xref: /linux/drivers/net/ethernet/intel/ice/ice_base.c (revision f86fd32d)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3 
4 #include "ice_base.h"
5 #include "ice_dcb_lib.h"
6 
7 /**
8  * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
9  * @qs_cfg: gathered variables needed for PF->VSI queues assignment
10  *
11  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
12  */
13 static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
14 {
15 	int offset, i;
16 
17 	mutex_lock(qs_cfg->qs_mutex);
18 	offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
19 					    0, qs_cfg->q_count, 0);
20 	if (offset >= qs_cfg->pf_map_size) {
21 		mutex_unlock(qs_cfg->qs_mutex);
22 		return -ENOMEM;
23 	}
24 
25 	bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
26 	for (i = 0; i < qs_cfg->q_count; i++)
27 		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = i + offset;
28 	mutex_unlock(qs_cfg->qs_mutex);
29 
30 	return 0;
31 }
32 
33 /**
34  * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
35  * @qs_cfg: gathered variables needed for pf->vsi queues assignment
36  *
37  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
38  */
39 static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
40 {
41 	int i, index = 0;
42 
43 	mutex_lock(qs_cfg->qs_mutex);
44 	for (i = 0; i < qs_cfg->q_count; i++) {
45 		index = find_next_zero_bit(qs_cfg->pf_map,
46 					   qs_cfg->pf_map_size, index);
47 		if (index >= qs_cfg->pf_map_size)
48 			goto err_scatter;
49 		set_bit(index, qs_cfg->pf_map);
50 		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = index;
51 	}
52 	mutex_unlock(qs_cfg->qs_mutex);
53 
54 	return 0;
55 err_scatter:
56 	for (index = 0; index < i; index++) {
57 		clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
58 		qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
59 	}
60 	mutex_unlock(qs_cfg->qs_mutex);
61 
62 	return -ENOMEM;
63 }
64 
65 /**
66  * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
67  * @pf: the PF being configured
68  * @pf_q: the PF queue
69  * @ena: enable or disable state of the queue
70  *
71  * This routine will wait for the given Rx queue of the PF to reach the
72  * enabled or disabled state.
73  * Returns -ETIMEDOUT in case of failing to reach the requested state after
74  * multiple retries; else will return 0 in case of success.
75  */
76 static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
77 {
78 	int i;
79 
80 	for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
81 		if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
82 			      QRX_CTRL_QENA_STAT_M))
83 			return 0;
84 
85 		usleep_range(20, 40);
86 	}
87 
88 	return -ETIMEDOUT;
89 }
90 
91 /**
92  * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
93  * @vsi: the VSI being configured
94  * @v_idx: index of the vector in the VSI struct
95  *
96  * We allocate one q_vector and set default value for ITR setting associated
97  * with this q_vector. If allocation fails we return -ENOMEM.
98  */
99 static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, int v_idx)
100 {
101 	struct ice_pf *pf = vsi->back;
102 	struct ice_q_vector *q_vector;
103 
104 	/* allocate q_vector */
105 	q_vector = devm_kzalloc(ice_pf_to_dev(pf), sizeof(*q_vector),
106 				GFP_KERNEL);
107 	if (!q_vector)
108 		return -ENOMEM;
109 
110 	q_vector->vsi = vsi;
111 	q_vector->v_idx = v_idx;
112 	q_vector->tx.itr_setting = ICE_DFLT_TX_ITR;
113 	q_vector->rx.itr_setting = ICE_DFLT_RX_ITR;
114 	if (vsi->type == ICE_VSI_VF)
115 		goto out;
116 	/* only set affinity_mask if the CPU is online */
117 	if (cpu_online(v_idx))
118 		cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
119 
120 	/* This will not be called in the driver load path because the netdev
121 	 * will not be created yet. All other cases with register the NAPI
122 	 * handler here (i.e. resume, reset/rebuild, etc.)
123 	 */
124 	if (vsi->netdev)
125 		netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll,
126 			       NAPI_POLL_WEIGHT);
127 
128 out:
129 	/* tie q_vector and VSI together */
130 	vsi->q_vectors[v_idx] = q_vector;
131 
132 	return 0;
133 }
134 
135 /**
136  * ice_free_q_vector - Free memory allocated for a specific interrupt vector
137  * @vsi: VSI having the memory freed
138  * @v_idx: index of the vector to be freed
139  */
140 static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
141 {
142 	struct ice_q_vector *q_vector;
143 	struct ice_pf *pf = vsi->back;
144 	struct ice_ring *ring;
145 	struct device *dev;
146 
147 	dev = ice_pf_to_dev(pf);
148 	if (!vsi->q_vectors[v_idx]) {
149 		dev_dbg(dev, "Queue vector at index %d not found\n", v_idx);
150 		return;
151 	}
152 	q_vector = vsi->q_vectors[v_idx];
153 
154 	ice_for_each_ring(ring, q_vector->tx)
155 		ring->q_vector = NULL;
156 	ice_for_each_ring(ring, q_vector->rx)
157 		ring->q_vector = NULL;
158 
159 	/* only VSI with an associated netdev is set up with NAPI */
160 	if (vsi->netdev)
161 		netif_napi_del(&q_vector->napi);
162 
163 	devm_kfree(dev, q_vector);
164 	vsi->q_vectors[v_idx] = NULL;
165 }
166 
167 /**
168  * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
169  * @hw: board specific structure
170  */
171 static void ice_cfg_itr_gran(struct ice_hw *hw)
172 {
173 	u32 regval = rd32(hw, GLINT_CTL);
174 
175 	/* no need to update global register if ITR gran is already set */
176 	if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
177 	    (((regval & GLINT_CTL_ITR_GRAN_200_M) >>
178 	     GLINT_CTL_ITR_GRAN_200_S) == ICE_ITR_GRAN_US) &&
179 	    (((regval & GLINT_CTL_ITR_GRAN_100_M) >>
180 	     GLINT_CTL_ITR_GRAN_100_S) == ICE_ITR_GRAN_US) &&
181 	    (((regval & GLINT_CTL_ITR_GRAN_50_M) >>
182 	     GLINT_CTL_ITR_GRAN_50_S) == ICE_ITR_GRAN_US) &&
183 	    (((regval & GLINT_CTL_ITR_GRAN_25_M) >>
184 	      GLINT_CTL_ITR_GRAN_25_S) == ICE_ITR_GRAN_US))
185 		return;
186 
187 	regval = ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_200_S) &
188 		  GLINT_CTL_ITR_GRAN_200_M) |
189 		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_100_S) &
190 		  GLINT_CTL_ITR_GRAN_100_M) |
191 		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_50_S) &
192 		  GLINT_CTL_ITR_GRAN_50_M) |
193 		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_25_S) &
194 		  GLINT_CTL_ITR_GRAN_25_M);
195 	wr32(hw, GLINT_CTL, regval);
196 }
197 
198 /**
199  * ice_calc_q_handle - calculate the queue handle
200  * @vsi: VSI that ring belongs to
201  * @ring: ring to get the absolute queue index
202  * @tc: traffic class number
203  */
204 static u16 ice_calc_q_handle(struct ice_vsi *vsi, struct ice_ring *ring, u8 tc)
205 {
206 	WARN_ONCE(ice_ring_is_xdp(ring) && tc,
207 		  "XDP ring can't belong to TC other than 0");
208 
209 	/* Idea here for calculation is that we subtract the number of queue
210 	 * count from TC that ring belongs to from it's absolute queue index
211 	 * and as a result we get the queue's index within TC.
212 	 */
213 	return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset;
214 }
215 
216 /**
217  * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
218  * @ring: The Tx ring to configure
219  * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
220  * @pf_q: queue index in the PF space
221  *
222  * Configure the Tx descriptor ring in TLAN context.
223  */
224 static void
225 ice_setup_tx_ctx(struct ice_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
226 {
227 	struct ice_vsi *vsi = ring->vsi;
228 	struct ice_hw *hw = &vsi->back->hw;
229 
230 	tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
231 
232 	tlan_ctx->port_num = vsi->port_info->lport;
233 
234 	/* Transmit Queue Length */
235 	tlan_ctx->qlen = ring->count;
236 
237 	ice_set_cgd_num(tlan_ctx, ring);
238 
239 	/* PF number */
240 	tlan_ctx->pf_num = hw->pf_id;
241 
242 	/* queue belongs to a specific VSI type
243 	 * VF / VM index should be programmed per vmvf_type setting:
244 	 * for vmvf_type = VF, it is VF number between 0-256
245 	 * for vmvf_type = VM, it is VM number between 0-767
246 	 * for PF or EMP this field should be set to zero
247 	 */
248 	switch (vsi->type) {
249 	case ICE_VSI_LB:
250 		/* fall through */
251 	case ICE_VSI_PF:
252 		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
253 		break;
254 	case ICE_VSI_VF:
255 		/* Firmware expects vmvf_num to be absolute VF ID */
256 		tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf_id;
257 		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
258 		break;
259 	default:
260 		return;
261 	}
262 
263 	/* make sure the context is associated with the right VSI */
264 	tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
265 
266 	tlan_ctx->tso_ena = ICE_TX_LEGACY;
267 	tlan_ctx->tso_qnum = pf_q;
268 
269 	/* Legacy or Advanced Host Interface:
270 	 * 0: Advanced Host Interface
271 	 * 1: Legacy Host Interface
272 	 */
273 	tlan_ctx->legacy_int = ICE_TX_LEGACY;
274 }
275 
276 /**
277  * ice_setup_rx_ctx - Configure a receive ring context
278  * @ring: The Rx ring to configure
279  *
280  * Configure the Rx descriptor ring in RLAN context.
281  */
282 int ice_setup_rx_ctx(struct ice_ring *ring)
283 {
284 	int chain_len = ICE_MAX_CHAINED_RX_BUFS;
285 	struct ice_vsi *vsi = ring->vsi;
286 	u32 rxdid = ICE_RXDID_FLEX_NIC;
287 	struct ice_rlan_ctx rlan_ctx;
288 	struct ice_hw *hw;
289 	u32 regval;
290 	u16 pf_q;
291 	int err;
292 
293 	hw = &vsi->back->hw;
294 
295 	/* what is Rx queue number in global space of 2K Rx queues */
296 	pf_q = vsi->rxq_map[ring->q_index];
297 
298 	/* clear the context structure first */
299 	memset(&rlan_ctx, 0, sizeof(rlan_ctx));
300 
301 	ring->rx_buf_len = vsi->rx_buf_len;
302 
303 	if (ring->vsi->type == ICE_VSI_PF) {
304 		if (!xdp_rxq_info_is_reg(&ring->xdp_rxq))
305 			/* coverity[check_return] */
306 			xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
307 					 ring->q_index);
308 
309 		ring->xsk_umem = ice_xsk_umem(ring);
310 		if (ring->xsk_umem) {
311 			xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
312 
313 			ring->rx_buf_len = ring->xsk_umem->chunk_size_nohr -
314 					   XDP_PACKET_HEADROOM;
315 			/* For AF_XDP ZC, we disallow packets to span on
316 			 * multiple buffers, thus letting us skip that
317 			 * handling in the fast-path.
318 			 */
319 			chain_len = 1;
320 			ring->zca.free = ice_zca_free;
321 			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
322 							 MEM_TYPE_ZERO_COPY,
323 							 &ring->zca);
324 			if (err)
325 				return err;
326 
327 			dev_info(ice_pf_to_dev(vsi->back), "Registered XDP mem model MEM_TYPE_ZERO_COPY on Rx ring %d\n",
328 				 ring->q_index);
329 		} else {
330 			ring->zca.free = NULL;
331 			if (!xdp_rxq_info_is_reg(&ring->xdp_rxq))
332 				/* coverity[check_return] */
333 				xdp_rxq_info_reg(&ring->xdp_rxq,
334 						 ring->netdev,
335 						 ring->q_index);
336 
337 			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
338 							 MEM_TYPE_PAGE_SHARED,
339 							 NULL);
340 			if (err)
341 				return err;
342 		}
343 	}
344 	/* Receive Queue Base Address.
345 	 * Indicates the starting address of the descriptor queue defined in
346 	 * 128 Byte units.
347 	 */
348 	rlan_ctx.base = ring->dma >> 7;
349 
350 	rlan_ctx.qlen = ring->count;
351 
352 	/* Receive Packet Data Buffer Size.
353 	 * The Packet Data Buffer Size is defined in 128 byte units.
354 	 */
355 	rlan_ctx.dbuf = ring->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
356 
357 	/* use 32 byte descriptors */
358 	rlan_ctx.dsize = 1;
359 
360 	/* Strip the Ethernet CRC bytes before the packet is posted to host
361 	 * memory.
362 	 */
363 	rlan_ctx.crcstrip = 1;
364 
365 	/* L2TSEL flag defines the reported L2 Tags in the receive descriptor */
366 	rlan_ctx.l2tsel = 1;
367 
368 	rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
369 	rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
370 	rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
371 
372 	/* This controls whether VLAN is stripped from inner headers
373 	 * The VLAN in the inner L2 header is stripped to the receive
374 	 * descriptor if enabled by this flag.
375 	 */
376 	rlan_ctx.showiv = 0;
377 
378 	/* Max packet size for this queue - must not be set to a larger value
379 	 * than 5 x DBUF
380 	 */
381 	rlan_ctx.rxmax = min_t(u16, vsi->max_frame,
382 			       chain_len * ring->rx_buf_len);
383 
384 	/* Rx queue threshold in units of 64 */
385 	rlan_ctx.lrxqthresh = 1;
386 
387 	 /* Enable Flexible Descriptors in the queue context which
388 	  * allows this driver to select a specific receive descriptor format
389 	  */
390 	if (vsi->type != ICE_VSI_VF) {
391 		regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
392 		regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
393 			QRXFLXP_CNTXT_RXDID_IDX_M;
394 
395 		/* increasing context priority to pick up profile ID;
396 		 * default is 0x01; setting to 0x03 to ensure profile
397 		 * is programming if prev context is of same priority
398 		 */
399 		regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
400 			QRXFLXP_CNTXT_RXDID_PRIO_M;
401 
402 		wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
403 	}
404 
405 	/* Absolute queue number out of 2K needs to be passed */
406 	err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
407 	if (err) {
408 		dev_err(ice_pf_to_dev(vsi->back), "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
409 			pf_q, err);
410 		return -EIO;
411 	}
412 
413 	if (vsi->type == ICE_VSI_VF)
414 		return 0;
415 
416 	/* configure Rx buffer alignment */
417 	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
418 		ice_clear_ring_build_skb_ena(ring);
419 	else
420 		ice_set_ring_build_skb_ena(ring);
421 
422 	/* init queue specific tail register */
423 	ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
424 	writel(0, ring->tail);
425 
426 	err = ring->xsk_umem ?
427 	      ice_alloc_rx_bufs_slow_zc(ring, ICE_DESC_UNUSED(ring)) :
428 	      ice_alloc_rx_bufs(ring, ICE_DESC_UNUSED(ring));
429 	if (err)
430 		dev_info(ice_pf_to_dev(vsi->back), "Failed allocate some buffers on %sRx ring %d (pf_q %d)\n",
431 			 ring->xsk_umem ? "UMEM enabled " : "",
432 			 ring->q_index, pf_q);
433 
434 	return 0;
435 }
436 
437 /**
438  * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
439  * @qs_cfg: gathered variables needed for pf->vsi queues assignment
440  *
441  * This function first tries to find contiguous space. If it is not successful,
442  * it tries with the scatter approach.
443  *
444  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
445  */
446 int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
447 {
448 	int ret = 0;
449 
450 	ret = __ice_vsi_get_qs_contig(qs_cfg);
451 	if (ret) {
452 		/* contig failed, so try with scatter approach */
453 		qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
454 		qs_cfg->q_count = min_t(u16, qs_cfg->q_count,
455 					qs_cfg->scatter_count);
456 		ret = __ice_vsi_get_qs_sc(qs_cfg);
457 	}
458 	return ret;
459 }
460 
461 /**
462  * ice_vsi_ctrl_rx_ring - Start or stop a VSI's Rx ring
463  * @vsi: the VSI being configured
464  * @ena: start or stop the Rx rings
465  * @rxq_idx: Rx queue index
466  */
467 int ice_vsi_ctrl_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx)
468 {
469 	int pf_q = vsi->rxq_map[rxq_idx];
470 	struct ice_pf *pf = vsi->back;
471 	struct ice_hw *hw = &pf->hw;
472 	int ret = 0;
473 	u32 rx_reg;
474 
475 	rx_reg = rd32(hw, QRX_CTRL(pf_q));
476 
477 	/* Skip if the queue is already in the requested state */
478 	if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
479 		return 0;
480 
481 	/* turn on/off the queue */
482 	if (ena)
483 		rx_reg |= QRX_CTRL_QENA_REQ_M;
484 	else
485 		rx_reg &= ~QRX_CTRL_QENA_REQ_M;
486 	wr32(hw, QRX_CTRL(pf_q), rx_reg);
487 
488 	/* wait for the change to finish */
489 	ret = ice_pf_rxq_wait(pf, pf_q, ena);
490 	if (ret)
491 		dev_err(ice_pf_to_dev(pf), "VSI idx %d Rx ring %d %sable timeout\n",
492 			vsi->idx, pf_q, (ena ? "en" : "dis"));
493 
494 	return ret;
495 }
496 
497 /**
498  * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
499  * @vsi: the VSI being configured
500  *
501  * We allocate one q_vector per queue interrupt. If allocation fails we
502  * return -ENOMEM.
503  */
504 int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
505 {
506 	struct device *dev = ice_pf_to_dev(vsi->back);
507 	int v_idx, err;
508 
509 	if (vsi->q_vectors[0]) {
510 		dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num);
511 		return -EEXIST;
512 	}
513 
514 	for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) {
515 		err = ice_vsi_alloc_q_vector(vsi, v_idx);
516 		if (err)
517 			goto err_out;
518 	}
519 
520 	return 0;
521 
522 err_out:
523 	while (v_idx--)
524 		ice_free_q_vector(vsi, v_idx);
525 
526 	dev_err(dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n",
527 		vsi->num_q_vectors, vsi->vsi_num, err);
528 	vsi->num_q_vectors = 0;
529 	return err;
530 }
531 
532 /**
533  * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
534  * @vsi: the VSI being configured
535  *
536  * This function maps descriptor rings to the queue-specific vectors allotted
537  * through the MSI-X enabling code. On a constrained vector budget, we map Tx
538  * and Rx rings to the vector as "efficiently" as possible.
539  */
540 void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
541 {
542 	int q_vectors = vsi->num_q_vectors;
543 	int tx_rings_rem, rx_rings_rem;
544 	int v_id;
545 
546 	/* initially assigning remaining rings count to VSIs num queue value */
547 	tx_rings_rem = vsi->num_txq;
548 	rx_rings_rem = vsi->num_rxq;
549 
550 	for (v_id = 0; v_id < q_vectors; v_id++) {
551 		struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
552 		int tx_rings_per_v, rx_rings_per_v, q_id, q_base;
553 
554 		/* Tx rings mapping to vector */
555 		tx_rings_per_v = DIV_ROUND_UP(tx_rings_rem, q_vectors - v_id);
556 		q_vector->num_ring_tx = tx_rings_per_v;
557 		q_vector->tx.ring = NULL;
558 		q_vector->tx.itr_idx = ICE_TX_ITR;
559 		q_base = vsi->num_txq - tx_rings_rem;
560 
561 		for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
562 			struct ice_ring *tx_ring = vsi->tx_rings[q_id];
563 
564 			tx_ring->q_vector = q_vector;
565 			tx_ring->next = q_vector->tx.ring;
566 			q_vector->tx.ring = tx_ring;
567 		}
568 		tx_rings_rem -= tx_rings_per_v;
569 
570 		/* Rx rings mapping to vector */
571 		rx_rings_per_v = DIV_ROUND_UP(rx_rings_rem, q_vectors - v_id);
572 		q_vector->num_ring_rx = rx_rings_per_v;
573 		q_vector->rx.ring = NULL;
574 		q_vector->rx.itr_idx = ICE_RX_ITR;
575 		q_base = vsi->num_rxq - rx_rings_rem;
576 
577 		for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
578 			struct ice_ring *rx_ring = vsi->rx_rings[q_id];
579 
580 			rx_ring->q_vector = q_vector;
581 			rx_ring->next = q_vector->rx.ring;
582 			q_vector->rx.ring = rx_ring;
583 		}
584 		rx_rings_rem -= rx_rings_per_v;
585 	}
586 }
587 
588 /**
589  * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
590  * @vsi: the VSI having memory freed
591  */
592 void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
593 {
594 	int v_idx;
595 
596 	ice_for_each_q_vector(vsi, v_idx)
597 		ice_free_q_vector(vsi, v_idx);
598 }
599 
600 /**
601  * ice_vsi_cfg_txq - Configure single Tx queue
602  * @vsi: the VSI that queue belongs to
603  * @ring: Tx ring to be configured
604  * @qg_buf: queue group buffer
605  */
606 int
607 ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_ring *ring,
608 		struct ice_aqc_add_tx_qgrp *qg_buf)
609 {
610 	struct ice_tlan_ctx tlan_ctx = { 0 };
611 	struct ice_aqc_add_txqs_perq *txq;
612 	struct ice_pf *pf = vsi->back;
613 	u8 buf_len = sizeof(*qg_buf);
614 	enum ice_status status;
615 	u16 pf_q;
616 	u8 tc;
617 
618 	pf_q = ring->reg_idx;
619 	ice_setup_tx_ctx(ring, &tlan_ctx, pf_q);
620 	/* copy context contents into the qg_buf */
621 	qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
622 	ice_set_ctx((u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
623 		    ice_tlan_ctx_info);
624 
625 	/* init queue specific tail reg. It is referred as
626 	 * transmit comm scheduler queue doorbell.
627 	 */
628 	ring->tail = pf->hw.hw_addr + QTX_COMM_DBELL(pf_q);
629 
630 	if (IS_ENABLED(CONFIG_DCB))
631 		tc = ring->dcb_tc;
632 	else
633 		tc = 0;
634 
635 	/* Add unique software queue handle of the Tx queue per
636 	 * TC into the VSI Tx ring
637 	 */
638 	ring->q_handle = ice_calc_q_handle(vsi, ring, tc);
639 
640 	status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc, ring->q_handle,
641 				 1, qg_buf, buf_len, NULL);
642 	if (status) {
643 		dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %d\n",
644 			status);
645 		return -ENODEV;
646 	}
647 
648 	/* Add Tx Queue TEID into the VSI Tx ring from the
649 	 * response. This will complete configuring and
650 	 * enabling the queue.
651 	 */
652 	txq = &qg_buf->txqs[0];
653 	if (pf_q == le16_to_cpu(txq->txq_id))
654 		ring->txq_teid = le32_to_cpu(txq->q_teid);
655 
656 	return 0;
657 }
658 
659 /**
660  * ice_cfg_itr - configure the initial interrupt throttle values
661  * @hw: pointer to the HW structure
662  * @q_vector: interrupt vector that's being configured
663  *
664  * Configure interrupt throttling values for the ring containers that are
665  * associated with the interrupt vector passed in.
666  */
667 void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector)
668 {
669 	ice_cfg_itr_gran(hw);
670 
671 	if (q_vector->num_ring_rx) {
672 		struct ice_ring_container *rc = &q_vector->rx;
673 
674 		rc->target_itr = ITR_TO_REG(rc->itr_setting);
675 		rc->next_update = jiffies + 1;
676 		rc->current_itr = rc->target_itr;
677 		wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
678 		     ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S);
679 	}
680 
681 	if (q_vector->num_ring_tx) {
682 		struct ice_ring_container *rc = &q_vector->tx;
683 
684 		rc->target_itr = ITR_TO_REG(rc->itr_setting);
685 		rc->next_update = jiffies + 1;
686 		rc->current_itr = rc->target_itr;
687 		wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
688 		     ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S);
689 	}
690 }
691 
692 /**
693  * ice_cfg_txq_interrupt - configure interrupt on Tx queue
694  * @vsi: the VSI being configured
695  * @txq: Tx queue being mapped to MSI-X vector
696  * @msix_idx: MSI-X vector index within the function
697  * @itr_idx: ITR index of the interrupt cause
698  *
699  * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector
700  * within the function space.
701  */
702 void
703 ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
704 {
705 	struct ice_pf *pf = vsi->back;
706 	struct ice_hw *hw = &pf->hw;
707 	u32 val;
708 
709 	itr_idx = (itr_idx << QINT_TQCTL_ITR_INDX_S) & QINT_TQCTL_ITR_INDX_M;
710 
711 	val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
712 	      ((msix_idx << QINT_TQCTL_MSIX_INDX_S) & QINT_TQCTL_MSIX_INDX_M);
713 
714 	wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
715 	if (ice_is_xdp_ena_vsi(vsi)) {
716 		u32 xdp_txq = txq + vsi->num_xdp_txq;
717 
718 		wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]),
719 		     val);
720 	}
721 	ice_flush(hw);
722 }
723 
724 /**
725  * ice_cfg_rxq_interrupt - configure interrupt on Rx queue
726  * @vsi: the VSI being configured
727  * @rxq: Rx queue being mapped to MSI-X vector
728  * @msix_idx: MSI-X vector index within the function
729  * @itr_idx: ITR index of the interrupt cause
730  *
731  * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector
732  * within the function space.
733  */
734 void
735 ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
736 {
737 	struct ice_pf *pf = vsi->back;
738 	struct ice_hw *hw = &pf->hw;
739 	u32 val;
740 
741 	itr_idx = (itr_idx << QINT_RQCTL_ITR_INDX_S) & QINT_RQCTL_ITR_INDX_M;
742 
743 	val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
744 	      ((msix_idx << QINT_RQCTL_MSIX_INDX_S) & QINT_RQCTL_MSIX_INDX_M);
745 
746 	wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
747 
748 	ice_flush(hw);
749 }
750 
751 /**
752  * ice_trigger_sw_intr - trigger a software interrupt
753  * @hw: pointer to the HW structure
754  * @q_vector: interrupt vector to trigger the software interrupt for
755  */
756 void ice_trigger_sw_intr(struct ice_hw *hw, struct ice_q_vector *q_vector)
757 {
758 	wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx),
759 	     (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) |
760 	     GLINT_DYN_CTL_SWINT_TRIG_M |
761 	     GLINT_DYN_CTL_INTENA_M);
762 }
763 
764 /**
765  * ice_vsi_stop_tx_ring - Disable single Tx ring
766  * @vsi: the VSI being configured
767  * @rst_src: reset source
768  * @rel_vmvf_num: Relative ID of VF/VM
769  * @ring: Tx ring to be stopped
770  * @txq_meta: Meta data of Tx ring to be stopped
771  */
772 int
773 ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
774 		     u16 rel_vmvf_num, struct ice_ring *ring,
775 		     struct ice_txq_meta *txq_meta)
776 {
777 	struct ice_pf *pf = vsi->back;
778 	struct ice_q_vector *q_vector;
779 	struct ice_hw *hw = &pf->hw;
780 	enum ice_status status;
781 	u32 val;
782 
783 	/* clear cause_ena bit for disabled queues */
784 	val = rd32(hw, QINT_TQCTL(ring->reg_idx));
785 	val &= ~QINT_TQCTL_CAUSE_ENA_M;
786 	wr32(hw, QINT_TQCTL(ring->reg_idx), val);
787 
788 	/* software is expected to wait for 100 ns */
789 	ndelay(100);
790 
791 	/* trigger a software interrupt for the vector
792 	 * associated to the queue to schedule NAPI handler
793 	 */
794 	q_vector = ring->q_vector;
795 	if (q_vector)
796 		ice_trigger_sw_intr(hw, q_vector);
797 
798 	status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx,
799 				 txq_meta->tc, 1, &txq_meta->q_handle,
800 				 &txq_meta->q_id, &txq_meta->q_teid, rst_src,
801 				 rel_vmvf_num, NULL);
802 
803 	/* if the disable queue command was exercised during an
804 	 * active reset flow, ICE_ERR_RESET_ONGOING is returned.
805 	 * This is not an error as the reset operation disables
806 	 * queues at the hardware level anyway.
807 	 */
808 	if (status == ICE_ERR_RESET_ONGOING) {
809 		dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n");
810 	} else if (status == ICE_ERR_DOES_NOT_EXIST) {
811 		dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n");
812 	} else if (status) {
813 		dev_err(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %d\n",
814 			status);
815 		return -ENODEV;
816 	}
817 
818 	return 0;
819 }
820 
821 /**
822  * ice_fill_txq_meta - Prepare the Tx queue's meta data
823  * @vsi: VSI that ring belongs to
824  * @ring: ring that txq_meta will be based on
825  * @txq_meta: a helper struct that wraps Tx queue's information
826  *
827  * Set up a helper struct that will contain all the necessary fields that
828  * are needed for stopping Tx queue
829  */
830 void
831 ice_fill_txq_meta(struct ice_vsi *vsi, struct ice_ring *ring,
832 		  struct ice_txq_meta *txq_meta)
833 {
834 	u8 tc;
835 
836 	if (IS_ENABLED(CONFIG_DCB))
837 		tc = ring->dcb_tc;
838 	else
839 		tc = 0;
840 
841 	txq_meta->q_id = ring->reg_idx;
842 	txq_meta->q_teid = ring->txq_teid;
843 	txq_meta->q_handle = ring->q_handle;
844 	txq_meta->vsi_idx = vsi->idx;
845 	txq_meta->tc = tc;
846 }
847