1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include "iavf.h"
5 #include "iavf_prototype.h"
6 /* All iavf tracepoints are defined by the include below, which must
7  * be included exactly once across the whole kernel with
8  * CREATE_TRACE_POINTS defined
9  */
10 #define CREATE_TRACE_POINTS
11 #include "iavf_trace.h"
12 
13 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
14 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
15 static int iavf_close(struct net_device *netdev);
16 static void iavf_init_get_resources(struct iavf_adapter *adapter);
17 static int iavf_check_reset_complete(struct iavf_hw *hw);
18 
19 char iavf_driver_name[] = "iavf";
20 static const char iavf_driver_string[] =
21 	"Intel(R) Ethernet Adaptive Virtual Function Network Driver";
22 
23 static const char iavf_copyright[] =
24 	"Copyright (c) 2013 - 2018 Intel Corporation.";
25 
26 /* iavf_pci_tbl - PCI Device ID Table
27  *
28  * Wildcard entries (PCI_ANY_ID) should come last
29  * Last entry must be all 0s
30  *
31  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
32  *   Class, Class Mask, private data (not used) }
33  */
34 static const struct pci_device_id iavf_pci_tbl[] = {
35 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
36 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
37 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
38 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
39 	/* required last entry */
40 	{0, }
41 };
42 
43 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
44 
45 MODULE_ALIAS("i40evf");
46 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
47 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
48 MODULE_LICENSE("GPL v2");
49 
50 static const struct net_device_ops iavf_netdev_ops;
51 
52 int iavf_status_to_errno(enum iavf_status status)
53 {
54 	switch (status) {
55 	case IAVF_SUCCESS:
56 		return 0;
57 	case IAVF_ERR_PARAM:
58 	case IAVF_ERR_MAC_TYPE:
59 	case IAVF_ERR_INVALID_MAC_ADDR:
60 	case IAVF_ERR_INVALID_LINK_SETTINGS:
61 	case IAVF_ERR_INVALID_PD_ID:
62 	case IAVF_ERR_INVALID_QP_ID:
63 	case IAVF_ERR_INVALID_CQ_ID:
64 	case IAVF_ERR_INVALID_CEQ_ID:
65 	case IAVF_ERR_INVALID_AEQ_ID:
66 	case IAVF_ERR_INVALID_SIZE:
67 	case IAVF_ERR_INVALID_ARP_INDEX:
68 	case IAVF_ERR_INVALID_FPM_FUNC_ID:
69 	case IAVF_ERR_QP_INVALID_MSG_SIZE:
70 	case IAVF_ERR_INVALID_FRAG_COUNT:
71 	case IAVF_ERR_INVALID_ALIGNMENT:
72 	case IAVF_ERR_INVALID_PUSH_PAGE_INDEX:
73 	case IAVF_ERR_INVALID_IMM_DATA_SIZE:
74 	case IAVF_ERR_INVALID_VF_ID:
75 	case IAVF_ERR_INVALID_HMCFN_ID:
76 	case IAVF_ERR_INVALID_PBLE_INDEX:
77 	case IAVF_ERR_INVALID_SD_INDEX:
78 	case IAVF_ERR_INVALID_PAGE_DESC_INDEX:
79 	case IAVF_ERR_INVALID_SD_TYPE:
80 	case IAVF_ERR_INVALID_HMC_OBJ_INDEX:
81 	case IAVF_ERR_INVALID_HMC_OBJ_COUNT:
82 	case IAVF_ERR_INVALID_SRQ_ARM_LIMIT:
83 		return -EINVAL;
84 	case IAVF_ERR_NVM:
85 	case IAVF_ERR_NVM_CHECKSUM:
86 	case IAVF_ERR_PHY:
87 	case IAVF_ERR_CONFIG:
88 	case IAVF_ERR_UNKNOWN_PHY:
89 	case IAVF_ERR_LINK_SETUP:
90 	case IAVF_ERR_ADAPTER_STOPPED:
91 	case IAVF_ERR_PRIMARY_REQUESTS_PENDING:
92 	case IAVF_ERR_AUTONEG_NOT_COMPLETE:
93 	case IAVF_ERR_RESET_FAILED:
94 	case IAVF_ERR_BAD_PTR:
95 	case IAVF_ERR_SWFW_SYNC:
96 	case IAVF_ERR_QP_TOOMANY_WRS_POSTED:
97 	case IAVF_ERR_QUEUE_EMPTY:
98 	case IAVF_ERR_FLUSHED_QUEUE:
99 	case IAVF_ERR_OPCODE_MISMATCH:
100 	case IAVF_ERR_CQP_COMPL_ERROR:
101 	case IAVF_ERR_BACKING_PAGE_ERROR:
102 	case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE:
103 	case IAVF_ERR_MEMCPY_FAILED:
104 	case IAVF_ERR_SRQ_ENABLED:
105 	case IAVF_ERR_ADMIN_QUEUE_ERROR:
106 	case IAVF_ERR_ADMIN_QUEUE_FULL:
107 	case IAVF_ERR_BAD_RDMA_CQE:
108 	case IAVF_ERR_NVM_BLANK_MODE:
109 	case IAVF_ERR_PE_DOORBELL_NOT_ENABLED:
110 	case IAVF_ERR_DIAG_TEST_FAILED:
111 	case IAVF_ERR_FIRMWARE_API_VERSION:
112 	case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR:
113 		return -EIO;
114 	case IAVF_ERR_DEVICE_NOT_SUPPORTED:
115 		return -ENODEV;
116 	case IAVF_ERR_NO_AVAILABLE_VSI:
117 	case IAVF_ERR_RING_FULL:
118 		return -ENOSPC;
119 	case IAVF_ERR_NO_MEMORY:
120 		return -ENOMEM;
121 	case IAVF_ERR_TIMEOUT:
122 	case IAVF_ERR_ADMIN_QUEUE_TIMEOUT:
123 		return -ETIMEDOUT;
124 	case IAVF_ERR_NOT_IMPLEMENTED:
125 	case IAVF_NOT_SUPPORTED:
126 		return -EOPNOTSUPP;
127 	case IAVF_ERR_ADMIN_QUEUE_NO_WORK:
128 		return -EALREADY;
129 	case IAVF_ERR_NOT_READY:
130 		return -EBUSY;
131 	case IAVF_ERR_BUF_TOO_SHORT:
132 		return -EMSGSIZE;
133 	}
134 
135 	return -EIO;
136 }
137 
138 int virtchnl_status_to_errno(enum virtchnl_status_code v_status)
139 {
140 	switch (v_status) {
141 	case VIRTCHNL_STATUS_SUCCESS:
142 		return 0;
143 	case VIRTCHNL_STATUS_ERR_PARAM:
144 	case VIRTCHNL_STATUS_ERR_INVALID_VF_ID:
145 		return -EINVAL;
146 	case VIRTCHNL_STATUS_ERR_NO_MEMORY:
147 		return -ENOMEM;
148 	case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH:
149 	case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR:
150 	case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR:
151 		return -EIO;
152 	case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED:
153 		return -EOPNOTSUPP;
154 	}
155 
156 	return -EIO;
157 }
158 
159 /**
160  * iavf_pdev_to_adapter - go from pci_dev to adapter
161  * @pdev: pci_dev pointer
162  */
163 static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev)
164 {
165 	return netdev_priv(pci_get_drvdata(pdev));
166 }
167 
168 /**
169  * iavf_is_reset_in_progress - Check if a reset is in progress
170  * @adapter: board private structure
171  */
172 static bool iavf_is_reset_in_progress(struct iavf_adapter *adapter)
173 {
174 	if (adapter->state == __IAVF_RESETTING ||
175 	    adapter->flags & (IAVF_FLAG_RESET_PENDING |
176 			      IAVF_FLAG_RESET_NEEDED))
177 		return true;
178 
179 	return false;
180 }
181 
182 /**
183  * iavf_wait_for_reset - Wait for reset to finish.
184  * @adapter: board private structure
185  *
186  * Returns 0 if reset finished successfully, negative on timeout or interrupt.
187  */
188 int iavf_wait_for_reset(struct iavf_adapter *adapter)
189 {
190 	int ret = wait_event_interruptible_timeout(adapter->reset_waitqueue,
191 					!iavf_is_reset_in_progress(adapter),
192 					msecs_to_jiffies(5000));
193 
194 	/* If ret < 0 then it means wait was interrupted.
195 	 * If ret == 0 then it means we got a timeout while waiting
196 	 * for reset to finish.
197 	 * If ret > 0 it means reset has finished.
198 	 */
199 	if (ret > 0)
200 		return 0;
201 	else if (ret < 0)
202 		return -EINTR;
203 	else
204 		return -EBUSY;
205 }
206 
207 /**
208  * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
209  * @hw:   pointer to the HW structure
210  * @mem:  ptr to mem struct to fill out
211  * @size: size of memory requested
212  * @alignment: what to align the allocation to
213  **/
214 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
215 					 struct iavf_dma_mem *mem,
216 					 u64 size, u32 alignment)
217 {
218 	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
219 
220 	if (!mem)
221 		return IAVF_ERR_PARAM;
222 
223 	mem->size = ALIGN(size, alignment);
224 	mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
225 				     (dma_addr_t *)&mem->pa, GFP_KERNEL);
226 	if (mem->va)
227 		return 0;
228 	else
229 		return IAVF_ERR_NO_MEMORY;
230 }
231 
232 /**
233  * iavf_free_dma_mem - wrapper for DMA memory freeing
234  * @hw:   pointer to the HW structure
235  * @mem:  ptr to mem struct to free
236  **/
237 enum iavf_status iavf_free_dma_mem(struct iavf_hw *hw, struct iavf_dma_mem *mem)
238 {
239 	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
240 
241 	if (!mem || !mem->va)
242 		return IAVF_ERR_PARAM;
243 	dma_free_coherent(&adapter->pdev->dev, mem->size,
244 			  mem->va, (dma_addr_t)mem->pa);
245 	return 0;
246 }
247 
248 /**
249  * iavf_allocate_virt_mem - virt memory alloc wrapper
250  * @hw:   pointer to the HW structure
251  * @mem:  ptr to mem struct to fill out
252  * @size: size of memory requested
253  **/
254 enum iavf_status iavf_allocate_virt_mem(struct iavf_hw *hw,
255 					struct iavf_virt_mem *mem, u32 size)
256 {
257 	if (!mem)
258 		return IAVF_ERR_PARAM;
259 
260 	mem->size = size;
261 	mem->va = kzalloc(size, GFP_KERNEL);
262 
263 	if (mem->va)
264 		return 0;
265 	else
266 		return IAVF_ERR_NO_MEMORY;
267 }
268 
269 /**
270  * iavf_free_virt_mem - virt memory free wrapper
271  * @hw:   pointer to the HW structure
272  * @mem:  ptr to mem struct to free
273  **/
274 void iavf_free_virt_mem(struct iavf_hw *hw, struct iavf_virt_mem *mem)
275 {
276 	kfree(mem->va);
277 }
278 
279 /**
280  * iavf_schedule_reset - Set the flags and schedule a reset event
281  * @adapter: board private structure
282  * @flags: IAVF_FLAG_RESET_PENDING or IAVF_FLAG_RESET_NEEDED
283  **/
284 void iavf_schedule_reset(struct iavf_adapter *adapter, u64 flags)
285 {
286 	if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section) &&
287 	    !(adapter->flags &
288 	    (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
289 		adapter->flags |= flags;
290 		queue_work(adapter->wq, &adapter->reset_task);
291 	}
292 }
293 
294 /**
295  * iavf_schedule_aq_request - Set the flags and schedule aq request
296  * @adapter: board private structure
297  * @flags: requested aq flags
298  **/
299 void iavf_schedule_aq_request(struct iavf_adapter *adapter, u64 flags)
300 {
301 	adapter->aq_required |= flags;
302 	mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
303 }
304 
305 /**
306  * iavf_tx_timeout - Respond to a Tx Hang
307  * @netdev: network interface device structure
308  * @txqueue: queue number that is timing out
309  **/
310 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
311 {
312 	struct iavf_adapter *adapter = netdev_priv(netdev);
313 
314 	adapter->tx_timeout_count++;
315 	iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
316 }
317 
318 /**
319  * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
320  * @adapter: board private structure
321  **/
322 static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
323 {
324 	struct iavf_hw *hw = &adapter->hw;
325 
326 	if (!adapter->msix_entries)
327 		return;
328 
329 	wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
330 
331 	iavf_flush(hw);
332 
333 	synchronize_irq(adapter->msix_entries[0].vector);
334 }
335 
336 /**
337  * iavf_misc_irq_enable - Enable default interrupt generation settings
338  * @adapter: board private structure
339  **/
340 static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
341 {
342 	struct iavf_hw *hw = &adapter->hw;
343 
344 	wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
345 				       IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
346 	wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
347 
348 	iavf_flush(hw);
349 }
350 
351 /**
352  * iavf_irq_disable - Mask off interrupt generation on the NIC
353  * @adapter: board private structure
354  **/
355 static void iavf_irq_disable(struct iavf_adapter *adapter)
356 {
357 	int i;
358 	struct iavf_hw *hw = &adapter->hw;
359 
360 	if (!adapter->msix_entries)
361 		return;
362 
363 	for (i = 1; i < adapter->num_msix_vectors; i++) {
364 		wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
365 		synchronize_irq(adapter->msix_entries[i].vector);
366 	}
367 	iavf_flush(hw);
368 }
369 
370 /**
371  * iavf_irq_enable_queues - Enable interrupt for all queues
372  * @adapter: board private structure
373  **/
374 static void iavf_irq_enable_queues(struct iavf_adapter *adapter)
375 {
376 	struct iavf_hw *hw = &adapter->hw;
377 	int i;
378 
379 	for (i = 1; i < adapter->num_msix_vectors; i++) {
380 		wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
381 		     IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
382 		     IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
383 	}
384 }
385 
386 /**
387  * iavf_irq_enable - Enable default interrupt generation settings
388  * @adapter: board private structure
389  * @flush: boolean value whether to run rd32()
390  **/
391 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
392 {
393 	struct iavf_hw *hw = &adapter->hw;
394 
395 	iavf_misc_irq_enable(adapter);
396 	iavf_irq_enable_queues(adapter);
397 
398 	if (flush)
399 		iavf_flush(hw);
400 }
401 
402 /**
403  * iavf_msix_aq - Interrupt handler for vector 0
404  * @irq: interrupt number
405  * @data: pointer to netdev
406  **/
407 static irqreturn_t iavf_msix_aq(int irq, void *data)
408 {
409 	struct net_device *netdev = data;
410 	struct iavf_adapter *adapter = netdev_priv(netdev);
411 	struct iavf_hw *hw = &adapter->hw;
412 
413 	/* handle non-queue interrupts, these reads clear the registers */
414 	rd32(hw, IAVF_VFINT_ICR01);
415 	rd32(hw, IAVF_VFINT_ICR0_ENA1);
416 
417 	if (adapter->state != __IAVF_REMOVE)
418 		/* schedule work on the private workqueue */
419 		queue_work(adapter->wq, &adapter->adminq_task);
420 
421 	return IRQ_HANDLED;
422 }
423 
424 /**
425  * iavf_msix_clean_rings - MSIX mode Interrupt Handler
426  * @irq: interrupt number
427  * @data: pointer to a q_vector
428  **/
429 static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
430 {
431 	struct iavf_q_vector *q_vector = data;
432 
433 	if (!q_vector->tx.ring && !q_vector->rx.ring)
434 		return IRQ_HANDLED;
435 
436 	napi_schedule_irqoff(&q_vector->napi);
437 
438 	return IRQ_HANDLED;
439 }
440 
441 /**
442  * iavf_map_vector_to_rxq - associate irqs with rx queues
443  * @adapter: board private structure
444  * @v_idx: interrupt number
445  * @r_idx: queue number
446  **/
447 static void
448 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
449 {
450 	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
451 	struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
452 	struct iavf_hw *hw = &adapter->hw;
453 
454 	rx_ring->q_vector = q_vector;
455 	rx_ring->next = q_vector->rx.ring;
456 	rx_ring->vsi = &adapter->vsi;
457 	q_vector->rx.ring = rx_ring;
458 	q_vector->rx.count++;
459 	q_vector->rx.next_update = jiffies + 1;
460 	q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
461 	q_vector->ring_mask |= BIT(r_idx);
462 	wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
463 	     q_vector->rx.current_itr >> 1);
464 	q_vector->rx.current_itr = q_vector->rx.target_itr;
465 }
466 
467 /**
468  * iavf_map_vector_to_txq - associate irqs with tx queues
469  * @adapter: board private structure
470  * @v_idx: interrupt number
471  * @t_idx: queue number
472  **/
473 static void
474 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
475 {
476 	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
477 	struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
478 	struct iavf_hw *hw = &adapter->hw;
479 
480 	tx_ring->q_vector = q_vector;
481 	tx_ring->next = q_vector->tx.ring;
482 	tx_ring->vsi = &adapter->vsi;
483 	q_vector->tx.ring = tx_ring;
484 	q_vector->tx.count++;
485 	q_vector->tx.next_update = jiffies + 1;
486 	q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
487 	q_vector->num_ringpairs++;
488 	wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
489 	     q_vector->tx.target_itr >> 1);
490 	q_vector->tx.current_itr = q_vector->tx.target_itr;
491 }
492 
493 /**
494  * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
495  * @adapter: board private structure to initialize
496  *
497  * This function maps descriptor rings to the queue-specific vectors
498  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
499  * one vector per ring/queue, but on a constrained vector budget, we
500  * group the rings as "efficiently" as possible.  You would add new
501  * mapping configurations in here.
502  **/
503 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
504 {
505 	int rings_remaining = adapter->num_active_queues;
506 	int ridx = 0, vidx = 0;
507 	int q_vectors;
508 
509 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
510 
511 	for (; ridx < rings_remaining; ridx++) {
512 		iavf_map_vector_to_rxq(adapter, vidx, ridx);
513 		iavf_map_vector_to_txq(adapter, vidx, ridx);
514 
515 		/* In the case where we have more queues than vectors, continue
516 		 * round-robin on vectors until all queues are mapped.
517 		 */
518 		if (++vidx >= q_vectors)
519 			vidx = 0;
520 	}
521 
522 	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
523 }
524 
525 /**
526  * iavf_irq_affinity_notify - Callback for affinity changes
527  * @notify: context as to what irq was changed
528  * @mask: the new affinity mask
529  *
530  * This is a callback function used by the irq_set_affinity_notifier function
531  * so that we may register to receive changes to the irq affinity masks.
532  **/
533 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
534 				     const cpumask_t *mask)
535 {
536 	struct iavf_q_vector *q_vector =
537 		container_of(notify, struct iavf_q_vector, affinity_notify);
538 
539 	cpumask_copy(&q_vector->affinity_mask, mask);
540 }
541 
542 /**
543  * iavf_irq_affinity_release - Callback for affinity notifier release
544  * @ref: internal core kernel usage
545  *
546  * This is a callback function used by the irq_set_affinity_notifier function
547  * to inform the current notification subscriber that they will no longer
548  * receive notifications.
549  **/
550 static void iavf_irq_affinity_release(struct kref *ref) {}
551 
552 /**
553  * iavf_request_traffic_irqs - Initialize MSI-X interrupts
554  * @adapter: board private structure
555  * @basename: device basename
556  *
557  * Allocates MSI-X vectors for tx and rx handling, and requests
558  * interrupts from the kernel.
559  **/
560 static int
561 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
562 {
563 	unsigned int vector, q_vectors;
564 	unsigned int rx_int_idx = 0, tx_int_idx = 0;
565 	int irq_num, err;
566 	int cpu;
567 
568 	iavf_irq_disable(adapter);
569 	/* Decrement for Other and TCP Timer vectors */
570 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
571 
572 	for (vector = 0; vector < q_vectors; vector++) {
573 		struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
574 
575 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
576 
577 		if (q_vector->tx.ring && q_vector->rx.ring) {
578 			snprintf(q_vector->name, sizeof(q_vector->name),
579 				 "iavf-%s-TxRx-%u", basename, rx_int_idx++);
580 			tx_int_idx++;
581 		} else if (q_vector->rx.ring) {
582 			snprintf(q_vector->name, sizeof(q_vector->name),
583 				 "iavf-%s-rx-%u", basename, rx_int_idx++);
584 		} else if (q_vector->tx.ring) {
585 			snprintf(q_vector->name, sizeof(q_vector->name),
586 				 "iavf-%s-tx-%u", basename, tx_int_idx++);
587 		} else {
588 			/* skip this unused q_vector */
589 			continue;
590 		}
591 		err = request_irq(irq_num,
592 				  iavf_msix_clean_rings,
593 				  0,
594 				  q_vector->name,
595 				  q_vector);
596 		if (err) {
597 			dev_info(&adapter->pdev->dev,
598 				 "Request_irq failed, error: %d\n", err);
599 			goto free_queue_irqs;
600 		}
601 		/* register for affinity change notifications */
602 		q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
603 		q_vector->affinity_notify.release =
604 						   iavf_irq_affinity_release;
605 		irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
606 		/* Spread the IRQ affinity hints across online CPUs. Note that
607 		 * get_cpu_mask returns a mask with a permanent lifetime so
608 		 * it's safe to use as a hint for irq_update_affinity_hint.
609 		 */
610 		cpu = cpumask_local_spread(q_vector->v_idx, -1);
611 		irq_update_affinity_hint(irq_num, get_cpu_mask(cpu));
612 	}
613 
614 	return 0;
615 
616 free_queue_irqs:
617 	while (vector) {
618 		vector--;
619 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
620 		irq_set_affinity_notifier(irq_num, NULL);
621 		irq_update_affinity_hint(irq_num, NULL);
622 		free_irq(irq_num, &adapter->q_vectors[vector]);
623 	}
624 	return err;
625 }
626 
627 /**
628  * iavf_request_misc_irq - Initialize MSI-X interrupts
629  * @adapter: board private structure
630  *
631  * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
632  * vector is only for the admin queue, and stays active even when the netdev
633  * is closed.
634  **/
635 static int iavf_request_misc_irq(struct iavf_adapter *adapter)
636 {
637 	struct net_device *netdev = adapter->netdev;
638 	int err;
639 
640 	snprintf(adapter->misc_vector_name,
641 		 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
642 		 dev_name(&adapter->pdev->dev));
643 	err = request_irq(adapter->msix_entries[0].vector,
644 			  &iavf_msix_aq, 0,
645 			  adapter->misc_vector_name, netdev);
646 	if (err) {
647 		dev_err(&adapter->pdev->dev,
648 			"request_irq for %s failed: %d\n",
649 			adapter->misc_vector_name, err);
650 		free_irq(adapter->msix_entries[0].vector, netdev);
651 	}
652 	return err;
653 }
654 
655 /**
656  * iavf_free_traffic_irqs - Free MSI-X interrupts
657  * @adapter: board private structure
658  *
659  * Frees all MSI-X vectors other than 0.
660  **/
661 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
662 {
663 	int vector, irq_num, q_vectors;
664 
665 	if (!adapter->msix_entries)
666 		return;
667 
668 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
669 
670 	for (vector = 0; vector < q_vectors; vector++) {
671 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
672 		irq_set_affinity_notifier(irq_num, NULL);
673 		irq_update_affinity_hint(irq_num, NULL);
674 		free_irq(irq_num, &adapter->q_vectors[vector]);
675 	}
676 }
677 
678 /**
679  * iavf_free_misc_irq - Free MSI-X miscellaneous vector
680  * @adapter: board private structure
681  *
682  * Frees MSI-X vector 0.
683  **/
684 static void iavf_free_misc_irq(struct iavf_adapter *adapter)
685 {
686 	struct net_device *netdev = adapter->netdev;
687 
688 	if (!adapter->msix_entries)
689 		return;
690 
691 	free_irq(adapter->msix_entries[0].vector, netdev);
692 }
693 
694 /**
695  * iavf_configure_tx - Configure Transmit Unit after Reset
696  * @adapter: board private structure
697  *
698  * Configure the Tx unit of the MAC after a reset.
699  **/
700 static void iavf_configure_tx(struct iavf_adapter *adapter)
701 {
702 	struct iavf_hw *hw = &adapter->hw;
703 	int i;
704 
705 	for (i = 0; i < adapter->num_active_queues; i++)
706 		adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
707 }
708 
709 /**
710  * iavf_configure_rx - Configure Receive Unit after Reset
711  * @adapter: board private structure
712  *
713  * Configure the Rx unit of the MAC after a reset.
714  **/
715 static void iavf_configure_rx(struct iavf_adapter *adapter)
716 {
717 	unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
718 	struct iavf_hw *hw = &adapter->hw;
719 	int i;
720 
721 	/* Legacy Rx will always default to a 2048 buffer size. */
722 #if (PAGE_SIZE < 8192)
723 	if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
724 		struct net_device *netdev = adapter->netdev;
725 
726 		/* For jumbo frames on systems with 4K pages we have to use
727 		 * an order 1 page, so we might as well increase the size
728 		 * of our Rx buffer to make better use of the available space
729 		 */
730 		rx_buf_len = IAVF_RXBUFFER_3072;
731 
732 		/* We use a 1536 buffer size for configurations with
733 		 * standard Ethernet mtu.  On x86 this gives us enough room
734 		 * for shared info and 192 bytes of padding.
735 		 */
736 		if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
737 		    (netdev->mtu <= ETH_DATA_LEN))
738 			rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
739 	}
740 #endif
741 
742 	for (i = 0; i < adapter->num_active_queues; i++) {
743 		adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
744 		adapter->rx_rings[i].rx_buf_len = rx_buf_len;
745 
746 		if (adapter->flags & IAVF_FLAG_LEGACY_RX)
747 			clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
748 		else
749 			set_ring_build_skb_enabled(&adapter->rx_rings[i]);
750 	}
751 }
752 
753 /**
754  * iavf_find_vlan - Search filter list for specific vlan filter
755  * @adapter: board private structure
756  * @vlan: vlan tag
757  *
758  * Returns ptr to the filter object or NULL. Must be called while holding the
759  * mac_vlan_list_lock.
760  **/
761 static struct
762 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter,
763 				 struct iavf_vlan vlan)
764 {
765 	struct iavf_vlan_filter *f;
766 
767 	list_for_each_entry(f, &adapter->vlan_filter_list, list) {
768 		if (f->vlan.vid == vlan.vid &&
769 		    f->vlan.tpid == vlan.tpid)
770 			return f;
771 	}
772 
773 	return NULL;
774 }
775 
776 /**
777  * iavf_add_vlan - Add a vlan filter to the list
778  * @adapter: board private structure
779  * @vlan: VLAN tag
780  *
781  * Returns ptr to the filter object or NULL when no memory available.
782  **/
783 static struct
784 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter,
785 				struct iavf_vlan vlan)
786 {
787 	struct iavf_vlan_filter *f = NULL;
788 
789 	spin_lock_bh(&adapter->mac_vlan_list_lock);
790 
791 	f = iavf_find_vlan(adapter, vlan);
792 	if (!f) {
793 		f = kzalloc(sizeof(*f), GFP_ATOMIC);
794 		if (!f)
795 			goto clearout;
796 
797 		f->vlan = vlan;
798 
799 		list_add_tail(&f->list, &adapter->vlan_filter_list);
800 		f->state = IAVF_VLAN_ADD;
801 		adapter->num_vlan_filters++;
802 		iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_VLAN_FILTER);
803 	}
804 
805 clearout:
806 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
807 	return f;
808 }
809 
810 /**
811  * iavf_del_vlan - Remove a vlan filter from the list
812  * @adapter: board private structure
813  * @vlan: VLAN tag
814  **/
815 static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan)
816 {
817 	struct iavf_vlan_filter *f;
818 
819 	spin_lock_bh(&adapter->mac_vlan_list_lock);
820 
821 	f = iavf_find_vlan(adapter, vlan);
822 	if (f) {
823 		f->state = IAVF_VLAN_REMOVE;
824 		iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DEL_VLAN_FILTER);
825 	}
826 
827 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
828 }
829 
830 /**
831  * iavf_restore_filters
832  * @adapter: board private structure
833  *
834  * Restore existing non MAC filters when VF netdev comes back up
835  **/
836 static void iavf_restore_filters(struct iavf_adapter *adapter)
837 {
838 	struct iavf_vlan_filter *f;
839 
840 	/* re-add all VLAN filters */
841 	spin_lock_bh(&adapter->mac_vlan_list_lock);
842 
843 	list_for_each_entry(f, &adapter->vlan_filter_list, list) {
844 		if (f->state == IAVF_VLAN_INACTIVE)
845 			f->state = IAVF_VLAN_ADD;
846 	}
847 
848 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
849 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
850 }
851 
852 /**
853  * iavf_get_num_vlans_added - get number of VLANs added
854  * @adapter: board private structure
855  */
856 u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter)
857 {
858 	return adapter->num_vlan_filters;
859 }
860 
861 /**
862  * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF
863  * @adapter: board private structure
864  *
865  * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN,
866  * do not impose a limit as that maintains current behavior and for
867  * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF.
868  **/
869 static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter)
870 {
871 	/* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has
872 	 * never been a limit on the VF driver side
873 	 */
874 	if (VLAN_ALLOWED(adapter))
875 		return VLAN_N_VID;
876 	else if (VLAN_V2_ALLOWED(adapter))
877 		return adapter->vlan_v2_caps.filtering.max_filters;
878 
879 	return 0;
880 }
881 
882 /**
883  * iavf_max_vlans_added - check if maximum VLANs allowed already exist
884  * @adapter: board private structure
885  **/
886 static bool iavf_max_vlans_added(struct iavf_adapter *adapter)
887 {
888 	if (iavf_get_num_vlans_added(adapter) <
889 	    iavf_get_max_vlans_allowed(adapter))
890 		return false;
891 
892 	return true;
893 }
894 
895 /**
896  * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
897  * @netdev: network device struct
898  * @proto: unused protocol data
899  * @vid: VLAN tag
900  **/
901 static int iavf_vlan_rx_add_vid(struct net_device *netdev,
902 				__always_unused __be16 proto, u16 vid)
903 {
904 	struct iavf_adapter *adapter = netdev_priv(netdev);
905 
906 	/* Do not track VLAN 0 filter, always added by the PF on VF init */
907 	if (!vid)
908 		return 0;
909 
910 	if (!VLAN_FILTERING_ALLOWED(adapter))
911 		return -EIO;
912 
913 	if (iavf_max_vlans_added(adapter)) {
914 		netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n",
915 			   iavf_get_max_vlans_allowed(adapter));
916 		return -EIO;
917 	}
918 
919 	if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))))
920 		return -ENOMEM;
921 
922 	return 0;
923 }
924 
925 /**
926  * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
927  * @netdev: network device struct
928  * @proto: unused protocol data
929  * @vid: VLAN tag
930  **/
931 static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
932 				 __always_unused __be16 proto, u16 vid)
933 {
934 	struct iavf_adapter *adapter = netdev_priv(netdev);
935 
936 	/* We do not track VLAN 0 filter */
937 	if (!vid)
938 		return 0;
939 
940 	iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)));
941 	return 0;
942 }
943 
944 /**
945  * iavf_find_filter - Search filter list for specific mac filter
946  * @adapter: board private structure
947  * @macaddr: the MAC address
948  *
949  * Returns ptr to the filter object or NULL. Must be called while holding the
950  * mac_vlan_list_lock.
951  **/
952 static struct
953 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
954 				  const u8 *macaddr)
955 {
956 	struct iavf_mac_filter *f;
957 
958 	if (!macaddr)
959 		return NULL;
960 
961 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
962 		if (ether_addr_equal(macaddr, f->macaddr))
963 			return f;
964 	}
965 	return NULL;
966 }
967 
968 /**
969  * iavf_add_filter - Add a mac filter to the filter list
970  * @adapter: board private structure
971  * @macaddr: the MAC address
972  *
973  * Returns ptr to the filter object or NULL when no memory available.
974  **/
975 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
976 					const u8 *macaddr)
977 {
978 	struct iavf_mac_filter *f;
979 
980 	if (!macaddr)
981 		return NULL;
982 
983 	f = iavf_find_filter(adapter, macaddr);
984 	if (!f) {
985 		f = kzalloc(sizeof(*f), GFP_ATOMIC);
986 		if (!f)
987 			return f;
988 
989 		ether_addr_copy(f->macaddr, macaddr);
990 
991 		list_add_tail(&f->list, &adapter->mac_filter_list);
992 		f->add = true;
993 		f->add_handled = false;
994 		f->is_new_mac = true;
995 		f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr);
996 		adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
997 	} else {
998 		f->remove = false;
999 	}
1000 
1001 	return f;
1002 }
1003 
1004 /**
1005  * iavf_replace_primary_mac - Replace current primary address
1006  * @adapter: board private structure
1007  * @new_mac: new MAC address to be applied
1008  *
1009  * Replace current dev_addr and send request to PF for removal of previous
1010  * primary MAC address filter and addition of new primary MAC filter.
1011  * Return 0 for success, -ENOMEM for failure.
1012  *
1013  * Do not call this with mac_vlan_list_lock!
1014  **/
1015 static int iavf_replace_primary_mac(struct iavf_adapter *adapter,
1016 				    const u8 *new_mac)
1017 {
1018 	struct iavf_hw *hw = &adapter->hw;
1019 	struct iavf_mac_filter *new_f;
1020 	struct iavf_mac_filter *old_f;
1021 
1022 	spin_lock_bh(&adapter->mac_vlan_list_lock);
1023 
1024 	new_f = iavf_add_filter(adapter, new_mac);
1025 	if (!new_f) {
1026 		spin_unlock_bh(&adapter->mac_vlan_list_lock);
1027 		return -ENOMEM;
1028 	}
1029 
1030 	old_f = iavf_find_filter(adapter, hw->mac.addr);
1031 	if (old_f) {
1032 		old_f->is_primary = false;
1033 		old_f->remove = true;
1034 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1035 	}
1036 	/* Always send the request to add if changing primary MAC,
1037 	 * even if filter is already present on the list
1038 	 */
1039 	new_f->is_primary = true;
1040 	new_f->add = true;
1041 	ether_addr_copy(hw->mac.addr, new_mac);
1042 
1043 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1044 
1045 	/* schedule the watchdog task to immediately process the request */
1046 	iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_MAC_FILTER);
1047 	return 0;
1048 }
1049 
1050 /**
1051  * iavf_is_mac_set_handled - wait for a response to set MAC from PF
1052  * @netdev: network interface device structure
1053  * @macaddr: MAC address to set
1054  *
1055  * Returns true on success, false on failure
1056  */
1057 static bool iavf_is_mac_set_handled(struct net_device *netdev,
1058 				    const u8 *macaddr)
1059 {
1060 	struct iavf_adapter *adapter = netdev_priv(netdev);
1061 	struct iavf_mac_filter *f;
1062 	bool ret = false;
1063 
1064 	spin_lock_bh(&adapter->mac_vlan_list_lock);
1065 
1066 	f = iavf_find_filter(adapter, macaddr);
1067 
1068 	if (!f || (!f->add && f->add_handled))
1069 		ret = true;
1070 
1071 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1072 
1073 	return ret;
1074 }
1075 
1076 /**
1077  * iavf_set_mac - NDO callback to set port MAC address
1078  * @netdev: network interface device structure
1079  * @p: pointer to an address structure
1080  *
1081  * Returns 0 on success, negative on failure
1082  */
1083 static int iavf_set_mac(struct net_device *netdev, void *p)
1084 {
1085 	struct iavf_adapter *adapter = netdev_priv(netdev);
1086 	struct sockaddr *addr = p;
1087 	int ret;
1088 
1089 	if (!is_valid_ether_addr(addr->sa_data))
1090 		return -EADDRNOTAVAIL;
1091 
1092 	ret = iavf_replace_primary_mac(adapter, addr->sa_data);
1093 
1094 	if (ret)
1095 		return ret;
1096 
1097 	ret = wait_event_interruptible_timeout(adapter->vc_waitqueue,
1098 					       iavf_is_mac_set_handled(netdev, addr->sa_data),
1099 					       msecs_to_jiffies(2500));
1100 
1101 	/* If ret < 0 then it means wait was interrupted.
1102 	 * If ret == 0 then it means we got a timeout.
1103 	 * else it means we got response for set MAC from PF,
1104 	 * check if netdev MAC was updated to requested MAC,
1105 	 * if yes then set MAC succeeded otherwise it failed return -EACCES
1106 	 */
1107 	if (ret < 0)
1108 		return ret;
1109 
1110 	if (!ret)
1111 		return -EAGAIN;
1112 
1113 	if (!ether_addr_equal(netdev->dev_addr, addr->sa_data))
1114 		return -EACCES;
1115 
1116 	return 0;
1117 }
1118 
1119 /**
1120  * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
1121  * @netdev: the netdevice
1122  * @addr: address to add
1123  *
1124  * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
1125  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1126  */
1127 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
1128 {
1129 	struct iavf_adapter *adapter = netdev_priv(netdev);
1130 
1131 	if (iavf_add_filter(adapter, addr))
1132 		return 0;
1133 	else
1134 		return -ENOMEM;
1135 }
1136 
1137 /**
1138  * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
1139  * @netdev: the netdevice
1140  * @addr: address to add
1141  *
1142  * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
1143  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1144  */
1145 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
1146 {
1147 	struct iavf_adapter *adapter = netdev_priv(netdev);
1148 	struct iavf_mac_filter *f;
1149 
1150 	/* Under some circumstances, we might receive a request to delete
1151 	 * our own device address from our uc list. Because we store the
1152 	 * device address in the VSI's MAC/VLAN filter list, we need to ignore
1153 	 * such requests and not delete our device address from this list.
1154 	 */
1155 	if (ether_addr_equal(addr, netdev->dev_addr))
1156 		return 0;
1157 
1158 	f = iavf_find_filter(adapter, addr);
1159 	if (f) {
1160 		f->remove = true;
1161 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1162 	}
1163 	return 0;
1164 }
1165 
1166 /**
1167  * iavf_promiscuous_mode_changed - check if promiscuous mode bits changed
1168  * @adapter: device specific adapter
1169  */
1170 bool iavf_promiscuous_mode_changed(struct iavf_adapter *adapter)
1171 {
1172 	return (adapter->current_netdev_promisc_flags ^ adapter->netdev->flags) &
1173 		(IFF_PROMISC | IFF_ALLMULTI);
1174 }
1175 
1176 /**
1177  * iavf_set_rx_mode - NDO callback to set the netdev filters
1178  * @netdev: network interface device structure
1179  **/
1180 static void iavf_set_rx_mode(struct net_device *netdev)
1181 {
1182 	struct iavf_adapter *adapter = netdev_priv(netdev);
1183 
1184 	spin_lock_bh(&adapter->mac_vlan_list_lock);
1185 	__dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1186 	__dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1187 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1188 
1189 	spin_lock_bh(&adapter->current_netdev_promisc_flags_lock);
1190 	if (iavf_promiscuous_mode_changed(adapter))
1191 		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE;
1192 	spin_unlock_bh(&adapter->current_netdev_promisc_flags_lock);
1193 }
1194 
1195 /**
1196  * iavf_napi_enable_all - enable NAPI on all queue vectors
1197  * @adapter: board private structure
1198  **/
1199 static void iavf_napi_enable_all(struct iavf_adapter *adapter)
1200 {
1201 	int q_idx;
1202 	struct iavf_q_vector *q_vector;
1203 	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1204 
1205 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1206 		struct napi_struct *napi;
1207 
1208 		q_vector = &adapter->q_vectors[q_idx];
1209 		napi = &q_vector->napi;
1210 		napi_enable(napi);
1211 	}
1212 }
1213 
1214 /**
1215  * iavf_napi_disable_all - disable NAPI on all queue vectors
1216  * @adapter: board private structure
1217  **/
1218 static void iavf_napi_disable_all(struct iavf_adapter *adapter)
1219 {
1220 	int q_idx;
1221 	struct iavf_q_vector *q_vector;
1222 	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1223 
1224 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1225 		q_vector = &adapter->q_vectors[q_idx];
1226 		napi_disable(&q_vector->napi);
1227 	}
1228 }
1229 
1230 /**
1231  * iavf_configure - set up transmit and receive data structures
1232  * @adapter: board private structure
1233  **/
1234 static void iavf_configure(struct iavf_adapter *adapter)
1235 {
1236 	struct net_device *netdev = adapter->netdev;
1237 	int i;
1238 
1239 	iavf_set_rx_mode(netdev);
1240 
1241 	iavf_configure_tx(adapter);
1242 	iavf_configure_rx(adapter);
1243 	adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
1244 
1245 	for (i = 0; i < adapter->num_active_queues; i++) {
1246 		struct iavf_ring *ring = &adapter->rx_rings[i];
1247 
1248 		iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
1249 	}
1250 }
1251 
1252 /**
1253  * iavf_up_complete - Finish the last steps of bringing up a connection
1254  * @adapter: board private structure
1255  *
1256  * Expects to be called while holding crit_lock.
1257  **/
1258 static void iavf_up_complete(struct iavf_adapter *adapter)
1259 {
1260 	iavf_change_state(adapter, __IAVF_RUNNING);
1261 	clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1262 
1263 	iavf_napi_enable_all(adapter);
1264 
1265 	iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ENABLE_QUEUES);
1266 }
1267 
1268 /**
1269  * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF
1270  * yet and mark other to be removed.
1271  * @adapter: board private structure
1272  **/
1273 static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter)
1274 {
1275 	struct iavf_vlan_filter *vlf, *vlftmp;
1276 	struct iavf_mac_filter *f, *ftmp;
1277 
1278 	spin_lock_bh(&adapter->mac_vlan_list_lock);
1279 	/* clear the sync flag on all filters */
1280 	__dev_uc_unsync(adapter->netdev, NULL);
1281 	__dev_mc_unsync(adapter->netdev, NULL);
1282 
1283 	/* remove all MAC filters */
1284 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list,
1285 				 list) {
1286 		if (f->add) {
1287 			list_del(&f->list);
1288 			kfree(f);
1289 		} else {
1290 			f->remove = true;
1291 		}
1292 	}
1293 
1294 	/* disable all VLAN filters */
1295 	list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
1296 				 list)
1297 		vlf->state = IAVF_VLAN_DISABLE;
1298 
1299 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1300 }
1301 
1302 /**
1303  * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and
1304  * mark other to be removed.
1305  * @adapter: board private structure
1306  **/
1307 static void iavf_clear_cloud_filters(struct iavf_adapter *adapter)
1308 {
1309 	struct iavf_cloud_filter *cf, *cftmp;
1310 
1311 	/* remove all cloud filters */
1312 	spin_lock_bh(&adapter->cloud_filter_list_lock);
1313 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
1314 				 list) {
1315 		if (cf->add) {
1316 			list_del(&cf->list);
1317 			kfree(cf);
1318 			adapter->num_cloud_filters--;
1319 		} else {
1320 			cf->del = true;
1321 		}
1322 	}
1323 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
1324 }
1325 
1326 /**
1327  * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark
1328  * other to be removed.
1329  * @adapter: board private structure
1330  **/
1331 static void iavf_clear_fdir_filters(struct iavf_adapter *adapter)
1332 {
1333 	struct iavf_fdir_fltr *fdir;
1334 
1335 	/* remove all Flow Director filters */
1336 	spin_lock_bh(&adapter->fdir_fltr_lock);
1337 	list_for_each_entry(fdir, &adapter->fdir_list_head, list) {
1338 		if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) {
1339 			/* Cancel a request, keep filter as inactive */
1340 			fdir->state = IAVF_FDIR_FLTR_INACTIVE;
1341 		} else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING ||
1342 			 fdir->state == IAVF_FDIR_FLTR_ACTIVE) {
1343 			/* Disable filters which are active or have a pending
1344 			 * request to PF to be added
1345 			 */
1346 			fdir->state = IAVF_FDIR_FLTR_DIS_REQUEST;
1347 		}
1348 	}
1349 	spin_unlock_bh(&adapter->fdir_fltr_lock);
1350 }
1351 
1352 /**
1353  * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark
1354  * other to be removed.
1355  * @adapter: board private structure
1356  **/
1357 static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter)
1358 {
1359 	struct iavf_adv_rss *rss, *rsstmp;
1360 
1361 	/* remove all advance RSS configuration */
1362 	spin_lock_bh(&adapter->adv_rss_lock);
1363 	list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
1364 				 list) {
1365 		if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) {
1366 			list_del(&rss->list);
1367 			kfree(rss);
1368 		} else {
1369 			rss->state = IAVF_ADV_RSS_DEL_REQUEST;
1370 		}
1371 	}
1372 	spin_unlock_bh(&adapter->adv_rss_lock);
1373 }
1374 
1375 /**
1376  * iavf_down - Shutdown the connection processing
1377  * @adapter: board private structure
1378  *
1379  * Expects to be called while holding crit_lock.
1380  **/
1381 void iavf_down(struct iavf_adapter *adapter)
1382 {
1383 	struct net_device *netdev = adapter->netdev;
1384 
1385 	if (adapter->state <= __IAVF_DOWN_PENDING)
1386 		return;
1387 
1388 	netif_carrier_off(netdev);
1389 	netif_tx_disable(netdev);
1390 	adapter->link_up = false;
1391 	iavf_napi_disable_all(adapter);
1392 	iavf_irq_disable(adapter);
1393 
1394 	iavf_clear_mac_vlan_filters(adapter);
1395 	iavf_clear_cloud_filters(adapter);
1396 	iavf_clear_fdir_filters(adapter);
1397 	iavf_clear_adv_rss_conf(adapter);
1398 
1399 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
1400 		return;
1401 
1402 	if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
1403 		/* cancel any current operation */
1404 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1405 		/* Schedule operations to close down the HW. Don't wait
1406 		 * here for this to complete. The watchdog is still running
1407 		 * and it will take care of this.
1408 		 */
1409 		if (!list_empty(&adapter->mac_filter_list))
1410 			adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1411 		if (!list_empty(&adapter->vlan_filter_list))
1412 			adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1413 		if (!list_empty(&adapter->cloud_filter_list))
1414 			adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1415 		if (!list_empty(&adapter->fdir_list_head))
1416 			adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
1417 		if (!list_empty(&adapter->adv_rss_list_head))
1418 			adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG;
1419 	}
1420 
1421 	iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DISABLE_QUEUES);
1422 }
1423 
1424 /**
1425  * iavf_acquire_msix_vectors - Setup the MSIX capability
1426  * @adapter: board private structure
1427  * @vectors: number of vectors to request
1428  *
1429  * Work with the OS to set up the MSIX vectors needed.
1430  *
1431  * Returns 0 on success, negative on failure
1432  **/
1433 static int
1434 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1435 {
1436 	int err, vector_threshold;
1437 
1438 	/* We'll want at least 3 (vector_threshold):
1439 	 * 0) Other (Admin Queue and link, mostly)
1440 	 * 1) TxQ[0] Cleanup
1441 	 * 2) RxQ[0] Cleanup
1442 	 */
1443 	vector_threshold = MIN_MSIX_COUNT;
1444 
1445 	/* The more we get, the more we will assign to Tx/Rx Cleanup
1446 	 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1447 	 * Right now, we simply care about how many we'll get; we'll
1448 	 * set them up later while requesting irq's.
1449 	 */
1450 	err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1451 				    vector_threshold, vectors);
1452 	if (err < 0) {
1453 		dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1454 		kfree(adapter->msix_entries);
1455 		adapter->msix_entries = NULL;
1456 		return err;
1457 	}
1458 
1459 	/* Adjust for only the vectors we'll use, which is minimum
1460 	 * of max_msix_q_vectors + NONQ_VECS, or the number of
1461 	 * vectors we were allocated.
1462 	 */
1463 	adapter->num_msix_vectors = err;
1464 	return 0;
1465 }
1466 
1467 /**
1468  * iavf_free_queues - Free memory for all rings
1469  * @adapter: board private structure to initialize
1470  *
1471  * Free all of the memory associated with queue pairs.
1472  **/
1473 static void iavf_free_queues(struct iavf_adapter *adapter)
1474 {
1475 	if (!adapter->vsi_res)
1476 		return;
1477 	adapter->num_active_queues = 0;
1478 	kfree(adapter->tx_rings);
1479 	adapter->tx_rings = NULL;
1480 	kfree(adapter->rx_rings);
1481 	adapter->rx_rings = NULL;
1482 }
1483 
1484 /**
1485  * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload
1486  * @adapter: board private structure
1487  *
1488  * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or
1489  * stripped in certain descriptor fields. Instead of checking the offload
1490  * capability bits in the hot path, cache the location the ring specific
1491  * flags.
1492  */
1493 void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter)
1494 {
1495 	int i;
1496 
1497 	for (i = 0; i < adapter->num_active_queues; i++) {
1498 		struct iavf_ring *tx_ring = &adapter->tx_rings[i];
1499 		struct iavf_ring *rx_ring = &adapter->rx_rings[i];
1500 
1501 		/* prevent multiple L2TAG bits being set after VFR */
1502 		tx_ring->flags &=
1503 			~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1504 			  IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2);
1505 		rx_ring->flags &=
1506 			~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1507 			  IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2);
1508 
1509 		if (VLAN_ALLOWED(adapter)) {
1510 			tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1511 			rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1512 		} else if (VLAN_V2_ALLOWED(adapter)) {
1513 			struct virtchnl_vlan_supported_caps *stripping_support;
1514 			struct virtchnl_vlan_supported_caps *insertion_support;
1515 
1516 			stripping_support =
1517 				&adapter->vlan_v2_caps.offloads.stripping_support;
1518 			insertion_support =
1519 				&adapter->vlan_v2_caps.offloads.insertion_support;
1520 
1521 			if (stripping_support->outer) {
1522 				if (stripping_support->outer &
1523 				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1524 					rx_ring->flags |=
1525 						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1526 				else if (stripping_support->outer &
1527 					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1528 					rx_ring->flags |=
1529 						IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1530 			} else if (stripping_support->inner) {
1531 				if (stripping_support->inner &
1532 				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1533 					rx_ring->flags |=
1534 						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1535 				else if (stripping_support->inner &
1536 					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1537 					rx_ring->flags |=
1538 						IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1539 			}
1540 
1541 			if (insertion_support->outer) {
1542 				if (insertion_support->outer &
1543 				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1544 					tx_ring->flags |=
1545 						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1546 				else if (insertion_support->outer &
1547 					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1548 					tx_ring->flags |=
1549 						IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1550 			} else if (insertion_support->inner) {
1551 				if (insertion_support->inner &
1552 				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1553 					tx_ring->flags |=
1554 						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1555 				else if (insertion_support->inner &
1556 					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1557 					tx_ring->flags |=
1558 						IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1559 			}
1560 		}
1561 	}
1562 }
1563 
1564 /**
1565  * iavf_alloc_queues - Allocate memory for all rings
1566  * @adapter: board private structure to initialize
1567  *
1568  * We allocate one ring per queue at run-time since we don't know the
1569  * number of queues at compile-time.  The polling_netdev array is
1570  * intended for Multiqueue, but should work fine with a single queue.
1571  **/
1572 static int iavf_alloc_queues(struct iavf_adapter *adapter)
1573 {
1574 	int i, num_active_queues;
1575 
1576 	/* If we're in reset reallocating queues we don't actually know yet for
1577 	 * certain the PF gave us the number of queues we asked for but we'll
1578 	 * assume it did.  Once basic reset is finished we'll confirm once we
1579 	 * start negotiating config with PF.
1580 	 */
1581 	if (adapter->num_req_queues)
1582 		num_active_queues = adapter->num_req_queues;
1583 	else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1584 		 adapter->num_tc)
1585 		num_active_queues = adapter->ch_config.total_qps;
1586 	else
1587 		num_active_queues = min_t(int,
1588 					  adapter->vsi_res->num_queue_pairs,
1589 					  (int)(num_online_cpus()));
1590 
1591 
1592 	adapter->tx_rings = kcalloc(num_active_queues,
1593 				    sizeof(struct iavf_ring), GFP_KERNEL);
1594 	if (!adapter->tx_rings)
1595 		goto err_out;
1596 	adapter->rx_rings = kcalloc(num_active_queues,
1597 				    sizeof(struct iavf_ring), GFP_KERNEL);
1598 	if (!adapter->rx_rings)
1599 		goto err_out;
1600 
1601 	for (i = 0; i < num_active_queues; i++) {
1602 		struct iavf_ring *tx_ring;
1603 		struct iavf_ring *rx_ring;
1604 
1605 		tx_ring = &adapter->tx_rings[i];
1606 
1607 		tx_ring->queue_index = i;
1608 		tx_ring->netdev = adapter->netdev;
1609 		tx_ring->dev = &adapter->pdev->dev;
1610 		tx_ring->count = adapter->tx_desc_count;
1611 		tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1612 		if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1613 			tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1614 
1615 		rx_ring = &adapter->rx_rings[i];
1616 		rx_ring->queue_index = i;
1617 		rx_ring->netdev = adapter->netdev;
1618 		rx_ring->dev = &adapter->pdev->dev;
1619 		rx_ring->count = adapter->rx_desc_count;
1620 		rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1621 	}
1622 
1623 	adapter->num_active_queues = num_active_queues;
1624 
1625 	iavf_set_queue_vlan_tag_loc(adapter);
1626 
1627 	return 0;
1628 
1629 err_out:
1630 	iavf_free_queues(adapter);
1631 	return -ENOMEM;
1632 }
1633 
1634 /**
1635  * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1636  * @adapter: board private structure to initialize
1637  *
1638  * Attempt to configure the interrupts using the best available
1639  * capabilities of the hardware and the kernel.
1640  **/
1641 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1642 {
1643 	int vector, v_budget;
1644 	int pairs = 0;
1645 	int err = 0;
1646 
1647 	if (!adapter->vsi_res) {
1648 		err = -EIO;
1649 		goto out;
1650 	}
1651 	pairs = adapter->num_active_queues;
1652 
1653 	/* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1654 	 * us much good if we have more vectors than CPUs. However, we already
1655 	 * limit the total number of queues by the number of CPUs so we do not
1656 	 * need any further limiting here.
1657 	 */
1658 	v_budget = min_t(int, pairs + NONQ_VECS,
1659 			 (int)adapter->vf_res->max_vectors);
1660 
1661 	adapter->msix_entries = kcalloc(v_budget,
1662 					sizeof(struct msix_entry), GFP_KERNEL);
1663 	if (!adapter->msix_entries) {
1664 		err = -ENOMEM;
1665 		goto out;
1666 	}
1667 
1668 	for (vector = 0; vector < v_budget; vector++)
1669 		adapter->msix_entries[vector].entry = vector;
1670 
1671 	err = iavf_acquire_msix_vectors(adapter, v_budget);
1672 	if (!err)
1673 		iavf_schedule_finish_config(adapter);
1674 
1675 out:
1676 	return err;
1677 }
1678 
1679 /**
1680  * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1681  * @adapter: board private structure
1682  *
1683  * Return 0 on success, negative on failure
1684  **/
1685 static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1686 {
1687 	struct iavf_aqc_get_set_rss_key_data *rss_key =
1688 		(struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1689 	struct iavf_hw *hw = &adapter->hw;
1690 	enum iavf_status status;
1691 
1692 	if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1693 		/* bail because we already have a command pending */
1694 		dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1695 			adapter->current_op);
1696 		return -EBUSY;
1697 	}
1698 
1699 	status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1700 	if (status) {
1701 		dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1702 			iavf_stat_str(hw, status),
1703 			iavf_aq_str(hw, hw->aq.asq_last_status));
1704 		return iavf_status_to_errno(status);
1705 
1706 	}
1707 
1708 	status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1709 				     adapter->rss_lut, adapter->rss_lut_size);
1710 	if (status) {
1711 		dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1712 			iavf_stat_str(hw, status),
1713 			iavf_aq_str(hw, hw->aq.asq_last_status));
1714 		return iavf_status_to_errno(status);
1715 	}
1716 
1717 	return 0;
1718 
1719 }
1720 
1721 /**
1722  * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1723  * @adapter: board private structure
1724  *
1725  * Returns 0 on success, negative on failure
1726  **/
1727 static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1728 {
1729 	struct iavf_hw *hw = &adapter->hw;
1730 	u32 *dw;
1731 	u16 i;
1732 
1733 	dw = (u32 *)adapter->rss_key;
1734 	for (i = 0; i <= adapter->rss_key_size / 4; i++)
1735 		wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1736 
1737 	dw = (u32 *)adapter->rss_lut;
1738 	for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1739 		wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1740 
1741 	iavf_flush(hw);
1742 
1743 	return 0;
1744 }
1745 
1746 /**
1747  * iavf_config_rss - Configure RSS keys and lut
1748  * @adapter: board private structure
1749  *
1750  * Returns 0 on success, negative on failure
1751  **/
1752 int iavf_config_rss(struct iavf_adapter *adapter)
1753 {
1754 
1755 	if (RSS_PF(adapter)) {
1756 		adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1757 					IAVF_FLAG_AQ_SET_RSS_KEY;
1758 		return 0;
1759 	} else if (RSS_AQ(adapter)) {
1760 		return iavf_config_rss_aq(adapter);
1761 	} else {
1762 		return iavf_config_rss_reg(adapter);
1763 	}
1764 }
1765 
1766 /**
1767  * iavf_fill_rss_lut - Fill the lut with default values
1768  * @adapter: board private structure
1769  **/
1770 static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1771 {
1772 	u16 i;
1773 
1774 	for (i = 0; i < adapter->rss_lut_size; i++)
1775 		adapter->rss_lut[i] = i % adapter->num_active_queues;
1776 }
1777 
1778 /**
1779  * iavf_init_rss - Prepare for RSS
1780  * @adapter: board private structure
1781  *
1782  * Return 0 on success, negative on failure
1783  **/
1784 static int iavf_init_rss(struct iavf_adapter *adapter)
1785 {
1786 	struct iavf_hw *hw = &adapter->hw;
1787 
1788 	if (!RSS_PF(adapter)) {
1789 		/* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1790 		if (adapter->vf_res->vf_cap_flags &
1791 		    VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1792 			adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1793 		else
1794 			adapter->hena = IAVF_DEFAULT_RSS_HENA;
1795 
1796 		wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1797 		wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1798 	}
1799 
1800 	iavf_fill_rss_lut(adapter);
1801 	netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1802 
1803 	return iavf_config_rss(adapter);
1804 }
1805 
1806 /**
1807  * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1808  * @adapter: board private structure to initialize
1809  *
1810  * We allocate one q_vector per queue interrupt.  If allocation fails we
1811  * return -ENOMEM.
1812  **/
1813 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1814 {
1815 	int q_idx = 0, num_q_vectors;
1816 	struct iavf_q_vector *q_vector;
1817 
1818 	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1819 	adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1820 				     GFP_KERNEL);
1821 	if (!adapter->q_vectors)
1822 		return -ENOMEM;
1823 
1824 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1825 		q_vector = &adapter->q_vectors[q_idx];
1826 		q_vector->adapter = adapter;
1827 		q_vector->vsi = &adapter->vsi;
1828 		q_vector->v_idx = q_idx;
1829 		q_vector->reg_idx = q_idx;
1830 		cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1831 		netif_napi_add(adapter->netdev, &q_vector->napi,
1832 			       iavf_napi_poll);
1833 	}
1834 
1835 	return 0;
1836 }
1837 
1838 /**
1839  * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1840  * @adapter: board private structure to initialize
1841  *
1842  * This function frees the memory allocated to the q_vectors.  In addition if
1843  * NAPI is enabled it will delete any references to the NAPI struct prior
1844  * to freeing the q_vector.
1845  **/
1846 static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1847 {
1848 	int q_idx, num_q_vectors;
1849 
1850 	if (!adapter->q_vectors)
1851 		return;
1852 
1853 	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1854 
1855 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1856 		struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1857 
1858 		netif_napi_del(&q_vector->napi);
1859 	}
1860 	kfree(adapter->q_vectors);
1861 	adapter->q_vectors = NULL;
1862 }
1863 
1864 /**
1865  * iavf_reset_interrupt_capability - Reset MSIX setup
1866  * @adapter: board private structure
1867  *
1868  **/
1869 static void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1870 {
1871 	if (!adapter->msix_entries)
1872 		return;
1873 
1874 	pci_disable_msix(adapter->pdev);
1875 	kfree(adapter->msix_entries);
1876 	adapter->msix_entries = NULL;
1877 }
1878 
1879 /**
1880  * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1881  * @adapter: board private structure to initialize
1882  *
1883  **/
1884 static int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1885 {
1886 	int err;
1887 
1888 	err = iavf_alloc_queues(adapter);
1889 	if (err) {
1890 		dev_err(&adapter->pdev->dev,
1891 			"Unable to allocate memory for queues\n");
1892 		goto err_alloc_queues;
1893 	}
1894 
1895 	err = iavf_set_interrupt_capability(adapter);
1896 	if (err) {
1897 		dev_err(&adapter->pdev->dev,
1898 			"Unable to setup interrupt capabilities\n");
1899 		goto err_set_interrupt;
1900 	}
1901 
1902 	err = iavf_alloc_q_vectors(adapter);
1903 	if (err) {
1904 		dev_err(&adapter->pdev->dev,
1905 			"Unable to allocate memory for queue vectors\n");
1906 		goto err_alloc_q_vectors;
1907 	}
1908 
1909 	/* If we've made it so far while ADq flag being ON, then we haven't
1910 	 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1911 	 * resources have been allocated in the reset path.
1912 	 * Now we can truly claim that ADq is enabled.
1913 	 */
1914 	if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1915 	    adapter->num_tc)
1916 		dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1917 			 adapter->num_tc);
1918 
1919 	dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1920 		 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1921 		 adapter->num_active_queues);
1922 
1923 	return 0;
1924 err_alloc_q_vectors:
1925 	iavf_reset_interrupt_capability(adapter);
1926 err_set_interrupt:
1927 	iavf_free_queues(adapter);
1928 err_alloc_queues:
1929 	return err;
1930 }
1931 
1932 /**
1933  * iavf_free_interrupt_scheme - Undo what iavf_init_interrupt_scheme does
1934  * @adapter: board private structure
1935  **/
1936 static void iavf_free_interrupt_scheme(struct iavf_adapter *adapter)
1937 {
1938 	iavf_free_q_vectors(adapter);
1939 	iavf_reset_interrupt_capability(adapter);
1940 	iavf_free_queues(adapter);
1941 }
1942 
1943 /**
1944  * iavf_free_rss - Free memory used by RSS structs
1945  * @adapter: board private structure
1946  **/
1947 static void iavf_free_rss(struct iavf_adapter *adapter)
1948 {
1949 	kfree(adapter->rss_key);
1950 	adapter->rss_key = NULL;
1951 
1952 	kfree(adapter->rss_lut);
1953 	adapter->rss_lut = NULL;
1954 }
1955 
1956 /**
1957  * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1958  * @adapter: board private structure
1959  * @running: true if adapter->state == __IAVF_RUNNING
1960  *
1961  * Returns 0 on success, negative on failure
1962  **/
1963 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter, bool running)
1964 {
1965 	struct net_device *netdev = adapter->netdev;
1966 	int err;
1967 
1968 	if (running)
1969 		iavf_free_traffic_irqs(adapter);
1970 	iavf_free_misc_irq(adapter);
1971 	iavf_free_interrupt_scheme(adapter);
1972 
1973 	err = iavf_init_interrupt_scheme(adapter);
1974 	if (err)
1975 		goto err;
1976 
1977 	netif_tx_stop_all_queues(netdev);
1978 
1979 	err = iavf_request_misc_irq(adapter);
1980 	if (err)
1981 		goto err;
1982 
1983 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1984 
1985 	iavf_map_rings_to_vectors(adapter);
1986 err:
1987 	return err;
1988 }
1989 
1990 /**
1991  * iavf_finish_config - do all netdev work that needs RTNL
1992  * @work: our work_struct
1993  *
1994  * Do work that needs both RTNL and crit_lock.
1995  **/
1996 static void iavf_finish_config(struct work_struct *work)
1997 {
1998 	struct iavf_adapter *adapter;
1999 	int pairs, err;
2000 
2001 	adapter = container_of(work, struct iavf_adapter, finish_config);
2002 
2003 	/* Always take RTNL first to prevent circular lock dependency */
2004 	rtnl_lock();
2005 	mutex_lock(&adapter->crit_lock);
2006 
2007 	if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES) &&
2008 	    adapter->netdev->reg_state == NETREG_REGISTERED &&
2009 	    !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
2010 		netdev_update_features(adapter->netdev);
2011 		adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES;
2012 	}
2013 
2014 	switch (adapter->state) {
2015 	case __IAVF_DOWN:
2016 		if (adapter->netdev->reg_state != NETREG_REGISTERED) {
2017 			err = register_netdevice(adapter->netdev);
2018 			if (err) {
2019 				dev_err(&adapter->pdev->dev, "Unable to register netdev (%d)\n",
2020 					err);
2021 
2022 				/* go back and try again.*/
2023 				iavf_free_rss(adapter);
2024 				iavf_free_misc_irq(adapter);
2025 				iavf_reset_interrupt_capability(adapter);
2026 				iavf_change_state(adapter,
2027 						  __IAVF_INIT_CONFIG_ADAPTER);
2028 				goto out;
2029 			}
2030 		}
2031 
2032 		/* Set the real number of queues when reset occurs while
2033 		 * state == __IAVF_DOWN
2034 		 */
2035 		fallthrough;
2036 	case __IAVF_RUNNING:
2037 		pairs = adapter->num_active_queues;
2038 		netif_set_real_num_rx_queues(adapter->netdev, pairs);
2039 		netif_set_real_num_tx_queues(adapter->netdev, pairs);
2040 		break;
2041 
2042 	default:
2043 		break;
2044 	}
2045 
2046 out:
2047 	mutex_unlock(&adapter->crit_lock);
2048 	rtnl_unlock();
2049 }
2050 
2051 /**
2052  * iavf_schedule_finish_config - Set the flags and schedule a reset event
2053  * @adapter: board private structure
2054  **/
2055 void iavf_schedule_finish_config(struct iavf_adapter *adapter)
2056 {
2057 	if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
2058 		queue_work(adapter->wq, &adapter->finish_config);
2059 }
2060 
2061 /**
2062  * iavf_process_aq_command - process aq_required flags
2063  * and sends aq command
2064  * @adapter: pointer to iavf adapter structure
2065  *
2066  * Returns 0 on success
2067  * Returns error code if no command was sent
2068  * or error code if the command failed.
2069  **/
2070 static int iavf_process_aq_command(struct iavf_adapter *adapter)
2071 {
2072 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
2073 		return iavf_send_vf_config_msg(adapter);
2074 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS)
2075 		return iavf_send_vf_offload_vlan_v2_msg(adapter);
2076 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
2077 		iavf_disable_queues(adapter);
2078 		return 0;
2079 	}
2080 
2081 	if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
2082 		iavf_map_queues(adapter);
2083 		return 0;
2084 	}
2085 
2086 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
2087 		iavf_add_ether_addrs(adapter);
2088 		return 0;
2089 	}
2090 
2091 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
2092 		iavf_add_vlans(adapter);
2093 		return 0;
2094 	}
2095 
2096 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
2097 		iavf_del_ether_addrs(adapter);
2098 		return 0;
2099 	}
2100 
2101 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
2102 		iavf_del_vlans(adapter);
2103 		return 0;
2104 	}
2105 
2106 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
2107 		iavf_enable_vlan_stripping(adapter);
2108 		return 0;
2109 	}
2110 
2111 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
2112 		iavf_disable_vlan_stripping(adapter);
2113 		return 0;
2114 	}
2115 
2116 	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
2117 		iavf_configure_queues(adapter);
2118 		return 0;
2119 	}
2120 
2121 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
2122 		iavf_enable_queues(adapter);
2123 		return 0;
2124 	}
2125 
2126 	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
2127 		/* This message goes straight to the firmware, not the
2128 		 * PF, so we don't have to set current_op as we will
2129 		 * not get a response through the ARQ.
2130 		 */
2131 		adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
2132 		return 0;
2133 	}
2134 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
2135 		iavf_get_hena(adapter);
2136 		return 0;
2137 	}
2138 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
2139 		iavf_set_hena(adapter);
2140 		return 0;
2141 	}
2142 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
2143 		iavf_set_rss_key(adapter);
2144 		return 0;
2145 	}
2146 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
2147 		iavf_set_rss_lut(adapter);
2148 		return 0;
2149 	}
2150 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_HFUNC) {
2151 		iavf_set_rss_hfunc(adapter);
2152 		return 0;
2153 	}
2154 
2155 	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE) {
2156 		iavf_set_promiscuous(adapter);
2157 		return 0;
2158 	}
2159 
2160 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
2161 		iavf_enable_channels(adapter);
2162 		return 0;
2163 	}
2164 
2165 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
2166 		iavf_disable_channels(adapter);
2167 		return 0;
2168 	}
2169 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
2170 		iavf_add_cloud_filter(adapter);
2171 		return 0;
2172 	}
2173 
2174 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
2175 		iavf_del_cloud_filter(adapter);
2176 		return 0;
2177 	}
2178 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
2179 		iavf_del_cloud_filter(adapter);
2180 		return 0;
2181 	}
2182 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
2183 		iavf_add_cloud_filter(adapter);
2184 		return 0;
2185 	}
2186 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) {
2187 		iavf_add_fdir_filter(adapter);
2188 		return IAVF_SUCCESS;
2189 	}
2190 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) {
2191 		iavf_del_fdir_filter(adapter);
2192 		return IAVF_SUCCESS;
2193 	}
2194 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) {
2195 		iavf_add_adv_rss_cfg(adapter);
2196 		return 0;
2197 	}
2198 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) {
2199 		iavf_del_adv_rss_cfg(adapter);
2200 		return 0;
2201 	}
2202 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) {
2203 		iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2204 		return 0;
2205 	}
2206 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) {
2207 		iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2208 		return 0;
2209 	}
2210 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) {
2211 		iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2212 		return 0;
2213 	}
2214 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) {
2215 		iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2216 		return 0;
2217 	}
2218 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) {
2219 		iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2220 		return 0;
2221 	}
2222 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) {
2223 		iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2224 		return 0;
2225 	}
2226 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) {
2227 		iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2228 		return 0;
2229 	}
2230 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) {
2231 		iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2232 		return 0;
2233 	}
2234 
2235 	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) {
2236 		iavf_request_stats(adapter);
2237 		return 0;
2238 	}
2239 
2240 	return -EAGAIN;
2241 }
2242 
2243 /**
2244  * iavf_set_vlan_offload_features - set VLAN offload configuration
2245  * @adapter: board private structure
2246  * @prev_features: previous features used for comparison
2247  * @features: updated features used for configuration
2248  *
2249  * Set the aq_required bit(s) based on the requested features passed in to
2250  * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule
2251  * the watchdog if any changes are requested to expedite the request via
2252  * virtchnl.
2253  **/
2254 static void
2255 iavf_set_vlan_offload_features(struct iavf_adapter *adapter,
2256 			       netdev_features_t prev_features,
2257 			       netdev_features_t features)
2258 {
2259 	bool enable_stripping = true, enable_insertion = true;
2260 	u16 vlan_ethertype = 0;
2261 	u64 aq_required = 0;
2262 
2263 	/* keep cases separate because one ethertype for offloads can be
2264 	 * disabled at the same time as another is disabled, so check for an
2265 	 * enabled ethertype first, then check for disabled. Default to
2266 	 * ETH_P_8021Q so an ethertype is specified if disabling insertion and
2267 	 * stripping.
2268 	 */
2269 	if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2270 		vlan_ethertype = ETH_P_8021AD;
2271 	else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2272 		vlan_ethertype = ETH_P_8021Q;
2273 	else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2274 		vlan_ethertype = ETH_P_8021AD;
2275 	else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2276 		vlan_ethertype = ETH_P_8021Q;
2277 	else
2278 		vlan_ethertype = ETH_P_8021Q;
2279 
2280 	if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
2281 		enable_stripping = false;
2282 	if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
2283 		enable_insertion = false;
2284 
2285 	if (VLAN_ALLOWED(adapter)) {
2286 		/* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN
2287 		 * stripping via virtchnl. VLAN insertion can be toggled on the
2288 		 * netdev, but it doesn't require a virtchnl message
2289 		 */
2290 		if (enable_stripping)
2291 			aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
2292 		else
2293 			aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
2294 
2295 	} else if (VLAN_V2_ALLOWED(adapter)) {
2296 		switch (vlan_ethertype) {
2297 		case ETH_P_8021Q:
2298 			if (enable_stripping)
2299 				aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING;
2300 			else
2301 				aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING;
2302 
2303 			if (enable_insertion)
2304 				aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION;
2305 			else
2306 				aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION;
2307 			break;
2308 		case ETH_P_8021AD:
2309 			if (enable_stripping)
2310 				aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING;
2311 			else
2312 				aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING;
2313 
2314 			if (enable_insertion)
2315 				aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION;
2316 			else
2317 				aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION;
2318 			break;
2319 		}
2320 	}
2321 
2322 	if (aq_required)
2323 		iavf_schedule_aq_request(adapter, aq_required);
2324 }
2325 
2326 /**
2327  * iavf_startup - first step of driver startup
2328  * @adapter: board private structure
2329  *
2330  * Function process __IAVF_STARTUP driver state.
2331  * When success the state is changed to __IAVF_INIT_VERSION_CHECK
2332  * when fails the state is changed to __IAVF_INIT_FAILED
2333  **/
2334 static void iavf_startup(struct iavf_adapter *adapter)
2335 {
2336 	struct pci_dev *pdev = adapter->pdev;
2337 	struct iavf_hw *hw = &adapter->hw;
2338 	enum iavf_status status;
2339 	int ret;
2340 
2341 	WARN_ON(adapter->state != __IAVF_STARTUP);
2342 
2343 	/* driver loaded, probe complete */
2344 	adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2345 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2346 
2347 	ret = iavf_check_reset_complete(hw);
2348 	if (ret) {
2349 		dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
2350 			 ret);
2351 		goto err;
2352 	}
2353 	hw->aq.num_arq_entries = IAVF_AQ_LEN;
2354 	hw->aq.num_asq_entries = IAVF_AQ_LEN;
2355 	hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2356 	hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2357 
2358 	status = iavf_init_adminq(hw);
2359 	if (status) {
2360 		dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n",
2361 			status);
2362 		goto err;
2363 	}
2364 	ret = iavf_send_api_ver(adapter);
2365 	if (ret) {
2366 		dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret);
2367 		iavf_shutdown_adminq(hw);
2368 		goto err;
2369 	}
2370 	iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK);
2371 	return;
2372 err:
2373 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2374 }
2375 
2376 /**
2377  * iavf_init_version_check - second step of driver startup
2378  * @adapter: board private structure
2379  *
2380  * Function process __IAVF_INIT_VERSION_CHECK driver state.
2381  * When success the state is changed to __IAVF_INIT_GET_RESOURCES
2382  * when fails the state is changed to __IAVF_INIT_FAILED
2383  **/
2384 static void iavf_init_version_check(struct iavf_adapter *adapter)
2385 {
2386 	struct pci_dev *pdev = adapter->pdev;
2387 	struct iavf_hw *hw = &adapter->hw;
2388 	int err = -EAGAIN;
2389 
2390 	WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
2391 
2392 	if (!iavf_asq_done(hw)) {
2393 		dev_err(&pdev->dev, "Admin queue command never completed\n");
2394 		iavf_shutdown_adminq(hw);
2395 		iavf_change_state(adapter, __IAVF_STARTUP);
2396 		goto err;
2397 	}
2398 
2399 	/* aq msg sent, awaiting reply */
2400 	err = iavf_verify_api_ver(adapter);
2401 	if (err) {
2402 		if (err == -EALREADY)
2403 			err = iavf_send_api_ver(adapter);
2404 		else
2405 			dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
2406 				adapter->pf_version.major,
2407 				adapter->pf_version.minor,
2408 				VIRTCHNL_VERSION_MAJOR,
2409 				VIRTCHNL_VERSION_MINOR);
2410 		goto err;
2411 	}
2412 	err = iavf_send_vf_config_msg(adapter);
2413 	if (err) {
2414 		dev_err(&pdev->dev, "Unable to send config request (%d)\n",
2415 			err);
2416 		goto err;
2417 	}
2418 	iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES);
2419 	return;
2420 err:
2421 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2422 }
2423 
2424 /**
2425  * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES
2426  * @adapter: board private structure
2427  */
2428 int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter)
2429 {
2430 	int i, num_req_queues = adapter->num_req_queues;
2431 	struct iavf_vsi *vsi = &adapter->vsi;
2432 
2433 	for (i = 0; i < adapter->vf_res->num_vsis; i++) {
2434 		if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
2435 			adapter->vsi_res = &adapter->vf_res->vsi_res[i];
2436 	}
2437 	if (!adapter->vsi_res) {
2438 		dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
2439 		return -ENODEV;
2440 	}
2441 
2442 	if (num_req_queues &&
2443 	    num_req_queues > adapter->vsi_res->num_queue_pairs) {
2444 		/* Problem.  The PF gave us fewer queues than what we had
2445 		 * negotiated in our request.  Need a reset to see if we can't
2446 		 * get back to a working state.
2447 		 */
2448 		dev_err(&adapter->pdev->dev,
2449 			"Requested %d queues, but PF only gave us %d.\n",
2450 			num_req_queues,
2451 			adapter->vsi_res->num_queue_pairs);
2452 		adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED;
2453 		adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
2454 		iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
2455 
2456 		return -EAGAIN;
2457 	}
2458 	adapter->num_req_queues = 0;
2459 	adapter->vsi.id = adapter->vsi_res->vsi_id;
2460 
2461 	adapter->vsi.back = adapter;
2462 	adapter->vsi.base_vector = 1;
2463 	vsi->netdev = adapter->netdev;
2464 	vsi->qs_handle = adapter->vsi_res->qset_handle;
2465 	if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2466 		adapter->rss_key_size = adapter->vf_res->rss_key_size;
2467 		adapter->rss_lut_size = adapter->vf_res->rss_lut_size;
2468 	} else {
2469 		adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
2470 		adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
2471 	}
2472 
2473 	return 0;
2474 }
2475 
2476 /**
2477  * iavf_init_get_resources - third step of driver startup
2478  * @adapter: board private structure
2479  *
2480  * Function process __IAVF_INIT_GET_RESOURCES driver state and
2481  * finishes driver initialization procedure.
2482  * When success the state is changed to __IAVF_DOWN
2483  * when fails the state is changed to __IAVF_INIT_FAILED
2484  **/
2485 static void iavf_init_get_resources(struct iavf_adapter *adapter)
2486 {
2487 	struct pci_dev *pdev = adapter->pdev;
2488 	struct iavf_hw *hw = &adapter->hw;
2489 	int err;
2490 
2491 	WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
2492 	/* aq msg sent, awaiting reply */
2493 	if (!adapter->vf_res) {
2494 		adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
2495 					  GFP_KERNEL);
2496 		if (!adapter->vf_res) {
2497 			err = -ENOMEM;
2498 			goto err;
2499 		}
2500 	}
2501 	err = iavf_get_vf_config(adapter);
2502 	if (err == -EALREADY) {
2503 		err = iavf_send_vf_config_msg(adapter);
2504 		goto err;
2505 	} else if (err == -EINVAL) {
2506 		/* We only get -EINVAL if the device is in a very bad
2507 		 * state or if we've been disabled for previous bad
2508 		 * behavior. Either way, we're done now.
2509 		 */
2510 		iavf_shutdown_adminq(hw);
2511 		dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
2512 		return;
2513 	}
2514 	if (err) {
2515 		dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
2516 		goto err_alloc;
2517 	}
2518 
2519 	err = iavf_parse_vf_resource_msg(adapter);
2520 	if (err) {
2521 		dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n",
2522 			err);
2523 		goto err_alloc;
2524 	}
2525 	/* Some features require additional messages to negotiate extended
2526 	 * capabilities. These are processed in sequence by the
2527 	 * __IAVF_INIT_EXTENDED_CAPS driver state.
2528 	 */
2529 	adapter->extended_caps = IAVF_EXTENDED_CAPS;
2530 
2531 	iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS);
2532 	return;
2533 
2534 err_alloc:
2535 	kfree(adapter->vf_res);
2536 	adapter->vf_res = NULL;
2537 err:
2538 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2539 }
2540 
2541 /**
2542  * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2543  * @adapter: board private structure
2544  *
2545  * Function processes send of the extended VLAN V2 capability message to the
2546  * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent,
2547  * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2548  */
2549 static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2550 {
2551 	int ret;
2552 
2553 	WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2));
2554 
2555 	ret = iavf_send_vf_offload_vlan_v2_msg(adapter);
2556 	if (ret && ret == -EOPNOTSUPP) {
2557 		/* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case,
2558 		 * we did not send the capability exchange message and do not
2559 		 * expect a response.
2560 		 */
2561 		adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2562 	}
2563 
2564 	/* We sent the message, so move on to the next step */
2565 	adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2566 }
2567 
2568 /**
2569  * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2570  * @adapter: board private structure
2571  *
2572  * Function processes receipt of the extended VLAN V2 capability message from
2573  * the PF.
2574  **/
2575 static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2576 {
2577 	int ret;
2578 
2579 	WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2));
2580 
2581 	memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps));
2582 
2583 	ret = iavf_get_vf_vlan_v2_caps(adapter);
2584 	if (ret)
2585 		goto err;
2586 
2587 	/* We've processed receipt of the VLAN V2 caps message */
2588 	adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2589 	return;
2590 err:
2591 	/* We didn't receive a reply. Make sure we try sending again when
2592 	 * __IAVF_INIT_FAILED attempts to recover.
2593 	 */
2594 	adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2595 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2596 }
2597 
2598 /**
2599  * iavf_init_process_extended_caps - Part of driver startup
2600  * @adapter: board private structure
2601  *
2602  * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state
2603  * handles negotiating capabilities for features which require an additional
2604  * message.
2605  *
2606  * Once all extended capabilities exchanges are finished, the driver will
2607  * transition into __IAVF_INIT_CONFIG_ADAPTER.
2608  */
2609 static void iavf_init_process_extended_caps(struct iavf_adapter *adapter)
2610 {
2611 	WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS);
2612 
2613 	/* Process capability exchange for VLAN V2 */
2614 	if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) {
2615 		iavf_init_send_offload_vlan_v2_caps(adapter);
2616 		return;
2617 	} else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) {
2618 		iavf_init_recv_offload_vlan_v2_caps(adapter);
2619 		return;
2620 	}
2621 
2622 	/* When we reach here, no further extended capabilities exchanges are
2623 	 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER
2624 	 */
2625 	iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER);
2626 }
2627 
2628 /**
2629  * iavf_init_config_adapter - last part of driver startup
2630  * @adapter: board private structure
2631  *
2632  * After all the supported capabilities are negotiated, then the
2633  * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization.
2634  */
2635 static void iavf_init_config_adapter(struct iavf_adapter *adapter)
2636 {
2637 	struct net_device *netdev = adapter->netdev;
2638 	struct pci_dev *pdev = adapter->pdev;
2639 	int err;
2640 
2641 	WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER);
2642 
2643 	if (iavf_process_config(adapter))
2644 		goto err;
2645 
2646 	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2647 
2648 	adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
2649 
2650 	netdev->netdev_ops = &iavf_netdev_ops;
2651 	iavf_set_ethtool_ops(netdev);
2652 	netdev->watchdog_timeo = 5 * HZ;
2653 
2654 	/* MTU range: 68 - 9710 */
2655 	netdev->min_mtu = ETH_MIN_MTU;
2656 	netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
2657 
2658 	if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
2659 		dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
2660 			 adapter->hw.mac.addr);
2661 		eth_hw_addr_random(netdev);
2662 		ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
2663 	} else {
2664 		eth_hw_addr_set(netdev, adapter->hw.mac.addr);
2665 		ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2666 	}
2667 
2668 	adapter->tx_desc_count = IAVF_DEFAULT_TXD;
2669 	adapter->rx_desc_count = IAVF_DEFAULT_RXD;
2670 	err = iavf_init_interrupt_scheme(adapter);
2671 	if (err)
2672 		goto err_sw_init;
2673 	iavf_map_rings_to_vectors(adapter);
2674 	if (adapter->vf_res->vf_cap_flags &
2675 		VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
2676 		adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
2677 
2678 	err = iavf_request_misc_irq(adapter);
2679 	if (err)
2680 		goto err_sw_init;
2681 
2682 	netif_carrier_off(netdev);
2683 	adapter->link_up = false;
2684 	netif_tx_stop_all_queues(netdev);
2685 
2686 	dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
2687 	if (netdev->features & NETIF_F_GRO)
2688 		dev_info(&pdev->dev, "GRO is enabled\n");
2689 
2690 	iavf_change_state(adapter, __IAVF_DOWN);
2691 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2692 
2693 	iavf_misc_irq_enable(adapter);
2694 	wake_up(&adapter->down_waitqueue);
2695 
2696 	adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
2697 	adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
2698 	if (!adapter->rss_key || !adapter->rss_lut) {
2699 		err = -ENOMEM;
2700 		goto err_mem;
2701 	}
2702 	if (RSS_AQ(adapter))
2703 		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2704 	else
2705 		iavf_init_rss(adapter);
2706 
2707 	if (VLAN_V2_ALLOWED(adapter))
2708 		/* request initial VLAN offload settings */
2709 		iavf_set_vlan_offload_features(adapter, 0, netdev->features);
2710 
2711 	iavf_schedule_finish_config(adapter);
2712 	return;
2713 
2714 err_mem:
2715 	iavf_free_rss(adapter);
2716 	iavf_free_misc_irq(adapter);
2717 err_sw_init:
2718 	iavf_reset_interrupt_capability(adapter);
2719 err:
2720 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2721 }
2722 
2723 /**
2724  * iavf_watchdog_task - Periodic call-back task
2725  * @work: pointer to work_struct
2726  **/
2727 static void iavf_watchdog_task(struct work_struct *work)
2728 {
2729 	struct iavf_adapter *adapter = container_of(work,
2730 						    struct iavf_adapter,
2731 						    watchdog_task.work);
2732 	struct iavf_hw *hw = &adapter->hw;
2733 	u32 reg_val;
2734 
2735 	if (!mutex_trylock(&adapter->crit_lock)) {
2736 		if (adapter->state == __IAVF_REMOVE)
2737 			return;
2738 
2739 		goto restart_watchdog;
2740 	}
2741 
2742 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2743 		iavf_change_state(adapter, __IAVF_COMM_FAILED);
2744 
2745 	switch (adapter->state) {
2746 	case __IAVF_STARTUP:
2747 		iavf_startup(adapter);
2748 		mutex_unlock(&adapter->crit_lock);
2749 		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2750 				   msecs_to_jiffies(30));
2751 		return;
2752 	case __IAVF_INIT_VERSION_CHECK:
2753 		iavf_init_version_check(adapter);
2754 		mutex_unlock(&adapter->crit_lock);
2755 		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2756 				   msecs_to_jiffies(30));
2757 		return;
2758 	case __IAVF_INIT_GET_RESOURCES:
2759 		iavf_init_get_resources(adapter);
2760 		mutex_unlock(&adapter->crit_lock);
2761 		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2762 				   msecs_to_jiffies(1));
2763 		return;
2764 	case __IAVF_INIT_EXTENDED_CAPS:
2765 		iavf_init_process_extended_caps(adapter);
2766 		mutex_unlock(&adapter->crit_lock);
2767 		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2768 				   msecs_to_jiffies(1));
2769 		return;
2770 	case __IAVF_INIT_CONFIG_ADAPTER:
2771 		iavf_init_config_adapter(adapter);
2772 		mutex_unlock(&adapter->crit_lock);
2773 		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2774 				   msecs_to_jiffies(1));
2775 		return;
2776 	case __IAVF_INIT_FAILED:
2777 		if (test_bit(__IAVF_IN_REMOVE_TASK,
2778 			     &adapter->crit_section)) {
2779 			/* Do not update the state and do not reschedule
2780 			 * watchdog task, iavf_remove should handle this state
2781 			 * as it can loop forever
2782 			 */
2783 			mutex_unlock(&adapter->crit_lock);
2784 			return;
2785 		}
2786 		if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
2787 			dev_err(&adapter->pdev->dev,
2788 				"Failed to communicate with PF; waiting before retry\n");
2789 			adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2790 			iavf_shutdown_adminq(hw);
2791 			mutex_unlock(&adapter->crit_lock);
2792 			queue_delayed_work(adapter->wq,
2793 					   &adapter->watchdog_task, (5 * HZ));
2794 			return;
2795 		}
2796 		/* Try again from failed step*/
2797 		iavf_change_state(adapter, adapter->last_state);
2798 		mutex_unlock(&adapter->crit_lock);
2799 		queue_delayed_work(adapter->wq, &adapter->watchdog_task, HZ);
2800 		return;
2801 	case __IAVF_COMM_FAILED:
2802 		if (test_bit(__IAVF_IN_REMOVE_TASK,
2803 			     &adapter->crit_section)) {
2804 			/* Set state to __IAVF_INIT_FAILED and perform remove
2805 			 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task
2806 			 * doesn't bring the state back to __IAVF_COMM_FAILED.
2807 			 */
2808 			iavf_change_state(adapter, __IAVF_INIT_FAILED);
2809 			adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2810 			mutex_unlock(&adapter->crit_lock);
2811 			return;
2812 		}
2813 		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2814 			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2815 		if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
2816 		    reg_val == VIRTCHNL_VFR_COMPLETED) {
2817 			/* A chance for redemption! */
2818 			dev_err(&adapter->pdev->dev,
2819 				"Hardware came out of reset. Attempting reinit.\n");
2820 			/* When init task contacts the PF and
2821 			 * gets everything set up again, it'll restart the
2822 			 * watchdog for us. Down, boy. Sit. Stay. Woof.
2823 			 */
2824 			iavf_change_state(adapter, __IAVF_STARTUP);
2825 			adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2826 		}
2827 		adapter->aq_required = 0;
2828 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2829 		mutex_unlock(&adapter->crit_lock);
2830 		queue_delayed_work(adapter->wq,
2831 				   &adapter->watchdog_task,
2832 				   msecs_to_jiffies(10));
2833 		return;
2834 	case __IAVF_RESETTING:
2835 		mutex_unlock(&adapter->crit_lock);
2836 		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2837 				   HZ * 2);
2838 		return;
2839 	case __IAVF_DOWN:
2840 	case __IAVF_DOWN_PENDING:
2841 	case __IAVF_TESTING:
2842 	case __IAVF_RUNNING:
2843 		if (adapter->current_op) {
2844 			if (!iavf_asq_done(hw)) {
2845 				dev_dbg(&adapter->pdev->dev,
2846 					"Admin queue timeout\n");
2847 				iavf_send_api_ver(adapter);
2848 			}
2849 		} else {
2850 			int ret = iavf_process_aq_command(adapter);
2851 
2852 			/* An error will be returned if no commands were
2853 			 * processed; use this opportunity to update stats
2854 			 * if the error isn't -ENOTSUPP
2855 			 */
2856 			if (ret && ret != -EOPNOTSUPP &&
2857 			    adapter->state == __IAVF_RUNNING)
2858 				iavf_request_stats(adapter);
2859 		}
2860 		if (adapter->state == __IAVF_RUNNING)
2861 			iavf_detect_recover_hung(&adapter->vsi);
2862 		break;
2863 	case __IAVF_REMOVE:
2864 	default:
2865 		mutex_unlock(&adapter->crit_lock);
2866 		return;
2867 	}
2868 
2869 	/* check for hw reset */
2870 	reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2871 	if (!reg_val) {
2872 		adapter->aq_required = 0;
2873 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2874 		dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
2875 		iavf_schedule_reset(adapter, IAVF_FLAG_RESET_PENDING);
2876 		mutex_unlock(&adapter->crit_lock);
2877 		queue_delayed_work(adapter->wq,
2878 				   &adapter->watchdog_task, HZ * 2);
2879 		return;
2880 	}
2881 
2882 	mutex_unlock(&adapter->crit_lock);
2883 restart_watchdog:
2884 	if (adapter->state >= __IAVF_DOWN)
2885 		queue_work(adapter->wq, &adapter->adminq_task);
2886 	if (adapter->aq_required)
2887 		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2888 				   msecs_to_jiffies(20));
2889 	else
2890 		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2891 				   HZ * 2);
2892 }
2893 
2894 /**
2895  * iavf_disable_vf - disable VF
2896  * @adapter: board private structure
2897  *
2898  * Set communication failed flag and free all resources.
2899  * NOTE: This function is expected to be called with crit_lock being held.
2900  **/
2901 static void iavf_disable_vf(struct iavf_adapter *adapter)
2902 {
2903 	struct iavf_mac_filter *f, *ftmp;
2904 	struct iavf_vlan_filter *fv, *fvtmp;
2905 	struct iavf_cloud_filter *cf, *cftmp;
2906 
2907 	adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2908 
2909 	/* We don't use netif_running() because it may be true prior to
2910 	 * ndo_open() returning, so we can't assume it means all our open
2911 	 * tasks have finished, since we're not holding the rtnl_lock here.
2912 	 */
2913 	if (adapter->state == __IAVF_RUNNING) {
2914 		set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2915 		netif_carrier_off(adapter->netdev);
2916 		netif_tx_disable(adapter->netdev);
2917 		adapter->link_up = false;
2918 		iavf_napi_disable_all(adapter);
2919 		iavf_irq_disable(adapter);
2920 		iavf_free_traffic_irqs(adapter);
2921 		iavf_free_all_tx_resources(adapter);
2922 		iavf_free_all_rx_resources(adapter);
2923 	}
2924 
2925 	spin_lock_bh(&adapter->mac_vlan_list_lock);
2926 
2927 	/* Delete all of the filters */
2928 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2929 		list_del(&f->list);
2930 		kfree(f);
2931 	}
2932 
2933 	list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2934 		list_del(&fv->list);
2935 		kfree(fv);
2936 	}
2937 	adapter->num_vlan_filters = 0;
2938 
2939 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
2940 
2941 	spin_lock_bh(&adapter->cloud_filter_list_lock);
2942 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2943 		list_del(&cf->list);
2944 		kfree(cf);
2945 		adapter->num_cloud_filters--;
2946 	}
2947 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2948 
2949 	iavf_free_misc_irq(adapter);
2950 	iavf_free_interrupt_scheme(adapter);
2951 	memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2952 	iavf_shutdown_adminq(&adapter->hw);
2953 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2954 	iavf_change_state(adapter, __IAVF_DOWN);
2955 	wake_up(&adapter->down_waitqueue);
2956 	dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2957 }
2958 
2959 /**
2960  * iavf_reset_task - Call-back task to handle hardware reset
2961  * @work: pointer to work_struct
2962  *
2963  * During reset we need to shut down and reinitialize the admin queue
2964  * before we can use it to communicate with the PF again. We also clear
2965  * and reinit the rings because that context is lost as well.
2966  **/
2967 static void iavf_reset_task(struct work_struct *work)
2968 {
2969 	struct iavf_adapter *adapter = container_of(work,
2970 						      struct iavf_adapter,
2971 						      reset_task);
2972 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
2973 	struct net_device *netdev = adapter->netdev;
2974 	struct iavf_hw *hw = &adapter->hw;
2975 	struct iavf_mac_filter *f, *ftmp;
2976 	struct iavf_cloud_filter *cf;
2977 	enum iavf_status status;
2978 	u32 reg_val;
2979 	int i = 0, err;
2980 	bool running;
2981 
2982 	/* When device is being removed it doesn't make sense to run the reset
2983 	 * task, just return in such a case.
2984 	 */
2985 	if (!mutex_trylock(&adapter->crit_lock)) {
2986 		if (adapter->state != __IAVF_REMOVE)
2987 			queue_work(adapter->wq, &adapter->reset_task);
2988 
2989 		return;
2990 	}
2991 
2992 	iavf_misc_irq_disable(adapter);
2993 	if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2994 		adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
2995 		/* Restart the AQ here. If we have been reset but didn't
2996 		 * detect it, or if the PF had to reinit, our AQ will be hosed.
2997 		 */
2998 		iavf_shutdown_adminq(hw);
2999 		iavf_init_adminq(hw);
3000 		iavf_request_reset(adapter);
3001 	}
3002 	adapter->flags |= IAVF_FLAG_RESET_PENDING;
3003 
3004 	/* poll until we see the reset actually happen */
3005 	for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
3006 		reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
3007 			  IAVF_VF_ARQLEN1_ARQENABLE_MASK;
3008 		if (!reg_val)
3009 			break;
3010 		usleep_range(5000, 10000);
3011 	}
3012 	if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
3013 		dev_info(&adapter->pdev->dev, "Never saw reset\n");
3014 		goto continue_reset; /* act like the reset happened */
3015 	}
3016 
3017 	/* wait until the reset is complete and the PF is responding to us */
3018 	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
3019 		/* sleep first to make sure a minimum wait time is met */
3020 		msleep(IAVF_RESET_WAIT_MS);
3021 
3022 		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
3023 			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3024 		if (reg_val == VIRTCHNL_VFR_VFACTIVE)
3025 			break;
3026 	}
3027 
3028 	pci_set_master(adapter->pdev);
3029 	pci_restore_msi_state(adapter->pdev);
3030 
3031 	if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
3032 		dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
3033 			reg_val);
3034 		iavf_disable_vf(adapter);
3035 		mutex_unlock(&adapter->crit_lock);
3036 		return; /* Do not attempt to reinit. It's dead, Jim. */
3037 	}
3038 
3039 continue_reset:
3040 	/* We don't use netif_running() because it may be true prior to
3041 	 * ndo_open() returning, so we can't assume it means all our open
3042 	 * tasks have finished, since we're not holding the rtnl_lock here.
3043 	 */
3044 	running = adapter->state == __IAVF_RUNNING;
3045 
3046 	if (running) {
3047 		netif_carrier_off(netdev);
3048 		netif_tx_stop_all_queues(netdev);
3049 		adapter->link_up = false;
3050 		iavf_napi_disable_all(adapter);
3051 	}
3052 	iavf_irq_disable(adapter);
3053 
3054 	iavf_change_state(adapter, __IAVF_RESETTING);
3055 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
3056 
3057 	/* free the Tx/Rx rings and descriptors, might be better to just
3058 	 * re-use them sometime in the future
3059 	 */
3060 	iavf_free_all_rx_resources(adapter);
3061 	iavf_free_all_tx_resources(adapter);
3062 
3063 	adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
3064 	/* kill and reinit the admin queue */
3065 	iavf_shutdown_adminq(hw);
3066 	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
3067 	status = iavf_init_adminq(hw);
3068 	if (status) {
3069 		dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
3070 			 status);
3071 		goto reset_err;
3072 	}
3073 	adapter->aq_required = 0;
3074 
3075 	if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3076 	    (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3077 		err = iavf_reinit_interrupt_scheme(adapter, running);
3078 		if (err)
3079 			goto reset_err;
3080 	}
3081 
3082 	if (RSS_AQ(adapter)) {
3083 		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
3084 	} else {
3085 		err = iavf_init_rss(adapter);
3086 		if (err)
3087 			goto reset_err;
3088 	}
3089 
3090 	adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
3091 	/* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been
3092 	 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here,
3093 	 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until
3094 	 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have
3095 	 * been successfully sent and negotiated
3096 	 */
3097 	adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS;
3098 	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
3099 
3100 	spin_lock_bh(&adapter->mac_vlan_list_lock);
3101 
3102 	/* Delete filter for the current MAC address, it could have
3103 	 * been changed by the PF via administratively set MAC.
3104 	 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
3105 	 */
3106 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3107 		if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
3108 			list_del(&f->list);
3109 			kfree(f);
3110 		}
3111 	}
3112 	/* re-add all MAC filters */
3113 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
3114 		f->add = true;
3115 	}
3116 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
3117 
3118 	/* check if TCs are running and re-add all cloud filters */
3119 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3120 	if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
3121 	    adapter->num_tc) {
3122 		list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
3123 			cf->add = true;
3124 		}
3125 	}
3126 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3127 
3128 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
3129 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3130 	iavf_misc_irq_enable(adapter);
3131 
3132 	mod_delayed_work(adapter->wq, &adapter->watchdog_task, 2);
3133 
3134 	/* We were running when the reset started, so we need to restore some
3135 	 * state here.
3136 	 */
3137 	if (running) {
3138 		/* allocate transmit descriptors */
3139 		err = iavf_setup_all_tx_resources(adapter);
3140 		if (err)
3141 			goto reset_err;
3142 
3143 		/* allocate receive descriptors */
3144 		err = iavf_setup_all_rx_resources(adapter);
3145 		if (err)
3146 			goto reset_err;
3147 
3148 		if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3149 		    (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3150 			err = iavf_request_traffic_irqs(adapter, netdev->name);
3151 			if (err)
3152 				goto reset_err;
3153 
3154 			adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED;
3155 		}
3156 
3157 		iavf_configure(adapter);
3158 
3159 		/* iavf_up_complete() will switch device back
3160 		 * to __IAVF_RUNNING
3161 		 */
3162 		iavf_up_complete(adapter);
3163 
3164 		iavf_irq_enable(adapter, true);
3165 	} else {
3166 		iavf_change_state(adapter, __IAVF_DOWN);
3167 		wake_up(&adapter->down_waitqueue);
3168 	}
3169 
3170 	adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3171 
3172 	wake_up(&adapter->reset_waitqueue);
3173 	mutex_unlock(&adapter->crit_lock);
3174 
3175 	return;
3176 reset_err:
3177 	if (running) {
3178 		set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3179 		iavf_free_traffic_irqs(adapter);
3180 	}
3181 	iavf_disable_vf(adapter);
3182 
3183 	mutex_unlock(&adapter->crit_lock);
3184 	dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
3185 }
3186 
3187 /**
3188  * iavf_adminq_task - worker thread to clean the admin queue
3189  * @work: pointer to work_struct containing our data
3190  **/
3191 static void iavf_adminq_task(struct work_struct *work)
3192 {
3193 	struct iavf_adapter *adapter =
3194 		container_of(work, struct iavf_adapter, adminq_task);
3195 	struct iavf_hw *hw = &adapter->hw;
3196 	struct iavf_arq_event_info event;
3197 	enum virtchnl_ops v_op;
3198 	enum iavf_status ret, v_ret;
3199 	u32 val, oldval;
3200 	u16 pending;
3201 
3202 	if (!mutex_trylock(&adapter->crit_lock)) {
3203 		if (adapter->state == __IAVF_REMOVE)
3204 			return;
3205 
3206 		queue_work(adapter->wq, &adapter->adminq_task);
3207 		goto out;
3208 	}
3209 
3210 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
3211 		goto unlock;
3212 
3213 	event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
3214 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
3215 	if (!event.msg_buf)
3216 		goto unlock;
3217 
3218 	do {
3219 		ret = iavf_clean_arq_element(hw, &event, &pending);
3220 		v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
3221 		v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
3222 
3223 		if (ret || !v_op)
3224 			break; /* No event to process or error cleaning ARQ */
3225 
3226 		iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
3227 					 event.msg_len);
3228 		if (pending != 0)
3229 			memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
3230 	} while (pending);
3231 
3232 	if (iavf_is_reset_in_progress(adapter))
3233 		goto freedom;
3234 
3235 	/* check for error indications */
3236 	val = rd32(hw, IAVF_VF_ARQLEN1);
3237 	if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */
3238 		goto freedom;
3239 	oldval = val;
3240 	if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
3241 		dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
3242 		val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
3243 	}
3244 	if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
3245 		dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
3246 		val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
3247 	}
3248 	if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
3249 		dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
3250 		val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
3251 	}
3252 	if (oldval != val)
3253 		wr32(hw, IAVF_VF_ARQLEN1, val);
3254 
3255 	val = rd32(hw, IAVF_VF_ATQLEN1);
3256 	oldval = val;
3257 	if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
3258 		dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
3259 		val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
3260 	}
3261 	if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
3262 		dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
3263 		val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
3264 	}
3265 	if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
3266 		dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
3267 		val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
3268 	}
3269 	if (oldval != val)
3270 		wr32(hw, IAVF_VF_ATQLEN1, val);
3271 
3272 freedom:
3273 	kfree(event.msg_buf);
3274 unlock:
3275 	mutex_unlock(&adapter->crit_lock);
3276 out:
3277 	/* re-enable Admin queue interrupt cause */
3278 	iavf_misc_irq_enable(adapter);
3279 }
3280 
3281 /**
3282  * iavf_free_all_tx_resources - Free Tx Resources for All Queues
3283  * @adapter: board private structure
3284  *
3285  * Free all transmit software resources
3286  **/
3287 void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
3288 {
3289 	int i;
3290 
3291 	if (!adapter->tx_rings)
3292 		return;
3293 
3294 	for (i = 0; i < adapter->num_active_queues; i++)
3295 		if (adapter->tx_rings[i].desc)
3296 			iavf_free_tx_resources(&adapter->tx_rings[i]);
3297 }
3298 
3299 /**
3300  * iavf_setup_all_tx_resources - allocate all queues Tx resources
3301  * @adapter: board private structure
3302  *
3303  * If this function returns with an error, then it's possible one or
3304  * more of the rings is populated (while the rest are not).  It is the
3305  * callers duty to clean those orphaned rings.
3306  *
3307  * Return 0 on success, negative on failure
3308  **/
3309 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
3310 {
3311 	int i, err = 0;
3312 
3313 	for (i = 0; i < adapter->num_active_queues; i++) {
3314 		adapter->tx_rings[i].count = adapter->tx_desc_count;
3315 		err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
3316 		if (!err)
3317 			continue;
3318 		dev_err(&adapter->pdev->dev,
3319 			"Allocation for Tx Queue %u failed\n", i);
3320 		break;
3321 	}
3322 
3323 	return err;
3324 }
3325 
3326 /**
3327  * iavf_setup_all_rx_resources - allocate all queues Rx resources
3328  * @adapter: board private structure
3329  *
3330  * If this function returns with an error, then it's possible one or
3331  * more of the rings is populated (while the rest are not).  It is the
3332  * callers duty to clean those orphaned rings.
3333  *
3334  * Return 0 on success, negative on failure
3335  **/
3336 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
3337 {
3338 	int i, err = 0;
3339 
3340 	for (i = 0; i < adapter->num_active_queues; i++) {
3341 		adapter->rx_rings[i].count = adapter->rx_desc_count;
3342 		err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
3343 		if (!err)
3344 			continue;
3345 		dev_err(&adapter->pdev->dev,
3346 			"Allocation for Rx Queue %u failed\n", i);
3347 		break;
3348 	}
3349 	return err;
3350 }
3351 
3352 /**
3353  * iavf_free_all_rx_resources - Free Rx Resources for All Queues
3354  * @adapter: board private structure
3355  *
3356  * Free all receive software resources
3357  **/
3358 void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
3359 {
3360 	int i;
3361 
3362 	if (!adapter->rx_rings)
3363 		return;
3364 
3365 	for (i = 0; i < adapter->num_active_queues; i++)
3366 		if (adapter->rx_rings[i].desc)
3367 			iavf_free_rx_resources(&adapter->rx_rings[i]);
3368 }
3369 
3370 /**
3371  * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
3372  * @adapter: board private structure
3373  * @max_tx_rate: max Tx bw for a tc
3374  **/
3375 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
3376 				      u64 max_tx_rate)
3377 {
3378 	int speed = 0, ret = 0;
3379 
3380 	if (ADV_LINK_SUPPORT(adapter)) {
3381 		if (adapter->link_speed_mbps < U32_MAX) {
3382 			speed = adapter->link_speed_mbps;
3383 			goto validate_bw;
3384 		} else {
3385 			dev_err(&adapter->pdev->dev, "Unknown link speed\n");
3386 			return -EINVAL;
3387 		}
3388 	}
3389 
3390 	switch (adapter->link_speed) {
3391 	case VIRTCHNL_LINK_SPEED_40GB:
3392 		speed = SPEED_40000;
3393 		break;
3394 	case VIRTCHNL_LINK_SPEED_25GB:
3395 		speed = SPEED_25000;
3396 		break;
3397 	case VIRTCHNL_LINK_SPEED_20GB:
3398 		speed = SPEED_20000;
3399 		break;
3400 	case VIRTCHNL_LINK_SPEED_10GB:
3401 		speed = SPEED_10000;
3402 		break;
3403 	case VIRTCHNL_LINK_SPEED_5GB:
3404 		speed = SPEED_5000;
3405 		break;
3406 	case VIRTCHNL_LINK_SPEED_2_5GB:
3407 		speed = SPEED_2500;
3408 		break;
3409 	case VIRTCHNL_LINK_SPEED_1GB:
3410 		speed = SPEED_1000;
3411 		break;
3412 	case VIRTCHNL_LINK_SPEED_100MB:
3413 		speed = SPEED_100;
3414 		break;
3415 	default:
3416 		break;
3417 	}
3418 
3419 validate_bw:
3420 	if (max_tx_rate > speed) {
3421 		dev_err(&adapter->pdev->dev,
3422 			"Invalid tx rate specified\n");
3423 		ret = -EINVAL;
3424 	}
3425 
3426 	return ret;
3427 }
3428 
3429 /**
3430  * iavf_validate_ch_config - validate queue mapping info
3431  * @adapter: board private structure
3432  * @mqprio_qopt: queue parameters
3433  *
3434  * This function validates if the config provided by the user to
3435  * configure queue channels is valid or not. Returns 0 on a valid
3436  * config.
3437  **/
3438 static int iavf_validate_ch_config(struct iavf_adapter *adapter,
3439 				   struct tc_mqprio_qopt_offload *mqprio_qopt)
3440 {
3441 	u64 total_max_rate = 0;
3442 	u32 tx_rate_rem = 0;
3443 	int i, num_qps = 0;
3444 	u64 tx_rate = 0;
3445 	int ret = 0;
3446 
3447 	if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
3448 	    mqprio_qopt->qopt.num_tc < 1)
3449 		return -EINVAL;
3450 
3451 	for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
3452 		if (!mqprio_qopt->qopt.count[i] ||
3453 		    mqprio_qopt->qopt.offset[i] != num_qps)
3454 			return -EINVAL;
3455 		if (mqprio_qopt->min_rate[i]) {
3456 			dev_err(&adapter->pdev->dev,
3457 				"Invalid min tx rate (greater than 0) specified for TC%d\n",
3458 				i);
3459 			return -EINVAL;
3460 		}
3461 
3462 		/* convert to Mbps */
3463 		tx_rate = div_u64(mqprio_qopt->max_rate[i],
3464 				  IAVF_MBPS_DIVISOR);
3465 
3466 		if (mqprio_qopt->max_rate[i] &&
3467 		    tx_rate < IAVF_MBPS_QUANTA) {
3468 			dev_err(&adapter->pdev->dev,
3469 				"Invalid max tx rate for TC%d, minimum %dMbps\n",
3470 				i, IAVF_MBPS_QUANTA);
3471 			return -EINVAL;
3472 		}
3473 
3474 		(void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem);
3475 
3476 		if (tx_rate_rem != 0) {
3477 			dev_err(&adapter->pdev->dev,
3478 				"Invalid max tx rate for TC%d, not divisible by %d\n",
3479 				i, IAVF_MBPS_QUANTA);
3480 			return -EINVAL;
3481 		}
3482 
3483 		total_max_rate += tx_rate;
3484 		num_qps += mqprio_qopt->qopt.count[i];
3485 	}
3486 	if (num_qps > adapter->num_active_queues) {
3487 		dev_err(&adapter->pdev->dev,
3488 			"Cannot support requested number of queues\n");
3489 		return -EINVAL;
3490 	}
3491 
3492 	ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
3493 	return ret;
3494 }
3495 
3496 /**
3497  * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
3498  * @adapter: board private structure
3499  **/
3500 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
3501 {
3502 	struct iavf_cloud_filter *cf, *cftmp;
3503 
3504 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3505 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
3506 				 list) {
3507 		list_del(&cf->list);
3508 		kfree(cf);
3509 		adapter->num_cloud_filters--;
3510 	}
3511 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3512 }
3513 
3514 /**
3515  * __iavf_setup_tc - configure multiple traffic classes
3516  * @netdev: network interface device structure
3517  * @type_data: tc offload data
3518  *
3519  * This function processes the config information provided by the
3520  * user to configure traffic classes/queue channels and packages the
3521  * information to request the PF to setup traffic classes.
3522  *
3523  * Returns 0 on success.
3524  **/
3525 static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
3526 {
3527 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
3528 	struct iavf_adapter *adapter = netdev_priv(netdev);
3529 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
3530 	u8 num_tc = 0, total_qps = 0;
3531 	int ret = 0, netdev_tc = 0;
3532 	u64 max_tx_rate;
3533 	u16 mode;
3534 	int i;
3535 
3536 	num_tc = mqprio_qopt->qopt.num_tc;
3537 	mode = mqprio_qopt->mode;
3538 
3539 	/* delete queue_channel */
3540 	if (!mqprio_qopt->qopt.hw) {
3541 		if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
3542 			/* reset the tc configuration */
3543 			netdev_reset_tc(netdev);
3544 			adapter->num_tc = 0;
3545 			netif_tx_stop_all_queues(netdev);
3546 			netif_tx_disable(netdev);
3547 			iavf_del_all_cloud_filters(adapter);
3548 			adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
3549 			total_qps = adapter->orig_num_active_queues;
3550 			goto exit;
3551 		} else {
3552 			return -EINVAL;
3553 		}
3554 	}
3555 
3556 	/* add queue channel */
3557 	if (mode == TC_MQPRIO_MODE_CHANNEL) {
3558 		if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
3559 			dev_err(&adapter->pdev->dev, "ADq not supported\n");
3560 			return -EOPNOTSUPP;
3561 		}
3562 		if (adapter->ch_config.state != __IAVF_TC_INVALID) {
3563 			dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
3564 			return -EINVAL;
3565 		}
3566 
3567 		ret = iavf_validate_ch_config(adapter, mqprio_qopt);
3568 		if (ret)
3569 			return ret;
3570 		/* Return if same TC config is requested */
3571 		if (adapter->num_tc == num_tc)
3572 			return 0;
3573 		adapter->num_tc = num_tc;
3574 
3575 		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3576 			if (i < num_tc) {
3577 				adapter->ch_config.ch_info[i].count =
3578 					mqprio_qopt->qopt.count[i];
3579 				adapter->ch_config.ch_info[i].offset =
3580 					mqprio_qopt->qopt.offset[i];
3581 				total_qps += mqprio_qopt->qopt.count[i];
3582 				max_tx_rate = mqprio_qopt->max_rate[i];
3583 				/* convert to Mbps */
3584 				max_tx_rate = div_u64(max_tx_rate,
3585 						      IAVF_MBPS_DIVISOR);
3586 				adapter->ch_config.ch_info[i].max_tx_rate =
3587 					max_tx_rate;
3588 			} else {
3589 				adapter->ch_config.ch_info[i].count = 1;
3590 				adapter->ch_config.ch_info[i].offset = 0;
3591 			}
3592 		}
3593 
3594 		/* Take snapshot of original config such as "num_active_queues"
3595 		 * It is used later when delete ADQ flow is exercised, so that
3596 		 * once delete ADQ flow completes, VF shall go back to its
3597 		 * original queue configuration
3598 		 */
3599 
3600 		adapter->orig_num_active_queues = adapter->num_active_queues;
3601 
3602 		/* Store queue info based on TC so that VF gets configured
3603 		 * with correct number of queues when VF completes ADQ config
3604 		 * flow
3605 		 */
3606 		adapter->ch_config.total_qps = total_qps;
3607 
3608 		netif_tx_stop_all_queues(netdev);
3609 		netif_tx_disable(netdev);
3610 		adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
3611 		netdev_reset_tc(netdev);
3612 		/* Report the tc mapping up the stack */
3613 		netdev_set_num_tc(adapter->netdev, num_tc);
3614 		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3615 			u16 qcount = mqprio_qopt->qopt.count[i];
3616 			u16 qoffset = mqprio_qopt->qopt.offset[i];
3617 
3618 			if (i < num_tc)
3619 				netdev_set_tc_queue(netdev, netdev_tc++, qcount,
3620 						    qoffset);
3621 		}
3622 	}
3623 exit:
3624 	if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
3625 		return 0;
3626 
3627 	netif_set_real_num_rx_queues(netdev, total_qps);
3628 	netif_set_real_num_tx_queues(netdev, total_qps);
3629 
3630 	return ret;
3631 }
3632 
3633 /**
3634  * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
3635  * @adapter: board private structure
3636  * @f: pointer to struct flow_cls_offload
3637  * @filter: pointer to cloud filter structure
3638  */
3639 static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
3640 				 struct flow_cls_offload *f,
3641 				 struct iavf_cloud_filter *filter)
3642 {
3643 	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
3644 	struct flow_dissector *dissector = rule->match.dissector;
3645 	u16 n_proto_mask = 0;
3646 	u16 n_proto_key = 0;
3647 	u8 field_flags = 0;
3648 	u16 addr_type = 0;
3649 	u16 n_proto = 0;
3650 	int i = 0;
3651 	struct virtchnl_filter *vf = &filter->f;
3652 
3653 	if (dissector->used_keys &
3654 	    ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
3655 	      BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
3656 	      BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
3657 	      BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) |
3658 	      BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
3659 	      BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
3660 	      BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) |
3661 	      BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
3662 		dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%llx\n",
3663 			dissector->used_keys);
3664 		return -EOPNOTSUPP;
3665 	}
3666 
3667 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
3668 		struct flow_match_enc_keyid match;
3669 
3670 		flow_rule_match_enc_keyid(rule, &match);
3671 		if (match.mask->keyid != 0)
3672 			field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
3673 	}
3674 
3675 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
3676 		struct flow_match_basic match;
3677 
3678 		flow_rule_match_basic(rule, &match);
3679 		n_proto_key = ntohs(match.key->n_proto);
3680 		n_proto_mask = ntohs(match.mask->n_proto);
3681 
3682 		if (n_proto_key == ETH_P_ALL) {
3683 			n_proto_key = 0;
3684 			n_proto_mask = 0;
3685 		}
3686 		n_proto = n_proto_key & n_proto_mask;
3687 		if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
3688 			return -EINVAL;
3689 		if (n_proto == ETH_P_IPV6) {
3690 			/* specify flow type as TCP IPv6 */
3691 			vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
3692 		}
3693 
3694 		if (match.key->ip_proto != IPPROTO_TCP) {
3695 			dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
3696 			return -EINVAL;
3697 		}
3698 	}
3699 
3700 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
3701 		struct flow_match_eth_addrs match;
3702 
3703 		flow_rule_match_eth_addrs(rule, &match);
3704 
3705 		/* use is_broadcast and is_zero to check for all 0xf or 0 */
3706 		if (!is_zero_ether_addr(match.mask->dst)) {
3707 			if (is_broadcast_ether_addr(match.mask->dst)) {
3708 				field_flags |= IAVF_CLOUD_FIELD_OMAC;
3709 			} else {
3710 				dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
3711 					match.mask->dst);
3712 				return -EINVAL;
3713 			}
3714 		}
3715 
3716 		if (!is_zero_ether_addr(match.mask->src)) {
3717 			if (is_broadcast_ether_addr(match.mask->src)) {
3718 				field_flags |= IAVF_CLOUD_FIELD_IMAC;
3719 			} else {
3720 				dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
3721 					match.mask->src);
3722 				return -EINVAL;
3723 			}
3724 		}
3725 
3726 		if (!is_zero_ether_addr(match.key->dst))
3727 			if (is_valid_ether_addr(match.key->dst) ||
3728 			    is_multicast_ether_addr(match.key->dst)) {
3729 				/* set the mask if a valid dst_mac address */
3730 				for (i = 0; i < ETH_ALEN; i++)
3731 					vf->mask.tcp_spec.dst_mac[i] |= 0xff;
3732 				ether_addr_copy(vf->data.tcp_spec.dst_mac,
3733 						match.key->dst);
3734 			}
3735 
3736 		if (!is_zero_ether_addr(match.key->src))
3737 			if (is_valid_ether_addr(match.key->src) ||
3738 			    is_multicast_ether_addr(match.key->src)) {
3739 				/* set the mask if a valid dst_mac address */
3740 				for (i = 0; i < ETH_ALEN; i++)
3741 					vf->mask.tcp_spec.src_mac[i] |= 0xff;
3742 				ether_addr_copy(vf->data.tcp_spec.src_mac,
3743 						match.key->src);
3744 		}
3745 	}
3746 
3747 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
3748 		struct flow_match_vlan match;
3749 
3750 		flow_rule_match_vlan(rule, &match);
3751 		if (match.mask->vlan_id) {
3752 			if (match.mask->vlan_id == VLAN_VID_MASK) {
3753 				field_flags |= IAVF_CLOUD_FIELD_IVLAN;
3754 			} else {
3755 				dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
3756 					match.mask->vlan_id);
3757 				return -EINVAL;
3758 			}
3759 		}
3760 		vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
3761 		vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
3762 	}
3763 
3764 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
3765 		struct flow_match_control match;
3766 
3767 		flow_rule_match_control(rule, &match);
3768 		addr_type = match.key->addr_type;
3769 	}
3770 
3771 	if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
3772 		struct flow_match_ipv4_addrs match;
3773 
3774 		flow_rule_match_ipv4_addrs(rule, &match);
3775 		if (match.mask->dst) {
3776 			if (match.mask->dst == cpu_to_be32(0xffffffff)) {
3777 				field_flags |= IAVF_CLOUD_FIELD_IIP;
3778 			} else {
3779 				dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
3780 					be32_to_cpu(match.mask->dst));
3781 				return -EINVAL;
3782 			}
3783 		}
3784 
3785 		if (match.mask->src) {
3786 			if (match.mask->src == cpu_to_be32(0xffffffff)) {
3787 				field_flags |= IAVF_CLOUD_FIELD_IIP;
3788 			} else {
3789 				dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
3790 					be32_to_cpu(match.mask->src));
3791 				return -EINVAL;
3792 			}
3793 		}
3794 
3795 		if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
3796 			dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
3797 			return -EINVAL;
3798 		}
3799 		if (match.key->dst) {
3800 			vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
3801 			vf->data.tcp_spec.dst_ip[0] = match.key->dst;
3802 		}
3803 		if (match.key->src) {
3804 			vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
3805 			vf->data.tcp_spec.src_ip[0] = match.key->src;
3806 		}
3807 	}
3808 
3809 	if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
3810 		struct flow_match_ipv6_addrs match;
3811 
3812 		flow_rule_match_ipv6_addrs(rule, &match);
3813 
3814 		/* validate mask, make sure it is not IPV6_ADDR_ANY */
3815 		if (ipv6_addr_any(&match.mask->dst)) {
3816 			dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
3817 				IPV6_ADDR_ANY);
3818 			return -EINVAL;
3819 		}
3820 
3821 		/* src and dest IPv6 address should not be LOOPBACK
3822 		 * (0:0:0:0:0:0:0:1) which can be represented as ::1
3823 		 */
3824 		if (ipv6_addr_loopback(&match.key->dst) ||
3825 		    ipv6_addr_loopback(&match.key->src)) {
3826 			dev_err(&adapter->pdev->dev,
3827 				"ipv6 addr should not be loopback\n");
3828 			return -EINVAL;
3829 		}
3830 		if (!ipv6_addr_any(&match.mask->dst) ||
3831 		    !ipv6_addr_any(&match.mask->src))
3832 			field_flags |= IAVF_CLOUD_FIELD_IIP;
3833 
3834 		for (i = 0; i < 4; i++)
3835 			vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
3836 		memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
3837 		       sizeof(vf->data.tcp_spec.dst_ip));
3838 		for (i = 0; i < 4; i++)
3839 			vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
3840 		memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
3841 		       sizeof(vf->data.tcp_spec.src_ip));
3842 	}
3843 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
3844 		struct flow_match_ports match;
3845 
3846 		flow_rule_match_ports(rule, &match);
3847 		if (match.mask->src) {
3848 			if (match.mask->src == cpu_to_be16(0xffff)) {
3849 				field_flags |= IAVF_CLOUD_FIELD_IIP;
3850 			} else {
3851 				dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
3852 					be16_to_cpu(match.mask->src));
3853 				return -EINVAL;
3854 			}
3855 		}
3856 
3857 		if (match.mask->dst) {
3858 			if (match.mask->dst == cpu_to_be16(0xffff)) {
3859 				field_flags |= IAVF_CLOUD_FIELD_IIP;
3860 			} else {
3861 				dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
3862 					be16_to_cpu(match.mask->dst));
3863 				return -EINVAL;
3864 			}
3865 		}
3866 		if (match.key->dst) {
3867 			vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
3868 			vf->data.tcp_spec.dst_port = match.key->dst;
3869 		}
3870 
3871 		if (match.key->src) {
3872 			vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
3873 			vf->data.tcp_spec.src_port = match.key->src;
3874 		}
3875 	}
3876 	vf->field_flags = field_flags;
3877 
3878 	return 0;
3879 }
3880 
3881 /**
3882  * iavf_handle_tclass - Forward to a traffic class on the device
3883  * @adapter: board private structure
3884  * @tc: traffic class index on the device
3885  * @filter: pointer to cloud filter structure
3886  */
3887 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
3888 			      struct iavf_cloud_filter *filter)
3889 {
3890 	if (tc == 0)
3891 		return 0;
3892 	if (tc < adapter->num_tc) {
3893 		if (!filter->f.data.tcp_spec.dst_port) {
3894 			dev_err(&adapter->pdev->dev,
3895 				"Specify destination port to redirect to traffic class other than TC0\n");
3896 			return -EINVAL;
3897 		}
3898 	}
3899 	/* redirect to a traffic class on the same device */
3900 	filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
3901 	filter->f.action_meta = tc;
3902 	return 0;
3903 }
3904 
3905 /**
3906  * iavf_find_cf - Find the cloud filter in the list
3907  * @adapter: Board private structure
3908  * @cookie: filter specific cookie
3909  *
3910  * Returns ptr to the filter object or NULL. Must be called while holding the
3911  * cloud_filter_list_lock.
3912  */
3913 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3914 					      unsigned long *cookie)
3915 {
3916 	struct iavf_cloud_filter *filter = NULL;
3917 
3918 	if (!cookie)
3919 		return NULL;
3920 
3921 	list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3922 		if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3923 			return filter;
3924 	}
3925 	return NULL;
3926 }
3927 
3928 /**
3929  * iavf_configure_clsflower - Add tc flower filters
3930  * @adapter: board private structure
3931  * @cls_flower: Pointer to struct flow_cls_offload
3932  */
3933 static int iavf_configure_clsflower(struct iavf_adapter *adapter,
3934 				    struct flow_cls_offload *cls_flower)
3935 {
3936 	int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
3937 	struct iavf_cloud_filter *filter = NULL;
3938 	int err = -EINVAL, count = 50;
3939 
3940 	if (tc < 0) {
3941 		dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
3942 		return -EINVAL;
3943 	}
3944 
3945 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
3946 	if (!filter)
3947 		return -ENOMEM;
3948 
3949 	while (!mutex_trylock(&adapter->crit_lock)) {
3950 		if (--count == 0) {
3951 			kfree(filter);
3952 			return err;
3953 		}
3954 		udelay(1);
3955 	}
3956 
3957 	filter->cookie = cls_flower->cookie;
3958 
3959 	/* bail out here if filter already exists */
3960 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3961 	if (iavf_find_cf(adapter, &cls_flower->cookie)) {
3962 		dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n");
3963 		err = -EEXIST;
3964 		goto spin_unlock;
3965 	}
3966 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3967 
3968 	/* set the mask to all zeroes to begin with */
3969 	memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
3970 	/* start out with flow type and eth type IPv4 to begin with */
3971 	filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
3972 	err = iavf_parse_cls_flower(adapter, cls_flower, filter);
3973 	if (err)
3974 		goto err;
3975 
3976 	err = iavf_handle_tclass(adapter, tc, filter);
3977 	if (err)
3978 		goto err;
3979 
3980 	/* add filter to the list */
3981 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3982 	list_add_tail(&filter->list, &adapter->cloud_filter_list);
3983 	adapter->num_cloud_filters++;
3984 	filter->add = true;
3985 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3986 spin_unlock:
3987 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3988 err:
3989 	if (err)
3990 		kfree(filter);
3991 
3992 	mutex_unlock(&adapter->crit_lock);
3993 	return err;
3994 }
3995 
3996 /**
3997  * iavf_delete_clsflower - Remove tc flower filters
3998  * @adapter: board private structure
3999  * @cls_flower: Pointer to struct flow_cls_offload
4000  */
4001 static int iavf_delete_clsflower(struct iavf_adapter *adapter,
4002 				 struct flow_cls_offload *cls_flower)
4003 {
4004 	struct iavf_cloud_filter *filter = NULL;
4005 	int err = 0;
4006 
4007 	spin_lock_bh(&adapter->cloud_filter_list_lock);
4008 	filter = iavf_find_cf(adapter, &cls_flower->cookie);
4009 	if (filter) {
4010 		filter->del = true;
4011 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
4012 	} else {
4013 		err = -EINVAL;
4014 	}
4015 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
4016 
4017 	return err;
4018 }
4019 
4020 /**
4021  * iavf_setup_tc_cls_flower - flower classifier offloads
4022  * @adapter: board private structure
4023  * @cls_flower: pointer to flow_cls_offload struct with flow info
4024  */
4025 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
4026 				    struct flow_cls_offload *cls_flower)
4027 {
4028 	switch (cls_flower->command) {
4029 	case FLOW_CLS_REPLACE:
4030 		return iavf_configure_clsflower(adapter, cls_flower);
4031 	case FLOW_CLS_DESTROY:
4032 		return iavf_delete_clsflower(adapter, cls_flower);
4033 	case FLOW_CLS_STATS:
4034 		return -EOPNOTSUPP;
4035 	default:
4036 		return -EOPNOTSUPP;
4037 	}
4038 }
4039 
4040 /**
4041  * iavf_setup_tc_block_cb - block callback for tc
4042  * @type: type of offload
4043  * @type_data: offload data
4044  * @cb_priv:
4045  *
4046  * This function is the block callback for traffic classes
4047  **/
4048 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
4049 				  void *cb_priv)
4050 {
4051 	struct iavf_adapter *adapter = cb_priv;
4052 
4053 	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
4054 		return -EOPNOTSUPP;
4055 
4056 	switch (type) {
4057 	case TC_SETUP_CLSFLOWER:
4058 		return iavf_setup_tc_cls_flower(cb_priv, type_data);
4059 	default:
4060 		return -EOPNOTSUPP;
4061 	}
4062 }
4063 
4064 static LIST_HEAD(iavf_block_cb_list);
4065 
4066 /**
4067  * iavf_setup_tc - configure multiple traffic classes
4068  * @netdev: network interface device structure
4069  * @type: type of offload
4070  * @type_data: tc offload data
4071  *
4072  * This function is the callback to ndo_setup_tc in the
4073  * netdev_ops.
4074  *
4075  * Returns 0 on success
4076  **/
4077 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
4078 			 void *type_data)
4079 {
4080 	struct iavf_adapter *adapter = netdev_priv(netdev);
4081 
4082 	switch (type) {
4083 	case TC_SETUP_QDISC_MQPRIO:
4084 		return __iavf_setup_tc(netdev, type_data);
4085 	case TC_SETUP_BLOCK:
4086 		return flow_block_cb_setup_simple(type_data,
4087 						  &iavf_block_cb_list,
4088 						  iavf_setup_tc_block_cb,
4089 						  adapter, adapter, true);
4090 	default:
4091 		return -EOPNOTSUPP;
4092 	}
4093 }
4094 
4095 /**
4096  * iavf_restore_fdir_filters
4097  * @adapter: board private structure
4098  *
4099  * Restore existing FDIR filters when VF netdev comes back up.
4100  **/
4101 static void iavf_restore_fdir_filters(struct iavf_adapter *adapter)
4102 {
4103 	struct iavf_fdir_fltr *f;
4104 
4105 	spin_lock_bh(&adapter->fdir_fltr_lock);
4106 	list_for_each_entry(f, &adapter->fdir_list_head, list) {
4107 		if (f->state == IAVF_FDIR_FLTR_DIS_REQUEST) {
4108 			/* Cancel a request, keep filter as active */
4109 			f->state = IAVF_FDIR_FLTR_ACTIVE;
4110 		} else if (f->state == IAVF_FDIR_FLTR_DIS_PENDING ||
4111 			   f->state == IAVF_FDIR_FLTR_INACTIVE) {
4112 			/* Add filters which are inactive or have a pending
4113 			 * request to PF to be deleted
4114 			 */
4115 			f->state = IAVF_FDIR_FLTR_ADD_REQUEST;
4116 			adapter->aq_required |= IAVF_FLAG_AQ_ADD_FDIR_FILTER;
4117 		}
4118 	}
4119 	spin_unlock_bh(&adapter->fdir_fltr_lock);
4120 }
4121 
4122 /**
4123  * iavf_open - Called when a network interface is made active
4124  * @netdev: network interface device structure
4125  *
4126  * Returns 0 on success, negative value on failure
4127  *
4128  * The open entry point is called when a network interface is made
4129  * active by the system (IFF_UP).  At this point all resources needed
4130  * for transmit and receive operations are allocated, the interrupt
4131  * handler is registered with the OS, the watchdog is started,
4132  * and the stack is notified that the interface is ready.
4133  **/
4134 static int iavf_open(struct net_device *netdev)
4135 {
4136 	struct iavf_adapter *adapter = netdev_priv(netdev);
4137 	int err;
4138 
4139 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
4140 		dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
4141 		return -EIO;
4142 	}
4143 
4144 	while (!mutex_trylock(&adapter->crit_lock)) {
4145 		/* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock
4146 		 * is already taken and iavf_open is called from an upper
4147 		 * device's notifier reacting on NETDEV_REGISTER event.
4148 		 * We have to leave here to avoid dead lock.
4149 		 */
4150 		if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER)
4151 			return -EBUSY;
4152 
4153 		usleep_range(500, 1000);
4154 	}
4155 
4156 	if (adapter->state != __IAVF_DOWN) {
4157 		err = -EBUSY;
4158 		goto err_unlock;
4159 	}
4160 
4161 	if (adapter->state == __IAVF_RUNNING &&
4162 	    !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) {
4163 		dev_dbg(&adapter->pdev->dev, "VF is already open.\n");
4164 		err = 0;
4165 		goto err_unlock;
4166 	}
4167 
4168 	/* allocate transmit descriptors */
4169 	err = iavf_setup_all_tx_resources(adapter);
4170 	if (err)
4171 		goto err_setup_tx;
4172 
4173 	/* allocate receive descriptors */
4174 	err = iavf_setup_all_rx_resources(adapter);
4175 	if (err)
4176 		goto err_setup_rx;
4177 
4178 	/* clear any pending interrupts, may auto mask */
4179 	err = iavf_request_traffic_irqs(adapter, netdev->name);
4180 	if (err)
4181 		goto err_req_irq;
4182 
4183 	spin_lock_bh(&adapter->mac_vlan_list_lock);
4184 
4185 	iavf_add_filter(adapter, adapter->hw.mac.addr);
4186 
4187 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
4188 
4189 	/* Restore filters that were removed with IFF_DOWN */
4190 	iavf_restore_filters(adapter);
4191 	iavf_restore_fdir_filters(adapter);
4192 
4193 	iavf_configure(adapter);
4194 
4195 	iavf_up_complete(adapter);
4196 
4197 	iavf_irq_enable(adapter, true);
4198 
4199 	mutex_unlock(&adapter->crit_lock);
4200 
4201 	return 0;
4202 
4203 err_req_irq:
4204 	iavf_down(adapter);
4205 	iavf_free_traffic_irqs(adapter);
4206 err_setup_rx:
4207 	iavf_free_all_rx_resources(adapter);
4208 err_setup_tx:
4209 	iavf_free_all_tx_resources(adapter);
4210 err_unlock:
4211 	mutex_unlock(&adapter->crit_lock);
4212 
4213 	return err;
4214 }
4215 
4216 /**
4217  * iavf_close - Disables a network interface
4218  * @netdev: network interface device structure
4219  *
4220  * Returns 0, this is not allowed to fail
4221  *
4222  * The close entry point is called when an interface is de-activated
4223  * by the OS.  The hardware is still under the drivers control, but
4224  * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
4225  * are freed, along with all transmit and receive resources.
4226  **/
4227 static int iavf_close(struct net_device *netdev)
4228 {
4229 	struct iavf_adapter *adapter = netdev_priv(netdev);
4230 	u64 aq_to_restore;
4231 	int status;
4232 
4233 	mutex_lock(&adapter->crit_lock);
4234 
4235 	if (adapter->state <= __IAVF_DOWN_PENDING) {
4236 		mutex_unlock(&adapter->crit_lock);
4237 		return 0;
4238 	}
4239 
4240 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
4241 	/* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before
4242 	 * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl
4243 	 * deadlock with adminq_task() until iavf_close timeouts. We must send
4244 	 * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make
4245 	 * disable queues possible for vf. Give only necessary flags to
4246 	 * iavf_down and save other to set them right before iavf_close()
4247 	 * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and
4248 	 * iavf will be in DOWN state.
4249 	 */
4250 	aq_to_restore = adapter->aq_required;
4251 	adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG;
4252 
4253 	/* Remove flags which we do not want to send after close or we want to
4254 	 * send before disable queues.
4255 	 */
4256 	aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG		|
4257 			   IAVF_FLAG_AQ_ENABLE_QUEUES		|
4258 			   IAVF_FLAG_AQ_CONFIGURE_QUEUES	|
4259 			   IAVF_FLAG_AQ_ADD_VLAN_FILTER		|
4260 			   IAVF_FLAG_AQ_ADD_MAC_FILTER		|
4261 			   IAVF_FLAG_AQ_ADD_CLOUD_FILTER	|
4262 			   IAVF_FLAG_AQ_ADD_FDIR_FILTER		|
4263 			   IAVF_FLAG_AQ_ADD_ADV_RSS_CFG);
4264 
4265 	iavf_down(adapter);
4266 	iavf_change_state(adapter, __IAVF_DOWN_PENDING);
4267 	iavf_free_traffic_irqs(adapter);
4268 
4269 	mutex_unlock(&adapter->crit_lock);
4270 
4271 	/* We explicitly don't free resources here because the hardware is
4272 	 * still active and can DMA into memory. Resources are cleared in
4273 	 * iavf_virtchnl_completion() after we get confirmation from the PF
4274 	 * driver that the rings have been stopped.
4275 	 *
4276 	 * Also, we wait for state to transition to __IAVF_DOWN before
4277 	 * returning. State change occurs in iavf_virtchnl_completion() after
4278 	 * VF resources are released (which occurs after PF driver processes and
4279 	 * responds to admin queue commands).
4280 	 */
4281 
4282 	status = wait_event_timeout(adapter->down_waitqueue,
4283 				    adapter->state == __IAVF_DOWN,
4284 				    msecs_to_jiffies(500));
4285 	if (!status)
4286 		netdev_warn(netdev, "Device resources not yet released\n");
4287 
4288 	mutex_lock(&adapter->crit_lock);
4289 	adapter->aq_required |= aq_to_restore;
4290 	mutex_unlock(&adapter->crit_lock);
4291 	return 0;
4292 }
4293 
4294 /**
4295  * iavf_change_mtu - Change the Maximum Transfer Unit
4296  * @netdev: network interface device structure
4297  * @new_mtu: new value for maximum frame size
4298  *
4299  * Returns 0 on success, negative on failure
4300  **/
4301 static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
4302 {
4303 	struct iavf_adapter *adapter = netdev_priv(netdev);
4304 	int ret = 0;
4305 
4306 	netdev_dbg(netdev, "changing MTU from %d to %d\n",
4307 		   netdev->mtu, new_mtu);
4308 	netdev->mtu = new_mtu;
4309 
4310 	if (netif_running(netdev)) {
4311 		iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
4312 		ret = iavf_wait_for_reset(adapter);
4313 		if (ret < 0)
4314 			netdev_warn(netdev, "MTU change interrupted waiting for reset");
4315 		else if (ret)
4316 			netdev_warn(netdev, "MTU change timed out waiting for reset");
4317 	}
4318 
4319 	return ret;
4320 }
4321 
4322 /**
4323  * iavf_disable_fdir - disable Flow Director and clear existing filters
4324  * @adapter: board private structure
4325  **/
4326 static void iavf_disable_fdir(struct iavf_adapter *adapter)
4327 {
4328 	struct iavf_fdir_fltr *fdir, *fdirtmp;
4329 	bool del_filters = false;
4330 
4331 	adapter->flags &= ~IAVF_FLAG_FDIR_ENABLED;
4332 
4333 	/* remove all Flow Director filters */
4334 	spin_lock_bh(&adapter->fdir_fltr_lock);
4335 	list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head,
4336 				 list) {
4337 		if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST ||
4338 		    fdir->state == IAVF_FDIR_FLTR_INACTIVE) {
4339 			/* Delete filters not registered in PF */
4340 			list_del(&fdir->list);
4341 			kfree(fdir);
4342 			adapter->fdir_active_fltr--;
4343 		} else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING ||
4344 			   fdir->state == IAVF_FDIR_FLTR_DIS_REQUEST ||
4345 			   fdir->state == IAVF_FDIR_FLTR_ACTIVE) {
4346 			/* Filters registered in PF, schedule their deletion */
4347 			fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST;
4348 			del_filters = true;
4349 		} else if (fdir->state == IAVF_FDIR_FLTR_DIS_PENDING) {
4350 			/* Request to delete filter already sent to PF, change
4351 			 * state to DEL_PENDING to delete filter after PF's
4352 			 * response, not set as INACTIVE
4353 			 */
4354 			fdir->state = IAVF_FDIR_FLTR_DEL_PENDING;
4355 		}
4356 	}
4357 	spin_unlock_bh(&adapter->fdir_fltr_lock);
4358 
4359 	if (del_filters) {
4360 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
4361 		mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
4362 	}
4363 }
4364 
4365 #define NETIF_VLAN_OFFLOAD_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
4366 					 NETIF_F_HW_VLAN_CTAG_TX | \
4367 					 NETIF_F_HW_VLAN_STAG_RX | \
4368 					 NETIF_F_HW_VLAN_STAG_TX)
4369 
4370 /**
4371  * iavf_set_features - set the netdev feature flags
4372  * @netdev: ptr to the netdev being adjusted
4373  * @features: the feature set that the stack is suggesting
4374  * Note: expects to be called while under rtnl_lock()
4375  **/
4376 static int iavf_set_features(struct net_device *netdev,
4377 			     netdev_features_t features)
4378 {
4379 	struct iavf_adapter *adapter = netdev_priv(netdev);
4380 
4381 	/* trigger update on any VLAN feature change */
4382 	if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^
4383 	    (features & NETIF_VLAN_OFFLOAD_FEATURES))
4384 		iavf_set_vlan_offload_features(adapter, netdev->features,
4385 					       features);
4386 	if (CRC_OFFLOAD_ALLOWED(adapter) &&
4387 	    ((netdev->features & NETIF_F_RXFCS) ^ (features & NETIF_F_RXFCS)))
4388 		iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
4389 
4390 	if ((netdev->features & NETIF_F_NTUPLE) ^ (features & NETIF_F_NTUPLE)) {
4391 		if (features & NETIF_F_NTUPLE)
4392 			adapter->flags |= IAVF_FLAG_FDIR_ENABLED;
4393 		else
4394 			iavf_disable_fdir(adapter);
4395 	}
4396 
4397 	return 0;
4398 }
4399 
4400 /**
4401  * iavf_features_check - Validate encapsulated packet conforms to limits
4402  * @skb: skb buff
4403  * @dev: This physical port's netdev
4404  * @features: Offload features that the stack believes apply
4405  **/
4406 static netdev_features_t iavf_features_check(struct sk_buff *skb,
4407 					     struct net_device *dev,
4408 					     netdev_features_t features)
4409 {
4410 	size_t len;
4411 
4412 	/* No point in doing any of this if neither checksum nor GSO are
4413 	 * being requested for this frame.  We can rule out both by just
4414 	 * checking for CHECKSUM_PARTIAL
4415 	 */
4416 	if (skb->ip_summed != CHECKSUM_PARTIAL)
4417 		return features;
4418 
4419 	/* We cannot support GSO if the MSS is going to be less than
4420 	 * 64 bytes.  If it is then we need to drop support for GSO.
4421 	 */
4422 	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
4423 		features &= ~NETIF_F_GSO_MASK;
4424 
4425 	/* MACLEN can support at most 63 words */
4426 	len = skb_network_header(skb) - skb->data;
4427 	if (len & ~(63 * 2))
4428 		goto out_err;
4429 
4430 	/* IPLEN and EIPLEN can support at most 127 dwords */
4431 	len = skb_transport_header(skb) - skb_network_header(skb);
4432 	if (len & ~(127 * 4))
4433 		goto out_err;
4434 
4435 	if (skb->encapsulation) {
4436 		/* L4TUNLEN can support 127 words */
4437 		len = skb_inner_network_header(skb) - skb_transport_header(skb);
4438 		if (len & ~(127 * 2))
4439 			goto out_err;
4440 
4441 		/* IPLEN can support at most 127 dwords */
4442 		len = skb_inner_transport_header(skb) -
4443 		      skb_inner_network_header(skb);
4444 		if (len & ~(127 * 4))
4445 			goto out_err;
4446 	}
4447 
4448 	/* No need to validate L4LEN as TCP is the only protocol with a
4449 	 * flexible value and we support all possible values supported
4450 	 * by TCP, which is at most 15 dwords
4451 	 */
4452 
4453 	return features;
4454 out_err:
4455 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
4456 }
4457 
4458 /**
4459  * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off
4460  * @adapter: board private structure
4461  *
4462  * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4463  * were negotiated determine the VLAN features that can be toggled on and off.
4464  **/
4465 static netdev_features_t
4466 iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter)
4467 {
4468 	netdev_features_t hw_features = 0;
4469 
4470 	if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4471 		return hw_features;
4472 
4473 	/* Enable VLAN features if supported */
4474 	if (VLAN_ALLOWED(adapter)) {
4475 		hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
4476 				NETIF_F_HW_VLAN_CTAG_RX);
4477 	} else if (VLAN_V2_ALLOWED(adapter)) {
4478 		struct virtchnl_vlan_caps *vlan_v2_caps =
4479 			&adapter->vlan_v2_caps;
4480 		struct virtchnl_vlan_supported_caps *stripping_support =
4481 			&vlan_v2_caps->offloads.stripping_support;
4482 		struct virtchnl_vlan_supported_caps *insertion_support =
4483 			&vlan_v2_caps->offloads.insertion_support;
4484 
4485 		if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4486 		    stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4487 			if (stripping_support->outer &
4488 			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4489 				hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4490 			if (stripping_support->outer &
4491 			    VIRTCHNL_VLAN_ETHERTYPE_88A8)
4492 				hw_features |= NETIF_F_HW_VLAN_STAG_RX;
4493 		} else if (stripping_support->inner !=
4494 			   VIRTCHNL_VLAN_UNSUPPORTED &&
4495 			   stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4496 			if (stripping_support->inner &
4497 			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4498 				hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4499 		}
4500 
4501 		if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4502 		    insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4503 			if (insertion_support->outer &
4504 			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4505 				hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4506 			if (insertion_support->outer &
4507 			    VIRTCHNL_VLAN_ETHERTYPE_88A8)
4508 				hw_features |= NETIF_F_HW_VLAN_STAG_TX;
4509 		} else if (insertion_support->inner &&
4510 			   insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4511 			if (insertion_support->inner &
4512 			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4513 				hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4514 		}
4515 	}
4516 
4517 	if (CRC_OFFLOAD_ALLOWED(adapter))
4518 		hw_features |= NETIF_F_RXFCS;
4519 
4520 	return hw_features;
4521 }
4522 
4523 /**
4524  * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures
4525  * @adapter: board private structure
4526  *
4527  * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4528  * were negotiated determine the VLAN features that are enabled by default.
4529  **/
4530 static netdev_features_t
4531 iavf_get_netdev_vlan_features(struct iavf_adapter *adapter)
4532 {
4533 	netdev_features_t features = 0;
4534 
4535 	if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4536 		return features;
4537 
4538 	if (VLAN_ALLOWED(adapter)) {
4539 		features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4540 			NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX;
4541 	} else if (VLAN_V2_ALLOWED(adapter)) {
4542 		struct virtchnl_vlan_caps *vlan_v2_caps =
4543 			&adapter->vlan_v2_caps;
4544 		struct virtchnl_vlan_supported_caps *filtering_support =
4545 			&vlan_v2_caps->filtering.filtering_support;
4546 		struct virtchnl_vlan_supported_caps *stripping_support =
4547 			&vlan_v2_caps->offloads.stripping_support;
4548 		struct virtchnl_vlan_supported_caps *insertion_support =
4549 			&vlan_v2_caps->offloads.insertion_support;
4550 		u32 ethertype_init;
4551 
4552 		/* give priority to outer stripping and don't support both outer
4553 		 * and inner stripping
4554 		 */
4555 		ethertype_init = vlan_v2_caps->offloads.ethertype_init;
4556 		if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4557 			if (stripping_support->outer &
4558 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4559 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4560 				features |= NETIF_F_HW_VLAN_CTAG_RX;
4561 			else if (stripping_support->outer &
4562 				 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4563 				 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4564 				features |= NETIF_F_HW_VLAN_STAG_RX;
4565 		} else if (stripping_support->inner !=
4566 			   VIRTCHNL_VLAN_UNSUPPORTED) {
4567 			if (stripping_support->inner &
4568 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4569 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4570 				features |= NETIF_F_HW_VLAN_CTAG_RX;
4571 		}
4572 
4573 		/* give priority to outer insertion and don't support both outer
4574 		 * and inner insertion
4575 		 */
4576 		if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4577 			if (insertion_support->outer &
4578 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4579 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4580 				features |= NETIF_F_HW_VLAN_CTAG_TX;
4581 			else if (insertion_support->outer &
4582 				 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4583 				 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4584 				features |= NETIF_F_HW_VLAN_STAG_TX;
4585 		} else if (insertion_support->inner !=
4586 			   VIRTCHNL_VLAN_UNSUPPORTED) {
4587 			if (insertion_support->inner &
4588 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4589 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4590 				features |= NETIF_F_HW_VLAN_CTAG_TX;
4591 		}
4592 
4593 		/* give priority to outer filtering and don't bother if both
4594 		 * outer and inner filtering are enabled
4595 		 */
4596 		ethertype_init = vlan_v2_caps->filtering.ethertype_init;
4597 		if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4598 			if (filtering_support->outer &
4599 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4600 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4601 				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4602 			if (filtering_support->outer &
4603 			    VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4604 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4605 				features |= NETIF_F_HW_VLAN_STAG_FILTER;
4606 		} else if (filtering_support->inner !=
4607 			   VIRTCHNL_VLAN_UNSUPPORTED) {
4608 			if (filtering_support->inner &
4609 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4610 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4611 				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4612 			if (filtering_support->inner &
4613 			    VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4614 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4615 				features |= NETIF_F_HW_VLAN_STAG_FILTER;
4616 		}
4617 	}
4618 
4619 	return features;
4620 }
4621 
4622 #define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \
4623 	(!(((requested) & (feature_bit)) && \
4624 	   !((allowed) & (feature_bit))))
4625 
4626 /**
4627  * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support
4628  * @adapter: board private structure
4629  * @requested_features: stack requested NETDEV features
4630  **/
4631 static netdev_features_t
4632 iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter,
4633 			      netdev_features_t requested_features)
4634 {
4635 	netdev_features_t allowed_features;
4636 
4637 	allowed_features = iavf_get_netdev_vlan_hw_features(adapter) |
4638 		iavf_get_netdev_vlan_features(adapter);
4639 
4640 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4641 					      allowed_features,
4642 					      NETIF_F_HW_VLAN_CTAG_TX))
4643 		requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4644 
4645 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4646 					      allowed_features,
4647 					      NETIF_F_HW_VLAN_CTAG_RX))
4648 		requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX;
4649 
4650 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4651 					      allowed_features,
4652 					      NETIF_F_HW_VLAN_STAG_TX))
4653 		requested_features &= ~NETIF_F_HW_VLAN_STAG_TX;
4654 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4655 					      allowed_features,
4656 					      NETIF_F_HW_VLAN_STAG_RX))
4657 		requested_features &= ~NETIF_F_HW_VLAN_STAG_RX;
4658 
4659 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4660 					      allowed_features,
4661 					      NETIF_F_HW_VLAN_CTAG_FILTER))
4662 		requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4663 
4664 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4665 					      allowed_features,
4666 					      NETIF_F_HW_VLAN_STAG_FILTER))
4667 		requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER;
4668 
4669 	if ((requested_features &
4670 	     (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
4671 	    (requested_features &
4672 	     (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) &&
4673 	    adapter->vlan_v2_caps.offloads.ethertype_match ==
4674 	    VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) {
4675 		netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
4676 		requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX |
4677 					NETIF_F_HW_VLAN_STAG_TX);
4678 	}
4679 
4680 	return requested_features;
4681 }
4682 
4683 /**
4684  * iavf_fix_strip_features - fix NETDEV CRC and VLAN strip features
4685  * @adapter: board private structure
4686  * @requested_features: stack requested NETDEV features
4687  *
4688  * Returns fixed-up features bits
4689  **/
4690 static netdev_features_t
4691 iavf_fix_strip_features(struct iavf_adapter *adapter,
4692 			netdev_features_t requested_features)
4693 {
4694 	struct net_device *netdev = adapter->netdev;
4695 	bool crc_offload_req, is_vlan_strip;
4696 	netdev_features_t vlan_strip;
4697 	int num_non_zero_vlan;
4698 
4699 	crc_offload_req = CRC_OFFLOAD_ALLOWED(adapter) &&
4700 			  (requested_features & NETIF_F_RXFCS);
4701 	num_non_zero_vlan = iavf_get_num_vlans_added(adapter);
4702 	vlan_strip = (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX);
4703 	is_vlan_strip = requested_features & vlan_strip;
4704 
4705 	if (!crc_offload_req)
4706 		return requested_features;
4707 
4708 	if (!num_non_zero_vlan && (netdev->features & vlan_strip) &&
4709 	    !(netdev->features & NETIF_F_RXFCS) && is_vlan_strip) {
4710 		requested_features &= ~vlan_strip;
4711 		netdev_info(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
4712 		return requested_features;
4713 	}
4714 
4715 	if ((netdev->features & NETIF_F_RXFCS) && is_vlan_strip) {
4716 		requested_features &= ~vlan_strip;
4717 		if (!(netdev->features & vlan_strip))
4718 			netdev_info(netdev, "To enable VLAN stripping, first need to enable FCS/CRC stripping");
4719 
4720 		return requested_features;
4721 	}
4722 
4723 	if (num_non_zero_vlan && is_vlan_strip &&
4724 	    !(netdev->features & NETIF_F_RXFCS)) {
4725 		requested_features &= ~NETIF_F_RXFCS;
4726 		netdev_info(netdev, "To disable FCS/CRC stripping, first need to disable VLAN stripping");
4727 	}
4728 
4729 	return requested_features;
4730 }
4731 
4732 /**
4733  * iavf_fix_features - fix up the netdev feature bits
4734  * @netdev: our net device
4735  * @features: desired feature bits
4736  *
4737  * Returns fixed-up features bits
4738  **/
4739 static netdev_features_t iavf_fix_features(struct net_device *netdev,
4740 					   netdev_features_t features)
4741 {
4742 	struct iavf_adapter *adapter = netdev_priv(netdev);
4743 
4744 	features = iavf_fix_netdev_vlan_features(adapter, features);
4745 
4746 	if (!FDIR_FLTR_SUPPORT(adapter))
4747 		features &= ~NETIF_F_NTUPLE;
4748 
4749 	return iavf_fix_strip_features(adapter, features);
4750 }
4751 
4752 static const struct net_device_ops iavf_netdev_ops = {
4753 	.ndo_open		= iavf_open,
4754 	.ndo_stop		= iavf_close,
4755 	.ndo_start_xmit		= iavf_xmit_frame,
4756 	.ndo_set_rx_mode	= iavf_set_rx_mode,
4757 	.ndo_validate_addr	= eth_validate_addr,
4758 	.ndo_set_mac_address	= iavf_set_mac,
4759 	.ndo_change_mtu		= iavf_change_mtu,
4760 	.ndo_tx_timeout		= iavf_tx_timeout,
4761 	.ndo_vlan_rx_add_vid	= iavf_vlan_rx_add_vid,
4762 	.ndo_vlan_rx_kill_vid	= iavf_vlan_rx_kill_vid,
4763 	.ndo_features_check	= iavf_features_check,
4764 	.ndo_fix_features	= iavf_fix_features,
4765 	.ndo_set_features	= iavf_set_features,
4766 	.ndo_setup_tc		= iavf_setup_tc,
4767 };
4768 
4769 /**
4770  * iavf_check_reset_complete - check that VF reset is complete
4771  * @hw: pointer to hw struct
4772  *
4773  * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
4774  **/
4775 static int iavf_check_reset_complete(struct iavf_hw *hw)
4776 {
4777 	u32 rstat;
4778 	int i;
4779 
4780 	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
4781 		rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
4782 			     IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
4783 		if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
4784 		    (rstat == VIRTCHNL_VFR_COMPLETED))
4785 			return 0;
4786 		msleep(IAVF_RESET_WAIT_MS);
4787 	}
4788 	return -EBUSY;
4789 }
4790 
4791 /**
4792  * iavf_process_config - Process the config information we got from the PF
4793  * @adapter: board private structure
4794  *
4795  * Verify that we have a valid config struct, and set up our netdev features
4796  * and our VSI struct.
4797  **/
4798 int iavf_process_config(struct iavf_adapter *adapter)
4799 {
4800 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
4801 	netdev_features_t hw_vlan_features, vlan_features;
4802 	struct net_device *netdev = adapter->netdev;
4803 	netdev_features_t hw_enc_features;
4804 	netdev_features_t hw_features;
4805 
4806 	hw_enc_features = NETIF_F_SG			|
4807 			  NETIF_F_IP_CSUM		|
4808 			  NETIF_F_IPV6_CSUM		|
4809 			  NETIF_F_HIGHDMA		|
4810 			  NETIF_F_SOFT_FEATURES	|
4811 			  NETIF_F_TSO			|
4812 			  NETIF_F_TSO_ECN		|
4813 			  NETIF_F_TSO6			|
4814 			  NETIF_F_SCTP_CRC		|
4815 			  NETIF_F_RXHASH		|
4816 			  NETIF_F_RXCSUM		|
4817 			  0;
4818 
4819 	/* advertise to stack only if offloads for encapsulated packets is
4820 	 * supported
4821 	 */
4822 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
4823 		hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL	|
4824 				   NETIF_F_GSO_GRE		|
4825 				   NETIF_F_GSO_GRE_CSUM		|
4826 				   NETIF_F_GSO_IPXIP4		|
4827 				   NETIF_F_GSO_IPXIP6		|
4828 				   NETIF_F_GSO_UDP_TUNNEL_CSUM	|
4829 				   NETIF_F_GSO_PARTIAL		|
4830 				   0;
4831 
4832 		if (!(vfres->vf_cap_flags &
4833 		      VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
4834 			netdev->gso_partial_features |=
4835 				NETIF_F_GSO_UDP_TUNNEL_CSUM;
4836 
4837 		netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
4838 		netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
4839 		netdev->hw_enc_features |= hw_enc_features;
4840 	}
4841 	/* record features VLANs can make use of */
4842 	netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
4843 
4844 	/* Write features and hw_features separately to avoid polluting
4845 	 * with, or dropping, features that are set when we registered.
4846 	 */
4847 	hw_features = hw_enc_features;
4848 
4849 	/* get HW VLAN features that can be toggled */
4850 	hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter);
4851 
4852 	/* Enable cloud filter if ADQ is supported */
4853 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
4854 		hw_features |= NETIF_F_HW_TC;
4855 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO)
4856 		hw_features |= NETIF_F_GSO_UDP_L4;
4857 
4858 	netdev->hw_features |= hw_features | hw_vlan_features;
4859 	vlan_features = iavf_get_netdev_vlan_features(adapter);
4860 
4861 	netdev->features |= hw_features | vlan_features;
4862 
4863 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
4864 		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4865 
4866 	if (FDIR_FLTR_SUPPORT(adapter)) {
4867 		netdev->hw_features |= NETIF_F_NTUPLE;
4868 		netdev->features |= NETIF_F_NTUPLE;
4869 		adapter->flags |= IAVF_FLAG_FDIR_ENABLED;
4870 	}
4871 
4872 	netdev->priv_flags |= IFF_UNICAST_FLT;
4873 
4874 	/* Do not turn on offloads when they are requested to be turned off.
4875 	 * TSO needs minimum 576 bytes to work correctly.
4876 	 */
4877 	if (netdev->wanted_features) {
4878 		if (!(netdev->wanted_features & NETIF_F_TSO) ||
4879 		    netdev->mtu < 576)
4880 			netdev->features &= ~NETIF_F_TSO;
4881 		if (!(netdev->wanted_features & NETIF_F_TSO6) ||
4882 		    netdev->mtu < 576)
4883 			netdev->features &= ~NETIF_F_TSO6;
4884 		if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
4885 			netdev->features &= ~NETIF_F_TSO_ECN;
4886 		if (!(netdev->wanted_features & NETIF_F_GRO))
4887 			netdev->features &= ~NETIF_F_GRO;
4888 		if (!(netdev->wanted_features & NETIF_F_GSO))
4889 			netdev->features &= ~NETIF_F_GSO;
4890 	}
4891 
4892 	return 0;
4893 }
4894 
4895 /**
4896  * iavf_probe - Device Initialization Routine
4897  * @pdev: PCI device information struct
4898  * @ent: entry in iavf_pci_tbl
4899  *
4900  * Returns 0 on success, negative on failure
4901  *
4902  * iavf_probe initializes an adapter identified by a pci_dev structure.
4903  * The OS initialization, configuring of the adapter private structure,
4904  * and a hardware reset occur.
4905  **/
4906 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
4907 {
4908 	struct net_device *netdev;
4909 	struct iavf_adapter *adapter = NULL;
4910 	struct iavf_hw *hw = NULL;
4911 	int err;
4912 
4913 	err = pci_enable_device(pdev);
4914 	if (err)
4915 		return err;
4916 
4917 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4918 	if (err) {
4919 		dev_err(&pdev->dev,
4920 			"DMA configuration failed: 0x%x\n", err);
4921 		goto err_dma;
4922 	}
4923 
4924 	err = pci_request_regions(pdev, iavf_driver_name);
4925 	if (err) {
4926 		dev_err(&pdev->dev,
4927 			"pci_request_regions failed 0x%x\n", err);
4928 		goto err_pci_reg;
4929 	}
4930 
4931 	pci_set_master(pdev);
4932 
4933 	netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
4934 				   IAVF_MAX_REQ_QUEUES);
4935 	if (!netdev) {
4936 		err = -ENOMEM;
4937 		goto err_alloc_etherdev;
4938 	}
4939 
4940 	SET_NETDEV_DEV(netdev, &pdev->dev);
4941 
4942 	pci_set_drvdata(pdev, netdev);
4943 	adapter = netdev_priv(netdev);
4944 
4945 	adapter->netdev = netdev;
4946 	adapter->pdev = pdev;
4947 
4948 	hw = &adapter->hw;
4949 	hw->back = adapter;
4950 
4951 	adapter->wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM,
4952 					      iavf_driver_name);
4953 	if (!adapter->wq) {
4954 		err = -ENOMEM;
4955 		goto err_alloc_wq;
4956 	}
4957 
4958 	adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
4959 	iavf_change_state(adapter, __IAVF_STARTUP);
4960 
4961 	/* Call save state here because it relies on the adapter struct. */
4962 	pci_save_state(pdev);
4963 
4964 	hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
4965 			      pci_resource_len(pdev, 0));
4966 	if (!hw->hw_addr) {
4967 		err = -EIO;
4968 		goto err_ioremap;
4969 	}
4970 	hw->vendor_id = pdev->vendor;
4971 	hw->device_id = pdev->device;
4972 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4973 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
4974 	hw->subsystem_device_id = pdev->subsystem_device;
4975 	hw->bus.device = PCI_SLOT(pdev->devfn);
4976 	hw->bus.func = PCI_FUNC(pdev->devfn);
4977 	hw->bus.bus_id = pdev->bus->number;
4978 
4979 	/* set up the locks for the AQ, do this only once in probe
4980 	 * and destroy them only once in remove
4981 	 */
4982 	mutex_init(&adapter->crit_lock);
4983 	mutex_init(&hw->aq.asq_mutex);
4984 	mutex_init(&hw->aq.arq_mutex);
4985 
4986 	spin_lock_init(&adapter->mac_vlan_list_lock);
4987 	spin_lock_init(&adapter->cloud_filter_list_lock);
4988 	spin_lock_init(&adapter->fdir_fltr_lock);
4989 	spin_lock_init(&adapter->adv_rss_lock);
4990 	spin_lock_init(&adapter->current_netdev_promisc_flags_lock);
4991 
4992 	INIT_LIST_HEAD(&adapter->mac_filter_list);
4993 	INIT_LIST_HEAD(&adapter->vlan_filter_list);
4994 	INIT_LIST_HEAD(&adapter->cloud_filter_list);
4995 	INIT_LIST_HEAD(&adapter->fdir_list_head);
4996 	INIT_LIST_HEAD(&adapter->adv_rss_list_head);
4997 
4998 	INIT_WORK(&adapter->reset_task, iavf_reset_task);
4999 	INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
5000 	INIT_WORK(&adapter->finish_config, iavf_finish_config);
5001 	INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
5002 
5003 	/* Setup the wait queue for indicating transition to down status */
5004 	init_waitqueue_head(&adapter->down_waitqueue);
5005 
5006 	/* Setup the wait queue for indicating transition to running state */
5007 	init_waitqueue_head(&adapter->reset_waitqueue);
5008 
5009 	/* Setup the wait queue for indicating virtchannel events */
5010 	init_waitqueue_head(&adapter->vc_waitqueue);
5011 
5012 	queue_delayed_work(adapter->wq, &adapter->watchdog_task,
5013 			   msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
5014 	/* Initialization goes on in the work. Do not add more of it below. */
5015 	return 0;
5016 
5017 err_ioremap:
5018 	destroy_workqueue(adapter->wq);
5019 err_alloc_wq:
5020 	free_netdev(netdev);
5021 err_alloc_etherdev:
5022 	pci_release_regions(pdev);
5023 err_pci_reg:
5024 err_dma:
5025 	pci_disable_device(pdev);
5026 	return err;
5027 }
5028 
5029 /**
5030  * iavf_suspend - Power management suspend routine
5031  * @dev_d: device info pointer
5032  *
5033  * Called when the system (VM) is entering sleep/suspend.
5034  **/
5035 static int __maybe_unused iavf_suspend(struct device *dev_d)
5036 {
5037 	struct net_device *netdev = dev_get_drvdata(dev_d);
5038 	struct iavf_adapter *adapter = netdev_priv(netdev);
5039 
5040 	netif_device_detach(netdev);
5041 
5042 	mutex_lock(&adapter->crit_lock);
5043 
5044 	if (netif_running(netdev)) {
5045 		rtnl_lock();
5046 		iavf_down(adapter);
5047 		rtnl_unlock();
5048 	}
5049 	iavf_free_misc_irq(adapter);
5050 	iavf_reset_interrupt_capability(adapter);
5051 
5052 	mutex_unlock(&adapter->crit_lock);
5053 
5054 	return 0;
5055 }
5056 
5057 /**
5058  * iavf_resume - Power management resume routine
5059  * @dev_d: device info pointer
5060  *
5061  * Called when the system (VM) is resumed from sleep/suspend.
5062  **/
5063 static int __maybe_unused iavf_resume(struct device *dev_d)
5064 {
5065 	struct pci_dev *pdev = to_pci_dev(dev_d);
5066 	struct iavf_adapter *adapter;
5067 	u32 err;
5068 
5069 	adapter = iavf_pdev_to_adapter(pdev);
5070 
5071 	pci_set_master(pdev);
5072 
5073 	rtnl_lock();
5074 	err = iavf_set_interrupt_capability(adapter);
5075 	if (err) {
5076 		rtnl_unlock();
5077 		dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
5078 		return err;
5079 	}
5080 	err = iavf_request_misc_irq(adapter);
5081 	rtnl_unlock();
5082 	if (err) {
5083 		dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
5084 		return err;
5085 	}
5086 
5087 	queue_work(adapter->wq, &adapter->reset_task);
5088 
5089 	netif_device_attach(adapter->netdev);
5090 
5091 	return err;
5092 }
5093 
5094 /**
5095  * iavf_remove - Device Removal Routine
5096  * @pdev: PCI device information struct
5097  *
5098  * iavf_remove is called by the PCI subsystem to alert the driver
5099  * that it should release a PCI device.  The could be caused by a
5100  * Hot-Plug event, or because the driver is going to be removed from
5101  * memory.
5102  **/
5103 static void iavf_remove(struct pci_dev *pdev)
5104 {
5105 	struct iavf_fdir_fltr *fdir, *fdirtmp;
5106 	struct iavf_vlan_filter *vlf, *vlftmp;
5107 	struct iavf_cloud_filter *cf, *cftmp;
5108 	struct iavf_adv_rss *rss, *rsstmp;
5109 	struct iavf_mac_filter *f, *ftmp;
5110 	struct iavf_adapter *adapter;
5111 	struct net_device *netdev;
5112 	struct iavf_hw *hw;
5113 
5114 	/* Don't proceed with remove if netdev is already freed */
5115 	netdev = pci_get_drvdata(pdev);
5116 	if (!netdev)
5117 		return;
5118 
5119 	adapter = iavf_pdev_to_adapter(pdev);
5120 	hw = &adapter->hw;
5121 
5122 	if (test_and_set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
5123 		return;
5124 
5125 	/* Wait until port initialization is complete.
5126 	 * There are flows where register/unregister netdev may race.
5127 	 */
5128 	while (1) {
5129 		mutex_lock(&adapter->crit_lock);
5130 		if (adapter->state == __IAVF_RUNNING ||
5131 		    adapter->state == __IAVF_DOWN ||
5132 		    adapter->state == __IAVF_INIT_FAILED) {
5133 			mutex_unlock(&adapter->crit_lock);
5134 			break;
5135 		}
5136 		/* Simply return if we already went through iavf_shutdown */
5137 		if (adapter->state == __IAVF_REMOVE) {
5138 			mutex_unlock(&adapter->crit_lock);
5139 			return;
5140 		}
5141 
5142 		mutex_unlock(&adapter->crit_lock);
5143 		usleep_range(500, 1000);
5144 	}
5145 	cancel_delayed_work_sync(&adapter->watchdog_task);
5146 	cancel_work_sync(&adapter->finish_config);
5147 
5148 	if (netdev->reg_state == NETREG_REGISTERED)
5149 		unregister_netdev(netdev);
5150 
5151 	mutex_lock(&adapter->crit_lock);
5152 	dev_info(&adapter->pdev->dev, "Removing device\n");
5153 	iavf_change_state(adapter, __IAVF_REMOVE);
5154 
5155 	iavf_request_reset(adapter);
5156 	msleep(50);
5157 	/* If the FW isn't responding, kick it once, but only once. */
5158 	if (!iavf_asq_done(hw)) {
5159 		iavf_request_reset(adapter);
5160 		msleep(50);
5161 	}
5162 
5163 	iavf_misc_irq_disable(adapter);
5164 	/* Shut down all the garbage mashers on the detention level */
5165 	cancel_work_sync(&adapter->reset_task);
5166 	cancel_delayed_work_sync(&adapter->watchdog_task);
5167 	cancel_work_sync(&adapter->adminq_task);
5168 
5169 	adapter->aq_required = 0;
5170 	adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
5171 
5172 	iavf_free_all_tx_resources(adapter);
5173 	iavf_free_all_rx_resources(adapter);
5174 	iavf_free_misc_irq(adapter);
5175 	iavf_free_interrupt_scheme(adapter);
5176 
5177 	iavf_free_rss(adapter);
5178 
5179 	if (hw->aq.asq.count)
5180 		iavf_shutdown_adminq(hw);
5181 
5182 	/* destroy the locks only once, here */
5183 	mutex_destroy(&hw->aq.arq_mutex);
5184 	mutex_destroy(&hw->aq.asq_mutex);
5185 	mutex_unlock(&adapter->crit_lock);
5186 	mutex_destroy(&adapter->crit_lock);
5187 
5188 	iounmap(hw->hw_addr);
5189 	pci_release_regions(pdev);
5190 	kfree(adapter->vf_res);
5191 	spin_lock_bh(&adapter->mac_vlan_list_lock);
5192 	/* If we got removed before an up/down sequence, we've got a filter
5193 	 * hanging out there that we need to get rid of.
5194 	 */
5195 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
5196 		list_del(&f->list);
5197 		kfree(f);
5198 	}
5199 	list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
5200 				 list) {
5201 		list_del(&vlf->list);
5202 		kfree(vlf);
5203 	}
5204 
5205 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
5206 
5207 	spin_lock_bh(&adapter->cloud_filter_list_lock);
5208 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
5209 		list_del(&cf->list);
5210 		kfree(cf);
5211 	}
5212 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
5213 
5214 	spin_lock_bh(&adapter->fdir_fltr_lock);
5215 	list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) {
5216 		list_del(&fdir->list);
5217 		kfree(fdir);
5218 	}
5219 	spin_unlock_bh(&adapter->fdir_fltr_lock);
5220 
5221 	spin_lock_bh(&adapter->adv_rss_lock);
5222 	list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
5223 				 list) {
5224 		list_del(&rss->list);
5225 		kfree(rss);
5226 	}
5227 	spin_unlock_bh(&adapter->adv_rss_lock);
5228 
5229 	destroy_workqueue(adapter->wq);
5230 
5231 	pci_set_drvdata(pdev, NULL);
5232 
5233 	free_netdev(netdev);
5234 
5235 	pci_disable_device(pdev);
5236 }
5237 
5238 /**
5239  * iavf_shutdown - Shutdown the device in preparation for a reboot
5240  * @pdev: pci device structure
5241  **/
5242 static void iavf_shutdown(struct pci_dev *pdev)
5243 {
5244 	iavf_remove(pdev);
5245 
5246 	if (system_state == SYSTEM_POWER_OFF)
5247 		pci_set_power_state(pdev, PCI_D3hot);
5248 }
5249 
5250 static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
5251 
5252 static struct pci_driver iavf_driver = {
5253 	.name      = iavf_driver_name,
5254 	.id_table  = iavf_pci_tbl,
5255 	.probe     = iavf_probe,
5256 	.remove    = iavf_remove,
5257 	.driver.pm = &iavf_pm_ops,
5258 	.shutdown  = iavf_shutdown,
5259 };
5260 
5261 /**
5262  * iavf_init_module - Driver Registration Routine
5263  *
5264  * iavf_init_module is the first routine called when the driver is
5265  * loaded. All it does is register with the PCI subsystem.
5266  **/
5267 static int __init iavf_init_module(void)
5268 {
5269 	pr_info("iavf: %s\n", iavf_driver_string);
5270 
5271 	pr_info("%s\n", iavf_copyright);
5272 
5273 	return pci_register_driver(&iavf_driver);
5274 }
5275 
5276 module_init(iavf_init_module);
5277 
5278 /**
5279  * iavf_exit_module - Driver Exit Cleanup Routine
5280  *
5281  * iavf_exit_module is called just before the driver is removed
5282  * from memory.
5283  **/
5284 static void __exit iavf_exit_module(void)
5285 {
5286 	pci_unregister_driver(&iavf_driver);
5287 }
5288 
5289 module_exit(iavf_exit_module);
5290 
5291 /* iavf_main.c */
5292