_FCS		0x00000010
5450 #define E1000_TX_FLAGS_HWTSTAMP		0x00000020
5451 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
5452 #define E1000_TX_FLAGS_VLAN_SHIFT	16
5453 
5454 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5455 		     __be16 protocol)
5456 {
5457 	struct e1000_context_desc *context_desc;
5458 	struct e1000_buffer *buffer_info;
5459 	unsigned int i;
5460 	u32 cmd_length = 0;
5461 	u16 ipcse = 0, mss;
5462 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
5463 	int err;
5464 
5465 	if (!skb_is_gso(skb))
5466 		return 0;
5467 
5468 	err = skb_cow_head(skb, 0);
5469 	if (err < 0)
5470 		return err;
5471 
5472 	hdr_len = skb_tcp_all_headers(skb);
5473 	mss = skb_shinfo(skb)->gso_size;
5474 	if (protocol == htons(ETH_P_IP)) {
5475 		struct iphdr *iph = ip_hdr(skb);
5476 		iph->tot_len = 0;
5477 		iph->check = 0;
5478 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5479 							 0, IPPROTO_TCP, 0);
5480 		cmd_length = E1000_TXD_CMD_IP;
5481 		ipcse = skb_transport_offset(skb) - 1;
5482 	} else if (skb_is_gso_v6(skb)) {
5483 		tcp_v6_gso_csum_prep(skb);
5484 		ipcse = 0;
5485 	}
5486 	ipcss = skb_network_offset(skb);
5487 	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5488 	tucss = skb_transport_offset(skb);
5489 	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5490 
5491 	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5492 		       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5493 
5494 	i = tx_ring->next_to_use;
5495 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5496 	buffer_info = &tx_ring->buffer_info[i];
5497 
5498 	context_desc->lower_setup.ip_fields.ipcss = ipcss;
5499 	context_desc->lower_setup.ip_fields.ipcso = ipcso;
5500 	context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5501 	context_desc->upper_setup.tcp_fields.tucss = tucss;
5502 	context_desc->upper_setup.tcp_fields.tucso = tucso;
5503 	context_desc->upper_setup.tcp_fields.tucse = 0;
5504 	context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5505 	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5506 	context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5507 
5508 	buffer_info->time_stamp = jiffies;
5509 	buffer_info->next_to_watch = i;
5510 
5511 	i++;
5512 	if (i == tx_ring->count)
5513 		i = 0;
5514 	tx_ring->next_to_use = i;
5515 
5516 	return 1;
5517 }
5518 
5519 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5520 			  __be16 protocol)
5521 {
5522 	struct e1000_adapter *adapter = tx_ring->adapter;
5523 	struct e1000_context_desc *context_desc;
5524 	struct e1000_buffer *buffer_info;
5525 	unsigned int i;
5526 	u8 css;
5527 	u32 cmd_len = E1000_TXD_CMD_DEXT;
5528 
5529 	if (skb->ip_summed != CHECKSUM_PARTIAL)
5530 		return false;
5531 
5532 	switch (protocol) {
5533 	case cpu_to_be16(ETH_P_IP):
5534 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5535 			cmd_len |= E1000_TXD_CMD_TCP;
5536 		break;
5537 	case cpu_to_be16(ETH_P_IPV6):
5538 		/* XXX not handling all IPV6 headers */
5539 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5540 			cmd_len |= E1000_TXD_CMD_TCP;
5541 		break;
5542 	default:
5543 		if (unlikely(net_ratelimit()))
5544 			e_warn("checksum_partial proto=%x!\n",
5545 			       be16_to_cpu(protocol));
5546 		break;
5547 	}
5548 
5549 	css = skb_checksum_start_offset(skb);
5550 
5551 	i = tx_ring->next_to_use;
5552 	buffer_info = &tx_ring->buffer_info[i];
5553 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5554 
5555 	context_desc->lower_setup.ip_config = 0;
5556 	context_desc->upper_setup.tcp_fields.tucss = css;
5557 	context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5558 	context_desc->upper_setup.tcp_fields.tucse = 0;
5559 	context_desc->tcp_seg_setup.data = 0;
5560 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5561 
5562 	buffer_info->time_stamp = jiffies;
5563 	buffer_info->next_to_watch = i;
5564 
5565 	i++;
5566 	if (i == tx_ring->count)
5567 		i = 0;
5568 	tx_ring->next_to_use = i;
5569 
5570 	return true;
5571 }
5572 
5573 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5574 			unsigned int first, unsigned int max_per_txd,
5575 			unsigned int nr_frags)
5576 {
5577 	struct e1000_adapter *adapter = tx_ring->adapter;
5578 	struct pci_dev *pdev = adapter->pdev;
5579 	struct e1000_buffer *buffer_info;
5580 	unsigned int len = skb_headlen(skb);
5581 	unsigned int offset = 0, size, count = 0, i;
5582 	unsigned int f, bytecount, segs;
5583 
5584 	i = tx_ring->next_to_use;
5585 
5586 	while (len) {
5587 		buffer_info = &tx_ring->buffer_info[i];
5588 		size = min(len, max_per_txd);
5589 
5590 		buffer_info->length = size;
5591 		buffer_info->time_stamp = jiffies;
5592 		buffer_info->next_to_watch = i;
5593 		buffer_info->dma = dma_map_single(&pdev->dev,
5594 						  skb->data + offset,
5595 						  size, DMA_TO_DEVICE);
5596 		buffer_info->mapped_as_page = false;
5597 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5598 			goto dma_error;
5599 
5600 		len -= size;
5601 		offset += size;
5602 		count++;
5603 
5604 		if (len) {
5605 			i++;
5606 			if (i == tx_ring->count)
5607 				i = 0;
5608 		}
5609 	}
5610 
5611 	for (f = 0; f < nr_frags; f++) {
5612 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
5613 
5614 		len = skb_frag_size(frag);
5615 		offset = 0;
5616 
5617 		while (len) {
5618 			i++;
5619 			if (i == tx_ring->count)
5620 				i = 0;
5621 
5622 			buffer_info = &tx_ring->buffer_info[i];
5623 			size = min(len, max_per_txd);
5624 
5625 			buffer_info->length = size;
5626 			buffer_info->time_stamp = jiffies;
5627 			buffer_info->next_to_watch = i;
5628 			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5629 							    offset, size,
5630 							    DMA_TO_DEVICE);
5631 			buffer_info->mapped_as_page = true;
5632 			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5633 				goto dma_error;
5634 
5635 			len -= size;
5636 			offset += size;
5637 			count++;
5638 		}
5639 	}
5640 
5641 	segs = skb_shinfo(skb)->gso_segs ? : 1;
5642 	/* multiply data chunks by size of headers */
5643 	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5644 
5645 	tx_ring->buffer_info[i].skb = skb;
5646 	tx_ring->buffer_info[i].segs = segs;
5647 	tx_ring->buffer_info[i].bytecount = bytecount;
5648 	tx_ring->buffer_info[first].next_to_watch = i;
5649 
5650 	return count;
5651 
5652 dma_error:
5653 	dev_err(&pdev->dev, "Tx DMA map failed\n");
5654 	buffer_info->dma = 0;
5655 	if (count)
5656 		count--;
5657 
5658 	while (count--) {
5659 		if (i == 0)
5660 			i += tx_ring->count;
5661 		i--;
5662 		buffer_info = &tx_ring->buffer_info[i];
5663 		e1000_put_txbuf(tx_ring, buffer_info, true);
5664 	}
5665 
5666 	return 0;
5667 }
5668 
5669 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5670 {
5671 	struct e1000_adapter *adapter = tx_ring->adapter;
5672 	struct e1000_tx_desc *tx_desc = NULL;
5673 	struct e1000_buffer *buffer_info;
5674 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5675 	unsigned int i;
5676 
5677 	if (tx_flags & E1000_TX_FLAGS_TSO) {
5678 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5679 		    E1000_TXD_CMD_TSE;
5680 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5681 
5682 		if (tx_flags & E1000_TX_FLAGS_IPV4)
5683 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5684 	}
5685 
5686 	if (tx_flags & E1000_TX_FLAGS_CSUM) {
5687 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5688 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5689 	}
5690 
5691 	if (tx_flags & E1000_TX_FLAGS_VLAN) {
5692 		txd_lower |= E1000_TXD_CMD_VLE;
5693 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5694 	}
5695 
5696 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5697 		txd_lower &= ~(E1000_TXD_CMD_IFCS);
5698 
5699 	if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5700 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5701 		txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5702 	}
5703 
5704 	i = tx_ring->next_to_use;
5705 
5706 	do {
5707 		buffer_info = &tx_ring->buffer_info[i];
5708 		tx_desc = E1000_TX_DESC(*tx_ring, i);
5709 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5710 		tx_desc->lower.data = cpu_to_le32(txd_lower |
5711 						  buffer_info->length);
5712 		tx_desc->upper.data = cpu_to_le32(txd_upper);
5713 
5714 		i++;
5715 		if (i == tx_ring->count)
5716 			i = 0;
5717 	} while (--count > 0);
5718 
5719 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5720 
5721 	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5722 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5723 		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5724 
5725 	/* Force memory writes to complete before letting h/w
5726 	 * know there are new descriptors to fetch.  (Only
5727 	 * applicable for weak-ordered memory model archs,
5728 	 * such as IA-64).
5729 	 */
5730 	wmb();
5731 
5732 	tx_ring->next_to_use = i;
5733 }
5734 
5735 #define MINIMUM_DHCP_PACKET_SIZE 282
5736 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5737 				    struct sk_buff *skb)
5738 {
5739 	struct e1000_hw *hw = &adapter->hw;
5740 	u16 length, offset;
5741 
5742 	if (skb_vlan_tag_present(skb) &&
5743 	    !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5744 	      (adapter->hw.mng_cookie.status &
5745 	       E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5746 		return 0;
5747 
5748 	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5749 		return 0;
5750 
5751 	if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5752 		return 0;
5753 
5754 	{
5755 		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5756 		struct udphdr *udp;
5757 
5758 		if (ip->protocol != IPPROTO_UDP)
5759 			return 0;
5760 
5761 		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5762 		if (ntohs(udp->dest) != 67)
5763 			return 0;
5764 
5765 		offset = (u8 *)udp + 8 - skb->data;
5766 		length = skb->len - offset;
5767 		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5768 	}
5769 
5770 	return 0;
5771 }
5772 
5773 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5774 {
5775 	struct e1000_adapter *adapter = tx_ring->adapter;
5776 
5777 	netif_stop_queue(adapter->netdev);
5778 	/* Herbert's original patch had:
5779 	 *  smp_mb__after_netif_stop_queue();
5780 	 * but since that doesn't exist yet, just open code it.
5781 	 */
5782 	smp_mb();
5783 
5784 	/* We need to check again in a case another CPU has just
5785 	 * made room available.
5786 	 */
5787 	if (e1000_desc_unused(tx_ring) < size)
5788 		return -EBUSY;
5789 
5790 	/* A reprieve! */
5791 	netif_start_queue(adapter->netdev);
5792 	++adapter->restart_queue;
5793 	return 0;
5794 }
5795 
5796 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5797 {
5798 	BUG_ON(size > tx_ring->count);
5799 
5800 	if (e1000_desc_unused(tx_ring) >= size)
5801 		return 0;
5802 	return __e1000_maybe_stop_tx(tx_ring, size);
5803 }
5804 
5805 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5806 				    struct net_device *netdev)
5807 {
5808 	struct e1000_adapter *adapter = netdev_priv(netdev);
5809 	struct e1000_ring *tx_ring = adapter->tx_ring;
5810 	unsigned int first;
5811 	unsigned int tx_flags = 0;
5812 	unsigned int len = skb_headlen(skb);
5813 	unsigned int nr_frags;
5814 	unsigned int mss;
5815 	int count = 0;
5816 	int tso;
5817 	unsigned int f;
5818 	__be16 protocol = vlan_get_protocol(skb);
5819 
5820 	if (test_bit(__E1000_DOWN, &adapter->state)) {
5821 		dev_kfree_skb_any(skb);
5822 		return NETDEV_TX_OK;
5823 	}
5824 
5825 	if (skb->len <= 0) {
5826 		dev_kfree_skb_any(skb);
5827 		return NETDEV_TX_OK;
5828 	}
5829 
5830 	/* The minimum packet size with TCTL.PSP set is 17 bytes so
5831 	 * pad skb in order to meet this minimum size requirement
5832 	 */
5833 	if (skb_put_padto(skb, 17))
5834 		return NETDEV_TX_OK;
5835 
5836 	mss = skb_shinfo(skb)->gso_size;
5837 	if (mss) {
5838 		u8 hdr_len;
5839 
5840 		/* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5841 		 * points to just header, pull a few bytes of payload from
5842 		 * frags into skb->data
5843 		 */
5844 		hdr_len = skb_tcp_all_headers(skb);
5845 		/* we do this workaround for ES2LAN, but it is un-necessary,
5846 		 * avoiding it could save a lot of cycles
5847 		 */
5848 		if (skb->data_len && (hdr_len == len)) {
5849 			unsigned int pull_size;
5850 
5851 			pull_size = min_t(unsigned int, 4, skb->data_len);
5852 			if (!__pskb_pull_tail(skb, pull_size)) {
5853 				e_err("__pskb_pull_tail failed.\n");
5854 				dev_kfree_skb_any(skb);
5855 				return NETDEV_TX_OK;
5856 			}
5857 			len = skb_headlen(skb);
5858 		}
5859 	}
5860 
5861 	/* reserve a descriptor for the offload context */
5862 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5863 		count++;
5864 	count++;
5865 
5866 	count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5867 
5868 	nr_frags = skb_shinfo(skb)->nr_frags;
5869 	for (f = 0; f < nr_frags; f++)
5870 		count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5871 				      adapter->tx_fifo_limit);
5872 
5873 	if (adapter->hw.mac.tx_pkt_filtering)
5874 		e1000_transfer_dhcp_info(adapter, skb);
5875 
5876 	/* need: count + 2 desc gap to keep tail from touching
5877 	 * head, otherwise try next time
5878 	 */
5879 	if (e1000_maybe_stop_tx(tx_ring, count + 2))
5880 		return NETDEV_TX_BUSY;
5881 
5882 	if (skb_vlan_tag_present(skb)) {
5883 		tx_flags |= E1000_TX_FLAGS_VLAN;
5884 		tx_flags |= (skb_vlan_tag_get(skb) <<
5885 			     E1000_TX_FLAGS_VLAN_SHIFT);
5886 	}
5887 
5888 	first = tx_ring->next_to_use;
5889 
5890 	tso = e1000_tso(tx_ring, skb, protocol);
5891 	if (tso < 0) {
5892 		dev_kfree_skb_any(skb);
5893 		return NETDEV_TX_OK;
5894 	}
5895 
5896 	if (tso)
5897 		tx_flags |= E1000_TX_FLAGS_TSO;
5898 	else if (e1000_tx_csum(tx_ring, skb, protocol))
5899 		tx_flags |= E1000_TX_FLAGS_CSUM;
5900 
5901 	/* Old method was to assume IPv4 packet by default if TSO was enabled.
5902 	 * 82571 hardware supports TSO capabilities for IPv6 as well...
5903 	 * no longer assume, we must.
5904 	 */
5905 	if (protocol == htons(ETH_P_IP))
5906 		tx_flags |= E1000_TX_FLAGS_IPV4;
5907 
5908 	if (unlikely(skb->no_fcs))
5909 		tx_flags |= E1000_TX_FLAGS_NO_FCS;
5910 
5911 	/* if count is 0 then mapping error has occurred */
5912 	count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5913 			     nr_frags);
5914 	if (count) {
5915 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5916 		    (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
5917 			if (!adapter->tx_hwtstamp_skb) {
5918 				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5919 				tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5920 				adapter->tx_hwtstamp_skb = skb_get(skb);
5921 				adapter->tx_hwtstamp_start = jiffies;
5922 				schedule_work(&adapter->tx_hwtstamp_work);
5923 			} else {
5924 				adapter->tx_hwtstamp_skipped++;
5925 			}
5926 		}
5927 
5928 		skb_tx_timestamp(skb);
5929 
5930 		netdev_sent_queue(netdev, skb->len);
5931 		e1000_tx_queue(tx_ring, tx_flags, count);
5932 		/* Make sure there is space in the ring for the next send. */
5933 		e1000_maybe_stop_tx(tx_ring,
5934 				    ((MAX_SKB_FRAGS + 1) *
5935 				     DIV_ROUND_UP(PAGE_SIZE,
5936 						  adapter->tx_fifo_limit) + 4));
5937 
5938 		if (!netdev_xmit_more() ||
5939 		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5940 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5941 				e1000e_update_tdt_wa(tx_ring,
5942 						     tx_ring->next_to_use);
5943 			else
5944 				writel(tx_ring->next_to_use, tx_ring->tail);
5945 		}
5946 	} else {
5947 		dev_kfree_skb_any(skb);
5948 		tx_ring->buffer_info[first].time_stamp = 0;
5949 		tx_ring->next_to_use = first;
5950 	}
5951 
5952 	return NETDEV_TX_OK;
5953 }
5954 
5955 /**
5956  * e1000_tx_timeout - Respond to a Tx Hang
5957  * @netdev: network interface device structure
5958  * @txqueue: index of the hung queue (unused)
5959  **/
5960 static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
5961 {
5962 	struct e1000_adapter *adapter = netdev_priv(netdev);
5963 
5964 	/* Do the reset outside of interrupt context */
5965 	adapter->tx_timeout_count++;
5966 	schedule_work(&adapter->reset_task);
5967 }
5968 
5969 static void e1000_reset_task(struct work_struct *work)
5970 {
5971 	struct e1000_adapter *adapter;
5972 	adapter = container_of(work, struct e1000_adapter, reset_task);
5973 
5974 	rtnl_lock();
5975 	/* don't run the task if already down */
5976 	if (test_bit(__E1000_DOWN, &adapter->state)) {
5977 		rtnl_unlock();
5978 		return;
5979 	}
5980 
5981 	if (!(adapter->flags & FLAG_RESTART_NOW)) {
5982 		e1000e_dump(adapter);
5983 		e_err("Reset adapter unexpectedly\n");
5984 	}
5985 	e1000e_reinit_locked(adapter);
5986 	rtnl_unlock();
5987 }
5988 
5989 /**
5990  * e1000e_get_stats64 - Get System Network Statistics
5991  * @netdev: network interface device structure
5992  * @stats: rtnl_link_stats64 pointer
5993  *
5994  * Returns the address of the device statistics structure.
5995  **/
5996 void e1000e_get_stats64(struct net_device *netdev,
5997 			struct rtnl_link_stats64 *stats)
5998 {
5999 	struct e1000_adapter *adapter = netdev_priv(netdev);
6000 
6001 	spin_lock(&adapter->stats64_lock);
6002 	e1000e_update_stats(adapter);
6003 	/* Fill out the OS statistics structure */
6004 	stats->rx_bytes = adapter->stats.gorc;
6005 	stats->rx_packets = adapter->stats.gprc;
6006 	stats->tx_bytes = adapter->stats.gotc;
6007 	stats->tx_packets = adapter->stats.gptc;
6008 	stats->multicast = adapter->stats.mprc;
6009 	stats->collisions = adapter->stats.colc;
6010 
6011 	/* Rx Errors */
6012 
6013 	/* RLEC on some newer hardware can be incorrect so build
6014 	 * our own version based on RUC and ROC
6015 	 */
6016 	stats->rx_errors = adapter->stats.rxerrc +
6017 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
6018 	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
6019 	stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
6020 	stats->rx_crc_errors = adapter->stats.crcerrs;
6021 	stats->rx_frame_errors = adapter->stats.algnerrc;
6022 	stats->rx_missed_errors = adapter->stats.mpc;
6023 
6024 	/* Tx Errors */
6025 	stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
6026 	stats->tx_aborted_errors = adapter->stats.ecol;
6027 	stats->tx_window_errors = adapter->stats.latecol;
6028 	stats->tx_carrier_errors = adapter->stats.tncrs;
6029 
6030 	/* Tx Dropped needs to be maintained elsewhere */
6031 
6032 	spin_unlock(&adapter->stats64_lock);
6033 }
6034 
6035 /**
6036  * e1000_change_mtu - Change the Maximum Transfer Unit
6037  * @netdev: network interface device structure
6038  * @new_mtu: new value for maximum frame size
6039  *
6040  * Returns 0 on success, negative on failure
6041  **/
6042 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
6043 {
6044 	struct e1000_adapter *adapter = netdev_priv(netdev);
6045 	int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
6046 
6047 	/* Jumbo frame support */
6048 	if ((new_mtu > ETH_DATA_LEN) &&
6049 	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
6050 		e_err("Jumbo Frames not supported.\n");
6051 		return -EINVAL;
6052 	}
6053 
6054 	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6055 	if ((adapter->hw.mac.type >= e1000_pch2lan) &&
6056 	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
6057 	    (new_mtu > ETH_DATA_LEN)) {
6058 		e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
6059 		return -EINVAL;
6060 	}
6061 
6062 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
6063 		usleep_range(1000, 1100);
6064 	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
6065 	adapter->max_frame_size = max_frame;
6066 	netdev_dbg(netdev, "changing MTU from %d to %d\n",
6067 		   netdev->mtu, new_mtu);
6068 	netdev->mtu = new_mtu;
6069 
6070 	pm_runtime_get_sync(netdev->dev.parent);
6071 
6072 	if (netif_running(netdev))
6073 		e1000e_down(adapter, true);
6074 
6075 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
6076 	 * means we reserve 2 more, this pushes us to allocate from the next
6077 	 * larger slab size.
6078 	 * i.e. RXBUFFER_2048 --> size-4096 slab
6079 	 * However with the new *_jumbo_rx* routines, jumbo receives will use
6080 	 * fragmented skbs
6081 	 */
6082 
6083 	if (max_frame <= 2048)
6084 		adapter->rx_buffer_len = 2048;
6085 	else
6086 		adapter->rx_buffer_len = 4096;
6087 
6088 	/* adjust allocation if LPE protects us, and we aren't using SBP */
6089 	if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6090 		adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
6091 
6092 	if (netif_running(netdev))
6093 		e1000e_up(adapter);
6094 	else
6095 		e1000e_reset(adapter);
6096 
6097 	pm_runtime_put_sync(netdev->dev.parent);
6098 
6099 	clear_bit(__E1000_RESETTING, &adapter->state);
6100 
6101 	return 0;
6102 }
6103 
6104 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6105 			   int cmd)
6106 {
6107 	struct e1000_adapter *adapter = netdev_priv(netdev);
6108 	struct mii_ioctl_data *data = if_mii(ifr);
6109 
6110 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
6111 		return -EOPNOTSUPP;
6112 
6113 	switch (cmd) {
6114 	case SIOCGMIIPHY:
6115 		data->phy_id = adapter->hw.phy.addr;
6116 		break;
6117 	case SIOCGMIIREG:
6118 		e1000_phy_read_status(adapter);
6119 
6120 		switch (data->reg_num & 0x1F) {
6121 		case MII_BMCR:
6122 			data->val_out = adapter->phy_regs.bmcr;
6123 			break;
6124 		case MII_BMSR:
6125 			data->val_out = adapter->phy_regs.bmsr;
6126 			break;
6127 		case MII_PHYSID1:
6128 			data->val_out = (adapter->hw.phy.id >> 16);
6129 			break;
6130 		case MII_PHYSID2:
6131 			data->val_out = (adapter->hw.phy.id & 0xFFFF);
6132 			break;
6133 		case MII_ADVERTISE:
6134 			data->val_out = adapter->phy_regs.advertise;
6135 			break;
6136 		case MII_LPA:
6137 			data->val_out = adapter->phy_regs.lpa;
6138 			break;
6139 		case MII_EXPANSION:
6140 			data->val_out = adapter->phy_regs.expansion;
6141 			break;
6142 		case MII_CTRL1000:
6143 			data->val_out = adapter->phy_regs.ctrl1000;
6144 			break;
6145 		case MII_STAT1000:
6146 			data->val_out = adapter->phy_regs.stat1000;
6147 			break;
6148 		case MII_ESTATUS:
6149 			data->val_out = adapter->phy_regs.estatus;
6150 			break;
6151 		default:
6152 			return -EIO;
6153 		}
6154 		break;
6155 	case SIOCSMIIREG:
6156 	default:
6157 		return -EOPNOTSUPP;
6158 	}
6159 	return 0;
6160 }
6161 
6162 /**
6163  * e1000e_hwtstamp_set - control hardware time stamping
6164  * @netdev: network interface device structure
6165  * @ifr: interface request
6166  *
6167  * Outgoing time stamping can be enabled and disabled. Play nice and
6168  * disable it when requested, although it shouldn't cause any overhead
6169  * when no packet needs it. At most one packet in the queue may be
6170  * marked for time stamping, otherwise it would be impossible to tell
6171  * for sure to which packet the hardware time stamp belongs.
6172  *
6173  * Incoming time stamping has to be configured via the hardware filters.
6174  * Not all combinations are supported, in particular event type has to be
6175  * specified. Matching the kind of event packet is not supported, with the
6176  * exception of "all V2 events regardless of level 2 or 4".
6177  **/
6178 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6179 {
6180 	struct e1000_adapter *adapter = netdev_priv(netdev);
6181 	struct hwtstamp_config config;
6182 	int ret_val;
6183 
6184 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6185 		return -EFAULT;
6186 
6187 	ret_val = e1000e_config_hwtstamp(adapter, &config);
6188 	if (ret_val)
6189 		return ret_val;
6190 
6191 	switch (config.rx_filter) {
6192 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6193 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6194 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
6195 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6196 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6197 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6198 		/* With V2 type filters which specify a Sync or Delay Request,
6199 		 * Path Delay Request/Response messages are also time stamped
6200 		 * by hardware so notify the caller the requested packets plus
6201 		 * some others are time stamped.
6202 		 */
6203 		config.rx_filter = HWTSTAMP_FILTER_SOME;
6204 		break;
6205 	default:
6206 		break;
6207 	}
6208 
6209 	return copy_to_user(ifr->ifr_data, &config,
6210 			    sizeof(config)) ? -EFAULT : 0;
6211 }
6212 
6213 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6214 {
6215 	struct e1000_adapter *adapter = netdev_priv(netdev);
6216 
6217 	return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6218 			    sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6219 }
6220 
6221 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6222 {
6223 	switch (cmd) {
6224 	case SIOCGMIIPHY:
6225 	case SIOCGMIIREG:
6226 	case SIOCSMIIREG:
6227 		return e1000_mii_ioctl(netdev, ifr, cmd);
6228 	case SIOCSHWTSTAMP:
6229 		return e1000e_hwtstamp_set(netdev, ifr);
6230 	case SIOCGHWTSTAMP:
6231 		return e1000e_hwtstamp_get(netdev, ifr);
6232 	default:
6233 		return -EOPNOTSUPP;
6234 	}
6235 }
6236 
6237 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6238 {
6239 	struct e1000_hw *hw = &adapter->hw;
6240 	u32 i, mac_reg, wuc;
6241 	u16 phy_reg, wuc_enable;
6242 	int retval;
6243 
6244 	/* copy MAC RARs to PHY RARs */
6245 	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6246 
6247 	retval = hw->phy.ops.acquire(hw);
6248 	if (retval) {
6249 		e_err("Could not acquire PHY\n");
6250 		return retval;
6251 	}
6252 
6253 	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6254 	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6255 	if (retval)
6256 		goto release;
6257 
6258 	/* copy MAC MTA to PHY MTA - only needed for pchlan */
6259 	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6260 		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6261 		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6262 					   (u16)(mac_reg & 0xFFFF));
6263 		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6264 					   (u16)((mac_reg >> 16) & 0xFFFF));
6265 	}
6266 
6267 	/* configure PHY Rx Control register */
6268 	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6269 	mac_reg = er32(RCTL);
6270 	if (mac_reg & E1000_RCTL_UPE)
6271 		phy_reg |= BM_RCTL_UPE;
6272 	if (mac_reg & E1000_RCTL_MPE)
6273 		phy_reg |= BM_RCTL_MPE;
6274 	phy_reg &= ~(BM_RCTL_MO_MASK);
6275 	if (mac_reg & E1000_RCTL_MO_3)
6276 		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
6277 			    << BM_RCTL_MO_SHIFT);
6278 	if (mac_reg & E1000_RCTL_BAM)
6279 		phy_reg |= BM_RCTL_BAM;
6280 	if (mac_reg & E1000_RCTL_PMCF)
6281 		phy_reg |= BM_RCTL_PMCF;
6282 	mac_reg = er32(CTRL);
6283 	if (mac_reg & E1000_CTRL_RFCE)
6284 		phy_reg |= BM_RCTL_RFCE;
6285 	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6286 
6287 	wuc = E1000_WUC_PME_EN;
6288 	if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6289 		wuc |= E1000_WUC_APME;
6290 
6291 	/* enable PHY wakeup in MAC register */
6292 	ew32(WUFC, wufc);
6293 	ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6294 		   E1000_WUC_PME_STATUS | wuc));
6295 
6296 	/* configure and enable PHY wakeup in PHY registers */
6297 	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6298 	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6299 
6300 	/* activate PHY wakeup */
6301 	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6302 	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6303 	if (retval)
6304 		e_err("Could not set PHY Host Wakeup bit\n");
6305 release:
6306 	hw->phy.ops.release(hw);
6307 
6308 	return retval;
6309 }
6310 
6311 static void e1000e_flush_lpic(struct pci_dev *pdev)
6312 {
6313 	struct net_device *netdev = pci_get_drvdata(pdev);
6314 	struct e1000_adapter *adapter = netdev_priv(netdev);
6315 	struct e1000_hw *hw = &adapter->hw;
6316 	u32 ret_val;
6317 
6318 	pm_runtime_get_sync(netdev->dev.parent);
6319 
6320 	ret_val = hw->phy.ops.acquire(hw);
6321 	if (ret_val)
6322 		goto fl_out;
6323 
6324 	pr_info("EEE TX LPI TIMER: %08X\n",
6325 		er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6326 
6327 	hw->phy.ops.release(hw);
6328 
6329 fl_out:
6330 	pm_runtime_put_sync(netdev->dev.parent);
6331 }
6332 
6333 /* S0ix implementation */
6334 static void e1000e_s0ix_entry_flow(struct e1000_adapter *adapter)
6335 {
6336 	struct e1000_hw *hw = &adapter->hw;
6337 	u32 mac_data;
6338 	u16 phy_data;
6339 
6340 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID &&
6341 	    hw->mac.type >= e1000_pch_adp) {
6342 		/* Request ME configure the device for S0ix */
6343 		mac_data = er32(H2ME);
6344 		mac_data |= E1000_H2ME_START_DPG;
6345 		mac_data &= ~E1000_H2ME_EXIT_DPG;
6346 		trace_e1000e_trace_mac_register(mac_data);
6347 		ew32(H2ME, mac_data);
6348 	} else {
6349 		/* Request driver configure the device to S0ix */
6350 		/* Disable the periodic inband message,
6351 		 * don't request PCIe clock in K1 page770_17[10:9] = 10b
6352 		 */
6353 		e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6354 		phy_data &= ~HV_PM_CTRL_K1_CLK_REQ;
6355 		phy_data |= BIT(10);
6356 		e1e_wphy(hw, HV_PM_CTRL, phy_data);
6357 
6358 		/* Make sure we don't exit K1 every time a new packet arrives
6359 		 * 772_29[5] = 1 CS_Mode_Stay_In_K1
6360 		 */
6361 		e1e_rphy(hw, I217_CGFREG, &phy_data);
6362 		phy_data |= BIT(5);
6363 		e1e_wphy(hw, I217_CGFREG, phy_data);
6364 
6365 		/* Change the MAC/PHY interface to SMBus
6366 		 * Force the SMBus in PHY page769_23[0] = 1
6367 		 * Force the SMBus in MAC CTRL_EXT[11] = 1
6368 		 */
6369 		e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6370 		phy_data |= CV_SMB_CTRL_FORCE_SMBUS;
6371 		e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6372 		mac_data = er32(CTRL_EXT);
6373 		mac_data |= E1000_CTRL_EXT_FORCE_SMBUS;
6374 		ew32(CTRL_EXT, mac_data);
6375 
6376 		/* DFT control: PHY bit: page769_20[0] = 1
6377 		 * page769_20[7] - PHY PLL stop
6378 		 * page769_20[8] - PHY go to the electrical idle
6379 		 * page769_20[9] - PHY serdes disable
6380 		 * Gate PPW via EXTCNF_CTRL - set 0x0F00[7] = 1
6381 		 */
6382 		e1e_rphy(hw, I82579_DFT_CTRL, &phy_data);
6383 		phy_data |= BIT(0);
6384 		phy_data |= BIT(7);
6385 		phy_data |= BIT(8);
6386 		phy_data |= BIT(9);
6387 		e1e_wphy(hw, I82579_DFT_CTRL, phy_data);
6388 
6389 		mac_data = er32(EXTCNF_CTRL);
6390 		mac_data |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
6391 		ew32(EXTCNF_CTRL, mac_data);
6392 
6393 		/* Enable the Dynamic Power Gating in the MAC */
6394 		mac_data = er32(FEXTNVM7);
6395 		mac_data |= BIT(22);
6396 		ew32(FEXTNVM7, mac_data);
6397 
6398 		/* Disable disconnected cable conditioning for Power Gating */
6399 		mac_data = er32(DPGFR);
6400 		mac_data |= BIT(2);
6401 		ew32(DPGFR, mac_data);
6402 
6403 		/* Don't wake from dynamic Power Gating with clock request */
6404 		mac_data = er32(FEXTNVM12);
6405 		mac_data |= BIT(12);
6406 		ew32(FEXTNVM12, mac_data);
6407 
6408 		/* Ungate PGCB clock */
6409 		mac_data = er32(FEXTNVM9);
6410 		mac_data &= ~BIT(28);
6411 		ew32(FEXTNVM9, mac_data);
6412 
6413 		/* Enable K1 off to enable mPHY Power Gating */
6414 		mac_data = er32(FEXTNVM6);
6415 		mac_data |= BIT(31);
6416 		ew32(FEXTNVM6, mac_data);
6417 
6418 		/* Enable mPHY power gating for any link and speed */
6419 		mac_data = er32(FEXTNVM8);
6420 		mac_data |= BIT(9);
6421 		ew32(FEXTNVM8, mac_data);
6422 
6423 		/* Enable the Dynamic Clock Gating in the DMA and MAC */
6424 		mac_data = er32(CTRL_EXT);
6425 		mac_data |= E1000_CTRL_EXT_DMA_DYN_CLK_EN;
6426 		ew32(CTRL_EXT, mac_data);
6427 
6428 		/* No MAC DPG gating SLP_S0 in modern standby
6429 		 * Switch the logic of the lanphypc to use PMC counter
6430 		 */
6431 		mac_data = er32(FEXTNVM5);
6432 		mac_data |= BIT(7);
6433 		ew32(FEXTNVM5, mac_data);
6434 	}
6435 
6436 	/* Disable the time synchronization clock */
6437 	mac_data = er32(FEXTNVM7);
6438 	mac_data |= BIT(31);
6439 	mac_data &= ~BIT(0);
6440 	ew32(FEXTNVM7, mac_data);
6441 
6442 	/* Dynamic Power Gating Enable */
6443 	mac_data = er32(CTRL_EXT);
6444 	mac_data |= BIT(3);
6445 	ew32(CTRL_EXT, mac_data);
6446 
6447 	/* Check MAC Tx/Rx packet buffer pointers.
6448 	 * Reset MAC Tx/Rx packet buffer pointers to suppress any
6449 	 * pending traffic indication that would prevent power gating.
6450 	 */
6451 	mac_data = er32(TDFH);
6452 	if (mac_data)
6453 		ew32(TDFH, 0);
6454 	mac_data = er32(TDFT);
6455 	if (mac_data)
6456 		ew32(TDFT, 0);
6457 	mac_data = er32(TDFHS);
6458 	if (mac_data)
6459 		ew32(TDFHS, 0);
6460 	mac_data = er32(TDFTS);
6461 	if (mac_data)
6462 		ew32(TDFTS, 0);
6463 	mac_data = er32(TDFPC);
6464 	if (mac_data)
6465 		ew32(TDFPC, 0);
6466 	mac_data = er32(RDFH);
6467 	if (mac_data)
6468 		ew32(RDFH, 0);
6469 	mac_data = er32(RDFT);
6470 	if (mac_data)
6471 		ew32(RDFT, 0);
6472 	mac_data = er32(RDFHS);
6473 	if (mac_data)
6474 		ew32(RDFHS, 0);
6475 	mac_data = er32(RDFTS);
6476 	if (mac_data)
6477 		ew32(RDFTS, 0);
6478 	mac_data = er32(RDFPC);
6479 	if (mac_data)
6480 		ew32(RDFPC, 0);
6481 }
6482 
6483 static void e1000e_s0ix_exit_flow(struct e1000_adapter *adapter)
6484 {
6485 	struct e1000_hw *hw = &adapter->hw;
6486 	bool firmware_bug = false;
6487 	u32 mac_data;
6488 	u16 phy_data;
6489 	u32 i = 0;
6490 
6491 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID &&
6492 	    hw->mac.type >= e1000_pch_adp) {
6493 		/* Keep the GPT clock enabled for CSME */
6494 		mac_data = er32(FEXTNVM);
6495 		mac_data |= BIT(3);
6496 		ew32(FEXTNVM, mac_data);
6497 		/* Request ME unconfigure the device from S0ix */
6498 		mac_data = er32(H2ME);
6499 		mac_data &= ~E1000_H2ME_START_DPG;
6500 		mac_data |= E1000_H2ME_EXIT_DPG;
6501 		trace_e1000e_trace_mac_register(mac_data);
6502 		ew32(H2ME, mac_data);
6503 
6504 		/* Poll up to 2.5 seconds for ME to unconfigure DPG.
6505 		 * If this takes more than 1 second, show a warning indicating a
6506 		 * firmware bug
6507 		 */
6508 		while (!(er32(EXFWSM) & E1000_EXFWSM_DPG_EXIT_DONE)) {
6509 			if (i > 100 && !firmware_bug)
6510 				firmware_bug = true;
6511 
6512 			if (i++ == 250) {
6513 				e_dbg("Timeout (firmware bug): %d msec\n",
6514 				      i * 10);
6515 				break;
6516 			}
6517 
6518 			usleep_range(10000, 11000);
6519 		}
6520 		if (firmware_bug)
6521 			e_warn("DPG_EXIT_DONE took %d msec. This is a firmware bug\n",
6522 			       i * 10);
6523 		else
6524 			e_dbg("DPG_EXIT_DONE cleared after %d msec\n", i * 10);
6525 	} else {
6526 		/* Request driver unconfigure the device from S0ix */
6527 
6528 		/* Disable the Dynamic Power Gating in the MAC */
6529 		mac_data = er32(FEXTNVM7);
6530 		mac_data &= 0xFFBFFFFF;
6531 		ew32(FEXTNVM7, mac_data);
6532 
6533 		/* Disable mPHY power gating for any link and speed */
6534 		mac_data = er32(FEXTNVM8);
6535 		mac_data &= ~BIT(9);
6536 		ew32(FEXTNVM8, mac_data);
6537 
6538 		/* Disable K1 off */
6539 		mac_data = er32(FEXTNVM6);
6540 		mac_data &= ~BIT(31);
6541 		ew32(FEXTNVM6, mac_data);
6542 
6543 		/* Disable Ungate PGCB clock */
6544 		mac_data = er32(FEXTNVM9);
6545 		mac_data |= BIT(28);
6546 		ew32(FEXTNVM9, mac_data);
6547 
6548 		/* Cancel not waking from dynamic
6549 		 * Power Gating with clock request
6550 		 */
6551 		mac_data = er32(FEXTNVM12);
6552 		mac_data &= ~BIT(12);
6553 		ew32(FEXTNVM12, mac_data);
6554 
6555 		/* Cancel disable disconnected cable conditioning
6556 		 * for Power Gating
6557 		 */
6558 		mac_data = er32(DPGFR);
6559 		mac_data &= ~BIT(2);
6560 		ew32(DPGFR, mac_data);
6561 
6562 		/* Disable the Dynamic Clock Gating in the DMA and MAC */
6563 		mac_data = er32(CTRL_EXT);
6564 		mac_data &= 0xFFF7FFFF;
6565 		ew32(CTRL_EXT, mac_data);
6566 
6567 		/* Revert the lanphypc logic to use the internal Gbe counter
6568 		 * and not the PMC counter
6569 		 */
6570 		mac_data = er32(FEXTNVM5);
6571 		mac_data &= 0xFFFFFF7F;
6572 		ew32(FEXTNVM5, mac_data);
6573 
6574 		/* Enable the periodic inband message,
6575 		 * Request PCIe clock in K1 page770_17[10:9] =01b
6576 		 */
6577 		e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6578 		phy_data &= 0xFBFF;
6579 		phy_data |= HV_PM_CTRL_K1_CLK_REQ;
6580 		e1e_wphy(hw, HV_PM_CTRL, phy_data);
6581 
6582 		/* Return back configuration
6583 		 * 772_29[5] = 0 CS_Mode_Stay_In_K1
6584 		 */
6585 		e1e_rphy(hw, I217_CGFREG, &phy_data);
6586 		phy_data &= 0xFFDF;
6587 		e1e_wphy(hw, I217_CGFREG, phy_data);
6588 
6589 		/* Change the MAC/PHY interface to Kumeran
6590 		 * Unforce the SMBus in PHY page769_23[0] = 0
6591 		 * Unforce the SMBus in MAC CTRL_EXT[11] = 0
6592 		 */
6593 		e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6594 		phy_data &= ~CV_SMB_CTRL_FORCE_SMBUS;
6595 		e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6596 		mac_data = er32(CTRL_EXT);
6597 		mac_data &= ~E1000_CTRL_EXT_FORCE_SMBUS;
6598 		ew32(CTRL_EXT, mac_data);
6599 	}
6600 
6601 	/* Disable Dynamic Power Gating */
6602 	mac_data = er32(CTRL_EXT);
6603 	mac_data &= 0xFFFFFFF7;
6604 	ew32(CTRL_EXT, mac_data);
6605 
6606 	/* Enable the time synchronization clock */
6607 	mac_data = er32(FEXTNVM7);
6608 	mac_data &= ~BIT(31);
6609 	mac_data |= BIT(0);
6610 	ew32(FEXTNVM7, mac_data);
6611 }
6612 
6613 static int e1000e_pm_freeze(struct device *dev)
6614 {
6615 	struct net_device *netdev = dev_get_drvdata(dev);
6616 	struct e1000_adapter *adapter = netdev_priv(netdev);
6617 	bool present;
6618 
6619 	rtnl_lock();
6620 
6621 	present = netif_device_present(netdev);
6622 	netif_device_detach(netdev);
6623 
6624 	if (present && netif_running(netdev)) {
6625 		int count = E1000_CHECK_RESET_COUNT;
6626 
6627 		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6628 			usleep_range(10000, 11000);
6629 
6630 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6631 
6632 		/* Quiesce the device without resetting the hardware */
6633 		e1000e_down(adapter, false);
6634 		e1000_free_irq(adapter);
6635 	}
6636 	rtnl_unlock();
6637 
6638 	e1000e_reset_interrupt_capability(adapter);
6639 
6640 	/* Allow time for pending master requests to run */
6641 	e1000e_disable_pcie_master(&adapter->hw);
6642 
6643 	return 0;
6644 }
6645 
6646 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6647 {
6648 	struct net_device *netdev = pci_get_drvdata(pdev);
6649 	struct e1000_adapter *adapter = netdev_priv(netdev);
6650 	struct e1000_hw *hw = &adapter->hw;
6651 	u32 ctrl, ctrl_ext, rctl, status, wufc;
6652 	int retval = 0;
6653 
6654 	/* Runtime suspend should only enable wakeup for link changes */
6655 	if (runtime)
6656 		wufc = E1000_WUFC_LNKC;
6657 	else if (device_may_wakeup(&pdev->dev))
6658 		wufc = adapter->wol;
6659 	else
6660 		wufc = 0;
6661 
6662 	status = er32(STATUS);
6663 	if (status & E1000_STATUS_LU)
6664 		wufc &= ~E1000_WUFC_LNKC;
6665 
6666 	if (wufc) {
6667 		e1000_setup_rctl(adapter);
6668 		e1000e_set_rx_mode(netdev);
6669 
6670 		/* turn on all-multi mode if wake on multicast is enabled */
6671 		if (wufc & E1000_WUFC_MC) {
6672 			rctl = er32(RCTL);
6673 			rctl |= E1000_RCTL_MPE;
6674 			ew32(RCTL, rctl);
6675 		}
6676 
6677 		ctrl = er32(CTRL);
6678 		ctrl |= E1000_CTRL_ADVD3WUC;
6679 		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6680 			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6681 		ew32(CTRL, ctrl);
6682 
6683 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6684 		    adapter->hw.phy.media_type ==
6685 		    e1000_media_type_internal_serdes) {
6686 			/* keep the laser running in D3 */
6687 			ctrl_ext = er32(CTRL_EXT);
6688 			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6689 			ew32(CTRL_EXT, ctrl_ext);
6690 		}
6691 
6692 		if (!runtime)
6693 			e1000e_power_up_phy(adapter);
6694 
6695 		if (adapter->flags & FLAG_IS_ICH)
6696 			e1000_suspend_workarounds_ich8lan(&adapter->hw);
6697 
6698 		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6699 			/* enable wakeup by the PHY */
6700 			retval = e1000_init_phy_wakeup(adapter, wufc);
6701 			if (retval)
6702 				return retval;
6703 		} else {
6704 			/* enable wakeup by the MAC */
6705 			ew32(WUFC, wufc);
6706 			ew32(WUC, E1000_WUC_PME_EN);
6707 		}
6708 	} else {
6709 		ew32(WUC, 0);
6710 		ew32(WUFC, 0);
6711 
6712 		e1000_power_down_phy(adapter);
6713 	}
6714 
6715 	if (adapter->hw.phy.type == e1000_phy_igp_3) {
6716 		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6717 	} else if (hw->mac.type >= e1000_pch_lpt) {
6718 		if (wufc && !(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6719 			/* ULP does not support wake from unicast, multicast
6720 			 * or broadcast.
6721 			 */
6722 			retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6723 
6724 		if (retval)
6725 			return retval;
6726 	}
6727 
6728 	/* Ensure that the appropriate bits are set in LPI_CTRL
6729 	 * for EEE in Sx
6730 	 */
6731 	if ((hw->phy.type >= e1000_phy_i217) &&
6732 	    adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6733 		u16 lpi_ctrl = 0;
6734 
6735 		retval = hw->phy.ops.acquire(hw);
6736 		if (!retval) {
6737 			retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6738 						 &lpi_ctrl);
6739 			if (!retval) {
6740 				if (adapter->eee_advert &
6741 				    hw->dev_spec.ich8lan.eee_lp_ability &
6742 				    I82579_EEE_100_SUPPORTED)
6743 					lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6744 				if (adapter->eee_advert &
6745 				    hw->dev_spec.ich8lan.eee_lp_ability &
6746 				    I82579_EEE_1000_SUPPORTED)
6747 					lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6748 
6749 				retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6750 							 lpi_ctrl);
6751 			}
6752 		}
6753 		hw->phy.ops.release(hw);
6754 	}
6755 
6756 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6757 	 * would have already happened in close and is redundant.
6758 	 */
6759 	e1000e_release_hw_control(adapter);
6760 
6761 	pci_clear_master(pdev);
6762 
6763 	/* The pci-e switch on some quad port adapters will report a
6764 	 * correctable error when the MAC transitions from D0 to D3.  To
6765 	 * prevent this we need to mask off the correctable errors on the
6766 	 * downstream port of the pci-e switch.
6767 	 *
6768 	 * We don't have the associated upstream bridge while assigning
6769 	 * the PCI device into guest. For example, the KVM on power is
6770 	 * one of the cases.
6771 	 */
6772 	if (adapter->flags & FLAG_IS_QUAD_PORT) {
6773 		struct pci_dev *us_dev = pdev->bus->self;
6774 		u16 devctl;
6775 
6776 		if (!us_dev)
6777 			return 0;
6778 
6779 		pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6780 		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6781 					   (devctl & ~PCI_EXP_DEVCTL_CERE));
6782 
6783 		pci_save_state(pdev);
6784 		pci_prepare_to_sleep(pdev);
6785 
6786 		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6787 	}
6788 
6789 	return 0;
6790 }
6791 
6792 /**
6793  * __e1000e_disable_aspm - Disable ASPM states
6794  * @pdev: pointer to PCI device struct
6795  * @state: bit-mask of ASPM states to disable
6796  * @locked: indication if this context holds pci_bus_sem locked.
6797  *
6798  * Some devices *must* have certain ASPM states disabled per hardware errata.
6799  **/
6800 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6801 {
6802 	struct pci_dev *parent = pdev->bus->self;
6803 	u16 aspm_dis_mask = 0;
6804 	u16 pdev_aspmc, parent_aspmc;
6805 
6806 	switch (state) {
6807 	case PCIE_LINK_STATE_L0S:
6808 	case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6809 		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6810 		fallthrough; /* can't have L1 without L0s */
6811 	case PCIE_LINK_STATE_L1:
6812 		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6813 		break;
6814 	default:
6815 		return;
6816 	}
6817 
6818 	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6819 	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6820 
6821 	if (parent) {
6822 		pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6823 					  &parent_aspmc);
6824 		parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6825 	}
6826 
6827 	/* Nothing to do if the ASPM states to be disabled already are */
6828 	if (!(pdev_aspmc & aspm_dis_mask) &&
6829 	    (!parent || !(parent_aspmc & aspm_dis_mask)))
6830 		return;
6831 
6832 	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6833 		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6834 		 "L0s" : "",
6835 		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6836 		 "L1" : "");
6837 
6838 #ifdef CONFIG_PCIEASPM
6839 	if (locked)
6840 		pci_disable_link_state_locked(pdev, state);
6841 	else
6842 		pci_disable_link_state(pdev, state);
6843 
6844 	/* Double-check ASPM control.  If not disabled by the above, the
6845 	 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6846 	 * not enabled); override by writing PCI config space directly.
6847 	 */
6848 	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6849 	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6850 
6851 	if (!(aspm_dis_mask & pdev_aspmc))
6852 		return;
6853 #endif
6854 
6855 	/* Both device and parent should have the same ASPM setting.
6856 	 * Disable ASPM in downstream component first and then upstream.
6857 	 */
6858 	pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6859 
6860 	if (parent)
6861 		pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6862 					   aspm_dis_mask);
6863 }
6864 
6865 /**
6866  * e1000e_disable_aspm - Disable ASPM states.
6867  * @pdev: pointer to PCI device struct
6868  * @state: bit-mask of ASPM states to disable
6869  *
6870  * This function acquires the pci_bus_sem!
6871  * Some devices *must* have certain ASPM states disabled per hardware errata.
6872  **/
6873 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6874 {
6875 	__e1000e_disable_aspm(pdev, state, 0);
6876 }
6877 
6878 /**
6879  * e1000e_disable_aspm_locked - Disable ASPM states.
6880  * @pdev: pointer to PCI device struct
6881  * @state: bit-mask of ASPM states to disable
6882  *
6883  * This function must be called with pci_bus_sem acquired!
6884  * Some devices *must* have certain ASPM states disabled per hardware errata.
6885  **/
6886 static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6887 {
6888 	__e1000e_disable_aspm(pdev, state, 1);
6889 }
6890 
6891 static int e1000e_pm_thaw(struct device *dev)
6892 {
6893 	struct net_device *netdev = dev_get_drvdata(dev);
6894 	struct e1000_adapter *adapter = netdev_priv(netdev);
6895 	int rc = 0;
6896 
6897 	e1000e_set_interrupt_capability(adapter);
6898 
6899 	rtnl_lock();
6900 	if (netif_running(netdev)) {
6901 		rc = e1000_request_irq(adapter);
6902 		if (rc)
6903 			goto err_irq;
6904 
6905 		e1000e_up(adapter);
6906 	}
6907 
6908 	netif_device_attach(netdev);
6909 err_irq:
6910 	rtnl_unlock();
6911 
6912 	return rc;
6913 }
6914 
6915 static int __e1000_resume(struct pci_dev *pdev)
6916 {
6917 	struct net_device *netdev = pci_get_drvdata(pdev);
6918 	struct e1000_adapter *adapter = netdev_priv(netdev);
6919 	struct e1000_hw *hw = &adapter->hw;
6920 	u16 aspm_disable_flag = 0;
6921 
6922 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6923 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6924 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6925 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6926 	if (aspm_disable_flag)
6927 		e1000e_disable_aspm(pdev, aspm_disable_flag);
6928 
6929 	pci_set_master(pdev);
6930 
6931 	if (hw->mac.type >= e1000_pch2lan)
6932 		e1000_resume_workarounds_pchlan(&adapter->hw);
6933 
6934 	e1000e_power_up_phy(adapter);
6935 
6936 	/* report the system wakeup cause from S3/S4 */
6937 	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6938 		u16 phy_data;
6939 
6940 		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6941 		if (phy_data) {
6942 			e_info("PHY Wakeup cause - %s\n",
6943 			       phy_data & E1000_WUS_EX ? "Unicast Packet" :
6944 			       phy_data & E1000_WUS_MC ? "Multicast Packet" :
6945 			       phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6946 			       phy_data & E1000_WUS_MAG ? "Magic Packet" :
6947 			       phy_data & E1000_WUS_LNKC ?
6948 			       "Link Status Change" : "other");
6949 		}
6950 		e1e_wphy(&adapter->hw, BM_WUS, ~0);
6951 	} else {
6952 		u32 wus = er32(WUS);
6953 
6954 		if (wus) {
6955 			e_info("MAC Wakeup cause - %s\n",
6956 			       wus & E1000_WUS_EX ? "Unicast Packet" :
6957 			       wus & E1000_WUS_MC ? "Multicast Packet" :
6958 			       wus & E1000_WUS_BC ? "Broadcast Packet" :
6959 			       wus & E1000_WUS_MAG ? "Magic Packet" :
6960 			       wus & E1000_WUS_LNKC ? "Link Status Change" :
6961 			       "other");
6962 		}
6963 		ew32(WUS, ~0);
6964 	}
6965 
6966 	e1000e_reset(adapter);
6967 
6968 	e1000_init_manageability_pt(adapter);
6969 
6970 	/* If the controller has AMT, do not set DRV_LOAD until the interface
6971 	 * is up.  For all other cases, let the f/w know that the h/w is now
6972 	 * under the control of the driver.
6973 	 */
6974 	if (!(adapter->flags & FLAG_HAS_AMT))
6975 		e1000e_get_hw_control(adapter);
6976 
6977 	return 0;
6978 }
6979 
6980 static __maybe_unused int e1000e_pm_prepare(struct device *dev)
6981 {
6982 	return pm_runtime_suspended(dev) &&
6983 		pm_suspend_via_firmware();
6984 }
6985 
6986 static __maybe_unused int e1000e_pm_suspend(struct device *dev)
6987 {
6988 	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6989 	struct e1000_adapter *adapter = netdev_priv(netdev);
6990 	struct pci_dev *pdev = to_pci_dev(dev);
6991 	int rc;
6992 
6993 	e1000e_flush_lpic(pdev);
6994 
6995 	e1000e_pm_freeze(dev);
6996 
6997 	rc = __e1000_shutdown(pdev, false);
6998 	if (rc) {
6999 		e1000e_pm_thaw(dev);
7000 	} else {
7001 		/* Introduce S0ix implementation */
7002 		if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
7003 			e1000e_s0ix_entry_flow(adapter);
7004 	}
7005 
7006 	return rc;
7007 }
7008 
7009 static __maybe_unused int e1000e_pm_resume(struct device *dev)
7010 {
7011 	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
7012 	struct e1000_adapter *adapter = netdev_priv(netdev);
7013 	struct pci_dev *pdev = to_pci_dev(dev);
7014 	int rc;
7015 
7016 	/* Introduce S0ix implementation */
7017 	if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
7018 		e1000e_s0ix_exit_flow(adapter);
7019 
7020 	rc = __e1000_resume(pdev);
7021 	if (rc)
7022 		return rc;
7023 
7024 	return e1000e_pm_thaw(dev);
7025 }
7026 
7027 static __maybe_unused int e1000e_pm_runtime_idle(struct device *dev)
7028 {
7029 	struct net_device *netdev = dev_get_drvdata(dev);
7030 	struct e1000_adapter *adapter = netdev_priv(netdev);
7031 	u16 eee_lp;
7032 
7033 	eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
7034 
7035 	if (!e1000e_has_link(adapter)) {
7036 		adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
7037 		pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
7038 	}
7039 
7040 	return -EBUSY;
7041 }
7042 
7043 static __maybe_unused int e1000e_pm_runtime_resume(struct device *dev)
7044 {
7045 	struct pci_dev *pdev = to_pci_dev(dev);
7046 	struct net_device *netdev = pci_get_drvdata(pdev);
7047 	struct e1000_adapter *adapter = netdev_priv(netdev);
7048 	int rc;
7049 
7050 	rc = __e1000_resume(pdev);
7051 	if (rc)
7052 		return rc;
7053 
7054 	if (netdev->flags & IFF_UP)
7055 		e1000e_up(adapter);
7056 
7057 	return rc;
7058 }
7059 
7060 static __maybe_unused int e1000e_pm_runtime_suspend(struct device *dev)
7061 {
7062 	struct pci_dev *pdev = to_pci_dev(dev);
7063 	struct net_device *netdev = pci_get_drvdata(pdev);
7064 	struct e1000_adapter *adapter = netdev_priv(netdev);
7065 
7066 	if (netdev->flags & IFF_UP) {
7067 		int count = E1000_CHECK_RESET_COUNT;
7068 
7069 		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
7070 			usleep_range(10000, 11000);
7071 
7072 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
7073 
7074 		/* Down the device without resetting the hardware */
7075 		e1000e_down(adapter, false);
7076 	}
7077 
7078 	if (__e1000_shutdown(pdev, true)) {
7079 		e1000e_pm_runtime_resume(dev);
7080 		return -EBUSY;
7081 	}
7082 
7083 	return 0;
7084 }
7085 
7086 static void e1000_shutdown(struct pci_dev *pdev)
7087 {
7088 	e1000e_flush_lpic(pdev);
7089 
7090 	e1000e_pm_freeze(&pdev->dev);
7091 
7092 	__e1000_shutdown(pdev, false);
7093 }
7094 
7095 #ifdef CONFIG_NET_POLL_CONTROLLER
7096 
7097 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
7098 {
7099 	struct net_device *netdev = data;
7100 	struct e1000_adapter *adapter = netdev_priv(netdev);
7101 
7102 	if (adapter->msix_entries) {
7103 		int vector, msix_irq;
7104 
7105 		vector = 0;
7106 		msix_irq = adapter->msix_entries[vector].vector;
7107 		if (disable_hardirq(msix_irq))
7108 			e1000_intr_msix_rx(msix_irq, netdev);
7109 		enable_irq(msix_irq);
7110 
7111 		vector++;
7112 		msix_irq = adapter->msix_entries[vector].vector;
7113 		if (disable_hardirq(msix_irq))
7114 			e1000_intr_msix_tx(msix_irq, netdev);
7115 		enable_irq(msix_irq);
7116 
7117 		vector++;
7118 		msix_irq = adapter->msix_entries[vector].vector;
7119 		if (disable_hardirq(msix_irq))
7120 			e1000_msix_other(msix_irq, netdev);
7121 		enable_irq(msix_irq);
7122 	}
7123 
7124 	return IRQ_HANDLED;
7125 }
7126 
7127 /**
7128  * e1000_netpoll
7129  * @netdev: network interface device structure
7130  *
7131  * Polling 'interrupt' - used by things like netconsole to send skbs
7132  * without having to re-enable interrupts. It's not called while
7133  * the interrupt routine is executing.
7134  */
7135 static void e1000_netpoll(struct net_device *netdev)
7136 {
7137 	struct e1000_adapter *adapter = netdev_priv(netdev);
7138 
7139 	switch (adapter->int_mode) {
7140 	case E1000E_INT_MODE_MSIX:
7141 		e1000_intr_msix(adapter->pdev->irq, netdev);
7142 		break;
7143 	case E1000E_INT_MODE_MSI:
7144 		if (disable_hardirq(adapter->pdev->irq))
7145 			e1000_intr_msi(adapter->pdev->irq, netdev);
7146 		enable_irq(adapter->pdev->irq);
7147 		break;
7148 	default:		/* E1000E_INT_MODE_LEGACY */
7149 		if (disable_hardirq(adapter->pdev->irq))
7150 			e1000_intr(adapter->pdev->irq, netdev);
7151 		enable_irq(adapter->pdev->irq);
7152 		break;
7153 	}
7154 }
7155 #endif
7156 
7157 /**
7158  * e1000_io_error_detected - called when PCI error is detected
7159  * @pdev: Pointer to PCI device
7160  * @state: The current pci connection state
7161  *
7162  * This function is called after a PCI bus error affecting
7163  * this device has been detected.
7164  */
7165 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
7166 						pci_channel_state_t state)
7167 {
7168 	e1000e_pm_freeze(&pdev->dev);
7169 
7170 	if (state == pci_channel_io_perm_failure)
7171 		return PCI_ERS_RESULT_DISCONNECT;
7172 
7173 	pci_disable_device(pdev);
7174 
7175 	/* Request a slot reset. */
7176 	return PCI_ERS_RESULT_NEED_RESET;
7177 }
7178 
7179 /**
7180  * e1000_io_slot_reset - called after the pci bus has been reset.
7181  * @pdev: Pointer to PCI device
7182  *
7183  * Restart the card from scratch, as if from a cold-boot. Implementation
7184  * resembles the first-half of the e1000e_pm_resume routine.
7185  */
7186 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
7187 {
7188 	struct net_device *netdev = pci_get_drvdata(pdev);
7189 	struct e1000_adapter *adapter = netdev_priv(netdev);
7190 	struct e1000_hw *hw = &adapter->hw;
7191 	u16 aspm_disable_flag = 0;
7192 	int err;
7193 	pci_ers_result_t result;
7194 
7195 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
7196 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
7197 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
7198 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
7199 	if (aspm_disable_flag)
7200 		e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
7201 
7202 	err = pci_enable_device_mem(pdev);
7203 	if (err) {
7204 		dev_err(&pdev->dev,
7205 			"Cannot re-enable PCI device after reset.\n");
7206 		result = PCI_ERS_RESULT_DISCONNECT;
7207 	} else {
7208 		pdev->state_saved = true;
7209 		pci_restore_state(pdev);
7210 		pci_set_master(pdev);
7211 
7212 		pci_enable_wake(pdev, PCI_D3hot, 0);
7213 		pci_enable_wake(pdev, PCI_D3cold, 0);
7214 
7215 		e1000e_reset(adapter);
7216 		ew32(WUS, ~0);
7217 		result = PCI_ERS_RESULT_RECOVERED;
7218 	}
7219 
7220 	return result;
7221 }
7222 
7223 /**
7224  * e1000_io_resume - called when traffic can start flowing again.
7225  * @pdev: Pointer to PCI device
7226  *
7227  * This callback is called when the error recovery driver tells us that
7228  * its OK to resume normal operation. Implementation resembles the
7229  * second-half of the e1000e_pm_resume routine.
7230  */
7231 static void e1000_io_resume(struct pci_dev *pdev)
7232 {
7233 	struct net_device *netdev = pci_get_drvdata(pdev);
7234 	struct e1000_adapter *adapter = netdev_priv(netdev);
7235 
7236 	e1000_init_manageability_pt(adapter);
7237 
7238 	e1000e_pm_thaw(&pdev->dev);
7239 
7240 	/* If the controller has AMT, do not set DRV_LOAD until the interface
7241 	 * is up.  For all other cases, let the f/w know that the h/w is now
7242 	 * under the control of the driver.
7243 	 */
7244 	if (!(adapter->flags & FLAG_HAS_AMT))
7245 		e1000e_get_hw_control(adapter);
7246 }
7247 
7248 static void e1000_print_device_info(struct e1000_adapter *adapter)
7249 {
7250 	struct e1000_hw *hw = &adapter->hw;
7251 	struct net_device *netdev = adapter->netdev;
7252 	u32 ret_val;
7253 	u8 pba_str[E1000_PBANUM_LENGTH];
7254 
7255 	/* print bus type/speed/width info */
7256 	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
7257 	       /* bus width */
7258 	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
7259 		"Width x1"),
7260 	       /* MAC address */
7261 	       netdev->dev_addr);
7262 	e_info("Intel(R) PRO/%s Network Connection\n",
7263 	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
7264 	ret_val = e1000_read_pba_string_generic(hw, pba_str,
7265 						E1000_PBANUM_LENGTH);
7266 	if (ret_val)
7267 		strscpy((char *)pba_str, "Unknown", sizeof(pba_str));
7268 	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
7269 	       hw->mac.type, hw->phy.type, pba_str);
7270 }
7271 
7272 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
7273 {
7274 	struct e1000_hw *hw = &adapter->hw;
7275 	int ret_val;
7276 	u16 buf = 0;
7277 
7278 	if (hw->mac.type != e1000_82573)
7279 		return;
7280 
7281 	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
7282 	le16_to_cpus(&buf);
7283 	if (!ret_val && (!(buf & BIT(0)))) {
7284 		/* Deep Smart Power Down (DSPD) */
7285 		dev_warn(&adapter->pdev->dev,
7286 			 "Warning: detected DSPD enabled in EEPROM\n");
7287 	}
7288 }
7289 
7290 static netdev_features_t e1000_fix_features(struct net_device *netdev,
7291 					    netdev_features_t features)
7292 {
7293 	struct e1000_adapter *adapter = netdev_priv(netdev);
7294 	struct e1000_hw *hw = &adapter->hw;
7295 
7296 	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
7297 	if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
7298 		features &= ~NETIF_F_RXFCS;
7299 
7300 	/* Since there is no support for separate Rx/Tx vlan accel
7301 	 * enable/disable make sure Tx flag is always in same state as Rx.
7302 	 */
7303 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
7304 		features |= NETIF_F_HW_VLAN_CTAG_TX;
7305 	else
7306 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
7307 
7308 	return features;
7309 }
7310 
7311 static int e1000_set_features(struct net_device *netdev,
7312 			      netdev_features_t features)
7313 {
7314 	struct e1000_adapter *adapter = netdev_priv(netdev);
7315 	netdev_features_t changed = features ^ netdev->features;
7316 
7317 	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
7318 		adapter->flags |= FLAG_TSO_FORCE;
7319 
7320 	if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
7321 			 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
7322 			 NETIF_F_RXALL)))
7323 		return 0;
7324 
7325 	if (changed & NETIF_F_RXFCS) {
7326 		if (features & NETIF_F_RXFCS) {
7327 			adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7328 		} else {
7329 			/* We need to take it back to defaults, which might mean
7330 			 * stripping is still disabled at the adapter level.
7331 			 */
7332 			if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
7333 				adapter->flags2 |= FLAG2_CRC_STRIPPING;
7334 			else
7335 				adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7336 		}
7337 	}
7338 
7339 	netdev->features = features;
7340 
7341 	if (netif_running(netdev))
7342 		e1000e_reinit_locked(adapter);
7343 	else
7344 		e1000e_reset(adapter);
7345 
7346 	return 1;
7347 }
7348 
7349 static const struct net_device_ops e1000e_netdev_ops = {
7350 	.ndo_open		= e1000e_open,
7351 	.ndo_stop		= e1000e_close,
7352 	.ndo_start_xmit		= e1000_xmit_frame,
7353 	.ndo_get_stats64	= e1000e_get_stats64,
7354 	.ndo_set_rx_mode	= e1000e_set_rx_mode,
7355 	.ndo_set_mac_address	= e1000_set_mac,
7356 	.ndo_change_mtu		= e1000_change_mtu,
7357 	.ndo_eth_ioctl		= e1000_ioctl,
7358 	.ndo_tx_timeout		= e1000_tx_timeout,
7359 	.ndo_validate_addr	= eth_validate_addr,
7360 
7361 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
7362 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
7363 #ifdef CONFIG_NET_POLL_CONTROLLER
7364 	.ndo_poll_controller	= e1000_netpoll,
7365 #endif
7366 	.ndo_set_features = e1000_set_features,
7367 	.ndo_fix_features = e1000_fix_features,
7368 	.ndo_features_check	= passthru_features_check,
7369 };
7370 
7371 /**
7372  * e1000_probe - Device Initialization Routine
7373  * @pdev: PCI device information struct
7374  * @ent: entry in e1000_pci_tbl
7375  *
7376  * Returns 0 on success, negative on failure
7377  *
7378  * e1000_probe initializes an adapter identified by a pci_dev structure.
7379  * The OS initialization, configuring of the adapter private structure,
7380  * and a hardware reset occur.
7381  **/
7382 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
7383 {
7384 	struct net_device *netdev;
7385 	struct e1000_adapter *adapter;
7386 	struct e1000_hw *hw;
7387 	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
7388 	resource_size_t mmio_start, mmio_len;
7389 	resource_size_t flash_start, flash_len;
7390 	static int cards_found;
7391 	u16 aspm_disable_flag = 0;
7392 	u16 eeprom_data = 0;
7393 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
7394 	int bars, i, err;
7395 	s32 ret_val = 0;
7396 
7397 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7398 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
7399 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
7400 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
7401 	if (aspm_disable_flag)
7402 		e1000e_disable_aspm(pdev, aspm_disable_flag);
7403 
7404 	err = pci_enable_device_mem(pdev);
7405 	if (err)
7406 		return err;
7407 
7408 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7409 	if (err) {
7410 		dev_err(&pdev->dev,
7411 			"No usable DMA configuration, aborting\n");
7412 		goto err_dma;
7413 	}
7414 
7415 	bars = pci_select_bars(pdev, IORESOURCE_MEM);
7416 	err = pci_request_selected_regions_exclusive(pdev, bars,
7417 						     e1000e_driver_name);
7418 	if (err)
7419 		goto err_pci_reg;
7420 
7421 	pci_set_master(pdev);
7422 	/* PCI config space info */
7423 	err = pci_save_state(pdev);
7424 	if (err)
7425 		goto err_alloc_etherdev;
7426 
7427 	err = -ENOMEM;
7428 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7429 	if (!netdev)
7430 		goto err_alloc_etherdev;
7431 
7432 	SET_NETDEV_DEV(netdev, &pdev->dev);
7433 
7434 	netdev->irq = pdev->irq;
7435 
7436 	pci_set_drvdata(pdev, netdev);
7437 	adapter = netdev_priv(netdev);
7438 	hw = &adapter->hw;
7439 	adapter->netdev = netdev;
7440 	adapter->pdev = pdev;
7441 	adapter->ei = ei;
7442 	adapter->pba = ei->pba;
7443 	adapter->flags = ei->flags;
7444 	adapter->flags2 = ei->flags2;
7445 	adapter->hw.adapter = adapter;
7446 	adapter->hw.mac.type = ei->mac;
7447 	adapter->max_hw_frame_size = ei->max_hw_frame_size;
7448 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7449 
7450 	mmio_start = pci_resource_start(pdev, 0);
7451 	mmio_len = pci_resource_len(pdev, 0);
7452 
7453 	err = -EIO;
7454 	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7455 	if (!adapter->hw.hw_addr)
7456 		goto err_ioremap;
7457 
7458 	if ((adapter->flags & FLAG_HAS_FLASH) &&
7459 	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7460 	    (hw->mac.type < e1000_pch_spt)) {
7461 		flash_start = pci_resource_start(pdev, 1);
7462 		flash_len = pci_resource_len(pdev, 1);
7463 		adapter->hw.flash_address = ioremap(flash_start, flash_len);
7464 		if (!adapter->hw.flash_address)
7465 			goto err_flashmap;
7466 	}
7467 
7468 	/* Set default EEE advertisement */
7469 	if (adapter->flags2 & FLAG2_HAS_EEE)
7470 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7471 
7472 	/* construct the net_device struct */
7473 	netdev->netdev_ops = &e1000e_netdev_ops;
7474 	e1000e_set_ethtool_ops(netdev);
7475 	netdev->watchdog_timeo = 5 * HZ;
7476 	netif_napi_add(netdev, &adapter->napi, e1000e_poll);
7477 	strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7478 
7479 	netdev->mem_start = mmio_start;
7480 	netdev->mem_end = mmio_start + mmio_len;
7481 
7482 	adapter->bd_number = cards_found++;
7483 
7484 	e1000e_check_options(adapter);
7485 
7486 	/* setup adapter struct */
7487 	err = e1000_sw_init(adapter);
7488 	if (err)
7489 		goto err_sw_init;
7490 
7491 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7492 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7493 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7494 
7495 	err = ei->get_variants(adapter);
7496 	if (err)
7497 		goto err_hw_init;
7498 
7499 	if ((adapter->flags & FLAG_IS_ICH) &&
7500 	    (adapter->flags & FLAG_READ_ONLY_NVM) &&
7501 	    (hw->mac.type < e1000_pch_spt))
7502 		e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7503 
7504 	hw->mac.ops.get_bus_info(&adapter->hw);
7505 
7506 	adapter->hw.phy.autoneg_wait_to_complete = 0;
7507 
7508 	/* Copper options */
7509 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7510 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
7511 		adapter->hw.phy.disable_polarity_correction = 0;
7512 		adapter->hw.phy.ms_type = e1000_ms_hw_default;
7513 	}
7514 
7515 	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7516 		dev_info(&pdev->dev,
7517 			 "PHY reset is blocked due to SOL/IDER session.\n");
7518 
7519 	/* Set initial default active device features */
7520 	netdev->features = (NETIF_F_SG |
7521 			    NETIF_F_HW_VLAN_CTAG_RX |
7522 			    NETIF_F_HW_VLAN_CTAG_TX |
7523 			    NETIF_F_TSO |
7524 			    NETIF_F_TSO6 |
7525 			    NETIF_F_RXHASH |
7526 			    NETIF_F_RXCSUM |
7527 			    NETIF_F_HW_CSUM);
7528 
7529 	/* Set user-changeable features (subset of all device features) */
7530 	netdev->hw_features = netdev->features;
7531 	netdev->hw_features |= NETIF_F_RXFCS;
7532 	netdev->priv_flags |= IFF_SUPP_NOFCS;
7533 	netdev->hw_features |= NETIF_F_RXALL;
7534 
7535 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7536 		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7537 
7538 	netdev->vlan_features |= (NETIF_F_SG |
7539 				  NETIF_F_TSO |
7540 				  NETIF_F_TSO6 |
7541 				  NETIF_F_HW_CSUM);
7542 
7543 	netdev->priv_flags |= IFF_UNICAST_FLT;
7544 
7545 	netdev->features |= NETIF_F_HIGHDMA;
7546 	netdev->vlan_features |= NETIF_F_HIGHDMA;
7547 
7548 	/* MTU range: 68 - max_hw_frame_size */
7549 	netdev->min_mtu = ETH_MIN_MTU;
7550 	netdev->max_mtu = adapter->max_hw_frame_size -
7551 			  (VLAN_ETH_HLEN + ETH_FCS_LEN);
7552 
7553 	if (e1000e_enable_mng_pass_thru(&adapter->hw))
7554 		adapter->flags |= FLAG_MNG_PT_ENABLED;
7555 
7556 	/* before reading the NVM, reset the controller to
7557 	 * put the device in a known good starting state
7558 	 */
7559 	adapter->hw.mac.ops.reset_hw(&adapter->hw);
7560 
7561 	/* systems with ASPM and others may see the checksum fail on the first
7562 	 * attempt. Let's give it a few tries
7563 	 */
7564 	for (i = 0;; i++) {
7565 		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7566 			break;
7567 		if (i == 2) {
7568 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7569 			err = -EIO;
7570 			goto err_eeprom;
7571 		}
7572 	}
7573 
7574 	e1000_eeprom_checks(adapter);
7575 
7576 	/* copy the MAC address */
7577 	if (e1000e_read_mac_addr(&adapter->hw))
7578 		dev_err(&pdev->dev,
7579 			"NVM Read Error while reading MAC address\n");
7580 
7581 	eth_hw_addr_set(netdev, adapter->hw.mac.addr);
7582 
7583 	if (!is_valid_ether_addr(netdev->dev_addr)) {
7584 		dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7585 			netdev->dev_addr);
7586 		err = -EIO;
7587 		goto err_eeprom;
7588 	}
7589 
7590 	timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0);
7591 	timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0);
7592 
7593 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
7594 	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7595 	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7596 	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7597 	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7598 
7599 	/* Initialize link parameters. User can change them with ethtool */
7600 	adapter->hw.mac.autoneg = 1;
7601 	adapter->fc_autoneg = true;
7602 	adapter->hw.fc.requested_mode = e1000_fc_default;
7603 	adapter->hw.fc.current_mode = e1000_fc_default;
7604 	adapter->hw.phy.autoneg_advertised = 0x2f;
7605 
7606 	/* Initial Wake on LAN setting - If APM wake is enabled in
7607 	 * the EEPROM, enable the ACPI Magic Packet filter
7608 	 */
7609 	if (adapter->flags & FLAG_APME_IN_WUC) {
7610 		/* APME bit in EEPROM is mapped to WUC.APME */
7611 		eeprom_data = er32(WUC);
7612 		eeprom_apme_mask = E1000_WUC_APME;
7613 		if ((hw->mac.type > e1000_ich10lan) &&
7614 		    (eeprom_data & E1000_WUC_PHY_WAKE))
7615 			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7616 	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7617 		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7618 		    (adapter->hw.bus.func == 1))
7619 			ret_val = e1000_read_nvm(&adapter->hw,
7620 					      NVM_INIT_CONTROL3_PORT_B,
7621 					      1, &eeprom_data);
7622 		else
7623 			ret_val = e1000_read_nvm(&adapter->hw,
7624 					      NVM_INIT_CONTROL3_PORT_A,
7625 					      1, &eeprom_data);
7626 	}
7627 
7628 	/* fetch WoL from EEPROM */
7629 	if (ret_val)
7630 		e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
7631 	else if (eeprom_data & eeprom_apme_mask)
7632 		adapter->eeprom_wol |= E1000_WUFC_MAG;
7633 
7634 	/* now that we have the eeprom settings, apply the special cases
7635 	 * where the eeprom may be wrong or the board simply won't support
7636 	 * wake on lan on a particular port
7637 	 */
7638 	if (!(adapter->flags & FLAG_HAS_WOL))
7639 		adapter->eeprom_wol = 0;
7640 
7641 	/* initialize the wol settings based on the eeprom settings */
7642 	adapter->wol = adapter->eeprom_wol;
7643 
7644 	/* make sure adapter isn't asleep if manageability is enabled */
7645 	if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7646 	    (hw->mac.ops.check_mng_mode(hw)))
7647 		device_wakeup_enable(&pdev->dev);
7648 
7649 	/* save off EEPROM version number */
7650 	ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7651 
7652 	if (ret_val) {
7653 		e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
7654 		adapter->eeprom_vers = 0;
7655 	}
7656 
7657 	/* init PTP hardware clock */
7658 	e1000e_ptp_init(adapter);
7659 
7660 	/* reset the hardware with the new settings */
7661 	e1000e_reset(adapter);
7662 
7663 	/* If the controller has AMT, do not set DRV_LOAD until the interface
7664 	 * is up.  For all other cases, let the f/w know that the h/w is now
7665 	 * under the control of the driver.
7666 	 */
7667 	if (!(adapter->flags & FLAG_HAS_AMT))
7668 		e1000e_get_hw_control(adapter);
7669 
7670 	if (hw->mac.type >= e1000_pch_cnp)
7671 		adapter->flags2 |= FLAG2_ENABLE_S0IX_FLOWS;
7672 
7673 	strscpy(netdev->name, "eth%d", sizeof(netdev->name));
7674 	err = register_netdev(netdev);
7675 	if (err)
7676 		goto err_register;
7677 
7678 	/* carrier off reporting is important to ethtool even BEFORE open */
7679 	netif_carrier_off(netdev);
7680 
7681 	e1000_print_device_info(adapter);
7682 
7683 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_SMART_PREPARE);
7684 
7685 	if (pci_dev_run_wake(pdev) && hw->mac.type != e1000_pch_cnp)
7686 		pm_runtime_put_noidle(&pdev->dev);
7687 
7688 	return 0;
7689 
7690 err_register:
7691 	if (!(adapter->flags & FLAG_HAS_AMT))
7692 		e1000e_release_hw_control(adapter);
7693 err_eeprom:
7694 	if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7695 		e1000_phy_hw_reset(&adapter->hw);
7696 err_hw_init:
7697 	kfree(adapter->tx_ring);
7698 	kfree(adapter->rx_ring);
7699 err_sw_init:
7700 	if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7701 		iounmap(adapter->hw.flash_address);
7702 	e1000e_reset_interrupt_capability(adapter);
7703 err_flashmap:
7704 	iounmap(adapter->hw.hw_addr);
7705 err_ioremap:
7706 	free_netdev(netdev);
7707 err_alloc_etherdev:
7708 	pci_release_mem_regions(pdev);
7709 err_pci_reg:
7710 err_dma:
7711 	pci_disable_device(pdev);
7712 	return err;
7713 }
7714 
7715 /**
7716  * e1000_remove - Device Removal Routine
7717  * @pdev: PCI device information struct
7718  *
7719  * e1000_remove is called by the PCI subsystem to alert the driver
7720  * that it should release a PCI device.  This could be caused by a
7721  * Hot-Plug event, or because the driver is going to be removed from
7722  * memory.
7723  **/
7724 static void e1000_remove(struct pci_dev *pdev)
7725 {
7726 	struct net_device *netdev = pci_get_drvdata(pdev);
7727 	struct e1000_adapter *adapter = netdev_priv(netdev);
7728 
7729 	e1000e_ptp_remove(adapter);
7730 
7731 	/* The timers may be rescheduled, so explicitly disable them
7732 	 * from being rescheduled.
7733 	 */
7734 	set_bit(__E1000_DOWN, &adapter->state);
7735 	del_timer_sync(&adapter->watchdog_timer);
7736 	del_timer_sync(&adapter->phy_info_timer);
7737 
7738 	cancel_work_sync(&adapter->reset_task);
7739 	cancel_work_sync(&adapter->watchdog_task);
7740 	cancel_work_sync(&adapter->downshift_task);
7741 	cancel_work_sync(&adapter->update_phy_task);
7742 	cancel_work_sync(&adapter->print_hang_task);
7743 
7744 	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7745 		cancel_work_sync(&adapter->tx_hwtstamp_work);
7746 		if (adapter->tx_hwtstamp_skb) {
7747 			dev_consume_skb_any(adapter->tx_hwtstamp_skb);
7748 			adapter->tx_hwtstamp_skb = NULL;
7749 		}
7750 	}
7751 
7752 	unregister_netdev(netdev);
7753 
7754 	if (pci_dev_run_wake(pdev))
7755 		pm_runtime_get_noresume(&pdev->dev);
7756 
7757 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7758 	 * would have already happened in close and is redundant.
7759 	 */
7760 	e1000e_release_hw_control(adapter);
7761 
7762 	e1000e_reset_interrupt_capability(adapter);
7763 	kfree(adapter->tx_ring);
7764 	kfree(adapter->rx_ring);
7765 
7766 	iounmap(adapter->hw.hw_addr);
7767 	if ((adapter->hw.flash_address) &&
7768 	    (adapter->hw.mac.type < e1000_pch_spt))
7769 		iounmap(adapter->hw.flash_address);
7770 	pci_release_mem_regions(pdev);
7771 
7772 	free_netdev(netdev);
7773 
7774 	pci_disable_device(pdev);
7775 }
7776 
7777 /* PCI Error Recovery (ERS) */
7778 static const struct pci_error_handlers e1000_err_handler = {
7779 	.error_detected = e1000_io_error_detected,
7780 	.slot_reset = e1000_io_slot_reset,
7781 	.resume = e1000_io_resume,
7782 };
7783 
7784 static const struct pci_device_id e1000_pci_tbl[] = {
7785 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7786 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7787 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7788 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7789 	  board_82571 },
7790 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7791 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7792 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7793 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7794 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7795 
7796 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7797 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7798 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7799 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7800 
7801 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7802 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7803 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7804 
7805 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7806 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7807 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7808 
7809 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7810 	  board_80003es2lan },
7811 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7812 	  board_80003es2lan },
7813 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7814 	  board_80003es2lan },
7815 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7816 	  board_80003es2lan },
7817 
7818 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7819 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7820 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7821 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7822 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7823 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7824 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7825 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7826 
7827 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7828 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7829 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7830 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7831 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7832 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7833 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7834 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7835 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7836 
7837 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7838 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7839 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7840 
7841 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7842 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7843 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7844 
7845 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7846 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7847 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7848 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7849 
7850 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7851 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7852 
7853 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7854 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7855 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7856 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7857 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7858 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7859 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7860 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7861 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7862 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7863 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7864 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7865 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7866 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7867 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7868 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7869 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7870 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp },
7871 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp },
7872 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp },
7873 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp },
7874 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp },
7875 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp },
7876 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp },
7877 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp },
7878 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM10), board_pch_cnp },
7879 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V10), board_pch_cnp },
7880 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM11), board_pch_cnp },
7881 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V11), board_pch_cnp },
7882 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM12), board_pch_spt },
7883 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V12), board_pch_spt },
7884 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM13), board_pch_tgp },
7885 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V13), board_pch_tgp },
7886 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM14), board_pch_tgp },
7887 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V14), board_pch_tgp },
7888 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM15), board_pch_tgp },
7889 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V15), board_pch_tgp },
7890 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_LM23), board_pch_adp },
7891 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_V23), board_pch_adp },
7892 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM16), board_pch_adp },
7893 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V16), board_pch_adp },
7894 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM17), board_pch_adp },
7895 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V17), board_pch_adp },
7896 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_LM22), board_pch_adp },
7897 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_V22), board_pch_adp },
7898 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM18), board_pch_mtp },
7899 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V18), board_pch_mtp },
7900 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM19), board_pch_mtp },
7901 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V19), board_pch_mtp },
7902 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_LM20), board_pch_mtp },
7903 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_V20), board_pch_mtp },
7904 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_LM21), board_pch_mtp },
7905 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_V21), board_pch_mtp },
7906 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ARL_I219_LM24), board_pch_mtp },
7907 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ARL_I219_V24), board_pch_mtp },
7908 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM25), board_pch_mtp },
7909 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V25), board_pch_mtp },
7910 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM26), board_pch_mtp },
7911 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V26), board_pch_mtp },
7912 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM27), board_pch_mtp },
7913 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V27), board_pch_mtp },
7914 
7915 	{ 0, 0, 0, 0, 0, 0, 0 }	/* terminate list */
7916 };
7917 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7918 
7919 static const struct dev_pm_ops e1000_pm_ops = {
7920 #ifdef CONFIG_PM_SLEEP
7921 	.prepare	= e1000e_pm_prepare,
7922 	.suspend	= e1000e_pm_suspend,
7923 	.resume		= e1000e_pm_resume,
7924 	.freeze		= e1000e_pm_freeze,
7925 	.thaw		= e1000e_pm_thaw,
7926 	.poweroff	= e1000e_pm_suspend,
7927 	.restore	= e1000e_pm_resume,
7928 #endif
7929 	SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7930 			   e1000e_pm_runtime_idle)
7931 };
7932 
7933 /* PCI Device API Driver */
7934 static struct pci_driver e1000_driver = {
7935 	.name     = e1000e_driver_name,
7936 	.id_table = e1000_pci_tbl,
7937 	.probe    = e1000_probe,
7938 	.remove   = e1000_remove,
7939 	.driver   = {
7940 		.pm = &e1000_pm_ops,
7941 	},
7942 	.shutdown = e1000_shutdown,
7943 	.err_handler = &e1000_err_handler
7944 };
7945 
7946 /**
7947  * e1000_init_module - Driver Registration Routine
7948  *
7949  * e1000_init_module is the first routine called when the driver is
7950  * loaded. All it does is register with the PCI subsystem.
7951  **/
7952 static int __init e1000_init_module(void)
7953 {
7954 	pr_info("Intel(R) PRO/1000 Network Driver\n");
7955 	pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7956 
7957 	return pci_register_driver(&e1000_driver);
7958 }
7959 module_init(e1000_init_module);
7960 
7961 /**
7962  * e1000_exit_module - Driver Exit Cleanup Routine
7963  *
7964  * e1000_exit_module is called just before the driver is removed
7965  * from memory.
7966  **/
7967 static void __exit e1000_exit_module(void)
7968 {
7969 	pci_unregister_driver(&e1000_driver);
7970 }
7971 module_exit(e1000_exit_module);
7972 
7973 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7974 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7975 MODULE_LICENSE("GPL v2");
7976 
7977 /* netdev.c */
7978