xref: /linux/drivers/net/ethernet/intel/ice/ice_base.c (revision 9a6b55ac)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3 
4 #include "ice_base.h"
5 #include "ice_dcb_lib.h"
6 
7 /**
8  * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
9  * @qs_cfg: gathered variables needed for PF->VSI queues assignment
10  *
11  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
12  */
13 static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
14 {
15 	int offset, i;
16 
17 	mutex_lock(qs_cfg->qs_mutex);
18 	offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
19 					    0, qs_cfg->q_count, 0);
20 	if (offset >= qs_cfg->pf_map_size) {
21 		mutex_unlock(qs_cfg->qs_mutex);
22 		return -ENOMEM;
23 	}
24 
25 	bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
26 	for (i = 0; i < qs_cfg->q_count; i++)
27 		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = i + offset;
28 	mutex_unlock(qs_cfg->qs_mutex);
29 
30 	return 0;
31 }
32 
33 /**
34  * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
35  * @qs_cfg: gathered variables needed for pf->vsi queues assignment
36  *
37  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
38  */
39 static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
40 {
41 	int i, index = 0;
42 
43 	mutex_lock(qs_cfg->qs_mutex);
44 	for (i = 0; i < qs_cfg->q_count; i++) {
45 		index = find_next_zero_bit(qs_cfg->pf_map,
46 					   qs_cfg->pf_map_size, index);
47 		if (index >= qs_cfg->pf_map_size)
48 			goto err_scatter;
49 		set_bit(index, qs_cfg->pf_map);
50 		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = index;
51 	}
52 	mutex_unlock(qs_cfg->qs_mutex);
53 
54 	return 0;
55 err_scatter:
56 	for (index = 0; index < i; index++) {
57 		clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
58 		qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
59 	}
60 	mutex_unlock(qs_cfg->qs_mutex);
61 
62 	return -ENOMEM;
63 }
64 
65 /**
66  * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
67  * @pf: the PF being configured
68  * @pf_q: the PF queue
69  * @ena: enable or disable state of the queue
70  *
71  * This routine will wait for the given Rx queue of the PF to reach the
72  * enabled or disabled state.
73  * Returns -ETIMEDOUT in case of failing to reach the requested state after
74  * multiple retries; else will return 0 in case of success.
75  */
76 static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
77 {
78 	int i;
79 
80 	for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
81 		if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
82 			      QRX_CTRL_QENA_STAT_M))
83 			return 0;
84 
85 		usleep_range(20, 40);
86 	}
87 
88 	return -ETIMEDOUT;
89 }
90 
91 /**
92  * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
93  * @vsi: the VSI being configured
94  * @v_idx: index of the vector in the VSI struct
95  *
96  * We allocate one q_vector. If allocation fails we return -ENOMEM.
97  */
98 static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, int v_idx)
99 {
100 	struct ice_pf *pf = vsi->back;
101 	struct ice_q_vector *q_vector;
102 
103 	/* allocate q_vector */
104 	q_vector = devm_kzalloc(ice_pf_to_dev(pf), sizeof(*q_vector),
105 				GFP_KERNEL);
106 	if (!q_vector)
107 		return -ENOMEM;
108 
109 	q_vector->vsi = vsi;
110 	q_vector->v_idx = v_idx;
111 	if (vsi->type == ICE_VSI_VF)
112 		goto out;
113 	/* only set affinity_mask if the CPU is online */
114 	if (cpu_online(v_idx))
115 		cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
116 
117 	/* This will not be called in the driver load path because the netdev
118 	 * will not be created yet. All other cases with register the NAPI
119 	 * handler here (i.e. resume, reset/rebuild, etc.)
120 	 */
121 	if (vsi->netdev)
122 		netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll,
123 			       NAPI_POLL_WEIGHT);
124 
125 out:
126 	/* tie q_vector and VSI together */
127 	vsi->q_vectors[v_idx] = q_vector;
128 
129 	return 0;
130 }
131 
132 /**
133  * ice_free_q_vector - Free memory allocated for a specific interrupt vector
134  * @vsi: VSI having the memory freed
135  * @v_idx: index of the vector to be freed
136  */
137 static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
138 {
139 	struct ice_q_vector *q_vector;
140 	struct ice_pf *pf = vsi->back;
141 	struct ice_ring *ring;
142 	struct device *dev;
143 
144 	dev = ice_pf_to_dev(pf);
145 	if (!vsi->q_vectors[v_idx]) {
146 		dev_dbg(dev, "Queue vector at index %d not found\n", v_idx);
147 		return;
148 	}
149 	q_vector = vsi->q_vectors[v_idx];
150 
151 	ice_for_each_ring(ring, q_vector->tx)
152 		ring->q_vector = NULL;
153 	ice_for_each_ring(ring, q_vector->rx)
154 		ring->q_vector = NULL;
155 
156 	/* only VSI with an associated netdev is set up with NAPI */
157 	if (vsi->netdev)
158 		netif_napi_del(&q_vector->napi);
159 
160 	devm_kfree(dev, q_vector);
161 	vsi->q_vectors[v_idx] = NULL;
162 }
163 
164 /**
165  * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
166  * @hw: board specific structure
167  */
168 static void ice_cfg_itr_gran(struct ice_hw *hw)
169 {
170 	u32 regval = rd32(hw, GLINT_CTL);
171 
172 	/* no need to update global register if ITR gran is already set */
173 	if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
174 	    (((regval & GLINT_CTL_ITR_GRAN_200_M) >>
175 	     GLINT_CTL_ITR_GRAN_200_S) == ICE_ITR_GRAN_US) &&
176 	    (((regval & GLINT_CTL_ITR_GRAN_100_M) >>
177 	     GLINT_CTL_ITR_GRAN_100_S) == ICE_ITR_GRAN_US) &&
178 	    (((regval & GLINT_CTL_ITR_GRAN_50_M) >>
179 	     GLINT_CTL_ITR_GRAN_50_S) == ICE_ITR_GRAN_US) &&
180 	    (((regval & GLINT_CTL_ITR_GRAN_25_M) >>
181 	      GLINT_CTL_ITR_GRAN_25_S) == ICE_ITR_GRAN_US))
182 		return;
183 
184 	regval = ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_200_S) &
185 		  GLINT_CTL_ITR_GRAN_200_M) |
186 		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_100_S) &
187 		  GLINT_CTL_ITR_GRAN_100_M) |
188 		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_50_S) &
189 		  GLINT_CTL_ITR_GRAN_50_M) |
190 		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_25_S) &
191 		  GLINT_CTL_ITR_GRAN_25_M);
192 	wr32(hw, GLINT_CTL, regval);
193 }
194 
195 /**
196  * ice_calc_q_handle - calculate the queue handle
197  * @vsi: VSI that ring belongs to
198  * @ring: ring to get the absolute queue index
199  * @tc: traffic class number
200  */
201 static u16 ice_calc_q_handle(struct ice_vsi *vsi, struct ice_ring *ring, u8 tc)
202 {
203 	WARN_ONCE(ice_ring_is_xdp(ring) && tc,
204 		  "XDP ring can't belong to TC other than 0");
205 
206 	/* Idea here for calculation is that we subtract the number of queue
207 	 * count from TC that ring belongs to from it's absolute queue index
208 	 * and as a result we get the queue's index within TC.
209 	 */
210 	return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset;
211 }
212 
213 /**
214  * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
215  * @ring: The Tx ring to configure
216  * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
217  * @pf_q: queue index in the PF space
218  *
219  * Configure the Tx descriptor ring in TLAN context.
220  */
221 static void
222 ice_setup_tx_ctx(struct ice_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
223 {
224 	struct ice_vsi *vsi = ring->vsi;
225 	struct ice_hw *hw = &vsi->back->hw;
226 
227 	tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
228 
229 	tlan_ctx->port_num = vsi->port_info->lport;
230 
231 	/* Transmit Queue Length */
232 	tlan_ctx->qlen = ring->count;
233 
234 	ice_set_cgd_num(tlan_ctx, ring);
235 
236 	/* PF number */
237 	tlan_ctx->pf_num = hw->pf_id;
238 
239 	/* queue belongs to a specific VSI type
240 	 * VF / VM index should be programmed per vmvf_type setting:
241 	 * for vmvf_type = VF, it is VF number between 0-256
242 	 * for vmvf_type = VM, it is VM number between 0-767
243 	 * for PF or EMP this field should be set to zero
244 	 */
245 	switch (vsi->type) {
246 	case ICE_VSI_LB:
247 		/* fall through */
248 	case ICE_VSI_PF:
249 		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
250 		break;
251 	case ICE_VSI_VF:
252 		/* Firmware expects vmvf_num to be absolute VF ID */
253 		tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf_id;
254 		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
255 		break;
256 	default:
257 		return;
258 	}
259 
260 	/* make sure the context is associated with the right VSI */
261 	tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
262 
263 	tlan_ctx->tso_ena = ICE_TX_LEGACY;
264 	tlan_ctx->tso_qnum = pf_q;
265 
266 	/* Legacy or Advanced Host Interface:
267 	 * 0: Advanced Host Interface
268 	 * 1: Legacy Host Interface
269 	 */
270 	tlan_ctx->legacy_int = ICE_TX_LEGACY;
271 }
272 
273 /**
274  * ice_setup_rx_ctx - Configure a receive ring context
275  * @ring: The Rx ring to configure
276  *
277  * Configure the Rx descriptor ring in RLAN context.
278  */
279 int ice_setup_rx_ctx(struct ice_ring *ring)
280 {
281 	int chain_len = ICE_MAX_CHAINED_RX_BUFS;
282 	struct ice_vsi *vsi = ring->vsi;
283 	u32 rxdid = ICE_RXDID_FLEX_NIC;
284 	struct ice_rlan_ctx rlan_ctx;
285 	struct ice_hw *hw;
286 	u32 regval;
287 	u16 pf_q;
288 	int err;
289 
290 	hw = &vsi->back->hw;
291 
292 	/* what is Rx queue number in global space of 2K Rx queues */
293 	pf_q = vsi->rxq_map[ring->q_index];
294 
295 	/* clear the context structure first */
296 	memset(&rlan_ctx, 0, sizeof(rlan_ctx));
297 
298 	ring->rx_buf_len = vsi->rx_buf_len;
299 
300 	if (ring->vsi->type == ICE_VSI_PF) {
301 		if (!xdp_rxq_info_is_reg(&ring->xdp_rxq))
302 			xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
303 					 ring->q_index);
304 
305 		ring->xsk_umem = ice_xsk_umem(ring);
306 		if (ring->xsk_umem) {
307 			xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
308 
309 			ring->rx_buf_len = ring->xsk_umem->chunk_size_nohr -
310 					   XDP_PACKET_HEADROOM;
311 			/* For AF_XDP ZC, we disallow packets to span on
312 			 * multiple buffers, thus letting us skip that
313 			 * handling in the fast-path.
314 			 */
315 			chain_len = 1;
316 			ring->zca.free = ice_zca_free;
317 			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
318 							 MEM_TYPE_ZERO_COPY,
319 							 &ring->zca);
320 			if (err)
321 				return err;
322 
323 			dev_info(&vsi->back->pdev->dev, "Registered XDP mem model MEM_TYPE_ZERO_COPY on Rx ring %d\n",
324 				 ring->q_index);
325 		} else {
326 			if (!xdp_rxq_info_is_reg(&ring->xdp_rxq))
327 				xdp_rxq_info_reg(&ring->xdp_rxq,
328 						 ring->netdev,
329 						 ring->q_index);
330 
331 			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
332 							 MEM_TYPE_PAGE_SHARED,
333 							 NULL);
334 			if (err)
335 				return err;
336 		}
337 	}
338 	/* Receive Queue Base Address.
339 	 * Indicates the starting address of the descriptor queue defined in
340 	 * 128 Byte units.
341 	 */
342 	rlan_ctx.base = ring->dma >> 7;
343 
344 	rlan_ctx.qlen = ring->count;
345 
346 	/* Receive Packet Data Buffer Size.
347 	 * The Packet Data Buffer Size is defined in 128 byte units.
348 	 */
349 	rlan_ctx.dbuf = ring->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
350 
351 	/* use 32 byte descriptors */
352 	rlan_ctx.dsize = 1;
353 
354 	/* Strip the Ethernet CRC bytes before the packet is posted to host
355 	 * memory.
356 	 */
357 	rlan_ctx.crcstrip = 1;
358 
359 	/* L2TSEL flag defines the reported L2 Tags in the receive descriptor */
360 	rlan_ctx.l2tsel = 1;
361 
362 	rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
363 	rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
364 	rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
365 
366 	/* This controls whether VLAN is stripped from inner headers
367 	 * The VLAN in the inner L2 header is stripped to the receive
368 	 * descriptor if enabled by this flag.
369 	 */
370 	rlan_ctx.showiv = 0;
371 
372 	/* Max packet size for this queue - must not be set to a larger value
373 	 * than 5 x DBUF
374 	 */
375 	rlan_ctx.rxmax = min_t(u16, vsi->max_frame,
376 			       chain_len * ring->rx_buf_len);
377 
378 	/* Rx queue threshold in units of 64 */
379 	rlan_ctx.lrxqthresh = 1;
380 
381 	 /* Enable Flexible Descriptors in the queue context which
382 	  * allows this driver to select a specific receive descriptor format
383 	  */
384 	if (vsi->type != ICE_VSI_VF) {
385 		regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
386 		regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
387 			QRXFLXP_CNTXT_RXDID_IDX_M;
388 
389 		/* increasing context priority to pick up profile ID;
390 		 * default is 0x01; setting to 0x03 to ensure profile
391 		 * is programming if prev context is of same priority
392 		 */
393 		regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
394 			QRXFLXP_CNTXT_RXDID_PRIO_M;
395 
396 		wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
397 	}
398 
399 	/* Absolute queue number out of 2K needs to be passed */
400 	err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
401 	if (err) {
402 		dev_err(&vsi->back->pdev->dev,
403 			"Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
404 			pf_q, err);
405 		return -EIO;
406 	}
407 
408 	if (vsi->type == ICE_VSI_VF)
409 		return 0;
410 
411 	/* configure Rx buffer alignment */
412 	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
413 		ice_clear_ring_build_skb_ena(ring);
414 	else
415 		ice_set_ring_build_skb_ena(ring);
416 
417 	/* init queue specific tail register */
418 	ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
419 	writel(0, ring->tail);
420 
421 	err = ring->xsk_umem ?
422 	      ice_alloc_rx_bufs_slow_zc(ring, ICE_DESC_UNUSED(ring)) :
423 	      ice_alloc_rx_bufs(ring, ICE_DESC_UNUSED(ring));
424 	if (err)
425 		dev_info(&vsi->back->pdev->dev,
426 			 "Failed allocate some buffers on %sRx ring %d (pf_q %d)\n",
427 			 ring->xsk_umem ? "UMEM enabled " : "",
428 			 ring->q_index, pf_q);
429 
430 	return 0;
431 }
432 
433 /**
434  * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
435  * @qs_cfg: gathered variables needed for pf->vsi queues assignment
436  *
437  * This function first tries to find contiguous space. If it is not successful,
438  * it tries with the scatter approach.
439  *
440  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
441  */
442 int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
443 {
444 	int ret = 0;
445 
446 	ret = __ice_vsi_get_qs_contig(qs_cfg);
447 	if (ret) {
448 		/* contig failed, so try with scatter approach */
449 		qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
450 		qs_cfg->q_count = min_t(u16, qs_cfg->q_count,
451 					qs_cfg->scatter_count);
452 		ret = __ice_vsi_get_qs_sc(qs_cfg);
453 	}
454 	return ret;
455 }
456 
457 /**
458  * ice_vsi_ctrl_rx_ring - Start or stop a VSI's Rx ring
459  * @vsi: the VSI being configured
460  * @ena: start or stop the Rx rings
461  * @rxq_idx: Rx queue index
462  */
463 int ice_vsi_ctrl_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx)
464 {
465 	int pf_q = vsi->rxq_map[rxq_idx];
466 	struct ice_pf *pf = vsi->back;
467 	struct ice_hw *hw = &pf->hw;
468 	int ret = 0;
469 	u32 rx_reg;
470 
471 	rx_reg = rd32(hw, QRX_CTRL(pf_q));
472 
473 	/* Skip if the queue is already in the requested state */
474 	if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
475 		return 0;
476 
477 	/* turn on/off the queue */
478 	if (ena)
479 		rx_reg |= QRX_CTRL_QENA_REQ_M;
480 	else
481 		rx_reg &= ~QRX_CTRL_QENA_REQ_M;
482 	wr32(hw, QRX_CTRL(pf_q), rx_reg);
483 
484 	/* wait for the change to finish */
485 	ret = ice_pf_rxq_wait(pf, pf_q, ena);
486 	if (ret)
487 		dev_err(ice_pf_to_dev(pf),
488 			"VSI idx %d Rx ring %d %sable timeout\n",
489 			vsi->idx, pf_q, (ena ? "en" : "dis"));
490 
491 	return ret;
492 }
493 
494 /**
495  * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
496  * @vsi: the VSI being configured
497  *
498  * We allocate one q_vector per queue interrupt. If allocation fails we
499  * return -ENOMEM.
500  */
501 int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
502 {
503 	struct ice_pf *pf = vsi->back;
504 	int v_idx = 0, num_q_vectors;
505 	struct device *dev;
506 	int err;
507 
508 	dev = ice_pf_to_dev(pf);
509 	if (vsi->q_vectors[0]) {
510 		dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num);
511 		return -EEXIST;
512 	}
513 
514 	num_q_vectors = vsi->num_q_vectors;
515 
516 	for (v_idx = 0; v_idx < num_q_vectors; v_idx++) {
517 		err = ice_vsi_alloc_q_vector(vsi, v_idx);
518 		if (err)
519 			goto err_out;
520 	}
521 
522 	return 0;
523 
524 err_out:
525 	while (v_idx--)
526 		ice_free_q_vector(vsi, v_idx);
527 
528 	dev_err(dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n",
529 		vsi->num_q_vectors, vsi->vsi_num, err);
530 	vsi->num_q_vectors = 0;
531 	return err;
532 }
533 
534 /**
535  * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
536  * @vsi: the VSI being configured
537  *
538  * This function maps descriptor rings to the queue-specific vectors allotted
539  * through the MSI-X enabling code. On a constrained vector budget, we map Tx
540  * and Rx rings to the vector as "efficiently" as possible.
541  */
542 void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
543 {
544 	int q_vectors = vsi->num_q_vectors;
545 	int tx_rings_rem, rx_rings_rem;
546 	int v_id;
547 
548 	/* initially assigning remaining rings count to VSIs num queue value */
549 	tx_rings_rem = vsi->num_txq;
550 	rx_rings_rem = vsi->num_rxq;
551 
552 	for (v_id = 0; v_id < q_vectors; v_id++) {
553 		struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
554 		int tx_rings_per_v, rx_rings_per_v, q_id, q_base;
555 
556 		/* Tx rings mapping to vector */
557 		tx_rings_per_v = DIV_ROUND_UP(tx_rings_rem, q_vectors - v_id);
558 		q_vector->num_ring_tx = tx_rings_per_v;
559 		q_vector->tx.ring = NULL;
560 		q_vector->tx.itr_idx = ICE_TX_ITR;
561 		q_base = vsi->num_txq - tx_rings_rem;
562 
563 		for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
564 			struct ice_ring *tx_ring = vsi->tx_rings[q_id];
565 
566 			tx_ring->q_vector = q_vector;
567 			tx_ring->next = q_vector->tx.ring;
568 			q_vector->tx.ring = tx_ring;
569 		}
570 		tx_rings_rem -= tx_rings_per_v;
571 
572 		/* Rx rings mapping to vector */
573 		rx_rings_per_v = DIV_ROUND_UP(rx_rings_rem, q_vectors - v_id);
574 		q_vector->num_ring_rx = rx_rings_per_v;
575 		q_vector->rx.ring = NULL;
576 		q_vector->rx.itr_idx = ICE_RX_ITR;
577 		q_base = vsi->num_rxq - rx_rings_rem;
578 
579 		for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
580 			struct ice_ring *rx_ring = vsi->rx_rings[q_id];
581 
582 			rx_ring->q_vector = q_vector;
583 			rx_ring->next = q_vector->rx.ring;
584 			q_vector->rx.ring = rx_ring;
585 		}
586 		rx_rings_rem -= rx_rings_per_v;
587 	}
588 }
589 
590 /**
591  * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
592  * @vsi: the VSI having memory freed
593  */
594 void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
595 {
596 	int v_idx;
597 
598 	ice_for_each_q_vector(vsi, v_idx)
599 		ice_free_q_vector(vsi, v_idx);
600 }
601 
602 /**
603  * ice_vsi_cfg_txq - Configure single Tx queue
604  * @vsi: the VSI that queue belongs to
605  * @ring: Tx ring to be configured
606  * @qg_buf: queue group buffer
607  */
608 int
609 ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_ring *ring,
610 		struct ice_aqc_add_tx_qgrp *qg_buf)
611 {
612 	struct ice_tlan_ctx tlan_ctx = { 0 };
613 	struct ice_aqc_add_txqs_perq *txq;
614 	struct ice_pf *pf = vsi->back;
615 	u8 buf_len = sizeof(*qg_buf);
616 	enum ice_status status;
617 	u16 pf_q;
618 	u8 tc;
619 
620 	pf_q = ring->reg_idx;
621 	ice_setup_tx_ctx(ring, &tlan_ctx, pf_q);
622 	/* copy context contents into the qg_buf */
623 	qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
624 	ice_set_ctx((u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
625 		    ice_tlan_ctx_info);
626 
627 	/* init queue specific tail reg. It is referred as
628 	 * transmit comm scheduler queue doorbell.
629 	 */
630 	ring->tail = pf->hw.hw_addr + QTX_COMM_DBELL(pf_q);
631 
632 	if (IS_ENABLED(CONFIG_DCB))
633 		tc = ring->dcb_tc;
634 	else
635 		tc = 0;
636 
637 	/* Add unique software queue handle of the Tx queue per
638 	 * TC into the VSI Tx ring
639 	 */
640 	ring->q_handle = ice_calc_q_handle(vsi, ring, tc);
641 
642 	status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc, ring->q_handle,
643 				 1, qg_buf, buf_len, NULL);
644 	if (status) {
645 		dev_err(ice_pf_to_dev(pf),
646 			"Failed to set LAN Tx queue context, error: %d\n",
647 			status);
648 		return -ENODEV;
649 	}
650 
651 	/* Add Tx Queue TEID into the VSI Tx ring from the
652 	 * response. This will complete configuring and
653 	 * enabling the queue.
654 	 */
655 	txq = &qg_buf->txqs[0];
656 	if (pf_q == le16_to_cpu(txq->txq_id))
657 		ring->txq_teid = le32_to_cpu(txq->q_teid);
658 
659 	return 0;
660 }
661 
662 /**
663  * ice_cfg_itr - configure the initial interrupt throttle values
664  * @hw: pointer to the HW structure
665  * @q_vector: interrupt vector that's being configured
666  *
667  * Configure interrupt throttling values for the ring containers that are
668  * associated with the interrupt vector passed in.
669  */
670 void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector)
671 {
672 	ice_cfg_itr_gran(hw);
673 
674 	if (q_vector->num_ring_rx) {
675 		struct ice_ring_container *rc = &q_vector->rx;
676 
677 		/* if this value is set then don't overwrite with default */
678 		if (!rc->itr_setting)
679 			rc->itr_setting = ICE_DFLT_RX_ITR;
680 
681 		rc->target_itr = ITR_TO_REG(rc->itr_setting);
682 		rc->next_update = jiffies + 1;
683 		rc->current_itr = rc->target_itr;
684 		wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
685 		     ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S);
686 	}
687 
688 	if (q_vector->num_ring_tx) {
689 		struct ice_ring_container *rc = &q_vector->tx;
690 
691 		/* if this value is set then don't overwrite with default */
692 		if (!rc->itr_setting)
693 			rc->itr_setting = ICE_DFLT_TX_ITR;
694 
695 		rc->target_itr = ITR_TO_REG(rc->itr_setting);
696 		rc->next_update = jiffies + 1;
697 		rc->current_itr = rc->target_itr;
698 		wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
699 		     ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S);
700 	}
701 }
702 
703 /**
704  * ice_cfg_txq_interrupt - configure interrupt on Tx queue
705  * @vsi: the VSI being configured
706  * @txq: Tx queue being mapped to MSI-X vector
707  * @msix_idx: MSI-X vector index within the function
708  * @itr_idx: ITR index of the interrupt cause
709  *
710  * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector
711  * within the function space.
712  */
713 void
714 ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
715 {
716 	struct ice_pf *pf = vsi->back;
717 	struct ice_hw *hw = &pf->hw;
718 	u32 val;
719 
720 	itr_idx = (itr_idx << QINT_TQCTL_ITR_INDX_S) & QINT_TQCTL_ITR_INDX_M;
721 
722 	val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
723 	      ((msix_idx << QINT_TQCTL_MSIX_INDX_S) & QINT_TQCTL_MSIX_INDX_M);
724 
725 	wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
726 	if (ice_is_xdp_ena_vsi(vsi)) {
727 		u32 xdp_txq = txq + vsi->num_xdp_txq;
728 
729 		wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]),
730 		     val);
731 	}
732 	ice_flush(hw);
733 }
734 
735 /**
736  * ice_cfg_rxq_interrupt - configure interrupt on Rx queue
737  * @vsi: the VSI being configured
738  * @rxq: Rx queue being mapped to MSI-X vector
739  * @msix_idx: MSI-X vector index within the function
740  * @itr_idx: ITR index of the interrupt cause
741  *
742  * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector
743  * within the function space.
744  */
745 void
746 ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
747 {
748 	struct ice_pf *pf = vsi->back;
749 	struct ice_hw *hw = &pf->hw;
750 	u32 val;
751 
752 	itr_idx = (itr_idx << QINT_RQCTL_ITR_INDX_S) & QINT_RQCTL_ITR_INDX_M;
753 
754 	val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
755 	      ((msix_idx << QINT_RQCTL_MSIX_INDX_S) & QINT_RQCTL_MSIX_INDX_M);
756 
757 	wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
758 
759 	ice_flush(hw);
760 }
761 
762 /**
763  * ice_trigger_sw_intr - trigger a software interrupt
764  * @hw: pointer to the HW structure
765  * @q_vector: interrupt vector to trigger the software interrupt for
766  */
767 void ice_trigger_sw_intr(struct ice_hw *hw, struct ice_q_vector *q_vector)
768 {
769 	wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx),
770 	     (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) |
771 	     GLINT_DYN_CTL_SWINT_TRIG_M |
772 	     GLINT_DYN_CTL_INTENA_M);
773 }
774 
775 /**
776  * ice_vsi_stop_tx_ring - Disable single Tx ring
777  * @vsi: the VSI being configured
778  * @rst_src: reset source
779  * @rel_vmvf_num: Relative ID of VF/VM
780  * @ring: Tx ring to be stopped
781  * @txq_meta: Meta data of Tx ring to be stopped
782  */
783 int
784 ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
785 		     u16 rel_vmvf_num, struct ice_ring *ring,
786 		     struct ice_txq_meta *txq_meta)
787 {
788 	struct ice_pf *pf = vsi->back;
789 	struct ice_q_vector *q_vector;
790 	struct ice_hw *hw = &pf->hw;
791 	enum ice_status status;
792 	u32 val;
793 
794 	/* clear cause_ena bit for disabled queues */
795 	val = rd32(hw, QINT_TQCTL(ring->reg_idx));
796 	val &= ~QINT_TQCTL_CAUSE_ENA_M;
797 	wr32(hw, QINT_TQCTL(ring->reg_idx), val);
798 
799 	/* software is expected to wait for 100 ns */
800 	ndelay(100);
801 
802 	/* trigger a software interrupt for the vector
803 	 * associated to the queue to schedule NAPI handler
804 	 */
805 	q_vector = ring->q_vector;
806 	if (q_vector)
807 		ice_trigger_sw_intr(hw, q_vector);
808 
809 	status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx,
810 				 txq_meta->tc, 1, &txq_meta->q_handle,
811 				 &txq_meta->q_id, &txq_meta->q_teid, rst_src,
812 				 rel_vmvf_num, NULL);
813 
814 	/* if the disable queue command was exercised during an
815 	 * active reset flow, ICE_ERR_RESET_ONGOING is returned.
816 	 * This is not an error as the reset operation disables
817 	 * queues at the hardware level anyway.
818 	 */
819 	if (status == ICE_ERR_RESET_ONGOING) {
820 		dev_dbg(&vsi->back->pdev->dev,
821 			"Reset in progress. LAN Tx queues already disabled\n");
822 	} else if (status == ICE_ERR_DOES_NOT_EXIST) {
823 		dev_dbg(&vsi->back->pdev->dev,
824 			"LAN Tx queues do not exist, nothing to disable\n");
825 	} else if (status) {
826 		dev_err(&vsi->back->pdev->dev,
827 			"Failed to disable LAN Tx queues, error: %d\n", status);
828 		return -ENODEV;
829 	}
830 
831 	return 0;
832 }
833 
834 /**
835  * ice_fill_txq_meta - Prepare the Tx queue's meta data
836  * @vsi: VSI that ring belongs to
837  * @ring: ring that txq_meta will be based on
838  * @txq_meta: a helper struct that wraps Tx queue's information
839  *
840  * Set up a helper struct that will contain all the necessary fields that
841  * are needed for stopping Tx queue
842  */
843 void
844 ice_fill_txq_meta(struct ice_vsi *vsi, struct ice_ring *ring,
845 		  struct ice_txq_meta *txq_meta)
846 {
847 	u8 tc;
848 
849 	if (IS_ENABLED(CONFIG_DCB))
850 		tc = ring->dcb_tc;
851 	else
852 		tc = 0;
853 
854 	txq_meta->q_id = ring->reg_idx;
855 	txq_meta->q_teid = ring->txq_teid;
856 	txq_meta->q_handle = ring->q_handle;
857 	txq_meta->vsi_idx = vsi->idx;
858 	txq_meta->tc = tc;
859 }
860