xref: /linux/drivers/net/ethernet/intel/ice/ice_arfs.c (revision 2da68a77)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2018-2020, Intel Corporation. */
3 
4 #include "ice.h"
5 
6 /**
7  * ice_is_arfs_active - helper to check is aRFS is active
8  * @vsi: VSI to check
9  */
10 static bool ice_is_arfs_active(struct ice_vsi *vsi)
11 {
12 	return !!vsi->arfs_fltr_list;
13 }
14 
15 /**
16  * ice_is_arfs_using_perfect_flow - check if aRFS has active perfect filters
17  * @hw: pointer to the HW structure
18  * @flow_type: flow type as Flow Director understands it
19  *
20  * Flow Director will query this function to see if aRFS is currently using
21  * the specified flow_type for perfect (4-tuple) filters.
22  */
23 bool
24 ice_is_arfs_using_perfect_flow(struct ice_hw *hw, enum ice_fltr_ptype flow_type)
25 {
26 	struct ice_arfs_active_fltr_cntrs *arfs_fltr_cntrs;
27 	struct ice_pf *pf = hw->back;
28 	struct ice_vsi *vsi;
29 
30 	vsi = ice_get_main_vsi(pf);
31 	if (!vsi)
32 		return false;
33 
34 	arfs_fltr_cntrs = vsi->arfs_fltr_cntrs;
35 
36 	/* active counters can be updated by multiple CPUs */
37 	smp_mb__before_atomic();
38 	switch (flow_type) {
39 	case ICE_FLTR_PTYPE_NONF_IPV4_UDP:
40 		return atomic_read(&arfs_fltr_cntrs->active_udpv4_cnt) > 0;
41 	case ICE_FLTR_PTYPE_NONF_IPV6_UDP:
42 		return atomic_read(&arfs_fltr_cntrs->active_udpv6_cnt) > 0;
43 	case ICE_FLTR_PTYPE_NONF_IPV4_TCP:
44 		return atomic_read(&arfs_fltr_cntrs->active_tcpv4_cnt) > 0;
45 	case ICE_FLTR_PTYPE_NONF_IPV6_TCP:
46 		return atomic_read(&arfs_fltr_cntrs->active_tcpv6_cnt) > 0;
47 	default:
48 		return false;
49 	}
50 }
51 
52 /**
53  * ice_arfs_update_active_fltr_cntrs - update active filter counters for aRFS
54  * @vsi: VSI that aRFS is active on
55  * @entry: aRFS entry used to change counters
56  * @add: true to increment counter, false to decrement
57  */
58 static void
59 ice_arfs_update_active_fltr_cntrs(struct ice_vsi *vsi,
60 				  struct ice_arfs_entry *entry, bool add)
61 {
62 	struct ice_arfs_active_fltr_cntrs *fltr_cntrs = vsi->arfs_fltr_cntrs;
63 
64 	switch (entry->fltr_info.flow_type) {
65 	case ICE_FLTR_PTYPE_NONF_IPV4_TCP:
66 		if (add)
67 			atomic_inc(&fltr_cntrs->active_tcpv4_cnt);
68 		else
69 			atomic_dec(&fltr_cntrs->active_tcpv4_cnt);
70 		break;
71 	case ICE_FLTR_PTYPE_NONF_IPV6_TCP:
72 		if (add)
73 			atomic_inc(&fltr_cntrs->active_tcpv6_cnt);
74 		else
75 			atomic_dec(&fltr_cntrs->active_tcpv6_cnt);
76 		break;
77 	case ICE_FLTR_PTYPE_NONF_IPV4_UDP:
78 		if (add)
79 			atomic_inc(&fltr_cntrs->active_udpv4_cnt);
80 		else
81 			atomic_dec(&fltr_cntrs->active_udpv4_cnt);
82 		break;
83 	case ICE_FLTR_PTYPE_NONF_IPV6_UDP:
84 		if (add)
85 			atomic_inc(&fltr_cntrs->active_udpv6_cnt);
86 		else
87 			atomic_dec(&fltr_cntrs->active_udpv6_cnt);
88 		break;
89 	default:
90 		dev_err(ice_pf_to_dev(vsi->back), "aRFS: Failed to update filter counters, invalid filter type %d\n",
91 			entry->fltr_info.flow_type);
92 	}
93 }
94 
95 /**
96  * ice_arfs_del_flow_rules - delete the rules passed in from HW
97  * @vsi: VSI for the flow rules that need to be deleted
98  * @del_list_head: head of the list of ice_arfs_entry(s) for rule deletion
99  *
100  * Loop through the delete list passed in and remove the rules from HW. After
101  * each rule is deleted, disconnect and free the ice_arfs_entry because it is no
102  * longer being referenced by the aRFS hash table.
103  */
104 static void
105 ice_arfs_del_flow_rules(struct ice_vsi *vsi, struct hlist_head *del_list_head)
106 {
107 	struct ice_arfs_entry *e;
108 	struct hlist_node *n;
109 	struct device *dev;
110 
111 	dev = ice_pf_to_dev(vsi->back);
112 
113 	hlist_for_each_entry_safe(e, n, del_list_head, list_entry) {
114 		int result;
115 
116 		result = ice_fdir_write_fltr(vsi->back, &e->fltr_info, false,
117 					     false);
118 		if (!result)
119 			ice_arfs_update_active_fltr_cntrs(vsi, e, false);
120 		else
121 			dev_dbg(dev, "Unable to delete aRFS entry, err %d fltr_state %d fltr_id %d flow_id %d Q %d\n",
122 				result, e->fltr_state, e->fltr_info.fltr_id,
123 				e->flow_id, e->fltr_info.q_index);
124 
125 		/* The aRFS hash table is no longer referencing this entry */
126 		hlist_del(&e->list_entry);
127 		devm_kfree(dev, e);
128 	}
129 }
130 
131 /**
132  * ice_arfs_add_flow_rules - add the rules passed in from HW
133  * @vsi: VSI for the flow rules that need to be added
134  * @add_list_head: head of the list of ice_arfs_entry_ptr(s) for rule addition
135  *
136  * Loop through the add list passed in and remove the rules from HW. After each
137  * rule is added, disconnect and free the ice_arfs_entry_ptr node. Don't free
138  * the ice_arfs_entry(s) because they are still being referenced in the aRFS
139  * hash table.
140  */
141 static void
142 ice_arfs_add_flow_rules(struct ice_vsi *vsi, struct hlist_head *add_list_head)
143 {
144 	struct ice_arfs_entry_ptr *ep;
145 	struct hlist_node *n;
146 	struct device *dev;
147 
148 	dev = ice_pf_to_dev(vsi->back);
149 
150 	hlist_for_each_entry_safe(ep, n, add_list_head, list_entry) {
151 		int result;
152 
153 		result = ice_fdir_write_fltr(vsi->back,
154 					     &ep->arfs_entry->fltr_info, true,
155 					     false);
156 		if (!result)
157 			ice_arfs_update_active_fltr_cntrs(vsi, ep->arfs_entry,
158 							  true);
159 		else
160 			dev_dbg(dev, "Unable to add aRFS entry, err %d fltr_state %d fltr_id %d flow_id %d Q %d\n",
161 				result, ep->arfs_entry->fltr_state,
162 				ep->arfs_entry->fltr_info.fltr_id,
163 				ep->arfs_entry->flow_id,
164 				ep->arfs_entry->fltr_info.q_index);
165 
166 		hlist_del(&ep->list_entry);
167 		devm_kfree(dev, ep);
168 	}
169 }
170 
171 /**
172  * ice_arfs_is_flow_expired - check if the aRFS entry has expired
173  * @vsi: VSI containing the aRFS entry
174  * @arfs_entry: aRFS entry that's being checked for expiration
175  *
176  * Return true if the flow has expired, else false. This function should be used
177  * to determine whether or not an aRFS entry should be removed from the hardware
178  * and software structures.
179  */
180 static bool
181 ice_arfs_is_flow_expired(struct ice_vsi *vsi, struct ice_arfs_entry *arfs_entry)
182 {
183 #define ICE_ARFS_TIME_DELTA_EXPIRATION	msecs_to_jiffies(5000)
184 	if (rps_may_expire_flow(vsi->netdev, arfs_entry->fltr_info.q_index,
185 				arfs_entry->flow_id,
186 				arfs_entry->fltr_info.fltr_id))
187 		return true;
188 
189 	/* expiration timer only used for UDP filters */
190 	if (arfs_entry->fltr_info.flow_type != ICE_FLTR_PTYPE_NONF_IPV4_UDP &&
191 	    arfs_entry->fltr_info.flow_type != ICE_FLTR_PTYPE_NONF_IPV6_UDP)
192 		return false;
193 
194 	return time_in_range64(arfs_entry->time_activated +
195 			       ICE_ARFS_TIME_DELTA_EXPIRATION,
196 			       arfs_entry->time_activated, get_jiffies_64());
197 }
198 
199 /**
200  * ice_arfs_update_flow_rules - add/delete aRFS rules in HW
201  * @vsi: the VSI to be forwarded to
202  * @idx: index into the table of aRFS filter lists. Obtained from skb->hash
203  * @add_list: list to populate with filters to be added to Flow Director
204  * @del_list: list to populate with filters to be deleted from Flow Director
205  *
206  * Iterate over the hlist at the index given in the aRFS hash table and
207  * determine if there are any aRFS entries that need to be either added or
208  * deleted in the HW. If the aRFS entry is marked as ICE_ARFS_INACTIVE the
209  * filter needs to be added to HW, else if it's marked as ICE_ARFS_ACTIVE and
210  * the flow has expired delete the filter from HW. The caller of this function
211  * is expected to add/delete rules on the add_list/del_list respectively.
212  */
213 static void
214 ice_arfs_update_flow_rules(struct ice_vsi *vsi, u16 idx,
215 			   struct hlist_head *add_list,
216 			   struct hlist_head *del_list)
217 {
218 	struct ice_arfs_entry *e;
219 	struct hlist_node *n;
220 	struct device *dev;
221 
222 	dev = ice_pf_to_dev(vsi->back);
223 
224 	/* go through the aRFS hlist at this idx and check for needed updates */
225 	hlist_for_each_entry_safe(e, n, &vsi->arfs_fltr_list[idx], list_entry)
226 		/* check if filter needs to be added to HW */
227 		if (e->fltr_state == ICE_ARFS_INACTIVE) {
228 			enum ice_fltr_ptype flow_type = e->fltr_info.flow_type;
229 			struct ice_arfs_entry_ptr *ep =
230 				devm_kzalloc(dev, sizeof(*ep), GFP_ATOMIC);
231 
232 			if (!ep)
233 				continue;
234 			INIT_HLIST_NODE(&ep->list_entry);
235 			/* reference aRFS entry to add HW filter */
236 			ep->arfs_entry = e;
237 			hlist_add_head(&ep->list_entry, add_list);
238 			e->fltr_state = ICE_ARFS_ACTIVE;
239 			/* expiration timer only used for UDP flows */
240 			if (flow_type == ICE_FLTR_PTYPE_NONF_IPV4_UDP ||
241 			    flow_type == ICE_FLTR_PTYPE_NONF_IPV6_UDP)
242 				e->time_activated = get_jiffies_64();
243 		} else if (e->fltr_state == ICE_ARFS_ACTIVE) {
244 			/* check if filter needs to be removed from HW */
245 			if (ice_arfs_is_flow_expired(vsi, e)) {
246 				/* remove aRFS entry from hash table for delete
247 				 * and to prevent referencing it the next time
248 				 * through this hlist index
249 				 */
250 				hlist_del(&e->list_entry);
251 				e->fltr_state = ICE_ARFS_TODEL;
252 				/* save reference to aRFS entry for delete */
253 				hlist_add_head(&e->list_entry, del_list);
254 			}
255 		}
256 }
257 
258 /**
259  * ice_sync_arfs_fltrs - update all aRFS filters
260  * @pf: board private structure
261  */
262 void ice_sync_arfs_fltrs(struct ice_pf *pf)
263 {
264 	HLIST_HEAD(tmp_del_list);
265 	HLIST_HEAD(tmp_add_list);
266 	struct ice_vsi *pf_vsi;
267 	unsigned int i;
268 
269 	pf_vsi = ice_get_main_vsi(pf);
270 	if (!pf_vsi)
271 		return;
272 
273 	if (!ice_is_arfs_active(pf_vsi))
274 		return;
275 
276 	spin_lock_bh(&pf_vsi->arfs_lock);
277 	/* Once we process aRFS for the PF VSI get out */
278 	for (i = 0; i < ICE_MAX_ARFS_LIST; i++)
279 		ice_arfs_update_flow_rules(pf_vsi, i, &tmp_add_list,
280 					   &tmp_del_list);
281 	spin_unlock_bh(&pf_vsi->arfs_lock);
282 
283 	/* use list of ice_arfs_entry(s) for delete */
284 	ice_arfs_del_flow_rules(pf_vsi, &tmp_del_list);
285 
286 	/* use list of ice_arfs_entry_ptr(s) for add */
287 	ice_arfs_add_flow_rules(pf_vsi, &tmp_add_list);
288 }
289 
290 /**
291  * ice_arfs_build_entry - builds an aRFS entry based on input
292  * @vsi: destination VSI for this flow
293  * @fk: flow dissector keys for creating the tuple
294  * @rxq_idx: Rx queue to steer this flow to
295  * @flow_id: passed down from the stack and saved for flow expiration
296  *
297  * returns an aRFS entry on success and NULL on failure
298  */
299 static struct ice_arfs_entry *
300 ice_arfs_build_entry(struct ice_vsi *vsi, const struct flow_keys *fk,
301 		     u16 rxq_idx, u32 flow_id)
302 {
303 	struct ice_arfs_entry *arfs_entry;
304 	struct ice_fdir_fltr *fltr_info;
305 	u8 ip_proto;
306 
307 	arfs_entry = devm_kzalloc(ice_pf_to_dev(vsi->back),
308 				  sizeof(*arfs_entry),
309 				  GFP_ATOMIC | __GFP_NOWARN);
310 	if (!arfs_entry)
311 		return NULL;
312 
313 	fltr_info = &arfs_entry->fltr_info;
314 	fltr_info->q_index = rxq_idx;
315 	fltr_info->dest_ctl = ICE_FLTR_PRGM_DESC_DEST_DIRECT_PKT_QINDEX;
316 	fltr_info->dest_vsi = vsi->idx;
317 	ip_proto = fk->basic.ip_proto;
318 
319 	if (fk->basic.n_proto == htons(ETH_P_IP)) {
320 		fltr_info->ip.v4.proto = ip_proto;
321 		fltr_info->flow_type = (ip_proto == IPPROTO_TCP) ?
322 			ICE_FLTR_PTYPE_NONF_IPV4_TCP :
323 			ICE_FLTR_PTYPE_NONF_IPV4_UDP;
324 		fltr_info->ip.v4.src_ip = fk->addrs.v4addrs.src;
325 		fltr_info->ip.v4.dst_ip = fk->addrs.v4addrs.dst;
326 		fltr_info->ip.v4.src_port = fk->ports.src;
327 		fltr_info->ip.v4.dst_port = fk->ports.dst;
328 	} else { /* ETH_P_IPV6 */
329 		fltr_info->ip.v6.proto = ip_proto;
330 		fltr_info->flow_type = (ip_proto == IPPROTO_TCP) ?
331 			ICE_FLTR_PTYPE_NONF_IPV6_TCP :
332 			ICE_FLTR_PTYPE_NONF_IPV6_UDP;
333 		memcpy(&fltr_info->ip.v6.src_ip, &fk->addrs.v6addrs.src,
334 		       sizeof(struct in6_addr));
335 		memcpy(&fltr_info->ip.v6.dst_ip, &fk->addrs.v6addrs.dst,
336 		       sizeof(struct in6_addr));
337 		fltr_info->ip.v6.src_port = fk->ports.src;
338 		fltr_info->ip.v6.dst_port = fk->ports.dst;
339 	}
340 
341 	arfs_entry->flow_id = flow_id;
342 	fltr_info->fltr_id =
343 		atomic_inc_return(vsi->arfs_last_fltr_id) % RPS_NO_FILTER;
344 
345 	return arfs_entry;
346 }
347 
348 /**
349  * ice_arfs_is_perfect_flow_set - Check to see if perfect flow is set
350  * @hw: pointer to HW structure
351  * @l3_proto: ETH_P_IP or ETH_P_IPV6 in network order
352  * @l4_proto: IPPROTO_UDP or IPPROTO_TCP
353  *
354  * We only support perfect (4-tuple) filters for aRFS. This function allows aRFS
355  * to check if perfect (4-tuple) flow rules are currently in place by Flow
356  * Director.
357  */
358 static bool
359 ice_arfs_is_perfect_flow_set(struct ice_hw *hw, __be16 l3_proto, u8 l4_proto)
360 {
361 	unsigned long *perfect_fltr = hw->fdir_perfect_fltr;
362 
363 	/* advanced Flow Director disabled, perfect filters always supported */
364 	if (!perfect_fltr)
365 		return true;
366 
367 	if (l3_proto == htons(ETH_P_IP) && l4_proto == IPPROTO_UDP)
368 		return test_bit(ICE_FLTR_PTYPE_NONF_IPV4_UDP, perfect_fltr);
369 	else if (l3_proto == htons(ETH_P_IP) && l4_proto == IPPROTO_TCP)
370 		return test_bit(ICE_FLTR_PTYPE_NONF_IPV4_TCP, perfect_fltr);
371 	else if (l3_proto == htons(ETH_P_IPV6) && l4_proto == IPPROTO_UDP)
372 		return test_bit(ICE_FLTR_PTYPE_NONF_IPV6_UDP, perfect_fltr);
373 	else if (l3_proto == htons(ETH_P_IPV6) && l4_proto == IPPROTO_TCP)
374 		return test_bit(ICE_FLTR_PTYPE_NONF_IPV6_TCP, perfect_fltr);
375 
376 	return false;
377 }
378 
379 /**
380  * ice_rx_flow_steer - steer the Rx flow to where application is being run
381  * @netdev: ptr to the netdev being adjusted
382  * @skb: buffer with required header information
383  * @rxq_idx: queue to which the flow needs to move
384  * @flow_id: flow identifier provided by the netdev
385  *
386  * Based on the skb, rxq_idx, and flow_id passed in add/update an entry in the
387  * aRFS hash table. Iterate over one of the hlists in the aRFS hash table and
388  * if the flow_id already exists in the hash table but the rxq_idx has changed
389  * mark the entry as ICE_ARFS_INACTIVE so it can get updated in HW, else
390  * if the entry is marked as ICE_ARFS_TODEL delete it from the aRFS hash table.
391  * If neither of the previous conditions are true then add a new entry in the
392  * aRFS hash table, which gets set to ICE_ARFS_INACTIVE by default so it can be
393  * added to HW.
394  */
395 int
396 ice_rx_flow_steer(struct net_device *netdev, const struct sk_buff *skb,
397 		  u16 rxq_idx, u32 flow_id)
398 {
399 	struct ice_netdev_priv *np = netdev_priv(netdev);
400 	struct ice_arfs_entry *arfs_entry;
401 	struct ice_vsi *vsi = np->vsi;
402 	struct flow_keys fk;
403 	struct ice_pf *pf;
404 	__be16 n_proto;
405 	u8 ip_proto;
406 	u16 idx;
407 	int ret;
408 
409 	/* failed to allocate memory for aRFS so don't crash */
410 	if (unlikely(!vsi->arfs_fltr_list))
411 		return -ENODEV;
412 
413 	pf = vsi->back;
414 
415 	if (skb->encapsulation)
416 		return -EPROTONOSUPPORT;
417 
418 	if (!skb_flow_dissect_flow_keys(skb, &fk, 0))
419 		return -EPROTONOSUPPORT;
420 
421 	n_proto = fk.basic.n_proto;
422 	/* Support only IPV4 and IPV6 */
423 	if ((n_proto == htons(ETH_P_IP) && !ip_is_fragment(ip_hdr(skb))) ||
424 	    n_proto == htons(ETH_P_IPV6))
425 		ip_proto = fk.basic.ip_proto;
426 	else
427 		return -EPROTONOSUPPORT;
428 
429 	/* Support only TCP and UDP */
430 	if (ip_proto != IPPROTO_TCP && ip_proto != IPPROTO_UDP)
431 		return -EPROTONOSUPPORT;
432 
433 	/* only support 4-tuple filters for aRFS */
434 	if (!ice_arfs_is_perfect_flow_set(&pf->hw, n_proto, ip_proto))
435 		return -EOPNOTSUPP;
436 
437 	/* choose the aRFS list bucket based on skb hash */
438 	idx = skb_get_hash_raw(skb) & ICE_ARFS_LST_MASK;
439 	/* search for entry in the bucket */
440 	spin_lock_bh(&vsi->arfs_lock);
441 	hlist_for_each_entry(arfs_entry, &vsi->arfs_fltr_list[idx],
442 			     list_entry) {
443 		struct ice_fdir_fltr *fltr_info;
444 
445 		/* keep searching for the already existing arfs_entry flow */
446 		if (arfs_entry->flow_id != flow_id)
447 			continue;
448 
449 		fltr_info = &arfs_entry->fltr_info;
450 		ret = fltr_info->fltr_id;
451 
452 		if (fltr_info->q_index == rxq_idx ||
453 		    arfs_entry->fltr_state != ICE_ARFS_ACTIVE)
454 			goto out;
455 
456 		/* update the queue to forward to on an already existing flow */
457 		fltr_info->q_index = rxq_idx;
458 		arfs_entry->fltr_state = ICE_ARFS_INACTIVE;
459 		ice_arfs_update_active_fltr_cntrs(vsi, arfs_entry, false);
460 		goto out_schedule_service_task;
461 	}
462 
463 	arfs_entry = ice_arfs_build_entry(vsi, &fk, rxq_idx, flow_id);
464 	if (!arfs_entry) {
465 		ret = -ENOMEM;
466 		goto out;
467 	}
468 
469 	ret = arfs_entry->fltr_info.fltr_id;
470 	INIT_HLIST_NODE(&arfs_entry->list_entry);
471 	hlist_add_head(&arfs_entry->list_entry, &vsi->arfs_fltr_list[idx]);
472 out_schedule_service_task:
473 	ice_service_task_schedule(pf);
474 out:
475 	spin_unlock_bh(&vsi->arfs_lock);
476 	return ret;
477 }
478 
479 /**
480  * ice_init_arfs_cntrs - initialize aRFS counter values
481  * @vsi: VSI that aRFS counters need to be initialized on
482  */
483 static int ice_init_arfs_cntrs(struct ice_vsi *vsi)
484 {
485 	if (!vsi || vsi->type != ICE_VSI_PF)
486 		return -EINVAL;
487 
488 	vsi->arfs_fltr_cntrs = kzalloc(sizeof(*vsi->arfs_fltr_cntrs),
489 				       GFP_KERNEL);
490 	if (!vsi->arfs_fltr_cntrs)
491 		return -ENOMEM;
492 
493 	vsi->arfs_last_fltr_id = kzalloc(sizeof(*vsi->arfs_last_fltr_id),
494 					 GFP_KERNEL);
495 	if (!vsi->arfs_last_fltr_id) {
496 		kfree(vsi->arfs_fltr_cntrs);
497 		vsi->arfs_fltr_cntrs = NULL;
498 		return -ENOMEM;
499 	}
500 
501 	return 0;
502 }
503 
504 /**
505  * ice_init_arfs - initialize aRFS resources
506  * @vsi: the VSI to be forwarded to
507  */
508 void ice_init_arfs(struct ice_vsi *vsi)
509 {
510 	struct hlist_head *arfs_fltr_list;
511 	unsigned int i;
512 
513 	if (!vsi || vsi->type != ICE_VSI_PF)
514 		return;
515 
516 	arfs_fltr_list = kcalloc(ICE_MAX_ARFS_LIST, sizeof(*arfs_fltr_list),
517 				 GFP_KERNEL);
518 	if (!arfs_fltr_list)
519 		return;
520 
521 	if (ice_init_arfs_cntrs(vsi))
522 		goto free_arfs_fltr_list;
523 
524 	for (i = 0; i < ICE_MAX_ARFS_LIST; i++)
525 		INIT_HLIST_HEAD(&arfs_fltr_list[i]);
526 
527 	spin_lock_init(&vsi->arfs_lock);
528 
529 	vsi->arfs_fltr_list = arfs_fltr_list;
530 
531 	return;
532 
533 free_arfs_fltr_list:
534 	kfree(arfs_fltr_list);
535 }
536 
537 /**
538  * ice_clear_arfs - clear the aRFS hash table and any memory used for aRFS
539  * @vsi: the VSI to be forwarded to
540  */
541 void ice_clear_arfs(struct ice_vsi *vsi)
542 {
543 	struct device *dev;
544 	unsigned int i;
545 
546 	if (!vsi || vsi->type != ICE_VSI_PF || !vsi->back ||
547 	    !vsi->arfs_fltr_list)
548 		return;
549 
550 	dev = ice_pf_to_dev(vsi->back);
551 	for (i = 0; i < ICE_MAX_ARFS_LIST; i++) {
552 		struct ice_arfs_entry *r;
553 		struct hlist_node *n;
554 
555 		spin_lock_bh(&vsi->arfs_lock);
556 		hlist_for_each_entry_safe(r, n, &vsi->arfs_fltr_list[i],
557 					  list_entry) {
558 			hlist_del(&r->list_entry);
559 			devm_kfree(dev, r);
560 		}
561 		spin_unlock_bh(&vsi->arfs_lock);
562 	}
563 
564 	kfree(vsi->arfs_fltr_list);
565 	vsi->arfs_fltr_list = NULL;
566 	kfree(vsi->arfs_last_fltr_id);
567 	vsi->arfs_last_fltr_id = NULL;
568 	kfree(vsi->arfs_fltr_cntrs);
569 	vsi->arfs_fltr_cntrs = NULL;
570 }
571 
572 /**
573  * ice_free_cpu_rx_rmap - free setup CPU reverse map
574  * @vsi: the VSI to be forwarded to
575  */
576 void ice_free_cpu_rx_rmap(struct ice_vsi *vsi)
577 {
578 	struct net_device *netdev;
579 
580 	if (!vsi || vsi->type != ICE_VSI_PF)
581 		return;
582 
583 	netdev = vsi->netdev;
584 	if (!netdev || !netdev->rx_cpu_rmap)
585 		return;
586 
587 	free_irq_cpu_rmap(netdev->rx_cpu_rmap);
588 	netdev->rx_cpu_rmap = NULL;
589 }
590 
591 /**
592  * ice_set_cpu_rx_rmap - setup CPU reverse map for each queue
593  * @vsi: the VSI to be forwarded to
594  */
595 int ice_set_cpu_rx_rmap(struct ice_vsi *vsi)
596 {
597 	struct net_device *netdev;
598 	struct ice_pf *pf;
599 	int base_idx, i;
600 
601 	if (!vsi || vsi->type != ICE_VSI_PF)
602 		return 0;
603 
604 	pf = vsi->back;
605 	netdev = vsi->netdev;
606 	if (!pf || !netdev || !vsi->num_q_vectors)
607 		return -EINVAL;
608 
609 	netdev_dbg(netdev, "Setup CPU RMAP: vsi type 0x%x, ifname %s, q_vectors %d\n",
610 		   vsi->type, netdev->name, vsi->num_q_vectors);
611 
612 	netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(vsi->num_q_vectors);
613 	if (unlikely(!netdev->rx_cpu_rmap))
614 		return -EINVAL;
615 
616 	base_idx = vsi->base_vector;
617 	ice_for_each_q_vector(vsi, i)
618 		if (irq_cpu_rmap_add(netdev->rx_cpu_rmap,
619 				     pf->msix_entries[base_idx + i].vector)) {
620 			ice_free_cpu_rx_rmap(vsi);
621 			return -EINVAL;
622 		}
623 
624 	return 0;
625 }
626 
627 /**
628  * ice_remove_arfs - remove/clear all aRFS resources
629  * @pf: device private structure
630  */
631 void ice_remove_arfs(struct ice_pf *pf)
632 {
633 	struct ice_vsi *pf_vsi;
634 
635 	pf_vsi = ice_get_main_vsi(pf);
636 	if (!pf_vsi)
637 		return;
638 
639 	ice_clear_arfs(pf_vsi);
640 }
641 
642 /**
643  * ice_rebuild_arfs - remove/clear all aRFS resources and rebuild after reset
644  * @pf: device private structure
645  */
646 void ice_rebuild_arfs(struct ice_pf *pf)
647 {
648 	struct ice_vsi *pf_vsi;
649 
650 	pf_vsi = ice_get_main_vsi(pf);
651 	if (!pf_vsi)
652 		return;
653 
654 	ice_remove_arfs(pf);
655 	ice_init_arfs(pf_vsi);
656 }
657