1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include "iavf.h"
5 #include "iavf_prototype.h"
6 #include "iavf_client.h"
7 /* All iavf tracepoints are defined by the include below, which must
8  * be included exactly once across the whole kernel with
9  * CREATE_TRACE_POINTS defined
10  */
11 #define CREATE_TRACE_POINTS
12 #include "iavf_trace.h"
13 
14 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
15 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
16 static int iavf_close(struct net_device *netdev);
17 static void iavf_init_get_resources(struct iavf_adapter *adapter);
18 static int iavf_check_reset_complete(struct iavf_hw *hw);
19 
20 char iavf_driver_name[] = "iavf";
21 static const char iavf_driver_string[] =
22 	"Intel(R) Ethernet Adaptive Virtual Function Network Driver";
23 
24 static const char iavf_copyright[] =
25 	"Copyright (c) 2013 - 2018 Intel Corporation.";
26 
27 /* iavf_pci_tbl - PCI Device ID Table
28  *
29  * Wildcard entries (PCI_ANY_ID) should come last
30  * Last entry must be all 0s
31  *
32  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
33  *   Class, Class Mask, private data (not used) }
34  */
35 static const struct pci_device_id iavf_pci_tbl[] = {
36 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
37 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
38 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
39 	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
40 	/* required last entry */
41 	{0, }
42 };
43 
44 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
45 
46 MODULE_ALIAS("i40evf");
47 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
49 MODULE_LICENSE("GPL v2");
50 
51 static const struct net_device_ops iavf_netdev_ops;
52 struct workqueue_struct *iavf_wq;
53 
54 int iavf_status_to_errno(enum iavf_status status)
55 {
56 	switch (status) {
57 	case IAVF_SUCCESS:
58 		return 0;
59 	case IAVF_ERR_PARAM:
60 	case IAVF_ERR_MAC_TYPE:
61 	case IAVF_ERR_INVALID_MAC_ADDR:
62 	case IAVF_ERR_INVALID_LINK_SETTINGS:
63 	case IAVF_ERR_INVALID_PD_ID:
64 	case IAVF_ERR_INVALID_QP_ID:
65 	case IAVF_ERR_INVALID_CQ_ID:
66 	case IAVF_ERR_INVALID_CEQ_ID:
67 	case IAVF_ERR_INVALID_AEQ_ID:
68 	case IAVF_ERR_INVALID_SIZE:
69 	case IAVF_ERR_INVALID_ARP_INDEX:
70 	case IAVF_ERR_INVALID_FPM_FUNC_ID:
71 	case IAVF_ERR_QP_INVALID_MSG_SIZE:
72 	case IAVF_ERR_INVALID_FRAG_COUNT:
73 	case IAVF_ERR_INVALID_ALIGNMENT:
74 	case IAVF_ERR_INVALID_PUSH_PAGE_INDEX:
75 	case IAVF_ERR_INVALID_IMM_DATA_SIZE:
76 	case IAVF_ERR_INVALID_VF_ID:
77 	case IAVF_ERR_INVALID_HMCFN_ID:
78 	case IAVF_ERR_INVALID_PBLE_INDEX:
79 	case IAVF_ERR_INVALID_SD_INDEX:
80 	case IAVF_ERR_INVALID_PAGE_DESC_INDEX:
81 	case IAVF_ERR_INVALID_SD_TYPE:
82 	case IAVF_ERR_INVALID_HMC_OBJ_INDEX:
83 	case IAVF_ERR_INVALID_HMC_OBJ_COUNT:
84 	case IAVF_ERR_INVALID_SRQ_ARM_LIMIT:
85 		return -EINVAL;
86 	case IAVF_ERR_NVM:
87 	case IAVF_ERR_NVM_CHECKSUM:
88 	case IAVF_ERR_PHY:
89 	case IAVF_ERR_CONFIG:
90 	case IAVF_ERR_UNKNOWN_PHY:
91 	case IAVF_ERR_LINK_SETUP:
92 	case IAVF_ERR_ADAPTER_STOPPED:
93 	case IAVF_ERR_PRIMARY_REQUESTS_PENDING:
94 	case IAVF_ERR_AUTONEG_NOT_COMPLETE:
95 	case IAVF_ERR_RESET_FAILED:
96 	case IAVF_ERR_BAD_PTR:
97 	case IAVF_ERR_SWFW_SYNC:
98 	case IAVF_ERR_QP_TOOMANY_WRS_POSTED:
99 	case IAVF_ERR_QUEUE_EMPTY:
100 	case IAVF_ERR_FLUSHED_QUEUE:
101 	case IAVF_ERR_OPCODE_MISMATCH:
102 	case IAVF_ERR_CQP_COMPL_ERROR:
103 	case IAVF_ERR_BACKING_PAGE_ERROR:
104 	case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE:
105 	case IAVF_ERR_MEMCPY_FAILED:
106 	case IAVF_ERR_SRQ_ENABLED:
107 	case IAVF_ERR_ADMIN_QUEUE_ERROR:
108 	case IAVF_ERR_ADMIN_QUEUE_FULL:
109 	case IAVF_ERR_BAD_IWARP_CQE:
110 	case IAVF_ERR_NVM_BLANK_MODE:
111 	case IAVF_ERR_PE_DOORBELL_NOT_ENABLED:
112 	case IAVF_ERR_DIAG_TEST_FAILED:
113 	case IAVF_ERR_FIRMWARE_API_VERSION:
114 	case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR:
115 		return -EIO;
116 	case IAVF_ERR_DEVICE_NOT_SUPPORTED:
117 		return -ENODEV;
118 	case IAVF_ERR_NO_AVAILABLE_VSI:
119 	case IAVF_ERR_RING_FULL:
120 		return -ENOSPC;
121 	case IAVF_ERR_NO_MEMORY:
122 		return -ENOMEM;
123 	case IAVF_ERR_TIMEOUT:
124 	case IAVF_ERR_ADMIN_QUEUE_TIMEOUT:
125 		return -ETIMEDOUT;
126 	case IAVF_ERR_NOT_IMPLEMENTED:
127 	case IAVF_NOT_SUPPORTED:
128 		return -EOPNOTSUPP;
129 	case IAVF_ERR_ADMIN_QUEUE_NO_WORK:
130 		return -EALREADY;
131 	case IAVF_ERR_NOT_READY:
132 		return -EBUSY;
133 	case IAVF_ERR_BUF_TOO_SHORT:
134 		return -EMSGSIZE;
135 	}
136 
137 	return -EIO;
138 }
139 
140 int virtchnl_status_to_errno(enum virtchnl_status_code v_status)
141 {
142 	switch (v_status) {
143 	case VIRTCHNL_STATUS_SUCCESS:
144 		return 0;
145 	case VIRTCHNL_STATUS_ERR_PARAM:
146 	case VIRTCHNL_STATUS_ERR_INVALID_VF_ID:
147 		return -EINVAL;
148 	case VIRTCHNL_STATUS_ERR_NO_MEMORY:
149 		return -ENOMEM;
150 	case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH:
151 	case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR:
152 	case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR:
153 		return -EIO;
154 	case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED:
155 		return -EOPNOTSUPP;
156 	}
157 
158 	return -EIO;
159 }
160 
161 /**
162  * iavf_pdev_to_adapter - go from pci_dev to adapter
163  * @pdev: pci_dev pointer
164  */
165 static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev)
166 {
167 	return netdev_priv(pci_get_drvdata(pdev));
168 }
169 
170 /**
171  * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
172  * @hw:   pointer to the HW structure
173  * @mem:  ptr to mem struct to fill out
174  * @size: size of memory requested
175  * @alignment: what to align the allocation to
176  **/
177 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
178 					 struct iavf_dma_mem *mem,
179 					 u64 size, u32 alignment)
180 {
181 	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
182 
183 	if (!mem)
184 		return IAVF_ERR_PARAM;
185 
186 	mem->size = ALIGN(size, alignment);
187 	mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
188 				     (dma_addr_t *)&mem->pa, GFP_KERNEL);
189 	if (mem->va)
190 		return 0;
191 	else
192 		return IAVF_ERR_NO_MEMORY;
193 }
194 
195 /**
196  * iavf_free_dma_mem_d - OS specific memory free for shared code
197  * @hw:   pointer to the HW structure
198  * @mem:  ptr to mem struct to free
199  **/
200 enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw,
201 				     struct iavf_dma_mem *mem)
202 {
203 	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
204 
205 	if (!mem || !mem->va)
206 		return IAVF_ERR_PARAM;
207 	dma_free_coherent(&adapter->pdev->dev, mem->size,
208 			  mem->va, (dma_addr_t)mem->pa);
209 	return 0;
210 }
211 
212 /**
213  * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code
214  * @hw:   pointer to the HW structure
215  * @mem:  ptr to mem struct to fill out
216  * @size: size of memory requested
217  **/
218 enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw,
219 					  struct iavf_virt_mem *mem, u32 size)
220 {
221 	if (!mem)
222 		return IAVF_ERR_PARAM;
223 
224 	mem->size = size;
225 	mem->va = kzalloc(size, GFP_KERNEL);
226 
227 	if (mem->va)
228 		return 0;
229 	else
230 		return IAVF_ERR_NO_MEMORY;
231 }
232 
233 /**
234  * iavf_free_virt_mem_d - OS specific memory free for shared code
235  * @hw:   pointer to the HW structure
236  * @mem:  ptr to mem struct to free
237  **/
238 enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw,
239 				      struct iavf_virt_mem *mem)
240 {
241 	if (!mem)
242 		return IAVF_ERR_PARAM;
243 
244 	/* it's ok to kfree a NULL pointer */
245 	kfree(mem->va);
246 
247 	return 0;
248 }
249 
250 /**
251  * iavf_lock_timeout - try to lock mutex but give up after timeout
252  * @lock: mutex that should be locked
253  * @msecs: timeout in msecs
254  *
255  * Returns 0 on success, negative on failure
256  **/
257 int iavf_lock_timeout(struct mutex *lock, unsigned int msecs)
258 {
259 	unsigned int wait, delay = 10;
260 
261 	for (wait = 0; wait < msecs; wait += delay) {
262 		if (mutex_trylock(lock))
263 			return 0;
264 
265 		msleep(delay);
266 	}
267 
268 	return -1;
269 }
270 
271 /**
272  * iavf_schedule_reset - Set the flags and schedule a reset event
273  * @adapter: board private structure
274  **/
275 void iavf_schedule_reset(struct iavf_adapter *adapter)
276 {
277 	if (!(adapter->flags &
278 	      (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
279 		adapter->flags |= IAVF_FLAG_RESET_NEEDED;
280 		queue_work(iavf_wq, &adapter->reset_task);
281 	}
282 }
283 
284 /**
285  * iavf_schedule_request_stats - Set the flags and schedule statistics request
286  * @adapter: board private structure
287  *
288  * Sets IAVF_FLAG_AQ_REQUEST_STATS flag so iavf_watchdog_task() will explicitly
289  * request and refresh ethtool stats
290  **/
291 void iavf_schedule_request_stats(struct iavf_adapter *adapter)
292 {
293 	adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_STATS;
294 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
295 }
296 
297 /**
298  * iavf_tx_timeout - Respond to a Tx Hang
299  * @netdev: network interface device structure
300  * @txqueue: queue number that is timing out
301  **/
302 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
303 {
304 	struct iavf_adapter *adapter = netdev_priv(netdev);
305 
306 	adapter->tx_timeout_count++;
307 	iavf_schedule_reset(adapter);
308 }
309 
310 /**
311  * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
312  * @adapter: board private structure
313  **/
314 static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
315 {
316 	struct iavf_hw *hw = &adapter->hw;
317 
318 	if (!adapter->msix_entries)
319 		return;
320 
321 	wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
322 
323 	iavf_flush(hw);
324 
325 	synchronize_irq(adapter->msix_entries[0].vector);
326 }
327 
328 /**
329  * iavf_misc_irq_enable - Enable default interrupt generation settings
330  * @adapter: board private structure
331  **/
332 static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
333 {
334 	struct iavf_hw *hw = &adapter->hw;
335 
336 	wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
337 				       IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
338 	wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
339 
340 	iavf_flush(hw);
341 }
342 
343 /**
344  * iavf_irq_disable - Mask off interrupt generation on the NIC
345  * @adapter: board private structure
346  **/
347 static void iavf_irq_disable(struct iavf_adapter *adapter)
348 {
349 	int i;
350 	struct iavf_hw *hw = &adapter->hw;
351 
352 	if (!adapter->msix_entries)
353 		return;
354 
355 	for (i = 1; i < adapter->num_msix_vectors; i++) {
356 		wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
357 		synchronize_irq(adapter->msix_entries[i].vector);
358 	}
359 	iavf_flush(hw);
360 }
361 
362 /**
363  * iavf_irq_enable_queues - Enable interrupt for specified queues
364  * @adapter: board private structure
365  * @mask: bitmap of queues to enable
366  **/
367 void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask)
368 {
369 	struct iavf_hw *hw = &adapter->hw;
370 	int i;
371 
372 	for (i = 1; i < adapter->num_msix_vectors; i++) {
373 		if (mask & BIT(i - 1)) {
374 			wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
375 			     IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
376 			     IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
377 		}
378 	}
379 }
380 
381 /**
382  * iavf_irq_enable - Enable default interrupt generation settings
383  * @adapter: board private structure
384  * @flush: boolean value whether to run rd32()
385  **/
386 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
387 {
388 	struct iavf_hw *hw = &adapter->hw;
389 
390 	iavf_misc_irq_enable(adapter);
391 	iavf_irq_enable_queues(adapter, ~0);
392 
393 	if (flush)
394 		iavf_flush(hw);
395 }
396 
397 /**
398  * iavf_msix_aq - Interrupt handler for vector 0
399  * @irq: interrupt number
400  * @data: pointer to netdev
401  **/
402 static irqreturn_t iavf_msix_aq(int irq, void *data)
403 {
404 	struct net_device *netdev = data;
405 	struct iavf_adapter *adapter = netdev_priv(netdev);
406 	struct iavf_hw *hw = &adapter->hw;
407 
408 	/* handle non-queue interrupts, these reads clear the registers */
409 	rd32(hw, IAVF_VFINT_ICR01);
410 	rd32(hw, IAVF_VFINT_ICR0_ENA1);
411 
412 	if (adapter->state != __IAVF_REMOVE)
413 		/* schedule work on the private workqueue */
414 		queue_work(iavf_wq, &adapter->adminq_task);
415 
416 	return IRQ_HANDLED;
417 }
418 
419 /**
420  * iavf_msix_clean_rings - MSIX mode Interrupt Handler
421  * @irq: interrupt number
422  * @data: pointer to a q_vector
423  **/
424 static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
425 {
426 	struct iavf_q_vector *q_vector = data;
427 
428 	if (!q_vector->tx.ring && !q_vector->rx.ring)
429 		return IRQ_HANDLED;
430 
431 	napi_schedule_irqoff(&q_vector->napi);
432 
433 	return IRQ_HANDLED;
434 }
435 
436 /**
437  * iavf_map_vector_to_rxq - associate irqs with rx queues
438  * @adapter: board private structure
439  * @v_idx: interrupt number
440  * @r_idx: queue number
441  **/
442 static void
443 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
444 {
445 	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
446 	struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
447 	struct iavf_hw *hw = &adapter->hw;
448 
449 	rx_ring->q_vector = q_vector;
450 	rx_ring->next = q_vector->rx.ring;
451 	rx_ring->vsi = &adapter->vsi;
452 	q_vector->rx.ring = rx_ring;
453 	q_vector->rx.count++;
454 	q_vector->rx.next_update = jiffies + 1;
455 	q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
456 	q_vector->ring_mask |= BIT(r_idx);
457 	wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
458 	     q_vector->rx.current_itr >> 1);
459 	q_vector->rx.current_itr = q_vector->rx.target_itr;
460 }
461 
462 /**
463  * iavf_map_vector_to_txq - associate irqs with tx queues
464  * @adapter: board private structure
465  * @v_idx: interrupt number
466  * @t_idx: queue number
467  **/
468 static void
469 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
470 {
471 	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
472 	struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
473 	struct iavf_hw *hw = &adapter->hw;
474 
475 	tx_ring->q_vector = q_vector;
476 	tx_ring->next = q_vector->tx.ring;
477 	tx_ring->vsi = &adapter->vsi;
478 	q_vector->tx.ring = tx_ring;
479 	q_vector->tx.count++;
480 	q_vector->tx.next_update = jiffies + 1;
481 	q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
482 	q_vector->num_ringpairs++;
483 	wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
484 	     q_vector->tx.target_itr >> 1);
485 	q_vector->tx.current_itr = q_vector->tx.target_itr;
486 }
487 
488 /**
489  * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
490  * @adapter: board private structure to initialize
491  *
492  * This function maps descriptor rings to the queue-specific vectors
493  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
494  * one vector per ring/queue, but on a constrained vector budget, we
495  * group the rings as "efficiently" as possible.  You would add new
496  * mapping configurations in here.
497  **/
498 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
499 {
500 	int rings_remaining = adapter->num_active_queues;
501 	int ridx = 0, vidx = 0;
502 	int q_vectors;
503 
504 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
505 
506 	for (; ridx < rings_remaining; ridx++) {
507 		iavf_map_vector_to_rxq(adapter, vidx, ridx);
508 		iavf_map_vector_to_txq(adapter, vidx, ridx);
509 
510 		/* In the case where we have more queues than vectors, continue
511 		 * round-robin on vectors until all queues are mapped.
512 		 */
513 		if (++vidx >= q_vectors)
514 			vidx = 0;
515 	}
516 
517 	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
518 }
519 
520 /**
521  * iavf_irq_affinity_notify - Callback for affinity changes
522  * @notify: context as to what irq was changed
523  * @mask: the new affinity mask
524  *
525  * This is a callback function used by the irq_set_affinity_notifier function
526  * so that we may register to receive changes to the irq affinity masks.
527  **/
528 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
529 				     const cpumask_t *mask)
530 {
531 	struct iavf_q_vector *q_vector =
532 		container_of(notify, struct iavf_q_vector, affinity_notify);
533 
534 	cpumask_copy(&q_vector->affinity_mask, mask);
535 }
536 
537 /**
538  * iavf_irq_affinity_release - Callback for affinity notifier release
539  * @ref: internal core kernel usage
540  *
541  * This is a callback function used by the irq_set_affinity_notifier function
542  * to inform the current notification subscriber that they will no longer
543  * receive notifications.
544  **/
545 static void iavf_irq_affinity_release(struct kref *ref) {}
546 
547 /**
548  * iavf_request_traffic_irqs - Initialize MSI-X interrupts
549  * @adapter: board private structure
550  * @basename: device basename
551  *
552  * Allocates MSI-X vectors for tx and rx handling, and requests
553  * interrupts from the kernel.
554  **/
555 static int
556 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
557 {
558 	unsigned int vector, q_vectors;
559 	unsigned int rx_int_idx = 0, tx_int_idx = 0;
560 	int irq_num, err;
561 	int cpu;
562 
563 	iavf_irq_disable(adapter);
564 	/* Decrement for Other and TCP Timer vectors */
565 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
566 
567 	for (vector = 0; vector < q_vectors; vector++) {
568 		struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
569 
570 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
571 
572 		if (q_vector->tx.ring && q_vector->rx.ring) {
573 			snprintf(q_vector->name, sizeof(q_vector->name),
574 				 "iavf-%s-TxRx-%u", basename, rx_int_idx++);
575 			tx_int_idx++;
576 		} else if (q_vector->rx.ring) {
577 			snprintf(q_vector->name, sizeof(q_vector->name),
578 				 "iavf-%s-rx-%u", basename, rx_int_idx++);
579 		} else if (q_vector->tx.ring) {
580 			snprintf(q_vector->name, sizeof(q_vector->name),
581 				 "iavf-%s-tx-%u", basename, tx_int_idx++);
582 		} else {
583 			/* skip this unused q_vector */
584 			continue;
585 		}
586 		err = request_irq(irq_num,
587 				  iavf_msix_clean_rings,
588 				  0,
589 				  q_vector->name,
590 				  q_vector);
591 		if (err) {
592 			dev_info(&adapter->pdev->dev,
593 				 "Request_irq failed, error: %d\n", err);
594 			goto free_queue_irqs;
595 		}
596 		/* register for affinity change notifications */
597 		q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
598 		q_vector->affinity_notify.release =
599 						   iavf_irq_affinity_release;
600 		irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
601 		/* Spread the IRQ affinity hints across online CPUs. Note that
602 		 * get_cpu_mask returns a mask with a permanent lifetime so
603 		 * it's safe to use as a hint for irq_update_affinity_hint.
604 		 */
605 		cpu = cpumask_local_spread(q_vector->v_idx, -1);
606 		irq_update_affinity_hint(irq_num, get_cpu_mask(cpu));
607 	}
608 
609 	return 0;
610 
611 free_queue_irqs:
612 	while (vector) {
613 		vector--;
614 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
615 		irq_set_affinity_notifier(irq_num, NULL);
616 		irq_update_affinity_hint(irq_num, NULL);
617 		free_irq(irq_num, &adapter->q_vectors[vector]);
618 	}
619 	return err;
620 }
621 
622 /**
623  * iavf_request_misc_irq - Initialize MSI-X interrupts
624  * @adapter: board private structure
625  *
626  * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
627  * vector is only for the admin queue, and stays active even when the netdev
628  * is closed.
629  **/
630 static int iavf_request_misc_irq(struct iavf_adapter *adapter)
631 {
632 	struct net_device *netdev = adapter->netdev;
633 	int err;
634 
635 	snprintf(adapter->misc_vector_name,
636 		 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
637 		 dev_name(&adapter->pdev->dev));
638 	err = request_irq(adapter->msix_entries[0].vector,
639 			  &iavf_msix_aq, 0,
640 			  adapter->misc_vector_name, netdev);
641 	if (err) {
642 		dev_err(&adapter->pdev->dev,
643 			"request_irq for %s failed: %d\n",
644 			adapter->misc_vector_name, err);
645 		free_irq(adapter->msix_entries[0].vector, netdev);
646 	}
647 	return err;
648 }
649 
650 /**
651  * iavf_free_traffic_irqs - Free MSI-X interrupts
652  * @adapter: board private structure
653  *
654  * Frees all MSI-X vectors other than 0.
655  **/
656 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
657 {
658 	int vector, irq_num, q_vectors;
659 
660 	if (!adapter->msix_entries)
661 		return;
662 
663 	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
664 
665 	for (vector = 0; vector < q_vectors; vector++) {
666 		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
667 		irq_set_affinity_notifier(irq_num, NULL);
668 		irq_update_affinity_hint(irq_num, NULL);
669 		free_irq(irq_num, &adapter->q_vectors[vector]);
670 	}
671 }
672 
673 /**
674  * iavf_free_misc_irq - Free MSI-X miscellaneous vector
675  * @adapter: board private structure
676  *
677  * Frees MSI-X vector 0.
678  **/
679 static void iavf_free_misc_irq(struct iavf_adapter *adapter)
680 {
681 	struct net_device *netdev = adapter->netdev;
682 
683 	if (!adapter->msix_entries)
684 		return;
685 
686 	free_irq(adapter->msix_entries[0].vector, netdev);
687 }
688 
689 /**
690  * iavf_configure_tx - Configure Transmit Unit after Reset
691  * @adapter: board private structure
692  *
693  * Configure the Tx unit of the MAC after a reset.
694  **/
695 static void iavf_configure_tx(struct iavf_adapter *adapter)
696 {
697 	struct iavf_hw *hw = &adapter->hw;
698 	int i;
699 
700 	for (i = 0; i < adapter->num_active_queues; i++)
701 		adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
702 }
703 
704 /**
705  * iavf_configure_rx - Configure Receive Unit after Reset
706  * @adapter: board private structure
707  *
708  * Configure the Rx unit of the MAC after a reset.
709  **/
710 static void iavf_configure_rx(struct iavf_adapter *adapter)
711 {
712 	unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
713 	struct iavf_hw *hw = &adapter->hw;
714 	int i;
715 
716 	/* Legacy Rx will always default to a 2048 buffer size. */
717 #if (PAGE_SIZE < 8192)
718 	if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
719 		struct net_device *netdev = adapter->netdev;
720 
721 		/* For jumbo frames on systems with 4K pages we have to use
722 		 * an order 1 page, so we might as well increase the size
723 		 * of our Rx buffer to make better use of the available space
724 		 */
725 		rx_buf_len = IAVF_RXBUFFER_3072;
726 
727 		/* We use a 1536 buffer size for configurations with
728 		 * standard Ethernet mtu.  On x86 this gives us enough room
729 		 * for shared info and 192 bytes of padding.
730 		 */
731 		if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
732 		    (netdev->mtu <= ETH_DATA_LEN))
733 			rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
734 	}
735 #endif
736 
737 	for (i = 0; i < adapter->num_active_queues; i++) {
738 		adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
739 		adapter->rx_rings[i].rx_buf_len = rx_buf_len;
740 
741 		if (adapter->flags & IAVF_FLAG_LEGACY_RX)
742 			clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
743 		else
744 			set_ring_build_skb_enabled(&adapter->rx_rings[i]);
745 	}
746 }
747 
748 /**
749  * iavf_find_vlan - Search filter list for specific vlan filter
750  * @adapter: board private structure
751  * @vlan: vlan tag
752  *
753  * Returns ptr to the filter object or NULL. Must be called while holding the
754  * mac_vlan_list_lock.
755  **/
756 static struct
757 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter,
758 				 struct iavf_vlan vlan)
759 {
760 	struct iavf_vlan_filter *f;
761 
762 	list_for_each_entry(f, &adapter->vlan_filter_list, list) {
763 		if (f->vlan.vid == vlan.vid &&
764 		    f->vlan.tpid == vlan.tpid)
765 			return f;
766 	}
767 
768 	return NULL;
769 }
770 
771 /**
772  * iavf_add_vlan - Add a vlan filter to the list
773  * @adapter: board private structure
774  * @vlan: VLAN tag
775  *
776  * Returns ptr to the filter object or NULL when no memory available.
777  **/
778 static struct
779 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter,
780 				struct iavf_vlan vlan)
781 {
782 	struct iavf_vlan_filter *f = NULL;
783 
784 	spin_lock_bh(&adapter->mac_vlan_list_lock);
785 
786 	f = iavf_find_vlan(adapter, vlan);
787 	if (!f) {
788 		f = kzalloc(sizeof(*f), GFP_ATOMIC);
789 		if (!f)
790 			goto clearout;
791 
792 		f->vlan = vlan;
793 
794 		list_add_tail(&f->list, &adapter->vlan_filter_list);
795 		f->add = true;
796 		adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
797 	}
798 
799 clearout:
800 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
801 	return f;
802 }
803 
804 /**
805  * iavf_del_vlan - Remove a vlan filter from the list
806  * @adapter: board private structure
807  * @vlan: VLAN tag
808  **/
809 static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan)
810 {
811 	struct iavf_vlan_filter *f;
812 
813 	spin_lock_bh(&adapter->mac_vlan_list_lock);
814 
815 	f = iavf_find_vlan(adapter, vlan);
816 	if (f) {
817 		f->remove = true;
818 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
819 	}
820 
821 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
822 }
823 
824 /**
825  * iavf_restore_filters
826  * @adapter: board private structure
827  *
828  * Restore existing non MAC filters when VF netdev comes back up
829  **/
830 static void iavf_restore_filters(struct iavf_adapter *adapter)
831 {
832 	u16 vid;
833 
834 	/* re-add all VLAN filters */
835 	for_each_set_bit(vid, adapter->vsi.active_cvlans, VLAN_N_VID)
836 		iavf_add_vlan(adapter, IAVF_VLAN(vid, ETH_P_8021Q));
837 
838 	for_each_set_bit(vid, adapter->vsi.active_svlans, VLAN_N_VID)
839 		iavf_add_vlan(adapter, IAVF_VLAN(vid, ETH_P_8021AD));
840 }
841 
842 /**
843  * iavf_get_num_vlans_added - get number of VLANs added
844  * @adapter: board private structure
845  */
846 static u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter)
847 {
848 	return bitmap_weight(adapter->vsi.active_cvlans, VLAN_N_VID) +
849 		bitmap_weight(adapter->vsi.active_svlans, VLAN_N_VID);
850 }
851 
852 /**
853  * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF
854  * @adapter: board private structure
855  *
856  * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN,
857  * do not impose a limit as that maintains current behavior and for
858  * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF.
859  **/
860 static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter)
861 {
862 	/* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has
863 	 * never been a limit on the VF driver side
864 	 */
865 	if (VLAN_ALLOWED(adapter))
866 		return VLAN_N_VID;
867 	else if (VLAN_V2_ALLOWED(adapter))
868 		return adapter->vlan_v2_caps.filtering.max_filters;
869 
870 	return 0;
871 }
872 
873 /**
874  * iavf_max_vlans_added - check if maximum VLANs allowed already exist
875  * @adapter: board private structure
876  **/
877 static bool iavf_max_vlans_added(struct iavf_adapter *adapter)
878 {
879 	if (iavf_get_num_vlans_added(adapter) <
880 	    iavf_get_max_vlans_allowed(adapter))
881 		return false;
882 
883 	return true;
884 }
885 
886 /**
887  * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
888  * @netdev: network device struct
889  * @proto: unused protocol data
890  * @vid: VLAN tag
891  **/
892 static int iavf_vlan_rx_add_vid(struct net_device *netdev,
893 				__always_unused __be16 proto, u16 vid)
894 {
895 	struct iavf_adapter *adapter = netdev_priv(netdev);
896 
897 	if (!VLAN_FILTERING_ALLOWED(adapter))
898 		return -EIO;
899 
900 	if (iavf_max_vlans_added(adapter)) {
901 		netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n",
902 			   iavf_get_max_vlans_allowed(adapter));
903 		return -EIO;
904 	}
905 
906 	if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))))
907 		return -ENOMEM;
908 
909 	if (proto == cpu_to_be16(ETH_P_8021Q))
910 		set_bit(vid, adapter->vsi.active_cvlans);
911 	else
912 		set_bit(vid, adapter->vsi.active_svlans);
913 
914 	return 0;
915 }
916 
917 /**
918  * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
919  * @netdev: network device struct
920  * @proto: unused protocol data
921  * @vid: VLAN tag
922  **/
923 static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
924 				 __always_unused __be16 proto, u16 vid)
925 {
926 	struct iavf_adapter *adapter = netdev_priv(netdev);
927 
928 	iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)));
929 	if (proto == cpu_to_be16(ETH_P_8021Q))
930 		clear_bit(vid, adapter->vsi.active_cvlans);
931 	else
932 		clear_bit(vid, adapter->vsi.active_svlans);
933 
934 	return 0;
935 }
936 
937 /**
938  * iavf_find_filter - Search filter list for specific mac filter
939  * @adapter: board private structure
940  * @macaddr: the MAC address
941  *
942  * Returns ptr to the filter object or NULL. Must be called while holding the
943  * mac_vlan_list_lock.
944  **/
945 static struct
946 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
947 				  const u8 *macaddr)
948 {
949 	struct iavf_mac_filter *f;
950 
951 	if (!macaddr)
952 		return NULL;
953 
954 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
955 		if (ether_addr_equal(macaddr, f->macaddr))
956 			return f;
957 	}
958 	return NULL;
959 }
960 
961 /**
962  * iavf_add_filter - Add a mac filter to the filter list
963  * @adapter: board private structure
964  * @macaddr: the MAC address
965  *
966  * Returns ptr to the filter object or NULL when no memory available.
967  **/
968 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
969 					const u8 *macaddr)
970 {
971 	struct iavf_mac_filter *f;
972 
973 	if (!macaddr)
974 		return NULL;
975 
976 	f = iavf_find_filter(adapter, macaddr);
977 	if (!f) {
978 		f = kzalloc(sizeof(*f), GFP_ATOMIC);
979 		if (!f)
980 			return f;
981 
982 		ether_addr_copy(f->macaddr, macaddr);
983 
984 		list_add_tail(&f->list, &adapter->mac_filter_list);
985 		f->add = true;
986 		f->is_new_mac = true;
987 		f->is_primary = false;
988 		adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
989 	} else {
990 		f->remove = false;
991 	}
992 
993 	return f;
994 }
995 
996 /**
997  * iavf_set_mac - NDO callback to set port mac address
998  * @netdev: network interface device structure
999  * @p: pointer to an address structure
1000  *
1001  * Returns 0 on success, negative on failure
1002  **/
1003 static int iavf_set_mac(struct net_device *netdev, void *p)
1004 {
1005 	struct iavf_adapter *adapter = netdev_priv(netdev);
1006 	struct iavf_hw *hw = &adapter->hw;
1007 	struct iavf_mac_filter *f;
1008 	struct sockaddr *addr = p;
1009 
1010 	if (!is_valid_ether_addr(addr->sa_data))
1011 		return -EADDRNOTAVAIL;
1012 
1013 	if (ether_addr_equal(netdev->dev_addr, addr->sa_data))
1014 		return 0;
1015 
1016 	spin_lock_bh(&adapter->mac_vlan_list_lock);
1017 
1018 	f = iavf_find_filter(adapter, hw->mac.addr);
1019 	if (f) {
1020 		f->remove = true;
1021 		f->is_primary = true;
1022 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1023 	}
1024 
1025 	f = iavf_add_filter(adapter, addr->sa_data);
1026 	if (f) {
1027 		f->is_primary = true;
1028 		ether_addr_copy(hw->mac.addr, addr->sa_data);
1029 	}
1030 
1031 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1032 
1033 	/* schedule the watchdog task to immediately process the request */
1034 	if (f)
1035 		queue_work(iavf_wq, &adapter->watchdog_task.work);
1036 
1037 	return (f == NULL) ? -ENOMEM : 0;
1038 }
1039 
1040 /**
1041  * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
1042  * @netdev: the netdevice
1043  * @addr: address to add
1044  *
1045  * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
1046  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1047  */
1048 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
1049 {
1050 	struct iavf_adapter *adapter = netdev_priv(netdev);
1051 
1052 	if (iavf_add_filter(adapter, addr))
1053 		return 0;
1054 	else
1055 		return -ENOMEM;
1056 }
1057 
1058 /**
1059  * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
1060  * @netdev: the netdevice
1061  * @addr: address to add
1062  *
1063  * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
1064  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1065  */
1066 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
1067 {
1068 	struct iavf_adapter *adapter = netdev_priv(netdev);
1069 	struct iavf_mac_filter *f;
1070 
1071 	/* Under some circumstances, we might receive a request to delete
1072 	 * our own device address from our uc list. Because we store the
1073 	 * device address in the VSI's MAC/VLAN filter list, we need to ignore
1074 	 * such requests and not delete our device address from this list.
1075 	 */
1076 	if (ether_addr_equal(addr, netdev->dev_addr))
1077 		return 0;
1078 
1079 	f = iavf_find_filter(adapter, addr);
1080 	if (f) {
1081 		f->remove = true;
1082 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1083 	}
1084 	return 0;
1085 }
1086 
1087 /**
1088  * iavf_set_rx_mode - NDO callback to set the netdev filters
1089  * @netdev: network interface device structure
1090  **/
1091 static void iavf_set_rx_mode(struct net_device *netdev)
1092 {
1093 	struct iavf_adapter *adapter = netdev_priv(netdev);
1094 
1095 	spin_lock_bh(&adapter->mac_vlan_list_lock);
1096 	__dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1097 	__dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1098 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1099 
1100 	if (netdev->flags & IFF_PROMISC &&
1101 	    !(adapter->flags & IAVF_FLAG_PROMISC_ON))
1102 		adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC;
1103 	else if (!(netdev->flags & IFF_PROMISC) &&
1104 		 adapter->flags & IAVF_FLAG_PROMISC_ON)
1105 		adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC;
1106 
1107 	if (netdev->flags & IFF_ALLMULTI &&
1108 	    !(adapter->flags & IAVF_FLAG_ALLMULTI_ON))
1109 		adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI;
1110 	else if (!(netdev->flags & IFF_ALLMULTI) &&
1111 		 adapter->flags & IAVF_FLAG_ALLMULTI_ON)
1112 		adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI;
1113 }
1114 
1115 /**
1116  * iavf_napi_enable_all - enable NAPI on all queue vectors
1117  * @adapter: board private structure
1118  **/
1119 static void iavf_napi_enable_all(struct iavf_adapter *adapter)
1120 {
1121 	int q_idx;
1122 	struct iavf_q_vector *q_vector;
1123 	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1124 
1125 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1126 		struct napi_struct *napi;
1127 
1128 		q_vector = &adapter->q_vectors[q_idx];
1129 		napi = &q_vector->napi;
1130 		napi_enable(napi);
1131 	}
1132 }
1133 
1134 /**
1135  * iavf_napi_disable_all - disable NAPI on all queue vectors
1136  * @adapter: board private structure
1137  **/
1138 static void iavf_napi_disable_all(struct iavf_adapter *adapter)
1139 {
1140 	int q_idx;
1141 	struct iavf_q_vector *q_vector;
1142 	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1143 
1144 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1145 		q_vector = &adapter->q_vectors[q_idx];
1146 		napi_disable(&q_vector->napi);
1147 	}
1148 }
1149 
1150 /**
1151  * iavf_configure - set up transmit and receive data structures
1152  * @adapter: board private structure
1153  **/
1154 static void iavf_configure(struct iavf_adapter *adapter)
1155 {
1156 	struct net_device *netdev = adapter->netdev;
1157 	int i;
1158 
1159 	iavf_set_rx_mode(netdev);
1160 
1161 	iavf_configure_tx(adapter);
1162 	iavf_configure_rx(adapter);
1163 	adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
1164 
1165 	for (i = 0; i < adapter->num_active_queues; i++) {
1166 		struct iavf_ring *ring = &adapter->rx_rings[i];
1167 
1168 		iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
1169 	}
1170 }
1171 
1172 /**
1173  * iavf_up_complete - Finish the last steps of bringing up a connection
1174  * @adapter: board private structure
1175  *
1176  * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
1177  **/
1178 static void iavf_up_complete(struct iavf_adapter *adapter)
1179 {
1180 	iavf_change_state(adapter, __IAVF_RUNNING);
1181 	clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1182 
1183 	iavf_napi_enable_all(adapter);
1184 
1185 	adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES;
1186 	if (CLIENT_ENABLED(adapter))
1187 		adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN;
1188 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1189 }
1190 
1191 /**
1192  * iavf_down - Shutdown the connection processing
1193  * @adapter: board private structure
1194  *
1195  * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
1196  **/
1197 void iavf_down(struct iavf_adapter *adapter)
1198 {
1199 	struct net_device *netdev = adapter->netdev;
1200 	struct iavf_vlan_filter *vlf;
1201 	struct iavf_cloud_filter *cf;
1202 	struct iavf_fdir_fltr *fdir;
1203 	struct iavf_mac_filter *f;
1204 	struct iavf_adv_rss *rss;
1205 
1206 	if (adapter->state <= __IAVF_DOWN_PENDING)
1207 		return;
1208 
1209 	netif_carrier_off(netdev);
1210 	netif_tx_disable(netdev);
1211 	adapter->link_up = false;
1212 	iavf_napi_disable_all(adapter);
1213 	iavf_irq_disable(adapter);
1214 
1215 	spin_lock_bh(&adapter->mac_vlan_list_lock);
1216 
1217 	/* clear the sync flag on all filters */
1218 	__dev_uc_unsync(adapter->netdev, NULL);
1219 	__dev_mc_unsync(adapter->netdev, NULL);
1220 
1221 	/* remove all MAC filters */
1222 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
1223 		f->remove = true;
1224 	}
1225 
1226 	/* remove all VLAN filters */
1227 	list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
1228 		vlf->remove = true;
1229 	}
1230 
1231 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1232 
1233 	/* remove all cloud filters */
1234 	spin_lock_bh(&adapter->cloud_filter_list_lock);
1235 	list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
1236 		cf->del = true;
1237 	}
1238 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
1239 
1240 	/* remove all Flow Director filters */
1241 	spin_lock_bh(&adapter->fdir_fltr_lock);
1242 	list_for_each_entry(fdir, &adapter->fdir_list_head, list) {
1243 		fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST;
1244 	}
1245 	spin_unlock_bh(&adapter->fdir_fltr_lock);
1246 
1247 	/* remove all advance RSS configuration */
1248 	spin_lock_bh(&adapter->adv_rss_lock);
1249 	list_for_each_entry(rss, &adapter->adv_rss_list_head, list)
1250 		rss->state = IAVF_ADV_RSS_DEL_REQUEST;
1251 	spin_unlock_bh(&adapter->adv_rss_lock);
1252 
1253 	if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)) {
1254 		/* cancel any current operation */
1255 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1256 		/* Schedule operations to close down the HW. Don't wait
1257 		 * here for this to complete. The watchdog is still running
1258 		 * and it will take care of this.
1259 		 */
1260 		adapter->aq_required = IAVF_FLAG_AQ_DEL_MAC_FILTER;
1261 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1262 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1263 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
1264 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG;
1265 		adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES;
1266 	}
1267 
1268 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1269 }
1270 
1271 /**
1272  * iavf_acquire_msix_vectors - Setup the MSIX capability
1273  * @adapter: board private structure
1274  * @vectors: number of vectors to request
1275  *
1276  * Work with the OS to set up the MSIX vectors needed.
1277  *
1278  * Returns 0 on success, negative on failure
1279  **/
1280 static int
1281 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1282 {
1283 	int err, vector_threshold;
1284 
1285 	/* We'll want at least 3 (vector_threshold):
1286 	 * 0) Other (Admin Queue and link, mostly)
1287 	 * 1) TxQ[0] Cleanup
1288 	 * 2) RxQ[0] Cleanup
1289 	 */
1290 	vector_threshold = MIN_MSIX_COUNT;
1291 
1292 	/* The more we get, the more we will assign to Tx/Rx Cleanup
1293 	 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1294 	 * Right now, we simply care about how many we'll get; we'll
1295 	 * set them up later while requesting irq's.
1296 	 */
1297 	err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1298 				    vector_threshold, vectors);
1299 	if (err < 0) {
1300 		dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1301 		kfree(adapter->msix_entries);
1302 		adapter->msix_entries = NULL;
1303 		return err;
1304 	}
1305 
1306 	/* Adjust for only the vectors we'll use, which is minimum
1307 	 * of max_msix_q_vectors + NONQ_VECS, or the number of
1308 	 * vectors we were allocated.
1309 	 */
1310 	adapter->num_msix_vectors = err;
1311 	return 0;
1312 }
1313 
1314 /**
1315  * iavf_free_queues - Free memory for all rings
1316  * @adapter: board private structure to initialize
1317  *
1318  * Free all of the memory associated with queue pairs.
1319  **/
1320 static void iavf_free_queues(struct iavf_adapter *adapter)
1321 {
1322 	if (!adapter->vsi_res)
1323 		return;
1324 	adapter->num_active_queues = 0;
1325 	kfree(adapter->tx_rings);
1326 	adapter->tx_rings = NULL;
1327 	kfree(adapter->rx_rings);
1328 	adapter->rx_rings = NULL;
1329 }
1330 
1331 /**
1332  * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload
1333  * @adapter: board private structure
1334  *
1335  * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or
1336  * stripped in certain descriptor fields. Instead of checking the offload
1337  * capability bits in the hot path, cache the location the ring specific
1338  * flags.
1339  */
1340 void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter)
1341 {
1342 	int i;
1343 
1344 	for (i = 0; i < adapter->num_active_queues; i++) {
1345 		struct iavf_ring *tx_ring = &adapter->tx_rings[i];
1346 		struct iavf_ring *rx_ring = &adapter->rx_rings[i];
1347 
1348 		/* prevent multiple L2TAG bits being set after VFR */
1349 		tx_ring->flags &=
1350 			~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1351 			  IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2);
1352 		rx_ring->flags &=
1353 			~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1354 			  IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2);
1355 
1356 		if (VLAN_ALLOWED(adapter)) {
1357 			tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1358 			rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1359 		} else if (VLAN_V2_ALLOWED(adapter)) {
1360 			struct virtchnl_vlan_supported_caps *stripping_support;
1361 			struct virtchnl_vlan_supported_caps *insertion_support;
1362 
1363 			stripping_support =
1364 				&adapter->vlan_v2_caps.offloads.stripping_support;
1365 			insertion_support =
1366 				&adapter->vlan_v2_caps.offloads.insertion_support;
1367 
1368 			if (stripping_support->outer) {
1369 				if (stripping_support->outer &
1370 				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1371 					rx_ring->flags |=
1372 						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1373 				else if (stripping_support->outer &
1374 					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1375 					rx_ring->flags |=
1376 						IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1377 			} else if (stripping_support->inner) {
1378 				if (stripping_support->inner &
1379 				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1380 					rx_ring->flags |=
1381 						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1382 				else if (stripping_support->inner &
1383 					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1384 					rx_ring->flags |=
1385 						IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1386 			}
1387 
1388 			if (insertion_support->outer) {
1389 				if (insertion_support->outer &
1390 				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1391 					tx_ring->flags |=
1392 						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1393 				else if (insertion_support->outer &
1394 					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1395 					tx_ring->flags |=
1396 						IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1397 			} else if (insertion_support->inner) {
1398 				if (insertion_support->inner &
1399 				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1400 					tx_ring->flags |=
1401 						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1402 				else if (insertion_support->inner &
1403 					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1404 					tx_ring->flags |=
1405 						IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1406 			}
1407 		}
1408 	}
1409 }
1410 
1411 /**
1412  * iavf_alloc_queues - Allocate memory for all rings
1413  * @adapter: board private structure to initialize
1414  *
1415  * We allocate one ring per queue at run-time since we don't know the
1416  * number of queues at compile-time.  The polling_netdev array is
1417  * intended for Multiqueue, but should work fine with a single queue.
1418  **/
1419 static int iavf_alloc_queues(struct iavf_adapter *adapter)
1420 {
1421 	int i, num_active_queues;
1422 
1423 	/* If we're in reset reallocating queues we don't actually know yet for
1424 	 * certain the PF gave us the number of queues we asked for but we'll
1425 	 * assume it did.  Once basic reset is finished we'll confirm once we
1426 	 * start negotiating config with PF.
1427 	 */
1428 	if (adapter->num_req_queues)
1429 		num_active_queues = adapter->num_req_queues;
1430 	else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1431 		 adapter->num_tc)
1432 		num_active_queues = adapter->ch_config.total_qps;
1433 	else
1434 		num_active_queues = min_t(int,
1435 					  adapter->vsi_res->num_queue_pairs,
1436 					  (int)(num_online_cpus()));
1437 
1438 
1439 	adapter->tx_rings = kcalloc(num_active_queues,
1440 				    sizeof(struct iavf_ring), GFP_KERNEL);
1441 	if (!adapter->tx_rings)
1442 		goto err_out;
1443 	adapter->rx_rings = kcalloc(num_active_queues,
1444 				    sizeof(struct iavf_ring), GFP_KERNEL);
1445 	if (!adapter->rx_rings)
1446 		goto err_out;
1447 
1448 	for (i = 0; i < num_active_queues; i++) {
1449 		struct iavf_ring *tx_ring;
1450 		struct iavf_ring *rx_ring;
1451 
1452 		tx_ring = &adapter->tx_rings[i];
1453 
1454 		tx_ring->queue_index = i;
1455 		tx_ring->netdev = adapter->netdev;
1456 		tx_ring->dev = &adapter->pdev->dev;
1457 		tx_ring->count = adapter->tx_desc_count;
1458 		tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1459 		if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1460 			tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1461 
1462 		rx_ring = &adapter->rx_rings[i];
1463 		rx_ring->queue_index = i;
1464 		rx_ring->netdev = adapter->netdev;
1465 		rx_ring->dev = &adapter->pdev->dev;
1466 		rx_ring->count = adapter->rx_desc_count;
1467 		rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1468 	}
1469 
1470 	adapter->num_active_queues = num_active_queues;
1471 
1472 	iavf_set_queue_vlan_tag_loc(adapter);
1473 
1474 	return 0;
1475 
1476 err_out:
1477 	iavf_free_queues(adapter);
1478 	return -ENOMEM;
1479 }
1480 
1481 /**
1482  * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1483  * @adapter: board private structure to initialize
1484  *
1485  * Attempt to configure the interrupts using the best available
1486  * capabilities of the hardware and the kernel.
1487  **/
1488 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1489 {
1490 	int vector, v_budget;
1491 	int pairs = 0;
1492 	int err = 0;
1493 
1494 	if (!adapter->vsi_res) {
1495 		err = -EIO;
1496 		goto out;
1497 	}
1498 	pairs = adapter->num_active_queues;
1499 
1500 	/* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1501 	 * us much good if we have more vectors than CPUs. However, we already
1502 	 * limit the total number of queues by the number of CPUs so we do not
1503 	 * need any further limiting here.
1504 	 */
1505 	v_budget = min_t(int, pairs + NONQ_VECS,
1506 			 (int)adapter->vf_res->max_vectors);
1507 
1508 	adapter->msix_entries = kcalloc(v_budget,
1509 					sizeof(struct msix_entry), GFP_KERNEL);
1510 	if (!adapter->msix_entries) {
1511 		err = -ENOMEM;
1512 		goto out;
1513 	}
1514 
1515 	for (vector = 0; vector < v_budget; vector++)
1516 		adapter->msix_entries[vector].entry = vector;
1517 
1518 	err = iavf_acquire_msix_vectors(adapter, v_budget);
1519 
1520 out:
1521 	netif_set_real_num_rx_queues(adapter->netdev, pairs);
1522 	netif_set_real_num_tx_queues(adapter->netdev, pairs);
1523 	return err;
1524 }
1525 
1526 /**
1527  * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1528  * @adapter: board private structure
1529  *
1530  * Return 0 on success, negative on failure
1531  **/
1532 static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1533 {
1534 	struct iavf_aqc_get_set_rss_key_data *rss_key =
1535 		(struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1536 	struct iavf_hw *hw = &adapter->hw;
1537 	enum iavf_status status;
1538 
1539 	if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1540 		/* bail because we already have a command pending */
1541 		dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1542 			adapter->current_op);
1543 		return -EBUSY;
1544 	}
1545 
1546 	status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1547 	if (status) {
1548 		dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1549 			iavf_stat_str(hw, status),
1550 			iavf_aq_str(hw, hw->aq.asq_last_status));
1551 		return iavf_status_to_errno(status);
1552 
1553 	}
1554 
1555 	status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1556 				     adapter->rss_lut, adapter->rss_lut_size);
1557 	if (status) {
1558 		dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1559 			iavf_stat_str(hw, status),
1560 			iavf_aq_str(hw, hw->aq.asq_last_status));
1561 		return iavf_status_to_errno(status);
1562 	}
1563 
1564 	return 0;
1565 
1566 }
1567 
1568 /**
1569  * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1570  * @adapter: board private structure
1571  *
1572  * Returns 0 on success, negative on failure
1573  **/
1574 static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1575 {
1576 	struct iavf_hw *hw = &adapter->hw;
1577 	u32 *dw;
1578 	u16 i;
1579 
1580 	dw = (u32 *)adapter->rss_key;
1581 	for (i = 0; i <= adapter->rss_key_size / 4; i++)
1582 		wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1583 
1584 	dw = (u32 *)adapter->rss_lut;
1585 	for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1586 		wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1587 
1588 	iavf_flush(hw);
1589 
1590 	return 0;
1591 }
1592 
1593 /**
1594  * iavf_config_rss - Configure RSS keys and lut
1595  * @adapter: board private structure
1596  *
1597  * Returns 0 on success, negative on failure
1598  **/
1599 int iavf_config_rss(struct iavf_adapter *adapter)
1600 {
1601 
1602 	if (RSS_PF(adapter)) {
1603 		adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1604 					IAVF_FLAG_AQ_SET_RSS_KEY;
1605 		return 0;
1606 	} else if (RSS_AQ(adapter)) {
1607 		return iavf_config_rss_aq(adapter);
1608 	} else {
1609 		return iavf_config_rss_reg(adapter);
1610 	}
1611 }
1612 
1613 /**
1614  * iavf_fill_rss_lut - Fill the lut with default values
1615  * @adapter: board private structure
1616  **/
1617 static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1618 {
1619 	u16 i;
1620 
1621 	for (i = 0; i < adapter->rss_lut_size; i++)
1622 		adapter->rss_lut[i] = i % adapter->num_active_queues;
1623 }
1624 
1625 /**
1626  * iavf_init_rss - Prepare for RSS
1627  * @adapter: board private structure
1628  *
1629  * Return 0 on success, negative on failure
1630  **/
1631 static int iavf_init_rss(struct iavf_adapter *adapter)
1632 {
1633 	struct iavf_hw *hw = &adapter->hw;
1634 
1635 	if (!RSS_PF(adapter)) {
1636 		/* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1637 		if (adapter->vf_res->vf_cap_flags &
1638 		    VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1639 			adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1640 		else
1641 			adapter->hena = IAVF_DEFAULT_RSS_HENA;
1642 
1643 		wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1644 		wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1645 	}
1646 
1647 	iavf_fill_rss_lut(adapter);
1648 	netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1649 
1650 	return iavf_config_rss(adapter);
1651 }
1652 
1653 /**
1654  * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1655  * @adapter: board private structure to initialize
1656  *
1657  * We allocate one q_vector per queue interrupt.  If allocation fails we
1658  * return -ENOMEM.
1659  **/
1660 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1661 {
1662 	int q_idx = 0, num_q_vectors;
1663 	struct iavf_q_vector *q_vector;
1664 
1665 	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1666 	adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1667 				     GFP_KERNEL);
1668 	if (!adapter->q_vectors)
1669 		return -ENOMEM;
1670 
1671 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1672 		q_vector = &adapter->q_vectors[q_idx];
1673 		q_vector->adapter = adapter;
1674 		q_vector->vsi = &adapter->vsi;
1675 		q_vector->v_idx = q_idx;
1676 		q_vector->reg_idx = q_idx;
1677 		cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1678 		netif_napi_add(adapter->netdev, &q_vector->napi,
1679 			       iavf_napi_poll, NAPI_POLL_WEIGHT);
1680 	}
1681 
1682 	return 0;
1683 }
1684 
1685 /**
1686  * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1687  * @adapter: board private structure to initialize
1688  *
1689  * This function frees the memory allocated to the q_vectors.  In addition if
1690  * NAPI is enabled it will delete any references to the NAPI struct prior
1691  * to freeing the q_vector.
1692  **/
1693 static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1694 {
1695 	int q_idx, num_q_vectors;
1696 	int napi_vectors;
1697 
1698 	if (!adapter->q_vectors)
1699 		return;
1700 
1701 	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1702 	napi_vectors = adapter->num_active_queues;
1703 
1704 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1705 		struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1706 
1707 		if (q_idx < napi_vectors)
1708 			netif_napi_del(&q_vector->napi);
1709 	}
1710 	kfree(adapter->q_vectors);
1711 	adapter->q_vectors = NULL;
1712 }
1713 
1714 /**
1715  * iavf_reset_interrupt_capability - Reset MSIX setup
1716  * @adapter: board private structure
1717  *
1718  **/
1719 void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1720 {
1721 	if (!adapter->msix_entries)
1722 		return;
1723 
1724 	pci_disable_msix(adapter->pdev);
1725 	kfree(adapter->msix_entries);
1726 	adapter->msix_entries = NULL;
1727 }
1728 
1729 /**
1730  * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1731  * @adapter: board private structure to initialize
1732  *
1733  **/
1734 int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1735 {
1736 	int err;
1737 
1738 	err = iavf_alloc_queues(adapter);
1739 	if (err) {
1740 		dev_err(&adapter->pdev->dev,
1741 			"Unable to allocate memory for queues\n");
1742 		goto err_alloc_queues;
1743 	}
1744 
1745 	rtnl_lock();
1746 	err = iavf_set_interrupt_capability(adapter);
1747 	rtnl_unlock();
1748 	if (err) {
1749 		dev_err(&adapter->pdev->dev,
1750 			"Unable to setup interrupt capabilities\n");
1751 		goto err_set_interrupt;
1752 	}
1753 
1754 	err = iavf_alloc_q_vectors(adapter);
1755 	if (err) {
1756 		dev_err(&adapter->pdev->dev,
1757 			"Unable to allocate memory for queue vectors\n");
1758 		goto err_alloc_q_vectors;
1759 	}
1760 
1761 	/* If we've made it so far while ADq flag being ON, then we haven't
1762 	 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1763 	 * resources have been allocated in the reset path.
1764 	 * Now we can truly claim that ADq is enabled.
1765 	 */
1766 	if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1767 	    adapter->num_tc)
1768 		dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1769 			 adapter->num_tc);
1770 
1771 	dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1772 		 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1773 		 adapter->num_active_queues);
1774 
1775 	return 0;
1776 err_alloc_q_vectors:
1777 	iavf_reset_interrupt_capability(adapter);
1778 err_set_interrupt:
1779 	iavf_free_queues(adapter);
1780 err_alloc_queues:
1781 	return err;
1782 }
1783 
1784 /**
1785  * iavf_free_rss - Free memory used by RSS structs
1786  * @adapter: board private structure
1787  **/
1788 static void iavf_free_rss(struct iavf_adapter *adapter)
1789 {
1790 	kfree(adapter->rss_key);
1791 	adapter->rss_key = NULL;
1792 
1793 	kfree(adapter->rss_lut);
1794 	adapter->rss_lut = NULL;
1795 }
1796 
1797 /**
1798  * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1799  * @adapter: board private structure
1800  *
1801  * Returns 0 on success, negative on failure
1802  **/
1803 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter)
1804 {
1805 	struct net_device *netdev = adapter->netdev;
1806 	int err;
1807 
1808 	if (netif_running(netdev))
1809 		iavf_free_traffic_irqs(adapter);
1810 	iavf_free_misc_irq(adapter);
1811 	iavf_reset_interrupt_capability(adapter);
1812 	iavf_free_q_vectors(adapter);
1813 	iavf_free_queues(adapter);
1814 
1815 	err =  iavf_init_interrupt_scheme(adapter);
1816 	if (err)
1817 		goto err;
1818 
1819 	netif_tx_stop_all_queues(netdev);
1820 
1821 	err = iavf_request_misc_irq(adapter);
1822 	if (err)
1823 		goto err;
1824 
1825 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1826 
1827 	iavf_map_rings_to_vectors(adapter);
1828 err:
1829 	return err;
1830 }
1831 
1832 /**
1833  * iavf_process_aq_command - process aq_required flags
1834  * and sends aq command
1835  * @adapter: pointer to iavf adapter structure
1836  *
1837  * Returns 0 on success
1838  * Returns error code if no command was sent
1839  * or error code if the command failed.
1840  **/
1841 static int iavf_process_aq_command(struct iavf_adapter *adapter)
1842 {
1843 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
1844 		return iavf_send_vf_config_msg(adapter);
1845 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS)
1846 		return iavf_send_vf_offload_vlan_v2_msg(adapter);
1847 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
1848 		iavf_disable_queues(adapter);
1849 		return 0;
1850 	}
1851 
1852 	if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
1853 		iavf_map_queues(adapter);
1854 		return 0;
1855 	}
1856 
1857 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
1858 		iavf_add_ether_addrs(adapter);
1859 		return 0;
1860 	}
1861 
1862 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
1863 		iavf_add_vlans(adapter);
1864 		return 0;
1865 	}
1866 
1867 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
1868 		iavf_del_ether_addrs(adapter);
1869 		return 0;
1870 	}
1871 
1872 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
1873 		iavf_del_vlans(adapter);
1874 		return 0;
1875 	}
1876 
1877 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
1878 		iavf_enable_vlan_stripping(adapter);
1879 		return 0;
1880 	}
1881 
1882 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
1883 		iavf_disable_vlan_stripping(adapter);
1884 		return 0;
1885 	}
1886 
1887 	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
1888 		iavf_configure_queues(adapter);
1889 		return 0;
1890 	}
1891 
1892 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
1893 		iavf_enable_queues(adapter);
1894 		return 0;
1895 	}
1896 
1897 	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
1898 		/* This message goes straight to the firmware, not the
1899 		 * PF, so we don't have to set current_op as we will
1900 		 * not get a response through the ARQ.
1901 		 */
1902 		adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
1903 		return 0;
1904 	}
1905 	if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
1906 		iavf_get_hena(adapter);
1907 		return 0;
1908 	}
1909 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
1910 		iavf_set_hena(adapter);
1911 		return 0;
1912 	}
1913 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
1914 		iavf_set_rss_key(adapter);
1915 		return 0;
1916 	}
1917 	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
1918 		iavf_set_rss_lut(adapter);
1919 		return 0;
1920 	}
1921 
1922 	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) {
1923 		iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC |
1924 				       FLAG_VF_MULTICAST_PROMISC);
1925 		return 0;
1926 	}
1927 
1928 	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) {
1929 		iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC);
1930 		return 0;
1931 	}
1932 	if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) ||
1933 	    (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) {
1934 		iavf_set_promiscuous(adapter, 0);
1935 		return 0;
1936 	}
1937 
1938 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
1939 		iavf_enable_channels(adapter);
1940 		return 0;
1941 	}
1942 
1943 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
1944 		iavf_disable_channels(adapter);
1945 		return 0;
1946 	}
1947 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1948 		iavf_add_cloud_filter(adapter);
1949 		return 0;
1950 	}
1951 
1952 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1953 		iavf_del_cloud_filter(adapter);
1954 		return 0;
1955 	}
1956 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1957 		iavf_del_cloud_filter(adapter);
1958 		return 0;
1959 	}
1960 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1961 		iavf_add_cloud_filter(adapter);
1962 		return 0;
1963 	}
1964 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) {
1965 		iavf_add_fdir_filter(adapter);
1966 		return IAVF_SUCCESS;
1967 	}
1968 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) {
1969 		iavf_del_fdir_filter(adapter);
1970 		return IAVF_SUCCESS;
1971 	}
1972 	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) {
1973 		iavf_add_adv_rss_cfg(adapter);
1974 		return 0;
1975 	}
1976 	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) {
1977 		iavf_del_adv_rss_cfg(adapter);
1978 		return 0;
1979 	}
1980 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) {
1981 		iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q);
1982 		return 0;
1983 	}
1984 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) {
1985 		iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD);
1986 		return 0;
1987 	}
1988 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) {
1989 		iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q);
1990 		return 0;
1991 	}
1992 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) {
1993 		iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD);
1994 		return 0;
1995 	}
1996 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) {
1997 		iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q);
1998 		return 0;
1999 	}
2000 	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) {
2001 		iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2002 		return 0;
2003 	}
2004 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) {
2005 		iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2006 		return 0;
2007 	}
2008 	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) {
2009 		iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2010 		return 0;
2011 	}
2012 
2013 	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) {
2014 		iavf_request_stats(adapter);
2015 		return 0;
2016 	}
2017 
2018 	return -EAGAIN;
2019 }
2020 
2021 /**
2022  * iavf_set_vlan_offload_features - set VLAN offload configuration
2023  * @adapter: board private structure
2024  * @prev_features: previous features used for comparison
2025  * @features: updated features used for configuration
2026  *
2027  * Set the aq_required bit(s) based on the requested features passed in to
2028  * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule
2029  * the watchdog if any changes are requested to expedite the request via
2030  * virtchnl.
2031  **/
2032 void
2033 iavf_set_vlan_offload_features(struct iavf_adapter *adapter,
2034 			       netdev_features_t prev_features,
2035 			       netdev_features_t features)
2036 {
2037 	bool enable_stripping = true, enable_insertion = true;
2038 	u16 vlan_ethertype = 0;
2039 	u64 aq_required = 0;
2040 
2041 	/* keep cases separate because one ethertype for offloads can be
2042 	 * disabled at the same time as another is disabled, so check for an
2043 	 * enabled ethertype first, then check for disabled. Default to
2044 	 * ETH_P_8021Q so an ethertype is specified if disabling insertion and
2045 	 * stripping.
2046 	 */
2047 	if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2048 		vlan_ethertype = ETH_P_8021AD;
2049 	else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2050 		vlan_ethertype = ETH_P_8021Q;
2051 	else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2052 		vlan_ethertype = ETH_P_8021AD;
2053 	else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2054 		vlan_ethertype = ETH_P_8021Q;
2055 	else
2056 		vlan_ethertype = ETH_P_8021Q;
2057 
2058 	if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
2059 		enable_stripping = false;
2060 	if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
2061 		enable_insertion = false;
2062 
2063 	if (VLAN_ALLOWED(adapter)) {
2064 		/* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN
2065 		 * stripping via virtchnl. VLAN insertion can be toggled on the
2066 		 * netdev, but it doesn't require a virtchnl message
2067 		 */
2068 		if (enable_stripping)
2069 			aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
2070 		else
2071 			aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
2072 
2073 	} else if (VLAN_V2_ALLOWED(adapter)) {
2074 		switch (vlan_ethertype) {
2075 		case ETH_P_8021Q:
2076 			if (enable_stripping)
2077 				aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING;
2078 			else
2079 				aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING;
2080 
2081 			if (enable_insertion)
2082 				aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION;
2083 			else
2084 				aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION;
2085 			break;
2086 		case ETH_P_8021AD:
2087 			if (enable_stripping)
2088 				aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING;
2089 			else
2090 				aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING;
2091 
2092 			if (enable_insertion)
2093 				aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION;
2094 			else
2095 				aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION;
2096 			break;
2097 		}
2098 	}
2099 
2100 	if (aq_required) {
2101 		adapter->aq_required |= aq_required;
2102 		mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
2103 	}
2104 }
2105 
2106 /**
2107  * iavf_startup - first step of driver startup
2108  * @adapter: board private structure
2109  *
2110  * Function process __IAVF_STARTUP driver state.
2111  * When success the state is changed to __IAVF_INIT_VERSION_CHECK
2112  * when fails the state is changed to __IAVF_INIT_FAILED
2113  **/
2114 static void iavf_startup(struct iavf_adapter *adapter)
2115 {
2116 	struct pci_dev *pdev = adapter->pdev;
2117 	struct iavf_hw *hw = &adapter->hw;
2118 	enum iavf_status status;
2119 	int ret;
2120 
2121 	WARN_ON(adapter->state != __IAVF_STARTUP);
2122 
2123 	/* driver loaded, probe complete */
2124 	adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2125 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2126 	status = iavf_set_mac_type(hw);
2127 	if (status) {
2128 		dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", status);
2129 		goto err;
2130 	}
2131 
2132 	ret = iavf_check_reset_complete(hw);
2133 	if (ret) {
2134 		dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
2135 			 ret);
2136 		goto err;
2137 	}
2138 	hw->aq.num_arq_entries = IAVF_AQ_LEN;
2139 	hw->aq.num_asq_entries = IAVF_AQ_LEN;
2140 	hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2141 	hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2142 
2143 	status = iavf_init_adminq(hw);
2144 	if (status) {
2145 		dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n",
2146 			status);
2147 		goto err;
2148 	}
2149 	ret = iavf_send_api_ver(adapter);
2150 	if (ret) {
2151 		dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret);
2152 		iavf_shutdown_adminq(hw);
2153 		goto err;
2154 	}
2155 	iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK);
2156 	return;
2157 err:
2158 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2159 }
2160 
2161 /**
2162  * iavf_init_version_check - second step of driver startup
2163  * @adapter: board private structure
2164  *
2165  * Function process __IAVF_INIT_VERSION_CHECK driver state.
2166  * When success the state is changed to __IAVF_INIT_GET_RESOURCES
2167  * when fails the state is changed to __IAVF_INIT_FAILED
2168  **/
2169 static void iavf_init_version_check(struct iavf_adapter *adapter)
2170 {
2171 	struct pci_dev *pdev = adapter->pdev;
2172 	struct iavf_hw *hw = &adapter->hw;
2173 	int err = -EAGAIN;
2174 
2175 	WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
2176 
2177 	if (!iavf_asq_done(hw)) {
2178 		dev_err(&pdev->dev, "Admin queue command never completed\n");
2179 		iavf_shutdown_adminq(hw);
2180 		iavf_change_state(adapter, __IAVF_STARTUP);
2181 		goto err;
2182 	}
2183 
2184 	/* aq msg sent, awaiting reply */
2185 	err = iavf_verify_api_ver(adapter);
2186 	if (err) {
2187 		if (err == -EALREADY)
2188 			err = iavf_send_api_ver(adapter);
2189 		else
2190 			dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
2191 				adapter->pf_version.major,
2192 				adapter->pf_version.minor,
2193 				VIRTCHNL_VERSION_MAJOR,
2194 				VIRTCHNL_VERSION_MINOR);
2195 		goto err;
2196 	}
2197 	err = iavf_send_vf_config_msg(adapter);
2198 	if (err) {
2199 		dev_err(&pdev->dev, "Unable to send config request (%d)\n",
2200 			err);
2201 		goto err;
2202 	}
2203 	iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES);
2204 	return;
2205 err:
2206 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2207 }
2208 
2209 /**
2210  * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES
2211  * @adapter: board private structure
2212  */
2213 int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter)
2214 {
2215 	int i, num_req_queues = adapter->num_req_queues;
2216 	struct iavf_vsi *vsi = &adapter->vsi;
2217 
2218 	for (i = 0; i < adapter->vf_res->num_vsis; i++) {
2219 		if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
2220 			adapter->vsi_res = &adapter->vf_res->vsi_res[i];
2221 	}
2222 	if (!adapter->vsi_res) {
2223 		dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
2224 		return -ENODEV;
2225 	}
2226 
2227 	if (num_req_queues &&
2228 	    num_req_queues > adapter->vsi_res->num_queue_pairs) {
2229 		/* Problem.  The PF gave us fewer queues than what we had
2230 		 * negotiated in our request.  Need a reset to see if we can't
2231 		 * get back to a working state.
2232 		 */
2233 		dev_err(&adapter->pdev->dev,
2234 			"Requested %d queues, but PF only gave us %d.\n",
2235 			num_req_queues,
2236 			adapter->vsi_res->num_queue_pairs);
2237 		adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED;
2238 		adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
2239 		iavf_schedule_reset(adapter);
2240 
2241 		return -EAGAIN;
2242 	}
2243 	adapter->num_req_queues = 0;
2244 	adapter->vsi.id = adapter->vsi_res->vsi_id;
2245 
2246 	adapter->vsi.back = adapter;
2247 	adapter->vsi.base_vector = 1;
2248 	adapter->vsi.work_limit = IAVF_DEFAULT_IRQ_WORK;
2249 	vsi->netdev = adapter->netdev;
2250 	vsi->qs_handle = adapter->vsi_res->qset_handle;
2251 	if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2252 		adapter->rss_key_size = adapter->vf_res->rss_key_size;
2253 		adapter->rss_lut_size = adapter->vf_res->rss_lut_size;
2254 	} else {
2255 		adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
2256 		adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
2257 	}
2258 
2259 	return 0;
2260 }
2261 
2262 /**
2263  * iavf_init_get_resources - third step of driver startup
2264  * @adapter: board private structure
2265  *
2266  * Function process __IAVF_INIT_GET_RESOURCES driver state and
2267  * finishes driver initialization procedure.
2268  * When success the state is changed to __IAVF_DOWN
2269  * when fails the state is changed to __IAVF_INIT_FAILED
2270  **/
2271 static void iavf_init_get_resources(struct iavf_adapter *adapter)
2272 {
2273 	struct pci_dev *pdev = adapter->pdev;
2274 	struct iavf_hw *hw = &adapter->hw;
2275 	int err;
2276 
2277 	WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
2278 	/* aq msg sent, awaiting reply */
2279 	if (!adapter->vf_res) {
2280 		adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
2281 					  GFP_KERNEL);
2282 		if (!adapter->vf_res) {
2283 			err = -ENOMEM;
2284 			goto err;
2285 		}
2286 	}
2287 	err = iavf_get_vf_config(adapter);
2288 	if (err == -EALREADY) {
2289 		err = iavf_send_vf_config_msg(adapter);
2290 		goto err_alloc;
2291 	} else if (err == -EINVAL) {
2292 		/* We only get -EINVAL if the device is in a very bad
2293 		 * state or if we've been disabled for previous bad
2294 		 * behavior. Either way, we're done now.
2295 		 */
2296 		iavf_shutdown_adminq(hw);
2297 		dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
2298 		return;
2299 	}
2300 	if (err) {
2301 		dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
2302 		goto err_alloc;
2303 	}
2304 
2305 	err = iavf_parse_vf_resource_msg(adapter);
2306 	if (err) {
2307 		dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n",
2308 			err);
2309 		goto err_alloc;
2310 	}
2311 	/* Some features require additional messages to negotiate extended
2312 	 * capabilities. These are processed in sequence by the
2313 	 * __IAVF_INIT_EXTENDED_CAPS driver state.
2314 	 */
2315 	adapter->extended_caps = IAVF_EXTENDED_CAPS;
2316 
2317 	iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS);
2318 	return;
2319 
2320 err_alloc:
2321 	kfree(adapter->vf_res);
2322 	adapter->vf_res = NULL;
2323 err:
2324 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2325 }
2326 
2327 /**
2328  * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2329  * @adapter: board private structure
2330  *
2331  * Function processes send of the extended VLAN V2 capability message to the
2332  * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent,
2333  * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2334  */
2335 static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2336 {
2337 	int ret;
2338 
2339 	WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2));
2340 
2341 	ret = iavf_send_vf_offload_vlan_v2_msg(adapter);
2342 	if (ret && ret == -EOPNOTSUPP) {
2343 		/* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case,
2344 		 * we did not send the capability exchange message and do not
2345 		 * expect a response.
2346 		 */
2347 		adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2348 	}
2349 
2350 	/* We sent the message, so move on to the next step */
2351 	adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2352 }
2353 
2354 /**
2355  * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2356  * @adapter: board private structure
2357  *
2358  * Function processes receipt of the extended VLAN V2 capability message from
2359  * the PF.
2360  **/
2361 static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2362 {
2363 	int ret;
2364 
2365 	WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2));
2366 
2367 	memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps));
2368 
2369 	ret = iavf_get_vf_vlan_v2_caps(adapter);
2370 	if (ret)
2371 		goto err;
2372 
2373 	/* We've processed receipt of the VLAN V2 caps message */
2374 	adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2375 	return;
2376 err:
2377 	/* We didn't receive a reply. Make sure we try sending again when
2378 	 * __IAVF_INIT_FAILED attempts to recover.
2379 	 */
2380 	adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2381 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2382 }
2383 
2384 /**
2385  * iavf_init_process_extended_caps - Part of driver startup
2386  * @adapter: board private structure
2387  *
2388  * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state
2389  * handles negotiating capabilities for features which require an additional
2390  * message.
2391  *
2392  * Once all extended capabilities exchanges are finished, the driver will
2393  * transition into __IAVF_INIT_CONFIG_ADAPTER.
2394  */
2395 static void iavf_init_process_extended_caps(struct iavf_adapter *adapter)
2396 {
2397 	WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS);
2398 
2399 	/* Process capability exchange for VLAN V2 */
2400 	if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) {
2401 		iavf_init_send_offload_vlan_v2_caps(adapter);
2402 		return;
2403 	} else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) {
2404 		iavf_init_recv_offload_vlan_v2_caps(adapter);
2405 		return;
2406 	}
2407 
2408 	/* When we reach here, no further extended capabilities exchanges are
2409 	 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER
2410 	 */
2411 	iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER);
2412 }
2413 
2414 /**
2415  * iavf_init_config_adapter - last part of driver startup
2416  * @adapter: board private structure
2417  *
2418  * After all the supported capabilities are negotiated, then the
2419  * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization.
2420  */
2421 static void iavf_init_config_adapter(struct iavf_adapter *adapter)
2422 {
2423 	struct net_device *netdev = adapter->netdev;
2424 	struct pci_dev *pdev = adapter->pdev;
2425 	int err;
2426 
2427 	WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER);
2428 
2429 	if (iavf_process_config(adapter))
2430 		goto err;
2431 
2432 	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2433 
2434 	adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
2435 
2436 	netdev->netdev_ops = &iavf_netdev_ops;
2437 	iavf_set_ethtool_ops(netdev);
2438 	netdev->watchdog_timeo = 5 * HZ;
2439 
2440 	/* MTU range: 68 - 9710 */
2441 	netdev->min_mtu = ETH_MIN_MTU;
2442 	netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
2443 
2444 	if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
2445 		dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
2446 			 adapter->hw.mac.addr);
2447 		eth_hw_addr_random(netdev);
2448 		ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
2449 	} else {
2450 		eth_hw_addr_set(netdev, adapter->hw.mac.addr);
2451 		ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2452 	}
2453 
2454 	adapter->tx_desc_count = IAVF_DEFAULT_TXD;
2455 	adapter->rx_desc_count = IAVF_DEFAULT_RXD;
2456 	err = iavf_init_interrupt_scheme(adapter);
2457 	if (err)
2458 		goto err_sw_init;
2459 	iavf_map_rings_to_vectors(adapter);
2460 	if (adapter->vf_res->vf_cap_flags &
2461 		VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
2462 		adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
2463 
2464 	err = iavf_request_misc_irq(adapter);
2465 	if (err)
2466 		goto err_sw_init;
2467 
2468 	netif_carrier_off(netdev);
2469 	adapter->link_up = false;
2470 
2471 	/* set the semaphore to prevent any callbacks after device registration
2472 	 * up to time when state of driver will be set to __IAVF_DOWN
2473 	 */
2474 	rtnl_lock();
2475 	if (!adapter->netdev_registered) {
2476 		err = register_netdevice(netdev);
2477 		if (err) {
2478 			rtnl_unlock();
2479 			goto err_register;
2480 		}
2481 	}
2482 
2483 	adapter->netdev_registered = true;
2484 
2485 	netif_tx_stop_all_queues(netdev);
2486 	if (CLIENT_ALLOWED(adapter)) {
2487 		err = iavf_lan_add_device(adapter);
2488 		if (err)
2489 			dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n",
2490 				 err);
2491 	}
2492 	dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
2493 	if (netdev->features & NETIF_F_GRO)
2494 		dev_info(&pdev->dev, "GRO is enabled\n");
2495 
2496 	iavf_change_state(adapter, __IAVF_DOWN);
2497 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2498 	rtnl_unlock();
2499 
2500 	iavf_misc_irq_enable(adapter);
2501 	wake_up(&adapter->down_waitqueue);
2502 
2503 	adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
2504 	adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
2505 	if (!adapter->rss_key || !adapter->rss_lut) {
2506 		err = -ENOMEM;
2507 		goto err_mem;
2508 	}
2509 	if (RSS_AQ(adapter))
2510 		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2511 	else
2512 		iavf_init_rss(adapter);
2513 
2514 	if (VLAN_V2_ALLOWED(adapter))
2515 		/* request initial VLAN offload settings */
2516 		iavf_set_vlan_offload_features(adapter, 0, netdev->features);
2517 
2518 	return;
2519 err_mem:
2520 	iavf_free_rss(adapter);
2521 err_register:
2522 	iavf_free_misc_irq(adapter);
2523 err_sw_init:
2524 	iavf_reset_interrupt_capability(adapter);
2525 err:
2526 	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2527 }
2528 
2529 /**
2530  * iavf_watchdog_task - Periodic call-back task
2531  * @work: pointer to work_struct
2532  **/
2533 static void iavf_watchdog_task(struct work_struct *work)
2534 {
2535 	struct iavf_adapter *adapter = container_of(work,
2536 						    struct iavf_adapter,
2537 						    watchdog_task.work);
2538 	struct iavf_hw *hw = &adapter->hw;
2539 	u32 reg_val;
2540 
2541 	if (!mutex_trylock(&adapter->crit_lock)) {
2542 		if (adapter->state == __IAVF_REMOVE)
2543 			return;
2544 
2545 		goto restart_watchdog;
2546 	}
2547 
2548 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2549 		iavf_change_state(adapter, __IAVF_COMM_FAILED);
2550 
2551 	if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2552 		adapter->aq_required = 0;
2553 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2554 		mutex_unlock(&adapter->crit_lock);
2555 		queue_work(iavf_wq, &adapter->reset_task);
2556 		return;
2557 	}
2558 
2559 	switch (adapter->state) {
2560 	case __IAVF_STARTUP:
2561 		iavf_startup(adapter);
2562 		mutex_unlock(&adapter->crit_lock);
2563 		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2564 				   msecs_to_jiffies(30));
2565 		return;
2566 	case __IAVF_INIT_VERSION_CHECK:
2567 		iavf_init_version_check(adapter);
2568 		mutex_unlock(&adapter->crit_lock);
2569 		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2570 				   msecs_to_jiffies(30));
2571 		return;
2572 	case __IAVF_INIT_GET_RESOURCES:
2573 		iavf_init_get_resources(adapter);
2574 		mutex_unlock(&adapter->crit_lock);
2575 		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2576 				   msecs_to_jiffies(1));
2577 		return;
2578 	case __IAVF_INIT_EXTENDED_CAPS:
2579 		iavf_init_process_extended_caps(adapter);
2580 		mutex_unlock(&adapter->crit_lock);
2581 		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2582 				   msecs_to_jiffies(1));
2583 		return;
2584 	case __IAVF_INIT_CONFIG_ADAPTER:
2585 		iavf_init_config_adapter(adapter);
2586 		mutex_unlock(&adapter->crit_lock);
2587 		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2588 				   msecs_to_jiffies(1));
2589 		return;
2590 	case __IAVF_INIT_FAILED:
2591 		if (test_bit(__IAVF_IN_REMOVE_TASK,
2592 			     &adapter->crit_section)) {
2593 			/* Do not update the state and do not reschedule
2594 			 * watchdog task, iavf_remove should handle this state
2595 			 * as it can loop forever
2596 			 */
2597 			mutex_unlock(&adapter->crit_lock);
2598 			return;
2599 		}
2600 		if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
2601 			dev_err(&adapter->pdev->dev,
2602 				"Failed to communicate with PF; waiting before retry\n");
2603 			adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2604 			iavf_shutdown_adminq(hw);
2605 			mutex_unlock(&adapter->crit_lock);
2606 			queue_delayed_work(iavf_wq,
2607 					   &adapter->watchdog_task, (5 * HZ));
2608 			return;
2609 		}
2610 		/* Try again from failed step*/
2611 		iavf_change_state(adapter, adapter->last_state);
2612 		mutex_unlock(&adapter->crit_lock);
2613 		queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ);
2614 		return;
2615 	case __IAVF_COMM_FAILED:
2616 		if (test_bit(__IAVF_IN_REMOVE_TASK,
2617 			     &adapter->crit_section)) {
2618 			/* Set state to __IAVF_INIT_FAILED and perform remove
2619 			 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task
2620 			 * doesn't bring the state back to __IAVF_COMM_FAILED.
2621 			 */
2622 			iavf_change_state(adapter, __IAVF_INIT_FAILED);
2623 			adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2624 			mutex_unlock(&adapter->crit_lock);
2625 			return;
2626 		}
2627 		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2628 			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2629 		if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
2630 		    reg_val == VIRTCHNL_VFR_COMPLETED) {
2631 			/* A chance for redemption! */
2632 			dev_err(&adapter->pdev->dev,
2633 				"Hardware came out of reset. Attempting reinit.\n");
2634 			/* When init task contacts the PF and
2635 			 * gets everything set up again, it'll restart the
2636 			 * watchdog for us. Down, boy. Sit. Stay. Woof.
2637 			 */
2638 			iavf_change_state(adapter, __IAVF_STARTUP);
2639 			adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2640 		}
2641 		adapter->aq_required = 0;
2642 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2643 		mutex_unlock(&adapter->crit_lock);
2644 		queue_delayed_work(iavf_wq,
2645 				   &adapter->watchdog_task,
2646 				   msecs_to_jiffies(10));
2647 		return;
2648 	case __IAVF_RESETTING:
2649 		mutex_unlock(&adapter->crit_lock);
2650 		queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
2651 		return;
2652 	case __IAVF_DOWN:
2653 	case __IAVF_DOWN_PENDING:
2654 	case __IAVF_TESTING:
2655 	case __IAVF_RUNNING:
2656 		if (adapter->current_op) {
2657 			if (!iavf_asq_done(hw)) {
2658 				dev_dbg(&adapter->pdev->dev,
2659 					"Admin queue timeout\n");
2660 				iavf_send_api_ver(adapter);
2661 			}
2662 		} else {
2663 			int ret = iavf_process_aq_command(adapter);
2664 
2665 			/* An error will be returned if no commands were
2666 			 * processed; use this opportunity to update stats
2667 			 * if the error isn't -ENOTSUPP
2668 			 */
2669 			if (ret && ret != -EOPNOTSUPP &&
2670 			    adapter->state == __IAVF_RUNNING)
2671 				iavf_request_stats(adapter);
2672 		}
2673 		if (adapter->state == __IAVF_RUNNING)
2674 			iavf_detect_recover_hung(&adapter->vsi);
2675 		break;
2676 	case __IAVF_REMOVE:
2677 	default:
2678 		mutex_unlock(&adapter->crit_lock);
2679 		return;
2680 	}
2681 
2682 	/* check for hw reset */
2683 	reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2684 	if (!reg_val) {
2685 		adapter->flags |= IAVF_FLAG_RESET_PENDING;
2686 		adapter->aq_required = 0;
2687 		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2688 		dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
2689 		queue_work(iavf_wq, &adapter->reset_task);
2690 		mutex_unlock(&adapter->crit_lock);
2691 		queue_delayed_work(iavf_wq,
2692 				   &adapter->watchdog_task, HZ * 2);
2693 		return;
2694 	}
2695 
2696 	schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5));
2697 	mutex_unlock(&adapter->crit_lock);
2698 restart_watchdog:
2699 	if (adapter->state >= __IAVF_DOWN)
2700 		queue_work(iavf_wq, &adapter->adminq_task);
2701 	if (adapter->aq_required)
2702 		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2703 				   msecs_to_jiffies(20));
2704 	else
2705 		queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
2706 }
2707 
2708 /**
2709  * iavf_disable_vf - disable VF
2710  * @adapter: board private structure
2711  *
2712  * Set communication failed flag and free all resources.
2713  * NOTE: This function is expected to be called with crit_lock being held.
2714  **/
2715 static void iavf_disable_vf(struct iavf_adapter *adapter)
2716 {
2717 	struct iavf_mac_filter *f, *ftmp;
2718 	struct iavf_vlan_filter *fv, *fvtmp;
2719 	struct iavf_cloud_filter *cf, *cftmp;
2720 
2721 	adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2722 
2723 	/* We don't use netif_running() because it may be true prior to
2724 	 * ndo_open() returning, so we can't assume it means all our open
2725 	 * tasks have finished, since we're not holding the rtnl_lock here.
2726 	 */
2727 	if (adapter->state == __IAVF_RUNNING) {
2728 		set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2729 		netif_carrier_off(adapter->netdev);
2730 		netif_tx_disable(adapter->netdev);
2731 		adapter->link_up = false;
2732 		iavf_napi_disable_all(adapter);
2733 		iavf_irq_disable(adapter);
2734 		iavf_free_traffic_irqs(adapter);
2735 		iavf_free_all_tx_resources(adapter);
2736 		iavf_free_all_rx_resources(adapter);
2737 	}
2738 
2739 	spin_lock_bh(&adapter->mac_vlan_list_lock);
2740 
2741 	/* Delete all of the filters */
2742 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2743 		list_del(&f->list);
2744 		kfree(f);
2745 	}
2746 
2747 	list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2748 		list_del(&fv->list);
2749 		kfree(fv);
2750 	}
2751 
2752 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
2753 
2754 	spin_lock_bh(&adapter->cloud_filter_list_lock);
2755 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2756 		list_del(&cf->list);
2757 		kfree(cf);
2758 		adapter->num_cloud_filters--;
2759 	}
2760 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2761 
2762 	iavf_free_misc_irq(adapter);
2763 	iavf_reset_interrupt_capability(adapter);
2764 	iavf_free_q_vectors(adapter);
2765 	iavf_free_queues(adapter);
2766 	memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2767 	iavf_shutdown_adminq(&adapter->hw);
2768 	adapter->netdev->flags &= ~IFF_UP;
2769 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2770 	iavf_change_state(adapter, __IAVF_DOWN);
2771 	wake_up(&adapter->down_waitqueue);
2772 	dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2773 }
2774 
2775 /**
2776  * iavf_reset_task - Call-back task to handle hardware reset
2777  * @work: pointer to work_struct
2778  *
2779  * During reset we need to shut down and reinitialize the admin queue
2780  * before we can use it to communicate with the PF again. We also clear
2781  * and reinit the rings because that context is lost as well.
2782  **/
2783 static void iavf_reset_task(struct work_struct *work)
2784 {
2785 	struct iavf_adapter *adapter = container_of(work,
2786 						      struct iavf_adapter,
2787 						      reset_task);
2788 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
2789 	struct net_device *netdev = adapter->netdev;
2790 	struct iavf_hw *hw = &adapter->hw;
2791 	struct iavf_mac_filter *f, *ftmp;
2792 	struct iavf_cloud_filter *cf;
2793 	enum iavf_status status;
2794 	u32 reg_val;
2795 	int i = 0, err;
2796 	bool running;
2797 
2798 	/* When device is being removed it doesn't make sense to run the reset
2799 	 * task, just return in such a case.
2800 	 */
2801 	if (!mutex_trylock(&adapter->crit_lock)) {
2802 		if (adapter->state != __IAVF_REMOVE)
2803 			queue_work(iavf_wq, &adapter->reset_task);
2804 
2805 		return;
2806 	}
2807 
2808 	while (!mutex_trylock(&adapter->client_lock))
2809 		usleep_range(500, 1000);
2810 	if (CLIENT_ENABLED(adapter)) {
2811 		adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN |
2812 				    IAVF_FLAG_CLIENT_NEEDS_CLOSE |
2813 				    IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS |
2814 				    IAVF_FLAG_SERVICE_CLIENT_REQUESTED);
2815 		cancel_delayed_work_sync(&adapter->client_task);
2816 		iavf_notify_client_close(&adapter->vsi, true);
2817 	}
2818 	iavf_misc_irq_disable(adapter);
2819 	if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2820 		adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
2821 		/* Restart the AQ here. If we have been reset but didn't
2822 		 * detect it, or if the PF had to reinit, our AQ will be hosed.
2823 		 */
2824 		iavf_shutdown_adminq(hw);
2825 		iavf_init_adminq(hw);
2826 		iavf_request_reset(adapter);
2827 	}
2828 	adapter->flags |= IAVF_FLAG_RESET_PENDING;
2829 
2830 	/* poll until we see the reset actually happen */
2831 	for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
2832 		reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
2833 			  IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2834 		if (!reg_val)
2835 			break;
2836 		usleep_range(5000, 10000);
2837 	}
2838 	if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
2839 		dev_info(&adapter->pdev->dev, "Never saw reset\n");
2840 		goto continue_reset; /* act like the reset happened */
2841 	}
2842 
2843 	/* wait until the reset is complete and the PF is responding to us */
2844 	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
2845 		/* sleep first to make sure a minimum wait time is met */
2846 		msleep(IAVF_RESET_WAIT_MS);
2847 
2848 		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2849 			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2850 		if (reg_val == VIRTCHNL_VFR_VFACTIVE)
2851 			break;
2852 	}
2853 
2854 	pci_set_master(adapter->pdev);
2855 	pci_restore_msi_state(adapter->pdev);
2856 
2857 	if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
2858 		dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
2859 			reg_val);
2860 		iavf_disable_vf(adapter);
2861 		mutex_unlock(&adapter->client_lock);
2862 		mutex_unlock(&adapter->crit_lock);
2863 		return; /* Do not attempt to reinit. It's dead, Jim. */
2864 	}
2865 
2866 continue_reset:
2867 	/* We don't use netif_running() because it may be true prior to
2868 	 * ndo_open() returning, so we can't assume it means all our open
2869 	 * tasks have finished, since we're not holding the rtnl_lock here.
2870 	 */
2871 	running = adapter->state == __IAVF_RUNNING;
2872 
2873 	if (running) {
2874 		netif_carrier_off(netdev);
2875 		netif_tx_stop_all_queues(netdev);
2876 		adapter->link_up = false;
2877 		iavf_napi_disable_all(adapter);
2878 	}
2879 	iavf_irq_disable(adapter);
2880 
2881 	iavf_change_state(adapter, __IAVF_RESETTING);
2882 	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2883 
2884 	/* free the Tx/Rx rings and descriptors, might be better to just
2885 	 * re-use them sometime in the future
2886 	 */
2887 	iavf_free_all_rx_resources(adapter);
2888 	iavf_free_all_tx_resources(adapter);
2889 
2890 	adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
2891 	/* kill and reinit the admin queue */
2892 	iavf_shutdown_adminq(hw);
2893 	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2894 	status = iavf_init_adminq(hw);
2895 	if (status) {
2896 		dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
2897 			 status);
2898 		goto reset_err;
2899 	}
2900 	adapter->aq_required = 0;
2901 
2902 	if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
2903 	    (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
2904 		err = iavf_reinit_interrupt_scheme(adapter);
2905 		if (err)
2906 			goto reset_err;
2907 	}
2908 
2909 	if (RSS_AQ(adapter)) {
2910 		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2911 	} else {
2912 		err = iavf_init_rss(adapter);
2913 		if (err)
2914 			goto reset_err;
2915 	}
2916 
2917 	adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
2918 	/* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been
2919 	 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here,
2920 	 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until
2921 	 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have
2922 	 * been successfully sent and negotiated
2923 	 */
2924 	adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS;
2925 	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
2926 
2927 	spin_lock_bh(&adapter->mac_vlan_list_lock);
2928 
2929 	/* Delete filter for the current MAC address, it could have
2930 	 * been changed by the PF via administratively set MAC.
2931 	 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
2932 	 */
2933 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2934 		if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
2935 			list_del(&f->list);
2936 			kfree(f);
2937 		}
2938 	}
2939 	/* re-add all MAC filters */
2940 	list_for_each_entry(f, &adapter->mac_filter_list, list) {
2941 		f->add = true;
2942 	}
2943 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
2944 
2945 	/* check if TCs are running and re-add all cloud filters */
2946 	spin_lock_bh(&adapter->cloud_filter_list_lock);
2947 	if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
2948 	    adapter->num_tc) {
2949 		list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
2950 			cf->add = true;
2951 		}
2952 	}
2953 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2954 
2955 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
2956 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
2957 	iavf_misc_irq_enable(adapter);
2958 
2959 	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2);
2960 
2961 	/* We were running when the reset started, so we need to restore some
2962 	 * state here.
2963 	 */
2964 	if (running) {
2965 		/* allocate transmit descriptors */
2966 		err = iavf_setup_all_tx_resources(adapter);
2967 		if (err)
2968 			goto reset_err;
2969 
2970 		/* allocate receive descriptors */
2971 		err = iavf_setup_all_rx_resources(adapter);
2972 		if (err)
2973 			goto reset_err;
2974 
2975 		if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
2976 		    (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
2977 			err = iavf_request_traffic_irqs(adapter, netdev->name);
2978 			if (err)
2979 				goto reset_err;
2980 
2981 			adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED;
2982 		}
2983 
2984 		iavf_configure(adapter);
2985 
2986 		/* iavf_up_complete() will switch device back
2987 		 * to __IAVF_RUNNING
2988 		 */
2989 		iavf_up_complete(adapter);
2990 
2991 		iavf_irq_enable(adapter, true);
2992 	} else {
2993 		iavf_change_state(adapter, __IAVF_DOWN);
2994 		wake_up(&adapter->down_waitqueue);
2995 	}
2996 
2997 	adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
2998 
2999 	mutex_unlock(&adapter->client_lock);
3000 	mutex_unlock(&adapter->crit_lock);
3001 
3002 	return;
3003 reset_err:
3004 	mutex_unlock(&adapter->client_lock);
3005 	mutex_unlock(&adapter->crit_lock);
3006 	if (running)
3007 		iavf_change_state(adapter, __IAVF_RUNNING);
3008 	dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
3009 	iavf_close(netdev);
3010 }
3011 
3012 /**
3013  * iavf_adminq_task - worker thread to clean the admin queue
3014  * @work: pointer to work_struct containing our data
3015  **/
3016 static void iavf_adminq_task(struct work_struct *work)
3017 {
3018 	struct iavf_adapter *adapter =
3019 		container_of(work, struct iavf_adapter, adminq_task);
3020 	struct iavf_hw *hw = &adapter->hw;
3021 	struct iavf_arq_event_info event;
3022 	enum virtchnl_ops v_op;
3023 	enum iavf_status ret, v_ret;
3024 	u32 val, oldval;
3025 	u16 pending;
3026 
3027 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
3028 		goto out;
3029 
3030 	if (!mutex_trylock(&adapter->crit_lock)) {
3031 		if (adapter->state == __IAVF_REMOVE)
3032 			return;
3033 
3034 		queue_work(iavf_wq, &adapter->adminq_task);
3035 		goto out;
3036 	}
3037 
3038 	event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
3039 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
3040 	if (!event.msg_buf)
3041 		goto out;
3042 
3043 	do {
3044 		ret = iavf_clean_arq_element(hw, &event, &pending);
3045 		v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
3046 		v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
3047 
3048 		if (ret || !v_op)
3049 			break; /* No event to process or error cleaning ARQ */
3050 
3051 		iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
3052 					 event.msg_len);
3053 		if (pending != 0)
3054 			memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
3055 	} while (pending);
3056 	mutex_unlock(&adapter->crit_lock);
3057 
3058 	if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES)) {
3059 		if (adapter->netdev_registered ||
3060 		    !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
3061 			struct net_device *netdev = adapter->netdev;
3062 
3063 			rtnl_lock();
3064 			netdev_update_features(netdev);
3065 			rtnl_unlock();
3066 			/* Request VLAN offload settings */
3067 			if (VLAN_V2_ALLOWED(adapter))
3068 				iavf_set_vlan_offload_features
3069 					(adapter, 0, netdev->features);
3070 
3071 			iavf_set_queue_vlan_tag_loc(adapter);
3072 		}
3073 
3074 		adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES;
3075 	}
3076 	if ((adapter->flags &
3077 	     (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) ||
3078 	    adapter->state == __IAVF_RESETTING)
3079 		goto freedom;
3080 
3081 	/* check for error indications */
3082 	val = rd32(hw, hw->aq.arq.len);
3083 	if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */
3084 		goto freedom;
3085 	oldval = val;
3086 	if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
3087 		dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
3088 		val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
3089 	}
3090 	if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
3091 		dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
3092 		val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
3093 	}
3094 	if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
3095 		dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
3096 		val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
3097 	}
3098 	if (oldval != val)
3099 		wr32(hw, hw->aq.arq.len, val);
3100 
3101 	val = rd32(hw, hw->aq.asq.len);
3102 	oldval = val;
3103 	if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
3104 		dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
3105 		val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
3106 	}
3107 	if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
3108 		dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
3109 		val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
3110 	}
3111 	if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
3112 		dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
3113 		val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
3114 	}
3115 	if (oldval != val)
3116 		wr32(hw, hw->aq.asq.len, val);
3117 
3118 freedom:
3119 	kfree(event.msg_buf);
3120 out:
3121 	/* re-enable Admin queue interrupt cause */
3122 	iavf_misc_irq_enable(adapter);
3123 }
3124 
3125 /**
3126  * iavf_client_task - worker thread to perform client work
3127  * @work: pointer to work_struct containing our data
3128  *
3129  * This task handles client interactions. Because client calls can be
3130  * reentrant, we can't handle them in the watchdog.
3131  **/
3132 static void iavf_client_task(struct work_struct *work)
3133 {
3134 	struct iavf_adapter *adapter =
3135 		container_of(work, struct iavf_adapter, client_task.work);
3136 
3137 	/* If we can't get the client bit, just give up. We'll be rescheduled
3138 	 * later.
3139 	 */
3140 
3141 	if (!mutex_trylock(&adapter->client_lock))
3142 		return;
3143 
3144 	if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) {
3145 		iavf_client_subtask(adapter);
3146 		adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
3147 		goto out;
3148 	}
3149 	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) {
3150 		iavf_notify_client_l2_params(&adapter->vsi);
3151 		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS;
3152 		goto out;
3153 	}
3154 	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) {
3155 		iavf_notify_client_close(&adapter->vsi, false);
3156 		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE;
3157 		goto out;
3158 	}
3159 	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) {
3160 		iavf_notify_client_open(&adapter->vsi);
3161 		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN;
3162 	}
3163 out:
3164 	mutex_unlock(&adapter->client_lock);
3165 }
3166 
3167 /**
3168  * iavf_free_all_tx_resources - Free Tx Resources for All Queues
3169  * @adapter: board private structure
3170  *
3171  * Free all transmit software resources
3172  **/
3173 void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
3174 {
3175 	int i;
3176 
3177 	if (!adapter->tx_rings)
3178 		return;
3179 
3180 	for (i = 0; i < adapter->num_active_queues; i++)
3181 		if (adapter->tx_rings[i].desc)
3182 			iavf_free_tx_resources(&adapter->tx_rings[i]);
3183 }
3184 
3185 /**
3186  * iavf_setup_all_tx_resources - allocate all queues Tx resources
3187  * @adapter: board private structure
3188  *
3189  * If this function returns with an error, then it's possible one or
3190  * more of the rings is populated (while the rest are not).  It is the
3191  * callers duty to clean those orphaned rings.
3192  *
3193  * Return 0 on success, negative on failure
3194  **/
3195 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
3196 {
3197 	int i, err = 0;
3198 
3199 	for (i = 0; i < adapter->num_active_queues; i++) {
3200 		adapter->tx_rings[i].count = adapter->tx_desc_count;
3201 		err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
3202 		if (!err)
3203 			continue;
3204 		dev_err(&adapter->pdev->dev,
3205 			"Allocation for Tx Queue %u failed\n", i);
3206 		break;
3207 	}
3208 
3209 	return err;
3210 }
3211 
3212 /**
3213  * iavf_setup_all_rx_resources - allocate all queues Rx resources
3214  * @adapter: board private structure
3215  *
3216  * If this function returns with an error, then it's possible one or
3217  * more of the rings is populated (while the rest are not).  It is the
3218  * callers duty to clean those orphaned rings.
3219  *
3220  * Return 0 on success, negative on failure
3221  **/
3222 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
3223 {
3224 	int i, err = 0;
3225 
3226 	for (i = 0; i < adapter->num_active_queues; i++) {
3227 		adapter->rx_rings[i].count = adapter->rx_desc_count;
3228 		err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
3229 		if (!err)
3230 			continue;
3231 		dev_err(&adapter->pdev->dev,
3232 			"Allocation for Rx Queue %u failed\n", i);
3233 		break;
3234 	}
3235 	return err;
3236 }
3237 
3238 /**
3239  * iavf_free_all_rx_resources - Free Rx Resources for All Queues
3240  * @adapter: board private structure
3241  *
3242  * Free all receive software resources
3243  **/
3244 void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
3245 {
3246 	int i;
3247 
3248 	if (!adapter->rx_rings)
3249 		return;
3250 
3251 	for (i = 0; i < adapter->num_active_queues; i++)
3252 		if (adapter->rx_rings[i].desc)
3253 			iavf_free_rx_resources(&adapter->rx_rings[i]);
3254 }
3255 
3256 /**
3257  * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
3258  * @adapter: board private structure
3259  * @max_tx_rate: max Tx bw for a tc
3260  **/
3261 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
3262 				      u64 max_tx_rate)
3263 {
3264 	int speed = 0, ret = 0;
3265 
3266 	if (ADV_LINK_SUPPORT(adapter)) {
3267 		if (adapter->link_speed_mbps < U32_MAX) {
3268 			speed = adapter->link_speed_mbps;
3269 			goto validate_bw;
3270 		} else {
3271 			dev_err(&adapter->pdev->dev, "Unknown link speed\n");
3272 			return -EINVAL;
3273 		}
3274 	}
3275 
3276 	switch (adapter->link_speed) {
3277 	case VIRTCHNL_LINK_SPEED_40GB:
3278 		speed = SPEED_40000;
3279 		break;
3280 	case VIRTCHNL_LINK_SPEED_25GB:
3281 		speed = SPEED_25000;
3282 		break;
3283 	case VIRTCHNL_LINK_SPEED_20GB:
3284 		speed = SPEED_20000;
3285 		break;
3286 	case VIRTCHNL_LINK_SPEED_10GB:
3287 		speed = SPEED_10000;
3288 		break;
3289 	case VIRTCHNL_LINK_SPEED_5GB:
3290 		speed = SPEED_5000;
3291 		break;
3292 	case VIRTCHNL_LINK_SPEED_2_5GB:
3293 		speed = SPEED_2500;
3294 		break;
3295 	case VIRTCHNL_LINK_SPEED_1GB:
3296 		speed = SPEED_1000;
3297 		break;
3298 	case VIRTCHNL_LINK_SPEED_100MB:
3299 		speed = SPEED_100;
3300 		break;
3301 	default:
3302 		break;
3303 	}
3304 
3305 validate_bw:
3306 	if (max_tx_rate > speed) {
3307 		dev_err(&adapter->pdev->dev,
3308 			"Invalid tx rate specified\n");
3309 		ret = -EINVAL;
3310 	}
3311 
3312 	return ret;
3313 }
3314 
3315 /**
3316  * iavf_validate_ch_config - validate queue mapping info
3317  * @adapter: board private structure
3318  * @mqprio_qopt: queue parameters
3319  *
3320  * This function validates if the config provided by the user to
3321  * configure queue channels is valid or not. Returns 0 on a valid
3322  * config.
3323  **/
3324 static int iavf_validate_ch_config(struct iavf_adapter *adapter,
3325 				   struct tc_mqprio_qopt_offload *mqprio_qopt)
3326 {
3327 	u64 total_max_rate = 0;
3328 	int i, num_qps = 0;
3329 	u64 tx_rate = 0;
3330 	int ret = 0;
3331 
3332 	if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
3333 	    mqprio_qopt->qopt.num_tc < 1)
3334 		return -EINVAL;
3335 
3336 	for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
3337 		if (!mqprio_qopt->qopt.count[i] ||
3338 		    mqprio_qopt->qopt.offset[i] != num_qps)
3339 			return -EINVAL;
3340 		if (mqprio_qopt->min_rate[i]) {
3341 			dev_err(&adapter->pdev->dev,
3342 				"Invalid min tx rate (greater than 0) specified\n");
3343 			return -EINVAL;
3344 		}
3345 		/*convert to Mbps */
3346 		tx_rate = div_u64(mqprio_qopt->max_rate[i],
3347 				  IAVF_MBPS_DIVISOR);
3348 		total_max_rate += tx_rate;
3349 		num_qps += mqprio_qopt->qopt.count[i];
3350 	}
3351 	if (num_qps > adapter->num_active_queues) {
3352 		dev_err(&adapter->pdev->dev,
3353 			"Cannot support requested number of queues\n");
3354 		return -EINVAL;
3355 	}
3356 
3357 	ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
3358 	return ret;
3359 }
3360 
3361 /**
3362  * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
3363  * @adapter: board private structure
3364  **/
3365 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
3366 {
3367 	struct iavf_cloud_filter *cf, *cftmp;
3368 
3369 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3370 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
3371 				 list) {
3372 		list_del(&cf->list);
3373 		kfree(cf);
3374 		adapter->num_cloud_filters--;
3375 	}
3376 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3377 }
3378 
3379 /**
3380  * __iavf_setup_tc - configure multiple traffic classes
3381  * @netdev: network interface device structure
3382  * @type_data: tc offload data
3383  *
3384  * This function processes the config information provided by the
3385  * user to configure traffic classes/queue channels and packages the
3386  * information to request the PF to setup traffic classes.
3387  *
3388  * Returns 0 on success.
3389  **/
3390 static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
3391 {
3392 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
3393 	struct iavf_adapter *adapter = netdev_priv(netdev);
3394 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
3395 	u8 num_tc = 0, total_qps = 0;
3396 	int ret = 0, netdev_tc = 0;
3397 	u64 max_tx_rate;
3398 	u16 mode;
3399 	int i;
3400 
3401 	num_tc = mqprio_qopt->qopt.num_tc;
3402 	mode = mqprio_qopt->mode;
3403 
3404 	/* delete queue_channel */
3405 	if (!mqprio_qopt->qopt.hw) {
3406 		if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
3407 			/* reset the tc configuration */
3408 			netdev_reset_tc(netdev);
3409 			adapter->num_tc = 0;
3410 			netif_tx_stop_all_queues(netdev);
3411 			netif_tx_disable(netdev);
3412 			iavf_del_all_cloud_filters(adapter);
3413 			adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
3414 			goto exit;
3415 		} else {
3416 			return -EINVAL;
3417 		}
3418 	}
3419 
3420 	/* add queue channel */
3421 	if (mode == TC_MQPRIO_MODE_CHANNEL) {
3422 		if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
3423 			dev_err(&adapter->pdev->dev, "ADq not supported\n");
3424 			return -EOPNOTSUPP;
3425 		}
3426 		if (adapter->ch_config.state != __IAVF_TC_INVALID) {
3427 			dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
3428 			return -EINVAL;
3429 		}
3430 
3431 		ret = iavf_validate_ch_config(adapter, mqprio_qopt);
3432 		if (ret)
3433 			return ret;
3434 		/* Return if same TC config is requested */
3435 		if (adapter->num_tc == num_tc)
3436 			return 0;
3437 		adapter->num_tc = num_tc;
3438 
3439 		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3440 			if (i < num_tc) {
3441 				adapter->ch_config.ch_info[i].count =
3442 					mqprio_qopt->qopt.count[i];
3443 				adapter->ch_config.ch_info[i].offset =
3444 					mqprio_qopt->qopt.offset[i];
3445 				total_qps += mqprio_qopt->qopt.count[i];
3446 				max_tx_rate = mqprio_qopt->max_rate[i];
3447 				/* convert to Mbps */
3448 				max_tx_rate = div_u64(max_tx_rate,
3449 						      IAVF_MBPS_DIVISOR);
3450 				adapter->ch_config.ch_info[i].max_tx_rate =
3451 					max_tx_rate;
3452 			} else {
3453 				adapter->ch_config.ch_info[i].count = 1;
3454 				adapter->ch_config.ch_info[i].offset = 0;
3455 			}
3456 		}
3457 		adapter->ch_config.total_qps = total_qps;
3458 		netif_tx_stop_all_queues(netdev);
3459 		netif_tx_disable(netdev);
3460 		adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
3461 		netdev_reset_tc(netdev);
3462 		/* Report the tc mapping up the stack */
3463 		netdev_set_num_tc(adapter->netdev, num_tc);
3464 		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3465 			u16 qcount = mqprio_qopt->qopt.count[i];
3466 			u16 qoffset = mqprio_qopt->qopt.offset[i];
3467 
3468 			if (i < num_tc)
3469 				netdev_set_tc_queue(netdev, netdev_tc++, qcount,
3470 						    qoffset);
3471 		}
3472 	}
3473 exit:
3474 	return ret;
3475 }
3476 
3477 /**
3478  * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
3479  * @adapter: board private structure
3480  * @f: pointer to struct flow_cls_offload
3481  * @filter: pointer to cloud filter structure
3482  */
3483 static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
3484 				 struct flow_cls_offload *f,
3485 				 struct iavf_cloud_filter *filter)
3486 {
3487 	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
3488 	struct flow_dissector *dissector = rule->match.dissector;
3489 	u16 n_proto_mask = 0;
3490 	u16 n_proto_key = 0;
3491 	u8 field_flags = 0;
3492 	u16 addr_type = 0;
3493 	u16 n_proto = 0;
3494 	int i = 0;
3495 	struct virtchnl_filter *vf = &filter->f;
3496 
3497 	if (dissector->used_keys &
3498 	    ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
3499 	      BIT(FLOW_DISSECTOR_KEY_BASIC) |
3500 	      BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
3501 	      BIT(FLOW_DISSECTOR_KEY_VLAN) |
3502 	      BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
3503 	      BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
3504 	      BIT(FLOW_DISSECTOR_KEY_PORTS) |
3505 	      BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
3506 		dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n",
3507 			dissector->used_keys);
3508 		return -EOPNOTSUPP;
3509 	}
3510 
3511 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
3512 		struct flow_match_enc_keyid match;
3513 
3514 		flow_rule_match_enc_keyid(rule, &match);
3515 		if (match.mask->keyid != 0)
3516 			field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
3517 	}
3518 
3519 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
3520 		struct flow_match_basic match;
3521 
3522 		flow_rule_match_basic(rule, &match);
3523 		n_proto_key = ntohs(match.key->n_proto);
3524 		n_proto_mask = ntohs(match.mask->n_proto);
3525 
3526 		if (n_proto_key == ETH_P_ALL) {
3527 			n_proto_key = 0;
3528 			n_proto_mask = 0;
3529 		}
3530 		n_proto = n_proto_key & n_proto_mask;
3531 		if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
3532 			return -EINVAL;
3533 		if (n_proto == ETH_P_IPV6) {
3534 			/* specify flow type as TCP IPv6 */
3535 			vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
3536 		}
3537 
3538 		if (match.key->ip_proto != IPPROTO_TCP) {
3539 			dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
3540 			return -EINVAL;
3541 		}
3542 	}
3543 
3544 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
3545 		struct flow_match_eth_addrs match;
3546 
3547 		flow_rule_match_eth_addrs(rule, &match);
3548 
3549 		/* use is_broadcast and is_zero to check for all 0xf or 0 */
3550 		if (!is_zero_ether_addr(match.mask->dst)) {
3551 			if (is_broadcast_ether_addr(match.mask->dst)) {
3552 				field_flags |= IAVF_CLOUD_FIELD_OMAC;
3553 			} else {
3554 				dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
3555 					match.mask->dst);
3556 				return -EINVAL;
3557 			}
3558 		}
3559 
3560 		if (!is_zero_ether_addr(match.mask->src)) {
3561 			if (is_broadcast_ether_addr(match.mask->src)) {
3562 				field_flags |= IAVF_CLOUD_FIELD_IMAC;
3563 			} else {
3564 				dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
3565 					match.mask->src);
3566 				return -EINVAL;
3567 			}
3568 		}
3569 
3570 		if (!is_zero_ether_addr(match.key->dst))
3571 			if (is_valid_ether_addr(match.key->dst) ||
3572 			    is_multicast_ether_addr(match.key->dst)) {
3573 				/* set the mask if a valid dst_mac address */
3574 				for (i = 0; i < ETH_ALEN; i++)
3575 					vf->mask.tcp_spec.dst_mac[i] |= 0xff;
3576 				ether_addr_copy(vf->data.tcp_spec.dst_mac,
3577 						match.key->dst);
3578 			}
3579 
3580 		if (!is_zero_ether_addr(match.key->src))
3581 			if (is_valid_ether_addr(match.key->src) ||
3582 			    is_multicast_ether_addr(match.key->src)) {
3583 				/* set the mask if a valid dst_mac address */
3584 				for (i = 0; i < ETH_ALEN; i++)
3585 					vf->mask.tcp_spec.src_mac[i] |= 0xff;
3586 				ether_addr_copy(vf->data.tcp_spec.src_mac,
3587 						match.key->src);
3588 		}
3589 	}
3590 
3591 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
3592 		struct flow_match_vlan match;
3593 
3594 		flow_rule_match_vlan(rule, &match);
3595 		if (match.mask->vlan_id) {
3596 			if (match.mask->vlan_id == VLAN_VID_MASK) {
3597 				field_flags |= IAVF_CLOUD_FIELD_IVLAN;
3598 			} else {
3599 				dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
3600 					match.mask->vlan_id);
3601 				return -EINVAL;
3602 			}
3603 		}
3604 		vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
3605 		vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
3606 	}
3607 
3608 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
3609 		struct flow_match_control match;
3610 
3611 		flow_rule_match_control(rule, &match);
3612 		addr_type = match.key->addr_type;
3613 	}
3614 
3615 	if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
3616 		struct flow_match_ipv4_addrs match;
3617 
3618 		flow_rule_match_ipv4_addrs(rule, &match);
3619 		if (match.mask->dst) {
3620 			if (match.mask->dst == cpu_to_be32(0xffffffff)) {
3621 				field_flags |= IAVF_CLOUD_FIELD_IIP;
3622 			} else {
3623 				dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
3624 					be32_to_cpu(match.mask->dst));
3625 				return -EINVAL;
3626 			}
3627 		}
3628 
3629 		if (match.mask->src) {
3630 			if (match.mask->src == cpu_to_be32(0xffffffff)) {
3631 				field_flags |= IAVF_CLOUD_FIELD_IIP;
3632 			} else {
3633 				dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
3634 					be32_to_cpu(match.mask->dst));
3635 				return -EINVAL;
3636 			}
3637 		}
3638 
3639 		if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
3640 			dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
3641 			return -EINVAL;
3642 		}
3643 		if (match.key->dst) {
3644 			vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
3645 			vf->data.tcp_spec.dst_ip[0] = match.key->dst;
3646 		}
3647 		if (match.key->src) {
3648 			vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
3649 			vf->data.tcp_spec.src_ip[0] = match.key->src;
3650 		}
3651 	}
3652 
3653 	if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
3654 		struct flow_match_ipv6_addrs match;
3655 
3656 		flow_rule_match_ipv6_addrs(rule, &match);
3657 
3658 		/* validate mask, make sure it is not IPV6_ADDR_ANY */
3659 		if (ipv6_addr_any(&match.mask->dst)) {
3660 			dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
3661 				IPV6_ADDR_ANY);
3662 			return -EINVAL;
3663 		}
3664 
3665 		/* src and dest IPv6 address should not be LOOPBACK
3666 		 * (0:0:0:0:0:0:0:1) which can be represented as ::1
3667 		 */
3668 		if (ipv6_addr_loopback(&match.key->dst) ||
3669 		    ipv6_addr_loopback(&match.key->src)) {
3670 			dev_err(&adapter->pdev->dev,
3671 				"ipv6 addr should not be loopback\n");
3672 			return -EINVAL;
3673 		}
3674 		if (!ipv6_addr_any(&match.mask->dst) ||
3675 		    !ipv6_addr_any(&match.mask->src))
3676 			field_flags |= IAVF_CLOUD_FIELD_IIP;
3677 
3678 		for (i = 0; i < 4; i++)
3679 			vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
3680 		memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
3681 		       sizeof(vf->data.tcp_spec.dst_ip));
3682 		for (i = 0; i < 4; i++)
3683 			vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
3684 		memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
3685 		       sizeof(vf->data.tcp_spec.src_ip));
3686 	}
3687 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
3688 		struct flow_match_ports match;
3689 
3690 		flow_rule_match_ports(rule, &match);
3691 		if (match.mask->src) {
3692 			if (match.mask->src == cpu_to_be16(0xffff)) {
3693 				field_flags |= IAVF_CLOUD_FIELD_IIP;
3694 			} else {
3695 				dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
3696 					be16_to_cpu(match.mask->src));
3697 				return -EINVAL;
3698 			}
3699 		}
3700 
3701 		if (match.mask->dst) {
3702 			if (match.mask->dst == cpu_to_be16(0xffff)) {
3703 				field_flags |= IAVF_CLOUD_FIELD_IIP;
3704 			} else {
3705 				dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
3706 					be16_to_cpu(match.mask->dst));
3707 				return -EINVAL;
3708 			}
3709 		}
3710 		if (match.key->dst) {
3711 			vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
3712 			vf->data.tcp_spec.dst_port = match.key->dst;
3713 		}
3714 
3715 		if (match.key->src) {
3716 			vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
3717 			vf->data.tcp_spec.src_port = match.key->src;
3718 		}
3719 	}
3720 	vf->field_flags = field_flags;
3721 
3722 	return 0;
3723 }
3724 
3725 /**
3726  * iavf_handle_tclass - Forward to a traffic class on the device
3727  * @adapter: board private structure
3728  * @tc: traffic class index on the device
3729  * @filter: pointer to cloud filter structure
3730  */
3731 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
3732 			      struct iavf_cloud_filter *filter)
3733 {
3734 	if (tc == 0)
3735 		return 0;
3736 	if (tc < adapter->num_tc) {
3737 		if (!filter->f.data.tcp_spec.dst_port) {
3738 			dev_err(&adapter->pdev->dev,
3739 				"Specify destination port to redirect to traffic class other than TC0\n");
3740 			return -EINVAL;
3741 		}
3742 	}
3743 	/* redirect to a traffic class on the same device */
3744 	filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
3745 	filter->f.action_meta = tc;
3746 	return 0;
3747 }
3748 
3749 /**
3750  * iavf_configure_clsflower - Add tc flower filters
3751  * @adapter: board private structure
3752  * @cls_flower: Pointer to struct flow_cls_offload
3753  */
3754 static int iavf_configure_clsflower(struct iavf_adapter *adapter,
3755 				    struct flow_cls_offload *cls_flower)
3756 {
3757 	int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
3758 	struct iavf_cloud_filter *filter = NULL;
3759 	int err = -EINVAL, count = 50;
3760 
3761 	if (tc < 0) {
3762 		dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
3763 		return -EINVAL;
3764 	}
3765 
3766 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
3767 	if (!filter)
3768 		return -ENOMEM;
3769 
3770 	while (!mutex_trylock(&adapter->crit_lock)) {
3771 		if (--count == 0) {
3772 			kfree(filter);
3773 			return err;
3774 		}
3775 		udelay(1);
3776 	}
3777 
3778 	filter->cookie = cls_flower->cookie;
3779 
3780 	/* set the mask to all zeroes to begin with */
3781 	memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
3782 	/* start out with flow type and eth type IPv4 to begin with */
3783 	filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
3784 	err = iavf_parse_cls_flower(adapter, cls_flower, filter);
3785 	if (err)
3786 		goto err;
3787 
3788 	err = iavf_handle_tclass(adapter, tc, filter);
3789 	if (err)
3790 		goto err;
3791 
3792 	/* add filter to the list */
3793 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3794 	list_add_tail(&filter->list, &adapter->cloud_filter_list);
3795 	adapter->num_cloud_filters++;
3796 	filter->add = true;
3797 	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3798 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3799 err:
3800 	if (err)
3801 		kfree(filter);
3802 
3803 	mutex_unlock(&adapter->crit_lock);
3804 	return err;
3805 }
3806 
3807 /* iavf_find_cf - Find the cloud filter in the list
3808  * @adapter: Board private structure
3809  * @cookie: filter specific cookie
3810  *
3811  * Returns ptr to the filter object or NULL. Must be called while holding the
3812  * cloud_filter_list_lock.
3813  */
3814 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3815 					      unsigned long *cookie)
3816 {
3817 	struct iavf_cloud_filter *filter = NULL;
3818 
3819 	if (!cookie)
3820 		return NULL;
3821 
3822 	list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3823 		if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3824 			return filter;
3825 	}
3826 	return NULL;
3827 }
3828 
3829 /**
3830  * iavf_delete_clsflower - Remove tc flower filters
3831  * @adapter: board private structure
3832  * @cls_flower: Pointer to struct flow_cls_offload
3833  */
3834 static int iavf_delete_clsflower(struct iavf_adapter *adapter,
3835 				 struct flow_cls_offload *cls_flower)
3836 {
3837 	struct iavf_cloud_filter *filter = NULL;
3838 	int err = 0;
3839 
3840 	spin_lock_bh(&adapter->cloud_filter_list_lock);
3841 	filter = iavf_find_cf(adapter, &cls_flower->cookie);
3842 	if (filter) {
3843 		filter->del = true;
3844 		adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
3845 	} else {
3846 		err = -EINVAL;
3847 	}
3848 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3849 
3850 	return err;
3851 }
3852 
3853 /**
3854  * iavf_setup_tc_cls_flower - flower classifier offloads
3855  * @adapter: board private structure
3856  * @cls_flower: pointer to flow_cls_offload struct with flow info
3857  */
3858 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
3859 				    struct flow_cls_offload *cls_flower)
3860 {
3861 	switch (cls_flower->command) {
3862 	case FLOW_CLS_REPLACE:
3863 		return iavf_configure_clsflower(adapter, cls_flower);
3864 	case FLOW_CLS_DESTROY:
3865 		return iavf_delete_clsflower(adapter, cls_flower);
3866 	case FLOW_CLS_STATS:
3867 		return -EOPNOTSUPP;
3868 	default:
3869 		return -EOPNOTSUPP;
3870 	}
3871 }
3872 
3873 /**
3874  * iavf_setup_tc_block_cb - block callback for tc
3875  * @type: type of offload
3876  * @type_data: offload data
3877  * @cb_priv:
3878  *
3879  * This function is the block callback for traffic classes
3880  **/
3881 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3882 				  void *cb_priv)
3883 {
3884 	struct iavf_adapter *adapter = cb_priv;
3885 
3886 	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
3887 		return -EOPNOTSUPP;
3888 
3889 	switch (type) {
3890 	case TC_SETUP_CLSFLOWER:
3891 		return iavf_setup_tc_cls_flower(cb_priv, type_data);
3892 	default:
3893 		return -EOPNOTSUPP;
3894 	}
3895 }
3896 
3897 static LIST_HEAD(iavf_block_cb_list);
3898 
3899 /**
3900  * iavf_setup_tc - configure multiple traffic classes
3901  * @netdev: network interface device structure
3902  * @type: type of offload
3903  * @type_data: tc offload data
3904  *
3905  * This function is the callback to ndo_setup_tc in the
3906  * netdev_ops.
3907  *
3908  * Returns 0 on success
3909  **/
3910 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
3911 			 void *type_data)
3912 {
3913 	struct iavf_adapter *adapter = netdev_priv(netdev);
3914 
3915 	switch (type) {
3916 	case TC_SETUP_QDISC_MQPRIO:
3917 		return __iavf_setup_tc(netdev, type_data);
3918 	case TC_SETUP_BLOCK:
3919 		return flow_block_cb_setup_simple(type_data,
3920 						  &iavf_block_cb_list,
3921 						  iavf_setup_tc_block_cb,
3922 						  adapter, adapter, true);
3923 	default:
3924 		return -EOPNOTSUPP;
3925 	}
3926 }
3927 
3928 /**
3929  * iavf_open - Called when a network interface is made active
3930  * @netdev: network interface device structure
3931  *
3932  * Returns 0 on success, negative value on failure
3933  *
3934  * The open entry point is called when a network interface is made
3935  * active by the system (IFF_UP).  At this point all resources needed
3936  * for transmit and receive operations are allocated, the interrupt
3937  * handler is registered with the OS, the watchdog is started,
3938  * and the stack is notified that the interface is ready.
3939  **/
3940 static int iavf_open(struct net_device *netdev)
3941 {
3942 	struct iavf_adapter *adapter = netdev_priv(netdev);
3943 	int err;
3944 
3945 	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
3946 		dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
3947 		return -EIO;
3948 	}
3949 
3950 	while (!mutex_trylock(&adapter->crit_lock))
3951 		usleep_range(500, 1000);
3952 
3953 	if (adapter->state != __IAVF_DOWN) {
3954 		err = -EBUSY;
3955 		goto err_unlock;
3956 	}
3957 
3958 	if (adapter->state == __IAVF_RUNNING &&
3959 	    !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) {
3960 		dev_dbg(&adapter->pdev->dev, "VF is already open.\n");
3961 		err = 0;
3962 		goto err_unlock;
3963 	}
3964 
3965 	/* allocate transmit descriptors */
3966 	err = iavf_setup_all_tx_resources(adapter);
3967 	if (err)
3968 		goto err_setup_tx;
3969 
3970 	/* allocate receive descriptors */
3971 	err = iavf_setup_all_rx_resources(adapter);
3972 	if (err)
3973 		goto err_setup_rx;
3974 
3975 	/* clear any pending interrupts, may auto mask */
3976 	err = iavf_request_traffic_irqs(adapter, netdev->name);
3977 	if (err)
3978 		goto err_req_irq;
3979 
3980 	spin_lock_bh(&adapter->mac_vlan_list_lock);
3981 
3982 	iavf_add_filter(adapter, adapter->hw.mac.addr);
3983 
3984 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
3985 
3986 	/* Restore VLAN filters that were removed with IFF_DOWN */
3987 	iavf_restore_filters(adapter);
3988 
3989 	iavf_configure(adapter);
3990 
3991 	iavf_up_complete(adapter);
3992 
3993 	iavf_irq_enable(adapter, true);
3994 
3995 	mutex_unlock(&adapter->crit_lock);
3996 
3997 	return 0;
3998 
3999 err_req_irq:
4000 	iavf_down(adapter);
4001 	iavf_free_traffic_irqs(adapter);
4002 err_setup_rx:
4003 	iavf_free_all_rx_resources(adapter);
4004 err_setup_tx:
4005 	iavf_free_all_tx_resources(adapter);
4006 err_unlock:
4007 	mutex_unlock(&adapter->crit_lock);
4008 
4009 	return err;
4010 }
4011 
4012 /**
4013  * iavf_close - Disables a network interface
4014  * @netdev: network interface device structure
4015  *
4016  * Returns 0, this is not allowed to fail
4017  *
4018  * The close entry point is called when an interface is de-activated
4019  * by the OS.  The hardware is still under the drivers control, but
4020  * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
4021  * are freed, along with all transmit and receive resources.
4022  **/
4023 static int iavf_close(struct net_device *netdev)
4024 {
4025 	struct iavf_adapter *adapter = netdev_priv(netdev);
4026 	int status;
4027 
4028 	mutex_lock(&adapter->crit_lock);
4029 
4030 	if (adapter->state <= __IAVF_DOWN_PENDING) {
4031 		mutex_unlock(&adapter->crit_lock);
4032 		return 0;
4033 	}
4034 
4035 	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
4036 	if (CLIENT_ENABLED(adapter))
4037 		adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE;
4038 
4039 	iavf_down(adapter);
4040 	iavf_change_state(adapter, __IAVF_DOWN_PENDING);
4041 	iavf_free_traffic_irqs(adapter);
4042 
4043 	mutex_unlock(&adapter->crit_lock);
4044 
4045 	/* We explicitly don't free resources here because the hardware is
4046 	 * still active and can DMA into memory. Resources are cleared in
4047 	 * iavf_virtchnl_completion() after we get confirmation from the PF
4048 	 * driver that the rings have been stopped.
4049 	 *
4050 	 * Also, we wait for state to transition to __IAVF_DOWN before
4051 	 * returning. State change occurs in iavf_virtchnl_completion() after
4052 	 * VF resources are released (which occurs after PF driver processes and
4053 	 * responds to admin queue commands).
4054 	 */
4055 
4056 	status = wait_event_timeout(adapter->down_waitqueue,
4057 				    adapter->state == __IAVF_DOWN,
4058 				    msecs_to_jiffies(500));
4059 	if (!status)
4060 		netdev_warn(netdev, "Device resources not yet released\n");
4061 	return 0;
4062 }
4063 
4064 /**
4065  * iavf_change_mtu - Change the Maximum Transfer Unit
4066  * @netdev: network interface device structure
4067  * @new_mtu: new value for maximum frame size
4068  *
4069  * Returns 0 on success, negative on failure
4070  **/
4071 static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
4072 {
4073 	struct iavf_adapter *adapter = netdev_priv(netdev);
4074 
4075 	netdev_dbg(netdev, "changing MTU from %d to %d\n",
4076 		   netdev->mtu, new_mtu);
4077 	netdev->mtu = new_mtu;
4078 	if (CLIENT_ENABLED(adapter)) {
4079 		iavf_notify_client_l2_params(&adapter->vsi);
4080 		adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
4081 	}
4082 
4083 	if (netif_running(netdev)) {
4084 		adapter->flags |= IAVF_FLAG_RESET_NEEDED;
4085 		queue_work(iavf_wq, &adapter->reset_task);
4086 	}
4087 
4088 	return 0;
4089 }
4090 
4091 #define NETIF_VLAN_OFFLOAD_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
4092 					 NETIF_F_HW_VLAN_CTAG_TX | \
4093 					 NETIF_F_HW_VLAN_STAG_RX | \
4094 					 NETIF_F_HW_VLAN_STAG_TX)
4095 
4096 /**
4097  * iavf_set_features - set the netdev feature flags
4098  * @netdev: ptr to the netdev being adjusted
4099  * @features: the feature set that the stack is suggesting
4100  * Note: expects to be called while under rtnl_lock()
4101  **/
4102 static int iavf_set_features(struct net_device *netdev,
4103 			     netdev_features_t features)
4104 {
4105 	struct iavf_adapter *adapter = netdev_priv(netdev);
4106 
4107 	/* trigger update on any VLAN feature change */
4108 	if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^
4109 	    (features & NETIF_VLAN_OFFLOAD_FEATURES))
4110 		iavf_set_vlan_offload_features(adapter, netdev->features,
4111 					       features);
4112 
4113 	return 0;
4114 }
4115 
4116 /**
4117  * iavf_features_check - Validate encapsulated packet conforms to limits
4118  * @skb: skb buff
4119  * @dev: This physical port's netdev
4120  * @features: Offload features that the stack believes apply
4121  **/
4122 static netdev_features_t iavf_features_check(struct sk_buff *skb,
4123 					     struct net_device *dev,
4124 					     netdev_features_t features)
4125 {
4126 	size_t len;
4127 
4128 	/* No point in doing any of this if neither checksum nor GSO are
4129 	 * being requested for this frame.  We can rule out both by just
4130 	 * checking for CHECKSUM_PARTIAL
4131 	 */
4132 	if (skb->ip_summed != CHECKSUM_PARTIAL)
4133 		return features;
4134 
4135 	/* We cannot support GSO if the MSS is going to be less than
4136 	 * 64 bytes.  If it is then we need to drop support for GSO.
4137 	 */
4138 	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
4139 		features &= ~NETIF_F_GSO_MASK;
4140 
4141 	/* MACLEN can support at most 63 words */
4142 	len = skb_network_header(skb) - skb->data;
4143 	if (len & ~(63 * 2))
4144 		goto out_err;
4145 
4146 	/* IPLEN and EIPLEN can support at most 127 dwords */
4147 	len = skb_transport_header(skb) - skb_network_header(skb);
4148 	if (len & ~(127 * 4))
4149 		goto out_err;
4150 
4151 	if (skb->encapsulation) {
4152 		/* L4TUNLEN can support 127 words */
4153 		len = skb_inner_network_header(skb) - skb_transport_header(skb);
4154 		if (len & ~(127 * 2))
4155 			goto out_err;
4156 
4157 		/* IPLEN can support at most 127 dwords */
4158 		len = skb_inner_transport_header(skb) -
4159 		      skb_inner_network_header(skb);
4160 		if (len & ~(127 * 4))
4161 			goto out_err;
4162 	}
4163 
4164 	/* No need to validate L4LEN as TCP is the only protocol with a
4165 	 * a flexible value and we support all possible values supported
4166 	 * by TCP, which is at most 15 dwords
4167 	 */
4168 
4169 	return features;
4170 out_err:
4171 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
4172 }
4173 
4174 /**
4175  * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off
4176  * @adapter: board private structure
4177  *
4178  * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4179  * were negotiated determine the VLAN features that can be toggled on and off.
4180  **/
4181 static netdev_features_t
4182 iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter)
4183 {
4184 	netdev_features_t hw_features = 0;
4185 
4186 	if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4187 		return hw_features;
4188 
4189 	/* Enable VLAN features if supported */
4190 	if (VLAN_ALLOWED(adapter)) {
4191 		hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
4192 				NETIF_F_HW_VLAN_CTAG_RX);
4193 	} else if (VLAN_V2_ALLOWED(adapter)) {
4194 		struct virtchnl_vlan_caps *vlan_v2_caps =
4195 			&adapter->vlan_v2_caps;
4196 		struct virtchnl_vlan_supported_caps *stripping_support =
4197 			&vlan_v2_caps->offloads.stripping_support;
4198 		struct virtchnl_vlan_supported_caps *insertion_support =
4199 			&vlan_v2_caps->offloads.insertion_support;
4200 
4201 		if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4202 		    stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4203 			if (stripping_support->outer &
4204 			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4205 				hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4206 			if (stripping_support->outer &
4207 			    VIRTCHNL_VLAN_ETHERTYPE_88A8)
4208 				hw_features |= NETIF_F_HW_VLAN_STAG_RX;
4209 		} else if (stripping_support->inner !=
4210 			   VIRTCHNL_VLAN_UNSUPPORTED &&
4211 			   stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4212 			if (stripping_support->inner &
4213 			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4214 				hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4215 		}
4216 
4217 		if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4218 		    insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4219 			if (insertion_support->outer &
4220 			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4221 				hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4222 			if (insertion_support->outer &
4223 			    VIRTCHNL_VLAN_ETHERTYPE_88A8)
4224 				hw_features |= NETIF_F_HW_VLAN_STAG_TX;
4225 		} else if (insertion_support->inner &&
4226 			   insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4227 			if (insertion_support->inner &
4228 			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4229 				hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4230 		}
4231 	}
4232 
4233 	return hw_features;
4234 }
4235 
4236 /**
4237  * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures
4238  * @adapter: board private structure
4239  *
4240  * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4241  * were negotiated determine the VLAN features that are enabled by default.
4242  **/
4243 static netdev_features_t
4244 iavf_get_netdev_vlan_features(struct iavf_adapter *adapter)
4245 {
4246 	netdev_features_t features = 0;
4247 
4248 	if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4249 		return features;
4250 
4251 	if (VLAN_ALLOWED(adapter)) {
4252 		features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4253 			NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX;
4254 	} else if (VLAN_V2_ALLOWED(adapter)) {
4255 		struct virtchnl_vlan_caps *vlan_v2_caps =
4256 			&adapter->vlan_v2_caps;
4257 		struct virtchnl_vlan_supported_caps *filtering_support =
4258 			&vlan_v2_caps->filtering.filtering_support;
4259 		struct virtchnl_vlan_supported_caps *stripping_support =
4260 			&vlan_v2_caps->offloads.stripping_support;
4261 		struct virtchnl_vlan_supported_caps *insertion_support =
4262 			&vlan_v2_caps->offloads.insertion_support;
4263 		u32 ethertype_init;
4264 
4265 		/* give priority to outer stripping and don't support both outer
4266 		 * and inner stripping
4267 		 */
4268 		ethertype_init = vlan_v2_caps->offloads.ethertype_init;
4269 		if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4270 			if (stripping_support->outer &
4271 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4272 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4273 				features |= NETIF_F_HW_VLAN_CTAG_RX;
4274 			else if (stripping_support->outer &
4275 				 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4276 				 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4277 				features |= NETIF_F_HW_VLAN_STAG_RX;
4278 		} else if (stripping_support->inner !=
4279 			   VIRTCHNL_VLAN_UNSUPPORTED) {
4280 			if (stripping_support->inner &
4281 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4282 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4283 				features |= NETIF_F_HW_VLAN_CTAG_RX;
4284 		}
4285 
4286 		/* give priority to outer insertion and don't support both outer
4287 		 * and inner insertion
4288 		 */
4289 		if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4290 			if (insertion_support->outer &
4291 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4292 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4293 				features |= NETIF_F_HW_VLAN_CTAG_TX;
4294 			else if (insertion_support->outer &
4295 				 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4296 				 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4297 				features |= NETIF_F_HW_VLAN_STAG_TX;
4298 		} else if (insertion_support->inner !=
4299 			   VIRTCHNL_VLAN_UNSUPPORTED) {
4300 			if (insertion_support->inner &
4301 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4302 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4303 				features |= NETIF_F_HW_VLAN_CTAG_TX;
4304 		}
4305 
4306 		/* give priority to outer filtering and don't bother if both
4307 		 * outer and inner filtering are enabled
4308 		 */
4309 		ethertype_init = vlan_v2_caps->filtering.ethertype_init;
4310 		if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4311 			if (filtering_support->outer &
4312 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4313 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4314 				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4315 			if (filtering_support->outer &
4316 			    VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4317 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4318 				features |= NETIF_F_HW_VLAN_STAG_FILTER;
4319 		} else if (filtering_support->inner !=
4320 			   VIRTCHNL_VLAN_UNSUPPORTED) {
4321 			if (filtering_support->inner &
4322 			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4323 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4324 				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4325 			if (filtering_support->inner &
4326 			    VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4327 			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4328 				features |= NETIF_F_HW_VLAN_STAG_FILTER;
4329 		}
4330 	}
4331 
4332 	return features;
4333 }
4334 
4335 #define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \
4336 	(!(((requested) & (feature_bit)) && \
4337 	   !((allowed) & (feature_bit))))
4338 
4339 /**
4340  * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support
4341  * @adapter: board private structure
4342  * @requested_features: stack requested NETDEV features
4343  **/
4344 static netdev_features_t
4345 iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter,
4346 			      netdev_features_t requested_features)
4347 {
4348 	netdev_features_t allowed_features;
4349 
4350 	allowed_features = iavf_get_netdev_vlan_hw_features(adapter) |
4351 		iavf_get_netdev_vlan_features(adapter);
4352 
4353 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4354 					      allowed_features,
4355 					      NETIF_F_HW_VLAN_CTAG_TX))
4356 		requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4357 
4358 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4359 					      allowed_features,
4360 					      NETIF_F_HW_VLAN_CTAG_RX))
4361 		requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX;
4362 
4363 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4364 					      allowed_features,
4365 					      NETIF_F_HW_VLAN_STAG_TX))
4366 		requested_features &= ~NETIF_F_HW_VLAN_STAG_TX;
4367 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4368 					      allowed_features,
4369 					      NETIF_F_HW_VLAN_STAG_RX))
4370 		requested_features &= ~NETIF_F_HW_VLAN_STAG_RX;
4371 
4372 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4373 					      allowed_features,
4374 					      NETIF_F_HW_VLAN_CTAG_FILTER))
4375 		requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4376 
4377 	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4378 					      allowed_features,
4379 					      NETIF_F_HW_VLAN_STAG_FILTER))
4380 		requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER;
4381 
4382 	if ((requested_features &
4383 	     (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
4384 	    (requested_features &
4385 	     (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) &&
4386 	    adapter->vlan_v2_caps.offloads.ethertype_match ==
4387 	    VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) {
4388 		netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
4389 		requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX |
4390 					NETIF_F_HW_VLAN_STAG_TX);
4391 	}
4392 
4393 	return requested_features;
4394 }
4395 
4396 /**
4397  * iavf_fix_features - fix up the netdev feature bits
4398  * @netdev: our net device
4399  * @features: desired feature bits
4400  *
4401  * Returns fixed-up features bits
4402  **/
4403 static netdev_features_t iavf_fix_features(struct net_device *netdev,
4404 					   netdev_features_t features)
4405 {
4406 	struct iavf_adapter *adapter = netdev_priv(netdev);
4407 
4408 	return iavf_fix_netdev_vlan_features(adapter, features);
4409 }
4410 
4411 static const struct net_device_ops iavf_netdev_ops = {
4412 	.ndo_open		= iavf_open,
4413 	.ndo_stop		= iavf_close,
4414 	.ndo_start_xmit		= iavf_xmit_frame,
4415 	.ndo_set_rx_mode	= iavf_set_rx_mode,
4416 	.ndo_validate_addr	= eth_validate_addr,
4417 	.ndo_set_mac_address	= iavf_set_mac,
4418 	.ndo_change_mtu		= iavf_change_mtu,
4419 	.ndo_tx_timeout		= iavf_tx_timeout,
4420 	.ndo_vlan_rx_add_vid	= iavf_vlan_rx_add_vid,
4421 	.ndo_vlan_rx_kill_vid	= iavf_vlan_rx_kill_vid,
4422 	.ndo_features_check	= iavf_features_check,
4423 	.ndo_fix_features	= iavf_fix_features,
4424 	.ndo_set_features	= iavf_set_features,
4425 	.ndo_setup_tc		= iavf_setup_tc,
4426 };
4427 
4428 /**
4429  * iavf_check_reset_complete - check that VF reset is complete
4430  * @hw: pointer to hw struct
4431  *
4432  * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
4433  **/
4434 static int iavf_check_reset_complete(struct iavf_hw *hw)
4435 {
4436 	u32 rstat;
4437 	int i;
4438 
4439 	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
4440 		rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
4441 			     IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
4442 		if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
4443 		    (rstat == VIRTCHNL_VFR_COMPLETED))
4444 			return 0;
4445 		usleep_range(10, 20);
4446 	}
4447 	return -EBUSY;
4448 }
4449 
4450 /**
4451  * iavf_process_config - Process the config information we got from the PF
4452  * @adapter: board private structure
4453  *
4454  * Verify that we have a valid config struct, and set up our netdev features
4455  * and our VSI struct.
4456  **/
4457 int iavf_process_config(struct iavf_adapter *adapter)
4458 {
4459 	struct virtchnl_vf_resource *vfres = adapter->vf_res;
4460 	netdev_features_t hw_vlan_features, vlan_features;
4461 	struct net_device *netdev = adapter->netdev;
4462 	netdev_features_t hw_enc_features;
4463 	netdev_features_t hw_features;
4464 
4465 	hw_enc_features = NETIF_F_SG			|
4466 			  NETIF_F_IP_CSUM		|
4467 			  NETIF_F_IPV6_CSUM		|
4468 			  NETIF_F_HIGHDMA		|
4469 			  NETIF_F_SOFT_FEATURES	|
4470 			  NETIF_F_TSO			|
4471 			  NETIF_F_TSO_ECN		|
4472 			  NETIF_F_TSO6			|
4473 			  NETIF_F_SCTP_CRC		|
4474 			  NETIF_F_RXHASH		|
4475 			  NETIF_F_RXCSUM		|
4476 			  0;
4477 
4478 	/* advertise to stack only if offloads for encapsulated packets is
4479 	 * supported
4480 	 */
4481 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
4482 		hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL	|
4483 				   NETIF_F_GSO_GRE		|
4484 				   NETIF_F_GSO_GRE_CSUM		|
4485 				   NETIF_F_GSO_IPXIP4		|
4486 				   NETIF_F_GSO_IPXIP6		|
4487 				   NETIF_F_GSO_UDP_TUNNEL_CSUM	|
4488 				   NETIF_F_GSO_PARTIAL		|
4489 				   0;
4490 
4491 		if (!(vfres->vf_cap_flags &
4492 		      VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
4493 			netdev->gso_partial_features |=
4494 				NETIF_F_GSO_UDP_TUNNEL_CSUM;
4495 
4496 		netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
4497 		netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
4498 		netdev->hw_enc_features |= hw_enc_features;
4499 	}
4500 	/* record features VLANs can make use of */
4501 	netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
4502 
4503 	/* Write features and hw_features separately to avoid polluting
4504 	 * with, or dropping, features that are set when we registered.
4505 	 */
4506 	hw_features = hw_enc_features;
4507 
4508 	/* get HW VLAN features that can be toggled */
4509 	hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter);
4510 
4511 	/* Enable cloud filter if ADQ is supported */
4512 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
4513 		hw_features |= NETIF_F_HW_TC;
4514 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO)
4515 		hw_features |= NETIF_F_GSO_UDP_L4;
4516 
4517 	netdev->hw_features |= hw_features | hw_vlan_features;
4518 	vlan_features = iavf_get_netdev_vlan_features(adapter);
4519 
4520 	netdev->features |= hw_features | vlan_features;
4521 
4522 	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
4523 		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4524 
4525 	netdev->priv_flags |= IFF_UNICAST_FLT;
4526 
4527 	/* Do not turn on offloads when they are requested to be turned off.
4528 	 * TSO needs minimum 576 bytes to work correctly.
4529 	 */
4530 	if (netdev->wanted_features) {
4531 		if (!(netdev->wanted_features & NETIF_F_TSO) ||
4532 		    netdev->mtu < 576)
4533 			netdev->features &= ~NETIF_F_TSO;
4534 		if (!(netdev->wanted_features & NETIF_F_TSO6) ||
4535 		    netdev->mtu < 576)
4536 			netdev->features &= ~NETIF_F_TSO6;
4537 		if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
4538 			netdev->features &= ~NETIF_F_TSO_ECN;
4539 		if (!(netdev->wanted_features & NETIF_F_GRO))
4540 			netdev->features &= ~NETIF_F_GRO;
4541 		if (!(netdev->wanted_features & NETIF_F_GSO))
4542 			netdev->features &= ~NETIF_F_GSO;
4543 	}
4544 
4545 	return 0;
4546 }
4547 
4548 /**
4549  * iavf_shutdown - Shutdown the device in preparation for a reboot
4550  * @pdev: pci device structure
4551  **/
4552 static void iavf_shutdown(struct pci_dev *pdev)
4553 {
4554 	struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev);
4555 	struct net_device *netdev = adapter->netdev;
4556 
4557 	netif_device_detach(netdev);
4558 
4559 	if (netif_running(netdev))
4560 		iavf_close(netdev);
4561 
4562 	if (iavf_lock_timeout(&adapter->crit_lock, 5000))
4563 		dev_warn(&adapter->pdev->dev, "failed to acquire crit_lock in %s\n", __FUNCTION__);
4564 	/* Prevent the watchdog from running. */
4565 	iavf_change_state(adapter, __IAVF_REMOVE);
4566 	adapter->aq_required = 0;
4567 	mutex_unlock(&adapter->crit_lock);
4568 
4569 #ifdef CONFIG_PM
4570 	pci_save_state(pdev);
4571 
4572 #endif
4573 	pci_disable_device(pdev);
4574 }
4575 
4576 /**
4577  * iavf_probe - Device Initialization Routine
4578  * @pdev: PCI device information struct
4579  * @ent: entry in iavf_pci_tbl
4580  *
4581  * Returns 0 on success, negative on failure
4582  *
4583  * iavf_probe initializes an adapter identified by a pci_dev structure.
4584  * The OS initialization, configuring of the adapter private structure,
4585  * and a hardware reset occur.
4586  **/
4587 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
4588 {
4589 	struct net_device *netdev;
4590 	struct iavf_adapter *adapter = NULL;
4591 	struct iavf_hw *hw = NULL;
4592 	int err;
4593 
4594 	err = pci_enable_device(pdev);
4595 	if (err)
4596 		return err;
4597 
4598 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4599 	if (err) {
4600 		dev_err(&pdev->dev,
4601 			"DMA configuration failed: 0x%x\n", err);
4602 		goto err_dma;
4603 	}
4604 
4605 	err = pci_request_regions(pdev, iavf_driver_name);
4606 	if (err) {
4607 		dev_err(&pdev->dev,
4608 			"pci_request_regions failed 0x%x\n", err);
4609 		goto err_pci_reg;
4610 	}
4611 
4612 	pci_enable_pcie_error_reporting(pdev);
4613 
4614 	pci_set_master(pdev);
4615 
4616 	netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
4617 				   IAVF_MAX_REQ_QUEUES);
4618 	if (!netdev) {
4619 		err = -ENOMEM;
4620 		goto err_alloc_etherdev;
4621 	}
4622 
4623 	SET_NETDEV_DEV(netdev, &pdev->dev);
4624 
4625 	pci_set_drvdata(pdev, netdev);
4626 	adapter = netdev_priv(netdev);
4627 
4628 	adapter->netdev = netdev;
4629 	adapter->pdev = pdev;
4630 
4631 	hw = &adapter->hw;
4632 	hw->back = adapter;
4633 
4634 	adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
4635 	iavf_change_state(adapter, __IAVF_STARTUP);
4636 
4637 	/* Call save state here because it relies on the adapter struct. */
4638 	pci_save_state(pdev);
4639 
4640 	hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
4641 			      pci_resource_len(pdev, 0));
4642 	if (!hw->hw_addr) {
4643 		err = -EIO;
4644 		goto err_ioremap;
4645 	}
4646 	hw->vendor_id = pdev->vendor;
4647 	hw->device_id = pdev->device;
4648 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4649 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
4650 	hw->subsystem_device_id = pdev->subsystem_device;
4651 	hw->bus.device = PCI_SLOT(pdev->devfn);
4652 	hw->bus.func = PCI_FUNC(pdev->devfn);
4653 	hw->bus.bus_id = pdev->bus->number;
4654 
4655 	/* set up the locks for the AQ, do this only once in probe
4656 	 * and destroy them only once in remove
4657 	 */
4658 	mutex_init(&adapter->crit_lock);
4659 	mutex_init(&adapter->client_lock);
4660 	mutex_init(&hw->aq.asq_mutex);
4661 	mutex_init(&hw->aq.arq_mutex);
4662 
4663 	spin_lock_init(&adapter->mac_vlan_list_lock);
4664 	spin_lock_init(&adapter->cloud_filter_list_lock);
4665 	spin_lock_init(&adapter->fdir_fltr_lock);
4666 	spin_lock_init(&adapter->adv_rss_lock);
4667 
4668 	INIT_LIST_HEAD(&adapter->mac_filter_list);
4669 	INIT_LIST_HEAD(&adapter->vlan_filter_list);
4670 	INIT_LIST_HEAD(&adapter->cloud_filter_list);
4671 	INIT_LIST_HEAD(&adapter->fdir_list_head);
4672 	INIT_LIST_HEAD(&adapter->adv_rss_list_head);
4673 
4674 	INIT_WORK(&adapter->reset_task, iavf_reset_task);
4675 	INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
4676 	INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
4677 	INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task);
4678 	queue_delayed_work(iavf_wq, &adapter->watchdog_task,
4679 			   msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
4680 
4681 	/* Setup the wait queue for indicating transition to down status */
4682 	init_waitqueue_head(&adapter->down_waitqueue);
4683 
4684 	return 0;
4685 
4686 err_ioremap:
4687 	free_netdev(netdev);
4688 err_alloc_etherdev:
4689 	pci_disable_pcie_error_reporting(pdev);
4690 	pci_release_regions(pdev);
4691 err_pci_reg:
4692 err_dma:
4693 	pci_disable_device(pdev);
4694 	return err;
4695 }
4696 
4697 /**
4698  * iavf_suspend - Power management suspend routine
4699  * @dev_d: device info pointer
4700  *
4701  * Called when the system (VM) is entering sleep/suspend.
4702  **/
4703 static int __maybe_unused iavf_suspend(struct device *dev_d)
4704 {
4705 	struct net_device *netdev = dev_get_drvdata(dev_d);
4706 	struct iavf_adapter *adapter = netdev_priv(netdev);
4707 
4708 	netif_device_detach(netdev);
4709 
4710 	while (!mutex_trylock(&adapter->crit_lock))
4711 		usleep_range(500, 1000);
4712 
4713 	if (netif_running(netdev)) {
4714 		rtnl_lock();
4715 		iavf_down(adapter);
4716 		rtnl_unlock();
4717 	}
4718 	iavf_free_misc_irq(adapter);
4719 	iavf_reset_interrupt_capability(adapter);
4720 
4721 	mutex_unlock(&adapter->crit_lock);
4722 
4723 	return 0;
4724 }
4725 
4726 /**
4727  * iavf_resume - Power management resume routine
4728  * @dev_d: device info pointer
4729  *
4730  * Called when the system (VM) is resumed from sleep/suspend.
4731  **/
4732 static int __maybe_unused iavf_resume(struct device *dev_d)
4733 {
4734 	struct pci_dev *pdev = to_pci_dev(dev_d);
4735 	struct iavf_adapter *adapter;
4736 	u32 err;
4737 
4738 	adapter = iavf_pdev_to_adapter(pdev);
4739 
4740 	pci_set_master(pdev);
4741 
4742 	rtnl_lock();
4743 	err = iavf_set_interrupt_capability(adapter);
4744 	if (err) {
4745 		rtnl_unlock();
4746 		dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
4747 		return err;
4748 	}
4749 	err = iavf_request_misc_irq(adapter);
4750 	rtnl_unlock();
4751 	if (err) {
4752 		dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
4753 		return err;
4754 	}
4755 
4756 	queue_work(iavf_wq, &adapter->reset_task);
4757 
4758 	netif_device_attach(adapter->netdev);
4759 
4760 	return err;
4761 }
4762 
4763 /**
4764  * iavf_remove - Device Removal Routine
4765  * @pdev: PCI device information struct
4766  *
4767  * iavf_remove is called by the PCI subsystem to alert the driver
4768  * that it should release a PCI device.  The could be caused by a
4769  * Hot-Plug event, or because the driver is going to be removed from
4770  * memory.
4771  **/
4772 static void iavf_remove(struct pci_dev *pdev)
4773 {
4774 	struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev);
4775 	struct net_device *netdev = adapter->netdev;
4776 	struct iavf_fdir_fltr *fdir, *fdirtmp;
4777 	struct iavf_vlan_filter *vlf, *vlftmp;
4778 	struct iavf_adv_rss *rss, *rsstmp;
4779 	struct iavf_mac_filter *f, *ftmp;
4780 	struct iavf_cloud_filter *cf, *cftmp;
4781 	struct iavf_hw *hw = &adapter->hw;
4782 	int err;
4783 
4784 	/* When reboot/shutdown is in progress no need to do anything
4785 	 * as the adapter is already REMOVE state that was set during
4786 	 * iavf_shutdown() callback.
4787 	 */
4788 	if (adapter->state == __IAVF_REMOVE)
4789 		return;
4790 
4791 	set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section);
4792 	/* Wait until port initialization is complete.
4793 	 * There are flows where register/unregister netdev may race.
4794 	 */
4795 	while (1) {
4796 		mutex_lock(&adapter->crit_lock);
4797 		if (adapter->state == __IAVF_RUNNING ||
4798 		    adapter->state == __IAVF_DOWN ||
4799 		    adapter->state == __IAVF_INIT_FAILED) {
4800 			mutex_unlock(&adapter->crit_lock);
4801 			break;
4802 		}
4803 
4804 		mutex_unlock(&adapter->crit_lock);
4805 		usleep_range(500, 1000);
4806 	}
4807 	cancel_delayed_work_sync(&adapter->watchdog_task);
4808 
4809 	if (adapter->netdev_registered) {
4810 		rtnl_lock();
4811 		unregister_netdevice(netdev);
4812 		adapter->netdev_registered = false;
4813 		rtnl_unlock();
4814 	}
4815 	if (CLIENT_ALLOWED(adapter)) {
4816 		err = iavf_lan_del_device(adapter);
4817 		if (err)
4818 			dev_warn(&pdev->dev, "Failed to delete client device: %d\n",
4819 				 err);
4820 	}
4821 
4822 	mutex_lock(&adapter->crit_lock);
4823 	dev_info(&adapter->pdev->dev, "Remove device\n");
4824 	iavf_change_state(adapter, __IAVF_REMOVE);
4825 
4826 	iavf_request_reset(adapter);
4827 	msleep(50);
4828 	/* If the FW isn't responding, kick it once, but only once. */
4829 	if (!iavf_asq_done(hw)) {
4830 		iavf_request_reset(adapter);
4831 		msleep(50);
4832 	}
4833 
4834 	iavf_misc_irq_disable(adapter);
4835 	/* Shut down all the garbage mashers on the detention level */
4836 	cancel_work_sync(&adapter->reset_task);
4837 	cancel_delayed_work_sync(&adapter->watchdog_task);
4838 	cancel_work_sync(&adapter->adminq_task);
4839 	cancel_delayed_work_sync(&adapter->client_task);
4840 
4841 	adapter->aq_required = 0;
4842 	adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
4843 
4844 	iavf_free_all_tx_resources(adapter);
4845 	iavf_free_all_rx_resources(adapter);
4846 	iavf_free_misc_irq(adapter);
4847 
4848 	iavf_reset_interrupt_capability(adapter);
4849 	iavf_free_q_vectors(adapter);
4850 
4851 	iavf_free_rss(adapter);
4852 
4853 	if (hw->aq.asq.count)
4854 		iavf_shutdown_adminq(hw);
4855 
4856 	/* destroy the locks only once, here */
4857 	mutex_destroy(&hw->aq.arq_mutex);
4858 	mutex_destroy(&hw->aq.asq_mutex);
4859 	mutex_destroy(&adapter->client_lock);
4860 	mutex_unlock(&adapter->crit_lock);
4861 	mutex_destroy(&adapter->crit_lock);
4862 
4863 	iounmap(hw->hw_addr);
4864 	pci_release_regions(pdev);
4865 	iavf_free_queues(adapter);
4866 	kfree(adapter->vf_res);
4867 	spin_lock_bh(&adapter->mac_vlan_list_lock);
4868 	/* If we got removed before an up/down sequence, we've got a filter
4869 	 * hanging out there that we need to get rid of.
4870 	 */
4871 	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
4872 		list_del(&f->list);
4873 		kfree(f);
4874 	}
4875 	list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
4876 				 list) {
4877 		list_del(&vlf->list);
4878 		kfree(vlf);
4879 	}
4880 
4881 	spin_unlock_bh(&adapter->mac_vlan_list_lock);
4882 
4883 	spin_lock_bh(&adapter->cloud_filter_list_lock);
4884 	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
4885 		list_del(&cf->list);
4886 		kfree(cf);
4887 	}
4888 	spin_unlock_bh(&adapter->cloud_filter_list_lock);
4889 
4890 	spin_lock_bh(&adapter->fdir_fltr_lock);
4891 	list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) {
4892 		list_del(&fdir->list);
4893 		kfree(fdir);
4894 	}
4895 	spin_unlock_bh(&adapter->fdir_fltr_lock);
4896 
4897 	spin_lock_bh(&adapter->adv_rss_lock);
4898 	list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
4899 				 list) {
4900 		list_del(&rss->list);
4901 		kfree(rss);
4902 	}
4903 	spin_unlock_bh(&adapter->adv_rss_lock);
4904 
4905 	free_netdev(netdev);
4906 
4907 	pci_disable_pcie_error_reporting(pdev);
4908 
4909 	pci_disable_device(pdev);
4910 }
4911 
4912 static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
4913 
4914 static struct pci_driver iavf_driver = {
4915 	.name      = iavf_driver_name,
4916 	.id_table  = iavf_pci_tbl,
4917 	.probe     = iavf_probe,
4918 	.remove    = iavf_remove,
4919 	.driver.pm = &iavf_pm_ops,
4920 	.shutdown  = iavf_shutdown,
4921 };
4922 
4923 /**
4924  * iavf_init_module - Driver Registration Routine
4925  *
4926  * iavf_init_module is the first routine called when the driver is
4927  * loaded. All it does is register with the PCI subsystem.
4928  **/
4929 static int __init iavf_init_module(void)
4930 {
4931 	pr_info("iavf: %s\n", iavf_driver_string);
4932 
4933 	pr_info("%s\n", iavf_copyright);
4934 
4935 	iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1,
4936 				  iavf_driver_name);
4937 	if (!iavf_wq) {
4938 		pr_err("%s: Failed to create workqueue\n", iavf_driver_name);
4939 		return -ENOMEM;
4940 	}
4941 	return pci_register_driver(&iavf_driver);
4942 }
4943 
4944 module_init(iavf_init_module);
4945 
4946 /**
4947  * iavf_exit_module - Driver Exit Cleanup Routine
4948  *
4949  * iavf_exit_module is called just before the driver is removed
4950  * from memory.
4951  **/
4952 static void __exit iavf_exit_module(void)
4953 {
4954 	pci_unregister_driver(&iavf_driver);
4955 	destroy_workqueue(iavf_wq);
4956 }
4957 
4958 module_exit(iavf_exit_module);
4959 
4960 /* iavf_main.c */
4961