1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018-2023, Intel Corporation. */
3 
4 #include "ice_common.h"
5 #include "ice_sched.h"
6 #include "ice_adminq_cmd.h"
7 #include "ice_flow.h"
8 #include "ice_ptp_hw.h"
9 
10 #define ICE_PF_RESET_WAIT_COUNT	300
11 #define ICE_MAX_NETLIST_SIZE	10
12 
13 static const char * const ice_link_mode_str_low[] = {
14 	[0] = "100BASE_TX",
15 	[1] = "100M_SGMII",
16 	[2] = "1000BASE_T",
17 	[3] = "1000BASE_SX",
18 	[4] = "1000BASE_LX",
19 	[5] = "1000BASE_KX",
20 	[6] = "1G_SGMII",
21 	[7] = "2500BASE_T",
22 	[8] = "2500BASE_X",
23 	[9] = "2500BASE_KX",
24 	[10] = "5GBASE_T",
25 	[11] = "5GBASE_KR",
26 	[12] = "10GBASE_T",
27 	[13] = "10G_SFI_DA",
28 	[14] = "10GBASE_SR",
29 	[15] = "10GBASE_LR",
30 	[16] = "10GBASE_KR_CR1",
31 	[17] = "10G_SFI_AOC_ACC",
32 	[18] = "10G_SFI_C2C",
33 	[19] = "25GBASE_T",
34 	[20] = "25GBASE_CR",
35 	[21] = "25GBASE_CR_S",
36 	[22] = "25GBASE_CR1",
37 	[23] = "25GBASE_SR",
38 	[24] = "25GBASE_LR",
39 	[25] = "25GBASE_KR",
40 	[26] = "25GBASE_KR_S",
41 	[27] = "25GBASE_KR1",
42 	[28] = "25G_AUI_AOC_ACC",
43 	[29] = "25G_AUI_C2C",
44 	[30] = "40GBASE_CR4",
45 	[31] = "40GBASE_SR4",
46 	[32] = "40GBASE_LR4",
47 	[33] = "40GBASE_KR4",
48 	[34] = "40G_XLAUI_AOC_ACC",
49 	[35] = "40G_XLAUI",
50 	[36] = "50GBASE_CR2",
51 	[37] = "50GBASE_SR2",
52 	[38] = "50GBASE_LR2",
53 	[39] = "50GBASE_KR2",
54 	[40] = "50G_LAUI2_AOC_ACC",
55 	[41] = "50G_LAUI2",
56 	[42] = "50G_AUI2_AOC_ACC",
57 	[43] = "50G_AUI2",
58 	[44] = "50GBASE_CP",
59 	[45] = "50GBASE_SR",
60 	[46] = "50GBASE_FR",
61 	[47] = "50GBASE_LR",
62 	[48] = "50GBASE_KR_PAM4",
63 	[49] = "50G_AUI1_AOC_ACC",
64 	[50] = "50G_AUI1",
65 	[51] = "100GBASE_CR4",
66 	[52] = "100GBASE_SR4",
67 	[53] = "100GBASE_LR4",
68 	[54] = "100GBASE_KR4",
69 	[55] = "100G_CAUI4_AOC_ACC",
70 	[56] = "100G_CAUI4",
71 	[57] = "100G_AUI4_AOC_ACC",
72 	[58] = "100G_AUI4",
73 	[59] = "100GBASE_CR_PAM4",
74 	[60] = "100GBASE_KR_PAM4",
75 	[61] = "100GBASE_CP2",
76 	[62] = "100GBASE_SR2",
77 	[63] = "100GBASE_DR",
78 };
79 
80 static const char * const ice_link_mode_str_high[] = {
81 	[0] = "100GBASE_KR2_PAM4",
82 	[1] = "100G_CAUI2_AOC_ACC",
83 	[2] = "100G_CAUI2",
84 	[3] = "100G_AUI2_AOC_ACC",
85 	[4] = "100G_AUI2",
86 };
87 
88 /**
89  * ice_dump_phy_type - helper function to dump phy_type
90  * @hw: pointer to the HW structure
91  * @low: 64 bit value for phy_type_low
92  * @high: 64 bit value for phy_type_high
93  * @prefix: prefix string to differentiate multiple dumps
94  */
95 static void
96 ice_dump_phy_type(struct ice_hw *hw, u64 low, u64 high, const char *prefix)
97 {
98 	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_low: 0x%016llx\n", prefix, low);
99 
100 	for (u32 i = 0; i < BITS_PER_TYPE(typeof(low)); i++) {
101 		if (low & BIT_ULL(i))
102 			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
103 				  prefix, i, ice_link_mode_str_low[i]);
104 	}
105 
106 	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_high: 0x%016llx\n", prefix, high);
107 
108 	for (u32 i = 0; i < BITS_PER_TYPE(typeof(high)); i++) {
109 		if (high & BIT_ULL(i))
110 			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
111 				  prefix, i, ice_link_mode_str_high[i]);
112 	}
113 }
114 
115 /**
116  * ice_set_mac_type - Sets MAC type
117  * @hw: pointer to the HW structure
118  *
119  * This function sets the MAC type of the adapter based on the
120  * vendor ID and device ID stored in the HW structure.
121  */
122 static int ice_set_mac_type(struct ice_hw *hw)
123 {
124 	if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
125 		return -ENODEV;
126 
127 	switch (hw->device_id) {
128 	case ICE_DEV_ID_E810C_BACKPLANE:
129 	case ICE_DEV_ID_E810C_QSFP:
130 	case ICE_DEV_ID_E810C_SFP:
131 	case ICE_DEV_ID_E810_XXV_BACKPLANE:
132 	case ICE_DEV_ID_E810_XXV_QSFP:
133 	case ICE_DEV_ID_E810_XXV_SFP:
134 		hw->mac_type = ICE_MAC_E810;
135 		break;
136 	case ICE_DEV_ID_E823C_10G_BASE_T:
137 	case ICE_DEV_ID_E823C_BACKPLANE:
138 	case ICE_DEV_ID_E823C_QSFP:
139 	case ICE_DEV_ID_E823C_SFP:
140 	case ICE_DEV_ID_E823C_SGMII:
141 	case ICE_DEV_ID_E822C_10G_BASE_T:
142 	case ICE_DEV_ID_E822C_BACKPLANE:
143 	case ICE_DEV_ID_E822C_QSFP:
144 	case ICE_DEV_ID_E822C_SFP:
145 	case ICE_DEV_ID_E822C_SGMII:
146 	case ICE_DEV_ID_E822L_10G_BASE_T:
147 	case ICE_DEV_ID_E822L_BACKPLANE:
148 	case ICE_DEV_ID_E822L_SFP:
149 	case ICE_DEV_ID_E822L_SGMII:
150 	case ICE_DEV_ID_E823L_10G_BASE_T:
151 	case ICE_DEV_ID_E823L_1GBE:
152 	case ICE_DEV_ID_E823L_BACKPLANE:
153 	case ICE_DEV_ID_E823L_QSFP:
154 	case ICE_DEV_ID_E823L_SFP:
155 		hw->mac_type = ICE_MAC_GENERIC;
156 		break;
157 	case ICE_DEV_ID_E825C_BACKPLANE:
158 	case ICE_DEV_ID_E825C_QSFP:
159 	case ICE_DEV_ID_E825C_SFP:
160 	case ICE_DEV_ID_E825C_SGMII:
161 		hw->mac_type = ICE_MAC_GENERIC_3K_E825;
162 		break;
163 	case ICE_DEV_ID_E830_BACKPLANE:
164 	case ICE_DEV_ID_E830_QSFP56:
165 	case ICE_DEV_ID_E830_SFP:
166 	case ICE_DEV_ID_E830_SFP_DD:
167 		hw->mac_type = ICE_MAC_E830;
168 		break;
169 	default:
170 		hw->mac_type = ICE_MAC_UNKNOWN;
171 		break;
172 	}
173 
174 	ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
175 	return 0;
176 }
177 
178 /**
179  * ice_is_generic_mac - check if device's mac_type is generic
180  * @hw: pointer to the hardware structure
181  *
182  * Return: true if mac_type is generic (with SBQ support), false if not
183  */
184 bool ice_is_generic_mac(struct ice_hw *hw)
185 {
186 	return (hw->mac_type == ICE_MAC_GENERIC ||
187 		hw->mac_type == ICE_MAC_GENERIC_3K_E825);
188 }
189 
190 /**
191  * ice_is_e810
192  * @hw: pointer to the hardware structure
193  *
194  * returns true if the device is E810 based, false if not.
195  */
196 bool ice_is_e810(struct ice_hw *hw)
197 {
198 	return hw->mac_type == ICE_MAC_E810;
199 }
200 
201 /**
202  * ice_is_e810t
203  * @hw: pointer to the hardware structure
204  *
205  * returns true if the device is E810T based, false if not.
206  */
207 bool ice_is_e810t(struct ice_hw *hw)
208 {
209 	switch (hw->device_id) {
210 	case ICE_DEV_ID_E810C_SFP:
211 		switch (hw->subsystem_device_id) {
212 		case ICE_SUBDEV_ID_E810T:
213 		case ICE_SUBDEV_ID_E810T2:
214 		case ICE_SUBDEV_ID_E810T3:
215 		case ICE_SUBDEV_ID_E810T4:
216 		case ICE_SUBDEV_ID_E810T6:
217 		case ICE_SUBDEV_ID_E810T7:
218 			return true;
219 		}
220 		break;
221 	case ICE_DEV_ID_E810C_QSFP:
222 		switch (hw->subsystem_device_id) {
223 		case ICE_SUBDEV_ID_E810T2:
224 		case ICE_SUBDEV_ID_E810T3:
225 		case ICE_SUBDEV_ID_E810T5:
226 			return true;
227 		}
228 		break;
229 	default:
230 		break;
231 	}
232 
233 	return false;
234 }
235 
236 /**
237  * ice_is_e823
238  * @hw: pointer to the hardware structure
239  *
240  * returns true if the device is E823-L or E823-C based, false if not.
241  */
242 bool ice_is_e823(struct ice_hw *hw)
243 {
244 	switch (hw->device_id) {
245 	case ICE_DEV_ID_E823L_BACKPLANE:
246 	case ICE_DEV_ID_E823L_SFP:
247 	case ICE_DEV_ID_E823L_10G_BASE_T:
248 	case ICE_DEV_ID_E823L_1GBE:
249 	case ICE_DEV_ID_E823L_QSFP:
250 	case ICE_DEV_ID_E823C_BACKPLANE:
251 	case ICE_DEV_ID_E823C_QSFP:
252 	case ICE_DEV_ID_E823C_SFP:
253 	case ICE_DEV_ID_E823C_10G_BASE_T:
254 	case ICE_DEV_ID_E823C_SGMII:
255 		return true;
256 	default:
257 		return false;
258 	}
259 }
260 
261 /**
262  * ice_is_e825c - Check if a device is E825C family device
263  * @hw: pointer to the hardware structure
264  *
265  * Return: true if the device is E825-C based, false if not.
266  */
267 bool ice_is_e825c(struct ice_hw *hw)
268 {
269 	switch (hw->device_id) {
270 	case ICE_DEV_ID_E825C_BACKPLANE:
271 	case ICE_DEV_ID_E825C_QSFP:
272 	case ICE_DEV_ID_E825C_SFP:
273 	case ICE_DEV_ID_E825C_SGMII:
274 		return true;
275 	default:
276 		return false;
277 	}
278 }
279 
280 /**
281  * ice_clear_pf_cfg - Clear PF configuration
282  * @hw: pointer to the hardware structure
283  *
284  * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
285  * configuration, flow director filters, etc.).
286  */
287 int ice_clear_pf_cfg(struct ice_hw *hw)
288 {
289 	struct ice_aq_desc desc;
290 
291 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
292 
293 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
294 }
295 
296 /**
297  * ice_aq_manage_mac_read - manage MAC address read command
298  * @hw: pointer to the HW struct
299  * @buf: a virtual buffer to hold the manage MAC read response
300  * @buf_size: Size of the virtual buffer
301  * @cd: pointer to command details structure or NULL
302  *
303  * This function is used to return per PF station MAC address (0x0107).
304  * NOTE: Upon successful completion of this command, MAC address information
305  * is returned in user specified buffer. Please interpret user specified
306  * buffer as "manage_mac_read" response.
307  * Response such as various MAC addresses are stored in HW struct (port.mac)
308  * ice_discover_dev_caps is expected to be called before this function is
309  * called.
310  */
311 static int
312 ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
313 		       struct ice_sq_cd *cd)
314 {
315 	struct ice_aqc_manage_mac_read_resp *resp;
316 	struct ice_aqc_manage_mac_read *cmd;
317 	struct ice_aq_desc desc;
318 	int status;
319 	u16 flags;
320 	u8 i;
321 
322 	cmd = &desc.params.mac_read;
323 
324 	if (buf_size < sizeof(*resp))
325 		return -EINVAL;
326 
327 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
328 
329 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
330 	if (status)
331 		return status;
332 
333 	resp = buf;
334 	flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
335 
336 	if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
337 		ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
338 		return -EIO;
339 	}
340 
341 	/* A single port can report up to two (LAN and WoL) addresses */
342 	for (i = 0; i < cmd->num_addr; i++)
343 		if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
344 			ether_addr_copy(hw->port_info->mac.lan_addr,
345 					resp[i].mac_addr);
346 			ether_addr_copy(hw->port_info->mac.perm_addr,
347 					resp[i].mac_addr);
348 			break;
349 		}
350 
351 	return 0;
352 }
353 
354 /**
355  * ice_aq_get_phy_caps - returns PHY capabilities
356  * @pi: port information structure
357  * @qual_mods: report qualified modules
358  * @report_mode: report mode capabilities
359  * @pcaps: structure for PHY capabilities to be filled
360  * @cd: pointer to command details structure or NULL
361  *
362  * Returns the various PHY capabilities supported on the Port (0x0600)
363  */
364 int
365 ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
366 		    struct ice_aqc_get_phy_caps_data *pcaps,
367 		    struct ice_sq_cd *cd)
368 {
369 	struct ice_aqc_get_phy_caps *cmd;
370 	u16 pcaps_size = sizeof(*pcaps);
371 	struct ice_aq_desc desc;
372 	const char *prefix;
373 	struct ice_hw *hw;
374 	int status;
375 
376 	cmd = &desc.params.get_phy;
377 
378 	if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
379 		return -EINVAL;
380 	hw = pi->hw;
381 
382 	if (report_mode == ICE_AQC_REPORT_DFLT_CFG &&
383 	    !ice_fw_supports_report_dflt_cfg(hw))
384 		return -EINVAL;
385 
386 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
387 
388 	if (qual_mods)
389 		cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
390 
391 	cmd->param0 |= cpu_to_le16(report_mode);
392 	status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
393 
394 	ice_debug(hw, ICE_DBG_LINK, "get phy caps dump\n");
395 
396 	switch (report_mode) {
397 	case ICE_AQC_REPORT_TOPO_CAP_MEDIA:
398 		prefix = "phy_caps_media";
399 		break;
400 	case ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA:
401 		prefix = "phy_caps_no_media";
402 		break;
403 	case ICE_AQC_REPORT_ACTIVE_CFG:
404 		prefix = "phy_caps_active";
405 		break;
406 	case ICE_AQC_REPORT_DFLT_CFG:
407 		prefix = "phy_caps_default";
408 		break;
409 	default:
410 		prefix = "phy_caps_invalid";
411 	}
412 
413 	ice_dump_phy_type(hw, le64_to_cpu(pcaps->phy_type_low),
414 			  le64_to_cpu(pcaps->phy_type_high), prefix);
415 
416 	ice_debug(hw, ICE_DBG_LINK, "%s: report_mode = 0x%x\n",
417 		  prefix, report_mode);
418 	ice_debug(hw, ICE_DBG_LINK, "%s: caps = 0x%x\n", prefix, pcaps->caps);
419 	ice_debug(hw, ICE_DBG_LINK, "%s: low_power_ctrl_an = 0x%x\n", prefix,
420 		  pcaps->low_power_ctrl_an);
421 	ice_debug(hw, ICE_DBG_LINK, "%s: eee_cap = 0x%x\n", prefix,
422 		  pcaps->eee_cap);
423 	ice_debug(hw, ICE_DBG_LINK, "%s: eeer_value = 0x%x\n", prefix,
424 		  pcaps->eeer_value);
425 	ice_debug(hw, ICE_DBG_LINK, "%s: link_fec_options = 0x%x\n", prefix,
426 		  pcaps->link_fec_options);
427 	ice_debug(hw, ICE_DBG_LINK, "%s: module_compliance_enforcement = 0x%x\n",
428 		  prefix, pcaps->module_compliance_enforcement);
429 	ice_debug(hw, ICE_DBG_LINK, "%s: extended_compliance_code = 0x%x\n",
430 		  prefix, pcaps->extended_compliance_code);
431 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[0] = 0x%x\n", prefix,
432 		  pcaps->module_type[0]);
433 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[1] = 0x%x\n", prefix,
434 		  pcaps->module_type[1]);
435 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[2] = 0x%x\n", prefix,
436 		  pcaps->module_type[2]);
437 
438 	if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) {
439 		pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
440 		pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
441 		memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
442 		       sizeof(pi->phy.link_info.module_type));
443 	}
444 
445 	return status;
446 }
447 
448 /**
449  * ice_aq_get_link_topo_handle - get link topology node return status
450  * @pi: port information structure
451  * @node_type: requested node type
452  * @cd: pointer to command details structure or NULL
453  *
454  * Get link topology node return status for specified node type (0x06E0)
455  *
456  * Node type cage can be used to determine if cage is present. If AQC
457  * returns error (ENOENT), then no cage present. If no cage present, then
458  * connection type is backplane or BASE-T.
459  */
460 static int
461 ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
462 			    struct ice_sq_cd *cd)
463 {
464 	struct ice_aqc_get_link_topo *cmd;
465 	struct ice_aq_desc desc;
466 
467 	cmd = &desc.params.get_link_topo;
468 
469 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
470 
471 	cmd->addr.topo_params.node_type_ctx =
472 		(ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
473 		 ICE_AQC_LINK_TOPO_NODE_CTX_S);
474 
475 	/* set node type */
476 	cmd->addr.topo_params.node_type_ctx |=
477 		(ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
478 
479 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
480 }
481 
482 /**
483  * ice_aq_get_netlist_node
484  * @hw: pointer to the hw struct
485  * @cmd: get_link_topo AQ structure
486  * @node_part_number: output node part number if node found
487  * @node_handle: output node handle parameter if node found
488  *
489  * Get netlist node handle.
490  */
491 int
492 ice_aq_get_netlist_node(struct ice_hw *hw, struct ice_aqc_get_link_topo *cmd,
493 			u8 *node_part_number, u16 *node_handle)
494 {
495 	struct ice_aq_desc desc;
496 
497 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
498 	desc.params.get_link_topo = *cmd;
499 
500 	if (ice_aq_send_cmd(hw, &desc, NULL, 0, NULL))
501 		return -EINTR;
502 
503 	if (node_handle)
504 		*node_handle =
505 			le16_to_cpu(desc.params.get_link_topo.addr.handle);
506 	if (node_part_number)
507 		*node_part_number = desc.params.get_link_topo.node_part_num;
508 
509 	return 0;
510 }
511 
512 /**
513  * ice_find_netlist_node
514  * @hw: pointer to the hw struct
515  * @node_type_ctx: type of netlist node to look for
516  * @node_part_number: node part number to look for
517  * @node_handle: output parameter if node found - optional
518  *
519  * Scan the netlist for a node handle of the given node type and part number.
520  *
521  * If node_handle is non-NULL it will be modified on function exit. It is only
522  * valid if the function returns zero, and should be ignored on any non-zero
523  * return value.
524  *
525  * Returns: 0 if the node is found, -ENOENT if no handle was found, and
526  * a negative error code on failure to access the AQ.
527  */
528 static int ice_find_netlist_node(struct ice_hw *hw, u8 node_type_ctx,
529 				 u8 node_part_number, u16 *node_handle)
530 {
531 	u8 idx;
532 
533 	for (idx = 0; idx < ICE_MAX_NETLIST_SIZE; idx++) {
534 		struct ice_aqc_get_link_topo cmd = {};
535 		u8 rec_node_part_number;
536 		int status;
537 
538 		cmd.addr.topo_params.node_type_ctx =
539 			FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M,
540 				   node_type_ctx);
541 		cmd.addr.topo_params.index = idx;
542 
543 		status = ice_aq_get_netlist_node(hw, &cmd,
544 						 &rec_node_part_number,
545 						 node_handle);
546 		if (status)
547 			return status;
548 
549 		if (rec_node_part_number == node_part_number)
550 			return 0;
551 	}
552 
553 	return -ENOENT;
554 }
555 
556 /**
557  * ice_is_media_cage_present
558  * @pi: port information structure
559  *
560  * Returns true if media cage is present, else false. If no cage, then
561  * media type is backplane or BASE-T.
562  */
563 static bool ice_is_media_cage_present(struct ice_port_info *pi)
564 {
565 	/* Node type cage can be used to determine if cage is present. If AQC
566 	 * returns error (ENOENT), then no cage present. If no cage present then
567 	 * connection type is backplane or BASE-T.
568 	 */
569 	return !ice_aq_get_link_topo_handle(pi,
570 					    ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
571 					    NULL);
572 }
573 
574 /**
575  * ice_get_media_type - Gets media type
576  * @pi: port information structure
577  */
578 static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
579 {
580 	struct ice_link_status *hw_link_info;
581 
582 	if (!pi)
583 		return ICE_MEDIA_UNKNOWN;
584 
585 	hw_link_info = &pi->phy.link_info;
586 	if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
587 		/* If more than one media type is selected, report unknown */
588 		return ICE_MEDIA_UNKNOWN;
589 
590 	if (hw_link_info->phy_type_low) {
591 		/* 1G SGMII is a special case where some DA cable PHYs
592 		 * may show this as an option when it really shouldn't
593 		 * be since SGMII is meant to be between a MAC and a PHY
594 		 * in a backplane. Try to detect this case and handle it
595 		 */
596 		if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
597 		    (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
598 		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
599 		    hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
600 		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
601 			return ICE_MEDIA_DA;
602 
603 		switch (hw_link_info->phy_type_low) {
604 		case ICE_PHY_TYPE_LOW_1000BASE_SX:
605 		case ICE_PHY_TYPE_LOW_1000BASE_LX:
606 		case ICE_PHY_TYPE_LOW_10GBASE_SR:
607 		case ICE_PHY_TYPE_LOW_10GBASE_LR:
608 		case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
609 		case ICE_PHY_TYPE_LOW_25GBASE_SR:
610 		case ICE_PHY_TYPE_LOW_25GBASE_LR:
611 		case ICE_PHY_TYPE_LOW_40GBASE_SR4:
612 		case ICE_PHY_TYPE_LOW_40GBASE_LR4:
613 		case ICE_PHY_TYPE_LOW_50GBASE_SR2:
614 		case ICE_PHY_TYPE_LOW_50GBASE_LR2:
615 		case ICE_PHY_TYPE_LOW_50GBASE_SR:
616 		case ICE_PHY_TYPE_LOW_50GBASE_FR:
617 		case ICE_PHY_TYPE_LOW_50GBASE_LR:
618 		case ICE_PHY_TYPE_LOW_100GBASE_SR4:
619 		case ICE_PHY_TYPE_LOW_100GBASE_LR4:
620 		case ICE_PHY_TYPE_LOW_100GBASE_SR2:
621 		case ICE_PHY_TYPE_LOW_100GBASE_DR:
622 		case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
623 		case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
624 		case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
625 		case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
626 		case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
627 		case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
628 		case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
629 		case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
630 			return ICE_MEDIA_FIBER;
631 		case ICE_PHY_TYPE_LOW_100BASE_TX:
632 		case ICE_PHY_TYPE_LOW_1000BASE_T:
633 		case ICE_PHY_TYPE_LOW_2500BASE_T:
634 		case ICE_PHY_TYPE_LOW_5GBASE_T:
635 		case ICE_PHY_TYPE_LOW_10GBASE_T:
636 		case ICE_PHY_TYPE_LOW_25GBASE_T:
637 			return ICE_MEDIA_BASET;
638 		case ICE_PHY_TYPE_LOW_10G_SFI_DA:
639 		case ICE_PHY_TYPE_LOW_25GBASE_CR:
640 		case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
641 		case ICE_PHY_TYPE_LOW_25GBASE_CR1:
642 		case ICE_PHY_TYPE_LOW_40GBASE_CR4:
643 		case ICE_PHY_TYPE_LOW_50GBASE_CR2:
644 		case ICE_PHY_TYPE_LOW_50GBASE_CP:
645 		case ICE_PHY_TYPE_LOW_100GBASE_CR4:
646 		case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
647 		case ICE_PHY_TYPE_LOW_100GBASE_CP2:
648 			return ICE_MEDIA_DA;
649 		case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
650 		case ICE_PHY_TYPE_LOW_40G_XLAUI:
651 		case ICE_PHY_TYPE_LOW_50G_LAUI2:
652 		case ICE_PHY_TYPE_LOW_50G_AUI2:
653 		case ICE_PHY_TYPE_LOW_50G_AUI1:
654 		case ICE_PHY_TYPE_LOW_100G_AUI4:
655 		case ICE_PHY_TYPE_LOW_100G_CAUI4:
656 			if (ice_is_media_cage_present(pi))
657 				return ICE_MEDIA_DA;
658 			fallthrough;
659 		case ICE_PHY_TYPE_LOW_1000BASE_KX:
660 		case ICE_PHY_TYPE_LOW_2500BASE_KX:
661 		case ICE_PHY_TYPE_LOW_2500BASE_X:
662 		case ICE_PHY_TYPE_LOW_5GBASE_KR:
663 		case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
664 		case ICE_PHY_TYPE_LOW_25GBASE_KR:
665 		case ICE_PHY_TYPE_LOW_25GBASE_KR1:
666 		case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
667 		case ICE_PHY_TYPE_LOW_40GBASE_KR4:
668 		case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
669 		case ICE_PHY_TYPE_LOW_50GBASE_KR2:
670 		case ICE_PHY_TYPE_LOW_100GBASE_KR4:
671 		case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
672 			return ICE_MEDIA_BACKPLANE;
673 		}
674 	} else {
675 		switch (hw_link_info->phy_type_high) {
676 		case ICE_PHY_TYPE_HIGH_100G_AUI2:
677 		case ICE_PHY_TYPE_HIGH_100G_CAUI2:
678 			if (ice_is_media_cage_present(pi))
679 				return ICE_MEDIA_DA;
680 			fallthrough;
681 		case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
682 			return ICE_MEDIA_BACKPLANE;
683 		case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
684 		case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
685 			return ICE_MEDIA_FIBER;
686 		}
687 	}
688 	return ICE_MEDIA_UNKNOWN;
689 }
690 
691 /**
692  * ice_get_link_status_datalen
693  * @hw: pointer to the HW struct
694  *
695  * Returns datalength for the Get Link Status AQ command, which is bigger for
696  * newer adapter families handled by ice driver.
697  */
698 static u16 ice_get_link_status_datalen(struct ice_hw *hw)
699 {
700 	switch (hw->mac_type) {
701 	case ICE_MAC_E830:
702 		return ICE_AQC_LS_DATA_SIZE_V2;
703 	case ICE_MAC_E810:
704 	default:
705 		return ICE_AQC_LS_DATA_SIZE_V1;
706 	}
707 }
708 
709 /**
710  * ice_aq_get_link_info
711  * @pi: port information structure
712  * @ena_lse: enable/disable LinkStatusEvent reporting
713  * @link: pointer to link status structure - optional
714  * @cd: pointer to command details structure or NULL
715  *
716  * Get Link Status (0x607). Returns the link status of the adapter.
717  */
718 int
719 ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
720 		     struct ice_link_status *link, struct ice_sq_cd *cd)
721 {
722 	struct ice_aqc_get_link_status_data link_data = { 0 };
723 	struct ice_aqc_get_link_status *resp;
724 	struct ice_link_status *li_old, *li;
725 	enum ice_media_type *hw_media_type;
726 	struct ice_fc_info *hw_fc_info;
727 	bool tx_pause, rx_pause;
728 	struct ice_aq_desc desc;
729 	struct ice_hw *hw;
730 	u16 cmd_flags;
731 	int status;
732 
733 	if (!pi)
734 		return -EINVAL;
735 	hw = pi->hw;
736 	li_old = &pi->phy.link_info_old;
737 	hw_media_type = &pi->phy.media_type;
738 	li = &pi->phy.link_info;
739 	hw_fc_info = &pi->fc;
740 
741 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
742 	cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
743 	resp = &desc.params.get_link_status;
744 	resp->cmd_flags = cpu_to_le16(cmd_flags);
745 	resp->lport_num = pi->lport;
746 
747 	status = ice_aq_send_cmd(hw, &desc, &link_data,
748 				 ice_get_link_status_datalen(hw), cd);
749 	if (status)
750 		return status;
751 
752 	/* save off old link status information */
753 	*li_old = *li;
754 
755 	/* update current link status information */
756 	li->link_speed = le16_to_cpu(link_data.link_speed);
757 	li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
758 	li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
759 	*hw_media_type = ice_get_media_type(pi);
760 	li->link_info = link_data.link_info;
761 	li->link_cfg_err = link_data.link_cfg_err;
762 	li->an_info = link_data.an_info;
763 	li->ext_info = link_data.ext_info;
764 	li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
765 	li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
766 	li->topo_media_conflict = link_data.topo_media_conflict;
767 	li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
768 				      ICE_AQ_CFG_PACING_TYPE_M);
769 
770 	/* update fc info */
771 	tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
772 	rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
773 	if (tx_pause && rx_pause)
774 		hw_fc_info->current_mode = ICE_FC_FULL;
775 	else if (tx_pause)
776 		hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
777 	else if (rx_pause)
778 		hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
779 	else
780 		hw_fc_info->current_mode = ICE_FC_NONE;
781 
782 	li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
783 
784 	ice_debug(hw, ICE_DBG_LINK, "get link info\n");
785 	ice_debug(hw, ICE_DBG_LINK, "	link_speed = 0x%x\n", li->link_speed);
786 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
787 		  (unsigned long long)li->phy_type_low);
788 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
789 		  (unsigned long long)li->phy_type_high);
790 	ice_debug(hw, ICE_DBG_LINK, "	media_type = 0x%x\n", *hw_media_type);
791 	ice_debug(hw, ICE_DBG_LINK, "	link_info = 0x%x\n", li->link_info);
792 	ice_debug(hw, ICE_DBG_LINK, "	link_cfg_err = 0x%x\n", li->link_cfg_err);
793 	ice_debug(hw, ICE_DBG_LINK, "	an_info = 0x%x\n", li->an_info);
794 	ice_debug(hw, ICE_DBG_LINK, "	ext_info = 0x%x\n", li->ext_info);
795 	ice_debug(hw, ICE_DBG_LINK, "	fec_info = 0x%x\n", li->fec_info);
796 	ice_debug(hw, ICE_DBG_LINK, "	lse_ena = 0x%x\n", li->lse_ena);
797 	ice_debug(hw, ICE_DBG_LINK, "	max_frame = 0x%x\n",
798 		  li->max_frame_size);
799 	ice_debug(hw, ICE_DBG_LINK, "	pacing = 0x%x\n", li->pacing);
800 
801 	/* save link status information */
802 	if (link)
803 		*link = *li;
804 
805 	/* flag cleared so calling functions don't call AQ again */
806 	pi->phy.get_link_info = false;
807 
808 	return 0;
809 }
810 
811 /**
812  * ice_fill_tx_timer_and_fc_thresh
813  * @hw: pointer to the HW struct
814  * @cmd: pointer to MAC cfg structure
815  *
816  * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
817  * descriptor
818  */
819 static void
820 ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
821 				struct ice_aqc_set_mac_cfg *cmd)
822 {
823 	u32 val, fc_thres_m;
824 
825 	/* We read back the transmit timer and FC threshold value of
826 	 * LFC. Thus, we will use index =
827 	 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
828 	 *
829 	 * Also, because we are operating on transmit timer and FC
830 	 * threshold of LFC, we don't turn on any bit in tx_tmr_priority
831 	 */
832 #define E800_IDX_OF_LFC E800_PRTMAC_HSEC_CTL_TX_PS_QNT_MAX
833 #define E800_REFRESH_TMR E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR
834 
835 	if (hw->mac_type == ICE_MAC_E830) {
836 		/* Retrieve the transmit timer */
837 		val = rd32(hw, E830_PRTMAC_CL01_PS_QNT);
838 		cmd->tx_tmr_value =
839 			le16_encode_bits(val, E830_PRTMAC_CL01_PS_QNT_CL0_M);
840 
841 		/* Retrieve the fc threshold */
842 		val = rd32(hw, E830_PRTMAC_CL01_QNT_THR);
843 		fc_thres_m = E830_PRTMAC_CL01_QNT_THR_CL0_M;
844 	} else {
845 		/* Retrieve the transmit timer */
846 		val = rd32(hw,
847 			   E800_PRTMAC_HSEC_CTL_TX_PS_QNT(E800_IDX_OF_LFC));
848 		cmd->tx_tmr_value =
849 			le16_encode_bits(val,
850 					 E800_PRTMAC_HSEC_CTL_TX_PS_QNT_M);
851 
852 		/* Retrieve the fc threshold */
853 		val = rd32(hw,
854 			   E800_REFRESH_TMR(E800_IDX_OF_LFC));
855 		fc_thres_m = E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR_M;
856 	}
857 	cmd->fc_refresh_threshold = le16_encode_bits(val, fc_thres_m);
858 }
859 
860 /**
861  * ice_aq_set_mac_cfg
862  * @hw: pointer to the HW struct
863  * @max_frame_size: Maximum Frame Size to be supported
864  * @cd: pointer to command details structure or NULL
865  *
866  * Set MAC configuration (0x0603)
867  */
868 int
869 ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
870 {
871 	struct ice_aqc_set_mac_cfg *cmd;
872 	struct ice_aq_desc desc;
873 
874 	cmd = &desc.params.set_mac_cfg;
875 
876 	if (max_frame_size == 0)
877 		return -EINVAL;
878 
879 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
880 
881 	cmd->max_frame_size = cpu_to_le16(max_frame_size);
882 
883 	ice_fill_tx_timer_and_fc_thresh(hw, cmd);
884 
885 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
886 }
887 
888 /**
889  * ice_init_fltr_mgmt_struct - initializes filter management list and locks
890  * @hw: pointer to the HW struct
891  */
892 static int ice_init_fltr_mgmt_struct(struct ice_hw *hw)
893 {
894 	struct ice_switch_info *sw;
895 	int status;
896 
897 	hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
898 				       sizeof(*hw->switch_info), GFP_KERNEL);
899 	sw = hw->switch_info;
900 
901 	if (!sw)
902 		return -ENOMEM;
903 
904 	INIT_LIST_HEAD(&sw->vsi_list_map_head);
905 	sw->prof_res_bm_init = 0;
906 
907 	status = ice_init_def_sw_recp(hw);
908 	if (status) {
909 		devm_kfree(ice_hw_to_dev(hw), hw->switch_info);
910 		return status;
911 	}
912 	return 0;
913 }
914 
915 /**
916  * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
917  * @hw: pointer to the HW struct
918  */
919 static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
920 {
921 	struct ice_switch_info *sw = hw->switch_info;
922 	struct ice_vsi_list_map_info *v_pos_map;
923 	struct ice_vsi_list_map_info *v_tmp_map;
924 	struct ice_sw_recipe *recps;
925 	u8 i;
926 
927 	list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
928 				 list_entry) {
929 		list_del(&v_pos_map->list_entry);
930 		devm_kfree(ice_hw_to_dev(hw), v_pos_map);
931 	}
932 	recps = sw->recp_list;
933 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
934 		struct ice_recp_grp_entry *rg_entry, *tmprg_entry;
935 
936 		recps[i].root_rid = i;
937 		list_for_each_entry_safe(rg_entry, tmprg_entry,
938 					 &recps[i].rg_list, l_entry) {
939 			list_del(&rg_entry->l_entry);
940 			devm_kfree(ice_hw_to_dev(hw), rg_entry);
941 		}
942 
943 		if (recps[i].adv_rule) {
944 			struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
945 			struct ice_adv_fltr_mgmt_list_entry *lst_itr;
946 
947 			mutex_destroy(&recps[i].filt_rule_lock);
948 			list_for_each_entry_safe(lst_itr, tmp_entry,
949 						 &recps[i].filt_rules,
950 						 list_entry) {
951 				list_del(&lst_itr->list_entry);
952 				devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
953 				devm_kfree(ice_hw_to_dev(hw), lst_itr);
954 			}
955 		} else {
956 			struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
957 
958 			mutex_destroy(&recps[i].filt_rule_lock);
959 			list_for_each_entry_safe(lst_itr, tmp_entry,
960 						 &recps[i].filt_rules,
961 						 list_entry) {
962 				list_del(&lst_itr->list_entry);
963 				devm_kfree(ice_hw_to_dev(hw), lst_itr);
964 			}
965 		}
966 		devm_kfree(ice_hw_to_dev(hw), recps[i].root_buf);
967 	}
968 	ice_rm_all_sw_replay_rule_info(hw);
969 	devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
970 	devm_kfree(ice_hw_to_dev(hw), sw);
971 }
972 
973 /**
974  * ice_get_itr_intrl_gran
975  * @hw: pointer to the HW struct
976  *
977  * Determines the ITR/INTRL granularities based on the maximum aggregate
978  * bandwidth according to the device's configuration during power-on.
979  */
980 static void ice_get_itr_intrl_gran(struct ice_hw *hw)
981 {
982 	u8 max_agg_bw = FIELD_GET(GL_PWR_MODE_CTL_CAR_MAX_BW_M,
983 				  rd32(hw, GL_PWR_MODE_CTL));
984 
985 	switch (max_agg_bw) {
986 	case ICE_MAX_AGG_BW_200G:
987 	case ICE_MAX_AGG_BW_100G:
988 	case ICE_MAX_AGG_BW_50G:
989 		hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
990 		hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
991 		break;
992 	case ICE_MAX_AGG_BW_25G:
993 		hw->itr_gran = ICE_ITR_GRAN_MAX_25;
994 		hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
995 		break;
996 	}
997 }
998 
999 /**
1000  * ice_init_hw - main hardware initialization routine
1001  * @hw: pointer to the hardware structure
1002  */
1003 int ice_init_hw(struct ice_hw *hw)
1004 {
1005 	struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
1006 	void *mac_buf __free(kfree) = NULL;
1007 	u16 mac_buf_len;
1008 	int status;
1009 
1010 	/* Set MAC type based on DeviceID */
1011 	status = ice_set_mac_type(hw);
1012 	if (status)
1013 		return status;
1014 
1015 	hw->pf_id = FIELD_GET(PF_FUNC_RID_FUNC_NUM_M, rd32(hw, PF_FUNC_RID));
1016 
1017 	status = ice_reset(hw, ICE_RESET_PFR);
1018 	if (status)
1019 		return status;
1020 
1021 	ice_get_itr_intrl_gran(hw);
1022 
1023 	status = ice_create_all_ctrlq(hw);
1024 	if (status)
1025 		goto err_unroll_cqinit;
1026 
1027 	status = ice_fwlog_init(hw);
1028 	if (status)
1029 		ice_debug(hw, ICE_DBG_FW_LOG, "Error initializing FW logging: %d\n",
1030 			  status);
1031 
1032 	status = ice_clear_pf_cfg(hw);
1033 	if (status)
1034 		goto err_unroll_cqinit;
1035 
1036 	/* Set bit to enable Flow Director filters */
1037 	wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
1038 	INIT_LIST_HEAD(&hw->fdir_list_head);
1039 
1040 	ice_clear_pxe_mode(hw);
1041 
1042 	status = ice_init_nvm(hw);
1043 	if (status)
1044 		goto err_unroll_cqinit;
1045 
1046 	status = ice_get_caps(hw);
1047 	if (status)
1048 		goto err_unroll_cqinit;
1049 
1050 	if (!hw->port_info)
1051 		hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
1052 					     sizeof(*hw->port_info),
1053 					     GFP_KERNEL);
1054 	if (!hw->port_info) {
1055 		status = -ENOMEM;
1056 		goto err_unroll_cqinit;
1057 	}
1058 
1059 	/* set the back pointer to HW */
1060 	hw->port_info->hw = hw;
1061 
1062 	/* Initialize port_info struct with switch configuration data */
1063 	status = ice_get_initial_sw_cfg(hw);
1064 	if (status)
1065 		goto err_unroll_alloc;
1066 
1067 	hw->evb_veb = true;
1068 
1069 	/* init xarray for identifying scheduling nodes uniquely */
1070 	xa_init_flags(&hw->port_info->sched_node_ids, XA_FLAGS_ALLOC);
1071 
1072 	/* Query the allocated resources for Tx scheduler */
1073 	status = ice_sched_query_res_alloc(hw);
1074 	if (status) {
1075 		ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
1076 		goto err_unroll_alloc;
1077 	}
1078 	ice_sched_get_psm_clk_freq(hw);
1079 
1080 	/* Initialize port_info struct with scheduler data */
1081 	status = ice_sched_init_port(hw->port_info);
1082 	if (status)
1083 		goto err_unroll_sched;
1084 
1085 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1086 	if (!pcaps) {
1087 		status = -ENOMEM;
1088 		goto err_unroll_sched;
1089 	}
1090 
1091 	/* Initialize port_info struct with PHY capabilities */
1092 	status = ice_aq_get_phy_caps(hw->port_info, false,
1093 				     ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
1094 				     NULL);
1095 	if (status)
1096 		dev_warn(ice_hw_to_dev(hw), "Get PHY capabilities failed status = %d, continuing anyway\n",
1097 			 status);
1098 
1099 	/* Initialize port_info struct with link information */
1100 	status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
1101 	if (status)
1102 		goto err_unroll_sched;
1103 
1104 	/* need a valid SW entry point to build a Tx tree */
1105 	if (!hw->sw_entry_point_layer) {
1106 		ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
1107 		status = -EIO;
1108 		goto err_unroll_sched;
1109 	}
1110 	INIT_LIST_HEAD(&hw->agg_list);
1111 	/* Initialize max burst size */
1112 	if (!hw->max_burst_size)
1113 		ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
1114 
1115 	status = ice_init_fltr_mgmt_struct(hw);
1116 	if (status)
1117 		goto err_unroll_sched;
1118 
1119 	/* Get MAC information */
1120 	/* A single port can report up to two (LAN and WoL) addresses */
1121 	mac_buf = kcalloc(2, sizeof(struct ice_aqc_manage_mac_read_resp),
1122 			  GFP_KERNEL);
1123 	if (!mac_buf) {
1124 		status = -ENOMEM;
1125 		goto err_unroll_fltr_mgmt_struct;
1126 	}
1127 
1128 	mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
1129 	status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
1130 
1131 	if (status)
1132 		goto err_unroll_fltr_mgmt_struct;
1133 	/* enable jumbo frame support at MAC level */
1134 	status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
1135 	if (status)
1136 		goto err_unroll_fltr_mgmt_struct;
1137 	/* Obtain counter base index which would be used by flow director */
1138 	status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base);
1139 	if (status)
1140 		goto err_unroll_fltr_mgmt_struct;
1141 	status = ice_init_hw_tbls(hw);
1142 	if (status)
1143 		goto err_unroll_fltr_mgmt_struct;
1144 	mutex_init(&hw->tnl_lock);
1145 	return 0;
1146 
1147 err_unroll_fltr_mgmt_struct:
1148 	ice_cleanup_fltr_mgmt_struct(hw);
1149 err_unroll_sched:
1150 	ice_sched_cleanup_all(hw);
1151 err_unroll_alloc:
1152 	devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1153 err_unroll_cqinit:
1154 	ice_destroy_all_ctrlq(hw);
1155 	return status;
1156 }
1157 
1158 /**
1159  * ice_deinit_hw - unroll initialization operations done by ice_init_hw
1160  * @hw: pointer to the hardware structure
1161  *
1162  * This should be called only during nominal operation, not as a result of
1163  * ice_init_hw() failing since ice_init_hw() will take care of unrolling
1164  * applicable initializations if it fails for any reason.
1165  */
1166 void ice_deinit_hw(struct ice_hw *hw)
1167 {
1168 	ice_free_fd_res_cntr(hw, hw->fd_ctr_base);
1169 	ice_cleanup_fltr_mgmt_struct(hw);
1170 
1171 	ice_sched_cleanup_all(hw);
1172 	ice_sched_clear_agg(hw);
1173 	ice_free_seg(hw);
1174 	ice_free_hw_tbls(hw);
1175 	mutex_destroy(&hw->tnl_lock);
1176 
1177 	ice_fwlog_deinit(hw);
1178 	ice_destroy_all_ctrlq(hw);
1179 
1180 	/* Clear VSI contexts if not already cleared */
1181 	ice_clear_all_vsi_ctx(hw);
1182 }
1183 
1184 /**
1185  * ice_check_reset - Check to see if a global reset is complete
1186  * @hw: pointer to the hardware structure
1187  */
1188 int ice_check_reset(struct ice_hw *hw)
1189 {
1190 	u32 cnt, reg = 0, grst_timeout, uld_mask;
1191 
1192 	/* Poll for Device Active state in case a recent CORER, GLOBR,
1193 	 * or EMPR has occurred. The grst delay value is in 100ms units.
1194 	 * Add 1sec for outstanding AQ commands that can take a long time.
1195 	 */
1196 	grst_timeout = FIELD_GET(GLGEN_RSTCTL_GRSTDEL_M,
1197 				 rd32(hw, GLGEN_RSTCTL)) + 10;
1198 
1199 	for (cnt = 0; cnt < grst_timeout; cnt++) {
1200 		mdelay(100);
1201 		reg = rd32(hw, GLGEN_RSTAT);
1202 		if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
1203 			break;
1204 	}
1205 
1206 	if (cnt == grst_timeout) {
1207 		ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
1208 		return -EIO;
1209 	}
1210 
1211 #define ICE_RESET_DONE_MASK	(GLNVM_ULD_PCIER_DONE_M |\
1212 				 GLNVM_ULD_PCIER_DONE_1_M |\
1213 				 GLNVM_ULD_CORER_DONE_M |\
1214 				 GLNVM_ULD_GLOBR_DONE_M |\
1215 				 GLNVM_ULD_POR_DONE_M |\
1216 				 GLNVM_ULD_POR_DONE_1_M |\
1217 				 GLNVM_ULD_PCIER_DONE_2_M)
1218 
1219 	uld_mask = ICE_RESET_DONE_MASK | (hw->func_caps.common_cap.rdma ?
1220 					  GLNVM_ULD_PE_DONE_M : 0);
1221 
1222 	/* Device is Active; check Global Reset processes are done */
1223 	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
1224 		reg = rd32(hw, GLNVM_ULD) & uld_mask;
1225 		if (reg == uld_mask) {
1226 			ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
1227 			break;
1228 		}
1229 		mdelay(10);
1230 	}
1231 
1232 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1233 		ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
1234 			  reg);
1235 		return -EIO;
1236 	}
1237 
1238 	return 0;
1239 }
1240 
1241 /**
1242  * ice_pf_reset - Reset the PF
1243  * @hw: pointer to the hardware structure
1244  *
1245  * If a global reset has been triggered, this function checks
1246  * for its completion and then issues the PF reset
1247  */
1248 static int ice_pf_reset(struct ice_hw *hw)
1249 {
1250 	u32 cnt, reg;
1251 
1252 	/* If at function entry a global reset was already in progress, i.e.
1253 	 * state is not 'device active' or any of the reset done bits are not
1254 	 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
1255 	 * global reset is done.
1256 	 */
1257 	if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1258 	    (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1259 		/* poll on global reset currently in progress until done */
1260 		if (ice_check_reset(hw))
1261 			return -EIO;
1262 
1263 		return 0;
1264 	}
1265 
1266 	/* Reset the PF */
1267 	reg = rd32(hw, PFGEN_CTRL);
1268 
1269 	wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1270 
1271 	/* Wait for the PFR to complete. The wait time is the global config lock
1272 	 * timeout plus the PFR timeout which will account for a possible reset
1273 	 * that is occurring during a download package operation.
1274 	 */
1275 	for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
1276 	     ICE_PF_RESET_WAIT_COUNT; cnt++) {
1277 		reg = rd32(hw, PFGEN_CTRL);
1278 		if (!(reg & PFGEN_CTRL_PFSWR_M))
1279 			break;
1280 
1281 		mdelay(1);
1282 	}
1283 
1284 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1285 		ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
1286 		return -EIO;
1287 	}
1288 
1289 	return 0;
1290 }
1291 
1292 /**
1293  * ice_reset - Perform different types of reset
1294  * @hw: pointer to the hardware structure
1295  * @req: reset request
1296  *
1297  * This function triggers a reset as specified by the req parameter.
1298  *
1299  * Note:
1300  * If anything other than a PF reset is triggered, PXE mode is restored.
1301  * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1302  * interface has been restored in the rebuild flow.
1303  */
1304 int ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1305 {
1306 	u32 val = 0;
1307 
1308 	switch (req) {
1309 	case ICE_RESET_PFR:
1310 		return ice_pf_reset(hw);
1311 	case ICE_RESET_CORER:
1312 		ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1313 		val = GLGEN_RTRIG_CORER_M;
1314 		break;
1315 	case ICE_RESET_GLOBR:
1316 		ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1317 		val = GLGEN_RTRIG_GLOBR_M;
1318 		break;
1319 	default:
1320 		return -EINVAL;
1321 	}
1322 
1323 	val |= rd32(hw, GLGEN_RTRIG);
1324 	wr32(hw, GLGEN_RTRIG, val);
1325 	ice_flush(hw);
1326 
1327 	/* wait for the FW to be ready */
1328 	return ice_check_reset(hw);
1329 }
1330 
1331 /**
1332  * ice_copy_rxq_ctx_to_hw
1333  * @hw: pointer to the hardware structure
1334  * @ice_rxq_ctx: pointer to the rxq context
1335  * @rxq_index: the index of the Rx queue
1336  *
1337  * Copies rxq context from dense structure to HW register space
1338  */
1339 static int
1340 ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1341 {
1342 	u8 i;
1343 
1344 	if (!ice_rxq_ctx)
1345 		return -EINVAL;
1346 
1347 	if (rxq_index > QRX_CTRL_MAX_INDEX)
1348 		return -EINVAL;
1349 
1350 	/* Copy each dword separately to HW */
1351 	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1352 		wr32(hw, QRX_CONTEXT(i, rxq_index),
1353 		     *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1354 
1355 		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1356 			  *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1357 	}
1358 
1359 	return 0;
1360 }
1361 
1362 /* LAN Rx Queue Context */
1363 static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1364 	/* Field		Width	LSB */
1365 	ICE_CTX_STORE(ice_rlan_ctx, head,		13,	0),
1366 	ICE_CTX_STORE(ice_rlan_ctx, cpuid,		8,	13),
1367 	ICE_CTX_STORE(ice_rlan_ctx, base,		57,	32),
1368 	ICE_CTX_STORE(ice_rlan_ctx, qlen,		13,	89),
1369 	ICE_CTX_STORE(ice_rlan_ctx, dbuf,		7,	102),
1370 	ICE_CTX_STORE(ice_rlan_ctx, hbuf,		5,	109),
1371 	ICE_CTX_STORE(ice_rlan_ctx, dtype,		2,	114),
1372 	ICE_CTX_STORE(ice_rlan_ctx, dsize,		1,	116),
1373 	ICE_CTX_STORE(ice_rlan_ctx, crcstrip,		1,	117),
1374 	ICE_CTX_STORE(ice_rlan_ctx, l2tsel,		1,	119),
1375 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,		4,	120),
1376 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,		2,	124),
1377 	ICE_CTX_STORE(ice_rlan_ctx, showiv,		1,	127),
1378 	ICE_CTX_STORE(ice_rlan_ctx, rxmax,		14,	174),
1379 	ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,	1,	193),
1380 	ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,	1,	194),
1381 	ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,	1,	195),
1382 	ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,	1,	196),
1383 	ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,		3,	198),
1384 	ICE_CTX_STORE(ice_rlan_ctx, prefena,		1,	201),
1385 	{ 0 }
1386 };
1387 
1388 /**
1389  * ice_write_rxq_ctx
1390  * @hw: pointer to the hardware structure
1391  * @rlan_ctx: pointer to the rxq context
1392  * @rxq_index: the index of the Rx queue
1393  *
1394  * Converts rxq context from sparse to dense structure and then writes
1395  * it to HW register space and enables the hardware to prefetch descriptors
1396  * instead of only fetching them on demand
1397  */
1398 int ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1399 		      u32 rxq_index)
1400 {
1401 	u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1402 
1403 	if (!rlan_ctx)
1404 		return -EINVAL;
1405 
1406 	rlan_ctx->prefena = 1;
1407 
1408 	ice_set_ctx(hw, (u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1409 	return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1410 }
1411 
1412 /* LAN Tx Queue Context */
1413 const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1414 				    /* Field			Width	LSB */
1415 	ICE_CTX_STORE(ice_tlan_ctx, base,			57,	0),
1416 	ICE_CTX_STORE(ice_tlan_ctx, port_num,			3,	57),
1417 	ICE_CTX_STORE(ice_tlan_ctx, cgd_num,			5,	60),
1418 	ICE_CTX_STORE(ice_tlan_ctx, pf_num,			3,	65),
1419 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,			10,	68),
1420 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,			2,	78),
1421 	ICE_CTX_STORE(ice_tlan_ctx, src_vsi,			10,	80),
1422 	ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,			1,	90),
1423 	ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag,	1,	91),
1424 	ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,			1,	92),
1425 	ICE_CTX_STORE(ice_tlan_ctx, cpuid,			8,	93),
1426 	ICE_CTX_STORE(ice_tlan_ctx, wb_mode,			1,	101),
1427 	ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,			1,	102),
1428 	ICE_CTX_STORE(ice_tlan_ctx, tphrd,			1,	103),
1429 	ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,			1,	104),
1430 	ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,			9,	105),
1431 	ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,		14,	114),
1432 	ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,	1,	128),
1433 	ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,		6,	129),
1434 	ICE_CTX_STORE(ice_tlan_ctx, qlen,			13,	135),
1435 	ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,		4,	148),
1436 	ICE_CTX_STORE(ice_tlan_ctx, tso_ena,			1,	152),
1437 	ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,			11,	153),
1438 	ICE_CTX_STORE(ice_tlan_ctx, legacy_int,			1,	164),
1439 	ICE_CTX_STORE(ice_tlan_ctx, drop_ena,			1,	165),
1440 	ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,		2,	166),
1441 	ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,	3,	168),
1442 	ICE_CTX_STORE(ice_tlan_ctx, int_q_state,		122,	171),
1443 	{ 0 }
1444 };
1445 
1446 /* Sideband Queue command wrappers */
1447 
1448 /**
1449  * ice_sbq_send_cmd - send Sideband Queue command to Sideband Queue
1450  * @hw: pointer to the HW struct
1451  * @desc: descriptor describing the command
1452  * @buf: buffer to use for indirect commands (NULL for direct commands)
1453  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1454  * @cd: pointer to command details structure
1455  */
1456 static int
1457 ice_sbq_send_cmd(struct ice_hw *hw, struct ice_sbq_cmd_desc *desc,
1458 		 void *buf, u16 buf_size, struct ice_sq_cd *cd)
1459 {
1460 	return ice_sq_send_cmd(hw, ice_get_sbq(hw),
1461 			       (struct ice_aq_desc *)desc, buf, buf_size, cd);
1462 }
1463 
1464 /**
1465  * ice_sbq_rw_reg - Fill Sideband Queue command
1466  * @hw: pointer to the HW struct
1467  * @in: message info to be filled in descriptor
1468  */
1469 int ice_sbq_rw_reg(struct ice_hw *hw, struct ice_sbq_msg_input *in)
1470 {
1471 	struct ice_sbq_cmd_desc desc = {0};
1472 	struct ice_sbq_msg_req msg = {0};
1473 	u16 msg_len;
1474 	int status;
1475 
1476 	msg_len = sizeof(msg);
1477 
1478 	msg.dest_dev = in->dest_dev;
1479 	msg.opcode = in->opcode;
1480 	msg.flags = ICE_SBQ_MSG_FLAGS;
1481 	msg.sbe_fbe = ICE_SBQ_MSG_SBE_FBE;
1482 	msg.msg_addr_low = cpu_to_le16(in->msg_addr_low);
1483 	msg.msg_addr_high = cpu_to_le32(in->msg_addr_high);
1484 
1485 	if (in->opcode)
1486 		msg.data = cpu_to_le32(in->data);
1487 	else
1488 		/* data read comes back in completion, so shorten the struct by
1489 		 * sizeof(msg.data)
1490 		 */
1491 		msg_len -= sizeof(msg.data);
1492 
1493 	desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
1494 	desc.opcode = cpu_to_le16(ice_sbq_opc_neigh_dev_req);
1495 	desc.param0.cmd_len = cpu_to_le16(msg_len);
1496 	status = ice_sbq_send_cmd(hw, &desc, &msg, msg_len, NULL);
1497 	if (!status && !in->opcode)
1498 		in->data = le32_to_cpu
1499 			(((struct ice_sbq_msg_cmpl *)&msg)->data);
1500 	return status;
1501 }
1502 
1503 /* FW Admin Queue command wrappers */
1504 
1505 /* Software lock/mutex that is meant to be held while the Global Config Lock
1506  * in firmware is acquired by the software to prevent most (but not all) types
1507  * of AQ commands from being sent to FW
1508  */
1509 DEFINE_MUTEX(ice_global_cfg_lock_sw);
1510 
1511 /**
1512  * ice_should_retry_sq_send_cmd
1513  * @opcode: AQ opcode
1514  *
1515  * Decide if we should retry the send command routine for the ATQ, depending
1516  * on the opcode.
1517  */
1518 static bool ice_should_retry_sq_send_cmd(u16 opcode)
1519 {
1520 	switch (opcode) {
1521 	case ice_aqc_opc_get_link_topo:
1522 	case ice_aqc_opc_lldp_stop:
1523 	case ice_aqc_opc_lldp_start:
1524 	case ice_aqc_opc_lldp_filter_ctrl:
1525 		return true;
1526 	}
1527 
1528 	return false;
1529 }
1530 
1531 /**
1532  * ice_sq_send_cmd_retry - send command to Control Queue (ATQ)
1533  * @hw: pointer to the HW struct
1534  * @cq: pointer to the specific Control queue
1535  * @desc: prefilled descriptor describing the command
1536  * @buf: buffer to use for indirect commands (or NULL for direct commands)
1537  * @buf_size: size of buffer for indirect commands (or 0 for direct commands)
1538  * @cd: pointer to command details structure
1539  *
1540  * Retry sending the FW Admin Queue command, multiple times, to the FW Admin
1541  * Queue if the EBUSY AQ error is returned.
1542  */
1543 static int
1544 ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq,
1545 		      struct ice_aq_desc *desc, void *buf, u16 buf_size,
1546 		      struct ice_sq_cd *cd)
1547 {
1548 	struct ice_aq_desc desc_cpy;
1549 	bool is_cmd_for_retry;
1550 	u8 idx = 0;
1551 	u16 opcode;
1552 	int status;
1553 
1554 	opcode = le16_to_cpu(desc->opcode);
1555 	is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode);
1556 	memset(&desc_cpy, 0, sizeof(desc_cpy));
1557 
1558 	if (is_cmd_for_retry) {
1559 		/* All retryable cmds are direct, without buf. */
1560 		WARN_ON(buf);
1561 
1562 		memcpy(&desc_cpy, desc, sizeof(desc_cpy));
1563 	}
1564 
1565 	do {
1566 		status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd);
1567 
1568 		if (!is_cmd_for_retry || !status ||
1569 		    hw->adminq.sq_last_status != ICE_AQ_RC_EBUSY)
1570 			break;
1571 
1572 		memcpy(desc, &desc_cpy, sizeof(desc_cpy));
1573 
1574 		msleep(ICE_SQ_SEND_DELAY_TIME_MS);
1575 
1576 	} while (++idx < ICE_SQ_SEND_MAX_EXECUTE);
1577 
1578 	return status;
1579 }
1580 
1581 /**
1582  * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1583  * @hw: pointer to the HW struct
1584  * @desc: descriptor describing the command
1585  * @buf: buffer to use for indirect commands (NULL for direct commands)
1586  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1587  * @cd: pointer to command details structure
1588  *
1589  * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1590  */
1591 int
1592 ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1593 		u16 buf_size, struct ice_sq_cd *cd)
1594 {
1595 	struct ice_aqc_req_res *cmd = &desc->params.res_owner;
1596 	bool lock_acquired = false;
1597 	int status;
1598 
1599 	/* When a package download is in process (i.e. when the firmware's
1600 	 * Global Configuration Lock resource is held), only the Download
1601 	 * Package, Get Version, Get Package Info List, Upload Section,
1602 	 * Update Package, Set Port Parameters, Get/Set VLAN Mode Parameters,
1603 	 * Add Recipe, Set Recipes to Profile Association, Get Recipe, and Get
1604 	 * Recipes to Profile Association, and Release Resource (with resource
1605 	 * ID set to Global Config Lock) AdminQ commands are allowed; all others
1606 	 * must block until the package download completes and the Global Config
1607 	 * Lock is released.  See also ice_acquire_global_cfg_lock().
1608 	 */
1609 	switch (le16_to_cpu(desc->opcode)) {
1610 	case ice_aqc_opc_download_pkg:
1611 	case ice_aqc_opc_get_pkg_info_list:
1612 	case ice_aqc_opc_get_ver:
1613 	case ice_aqc_opc_upload_section:
1614 	case ice_aqc_opc_update_pkg:
1615 	case ice_aqc_opc_set_port_params:
1616 	case ice_aqc_opc_get_vlan_mode_parameters:
1617 	case ice_aqc_opc_set_vlan_mode_parameters:
1618 	case ice_aqc_opc_add_recipe:
1619 	case ice_aqc_opc_recipe_to_profile:
1620 	case ice_aqc_opc_get_recipe:
1621 	case ice_aqc_opc_get_recipe_to_profile:
1622 		break;
1623 	case ice_aqc_opc_release_res:
1624 		if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK)
1625 			break;
1626 		fallthrough;
1627 	default:
1628 		mutex_lock(&ice_global_cfg_lock_sw);
1629 		lock_acquired = true;
1630 		break;
1631 	}
1632 
1633 	status = ice_sq_send_cmd_retry(hw, &hw->adminq, desc, buf, buf_size, cd);
1634 	if (lock_acquired)
1635 		mutex_unlock(&ice_global_cfg_lock_sw);
1636 
1637 	return status;
1638 }
1639 
1640 /**
1641  * ice_aq_get_fw_ver
1642  * @hw: pointer to the HW struct
1643  * @cd: pointer to command details structure or NULL
1644  *
1645  * Get the firmware version (0x0001) from the admin queue commands
1646  */
1647 int ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1648 {
1649 	struct ice_aqc_get_ver *resp;
1650 	struct ice_aq_desc desc;
1651 	int status;
1652 
1653 	resp = &desc.params.get_ver;
1654 
1655 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1656 
1657 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1658 
1659 	if (!status) {
1660 		hw->fw_branch = resp->fw_branch;
1661 		hw->fw_maj_ver = resp->fw_major;
1662 		hw->fw_min_ver = resp->fw_minor;
1663 		hw->fw_patch = resp->fw_patch;
1664 		hw->fw_build = le32_to_cpu(resp->fw_build);
1665 		hw->api_branch = resp->api_branch;
1666 		hw->api_maj_ver = resp->api_major;
1667 		hw->api_min_ver = resp->api_minor;
1668 		hw->api_patch = resp->api_patch;
1669 	}
1670 
1671 	return status;
1672 }
1673 
1674 /**
1675  * ice_aq_send_driver_ver
1676  * @hw: pointer to the HW struct
1677  * @dv: driver's major, minor version
1678  * @cd: pointer to command details structure or NULL
1679  *
1680  * Send the driver version (0x0002) to the firmware
1681  */
1682 int
1683 ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1684 		       struct ice_sq_cd *cd)
1685 {
1686 	struct ice_aqc_driver_ver *cmd;
1687 	struct ice_aq_desc desc;
1688 	u16 len;
1689 
1690 	cmd = &desc.params.driver_ver;
1691 
1692 	if (!dv)
1693 		return -EINVAL;
1694 
1695 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
1696 
1697 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1698 	cmd->major_ver = dv->major_ver;
1699 	cmd->minor_ver = dv->minor_ver;
1700 	cmd->build_ver = dv->build_ver;
1701 	cmd->subbuild_ver = dv->subbuild_ver;
1702 
1703 	len = 0;
1704 	while (len < sizeof(dv->driver_string) &&
1705 	       isascii(dv->driver_string[len]) && dv->driver_string[len])
1706 		len++;
1707 
1708 	return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
1709 }
1710 
1711 /**
1712  * ice_aq_q_shutdown
1713  * @hw: pointer to the HW struct
1714  * @unloading: is the driver unloading itself
1715  *
1716  * Tell the Firmware that we're shutting down the AdminQ and whether
1717  * or not the driver is unloading as well (0x0003).
1718  */
1719 int ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1720 {
1721 	struct ice_aqc_q_shutdown *cmd;
1722 	struct ice_aq_desc desc;
1723 
1724 	cmd = &desc.params.q_shutdown;
1725 
1726 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1727 
1728 	if (unloading)
1729 		cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1730 
1731 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1732 }
1733 
1734 /**
1735  * ice_aq_req_res
1736  * @hw: pointer to the HW struct
1737  * @res: resource ID
1738  * @access: access type
1739  * @sdp_number: resource number
1740  * @timeout: the maximum time in ms that the driver may hold the resource
1741  * @cd: pointer to command details structure or NULL
1742  *
1743  * Requests common resource using the admin queue commands (0x0008).
1744  * When attempting to acquire the Global Config Lock, the driver can
1745  * learn of three states:
1746  *  1) 0 -         acquired lock, and can perform download package
1747  *  2) -EIO -      did not get lock, driver should fail to load
1748  *  3) -EALREADY - did not get lock, but another driver has
1749  *                 successfully downloaded the package; the driver does
1750  *                 not have to download the package and can continue
1751  *                 loading
1752  *
1753  * Note that if the caller is in an acquire lock, perform action, release lock
1754  * phase of operation, it is possible that the FW may detect a timeout and issue
1755  * a CORER. In this case, the driver will receive a CORER interrupt and will
1756  * have to determine its cause. The calling thread that is handling this flow
1757  * will likely get an error propagated back to it indicating the Download
1758  * Package, Update Package or the Release Resource AQ commands timed out.
1759  */
1760 static int
1761 ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1762 	       enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1763 	       struct ice_sq_cd *cd)
1764 {
1765 	struct ice_aqc_req_res *cmd_resp;
1766 	struct ice_aq_desc desc;
1767 	int status;
1768 
1769 	cmd_resp = &desc.params.res_owner;
1770 
1771 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1772 
1773 	cmd_resp->res_id = cpu_to_le16(res);
1774 	cmd_resp->access_type = cpu_to_le16(access);
1775 	cmd_resp->res_number = cpu_to_le32(sdp_number);
1776 	cmd_resp->timeout = cpu_to_le32(*timeout);
1777 	*timeout = 0;
1778 
1779 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1780 
1781 	/* The completion specifies the maximum time in ms that the driver
1782 	 * may hold the resource in the Timeout field.
1783 	 */
1784 
1785 	/* Global config lock response utilizes an additional status field.
1786 	 *
1787 	 * If the Global config lock resource is held by some other driver, the
1788 	 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1789 	 * and the timeout field indicates the maximum time the current owner
1790 	 * of the resource has to free it.
1791 	 */
1792 	if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1793 		if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1794 			*timeout = le32_to_cpu(cmd_resp->timeout);
1795 			return 0;
1796 		} else if (le16_to_cpu(cmd_resp->status) ==
1797 			   ICE_AQ_RES_GLBL_IN_PROG) {
1798 			*timeout = le32_to_cpu(cmd_resp->timeout);
1799 			return -EIO;
1800 		} else if (le16_to_cpu(cmd_resp->status) ==
1801 			   ICE_AQ_RES_GLBL_DONE) {
1802 			return -EALREADY;
1803 		}
1804 
1805 		/* invalid FW response, force a timeout immediately */
1806 		*timeout = 0;
1807 		return -EIO;
1808 	}
1809 
1810 	/* If the resource is held by some other driver, the command completes
1811 	 * with a busy return value and the timeout field indicates the maximum
1812 	 * time the current owner of the resource has to free it.
1813 	 */
1814 	if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1815 		*timeout = le32_to_cpu(cmd_resp->timeout);
1816 
1817 	return status;
1818 }
1819 
1820 /**
1821  * ice_aq_release_res
1822  * @hw: pointer to the HW struct
1823  * @res: resource ID
1824  * @sdp_number: resource number
1825  * @cd: pointer to command details structure or NULL
1826  *
1827  * release common resource using the admin queue commands (0x0009)
1828  */
1829 static int
1830 ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1831 		   struct ice_sq_cd *cd)
1832 {
1833 	struct ice_aqc_req_res *cmd;
1834 	struct ice_aq_desc desc;
1835 
1836 	cmd = &desc.params.res_owner;
1837 
1838 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1839 
1840 	cmd->res_id = cpu_to_le16(res);
1841 	cmd->res_number = cpu_to_le32(sdp_number);
1842 
1843 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1844 }
1845 
1846 /**
1847  * ice_acquire_res
1848  * @hw: pointer to the HW structure
1849  * @res: resource ID
1850  * @access: access type (read or write)
1851  * @timeout: timeout in milliseconds
1852  *
1853  * This function will attempt to acquire the ownership of a resource.
1854  */
1855 int
1856 ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1857 		enum ice_aq_res_access_type access, u32 timeout)
1858 {
1859 #define ICE_RES_POLLING_DELAY_MS	10
1860 	u32 delay = ICE_RES_POLLING_DELAY_MS;
1861 	u32 time_left = timeout;
1862 	int status;
1863 
1864 	status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1865 
1866 	/* A return code of -EALREADY means that another driver has
1867 	 * previously acquired the resource and performed any necessary updates;
1868 	 * in this case the caller does not obtain the resource and has no
1869 	 * further work to do.
1870 	 */
1871 	if (status == -EALREADY)
1872 		goto ice_acquire_res_exit;
1873 
1874 	if (status)
1875 		ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
1876 
1877 	/* If necessary, poll until the current lock owner timeouts */
1878 	timeout = time_left;
1879 	while (status && timeout && time_left) {
1880 		mdelay(delay);
1881 		timeout = (timeout > delay) ? timeout - delay : 0;
1882 		status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1883 
1884 		if (status == -EALREADY)
1885 			/* lock free, but no work to do */
1886 			break;
1887 
1888 		if (!status)
1889 			/* lock acquired */
1890 			break;
1891 	}
1892 	if (status && status != -EALREADY)
1893 		ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1894 
1895 ice_acquire_res_exit:
1896 	if (status == -EALREADY) {
1897 		if (access == ICE_RES_WRITE)
1898 			ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
1899 		else
1900 			ice_debug(hw, ICE_DBG_RES, "Warning: -EALREADY not expected\n");
1901 	}
1902 	return status;
1903 }
1904 
1905 /**
1906  * ice_release_res
1907  * @hw: pointer to the HW structure
1908  * @res: resource ID
1909  *
1910  * This function will release a resource using the proper Admin Command.
1911  */
1912 void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1913 {
1914 	unsigned long timeout;
1915 	int status;
1916 
1917 	/* there are some rare cases when trying to release the resource
1918 	 * results in an admin queue timeout, so handle them correctly
1919 	 */
1920 	timeout = jiffies + 10 * ICE_CTL_Q_SQ_CMD_TIMEOUT;
1921 	do {
1922 		status = ice_aq_release_res(hw, res, 0, NULL);
1923 		if (status != -EIO)
1924 			break;
1925 		usleep_range(1000, 2000);
1926 	} while (time_before(jiffies, timeout));
1927 }
1928 
1929 /**
1930  * ice_aq_alloc_free_res - command to allocate/free resources
1931  * @hw: pointer to the HW struct
1932  * @buf: Indirect buffer to hold data parameters and response
1933  * @buf_size: size of buffer for indirect commands
1934  * @opc: pass in the command opcode
1935  *
1936  * Helper function to allocate/free resources using the admin queue commands
1937  */
1938 int ice_aq_alloc_free_res(struct ice_hw *hw,
1939 			  struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
1940 			  enum ice_adminq_opc opc)
1941 {
1942 	struct ice_aqc_alloc_free_res_cmd *cmd;
1943 	struct ice_aq_desc desc;
1944 
1945 	cmd = &desc.params.sw_res_ctrl;
1946 
1947 	if (!buf || buf_size < flex_array_size(buf, elem, 1))
1948 		return -EINVAL;
1949 
1950 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
1951 
1952 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1953 
1954 	cmd->num_entries = cpu_to_le16(1);
1955 
1956 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, NULL);
1957 }
1958 
1959 /**
1960  * ice_alloc_hw_res - allocate resource
1961  * @hw: pointer to the HW struct
1962  * @type: type of resource
1963  * @num: number of resources to allocate
1964  * @btm: allocate from bottom
1965  * @res: pointer to array that will receive the resources
1966  */
1967 int
1968 ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
1969 {
1970 	struct ice_aqc_alloc_free_res_elem *buf;
1971 	u16 buf_len;
1972 	int status;
1973 
1974 	buf_len = struct_size(buf, elem, num);
1975 	buf = kzalloc(buf_len, GFP_KERNEL);
1976 	if (!buf)
1977 		return -ENOMEM;
1978 
1979 	/* Prepare buffer to allocate resource. */
1980 	buf->num_elems = cpu_to_le16(num);
1981 	buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
1982 				    ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
1983 	if (btm)
1984 		buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
1985 
1986 	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_alloc_res);
1987 	if (status)
1988 		goto ice_alloc_res_exit;
1989 
1990 	memcpy(res, buf->elem, sizeof(*buf->elem) * num);
1991 
1992 ice_alloc_res_exit:
1993 	kfree(buf);
1994 	return status;
1995 }
1996 
1997 /**
1998  * ice_free_hw_res - free allocated HW resource
1999  * @hw: pointer to the HW struct
2000  * @type: type of resource to free
2001  * @num: number of resources
2002  * @res: pointer to array that contains the resources to free
2003  */
2004 int ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
2005 {
2006 	struct ice_aqc_alloc_free_res_elem *buf;
2007 	u16 buf_len;
2008 	int status;
2009 
2010 	buf_len = struct_size(buf, elem, num);
2011 	buf = kzalloc(buf_len, GFP_KERNEL);
2012 	if (!buf)
2013 		return -ENOMEM;
2014 
2015 	/* Prepare buffer to free resource. */
2016 	buf->num_elems = cpu_to_le16(num);
2017 	buf->res_type = cpu_to_le16(type);
2018 	memcpy(buf->elem, res, sizeof(*buf->elem) * num);
2019 
2020 	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_free_res);
2021 	if (status)
2022 		ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
2023 
2024 	kfree(buf);
2025 	return status;
2026 }
2027 
2028 /**
2029  * ice_get_num_per_func - determine number of resources per PF
2030  * @hw: pointer to the HW structure
2031  * @max: value to be evenly split between each PF
2032  *
2033  * Determine the number of valid functions by going through the bitmap returned
2034  * from parsing capabilities and use this to calculate the number of resources
2035  * per PF based on the max value passed in.
2036  */
2037 static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
2038 {
2039 	u8 funcs;
2040 
2041 #define ICE_CAPS_VALID_FUNCS_M	0xFF
2042 	funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
2043 			 ICE_CAPS_VALID_FUNCS_M);
2044 
2045 	if (!funcs)
2046 		return 0;
2047 
2048 	return max / funcs;
2049 }
2050 
2051 /**
2052  * ice_parse_common_caps - parse common device/function capabilities
2053  * @hw: pointer to the HW struct
2054  * @caps: pointer to common capabilities structure
2055  * @elem: the capability element to parse
2056  * @prefix: message prefix for tracing capabilities
2057  *
2058  * Given a capability element, extract relevant details into the common
2059  * capability structure.
2060  *
2061  * Returns: true if the capability matches one of the common capability ids,
2062  * false otherwise.
2063  */
2064 static bool
2065 ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
2066 		      struct ice_aqc_list_caps_elem *elem, const char *prefix)
2067 {
2068 	u32 logical_id = le32_to_cpu(elem->logical_id);
2069 	u32 phys_id = le32_to_cpu(elem->phys_id);
2070 	u32 number = le32_to_cpu(elem->number);
2071 	u16 cap = le16_to_cpu(elem->cap);
2072 	bool found = true;
2073 
2074 	switch (cap) {
2075 	case ICE_AQC_CAPS_VALID_FUNCTIONS:
2076 		caps->valid_functions = number;
2077 		ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
2078 			  caps->valid_functions);
2079 		break;
2080 	case ICE_AQC_CAPS_SRIOV:
2081 		caps->sr_iov_1_1 = (number == 1);
2082 		ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix,
2083 			  caps->sr_iov_1_1);
2084 		break;
2085 	case ICE_AQC_CAPS_DCB:
2086 		caps->dcb = (number == 1);
2087 		caps->active_tc_bitmap = logical_id;
2088 		caps->maxtc = phys_id;
2089 		ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
2090 		ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
2091 			  caps->active_tc_bitmap);
2092 		ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
2093 		break;
2094 	case ICE_AQC_CAPS_RSS:
2095 		caps->rss_table_size = number;
2096 		caps->rss_table_entry_width = logical_id;
2097 		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
2098 			  caps->rss_table_size);
2099 		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
2100 			  caps->rss_table_entry_width);
2101 		break;
2102 	case ICE_AQC_CAPS_RXQS:
2103 		caps->num_rxq = number;
2104 		caps->rxq_first_id = phys_id;
2105 		ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
2106 			  caps->num_rxq);
2107 		ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
2108 			  caps->rxq_first_id);
2109 		break;
2110 	case ICE_AQC_CAPS_TXQS:
2111 		caps->num_txq = number;
2112 		caps->txq_first_id = phys_id;
2113 		ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
2114 			  caps->num_txq);
2115 		ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
2116 			  caps->txq_first_id);
2117 		break;
2118 	case ICE_AQC_CAPS_MSIX:
2119 		caps->num_msix_vectors = number;
2120 		caps->msix_vector_first_id = phys_id;
2121 		ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
2122 			  caps->num_msix_vectors);
2123 		ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
2124 			  caps->msix_vector_first_id);
2125 		break;
2126 	case ICE_AQC_CAPS_PENDING_NVM_VER:
2127 		caps->nvm_update_pending_nvm = true;
2128 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_nvm\n", prefix);
2129 		break;
2130 	case ICE_AQC_CAPS_PENDING_OROM_VER:
2131 		caps->nvm_update_pending_orom = true;
2132 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_orom\n", prefix);
2133 		break;
2134 	case ICE_AQC_CAPS_PENDING_NET_VER:
2135 		caps->nvm_update_pending_netlist = true;
2136 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_netlist\n", prefix);
2137 		break;
2138 	case ICE_AQC_CAPS_NVM_MGMT:
2139 		caps->nvm_unified_update =
2140 			(number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
2141 			true : false;
2142 		ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
2143 			  caps->nvm_unified_update);
2144 		break;
2145 	case ICE_AQC_CAPS_RDMA:
2146 		caps->rdma = (number == 1);
2147 		ice_debug(hw, ICE_DBG_INIT, "%s: rdma = %d\n", prefix, caps->rdma);
2148 		break;
2149 	case ICE_AQC_CAPS_MAX_MTU:
2150 		caps->max_mtu = number;
2151 		ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
2152 			  prefix, caps->max_mtu);
2153 		break;
2154 	case ICE_AQC_CAPS_PCIE_RESET_AVOIDANCE:
2155 		caps->pcie_reset_avoidance = (number > 0);
2156 		ice_debug(hw, ICE_DBG_INIT,
2157 			  "%s: pcie_reset_avoidance = %d\n", prefix,
2158 			  caps->pcie_reset_avoidance);
2159 		break;
2160 	case ICE_AQC_CAPS_POST_UPDATE_RESET_RESTRICT:
2161 		caps->reset_restrict_support = (number == 1);
2162 		ice_debug(hw, ICE_DBG_INIT,
2163 			  "%s: reset_restrict_support = %d\n", prefix,
2164 			  caps->reset_restrict_support);
2165 		break;
2166 	case ICE_AQC_CAPS_FW_LAG_SUPPORT:
2167 		caps->roce_lag = !!(number & ICE_AQC_BIT_ROCEV2_LAG);
2168 		ice_debug(hw, ICE_DBG_INIT, "%s: roce_lag = %u\n",
2169 			  prefix, caps->roce_lag);
2170 		caps->sriov_lag = !!(number & ICE_AQC_BIT_SRIOV_LAG);
2171 		ice_debug(hw, ICE_DBG_INIT, "%s: sriov_lag = %u\n",
2172 			  prefix, caps->sriov_lag);
2173 		break;
2174 	default:
2175 		/* Not one of the recognized common capabilities */
2176 		found = false;
2177 	}
2178 
2179 	return found;
2180 }
2181 
2182 /**
2183  * ice_recalc_port_limited_caps - Recalculate port limited capabilities
2184  * @hw: pointer to the HW structure
2185  * @caps: pointer to capabilities structure to fix
2186  *
2187  * Re-calculate the capabilities that are dependent on the number of physical
2188  * ports; i.e. some features are not supported or function differently on
2189  * devices with more than 4 ports.
2190  */
2191 static void
2192 ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
2193 {
2194 	/* This assumes device capabilities are always scanned before function
2195 	 * capabilities during the initialization flow.
2196 	 */
2197 	if (hw->dev_caps.num_funcs > 4) {
2198 		/* Max 4 TCs per port */
2199 		caps->maxtc = 4;
2200 		ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
2201 			  caps->maxtc);
2202 		if (caps->rdma) {
2203 			ice_debug(hw, ICE_DBG_INIT, "forcing RDMA off\n");
2204 			caps->rdma = 0;
2205 		}
2206 
2207 		/* print message only when processing device capabilities
2208 		 * during initialization.
2209 		 */
2210 		if (caps == &hw->dev_caps.common_cap)
2211 			dev_info(ice_hw_to_dev(hw), "RDMA functionality is not available with the current device configuration.\n");
2212 	}
2213 }
2214 
2215 /**
2216  * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
2217  * @hw: pointer to the HW struct
2218  * @func_p: pointer to function capabilities structure
2219  * @cap: pointer to the capability element to parse
2220  *
2221  * Extract function capabilities for ICE_AQC_CAPS_VF.
2222  */
2223 static void
2224 ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2225 		       struct ice_aqc_list_caps_elem *cap)
2226 {
2227 	u32 logical_id = le32_to_cpu(cap->logical_id);
2228 	u32 number = le32_to_cpu(cap->number);
2229 
2230 	func_p->num_allocd_vfs = number;
2231 	func_p->vf_base_id = logical_id;
2232 	ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
2233 		  func_p->num_allocd_vfs);
2234 	ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
2235 		  func_p->vf_base_id);
2236 }
2237 
2238 /**
2239  * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
2240  * @hw: pointer to the HW struct
2241  * @func_p: pointer to function capabilities structure
2242  * @cap: pointer to the capability element to parse
2243  *
2244  * Extract function capabilities for ICE_AQC_CAPS_VSI.
2245  */
2246 static void
2247 ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2248 			struct ice_aqc_list_caps_elem *cap)
2249 {
2250 	func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
2251 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
2252 		  le32_to_cpu(cap->number));
2253 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
2254 		  func_p->guar_num_vsi);
2255 }
2256 
2257 /**
2258  * ice_parse_1588_func_caps - Parse ICE_AQC_CAPS_1588 function caps
2259  * @hw: pointer to the HW struct
2260  * @func_p: pointer to function capabilities structure
2261  * @cap: pointer to the capability element to parse
2262  *
2263  * Extract function capabilities for ICE_AQC_CAPS_1588.
2264  */
2265 static void
2266 ice_parse_1588_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2267 			 struct ice_aqc_list_caps_elem *cap)
2268 {
2269 	struct ice_ts_func_info *info = &func_p->ts_func_info;
2270 	u32 number = le32_to_cpu(cap->number);
2271 
2272 	info->ena = ((number & ICE_TS_FUNC_ENA_M) != 0);
2273 	func_p->common_cap.ieee_1588 = info->ena;
2274 
2275 	info->src_tmr_owned = ((number & ICE_TS_SRC_TMR_OWND_M) != 0);
2276 	info->tmr_ena = ((number & ICE_TS_TMR_ENA_M) != 0);
2277 	info->tmr_index_owned = ((number & ICE_TS_TMR_IDX_OWND_M) != 0);
2278 	info->tmr_index_assoc = ((number & ICE_TS_TMR_IDX_ASSOC_M) != 0);
2279 
2280 	info->clk_freq = FIELD_GET(ICE_TS_CLK_FREQ_M, number);
2281 	info->clk_src = ((number & ICE_TS_CLK_SRC_M) != 0);
2282 
2283 	if (info->clk_freq < NUM_ICE_TIME_REF_FREQ) {
2284 		info->time_ref = (enum ice_time_ref_freq)info->clk_freq;
2285 	} else {
2286 		/* Unknown clock frequency, so assume a (probably incorrect)
2287 		 * default to avoid out-of-bounds look ups of frequency
2288 		 * related information.
2289 		 */
2290 		ice_debug(hw, ICE_DBG_INIT, "1588 func caps: unknown clock frequency %u\n",
2291 			  info->clk_freq);
2292 		info->time_ref = ICE_TIME_REF_FREQ_25_000;
2293 	}
2294 
2295 	ice_debug(hw, ICE_DBG_INIT, "func caps: ieee_1588 = %u\n",
2296 		  func_p->common_cap.ieee_1588);
2297 	ice_debug(hw, ICE_DBG_INIT, "func caps: src_tmr_owned = %u\n",
2298 		  info->src_tmr_owned);
2299 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_ena = %u\n",
2300 		  info->tmr_ena);
2301 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_owned = %u\n",
2302 		  info->tmr_index_owned);
2303 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_assoc = %u\n",
2304 		  info->tmr_index_assoc);
2305 	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_freq = %u\n",
2306 		  info->clk_freq);
2307 	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_src = %u\n",
2308 		  info->clk_src);
2309 }
2310 
2311 /**
2312  * ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps
2313  * @hw: pointer to the HW struct
2314  * @func_p: pointer to function capabilities structure
2315  *
2316  * Extract function capabilities for ICE_AQC_CAPS_FD.
2317  */
2318 static void
2319 ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p)
2320 {
2321 	u32 reg_val, gsize, bsize;
2322 
2323 	reg_val = rd32(hw, GLQF_FD_SIZE);
2324 	switch (hw->mac_type) {
2325 	case ICE_MAC_E830:
2326 		gsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
2327 		bsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
2328 		break;
2329 	case ICE_MAC_E810:
2330 	default:
2331 		gsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
2332 		bsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
2333 	}
2334 	func_p->fd_fltr_guar = ice_get_num_per_func(hw, gsize);
2335 	func_p->fd_fltr_best_effort = bsize;
2336 
2337 	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_guar = %d\n",
2338 		  func_p->fd_fltr_guar);
2339 	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_best_effort = %d\n",
2340 		  func_p->fd_fltr_best_effort);
2341 }
2342 
2343 /**
2344  * ice_parse_func_caps - Parse function capabilities
2345  * @hw: pointer to the HW struct
2346  * @func_p: pointer to function capabilities structure
2347  * @buf: buffer containing the function capability records
2348  * @cap_count: the number of capabilities
2349  *
2350  * Helper function to parse function (0x000A) capabilities list. For
2351  * capabilities shared between device and function, this relies on
2352  * ice_parse_common_caps.
2353  *
2354  * Loop through the list of provided capabilities and extract the relevant
2355  * data into the function capabilities structured.
2356  */
2357 static void
2358 ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2359 		    void *buf, u32 cap_count)
2360 {
2361 	struct ice_aqc_list_caps_elem *cap_resp;
2362 	u32 i;
2363 
2364 	cap_resp = buf;
2365 
2366 	memset(func_p, 0, sizeof(*func_p));
2367 
2368 	for (i = 0; i < cap_count; i++) {
2369 		u16 cap = le16_to_cpu(cap_resp[i].cap);
2370 		bool found;
2371 
2372 		found = ice_parse_common_caps(hw, &func_p->common_cap,
2373 					      &cap_resp[i], "func caps");
2374 
2375 		switch (cap) {
2376 		case ICE_AQC_CAPS_VF:
2377 			ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
2378 			break;
2379 		case ICE_AQC_CAPS_VSI:
2380 			ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
2381 			break;
2382 		case ICE_AQC_CAPS_1588:
2383 			ice_parse_1588_func_caps(hw, func_p, &cap_resp[i]);
2384 			break;
2385 		case ICE_AQC_CAPS_FD:
2386 			ice_parse_fdir_func_caps(hw, func_p);
2387 			break;
2388 		default:
2389 			/* Don't list common capabilities as unknown */
2390 			if (!found)
2391 				ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
2392 					  i, cap);
2393 			break;
2394 		}
2395 	}
2396 
2397 	ice_recalc_port_limited_caps(hw, &func_p->common_cap);
2398 }
2399 
2400 /**
2401  * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2402  * @hw: pointer to the HW struct
2403  * @dev_p: pointer to device capabilities structure
2404  * @cap: capability element to parse
2405  *
2406  * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2407  */
2408 static void
2409 ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2410 			      struct ice_aqc_list_caps_elem *cap)
2411 {
2412 	u32 number = le32_to_cpu(cap->number);
2413 
2414 	dev_p->num_funcs = hweight32(number);
2415 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2416 		  dev_p->num_funcs);
2417 }
2418 
2419 /**
2420  * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2421  * @hw: pointer to the HW struct
2422  * @dev_p: pointer to device capabilities structure
2423  * @cap: capability element to parse
2424  *
2425  * Parse ICE_AQC_CAPS_VF for device capabilities.
2426  */
2427 static void
2428 ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2429 		      struct ice_aqc_list_caps_elem *cap)
2430 {
2431 	u32 number = le32_to_cpu(cap->number);
2432 
2433 	dev_p->num_vfs_exposed = number;
2434 	ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
2435 		  dev_p->num_vfs_exposed);
2436 }
2437 
2438 /**
2439  * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2440  * @hw: pointer to the HW struct
2441  * @dev_p: pointer to device capabilities structure
2442  * @cap: capability element to parse
2443  *
2444  * Parse ICE_AQC_CAPS_VSI for device capabilities.
2445  */
2446 static void
2447 ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2448 		       struct ice_aqc_list_caps_elem *cap)
2449 {
2450 	u32 number = le32_to_cpu(cap->number);
2451 
2452 	dev_p->num_vsi_allocd_to_host = number;
2453 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2454 		  dev_p->num_vsi_allocd_to_host);
2455 }
2456 
2457 /**
2458  * ice_parse_1588_dev_caps - Parse ICE_AQC_CAPS_1588 device caps
2459  * @hw: pointer to the HW struct
2460  * @dev_p: pointer to device capabilities structure
2461  * @cap: capability element to parse
2462  *
2463  * Parse ICE_AQC_CAPS_1588 for device capabilities.
2464  */
2465 static void
2466 ice_parse_1588_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2467 			struct ice_aqc_list_caps_elem *cap)
2468 {
2469 	struct ice_ts_dev_info *info = &dev_p->ts_dev_info;
2470 	u32 logical_id = le32_to_cpu(cap->logical_id);
2471 	u32 phys_id = le32_to_cpu(cap->phys_id);
2472 	u32 number = le32_to_cpu(cap->number);
2473 
2474 	info->ena = ((number & ICE_TS_DEV_ENA_M) != 0);
2475 	dev_p->common_cap.ieee_1588 = info->ena;
2476 
2477 	info->tmr0_owner = number & ICE_TS_TMR0_OWNR_M;
2478 	info->tmr0_owned = ((number & ICE_TS_TMR0_OWND_M) != 0);
2479 	info->tmr0_ena = ((number & ICE_TS_TMR0_ENA_M) != 0);
2480 
2481 	info->tmr1_owner = FIELD_GET(ICE_TS_TMR1_OWNR_M, number);
2482 	info->tmr1_owned = ((number & ICE_TS_TMR1_OWND_M) != 0);
2483 	info->tmr1_ena = ((number & ICE_TS_TMR1_ENA_M) != 0);
2484 
2485 	info->ts_ll_read = ((number & ICE_TS_LL_TX_TS_READ_M) != 0);
2486 	info->ts_ll_int_read = ((number & ICE_TS_LL_TX_TS_INT_READ_M) != 0);
2487 
2488 	info->ena_ports = logical_id;
2489 	info->tmr_own_map = phys_id;
2490 
2491 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 = %u\n",
2492 		  dev_p->common_cap.ieee_1588);
2493 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owner = %u\n",
2494 		  info->tmr0_owner);
2495 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owned = %u\n",
2496 		  info->tmr0_owned);
2497 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_ena = %u\n",
2498 		  info->tmr0_ena);
2499 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owner = %u\n",
2500 		  info->tmr1_owner);
2501 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owned = %u\n",
2502 		  info->tmr1_owned);
2503 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_ena = %u\n",
2504 		  info->tmr1_ena);
2505 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_read = %u\n",
2506 		  info->ts_ll_read);
2507 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_int_read = %u\n",
2508 		  info->ts_ll_int_read);
2509 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 ena_ports = %u\n",
2510 		  info->ena_ports);
2511 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr_own_map = %u\n",
2512 		  info->tmr_own_map);
2513 }
2514 
2515 /**
2516  * ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps
2517  * @hw: pointer to the HW struct
2518  * @dev_p: pointer to device capabilities structure
2519  * @cap: capability element to parse
2520  *
2521  * Parse ICE_AQC_CAPS_FD for device capabilities.
2522  */
2523 static void
2524 ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2525 			struct ice_aqc_list_caps_elem *cap)
2526 {
2527 	u32 number = le32_to_cpu(cap->number);
2528 
2529 	dev_p->num_flow_director_fltr = number;
2530 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n",
2531 		  dev_p->num_flow_director_fltr);
2532 }
2533 
2534 /**
2535  * ice_parse_sensor_reading_cap - Parse ICE_AQC_CAPS_SENSOR_READING cap
2536  * @hw: pointer to the HW struct
2537  * @dev_p: pointer to device capabilities structure
2538  * @cap: capability element to parse
2539  *
2540  * Parse ICE_AQC_CAPS_SENSOR_READING for device capability for reading
2541  * enabled sensors.
2542  */
2543 static void
2544 ice_parse_sensor_reading_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2545 			     struct ice_aqc_list_caps_elem *cap)
2546 {
2547 	dev_p->supported_sensors = le32_to_cpu(cap->number);
2548 
2549 	ice_debug(hw, ICE_DBG_INIT,
2550 		  "dev caps: supported sensors (bitmap) = 0x%x\n",
2551 		  dev_p->supported_sensors);
2552 }
2553 
2554 /**
2555  * ice_parse_dev_caps - Parse device capabilities
2556  * @hw: pointer to the HW struct
2557  * @dev_p: pointer to device capabilities structure
2558  * @buf: buffer containing the device capability records
2559  * @cap_count: the number of capabilities
2560  *
2561  * Helper device to parse device (0x000B) capabilities list. For
2562  * capabilities shared between device and function, this relies on
2563  * ice_parse_common_caps.
2564  *
2565  * Loop through the list of provided capabilities and extract the relevant
2566  * data into the device capabilities structured.
2567  */
2568 static void
2569 ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2570 		   void *buf, u32 cap_count)
2571 {
2572 	struct ice_aqc_list_caps_elem *cap_resp;
2573 	u32 i;
2574 
2575 	cap_resp = buf;
2576 
2577 	memset(dev_p, 0, sizeof(*dev_p));
2578 
2579 	for (i = 0; i < cap_count; i++) {
2580 		u16 cap = le16_to_cpu(cap_resp[i].cap);
2581 		bool found;
2582 
2583 		found = ice_parse_common_caps(hw, &dev_p->common_cap,
2584 					      &cap_resp[i], "dev caps");
2585 
2586 		switch (cap) {
2587 		case ICE_AQC_CAPS_VALID_FUNCTIONS:
2588 			ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
2589 			break;
2590 		case ICE_AQC_CAPS_VF:
2591 			ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
2592 			break;
2593 		case ICE_AQC_CAPS_VSI:
2594 			ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
2595 			break;
2596 		case ICE_AQC_CAPS_1588:
2597 			ice_parse_1588_dev_caps(hw, dev_p, &cap_resp[i]);
2598 			break;
2599 		case ICE_AQC_CAPS_FD:
2600 			ice_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]);
2601 			break;
2602 		case ICE_AQC_CAPS_SENSOR_READING:
2603 			ice_parse_sensor_reading_cap(hw, dev_p, &cap_resp[i]);
2604 			break;
2605 		default:
2606 			/* Don't list common capabilities as unknown */
2607 			if (!found)
2608 				ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
2609 					  i, cap);
2610 			break;
2611 		}
2612 	}
2613 
2614 	ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
2615 }
2616 
2617 /**
2618  * ice_is_pf_c827 - check if pf contains c827 phy
2619  * @hw: pointer to the hw struct
2620  */
2621 bool ice_is_pf_c827(struct ice_hw *hw)
2622 {
2623 	struct ice_aqc_get_link_topo cmd = {};
2624 	u8 node_part_number;
2625 	u16 node_handle;
2626 	int status;
2627 
2628 	if (hw->mac_type != ICE_MAC_E810)
2629 		return false;
2630 
2631 	if (hw->device_id != ICE_DEV_ID_E810C_QSFP)
2632 		return true;
2633 
2634 	cmd.addr.topo_params.node_type_ctx =
2635 		FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY) |
2636 		FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M, ICE_AQC_LINK_TOPO_NODE_CTX_PORT);
2637 	cmd.addr.topo_params.index = 0;
2638 
2639 	status = ice_aq_get_netlist_node(hw, &cmd, &node_part_number,
2640 					 &node_handle);
2641 
2642 	if (status || node_part_number != ICE_AQC_GET_LINK_TOPO_NODE_NR_C827)
2643 		return false;
2644 
2645 	if (node_handle == E810C_QSFP_C827_0_HANDLE || node_handle == E810C_QSFP_C827_1_HANDLE)
2646 		return true;
2647 
2648 	return false;
2649 }
2650 
2651 /**
2652  * ice_is_phy_rclk_in_netlist
2653  * @hw: pointer to the hw struct
2654  *
2655  * Check if the PHY Recovered Clock device is present in the netlist
2656  */
2657 bool ice_is_phy_rclk_in_netlist(struct ice_hw *hw)
2658 {
2659 	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2660 				  ICE_AQC_GET_LINK_TOPO_NODE_NR_C827, NULL) &&
2661 	    ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2662 				  ICE_AQC_GET_LINK_TOPO_NODE_NR_E822_PHY, NULL))
2663 		return false;
2664 
2665 	return true;
2666 }
2667 
2668 /**
2669  * ice_is_clock_mux_in_netlist
2670  * @hw: pointer to the hw struct
2671  *
2672  * Check if the Clock Multiplexer device is present in the netlist
2673  */
2674 bool ice_is_clock_mux_in_netlist(struct ice_hw *hw)
2675 {
2676 	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_MUX,
2677 				  ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_CLK_MUX,
2678 				  NULL))
2679 		return false;
2680 
2681 	return true;
2682 }
2683 
2684 /**
2685  * ice_is_cgu_in_netlist - check for CGU presence
2686  * @hw: pointer to the hw struct
2687  *
2688  * Check if the Clock Generation Unit (CGU) device is present in the netlist.
2689  * Save the CGU part number in the hw structure for later use.
2690  * Return:
2691  * * true - cgu is present
2692  * * false - cgu is not present
2693  */
2694 bool ice_is_cgu_in_netlist(struct ice_hw *hw)
2695 {
2696 	if (!ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2697 				   ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032,
2698 				   NULL)) {
2699 		hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032;
2700 		return true;
2701 	} else if (!ice_find_netlist_node(hw,
2702 					  ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2703 					  ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384,
2704 					  NULL)) {
2705 		hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384;
2706 		return true;
2707 	}
2708 
2709 	return false;
2710 }
2711 
2712 /**
2713  * ice_is_gps_in_netlist
2714  * @hw: pointer to the hw struct
2715  *
2716  * Check if the GPS generic device is present in the netlist
2717  */
2718 bool ice_is_gps_in_netlist(struct ice_hw *hw)
2719 {
2720 	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_GPS,
2721 				  ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_GPS, NULL))
2722 		return false;
2723 
2724 	return true;
2725 }
2726 
2727 /**
2728  * ice_aq_list_caps - query function/device capabilities
2729  * @hw: pointer to the HW struct
2730  * @buf: a buffer to hold the capabilities
2731  * @buf_size: size of the buffer
2732  * @cap_count: if not NULL, set to the number of capabilities reported
2733  * @opc: capabilities type to discover, device or function
2734  * @cd: pointer to command details structure or NULL
2735  *
2736  * Get the function (0x000A) or device (0x000B) capabilities description from
2737  * firmware and store it in the buffer.
2738  *
2739  * If the cap_count pointer is not NULL, then it is set to the number of
2740  * capabilities firmware will report. Note that if the buffer size is too
2741  * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
2742  * cap_count will still be updated in this case. It is recommended that the
2743  * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
2744  * firmware could return) to avoid this.
2745  */
2746 int
2747 ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
2748 		 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2749 {
2750 	struct ice_aqc_list_caps *cmd;
2751 	struct ice_aq_desc desc;
2752 	int status;
2753 
2754 	cmd = &desc.params.get_cap;
2755 
2756 	if (opc != ice_aqc_opc_list_func_caps &&
2757 	    opc != ice_aqc_opc_list_dev_caps)
2758 		return -EINVAL;
2759 
2760 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
2761 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2762 
2763 	if (cap_count)
2764 		*cap_count = le32_to_cpu(cmd->count);
2765 
2766 	return status;
2767 }
2768 
2769 /**
2770  * ice_discover_dev_caps - Read and extract device capabilities
2771  * @hw: pointer to the hardware structure
2772  * @dev_caps: pointer to device capabilities structure
2773  *
2774  * Read the device capabilities and extract them into the dev_caps structure
2775  * for later use.
2776  */
2777 int
2778 ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
2779 {
2780 	u32 cap_count = 0;
2781 	void *cbuf;
2782 	int status;
2783 
2784 	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2785 	if (!cbuf)
2786 		return -ENOMEM;
2787 
2788 	/* Although the driver doesn't know the number of capabilities the
2789 	 * device will return, we can simply send a 4KB buffer, the maximum
2790 	 * possible size that firmware can return.
2791 	 */
2792 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2793 
2794 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2795 				  ice_aqc_opc_list_dev_caps, NULL);
2796 	if (!status)
2797 		ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
2798 	kfree(cbuf);
2799 
2800 	return status;
2801 }
2802 
2803 /**
2804  * ice_discover_func_caps - Read and extract function capabilities
2805  * @hw: pointer to the hardware structure
2806  * @func_caps: pointer to function capabilities structure
2807  *
2808  * Read the function capabilities and extract them into the func_caps structure
2809  * for later use.
2810  */
2811 static int
2812 ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
2813 {
2814 	u32 cap_count = 0;
2815 	void *cbuf;
2816 	int status;
2817 
2818 	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2819 	if (!cbuf)
2820 		return -ENOMEM;
2821 
2822 	/* Although the driver doesn't know the number of capabilities the
2823 	 * device will return, we can simply send a 4KB buffer, the maximum
2824 	 * possible size that firmware can return.
2825 	 */
2826 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2827 
2828 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2829 				  ice_aqc_opc_list_func_caps, NULL);
2830 	if (!status)
2831 		ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
2832 	kfree(cbuf);
2833 
2834 	return status;
2835 }
2836 
2837 /**
2838  * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
2839  * @hw: pointer to the hardware structure
2840  */
2841 void ice_set_safe_mode_caps(struct ice_hw *hw)
2842 {
2843 	struct ice_hw_func_caps *func_caps = &hw->func_caps;
2844 	struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
2845 	struct ice_hw_common_caps cached_caps;
2846 	u32 num_funcs;
2847 
2848 	/* cache some func_caps values that should be restored after memset */
2849 	cached_caps = func_caps->common_cap;
2850 
2851 	/* unset func capabilities */
2852 	memset(func_caps, 0, sizeof(*func_caps));
2853 
2854 #define ICE_RESTORE_FUNC_CAP(name) \
2855 	func_caps->common_cap.name = cached_caps.name
2856 
2857 	/* restore cached values */
2858 	ICE_RESTORE_FUNC_CAP(valid_functions);
2859 	ICE_RESTORE_FUNC_CAP(txq_first_id);
2860 	ICE_RESTORE_FUNC_CAP(rxq_first_id);
2861 	ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
2862 	ICE_RESTORE_FUNC_CAP(max_mtu);
2863 	ICE_RESTORE_FUNC_CAP(nvm_unified_update);
2864 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_nvm);
2865 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_orom);
2866 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_netlist);
2867 
2868 	/* one Tx and one Rx queue in safe mode */
2869 	func_caps->common_cap.num_rxq = 1;
2870 	func_caps->common_cap.num_txq = 1;
2871 
2872 	/* two MSIX vectors, one for traffic and one for misc causes */
2873 	func_caps->common_cap.num_msix_vectors = 2;
2874 	func_caps->guar_num_vsi = 1;
2875 
2876 	/* cache some dev_caps values that should be restored after memset */
2877 	cached_caps = dev_caps->common_cap;
2878 	num_funcs = dev_caps->num_funcs;
2879 
2880 	/* unset dev capabilities */
2881 	memset(dev_caps, 0, sizeof(*dev_caps));
2882 
2883 #define ICE_RESTORE_DEV_CAP(name) \
2884 	dev_caps->common_cap.name = cached_caps.name
2885 
2886 	/* restore cached values */
2887 	ICE_RESTORE_DEV_CAP(valid_functions);
2888 	ICE_RESTORE_DEV_CAP(txq_first_id);
2889 	ICE_RESTORE_DEV_CAP(rxq_first_id);
2890 	ICE_RESTORE_DEV_CAP(msix_vector_first_id);
2891 	ICE_RESTORE_DEV_CAP(max_mtu);
2892 	ICE_RESTORE_DEV_CAP(nvm_unified_update);
2893 	ICE_RESTORE_DEV_CAP(nvm_update_pending_nvm);
2894 	ICE_RESTORE_DEV_CAP(nvm_update_pending_orom);
2895 	ICE_RESTORE_DEV_CAP(nvm_update_pending_netlist);
2896 	dev_caps->num_funcs = num_funcs;
2897 
2898 	/* one Tx and one Rx queue per function in safe mode */
2899 	dev_caps->common_cap.num_rxq = num_funcs;
2900 	dev_caps->common_cap.num_txq = num_funcs;
2901 
2902 	/* two MSIX vectors per function */
2903 	dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
2904 }
2905 
2906 /**
2907  * ice_get_caps - get info about the HW
2908  * @hw: pointer to the hardware structure
2909  */
2910 int ice_get_caps(struct ice_hw *hw)
2911 {
2912 	int status;
2913 
2914 	status = ice_discover_dev_caps(hw, &hw->dev_caps);
2915 	if (status)
2916 		return status;
2917 
2918 	return ice_discover_func_caps(hw, &hw->func_caps);
2919 }
2920 
2921 /**
2922  * ice_aq_manage_mac_write - manage MAC address write command
2923  * @hw: pointer to the HW struct
2924  * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
2925  * @flags: flags to control write behavior
2926  * @cd: pointer to command details structure or NULL
2927  *
2928  * This function is used to write MAC address to the NVM (0x0108).
2929  */
2930 int
2931 ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
2932 			struct ice_sq_cd *cd)
2933 {
2934 	struct ice_aqc_manage_mac_write *cmd;
2935 	struct ice_aq_desc desc;
2936 
2937 	cmd = &desc.params.mac_write;
2938 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
2939 
2940 	cmd->flags = flags;
2941 	ether_addr_copy(cmd->mac_addr, mac_addr);
2942 
2943 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2944 }
2945 
2946 /**
2947  * ice_aq_clear_pxe_mode
2948  * @hw: pointer to the HW struct
2949  *
2950  * Tell the firmware that the driver is taking over from PXE (0x0110).
2951  */
2952 static int ice_aq_clear_pxe_mode(struct ice_hw *hw)
2953 {
2954 	struct ice_aq_desc desc;
2955 
2956 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
2957 	desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
2958 
2959 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
2960 }
2961 
2962 /**
2963  * ice_clear_pxe_mode - clear pxe operations mode
2964  * @hw: pointer to the HW struct
2965  *
2966  * Make sure all PXE mode settings are cleared, including things
2967  * like descriptor fetch/write-back mode.
2968  */
2969 void ice_clear_pxe_mode(struct ice_hw *hw)
2970 {
2971 	if (ice_check_sq_alive(hw, &hw->adminq))
2972 		ice_aq_clear_pxe_mode(hw);
2973 }
2974 
2975 /**
2976  * ice_aq_set_port_params - set physical port parameters.
2977  * @pi: pointer to the port info struct
2978  * @double_vlan: if set double VLAN is enabled
2979  * @cd: pointer to command details structure or NULL
2980  *
2981  * Set Physical port parameters (0x0203)
2982  */
2983 int
2984 ice_aq_set_port_params(struct ice_port_info *pi, bool double_vlan,
2985 		       struct ice_sq_cd *cd)
2986 
2987 {
2988 	struct ice_aqc_set_port_params *cmd;
2989 	struct ice_hw *hw = pi->hw;
2990 	struct ice_aq_desc desc;
2991 	u16 cmd_flags = 0;
2992 
2993 	cmd = &desc.params.set_port_params;
2994 
2995 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_params);
2996 	if (double_vlan)
2997 		cmd_flags |= ICE_AQC_SET_P_PARAMS_DOUBLE_VLAN_ENA;
2998 	cmd->cmd_flags = cpu_to_le16(cmd_flags);
2999 
3000 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3001 }
3002 
3003 /**
3004  * ice_is_100m_speed_supported
3005  * @hw: pointer to the HW struct
3006  *
3007  * returns true if 100M speeds are supported by the device,
3008  * false otherwise.
3009  */
3010 bool ice_is_100m_speed_supported(struct ice_hw *hw)
3011 {
3012 	switch (hw->device_id) {
3013 	case ICE_DEV_ID_E822C_SGMII:
3014 	case ICE_DEV_ID_E822L_SGMII:
3015 	case ICE_DEV_ID_E823L_1GBE:
3016 	case ICE_DEV_ID_E823C_SGMII:
3017 		return true;
3018 	default:
3019 		return false;
3020 	}
3021 }
3022 
3023 /**
3024  * ice_get_link_speed_based_on_phy_type - returns link speed
3025  * @phy_type_low: lower part of phy_type
3026  * @phy_type_high: higher part of phy_type
3027  *
3028  * This helper function will convert an entry in PHY type structure
3029  * [phy_type_low, phy_type_high] to its corresponding link speed.
3030  * Note: In the structure of [phy_type_low, phy_type_high], there should
3031  * be one bit set, as this function will convert one PHY type to its
3032  * speed.
3033  * If no bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3034  * If more than one bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3035  */
3036 static u16
3037 ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
3038 {
3039 	u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3040 	u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3041 
3042 	switch (phy_type_low) {
3043 	case ICE_PHY_TYPE_LOW_100BASE_TX:
3044 	case ICE_PHY_TYPE_LOW_100M_SGMII:
3045 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
3046 		break;
3047 	case ICE_PHY_TYPE_LOW_1000BASE_T:
3048 	case ICE_PHY_TYPE_LOW_1000BASE_SX:
3049 	case ICE_PHY_TYPE_LOW_1000BASE_LX:
3050 	case ICE_PHY_TYPE_LOW_1000BASE_KX:
3051 	case ICE_PHY_TYPE_LOW_1G_SGMII:
3052 		speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
3053 		break;
3054 	case ICE_PHY_TYPE_LOW_2500BASE_T:
3055 	case ICE_PHY_TYPE_LOW_2500BASE_X:
3056 	case ICE_PHY_TYPE_LOW_2500BASE_KX:
3057 		speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
3058 		break;
3059 	case ICE_PHY_TYPE_LOW_5GBASE_T:
3060 	case ICE_PHY_TYPE_LOW_5GBASE_KR:
3061 		speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
3062 		break;
3063 	case ICE_PHY_TYPE_LOW_10GBASE_T:
3064 	case ICE_PHY_TYPE_LOW_10G_SFI_DA:
3065 	case ICE_PHY_TYPE_LOW_10GBASE_SR:
3066 	case ICE_PHY_TYPE_LOW_10GBASE_LR:
3067 	case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
3068 	case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
3069 	case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
3070 		speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
3071 		break;
3072 	case ICE_PHY_TYPE_LOW_25GBASE_T:
3073 	case ICE_PHY_TYPE_LOW_25GBASE_CR:
3074 	case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
3075 	case ICE_PHY_TYPE_LOW_25GBASE_CR1:
3076 	case ICE_PHY_TYPE_LOW_25GBASE_SR:
3077 	case ICE_PHY_TYPE_LOW_25GBASE_LR:
3078 	case ICE_PHY_TYPE_LOW_25GBASE_KR:
3079 	case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
3080 	case ICE_PHY_TYPE_LOW_25GBASE_KR1:
3081 	case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
3082 	case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
3083 		speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
3084 		break;
3085 	case ICE_PHY_TYPE_LOW_40GBASE_CR4:
3086 	case ICE_PHY_TYPE_LOW_40GBASE_SR4:
3087 	case ICE_PHY_TYPE_LOW_40GBASE_LR4:
3088 	case ICE_PHY_TYPE_LOW_40GBASE_KR4:
3089 	case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
3090 	case ICE_PHY_TYPE_LOW_40G_XLAUI:
3091 		speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
3092 		break;
3093 	case ICE_PHY_TYPE_LOW_50GBASE_CR2:
3094 	case ICE_PHY_TYPE_LOW_50GBASE_SR2:
3095 	case ICE_PHY_TYPE_LOW_50GBASE_LR2:
3096 	case ICE_PHY_TYPE_LOW_50GBASE_KR2:
3097 	case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
3098 	case ICE_PHY_TYPE_LOW_50G_LAUI2:
3099 	case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
3100 	case ICE_PHY_TYPE_LOW_50G_AUI2:
3101 	case ICE_PHY_TYPE_LOW_50GBASE_CP:
3102 	case ICE_PHY_TYPE_LOW_50GBASE_SR:
3103 	case ICE_PHY_TYPE_LOW_50GBASE_FR:
3104 	case ICE_PHY_TYPE_LOW_50GBASE_LR:
3105 	case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
3106 	case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
3107 	case ICE_PHY_TYPE_LOW_50G_AUI1:
3108 		speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
3109 		break;
3110 	case ICE_PHY_TYPE_LOW_100GBASE_CR4:
3111 	case ICE_PHY_TYPE_LOW_100GBASE_SR4:
3112 	case ICE_PHY_TYPE_LOW_100GBASE_LR4:
3113 	case ICE_PHY_TYPE_LOW_100GBASE_KR4:
3114 	case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
3115 	case ICE_PHY_TYPE_LOW_100G_CAUI4:
3116 	case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
3117 	case ICE_PHY_TYPE_LOW_100G_AUI4:
3118 	case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
3119 	case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
3120 	case ICE_PHY_TYPE_LOW_100GBASE_CP2:
3121 	case ICE_PHY_TYPE_LOW_100GBASE_SR2:
3122 	case ICE_PHY_TYPE_LOW_100GBASE_DR:
3123 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
3124 		break;
3125 	default:
3126 		speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3127 		break;
3128 	}
3129 
3130 	switch (phy_type_high) {
3131 	case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
3132 	case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
3133 	case ICE_PHY_TYPE_HIGH_100G_CAUI2:
3134 	case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
3135 	case ICE_PHY_TYPE_HIGH_100G_AUI2:
3136 		speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
3137 		break;
3138 	default:
3139 		speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3140 		break;
3141 	}
3142 
3143 	if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
3144 	    speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3145 		return ICE_AQ_LINK_SPEED_UNKNOWN;
3146 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3147 		 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
3148 		return ICE_AQ_LINK_SPEED_UNKNOWN;
3149 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3150 		 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3151 		return speed_phy_type_low;
3152 	else
3153 		return speed_phy_type_high;
3154 }
3155 
3156 /**
3157  * ice_update_phy_type
3158  * @phy_type_low: pointer to the lower part of phy_type
3159  * @phy_type_high: pointer to the higher part of phy_type
3160  * @link_speeds_bitmap: targeted link speeds bitmap
3161  *
3162  * Note: For the link_speeds_bitmap structure, you can check it at
3163  * [ice_aqc_get_link_status->link_speed]. Caller can pass in
3164  * link_speeds_bitmap include multiple speeds.
3165  *
3166  * Each entry in this [phy_type_low, phy_type_high] structure will
3167  * present a certain link speed. This helper function will turn on bits
3168  * in [phy_type_low, phy_type_high] structure based on the value of
3169  * link_speeds_bitmap input parameter.
3170  */
3171 void
3172 ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
3173 		    u16 link_speeds_bitmap)
3174 {
3175 	u64 pt_high;
3176 	u64 pt_low;
3177 	int index;
3178 	u16 speed;
3179 
3180 	/* We first check with low part of phy_type */
3181 	for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
3182 		pt_low = BIT_ULL(index);
3183 		speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
3184 
3185 		if (link_speeds_bitmap & speed)
3186 			*phy_type_low |= BIT_ULL(index);
3187 	}
3188 
3189 	/* We then check with high part of phy_type */
3190 	for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
3191 		pt_high = BIT_ULL(index);
3192 		speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
3193 
3194 		if (link_speeds_bitmap & speed)
3195 			*phy_type_high |= BIT_ULL(index);
3196 	}
3197 }
3198 
3199 /**
3200  * ice_aq_set_phy_cfg
3201  * @hw: pointer to the HW struct
3202  * @pi: port info structure of the interested logical port
3203  * @cfg: structure with PHY configuration data to be set
3204  * @cd: pointer to command details structure or NULL
3205  *
3206  * Set the various PHY configuration parameters supported on the Port.
3207  * One or more of the Set PHY config parameters may be ignored in an MFP
3208  * mode as the PF may not have the privilege to set some of the PHY Config
3209  * parameters. This status will be indicated by the command response (0x0601).
3210  */
3211 int
3212 ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
3213 		   struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
3214 {
3215 	struct ice_aq_desc desc;
3216 	int status;
3217 
3218 	if (!cfg)
3219 		return -EINVAL;
3220 
3221 	/* Ensure that only valid bits of cfg->caps can be turned on. */
3222 	if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
3223 		ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
3224 			  cfg->caps);
3225 
3226 		cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
3227 	}
3228 
3229 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
3230 	desc.params.set_phy.lport_num = pi->lport;
3231 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3232 
3233 	ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
3234 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
3235 		  (unsigned long long)le64_to_cpu(cfg->phy_type_low));
3236 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
3237 		  (unsigned long long)le64_to_cpu(cfg->phy_type_high));
3238 	ice_debug(hw, ICE_DBG_LINK, "	caps = 0x%x\n", cfg->caps);
3239 	ice_debug(hw, ICE_DBG_LINK, "	low_power_ctrl_an = 0x%x\n",
3240 		  cfg->low_power_ctrl_an);
3241 	ice_debug(hw, ICE_DBG_LINK, "	eee_cap = 0x%x\n", cfg->eee_cap);
3242 	ice_debug(hw, ICE_DBG_LINK, "	eeer_value = 0x%x\n", cfg->eeer_value);
3243 	ice_debug(hw, ICE_DBG_LINK, "	link_fec_opt = 0x%x\n",
3244 		  cfg->link_fec_opt);
3245 
3246 	status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
3247 	if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3248 		status = 0;
3249 
3250 	if (!status)
3251 		pi->phy.curr_user_phy_cfg = *cfg;
3252 
3253 	return status;
3254 }
3255 
3256 /**
3257  * ice_update_link_info - update status of the HW network link
3258  * @pi: port info structure of the interested logical port
3259  */
3260 int ice_update_link_info(struct ice_port_info *pi)
3261 {
3262 	struct ice_link_status *li;
3263 	int status;
3264 
3265 	if (!pi)
3266 		return -EINVAL;
3267 
3268 	li = &pi->phy.link_info;
3269 
3270 	status = ice_aq_get_link_info(pi, true, NULL, NULL);
3271 	if (status)
3272 		return status;
3273 
3274 	if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
3275 		struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3276 
3277 		pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3278 		if (!pcaps)
3279 			return -ENOMEM;
3280 
3281 		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
3282 					     pcaps, NULL);
3283 	}
3284 
3285 	return status;
3286 }
3287 
3288 /**
3289  * ice_cache_phy_user_req
3290  * @pi: port information structure
3291  * @cache_data: PHY logging data
3292  * @cache_mode: PHY logging mode
3293  *
3294  * Log the user request on (FC, FEC, SPEED) for later use.
3295  */
3296 static void
3297 ice_cache_phy_user_req(struct ice_port_info *pi,
3298 		       struct ice_phy_cache_mode_data cache_data,
3299 		       enum ice_phy_cache_mode cache_mode)
3300 {
3301 	if (!pi)
3302 		return;
3303 
3304 	switch (cache_mode) {
3305 	case ICE_FC_MODE:
3306 		pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
3307 		break;
3308 	case ICE_SPEED_MODE:
3309 		pi->phy.curr_user_speed_req =
3310 			cache_data.data.curr_user_speed_req;
3311 		break;
3312 	case ICE_FEC_MODE:
3313 		pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
3314 		break;
3315 	default:
3316 		break;
3317 	}
3318 }
3319 
3320 /**
3321  * ice_caps_to_fc_mode
3322  * @caps: PHY capabilities
3323  *
3324  * Convert PHY FC capabilities to ice FC mode
3325  */
3326 enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
3327 {
3328 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
3329 	    caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3330 		return ICE_FC_FULL;
3331 
3332 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
3333 		return ICE_FC_TX_PAUSE;
3334 
3335 	if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3336 		return ICE_FC_RX_PAUSE;
3337 
3338 	return ICE_FC_NONE;
3339 }
3340 
3341 /**
3342  * ice_caps_to_fec_mode
3343  * @caps: PHY capabilities
3344  * @fec_options: Link FEC options
3345  *
3346  * Convert PHY FEC capabilities to ice FEC mode
3347  */
3348 enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
3349 {
3350 	if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
3351 		return ICE_FEC_AUTO;
3352 
3353 	if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3354 			   ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3355 			   ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
3356 			   ICE_AQC_PHY_FEC_25G_KR_REQ))
3357 		return ICE_FEC_BASER;
3358 
3359 	if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3360 			   ICE_AQC_PHY_FEC_25G_RS_544_REQ |
3361 			   ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
3362 		return ICE_FEC_RS;
3363 
3364 	return ICE_FEC_NONE;
3365 }
3366 
3367 /**
3368  * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
3369  * @pi: port information structure
3370  * @cfg: PHY configuration data to set FC mode
3371  * @req_mode: FC mode to configure
3372  */
3373 int
3374 ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3375 	       enum ice_fc_mode req_mode)
3376 {
3377 	struct ice_phy_cache_mode_data cache_data;
3378 	u8 pause_mask = 0x0;
3379 
3380 	if (!pi || !cfg)
3381 		return -EINVAL;
3382 
3383 	switch (req_mode) {
3384 	case ICE_FC_FULL:
3385 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3386 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3387 		break;
3388 	case ICE_FC_RX_PAUSE:
3389 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3390 		break;
3391 	case ICE_FC_TX_PAUSE:
3392 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3393 		break;
3394 	default:
3395 		break;
3396 	}
3397 
3398 	/* clear the old pause settings */
3399 	cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
3400 		ICE_AQC_PHY_EN_RX_LINK_PAUSE);
3401 
3402 	/* set the new capabilities */
3403 	cfg->caps |= pause_mask;
3404 
3405 	/* Cache user FC request */
3406 	cache_data.data.curr_user_fc_req = req_mode;
3407 	ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
3408 
3409 	return 0;
3410 }
3411 
3412 /**
3413  * ice_set_fc
3414  * @pi: port information structure
3415  * @aq_failures: pointer to status code, specific to ice_set_fc routine
3416  * @ena_auto_link_update: enable automatic link update
3417  *
3418  * Set the requested flow control mode.
3419  */
3420 int
3421 ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
3422 {
3423 	struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3424 	struct ice_aqc_set_phy_cfg_data cfg = { 0 };
3425 	struct ice_hw *hw;
3426 	int status;
3427 
3428 	if (!pi || !aq_failures)
3429 		return -EINVAL;
3430 
3431 	*aq_failures = 0;
3432 	hw = pi->hw;
3433 
3434 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3435 	if (!pcaps)
3436 		return -ENOMEM;
3437 
3438 	/* Get the current PHY config */
3439 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
3440 				     pcaps, NULL);
3441 	if (status) {
3442 		*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3443 		goto out;
3444 	}
3445 
3446 	ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
3447 
3448 	/* Configure the set PHY data */
3449 	status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
3450 	if (status)
3451 		goto out;
3452 
3453 	/* If the capabilities have changed, then set the new config */
3454 	if (cfg.caps != pcaps->caps) {
3455 		int retry_count, retry_max = 10;
3456 
3457 		/* Auto restart link so settings take effect */
3458 		if (ena_auto_link_update)
3459 			cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3460 
3461 		status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
3462 		if (status) {
3463 			*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
3464 			goto out;
3465 		}
3466 
3467 		/* Update the link info
3468 		 * It sometimes takes a really long time for link to
3469 		 * come back from the atomic reset. Thus, we wait a
3470 		 * little bit.
3471 		 */
3472 		for (retry_count = 0; retry_count < retry_max; retry_count++) {
3473 			status = ice_update_link_info(pi);
3474 
3475 			if (!status)
3476 				break;
3477 
3478 			mdelay(100);
3479 		}
3480 
3481 		if (status)
3482 			*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
3483 	}
3484 
3485 out:
3486 	return status;
3487 }
3488 
3489 /**
3490  * ice_phy_caps_equals_cfg
3491  * @phy_caps: PHY capabilities
3492  * @phy_cfg: PHY configuration
3493  *
3494  * Helper function to determine if PHY capabilities matches PHY
3495  * configuration
3496  */
3497 bool
3498 ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
3499 			struct ice_aqc_set_phy_cfg_data *phy_cfg)
3500 {
3501 	u8 caps_mask, cfg_mask;
3502 
3503 	if (!phy_caps || !phy_cfg)
3504 		return false;
3505 
3506 	/* These bits are not common between capabilities and configuration.
3507 	 * Do not use them to determine equality.
3508 	 */
3509 	caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
3510 					      ICE_AQC_GET_PHY_EN_MOD_QUAL);
3511 	cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3512 
3513 	if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
3514 	    phy_caps->phy_type_high != phy_cfg->phy_type_high ||
3515 	    ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
3516 	    phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
3517 	    phy_caps->eee_cap != phy_cfg->eee_cap ||
3518 	    phy_caps->eeer_value != phy_cfg->eeer_value ||
3519 	    phy_caps->link_fec_options != phy_cfg->link_fec_opt)
3520 		return false;
3521 
3522 	return true;
3523 }
3524 
3525 /**
3526  * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
3527  * @pi: port information structure
3528  * @caps: PHY ability structure to copy date from
3529  * @cfg: PHY configuration structure to copy data to
3530  *
3531  * Helper function to copy AQC PHY get ability data to PHY set configuration
3532  * data structure
3533  */
3534 void
3535 ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
3536 			 struct ice_aqc_get_phy_caps_data *caps,
3537 			 struct ice_aqc_set_phy_cfg_data *cfg)
3538 {
3539 	if (!pi || !caps || !cfg)
3540 		return;
3541 
3542 	memset(cfg, 0, sizeof(*cfg));
3543 	cfg->phy_type_low = caps->phy_type_low;
3544 	cfg->phy_type_high = caps->phy_type_high;
3545 	cfg->caps = caps->caps;
3546 	cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
3547 	cfg->eee_cap = caps->eee_cap;
3548 	cfg->eeer_value = caps->eeer_value;
3549 	cfg->link_fec_opt = caps->link_fec_options;
3550 	cfg->module_compliance_enforcement =
3551 		caps->module_compliance_enforcement;
3552 }
3553 
3554 /**
3555  * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
3556  * @pi: port information structure
3557  * @cfg: PHY configuration data to set FEC mode
3558  * @fec: FEC mode to configure
3559  */
3560 int
3561 ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3562 		enum ice_fec_mode fec)
3563 {
3564 	struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3565 	struct ice_hw *hw;
3566 	int status;
3567 
3568 	if (!pi || !cfg)
3569 		return -EINVAL;
3570 
3571 	hw = pi->hw;
3572 
3573 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3574 	if (!pcaps)
3575 		return -ENOMEM;
3576 
3577 	status = ice_aq_get_phy_caps(pi, false,
3578 				     (ice_fw_supports_report_dflt_cfg(hw) ?
3579 				      ICE_AQC_REPORT_DFLT_CFG :
3580 				      ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL);
3581 	if (status)
3582 		goto out;
3583 
3584 	cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
3585 	cfg->link_fec_opt = pcaps->link_fec_options;
3586 
3587 	switch (fec) {
3588 	case ICE_FEC_BASER:
3589 		/* Clear RS bits, and AND BASE-R ability
3590 		 * bits and OR request bits.
3591 		 */
3592 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3593 			ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
3594 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3595 			ICE_AQC_PHY_FEC_25G_KR_REQ;
3596 		break;
3597 	case ICE_FEC_RS:
3598 		/* Clear BASE-R bits, and AND RS ability
3599 		 * bits and OR request bits.
3600 		 */
3601 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
3602 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3603 			ICE_AQC_PHY_FEC_25G_RS_544_REQ;
3604 		break;
3605 	case ICE_FEC_NONE:
3606 		/* Clear all FEC option bits. */
3607 		cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
3608 		break;
3609 	case ICE_FEC_AUTO:
3610 		/* AND auto FEC bit, and all caps bits. */
3611 		cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
3612 		cfg->link_fec_opt |= pcaps->link_fec_options;
3613 		break;
3614 	default:
3615 		status = -EINVAL;
3616 		break;
3617 	}
3618 
3619 	if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(hw) &&
3620 	    !ice_fw_supports_report_dflt_cfg(hw)) {
3621 		struct ice_link_default_override_tlv tlv = { 0 };
3622 
3623 		status = ice_get_link_default_override(&tlv, pi);
3624 		if (status)
3625 			goto out;
3626 
3627 		if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
3628 		    (tlv.options & ICE_LINK_OVERRIDE_EN))
3629 			cfg->link_fec_opt = tlv.fec_options;
3630 	}
3631 
3632 out:
3633 	return status;
3634 }
3635 
3636 /**
3637  * ice_get_link_status - get status of the HW network link
3638  * @pi: port information structure
3639  * @link_up: pointer to bool (true/false = linkup/linkdown)
3640  *
3641  * Variable link_up is true if link is up, false if link is down.
3642  * The variable link_up is invalid if status is non zero. As a
3643  * result of this call, link status reporting becomes enabled
3644  */
3645 int ice_get_link_status(struct ice_port_info *pi, bool *link_up)
3646 {
3647 	struct ice_phy_info *phy_info;
3648 	int status = 0;
3649 
3650 	if (!pi || !link_up)
3651 		return -EINVAL;
3652 
3653 	phy_info = &pi->phy;
3654 
3655 	if (phy_info->get_link_info) {
3656 		status = ice_update_link_info(pi);
3657 
3658 		if (status)
3659 			ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
3660 				  status);
3661 	}
3662 
3663 	*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
3664 
3665 	return status;
3666 }
3667 
3668 /**
3669  * ice_aq_set_link_restart_an
3670  * @pi: pointer to the port information structure
3671  * @ena_link: if true: enable link, if false: disable link
3672  * @cd: pointer to command details structure or NULL
3673  *
3674  * Sets up the link and restarts the Auto-Negotiation over the link.
3675  */
3676 int
3677 ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
3678 			   struct ice_sq_cd *cd)
3679 {
3680 	struct ice_aqc_restart_an *cmd;
3681 	struct ice_aq_desc desc;
3682 
3683 	cmd = &desc.params.restart_an;
3684 
3685 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
3686 
3687 	cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
3688 	cmd->lport_num = pi->lport;
3689 	if (ena_link)
3690 		cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
3691 	else
3692 		cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
3693 
3694 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
3695 }
3696 
3697 /**
3698  * ice_aq_set_event_mask
3699  * @hw: pointer to the HW struct
3700  * @port_num: port number of the physical function
3701  * @mask: event mask to be set
3702  * @cd: pointer to command details structure or NULL
3703  *
3704  * Set event mask (0x0613)
3705  */
3706 int
3707 ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
3708 		      struct ice_sq_cd *cd)
3709 {
3710 	struct ice_aqc_set_event_mask *cmd;
3711 	struct ice_aq_desc desc;
3712 
3713 	cmd = &desc.params.set_event_mask;
3714 
3715 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
3716 
3717 	cmd->lport_num = port_num;
3718 
3719 	cmd->event_mask = cpu_to_le16(mask);
3720 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3721 }
3722 
3723 /**
3724  * ice_aq_set_mac_loopback
3725  * @hw: pointer to the HW struct
3726  * @ena_lpbk: Enable or Disable loopback
3727  * @cd: pointer to command details structure or NULL
3728  *
3729  * Enable/disable loopback on a given port
3730  */
3731 int
3732 ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
3733 {
3734 	struct ice_aqc_set_mac_lb *cmd;
3735 	struct ice_aq_desc desc;
3736 
3737 	cmd = &desc.params.set_mac_lb;
3738 
3739 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
3740 	if (ena_lpbk)
3741 		cmd->lb_mode = ICE_AQ_MAC_LB_EN;
3742 
3743 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3744 }
3745 
3746 /**
3747  * ice_aq_set_port_id_led
3748  * @pi: pointer to the port information
3749  * @is_orig_mode: is this LED set to original mode (by the net-list)
3750  * @cd: pointer to command details structure or NULL
3751  *
3752  * Set LED value for the given port (0x06e9)
3753  */
3754 int
3755 ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
3756 		       struct ice_sq_cd *cd)
3757 {
3758 	struct ice_aqc_set_port_id_led *cmd;
3759 	struct ice_hw *hw = pi->hw;
3760 	struct ice_aq_desc desc;
3761 
3762 	cmd = &desc.params.set_port_id_led;
3763 
3764 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
3765 
3766 	if (is_orig_mode)
3767 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
3768 	else
3769 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
3770 
3771 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3772 }
3773 
3774 /**
3775  * ice_aq_get_port_options
3776  * @hw: pointer to the HW struct
3777  * @options: buffer for the resultant port options
3778  * @option_count: input - size of the buffer in port options structures,
3779  *                output - number of returned port options
3780  * @lport: logical port to call the command with (optional)
3781  * @lport_valid: when false, FW uses port owned by the PF instead of lport,
3782  *               when PF owns more than 1 port it must be true
3783  * @active_option_idx: index of active port option in returned buffer
3784  * @active_option_valid: active option in returned buffer is valid
3785  * @pending_option_idx: index of pending port option in returned buffer
3786  * @pending_option_valid: pending option in returned buffer is valid
3787  *
3788  * Calls Get Port Options AQC (0x06ea) and verifies result.
3789  */
3790 int
3791 ice_aq_get_port_options(struct ice_hw *hw,
3792 			struct ice_aqc_get_port_options_elem *options,
3793 			u8 *option_count, u8 lport, bool lport_valid,
3794 			u8 *active_option_idx, bool *active_option_valid,
3795 			u8 *pending_option_idx, bool *pending_option_valid)
3796 {
3797 	struct ice_aqc_get_port_options *cmd;
3798 	struct ice_aq_desc desc;
3799 	int status;
3800 	u8 i;
3801 
3802 	/* options buffer shall be able to hold max returned options */
3803 	if (*option_count < ICE_AQC_PORT_OPT_COUNT_M)
3804 		return -EINVAL;
3805 
3806 	cmd = &desc.params.get_port_options;
3807 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_port_options);
3808 
3809 	if (lport_valid)
3810 		cmd->lport_num = lport;
3811 	cmd->lport_num_valid = lport_valid;
3812 
3813 	status = ice_aq_send_cmd(hw, &desc, options,
3814 				 *option_count * sizeof(*options), NULL);
3815 	if (status)
3816 		return status;
3817 
3818 	/* verify direct FW response & set output parameters */
3819 	*option_count = FIELD_GET(ICE_AQC_PORT_OPT_COUNT_M,
3820 				  cmd->port_options_count);
3821 	ice_debug(hw, ICE_DBG_PHY, "options: %x\n", *option_count);
3822 	*active_option_valid = FIELD_GET(ICE_AQC_PORT_OPT_VALID,
3823 					 cmd->port_options);
3824 	if (*active_option_valid) {
3825 		*active_option_idx = FIELD_GET(ICE_AQC_PORT_OPT_ACTIVE_M,
3826 					       cmd->port_options);
3827 		if (*active_option_idx > (*option_count - 1))
3828 			return -EIO;
3829 		ice_debug(hw, ICE_DBG_PHY, "active idx: %x\n",
3830 			  *active_option_idx);
3831 	}
3832 
3833 	*pending_option_valid = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_VALID,
3834 					  cmd->pending_port_option_status);
3835 	if (*pending_option_valid) {
3836 		*pending_option_idx = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_IDX_M,
3837 						cmd->pending_port_option_status);
3838 		if (*pending_option_idx > (*option_count - 1))
3839 			return -EIO;
3840 		ice_debug(hw, ICE_DBG_PHY, "pending idx: %x\n",
3841 			  *pending_option_idx);
3842 	}
3843 
3844 	/* mask output options fields */
3845 	for (i = 0; i < *option_count; i++) {
3846 		options[i].pmd = FIELD_GET(ICE_AQC_PORT_OPT_PMD_COUNT_M,
3847 					   options[i].pmd);
3848 		options[i].max_lane_speed = FIELD_GET(ICE_AQC_PORT_OPT_MAX_LANE_M,
3849 						      options[i].max_lane_speed);
3850 		ice_debug(hw, ICE_DBG_PHY, "pmds: %x max speed: %x\n",
3851 			  options[i].pmd, options[i].max_lane_speed);
3852 	}
3853 
3854 	return 0;
3855 }
3856 
3857 /**
3858  * ice_aq_set_port_option
3859  * @hw: pointer to the HW struct
3860  * @lport: logical port to call the command with
3861  * @lport_valid: when false, FW uses port owned by the PF instead of lport,
3862  *               when PF owns more than 1 port it must be true
3863  * @new_option: new port option to be written
3864  *
3865  * Calls Set Port Options AQC (0x06eb).
3866  */
3867 int
3868 ice_aq_set_port_option(struct ice_hw *hw, u8 lport, u8 lport_valid,
3869 		       u8 new_option)
3870 {
3871 	struct ice_aqc_set_port_option *cmd;
3872 	struct ice_aq_desc desc;
3873 
3874 	if (new_option > ICE_AQC_PORT_OPT_COUNT_M)
3875 		return -EINVAL;
3876 
3877 	cmd = &desc.params.set_port_option;
3878 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_option);
3879 
3880 	if (lport_valid)
3881 		cmd->lport_num = lport;
3882 
3883 	cmd->lport_num_valid = lport_valid;
3884 	cmd->selected_port_option = new_option;
3885 
3886 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
3887 }
3888 
3889 /**
3890  * ice_aq_sff_eeprom
3891  * @hw: pointer to the HW struct
3892  * @lport: bits [7:0] = logical port, bit [8] = logical port valid
3893  * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
3894  * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
3895  * @page: QSFP page
3896  * @set_page: set or ignore the page
3897  * @data: pointer to data buffer to be read/written to the I2C device.
3898  * @length: 1-16 for read, 1 for write.
3899  * @write: 0 read, 1 for write.
3900  * @cd: pointer to command details structure or NULL
3901  *
3902  * Read/Write SFF EEPROM (0x06EE)
3903  */
3904 int
3905 ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
3906 		  u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
3907 		  bool write, struct ice_sq_cd *cd)
3908 {
3909 	struct ice_aqc_sff_eeprom *cmd;
3910 	struct ice_aq_desc desc;
3911 	u16 i2c_bus_addr;
3912 	int status;
3913 
3914 	if (!data || (mem_addr & 0xff00))
3915 		return -EINVAL;
3916 
3917 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
3918 	cmd = &desc.params.read_write_sff_param;
3919 	desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
3920 	cmd->lport_num = (u8)(lport & 0xff);
3921 	cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
3922 	i2c_bus_addr = FIELD_PREP(ICE_AQC_SFF_I2CBUS_7BIT_M, bus_addr >> 1) |
3923 		       FIELD_PREP(ICE_AQC_SFF_SET_EEPROM_PAGE_M, set_page);
3924 	if (write)
3925 		i2c_bus_addr |= ICE_AQC_SFF_IS_WRITE;
3926 	cmd->i2c_bus_addr = cpu_to_le16(i2c_bus_addr);
3927 	cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff);
3928 	cmd->eeprom_page = le16_encode_bits(page, ICE_AQC_SFF_EEPROM_PAGE_M);
3929 
3930 	status = ice_aq_send_cmd(hw, &desc, data, length, cd);
3931 	return status;
3932 }
3933 
3934 static enum ice_lut_size ice_lut_type_to_size(enum ice_lut_type type)
3935 {
3936 	switch (type) {
3937 	case ICE_LUT_VSI:
3938 		return ICE_LUT_VSI_SIZE;
3939 	case ICE_LUT_GLOBAL:
3940 		return ICE_LUT_GLOBAL_SIZE;
3941 	case ICE_LUT_PF:
3942 		return ICE_LUT_PF_SIZE;
3943 	}
3944 	WARN_ONCE(1, "incorrect type passed");
3945 	return ICE_LUT_VSI_SIZE;
3946 }
3947 
3948 static enum ice_aqc_lut_flags ice_lut_size_to_flag(enum ice_lut_size size)
3949 {
3950 	switch (size) {
3951 	case ICE_LUT_VSI_SIZE:
3952 		return ICE_AQC_LUT_SIZE_SMALL;
3953 	case ICE_LUT_GLOBAL_SIZE:
3954 		return ICE_AQC_LUT_SIZE_512;
3955 	case ICE_LUT_PF_SIZE:
3956 		return ICE_AQC_LUT_SIZE_2K;
3957 	}
3958 	WARN_ONCE(1, "incorrect size passed");
3959 	return 0;
3960 }
3961 
3962 /**
3963  * __ice_aq_get_set_rss_lut
3964  * @hw: pointer to the hardware structure
3965  * @params: RSS LUT parameters
3966  * @set: set true to set the table, false to get the table
3967  *
3968  * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
3969  */
3970 static int
3971 __ice_aq_get_set_rss_lut(struct ice_hw *hw,
3972 			 struct ice_aq_get_set_rss_lut_params *params, bool set)
3973 {
3974 	u16 opcode, vsi_id, vsi_handle = params->vsi_handle, glob_lut_idx = 0;
3975 	enum ice_lut_type lut_type = params->lut_type;
3976 	struct ice_aqc_get_set_rss_lut *desc_params;
3977 	enum ice_aqc_lut_flags flags;
3978 	enum ice_lut_size lut_size;
3979 	struct ice_aq_desc desc;
3980 	u8 *lut = params->lut;
3981 
3982 
3983 	if (!lut || !ice_is_vsi_valid(hw, vsi_handle))
3984 		return -EINVAL;
3985 
3986 	lut_size = ice_lut_type_to_size(lut_type);
3987 	if (lut_size > params->lut_size)
3988 		return -EINVAL;
3989 	else if (set && lut_size != params->lut_size)
3990 		return -EINVAL;
3991 
3992 	opcode = set ? ice_aqc_opc_set_rss_lut : ice_aqc_opc_get_rss_lut;
3993 	ice_fill_dflt_direct_cmd_desc(&desc, opcode);
3994 	if (set)
3995 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3996 
3997 	desc_params = &desc.params.get_set_rss_lut;
3998 	vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3999 	desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
4000 
4001 	if (lut_type == ICE_LUT_GLOBAL)
4002 		glob_lut_idx = FIELD_PREP(ICE_AQC_LUT_GLOBAL_IDX,
4003 					  params->global_lut_id);
4004 
4005 	flags = lut_type | glob_lut_idx | ice_lut_size_to_flag(lut_size);
4006 	desc_params->flags = cpu_to_le16(flags);
4007 
4008 	return ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
4009 }
4010 
4011 /**
4012  * ice_aq_get_rss_lut
4013  * @hw: pointer to the hardware structure
4014  * @get_params: RSS LUT parameters used to specify which RSS LUT to get
4015  *
4016  * get the RSS lookup table, PF or VSI type
4017  */
4018 int
4019 ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params)
4020 {
4021 	return __ice_aq_get_set_rss_lut(hw, get_params, false);
4022 }
4023 
4024 /**
4025  * ice_aq_set_rss_lut
4026  * @hw: pointer to the hardware structure
4027  * @set_params: RSS LUT parameters used to specify how to set the RSS LUT
4028  *
4029  * set the RSS lookup table, PF or VSI type
4030  */
4031 int
4032 ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params)
4033 {
4034 	return __ice_aq_get_set_rss_lut(hw, set_params, true);
4035 }
4036 
4037 /**
4038  * __ice_aq_get_set_rss_key
4039  * @hw: pointer to the HW struct
4040  * @vsi_id: VSI FW index
4041  * @key: pointer to key info struct
4042  * @set: set true to set the key, false to get the key
4043  *
4044  * get (0x0B04) or set (0x0B02) the RSS key per VSI
4045  */
4046 static int
4047 __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
4048 			 struct ice_aqc_get_set_rss_keys *key, bool set)
4049 {
4050 	struct ice_aqc_get_set_rss_key *desc_params;
4051 	u16 key_size = sizeof(*key);
4052 	struct ice_aq_desc desc;
4053 
4054 	if (set) {
4055 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
4056 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4057 	} else {
4058 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
4059 	}
4060 
4061 	desc_params = &desc.params.get_set_rss_key;
4062 	desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
4063 
4064 	return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
4065 }
4066 
4067 /**
4068  * ice_aq_get_rss_key
4069  * @hw: pointer to the HW struct
4070  * @vsi_handle: software VSI handle
4071  * @key: pointer to key info struct
4072  *
4073  * get the RSS key per VSI
4074  */
4075 int
4076 ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
4077 		   struct ice_aqc_get_set_rss_keys *key)
4078 {
4079 	if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
4080 		return -EINVAL;
4081 
4082 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4083 					key, false);
4084 }
4085 
4086 /**
4087  * ice_aq_set_rss_key
4088  * @hw: pointer to the HW struct
4089  * @vsi_handle: software VSI handle
4090  * @keys: pointer to key info struct
4091  *
4092  * set the RSS key per VSI
4093  */
4094 int
4095 ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
4096 		   struct ice_aqc_get_set_rss_keys *keys)
4097 {
4098 	if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
4099 		return -EINVAL;
4100 
4101 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4102 					keys, true);
4103 }
4104 
4105 /**
4106  * ice_aq_add_lan_txq
4107  * @hw: pointer to the hardware structure
4108  * @num_qgrps: Number of added queue groups
4109  * @qg_list: list of queue groups to be added
4110  * @buf_size: size of buffer for indirect command
4111  * @cd: pointer to command details structure or NULL
4112  *
4113  * Add Tx LAN queue (0x0C30)
4114  *
4115  * NOTE:
4116  * Prior to calling add Tx LAN queue:
4117  * Initialize the following as part of the Tx queue context:
4118  * Completion queue ID if the queue uses Completion queue, Quanta profile,
4119  * Cache profile and Packet shaper profile.
4120  *
4121  * After add Tx LAN queue AQ command is completed:
4122  * Interrupts should be associated with specific queues,
4123  * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
4124  * flow.
4125  */
4126 static int
4127 ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4128 		   struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
4129 		   struct ice_sq_cd *cd)
4130 {
4131 	struct ice_aqc_add_tx_qgrp *list;
4132 	struct ice_aqc_add_txqs *cmd;
4133 	struct ice_aq_desc desc;
4134 	u16 i, sum_size = 0;
4135 
4136 	cmd = &desc.params.add_txqs;
4137 
4138 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
4139 
4140 	if (!qg_list)
4141 		return -EINVAL;
4142 
4143 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4144 		return -EINVAL;
4145 
4146 	for (i = 0, list = qg_list; i < num_qgrps; i++) {
4147 		sum_size += struct_size(list, txqs, list->num_txqs);
4148 		list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
4149 						      list->num_txqs);
4150 	}
4151 
4152 	if (buf_size != sum_size)
4153 		return -EINVAL;
4154 
4155 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4156 
4157 	cmd->num_qgrps = num_qgrps;
4158 
4159 	return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4160 }
4161 
4162 /**
4163  * ice_aq_dis_lan_txq
4164  * @hw: pointer to the hardware structure
4165  * @num_qgrps: number of groups in the list
4166  * @qg_list: the list of groups to disable
4167  * @buf_size: the total size of the qg_list buffer in bytes
4168  * @rst_src: if called due to reset, specifies the reset source
4169  * @vmvf_num: the relative VM or VF number that is undergoing the reset
4170  * @cd: pointer to command details structure or NULL
4171  *
4172  * Disable LAN Tx queue (0x0C31)
4173  */
4174 static int
4175 ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4176 		   struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
4177 		   enum ice_disq_rst_src rst_src, u16 vmvf_num,
4178 		   struct ice_sq_cd *cd)
4179 {
4180 	struct ice_aqc_dis_txq_item *item;
4181 	struct ice_aqc_dis_txqs *cmd;
4182 	struct ice_aq_desc desc;
4183 	u16 vmvf_and_timeout;
4184 	u16 i, sz = 0;
4185 	int status;
4186 
4187 	cmd = &desc.params.dis_txqs;
4188 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
4189 
4190 	/* qg_list can be NULL only in VM/VF reset flow */
4191 	if (!qg_list && !rst_src)
4192 		return -EINVAL;
4193 
4194 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4195 		return -EINVAL;
4196 
4197 	cmd->num_entries = num_qgrps;
4198 
4199 	vmvf_and_timeout = FIELD_PREP(ICE_AQC_Q_DIS_TIMEOUT_M, 5);
4200 
4201 	switch (rst_src) {
4202 	case ICE_VM_RESET:
4203 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
4204 		vmvf_and_timeout |= vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M;
4205 		break;
4206 	case ICE_VF_RESET:
4207 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
4208 		/* In this case, FW expects vmvf_num to be absolute VF ID */
4209 		vmvf_and_timeout |= (vmvf_num + hw->func_caps.vf_base_id) &
4210 				    ICE_AQC_Q_DIS_VMVF_NUM_M;
4211 		break;
4212 	case ICE_NO_RESET:
4213 	default:
4214 		break;
4215 	}
4216 
4217 	cmd->vmvf_and_timeout = cpu_to_le16(vmvf_and_timeout);
4218 
4219 	/* flush pipe on time out */
4220 	cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
4221 	/* If no queue group info, we are in a reset flow. Issue the AQ */
4222 	if (!qg_list)
4223 		goto do_aq;
4224 
4225 	/* set RD bit to indicate that command buffer is provided by the driver
4226 	 * and it needs to be read by the firmware
4227 	 */
4228 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4229 
4230 	for (i = 0, item = qg_list; i < num_qgrps; i++) {
4231 		u16 item_size = struct_size(item, q_id, item->num_qs);
4232 
4233 		/* If the num of queues is even, add 2 bytes of padding */
4234 		if ((item->num_qs % 2) == 0)
4235 			item_size += 2;
4236 
4237 		sz += item_size;
4238 
4239 		item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
4240 	}
4241 
4242 	if (buf_size != sz)
4243 		return -EINVAL;
4244 
4245 do_aq:
4246 	status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4247 	if (status) {
4248 		if (!qg_list)
4249 			ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
4250 				  vmvf_num, hw->adminq.sq_last_status);
4251 		else
4252 			ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
4253 				  le16_to_cpu(qg_list[0].q_id[0]),
4254 				  hw->adminq.sq_last_status);
4255 	}
4256 	return status;
4257 }
4258 
4259 /**
4260  * ice_aq_cfg_lan_txq
4261  * @hw: pointer to the hardware structure
4262  * @buf: buffer for command
4263  * @buf_size: size of buffer in bytes
4264  * @num_qs: number of queues being configured
4265  * @oldport: origination lport
4266  * @newport: destination lport
4267  * @cd: pointer to command details structure or NULL
4268  *
4269  * Move/Configure LAN Tx queue (0x0C32)
4270  *
4271  * There is a better AQ command to use for moving nodes, so only coding
4272  * this one for configuring the node.
4273  */
4274 int
4275 ice_aq_cfg_lan_txq(struct ice_hw *hw, struct ice_aqc_cfg_txqs_buf *buf,
4276 		   u16 buf_size, u16 num_qs, u8 oldport, u8 newport,
4277 		   struct ice_sq_cd *cd)
4278 {
4279 	struct ice_aqc_cfg_txqs *cmd;
4280 	struct ice_aq_desc desc;
4281 	int status;
4282 
4283 	cmd = &desc.params.cfg_txqs;
4284 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_cfg_txqs);
4285 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4286 
4287 	if (!buf)
4288 		return -EINVAL;
4289 
4290 	cmd->cmd_type = ICE_AQC_Q_CFG_TC_CHNG;
4291 	cmd->num_qs = num_qs;
4292 	cmd->port_num_chng = (oldport & ICE_AQC_Q_CFG_SRC_PRT_M);
4293 	cmd->port_num_chng |= FIELD_PREP(ICE_AQC_Q_CFG_DST_PRT_M, newport);
4294 	cmd->time_out = FIELD_PREP(ICE_AQC_Q_CFG_TIMEOUT_M, 5);
4295 	cmd->blocked_cgds = 0;
4296 
4297 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
4298 	if (status)
4299 		ice_debug(hw, ICE_DBG_SCHED, "Failed to reconfigure nodes %d\n",
4300 			  hw->adminq.sq_last_status);
4301 	return status;
4302 }
4303 
4304 /**
4305  * ice_aq_add_rdma_qsets
4306  * @hw: pointer to the hardware structure
4307  * @num_qset_grps: Number of RDMA Qset groups
4308  * @qset_list: list of Qset groups to be added
4309  * @buf_size: size of buffer for indirect command
4310  * @cd: pointer to command details structure or NULL
4311  *
4312  * Add Tx RDMA Qsets (0x0C33)
4313  */
4314 static int
4315 ice_aq_add_rdma_qsets(struct ice_hw *hw, u8 num_qset_grps,
4316 		      struct ice_aqc_add_rdma_qset_data *qset_list,
4317 		      u16 buf_size, struct ice_sq_cd *cd)
4318 {
4319 	struct ice_aqc_add_rdma_qset_data *list;
4320 	struct ice_aqc_add_rdma_qset *cmd;
4321 	struct ice_aq_desc desc;
4322 	u16 i, sum_size = 0;
4323 
4324 	cmd = &desc.params.add_rdma_qset;
4325 
4326 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_rdma_qset);
4327 
4328 	if (num_qset_grps > ICE_LAN_TXQ_MAX_QGRPS)
4329 		return -EINVAL;
4330 
4331 	for (i = 0, list = qset_list; i < num_qset_grps; i++) {
4332 		u16 num_qsets = le16_to_cpu(list->num_qsets);
4333 
4334 		sum_size += struct_size(list, rdma_qsets, num_qsets);
4335 		list = (struct ice_aqc_add_rdma_qset_data *)(list->rdma_qsets +
4336 							     num_qsets);
4337 	}
4338 
4339 	if (buf_size != sum_size)
4340 		return -EINVAL;
4341 
4342 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4343 
4344 	cmd->num_qset_grps = num_qset_grps;
4345 
4346 	return ice_aq_send_cmd(hw, &desc, qset_list, buf_size, cd);
4347 }
4348 
4349 /* End of FW Admin Queue command wrappers */
4350 
4351 /**
4352  * ice_pack_ctx_byte - write a byte to a packed context structure
4353  * @src_ctx: unpacked source context structure
4354  * @dest_ctx: packed destination context data
4355  * @ce_info: context element description
4356  */
4357 static void ice_pack_ctx_byte(u8 *src_ctx, u8 *dest_ctx,
4358 			      const struct ice_ctx_ele *ce_info)
4359 {
4360 	u8 src_byte, dest_byte, mask;
4361 	u8 *from, *dest;
4362 	u16 shift_width;
4363 
4364 	/* copy from the next struct field */
4365 	from = src_ctx + ce_info->offset;
4366 
4367 	/* prepare the bits and mask */
4368 	shift_width = ce_info->lsb % 8;
4369 	mask = GENMASK(ce_info->width - 1 + shift_width, shift_width);
4370 
4371 	src_byte = *from;
4372 	src_byte <<= shift_width;
4373 	src_byte &= mask;
4374 
4375 	/* get the current bits from the target bit string */
4376 	dest = dest_ctx + (ce_info->lsb / 8);
4377 
4378 	memcpy(&dest_byte, dest, sizeof(dest_byte));
4379 
4380 	dest_byte &= ~mask;	/* get the bits not changing */
4381 	dest_byte |= src_byte;	/* add in the new bits */
4382 
4383 	/* put it all back */
4384 	memcpy(dest, &dest_byte, sizeof(dest_byte));
4385 }
4386 
4387 /**
4388  * ice_pack_ctx_word - write a word to a packed context structure
4389  * @src_ctx: unpacked source context structure
4390  * @dest_ctx: packed destination context data
4391  * @ce_info: context element description
4392  */
4393 static void ice_pack_ctx_word(u8 *src_ctx, u8 *dest_ctx,
4394 			      const struct ice_ctx_ele *ce_info)
4395 {
4396 	u16 src_word, mask;
4397 	__le16 dest_word;
4398 	u8 *from, *dest;
4399 	u16 shift_width;
4400 
4401 	/* copy from the next struct field */
4402 	from = src_ctx + ce_info->offset;
4403 
4404 	/* prepare the bits and mask */
4405 	shift_width = ce_info->lsb % 8;
4406 	mask = GENMASK(ce_info->width - 1 + shift_width, shift_width);
4407 
4408 	/* don't swizzle the bits until after the mask because the mask bits
4409 	 * will be in a different bit position on big endian machines
4410 	 */
4411 	src_word = *(u16 *)from;
4412 	src_word <<= shift_width;
4413 	src_word &= mask;
4414 
4415 	/* get the current bits from the target bit string */
4416 	dest = dest_ctx + (ce_info->lsb / 8);
4417 
4418 	memcpy(&dest_word, dest, sizeof(dest_word));
4419 
4420 	dest_word &= ~(cpu_to_le16(mask));	/* get the bits not changing */
4421 	dest_word |= cpu_to_le16(src_word);	/* add in the new bits */
4422 
4423 	/* put it all back */
4424 	memcpy(dest, &dest_word, sizeof(dest_word));
4425 }
4426 
4427 /**
4428  * ice_pack_ctx_dword - write a dword to a packed context structure
4429  * @src_ctx: unpacked source context structure
4430  * @dest_ctx: packed destination context data
4431  * @ce_info: context element description
4432  */
4433 static void ice_pack_ctx_dword(u8 *src_ctx, u8 *dest_ctx,
4434 			       const struct ice_ctx_ele *ce_info)
4435 {
4436 	u32 src_dword, mask;
4437 	__le32 dest_dword;
4438 	u8 *from, *dest;
4439 	u16 shift_width;
4440 
4441 	/* copy from the next struct field */
4442 	from = src_ctx + ce_info->offset;
4443 
4444 	/* prepare the bits and mask */
4445 	shift_width = ce_info->lsb % 8;
4446 	mask = GENMASK(ce_info->width - 1 + shift_width, shift_width);
4447 
4448 	/* don't swizzle the bits until after the mask because the mask bits
4449 	 * will be in a different bit position on big endian machines
4450 	 */
4451 	src_dword = *(u32 *)from;
4452 	src_dword <<= shift_width;
4453 	src_dword &= mask;
4454 
4455 	/* get the current bits from the target bit string */
4456 	dest = dest_ctx + (ce_info->lsb / 8);
4457 
4458 	memcpy(&dest_dword, dest, sizeof(dest_dword));
4459 
4460 	dest_dword &= ~(cpu_to_le32(mask));	/* get the bits not changing */
4461 	dest_dword |= cpu_to_le32(src_dword);	/* add in the new bits */
4462 
4463 	/* put it all back */
4464 	memcpy(dest, &dest_dword, sizeof(dest_dword));
4465 }
4466 
4467 /**
4468  * ice_pack_ctx_qword - write a qword to a packed context structure
4469  * @src_ctx: unpacked source context structure
4470  * @dest_ctx: packed destination context data
4471  * @ce_info: context element description
4472  */
4473 static void ice_pack_ctx_qword(u8 *src_ctx, u8 *dest_ctx,
4474 			       const struct ice_ctx_ele *ce_info)
4475 {
4476 	u64 src_qword, mask;
4477 	__le64 dest_qword;
4478 	u8 *from, *dest;
4479 	u16 shift_width;
4480 
4481 	/* copy from the next struct field */
4482 	from = src_ctx + ce_info->offset;
4483 
4484 	/* prepare the bits and mask */
4485 	shift_width = ce_info->lsb % 8;
4486 	mask = GENMASK_ULL(ce_info->width - 1 + shift_width, shift_width);
4487 
4488 	/* don't swizzle the bits until after the mask because the mask bits
4489 	 * will be in a different bit position on big endian machines
4490 	 */
4491 	src_qword = *(u64 *)from;
4492 	src_qword <<= shift_width;
4493 	src_qword &= mask;
4494 
4495 	/* get the current bits from the target bit string */
4496 	dest = dest_ctx + (ce_info->lsb / 8);
4497 
4498 	memcpy(&dest_qword, dest, sizeof(dest_qword));
4499 
4500 	dest_qword &= ~(cpu_to_le64(mask));	/* get the bits not changing */
4501 	dest_qword |= cpu_to_le64(src_qword);	/* add in the new bits */
4502 
4503 	/* put it all back */
4504 	memcpy(dest, &dest_qword, sizeof(dest_qword));
4505 }
4506 
4507 /**
4508  * ice_set_ctx - set context bits in packed structure
4509  * @hw: pointer to the hardware structure
4510  * @src_ctx:  pointer to a generic non-packed context structure
4511  * @dest_ctx: pointer to memory for the packed structure
4512  * @ce_info: List of Rx context elements
4513  */
4514 int ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx,
4515 		const struct ice_ctx_ele *ce_info)
4516 {
4517 	int f;
4518 
4519 	for (f = 0; ce_info[f].width; f++) {
4520 		/* We have to deal with each element of the FW response
4521 		 * using the correct size so that we are correct regardless
4522 		 * of the endianness of the machine.
4523 		 */
4524 		if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) {
4525 			ice_debug(hw, ICE_DBG_QCTX, "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n",
4526 				  f, ce_info[f].width, ce_info[f].size_of);
4527 			continue;
4528 		}
4529 		switch (ce_info[f].size_of) {
4530 		case sizeof(u8):
4531 			ice_pack_ctx_byte(src_ctx, dest_ctx, &ce_info[f]);
4532 			break;
4533 		case sizeof(u16):
4534 			ice_pack_ctx_word(src_ctx, dest_ctx, &ce_info[f]);
4535 			break;
4536 		case sizeof(u32):
4537 			ice_pack_ctx_dword(src_ctx, dest_ctx, &ce_info[f]);
4538 			break;
4539 		case sizeof(u64):
4540 			ice_pack_ctx_qword(src_ctx, dest_ctx, &ce_info[f]);
4541 			break;
4542 		default:
4543 			return -EINVAL;
4544 		}
4545 	}
4546 
4547 	return 0;
4548 }
4549 
4550 /**
4551  * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
4552  * @hw: pointer to the HW struct
4553  * @vsi_handle: software VSI handle
4554  * @tc: TC number
4555  * @q_handle: software queue handle
4556  */
4557 struct ice_q_ctx *
4558 ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
4559 {
4560 	struct ice_vsi_ctx *vsi;
4561 	struct ice_q_ctx *q_ctx;
4562 
4563 	vsi = ice_get_vsi_ctx(hw, vsi_handle);
4564 	if (!vsi)
4565 		return NULL;
4566 	if (q_handle >= vsi->num_lan_q_entries[tc])
4567 		return NULL;
4568 	if (!vsi->lan_q_ctx[tc])
4569 		return NULL;
4570 	q_ctx = vsi->lan_q_ctx[tc];
4571 	return &q_ctx[q_handle];
4572 }
4573 
4574 /**
4575  * ice_ena_vsi_txq
4576  * @pi: port information structure
4577  * @vsi_handle: software VSI handle
4578  * @tc: TC number
4579  * @q_handle: software queue handle
4580  * @num_qgrps: Number of added queue groups
4581  * @buf: list of queue groups to be added
4582  * @buf_size: size of buffer for indirect command
4583  * @cd: pointer to command details structure or NULL
4584  *
4585  * This function adds one LAN queue
4586  */
4587 int
4588 ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
4589 		u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
4590 		struct ice_sq_cd *cd)
4591 {
4592 	struct ice_aqc_txsched_elem_data node = { 0 };
4593 	struct ice_sched_node *parent;
4594 	struct ice_q_ctx *q_ctx;
4595 	struct ice_hw *hw;
4596 	int status;
4597 
4598 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4599 		return -EIO;
4600 
4601 	if (num_qgrps > 1 || buf->num_txqs > 1)
4602 		return -ENOSPC;
4603 
4604 	hw = pi->hw;
4605 
4606 	if (!ice_is_vsi_valid(hw, vsi_handle))
4607 		return -EINVAL;
4608 
4609 	mutex_lock(&pi->sched_lock);
4610 
4611 	q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
4612 	if (!q_ctx) {
4613 		ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
4614 			  q_handle);
4615 		status = -EINVAL;
4616 		goto ena_txq_exit;
4617 	}
4618 
4619 	/* find a parent node */
4620 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4621 					    ICE_SCHED_NODE_OWNER_LAN);
4622 	if (!parent) {
4623 		status = -EINVAL;
4624 		goto ena_txq_exit;
4625 	}
4626 
4627 	buf->parent_teid = parent->info.node_teid;
4628 	node.parent_teid = parent->info.node_teid;
4629 	/* Mark that the values in the "generic" section as valid. The default
4630 	 * value in the "generic" section is zero. This means that :
4631 	 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
4632 	 * - 0 priority among siblings, indicated by Bit 1-3.
4633 	 * - WFQ, indicated by Bit 4.
4634 	 * - 0 Adjustment value is used in PSM credit update flow, indicated by
4635 	 * Bit 5-6.
4636 	 * - Bit 7 is reserved.
4637 	 * Without setting the generic section as valid in valid_sections, the
4638 	 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
4639 	 */
4640 	buf->txqs[0].info.valid_sections =
4641 		ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4642 		ICE_AQC_ELEM_VALID_EIR;
4643 	buf->txqs[0].info.generic = 0;
4644 	buf->txqs[0].info.cir_bw.bw_profile_idx =
4645 		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4646 	buf->txqs[0].info.cir_bw.bw_alloc =
4647 		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4648 	buf->txqs[0].info.eir_bw.bw_profile_idx =
4649 		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4650 	buf->txqs[0].info.eir_bw.bw_alloc =
4651 		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4652 
4653 	/* add the LAN queue */
4654 	status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
4655 	if (status) {
4656 		ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
4657 			  le16_to_cpu(buf->txqs[0].txq_id),
4658 			  hw->adminq.sq_last_status);
4659 		goto ena_txq_exit;
4660 	}
4661 
4662 	node.node_teid = buf->txqs[0].q_teid;
4663 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4664 	q_ctx->q_handle = q_handle;
4665 	q_ctx->q_teid = le32_to_cpu(node.node_teid);
4666 
4667 	/* add a leaf node into scheduler tree queue layer */
4668 	status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node, NULL);
4669 	if (!status)
4670 		status = ice_sched_replay_q_bw(pi, q_ctx);
4671 
4672 ena_txq_exit:
4673 	mutex_unlock(&pi->sched_lock);
4674 	return status;
4675 }
4676 
4677 /**
4678  * ice_dis_vsi_txq
4679  * @pi: port information structure
4680  * @vsi_handle: software VSI handle
4681  * @tc: TC number
4682  * @num_queues: number of queues
4683  * @q_handles: pointer to software queue handle array
4684  * @q_ids: pointer to the q_id array
4685  * @q_teids: pointer to queue node teids
4686  * @rst_src: if called due to reset, specifies the reset source
4687  * @vmvf_num: the relative VM or VF number that is undergoing the reset
4688  * @cd: pointer to command details structure or NULL
4689  *
4690  * This function removes queues and their corresponding nodes in SW DB
4691  */
4692 int
4693 ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
4694 		u16 *q_handles, u16 *q_ids, u32 *q_teids,
4695 		enum ice_disq_rst_src rst_src, u16 vmvf_num,
4696 		struct ice_sq_cd *cd)
4697 {
4698 	DEFINE_RAW_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1);
4699 	u16 i, buf_size = __struct_size(qg_list);
4700 	struct ice_q_ctx *q_ctx;
4701 	int status = -ENOENT;
4702 	struct ice_hw *hw;
4703 
4704 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4705 		return -EIO;
4706 
4707 	hw = pi->hw;
4708 
4709 	if (!num_queues) {
4710 		/* if queue is disabled already yet the disable queue command
4711 		 * has to be sent to complete the VF reset, then call
4712 		 * ice_aq_dis_lan_txq without any queue information
4713 		 */
4714 		if (rst_src)
4715 			return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
4716 						  vmvf_num, NULL);
4717 		return -EIO;
4718 	}
4719 
4720 	mutex_lock(&pi->sched_lock);
4721 
4722 	for (i = 0; i < num_queues; i++) {
4723 		struct ice_sched_node *node;
4724 
4725 		node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
4726 		if (!node)
4727 			continue;
4728 		q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
4729 		if (!q_ctx) {
4730 			ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
4731 				  q_handles[i]);
4732 			continue;
4733 		}
4734 		if (q_ctx->q_handle != q_handles[i]) {
4735 			ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
4736 				  q_ctx->q_handle, q_handles[i]);
4737 			continue;
4738 		}
4739 		qg_list->parent_teid = node->info.parent_teid;
4740 		qg_list->num_qs = 1;
4741 		qg_list->q_id[0] = cpu_to_le16(q_ids[i]);
4742 		status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
4743 					    vmvf_num, cd);
4744 
4745 		if (status)
4746 			break;
4747 		ice_free_sched_node(pi, node);
4748 		q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
4749 		q_ctx->q_teid = ICE_INVAL_TEID;
4750 	}
4751 	mutex_unlock(&pi->sched_lock);
4752 	return status;
4753 }
4754 
4755 /**
4756  * ice_cfg_vsi_qs - configure the new/existing VSI queues
4757  * @pi: port information structure
4758  * @vsi_handle: software VSI handle
4759  * @tc_bitmap: TC bitmap
4760  * @maxqs: max queues array per TC
4761  * @owner: LAN or RDMA
4762  *
4763  * This function adds/updates the VSI queues per TC.
4764  */
4765 static int
4766 ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4767 	       u16 *maxqs, u8 owner)
4768 {
4769 	int status = 0;
4770 	u8 i;
4771 
4772 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4773 		return -EIO;
4774 
4775 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4776 		return -EINVAL;
4777 
4778 	mutex_lock(&pi->sched_lock);
4779 
4780 	ice_for_each_traffic_class(i) {
4781 		/* configuration is possible only if TC node is present */
4782 		if (!ice_sched_get_tc_node(pi, i))
4783 			continue;
4784 
4785 		status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
4786 					   ice_is_tc_ena(tc_bitmap, i));
4787 		if (status)
4788 			break;
4789 	}
4790 
4791 	mutex_unlock(&pi->sched_lock);
4792 	return status;
4793 }
4794 
4795 /**
4796  * ice_cfg_vsi_lan - configure VSI LAN queues
4797  * @pi: port information structure
4798  * @vsi_handle: software VSI handle
4799  * @tc_bitmap: TC bitmap
4800  * @max_lanqs: max LAN queues array per TC
4801  *
4802  * This function adds/updates the VSI LAN queues per TC.
4803  */
4804 int
4805 ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4806 		u16 *max_lanqs)
4807 {
4808 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
4809 			      ICE_SCHED_NODE_OWNER_LAN);
4810 }
4811 
4812 /**
4813  * ice_cfg_vsi_rdma - configure the VSI RDMA queues
4814  * @pi: port information structure
4815  * @vsi_handle: software VSI handle
4816  * @tc_bitmap: TC bitmap
4817  * @max_rdmaqs: max RDMA queues array per TC
4818  *
4819  * This function adds/updates the VSI RDMA queues per TC.
4820  */
4821 int
4822 ice_cfg_vsi_rdma(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
4823 		 u16 *max_rdmaqs)
4824 {
4825 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_rdmaqs,
4826 			      ICE_SCHED_NODE_OWNER_RDMA);
4827 }
4828 
4829 /**
4830  * ice_ena_vsi_rdma_qset
4831  * @pi: port information structure
4832  * @vsi_handle: software VSI handle
4833  * @tc: TC number
4834  * @rdma_qset: pointer to RDMA Qset
4835  * @num_qsets: number of RDMA Qsets
4836  * @qset_teid: pointer to Qset node TEIDs
4837  *
4838  * This function adds RDMA Qset
4839  */
4840 int
4841 ice_ena_vsi_rdma_qset(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4842 		      u16 *rdma_qset, u16 num_qsets, u32 *qset_teid)
4843 {
4844 	struct ice_aqc_txsched_elem_data node = { 0 };
4845 	struct ice_aqc_add_rdma_qset_data *buf;
4846 	struct ice_sched_node *parent;
4847 	struct ice_hw *hw;
4848 	u16 i, buf_size;
4849 	int ret;
4850 
4851 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4852 		return -EIO;
4853 	hw = pi->hw;
4854 
4855 	if (!ice_is_vsi_valid(hw, vsi_handle))
4856 		return -EINVAL;
4857 
4858 	buf_size = struct_size(buf, rdma_qsets, num_qsets);
4859 	buf = kzalloc(buf_size, GFP_KERNEL);
4860 	if (!buf)
4861 		return -ENOMEM;
4862 	mutex_lock(&pi->sched_lock);
4863 
4864 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4865 					    ICE_SCHED_NODE_OWNER_RDMA);
4866 	if (!parent) {
4867 		ret = -EINVAL;
4868 		goto rdma_error_exit;
4869 	}
4870 	buf->parent_teid = parent->info.node_teid;
4871 	node.parent_teid = parent->info.node_teid;
4872 
4873 	buf->num_qsets = cpu_to_le16(num_qsets);
4874 	for (i = 0; i < num_qsets; i++) {
4875 		buf->rdma_qsets[i].tx_qset_id = cpu_to_le16(rdma_qset[i]);
4876 		buf->rdma_qsets[i].info.valid_sections =
4877 			ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4878 			ICE_AQC_ELEM_VALID_EIR;
4879 		buf->rdma_qsets[i].info.generic = 0;
4880 		buf->rdma_qsets[i].info.cir_bw.bw_profile_idx =
4881 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4882 		buf->rdma_qsets[i].info.cir_bw.bw_alloc =
4883 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4884 		buf->rdma_qsets[i].info.eir_bw.bw_profile_idx =
4885 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4886 		buf->rdma_qsets[i].info.eir_bw.bw_alloc =
4887 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4888 	}
4889 	ret = ice_aq_add_rdma_qsets(hw, 1, buf, buf_size, NULL);
4890 	if (ret) {
4891 		ice_debug(hw, ICE_DBG_RDMA, "add RDMA qset failed\n");
4892 		goto rdma_error_exit;
4893 	}
4894 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4895 	for (i = 0; i < num_qsets; i++) {
4896 		node.node_teid = buf->rdma_qsets[i].qset_teid;
4897 		ret = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1,
4898 					 &node, NULL);
4899 		if (ret)
4900 			break;
4901 		qset_teid[i] = le32_to_cpu(node.node_teid);
4902 	}
4903 rdma_error_exit:
4904 	mutex_unlock(&pi->sched_lock);
4905 	kfree(buf);
4906 	return ret;
4907 }
4908 
4909 /**
4910  * ice_dis_vsi_rdma_qset - free RDMA resources
4911  * @pi: port_info struct
4912  * @count: number of RDMA Qsets to free
4913  * @qset_teid: TEID of Qset node
4914  * @q_id: list of queue IDs being disabled
4915  */
4916 int
4917 ice_dis_vsi_rdma_qset(struct ice_port_info *pi, u16 count, u32 *qset_teid,
4918 		      u16 *q_id)
4919 {
4920 	DEFINE_RAW_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1);
4921 	u16 qg_size = __struct_size(qg_list);
4922 	struct ice_hw *hw;
4923 	int status = 0;
4924 	int i;
4925 
4926 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4927 		return -EIO;
4928 
4929 	hw = pi->hw;
4930 
4931 	mutex_lock(&pi->sched_lock);
4932 
4933 	for (i = 0; i < count; i++) {
4934 		struct ice_sched_node *node;
4935 
4936 		node = ice_sched_find_node_by_teid(pi->root, qset_teid[i]);
4937 		if (!node)
4938 			continue;
4939 
4940 		qg_list->parent_teid = node->info.parent_teid;
4941 		qg_list->num_qs = 1;
4942 		qg_list->q_id[0] =
4943 			cpu_to_le16(q_id[i] |
4944 				    ICE_AQC_Q_DIS_BUF_ELEM_TYPE_RDMA_QSET);
4945 
4946 		status = ice_aq_dis_lan_txq(hw, 1, qg_list, qg_size,
4947 					    ICE_NO_RESET, 0, NULL);
4948 		if (status)
4949 			break;
4950 
4951 		ice_free_sched_node(pi, node);
4952 	}
4953 
4954 	mutex_unlock(&pi->sched_lock);
4955 	return status;
4956 }
4957 
4958 /**
4959  * ice_aq_get_cgu_abilities - get cgu abilities
4960  * @hw: pointer to the HW struct
4961  * @abilities: CGU abilities
4962  *
4963  * Get CGU abilities (0x0C61)
4964  * Return: 0 on success or negative value on failure.
4965  */
4966 int
4967 ice_aq_get_cgu_abilities(struct ice_hw *hw,
4968 			 struct ice_aqc_get_cgu_abilities *abilities)
4969 {
4970 	struct ice_aq_desc desc;
4971 
4972 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_abilities);
4973 	return ice_aq_send_cmd(hw, &desc, abilities, sizeof(*abilities), NULL);
4974 }
4975 
4976 /**
4977  * ice_aq_set_input_pin_cfg - set input pin config
4978  * @hw: pointer to the HW struct
4979  * @input_idx: Input index
4980  * @flags1: Input flags
4981  * @flags2: Input flags
4982  * @freq: Frequency in Hz
4983  * @phase_delay: Delay in ps
4984  *
4985  * Set CGU input config (0x0C62)
4986  * Return: 0 on success or negative value on failure.
4987  */
4988 int
4989 ice_aq_set_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 flags1, u8 flags2,
4990 			 u32 freq, s32 phase_delay)
4991 {
4992 	struct ice_aqc_set_cgu_input_config *cmd;
4993 	struct ice_aq_desc desc;
4994 
4995 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_input_config);
4996 	cmd = &desc.params.set_cgu_input_config;
4997 	cmd->input_idx = input_idx;
4998 	cmd->flags1 = flags1;
4999 	cmd->flags2 = flags2;
5000 	cmd->freq = cpu_to_le32(freq);
5001 	cmd->phase_delay = cpu_to_le32(phase_delay);
5002 
5003 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5004 }
5005 
5006 /**
5007  * ice_aq_get_input_pin_cfg - get input pin config
5008  * @hw: pointer to the HW struct
5009  * @input_idx: Input index
5010  * @status: Pin status
5011  * @type: Pin type
5012  * @flags1: Input flags
5013  * @flags2: Input flags
5014  * @freq: Frequency in Hz
5015  * @phase_delay: Delay in ps
5016  *
5017  * Get CGU input config (0x0C63)
5018  * Return: 0 on success or negative value on failure.
5019  */
5020 int
5021 ice_aq_get_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 *status, u8 *type,
5022 			 u8 *flags1, u8 *flags2, u32 *freq, s32 *phase_delay)
5023 {
5024 	struct ice_aqc_get_cgu_input_config *cmd;
5025 	struct ice_aq_desc desc;
5026 	int ret;
5027 
5028 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_input_config);
5029 	cmd = &desc.params.get_cgu_input_config;
5030 	cmd->input_idx = input_idx;
5031 
5032 	ret = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5033 	if (!ret) {
5034 		if (status)
5035 			*status = cmd->status;
5036 		if (type)
5037 			*type = cmd->type;
5038 		if (flags1)
5039 			*flags1 = cmd->flags1;
5040 		if (flags2)
5041 			*flags2 = cmd->flags2;
5042 		if (freq)
5043 			*freq = le32_to_cpu(cmd->freq);
5044 		if (phase_delay)
5045 			*phase_delay = le32_to_cpu(cmd->phase_delay);
5046 	}
5047 
5048 	return ret;
5049 }
5050 
5051 /**
5052  * ice_aq_set_output_pin_cfg - set output pin config
5053  * @hw: pointer to the HW struct
5054  * @output_idx: Output index
5055  * @flags: Output flags
5056  * @src_sel: Index of DPLL block
5057  * @freq: Output frequency
5058  * @phase_delay: Output phase compensation
5059  *
5060  * Set CGU output config (0x0C64)
5061  * Return: 0 on success or negative value on failure.
5062  */
5063 int
5064 ice_aq_set_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 flags,
5065 			  u8 src_sel, u32 freq, s32 phase_delay)
5066 {
5067 	struct ice_aqc_set_cgu_output_config *cmd;
5068 	struct ice_aq_desc desc;
5069 
5070 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_output_config);
5071 	cmd = &desc.params.set_cgu_output_config;
5072 	cmd->output_idx = output_idx;
5073 	cmd->flags = flags;
5074 	cmd->src_sel = src_sel;
5075 	cmd->freq = cpu_to_le32(freq);
5076 	cmd->phase_delay = cpu_to_le32(phase_delay);
5077 
5078 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5079 }
5080 
5081 /**
5082  * ice_aq_get_output_pin_cfg - get output pin config
5083  * @hw: pointer to the HW struct
5084  * @output_idx: Output index
5085  * @flags: Output flags
5086  * @src_sel: Internal DPLL source
5087  * @freq: Output frequency
5088  * @src_freq: Source frequency
5089  *
5090  * Get CGU output config (0x0C65)
5091  * Return: 0 on success or negative value on failure.
5092  */
5093 int
5094 ice_aq_get_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 *flags,
5095 			  u8 *src_sel, u32 *freq, u32 *src_freq)
5096 {
5097 	struct ice_aqc_get_cgu_output_config *cmd;
5098 	struct ice_aq_desc desc;
5099 	int ret;
5100 
5101 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_output_config);
5102 	cmd = &desc.params.get_cgu_output_config;
5103 	cmd->output_idx = output_idx;
5104 
5105 	ret = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5106 	if (!ret) {
5107 		if (flags)
5108 			*flags = cmd->flags;
5109 		if (src_sel)
5110 			*src_sel = cmd->src_sel;
5111 		if (freq)
5112 			*freq = le32_to_cpu(cmd->freq);
5113 		if (src_freq)
5114 			*src_freq = le32_to_cpu(cmd->src_freq);
5115 	}
5116 
5117 	return ret;
5118 }
5119 
5120 /**
5121  * ice_aq_get_cgu_dpll_status - get dpll status
5122  * @hw: pointer to the HW struct
5123  * @dpll_num: DPLL index
5124  * @ref_state: Reference clock state
5125  * @config: current DPLL config
5126  * @dpll_state: current DPLL state
5127  * @phase_offset: Phase offset in ns
5128  * @eec_mode: EEC_mode
5129  *
5130  * Get CGU DPLL status (0x0C66)
5131  * Return: 0 on success or negative value on failure.
5132  */
5133 int
5134 ice_aq_get_cgu_dpll_status(struct ice_hw *hw, u8 dpll_num, u8 *ref_state,
5135 			   u8 *dpll_state, u8 *config, s64 *phase_offset,
5136 			   u8 *eec_mode)
5137 {
5138 	struct ice_aqc_get_cgu_dpll_status *cmd;
5139 	struct ice_aq_desc desc;
5140 	int status;
5141 
5142 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_dpll_status);
5143 	cmd = &desc.params.get_cgu_dpll_status;
5144 	cmd->dpll_num = dpll_num;
5145 
5146 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5147 	if (!status) {
5148 		*ref_state = cmd->ref_state;
5149 		*dpll_state = cmd->dpll_state;
5150 		*config = cmd->config;
5151 		*phase_offset = le32_to_cpu(cmd->phase_offset_h);
5152 		*phase_offset <<= 32;
5153 		*phase_offset += le32_to_cpu(cmd->phase_offset_l);
5154 		*phase_offset = sign_extend64(*phase_offset, 47);
5155 		*eec_mode = cmd->eec_mode;
5156 	}
5157 
5158 	return status;
5159 }
5160 
5161 /**
5162  * ice_aq_set_cgu_dpll_config - set dpll config
5163  * @hw: pointer to the HW struct
5164  * @dpll_num: DPLL index
5165  * @ref_state: Reference clock state
5166  * @config: DPLL config
5167  * @eec_mode: EEC mode
5168  *
5169  * Set CGU DPLL config (0x0C67)
5170  * Return: 0 on success or negative value on failure.
5171  */
5172 int
5173 ice_aq_set_cgu_dpll_config(struct ice_hw *hw, u8 dpll_num, u8 ref_state,
5174 			   u8 config, u8 eec_mode)
5175 {
5176 	struct ice_aqc_set_cgu_dpll_config *cmd;
5177 	struct ice_aq_desc desc;
5178 
5179 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_dpll_config);
5180 	cmd = &desc.params.set_cgu_dpll_config;
5181 	cmd->dpll_num = dpll_num;
5182 	cmd->ref_state = ref_state;
5183 	cmd->config = config;
5184 	cmd->eec_mode = eec_mode;
5185 
5186 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5187 }
5188 
5189 /**
5190  * ice_aq_set_cgu_ref_prio - set input reference priority
5191  * @hw: pointer to the HW struct
5192  * @dpll_num: DPLL index
5193  * @ref_idx: Reference pin index
5194  * @ref_priority: Reference input priority
5195  *
5196  * Set CGU reference priority (0x0C68)
5197  * Return: 0 on success or negative value on failure.
5198  */
5199 int
5200 ice_aq_set_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
5201 			u8 ref_priority)
5202 {
5203 	struct ice_aqc_set_cgu_ref_prio *cmd;
5204 	struct ice_aq_desc desc;
5205 
5206 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_ref_prio);
5207 	cmd = &desc.params.set_cgu_ref_prio;
5208 	cmd->dpll_num = dpll_num;
5209 	cmd->ref_idx = ref_idx;
5210 	cmd->ref_priority = ref_priority;
5211 
5212 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5213 }
5214 
5215 /**
5216  * ice_aq_get_cgu_ref_prio - get input reference priority
5217  * @hw: pointer to the HW struct
5218  * @dpll_num: DPLL index
5219  * @ref_idx: Reference pin index
5220  * @ref_prio: Reference input priority
5221  *
5222  * Get CGU reference priority (0x0C69)
5223  * Return: 0 on success or negative value on failure.
5224  */
5225 int
5226 ice_aq_get_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
5227 			u8 *ref_prio)
5228 {
5229 	struct ice_aqc_get_cgu_ref_prio *cmd;
5230 	struct ice_aq_desc desc;
5231 	int status;
5232 
5233 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_ref_prio);
5234 	cmd = &desc.params.get_cgu_ref_prio;
5235 	cmd->dpll_num = dpll_num;
5236 	cmd->ref_idx = ref_idx;
5237 
5238 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5239 	if (!status)
5240 		*ref_prio = cmd->ref_priority;
5241 
5242 	return status;
5243 }
5244 
5245 /**
5246  * ice_aq_get_cgu_info - get cgu info
5247  * @hw: pointer to the HW struct
5248  * @cgu_id: CGU ID
5249  * @cgu_cfg_ver: CGU config version
5250  * @cgu_fw_ver: CGU firmware version
5251  *
5252  * Get CGU info (0x0C6A)
5253  * Return: 0 on success or negative value on failure.
5254  */
5255 int
5256 ice_aq_get_cgu_info(struct ice_hw *hw, u32 *cgu_id, u32 *cgu_cfg_ver,
5257 		    u32 *cgu_fw_ver)
5258 {
5259 	struct ice_aqc_get_cgu_info *cmd;
5260 	struct ice_aq_desc desc;
5261 	int status;
5262 
5263 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_info);
5264 	cmd = &desc.params.get_cgu_info;
5265 
5266 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5267 	if (!status) {
5268 		*cgu_id = le32_to_cpu(cmd->cgu_id);
5269 		*cgu_cfg_ver = le32_to_cpu(cmd->cgu_cfg_ver);
5270 		*cgu_fw_ver = le32_to_cpu(cmd->cgu_fw_ver);
5271 	}
5272 
5273 	return status;
5274 }
5275 
5276 /**
5277  * ice_aq_set_phy_rec_clk_out - set RCLK phy out
5278  * @hw: pointer to the HW struct
5279  * @phy_output: PHY reference clock output pin
5280  * @enable: GPIO state to be applied
5281  * @freq: PHY output frequency
5282  *
5283  * Set phy recovered clock as reference (0x0630)
5284  * Return: 0 on success or negative value on failure.
5285  */
5286 int
5287 ice_aq_set_phy_rec_clk_out(struct ice_hw *hw, u8 phy_output, bool enable,
5288 			   u32 *freq)
5289 {
5290 	struct ice_aqc_set_phy_rec_clk_out *cmd;
5291 	struct ice_aq_desc desc;
5292 	int status;
5293 
5294 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_rec_clk_out);
5295 	cmd = &desc.params.set_phy_rec_clk_out;
5296 	cmd->phy_output = phy_output;
5297 	cmd->port_num = ICE_AQC_SET_PHY_REC_CLK_OUT_CURR_PORT;
5298 	cmd->flags = enable & ICE_AQC_SET_PHY_REC_CLK_OUT_OUT_EN;
5299 	cmd->freq = cpu_to_le32(*freq);
5300 
5301 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5302 	if (!status)
5303 		*freq = le32_to_cpu(cmd->freq);
5304 
5305 	return status;
5306 }
5307 
5308 /**
5309  * ice_aq_get_phy_rec_clk_out - get phy recovered signal info
5310  * @hw: pointer to the HW struct
5311  * @phy_output: PHY reference clock output pin
5312  * @port_num: Port number
5313  * @flags: PHY flags
5314  * @node_handle: PHY output frequency
5315  *
5316  * Get PHY recovered clock output info (0x0631)
5317  * Return: 0 on success or negative value on failure.
5318  */
5319 int
5320 ice_aq_get_phy_rec_clk_out(struct ice_hw *hw, u8 *phy_output, u8 *port_num,
5321 			   u8 *flags, u16 *node_handle)
5322 {
5323 	struct ice_aqc_get_phy_rec_clk_out *cmd;
5324 	struct ice_aq_desc desc;
5325 	int status;
5326 
5327 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_rec_clk_out);
5328 	cmd = &desc.params.get_phy_rec_clk_out;
5329 	cmd->phy_output = *phy_output;
5330 
5331 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5332 	if (!status) {
5333 		*phy_output = cmd->phy_output;
5334 		if (port_num)
5335 			*port_num = cmd->port_num;
5336 		if (flags)
5337 			*flags = cmd->flags;
5338 		if (node_handle)
5339 			*node_handle = le16_to_cpu(cmd->node_handle);
5340 	}
5341 
5342 	return status;
5343 }
5344 
5345 /**
5346  * ice_aq_get_sensor_reading
5347  * @hw: pointer to the HW struct
5348  * @data: pointer to data to be read from the sensor
5349  *
5350  * Get sensor reading (0x0632)
5351  */
5352 int ice_aq_get_sensor_reading(struct ice_hw *hw,
5353 			      struct ice_aqc_get_sensor_reading_resp *data)
5354 {
5355 	struct ice_aqc_get_sensor_reading *cmd;
5356 	struct ice_aq_desc desc;
5357 	int status;
5358 
5359 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sensor_reading);
5360 	cmd = &desc.params.get_sensor_reading;
5361 #define ICE_INTERNAL_TEMP_SENSOR_FORMAT	0
5362 #define ICE_INTERNAL_TEMP_SENSOR	0
5363 	cmd->sensor = ICE_INTERNAL_TEMP_SENSOR;
5364 	cmd->format = ICE_INTERNAL_TEMP_SENSOR_FORMAT;
5365 
5366 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5367 	if (!status)
5368 		memcpy(data, &desc.params.get_sensor_reading_resp,
5369 		       sizeof(*data));
5370 
5371 	return status;
5372 }
5373 
5374 /**
5375  * ice_replay_pre_init - replay pre initialization
5376  * @hw: pointer to the HW struct
5377  *
5378  * Initializes required config data for VSI, FD, ACL, and RSS before replay.
5379  */
5380 static int ice_replay_pre_init(struct ice_hw *hw)
5381 {
5382 	struct ice_switch_info *sw = hw->switch_info;
5383 	u8 i;
5384 
5385 	/* Delete old entries from replay filter list head if there is any */
5386 	ice_rm_all_sw_replay_rule_info(hw);
5387 	/* In start of replay, move entries into replay_rules list, it
5388 	 * will allow adding rules entries back to filt_rules list,
5389 	 * which is operational list.
5390 	 */
5391 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
5392 		list_replace_init(&sw->recp_list[i].filt_rules,
5393 				  &sw->recp_list[i].filt_replay_rules);
5394 	ice_sched_replay_agg_vsi_preinit(hw);
5395 
5396 	return 0;
5397 }
5398 
5399 /**
5400  * ice_replay_vsi - replay VSI configuration
5401  * @hw: pointer to the HW struct
5402  * @vsi_handle: driver VSI handle
5403  *
5404  * Restore all VSI configuration after reset. It is required to call this
5405  * function with main VSI first.
5406  */
5407 int ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
5408 {
5409 	int status;
5410 
5411 	if (!ice_is_vsi_valid(hw, vsi_handle))
5412 		return -EINVAL;
5413 
5414 	/* Replay pre-initialization if there is any */
5415 	if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
5416 		status = ice_replay_pre_init(hw);
5417 		if (status)
5418 			return status;
5419 	}
5420 	/* Replay per VSI all RSS configurations */
5421 	status = ice_replay_rss_cfg(hw, vsi_handle);
5422 	if (status)
5423 		return status;
5424 	/* Replay per VSI all filters */
5425 	status = ice_replay_vsi_all_fltr(hw, vsi_handle);
5426 	if (!status)
5427 		status = ice_replay_vsi_agg(hw, vsi_handle);
5428 	return status;
5429 }
5430 
5431 /**
5432  * ice_replay_post - post replay configuration cleanup
5433  * @hw: pointer to the HW struct
5434  *
5435  * Post replay cleanup.
5436  */
5437 void ice_replay_post(struct ice_hw *hw)
5438 {
5439 	/* Delete old entries from replay filter list head */
5440 	ice_rm_all_sw_replay_rule_info(hw);
5441 	ice_sched_replay_agg(hw);
5442 }
5443 
5444 /**
5445  * ice_stat_update40 - read 40 bit stat from the chip and update stat values
5446  * @hw: ptr to the hardware info
5447  * @reg: offset of 64 bit HW register to read from
5448  * @prev_stat_loaded: bool to specify if previous stats are loaded
5449  * @prev_stat: ptr to previous loaded stat value
5450  * @cur_stat: ptr to current stat value
5451  */
5452 void
5453 ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5454 		  u64 *prev_stat, u64 *cur_stat)
5455 {
5456 	u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
5457 
5458 	/* device stats are not reset at PFR, they likely will not be zeroed
5459 	 * when the driver starts. Thus, save the value from the first read
5460 	 * without adding to the statistic value so that we report stats which
5461 	 * count up from zero.
5462 	 */
5463 	if (!prev_stat_loaded) {
5464 		*prev_stat = new_data;
5465 		return;
5466 	}
5467 
5468 	/* Calculate the difference between the new and old values, and then
5469 	 * add it to the software stat value.
5470 	 */
5471 	if (new_data >= *prev_stat)
5472 		*cur_stat += new_data - *prev_stat;
5473 	else
5474 		/* to manage the potential roll-over */
5475 		*cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
5476 
5477 	/* Update the previously stored value to prepare for next read */
5478 	*prev_stat = new_data;
5479 }
5480 
5481 /**
5482  * ice_stat_update32 - read 32 bit stat from the chip and update stat values
5483  * @hw: ptr to the hardware info
5484  * @reg: offset of HW register to read from
5485  * @prev_stat_loaded: bool to specify if previous stats are loaded
5486  * @prev_stat: ptr to previous loaded stat value
5487  * @cur_stat: ptr to current stat value
5488  */
5489 void
5490 ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5491 		  u64 *prev_stat, u64 *cur_stat)
5492 {
5493 	u32 new_data;
5494 
5495 	new_data = rd32(hw, reg);
5496 
5497 	/* device stats are not reset at PFR, they likely will not be zeroed
5498 	 * when the driver starts. Thus, save the value from the first read
5499 	 * without adding to the statistic value so that we report stats which
5500 	 * count up from zero.
5501 	 */
5502 	if (!prev_stat_loaded) {
5503 		*prev_stat = new_data;
5504 		return;
5505 	}
5506 
5507 	/* Calculate the difference between the new and old values, and then
5508 	 * add it to the software stat value.
5509 	 */
5510 	if (new_data >= *prev_stat)
5511 		*cur_stat += new_data - *prev_stat;
5512 	else
5513 		/* to manage the potential roll-over */
5514 		*cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
5515 
5516 	/* Update the previously stored value to prepare for next read */
5517 	*prev_stat = new_data;
5518 }
5519 
5520 /**
5521  * ice_sched_query_elem - query element information from HW
5522  * @hw: pointer to the HW struct
5523  * @node_teid: node TEID to be queried
5524  * @buf: buffer to element information
5525  *
5526  * This function queries HW element information
5527  */
5528 int
5529 ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
5530 		     struct ice_aqc_txsched_elem_data *buf)
5531 {
5532 	u16 buf_size, num_elem_ret = 0;
5533 	int status;
5534 
5535 	buf_size = sizeof(*buf);
5536 	memset(buf, 0, buf_size);
5537 	buf->node_teid = cpu_to_le32(node_teid);
5538 	status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
5539 					  NULL);
5540 	if (status || num_elem_ret != 1)
5541 		ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
5542 	return status;
5543 }
5544 
5545 /**
5546  * ice_aq_read_i2c
5547  * @hw: pointer to the hw struct
5548  * @topo_addr: topology address for a device to communicate with
5549  * @bus_addr: 7-bit I2C bus address
5550  * @addr: I2C memory address (I2C offset) with up to 16 bits
5551  * @params: I2C parameters: bit [7] - Repeated start,
5552  *			    bits [6:5] data offset size,
5553  *			    bit [4] - I2C address type,
5554  *			    bits [3:0] - data size to read (0-16 bytes)
5555  * @data: pointer to data (0 to 16 bytes) to be read from the I2C device
5556  * @cd: pointer to command details structure or NULL
5557  *
5558  * Read I2C (0x06E2)
5559  */
5560 int
5561 ice_aq_read_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5562 		u16 bus_addr, __le16 addr, u8 params, u8 *data,
5563 		struct ice_sq_cd *cd)
5564 {
5565 	struct ice_aq_desc desc = { 0 };
5566 	struct ice_aqc_i2c *cmd;
5567 	u8 data_size;
5568 	int status;
5569 
5570 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_i2c);
5571 	cmd = &desc.params.read_write_i2c;
5572 
5573 	if (!data)
5574 		return -EINVAL;
5575 
5576 	data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5577 
5578 	cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5579 	cmd->topo_addr = topo_addr;
5580 	cmd->i2c_params = params;
5581 	cmd->i2c_addr = addr;
5582 
5583 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5584 	if (!status) {
5585 		struct ice_aqc_read_i2c_resp *resp;
5586 		u8 i;
5587 
5588 		resp = &desc.params.read_i2c_resp;
5589 		for (i = 0; i < data_size; i++) {
5590 			*data = resp->i2c_data[i];
5591 			data++;
5592 		}
5593 	}
5594 
5595 	return status;
5596 }
5597 
5598 /**
5599  * ice_aq_write_i2c
5600  * @hw: pointer to the hw struct
5601  * @topo_addr: topology address for a device to communicate with
5602  * @bus_addr: 7-bit I2C bus address
5603  * @addr: I2C memory address (I2C offset) with up to 16 bits
5604  * @params: I2C parameters: bit [4] - I2C address type, bits [3:0] - data size to write (0-7 bytes)
5605  * @data: pointer to data (0 to 4 bytes) to be written to the I2C device
5606  * @cd: pointer to command details structure or NULL
5607  *
5608  * Write I2C (0x06E3)
5609  *
5610  * * Return:
5611  * * 0             - Successful write to the i2c device
5612  * * -EINVAL       - Data size greater than 4 bytes
5613  * * -EIO          - FW error
5614  */
5615 int
5616 ice_aq_write_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5617 		 u16 bus_addr, __le16 addr, u8 params, const u8 *data,
5618 		 struct ice_sq_cd *cd)
5619 {
5620 	struct ice_aq_desc desc = { 0 };
5621 	struct ice_aqc_i2c *cmd;
5622 	u8 data_size;
5623 
5624 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_write_i2c);
5625 	cmd = &desc.params.read_write_i2c;
5626 
5627 	data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5628 
5629 	/* data_size limited to 4 */
5630 	if (data_size > 4)
5631 		return -EINVAL;
5632 
5633 	cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5634 	cmd->topo_addr = topo_addr;
5635 	cmd->i2c_params = params;
5636 	cmd->i2c_addr = addr;
5637 
5638 	memcpy(cmd->i2c_data, data, data_size);
5639 
5640 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5641 }
5642 
5643 /**
5644  * ice_aq_set_gpio
5645  * @hw: pointer to the hw struct
5646  * @gpio_ctrl_handle: GPIO controller node handle
5647  * @pin_idx: IO Number of the GPIO that needs to be set
5648  * @value: SW provide IO value to set in the LSB
5649  * @cd: pointer to command details structure or NULL
5650  *
5651  * Sends 0x06EC AQ command to set the GPIO pin state that's part of the topology
5652  */
5653 int
5654 ice_aq_set_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx, bool value,
5655 		struct ice_sq_cd *cd)
5656 {
5657 	struct ice_aqc_gpio *cmd;
5658 	struct ice_aq_desc desc;
5659 
5660 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_gpio);
5661 	cmd = &desc.params.read_write_gpio;
5662 	cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5663 	cmd->gpio_num = pin_idx;
5664 	cmd->gpio_val = value ? 1 : 0;
5665 
5666 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5667 }
5668 
5669 /**
5670  * ice_aq_get_gpio
5671  * @hw: pointer to the hw struct
5672  * @gpio_ctrl_handle: GPIO controller node handle
5673  * @pin_idx: IO Number of the GPIO that needs to be set
5674  * @value: IO value read
5675  * @cd: pointer to command details structure or NULL
5676  *
5677  * Sends 0x06ED AQ command to get the value of a GPIO signal which is part of
5678  * the topology
5679  */
5680 int
5681 ice_aq_get_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx,
5682 		bool *value, struct ice_sq_cd *cd)
5683 {
5684 	struct ice_aqc_gpio *cmd;
5685 	struct ice_aq_desc desc;
5686 	int status;
5687 
5688 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_gpio);
5689 	cmd = &desc.params.read_write_gpio;
5690 	cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5691 	cmd->gpio_num = pin_idx;
5692 
5693 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5694 	if (status)
5695 		return status;
5696 
5697 	*value = !!cmd->gpio_val;
5698 	return 0;
5699 }
5700 
5701 /**
5702  * ice_is_fw_api_min_ver
5703  * @hw: pointer to the hardware structure
5704  * @maj: major version
5705  * @min: minor version
5706  * @patch: patch version
5707  *
5708  * Checks if the firmware API is minimum version
5709  */
5710 static bool ice_is_fw_api_min_ver(struct ice_hw *hw, u8 maj, u8 min, u8 patch)
5711 {
5712 	if (hw->api_maj_ver == maj) {
5713 		if (hw->api_min_ver > min)
5714 			return true;
5715 		if (hw->api_min_ver == min && hw->api_patch >= patch)
5716 			return true;
5717 	} else if (hw->api_maj_ver > maj) {
5718 		return true;
5719 	}
5720 
5721 	return false;
5722 }
5723 
5724 /**
5725  * ice_fw_supports_link_override
5726  * @hw: pointer to the hardware structure
5727  *
5728  * Checks if the firmware supports link override
5729  */
5730 bool ice_fw_supports_link_override(struct ice_hw *hw)
5731 {
5732 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LINK_OVERRIDE_MAJ,
5733 				     ICE_FW_API_LINK_OVERRIDE_MIN,
5734 				     ICE_FW_API_LINK_OVERRIDE_PATCH);
5735 }
5736 
5737 /**
5738  * ice_get_link_default_override
5739  * @ldo: pointer to the link default override struct
5740  * @pi: pointer to the port info struct
5741  *
5742  * Gets the link default override for a port
5743  */
5744 int
5745 ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
5746 			      struct ice_port_info *pi)
5747 {
5748 	u16 i, tlv, tlv_len, tlv_start, buf, offset;
5749 	struct ice_hw *hw = pi->hw;
5750 	int status;
5751 
5752 	status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
5753 					ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
5754 	if (status) {
5755 		ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
5756 		return status;
5757 	}
5758 
5759 	/* Each port has its own config; calculate for our port */
5760 	tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
5761 		ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
5762 
5763 	/* link options first */
5764 	status = ice_read_sr_word(hw, tlv_start, &buf);
5765 	if (status) {
5766 		ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5767 		return status;
5768 	}
5769 	ldo->options = FIELD_GET(ICE_LINK_OVERRIDE_OPT_M, buf);
5770 	ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
5771 		ICE_LINK_OVERRIDE_PHY_CFG_S;
5772 
5773 	/* link PHY config */
5774 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
5775 	status = ice_read_sr_word(hw, offset, &buf);
5776 	if (status) {
5777 		ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
5778 		return status;
5779 	}
5780 	ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
5781 
5782 	/* PHY types low */
5783 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
5784 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5785 		status = ice_read_sr_word(hw, (offset + i), &buf);
5786 		if (status) {
5787 			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5788 			return status;
5789 		}
5790 		/* shift 16 bits at a time to fill 64 bits */
5791 		ldo->phy_type_low |= ((u64)buf << (i * 16));
5792 	}
5793 
5794 	/* PHY types high */
5795 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
5796 		ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
5797 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5798 		status = ice_read_sr_word(hw, (offset + i), &buf);
5799 		if (status) {
5800 			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5801 			return status;
5802 		}
5803 		/* shift 16 bits at a time to fill 64 bits */
5804 		ldo->phy_type_high |= ((u64)buf << (i * 16));
5805 	}
5806 
5807 	return status;
5808 }
5809 
5810 /**
5811  * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
5812  * @caps: get PHY capability data
5813  */
5814 bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
5815 {
5816 	if (caps->caps & ICE_AQC_PHY_AN_MODE ||
5817 	    caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
5818 				       ICE_AQC_PHY_AN_EN_CLAUSE73 |
5819 				       ICE_AQC_PHY_AN_EN_CLAUSE37))
5820 		return true;
5821 
5822 	return false;
5823 }
5824 
5825 /**
5826  * ice_aq_set_lldp_mib - Set the LLDP MIB
5827  * @hw: pointer to the HW struct
5828  * @mib_type: Local, Remote or both Local and Remote MIBs
5829  * @buf: pointer to the caller-supplied buffer to store the MIB block
5830  * @buf_size: size of the buffer (in bytes)
5831  * @cd: pointer to command details structure or NULL
5832  *
5833  * Set the LLDP MIB. (0x0A08)
5834  */
5835 int
5836 ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
5837 		    struct ice_sq_cd *cd)
5838 {
5839 	struct ice_aqc_lldp_set_local_mib *cmd;
5840 	struct ice_aq_desc desc;
5841 
5842 	cmd = &desc.params.lldp_set_mib;
5843 
5844 	if (buf_size == 0 || !buf)
5845 		return -EINVAL;
5846 
5847 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
5848 
5849 	desc.flags |= cpu_to_le16((u16)ICE_AQ_FLAG_RD);
5850 	desc.datalen = cpu_to_le16(buf_size);
5851 
5852 	cmd->type = mib_type;
5853 	cmd->length = cpu_to_le16(buf_size);
5854 
5855 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
5856 }
5857 
5858 /**
5859  * ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl
5860  * @hw: pointer to HW struct
5861  */
5862 bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
5863 {
5864 	if (hw->mac_type != ICE_MAC_E810)
5865 		return false;
5866 
5867 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LLDP_FLTR_MAJ,
5868 				     ICE_FW_API_LLDP_FLTR_MIN,
5869 				     ICE_FW_API_LLDP_FLTR_PATCH);
5870 }
5871 
5872 /**
5873  * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
5874  * @hw: pointer to HW struct
5875  * @vsi_num: absolute HW index for VSI
5876  * @add: boolean for if adding or removing a filter
5877  */
5878 int
5879 ice_lldp_fltr_add_remove(struct ice_hw *hw, u16 vsi_num, bool add)
5880 {
5881 	struct ice_aqc_lldp_filter_ctrl *cmd;
5882 	struct ice_aq_desc desc;
5883 
5884 	cmd = &desc.params.lldp_filter_ctrl;
5885 
5886 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl);
5887 
5888 	if (add)
5889 		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
5890 	else
5891 		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
5892 
5893 	cmd->vsi_num = cpu_to_le16(vsi_num);
5894 
5895 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5896 }
5897 
5898 /**
5899  * ice_lldp_execute_pending_mib - execute LLDP pending MIB request
5900  * @hw: pointer to HW struct
5901  */
5902 int ice_lldp_execute_pending_mib(struct ice_hw *hw)
5903 {
5904 	struct ice_aq_desc desc;
5905 
5906 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_execute_pending_mib);
5907 
5908 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5909 }
5910 
5911 /**
5912  * ice_fw_supports_report_dflt_cfg
5913  * @hw: pointer to the hardware structure
5914  *
5915  * Checks if the firmware supports report default configuration
5916  */
5917 bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw)
5918 {
5919 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_REPORT_DFLT_CFG_MAJ,
5920 				     ICE_FW_API_REPORT_DFLT_CFG_MIN,
5921 				     ICE_FW_API_REPORT_DFLT_CFG_PATCH);
5922 }
5923 
5924 /* each of the indexes into the following array match the speed of a return
5925  * value from the list of AQ returned speeds like the range:
5926  * ICE_AQ_LINK_SPEED_10MB .. ICE_AQ_LINK_SPEED_100GB excluding
5927  * ICE_AQ_LINK_SPEED_UNKNOWN which is BIT(15) and maps to BIT(14) in this
5928  * array. The array is defined as 15 elements long because the link_speed
5929  * returned by the firmware is a 16 bit * value, but is indexed
5930  * by [fls(speed) - 1]
5931  */
5932 static const u32 ice_aq_to_link_speed[] = {
5933 	SPEED_10,	/* BIT(0) */
5934 	SPEED_100,
5935 	SPEED_1000,
5936 	SPEED_2500,
5937 	SPEED_5000,
5938 	SPEED_10000,
5939 	SPEED_20000,
5940 	SPEED_25000,
5941 	SPEED_40000,
5942 	SPEED_50000,
5943 	SPEED_100000,	/* BIT(10) */
5944 	SPEED_200000,
5945 };
5946 
5947 /**
5948  * ice_get_link_speed - get integer speed from table
5949  * @index: array index from fls(aq speed) - 1
5950  *
5951  * Returns: u32 value containing integer speed
5952  */
5953 u32 ice_get_link_speed(u16 index)
5954 {
5955 	if (index >= ARRAY_SIZE(ice_aq_to_link_speed))
5956 		return 0;
5957 
5958 	return ice_aq_to_link_speed[index];
5959 }
5960