1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice_common.h"
5 #include "ice_sched.h"
6 #include "ice_adminq_cmd.h"
7 
8 #define ICE_PF_RESET_WAIT_COUNT	200
9 
10 #define ICE_PROG_FLEX_ENTRY(hw, rxdid, mdid, idx) \
11 	wr32((hw), GLFLXP_RXDID_FLX_WRD_##idx(rxdid), \
12 	     ((ICE_RX_OPC_MDID << \
13 	       GLFLXP_RXDID_FLX_WRD_##idx##_RXDID_OPCODE_S) & \
14 	      GLFLXP_RXDID_FLX_WRD_##idx##_RXDID_OPCODE_M) | \
15 	     (((mdid) << GLFLXP_RXDID_FLX_WRD_##idx##_PROT_MDID_S) & \
16 	      GLFLXP_RXDID_FLX_WRD_##idx##_PROT_MDID_M))
17 
18 #define ICE_PROG_FLG_ENTRY(hw, rxdid, flg_0, flg_1, flg_2, flg_3, idx) \
19 	wr32((hw), GLFLXP_RXDID_FLAGS(rxdid, idx), \
20 	     (((flg_0) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S) & \
21 	      GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M) | \
22 	     (((flg_1) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_1_S) & \
23 	      GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_1_M) | \
24 	     (((flg_2) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_2_S) & \
25 	      GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_2_M) | \
26 	     (((flg_3) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_3_S) & \
27 	      GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_3_M))
28 
29 /**
30  * ice_set_mac_type - Sets MAC type
31  * @hw: pointer to the HW structure
32  *
33  * This function sets the MAC type of the adapter based on the
34  * vendor ID and device ID stored in the HW structure.
35  */
36 static enum ice_status ice_set_mac_type(struct ice_hw *hw)
37 {
38 	if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
39 		return ICE_ERR_DEVICE_NOT_SUPPORTED;
40 
41 	hw->mac_type = ICE_MAC_GENERIC;
42 	return 0;
43 }
44 
45 /**
46  * ice_dev_onetime_setup - Temporary HW/FW workarounds
47  * @hw: pointer to the HW structure
48  *
49  * This function provides temporary workarounds for certain issues
50  * that are expected to be fixed in the HW/FW.
51  */
52 void ice_dev_onetime_setup(struct ice_hw *hw)
53 {
54 #define MBX_PF_VT_PFALLOC	0x00231E80
55 	/* set VFs per PF */
56 	wr32(hw, MBX_PF_VT_PFALLOC, rd32(hw, PF_VT_PFALLOC_HIF));
57 }
58 
59 /**
60  * ice_clear_pf_cfg - Clear PF configuration
61  * @hw: pointer to the hardware structure
62  *
63  * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
64  * configuration, flow director filters, etc.).
65  */
66 enum ice_status ice_clear_pf_cfg(struct ice_hw *hw)
67 {
68 	struct ice_aq_desc desc;
69 
70 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
71 
72 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
73 }
74 
75 /**
76  * ice_aq_manage_mac_read - manage MAC address read command
77  * @hw: pointer to the HW struct
78  * @buf: a virtual buffer to hold the manage MAC read response
79  * @buf_size: Size of the virtual buffer
80  * @cd: pointer to command details structure or NULL
81  *
82  * This function is used to return per PF station MAC address (0x0107).
83  * NOTE: Upon successful completion of this command, MAC address information
84  * is returned in user specified buffer. Please interpret user specified
85  * buffer as "manage_mac_read" response.
86  * Response such as various MAC addresses are stored in HW struct (port.mac)
87  * ice_aq_discover_caps is expected to be called before this function is called.
88  */
89 static enum ice_status
90 ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
91 		       struct ice_sq_cd *cd)
92 {
93 	struct ice_aqc_manage_mac_read_resp *resp;
94 	struct ice_aqc_manage_mac_read *cmd;
95 	struct ice_aq_desc desc;
96 	enum ice_status status;
97 	u16 flags;
98 	u8 i;
99 
100 	cmd = &desc.params.mac_read;
101 
102 	if (buf_size < sizeof(*resp))
103 		return ICE_ERR_BUF_TOO_SHORT;
104 
105 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
106 
107 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
108 	if (status)
109 		return status;
110 
111 	resp = (struct ice_aqc_manage_mac_read_resp *)buf;
112 	flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
113 
114 	if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
115 		ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
116 		return ICE_ERR_CFG;
117 	}
118 
119 	/* A single port can report up to two (LAN and WoL) addresses */
120 	for (i = 0; i < cmd->num_addr; i++)
121 		if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
122 			ether_addr_copy(hw->port_info->mac.lan_addr,
123 					resp[i].mac_addr);
124 			ether_addr_copy(hw->port_info->mac.perm_addr,
125 					resp[i].mac_addr);
126 			break;
127 		}
128 
129 	return 0;
130 }
131 
132 /**
133  * ice_aq_get_phy_caps - returns PHY capabilities
134  * @pi: port information structure
135  * @qual_mods: report qualified modules
136  * @report_mode: report mode capabilities
137  * @pcaps: structure for PHY capabilities to be filled
138  * @cd: pointer to command details structure or NULL
139  *
140  * Returns the various PHY capabilities supported on the Port (0x0600)
141  */
142 enum ice_status
143 ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
144 		    struct ice_aqc_get_phy_caps_data *pcaps,
145 		    struct ice_sq_cd *cd)
146 {
147 	struct ice_aqc_get_phy_caps *cmd;
148 	u16 pcaps_size = sizeof(*pcaps);
149 	struct ice_aq_desc desc;
150 	enum ice_status status;
151 
152 	cmd = &desc.params.get_phy;
153 
154 	if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
155 		return ICE_ERR_PARAM;
156 
157 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
158 
159 	if (qual_mods)
160 		cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
161 
162 	cmd->param0 |= cpu_to_le16(report_mode);
163 	status = ice_aq_send_cmd(pi->hw, &desc, pcaps, pcaps_size, cd);
164 
165 	if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP) {
166 		pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
167 		pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
168 	}
169 
170 	return status;
171 }
172 
173 /**
174  * ice_get_media_type - Gets media type
175  * @pi: port information structure
176  */
177 static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
178 {
179 	struct ice_link_status *hw_link_info;
180 
181 	if (!pi)
182 		return ICE_MEDIA_UNKNOWN;
183 
184 	hw_link_info = &pi->phy.link_info;
185 	if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
186 		/* If more than one media type is selected, report unknown */
187 		return ICE_MEDIA_UNKNOWN;
188 
189 	if (hw_link_info->phy_type_low) {
190 		switch (hw_link_info->phy_type_low) {
191 		case ICE_PHY_TYPE_LOW_1000BASE_SX:
192 		case ICE_PHY_TYPE_LOW_1000BASE_LX:
193 		case ICE_PHY_TYPE_LOW_10GBASE_SR:
194 		case ICE_PHY_TYPE_LOW_10GBASE_LR:
195 		case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
196 		case ICE_PHY_TYPE_LOW_25GBASE_SR:
197 		case ICE_PHY_TYPE_LOW_25GBASE_LR:
198 		case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
199 		case ICE_PHY_TYPE_LOW_40GBASE_SR4:
200 		case ICE_PHY_TYPE_LOW_40GBASE_LR4:
201 		case ICE_PHY_TYPE_LOW_50GBASE_SR2:
202 		case ICE_PHY_TYPE_LOW_50GBASE_LR2:
203 		case ICE_PHY_TYPE_LOW_50GBASE_SR:
204 		case ICE_PHY_TYPE_LOW_50GBASE_FR:
205 		case ICE_PHY_TYPE_LOW_50GBASE_LR:
206 		case ICE_PHY_TYPE_LOW_100GBASE_SR4:
207 		case ICE_PHY_TYPE_LOW_100GBASE_LR4:
208 		case ICE_PHY_TYPE_LOW_100GBASE_SR2:
209 		case ICE_PHY_TYPE_LOW_100GBASE_DR:
210 			return ICE_MEDIA_FIBER;
211 		case ICE_PHY_TYPE_LOW_100BASE_TX:
212 		case ICE_PHY_TYPE_LOW_1000BASE_T:
213 		case ICE_PHY_TYPE_LOW_2500BASE_T:
214 		case ICE_PHY_TYPE_LOW_5GBASE_T:
215 		case ICE_PHY_TYPE_LOW_10GBASE_T:
216 		case ICE_PHY_TYPE_LOW_25GBASE_T:
217 			return ICE_MEDIA_BASET;
218 		case ICE_PHY_TYPE_LOW_10G_SFI_DA:
219 		case ICE_PHY_TYPE_LOW_25GBASE_CR:
220 		case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
221 		case ICE_PHY_TYPE_LOW_25GBASE_CR1:
222 		case ICE_PHY_TYPE_LOW_40GBASE_CR4:
223 		case ICE_PHY_TYPE_LOW_50GBASE_CR2:
224 		case ICE_PHY_TYPE_LOW_50GBASE_CP:
225 		case ICE_PHY_TYPE_LOW_100GBASE_CR4:
226 		case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
227 		case ICE_PHY_TYPE_LOW_100GBASE_CP2:
228 			return ICE_MEDIA_DA;
229 		case ICE_PHY_TYPE_LOW_1000BASE_KX:
230 		case ICE_PHY_TYPE_LOW_2500BASE_KX:
231 		case ICE_PHY_TYPE_LOW_2500BASE_X:
232 		case ICE_PHY_TYPE_LOW_5GBASE_KR:
233 		case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
234 		case ICE_PHY_TYPE_LOW_25GBASE_KR:
235 		case ICE_PHY_TYPE_LOW_25GBASE_KR1:
236 		case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
237 		case ICE_PHY_TYPE_LOW_40GBASE_KR4:
238 		case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
239 		case ICE_PHY_TYPE_LOW_50GBASE_KR2:
240 		case ICE_PHY_TYPE_LOW_100GBASE_KR4:
241 		case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
242 			return ICE_MEDIA_BACKPLANE;
243 		}
244 	} else {
245 		switch (hw_link_info->phy_type_high) {
246 		case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
247 			return ICE_MEDIA_BACKPLANE;
248 		}
249 	}
250 	return ICE_MEDIA_UNKNOWN;
251 }
252 
253 /**
254  * ice_aq_get_link_info
255  * @pi: port information structure
256  * @ena_lse: enable/disable LinkStatusEvent reporting
257  * @link: pointer to link status structure - optional
258  * @cd: pointer to command details structure or NULL
259  *
260  * Get Link Status (0x607). Returns the link status of the adapter.
261  */
262 enum ice_status
263 ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
264 		     struct ice_link_status *link, struct ice_sq_cd *cd)
265 {
266 	struct ice_aqc_get_link_status_data link_data = { 0 };
267 	struct ice_aqc_get_link_status *resp;
268 	struct ice_link_status *li_old, *li;
269 	enum ice_media_type *hw_media_type;
270 	struct ice_fc_info *hw_fc_info;
271 	bool tx_pause, rx_pause;
272 	struct ice_aq_desc desc;
273 	enum ice_status status;
274 	struct ice_hw *hw;
275 	u16 cmd_flags;
276 
277 	if (!pi)
278 		return ICE_ERR_PARAM;
279 	hw = pi->hw;
280 	li_old = &pi->phy.link_info_old;
281 	hw_media_type = &pi->phy.media_type;
282 	li = &pi->phy.link_info;
283 	hw_fc_info = &pi->fc;
284 
285 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
286 	cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
287 	resp = &desc.params.get_link_status;
288 	resp->cmd_flags = cpu_to_le16(cmd_flags);
289 	resp->lport_num = pi->lport;
290 
291 	status = ice_aq_send_cmd(hw, &desc, &link_data, sizeof(link_data), cd);
292 
293 	if (status)
294 		return status;
295 
296 	/* save off old link status information */
297 	*li_old = *li;
298 
299 	/* update current link status information */
300 	li->link_speed = le16_to_cpu(link_data.link_speed);
301 	li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
302 	li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
303 	*hw_media_type = ice_get_media_type(pi);
304 	li->link_info = link_data.link_info;
305 	li->an_info = link_data.an_info;
306 	li->ext_info = link_data.ext_info;
307 	li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
308 	li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
309 	li->topo_media_conflict = link_data.topo_media_conflict;
310 	li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
311 				      ICE_AQ_CFG_PACING_TYPE_M);
312 
313 	/* update fc info */
314 	tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
315 	rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
316 	if (tx_pause && rx_pause)
317 		hw_fc_info->current_mode = ICE_FC_FULL;
318 	else if (tx_pause)
319 		hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
320 	else if (rx_pause)
321 		hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
322 	else
323 		hw_fc_info->current_mode = ICE_FC_NONE;
324 
325 	li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
326 
327 	ice_debug(hw, ICE_DBG_LINK, "link_speed = 0x%x\n", li->link_speed);
328 	ice_debug(hw, ICE_DBG_LINK, "phy_type_low = 0x%llx\n",
329 		  (unsigned long long)li->phy_type_low);
330 	ice_debug(hw, ICE_DBG_LINK, "phy_type_high = 0x%llx\n",
331 		  (unsigned long long)li->phy_type_high);
332 	ice_debug(hw, ICE_DBG_LINK, "media_type = 0x%x\n", *hw_media_type);
333 	ice_debug(hw, ICE_DBG_LINK, "link_info = 0x%x\n", li->link_info);
334 	ice_debug(hw, ICE_DBG_LINK, "an_info = 0x%x\n", li->an_info);
335 	ice_debug(hw, ICE_DBG_LINK, "ext_info = 0x%x\n", li->ext_info);
336 	ice_debug(hw, ICE_DBG_LINK, "lse_ena = 0x%x\n", li->lse_ena);
337 	ice_debug(hw, ICE_DBG_LINK, "max_frame = 0x%x\n", li->max_frame_size);
338 	ice_debug(hw, ICE_DBG_LINK, "pacing = 0x%x\n", li->pacing);
339 
340 	/* save link status information */
341 	if (link)
342 		*link = *li;
343 
344 	/* flag cleared so calling functions don't call AQ again */
345 	pi->phy.get_link_info = false;
346 
347 	return 0;
348 }
349 
350 /**
351  * ice_init_flex_flags
352  * @hw: pointer to the hardware structure
353  * @prof_id: Rx Descriptor Builder profile ID
354  *
355  * Function to initialize Rx flex flags
356  */
357 static void ice_init_flex_flags(struct ice_hw *hw, enum ice_rxdid prof_id)
358 {
359 	u8 idx = 0;
360 
361 	/* Flex-flag fields (0-2) are programmed with FLG64 bits with layout:
362 	 * flexiflags0[5:0] - TCP flags, is_packet_fragmented, is_packet_UDP_GRE
363 	 * flexiflags1[3:0] - Not used for flag programming
364 	 * flexiflags2[7:0] - Tunnel and VLAN types
365 	 * 2 invalid fields in last index
366 	 */
367 	switch (prof_id) {
368 	/* Rx flex flags are currently programmed for the NIC profiles only.
369 	 * Different flag bit programming configurations can be added per
370 	 * profile as needed.
371 	 */
372 	case ICE_RXDID_FLEX_NIC:
373 	case ICE_RXDID_FLEX_NIC_2:
374 		ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_FLG_PKT_FRG,
375 				   ICE_FLG_UDP_GRE, ICE_FLG_PKT_DSI,
376 				   ICE_FLG_FIN, idx++);
377 		/* flex flag 1 is not used for flexi-flag programming, skipping
378 		 * these four FLG64 bits.
379 		 */
380 		ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_FLG_SYN, ICE_FLG_RST,
381 				   ICE_FLG_PKT_DSI, ICE_FLG_PKT_DSI, idx++);
382 		ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_FLG_PKT_DSI,
383 				   ICE_FLG_PKT_DSI, ICE_FLG_EVLAN_x8100,
384 				   ICE_FLG_EVLAN_x9100, idx++);
385 		ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_FLG_VLAN_x8100,
386 				   ICE_FLG_TNL_VLAN, ICE_FLG_TNL_MAC,
387 				   ICE_FLG_TNL0, idx++);
388 		ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_FLG_TNL1, ICE_FLG_TNL2,
389 				   ICE_FLG_PKT_DSI, ICE_FLG_PKT_DSI, idx);
390 		break;
391 
392 	default:
393 		ice_debug(hw, ICE_DBG_INIT,
394 			  "Flag programming for profile ID %d not supported\n",
395 			  prof_id);
396 	}
397 }
398 
399 /**
400  * ice_init_flex_flds
401  * @hw: pointer to the hardware structure
402  * @prof_id: Rx Descriptor Builder profile ID
403  *
404  * Function to initialize flex descriptors
405  */
406 static void ice_init_flex_flds(struct ice_hw *hw, enum ice_rxdid prof_id)
407 {
408 	enum ice_flex_rx_mdid mdid;
409 
410 	switch (prof_id) {
411 	case ICE_RXDID_FLEX_NIC:
412 	case ICE_RXDID_FLEX_NIC_2:
413 		ICE_PROG_FLEX_ENTRY(hw, prof_id, ICE_RX_MDID_HASH_LOW, 0);
414 		ICE_PROG_FLEX_ENTRY(hw, prof_id, ICE_RX_MDID_HASH_HIGH, 1);
415 		ICE_PROG_FLEX_ENTRY(hw, prof_id, ICE_RX_MDID_FLOW_ID_LOWER, 2);
416 
417 		mdid = (prof_id == ICE_RXDID_FLEX_NIC_2) ?
418 			ICE_RX_MDID_SRC_VSI : ICE_RX_MDID_FLOW_ID_HIGH;
419 
420 		ICE_PROG_FLEX_ENTRY(hw, prof_id, mdid, 3);
421 
422 		ice_init_flex_flags(hw, prof_id);
423 		break;
424 
425 	default:
426 		ice_debug(hw, ICE_DBG_INIT,
427 			  "Field init for profile ID %d not supported\n",
428 			  prof_id);
429 	}
430 }
431 
432 /**
433  * ice_init_fltr_mgmt_struct - initializes filter management list and locks
434  * @hw: pointer to the HW struct
435  */
436 static enum ice_status ice_init_fltr_mgmt_struct(struct ice_hw *hw)
437 {
438 	struct ice_switch_info *sw;
439 
440 	hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
441 				       sizeof(*hw->switch_info), GFP_KERNEL);
442 	sw = hw->switch_info;
443 
444 	if (!sw)
445 		return ICE_ERR_NO_MEMORY;
446 
447 	INIT_LIST_HEAD(&sw->vsi_list_map_head);
448 
449 	return ice_init_def_sw_recp(hw);
450 }
451 
452 /**
453  * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
454  * @hw: pointer to the HW struct
455  */
456 static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
457 {
458 	struct ice_switch_info *sw = hw->switch_info;
459 	struct ice_vsi_list_map_info *v_pos_map;
460 	struct ice_vsi_list_map_info *v_tmp_map;
461 	struct ice_sw_recipe *recps;
462 	u8 i;
463 
464 	list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
465 				 list_entry) {
466 		list_del(&v_pos_map->list_entry);
467 		devm_kfree(ice_hw_to_dev(hw), v_pos_map);
468 	}
469 	recps = hw->switch_info->recp_list;
470 	for (i = 0; i < ICE_SW_LKUP_LAST; i++) {
471 		struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
472 
473 		recps[i].root_rid = i;
474 		mutex_destroy(&recps[i].filt_rule_lock);
475 		list_for_each_entry_safe(lst_itr, tmp_entry,
476 					 &recps[i].filt_rules, list_entry) {
477 			list_del(&lst_itr->list_entry);
478 			devm_kfree(ice_hw_to_dev(hw), lst_itr);
479 		}
480 	}
481 	ice_rm_all_sw_replay_rule_info(hw);
482 	devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
483 	devm_kfree(ice_hw_to_dev(hw), sw);
484 }
485 
486 #define ICE_FW_LOG_DESC_SIZE(n)	(sizeof(struct ice_aqc_fw_logging_data) + \
487 	(((n) - 1) * sizeof(((struct ice_aqc_fw_logging_data *)0)->entry)))
488 #define ICE_FW_LOG_DESC_SIZE_MAX	\
489 	ICE_FW_LOG_DESC_SIZE(ICE_AQC_FW_LOG_ID_MAX)
490 
491 /**
492  * ice_get_fw_log_cfg - get FW logging configuration
493  * @hw: pointer to the HW struct
494  */
495 static enum ice_status ice_get_fw_log_cfg(struct ice_hw *hw)
496 {
497 	struct ice_aqc_fw_logging_data *config;
498 	struct ice_aq_desc desc;
499 	enum ice_status status;
500 	u16 size;
501 
502 	size = ICE_FW_LOG_DESC_SIZE_MAX;
503 	config = devm_kzalloc(ice_hw_to_dev(hw), size, GFP_KERNEL);
504 	if (!config)
505 		return ICE_ERR_NO_MEMORY;
506 
507 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging_info);
508 
509 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_BUF);
510 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
511 
512 	status = ice_aq_send_cmd(hw, &desc, config, size, NULL);
513 	if (!status) {
514 		u16 i;
515 
516 		/* Save FW logging information into the HW structure */
517 		for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
518 			u16 v, m, flgs;
519 
520 			v = le16_to_cpu(config->entry[i]);
521 			m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
522 			flgs = (v & ICE_AQC_FW_LOG_EN_M) >> ICE_AQC_FW_LOG_EN_S;
523 
524 			if (m < ICE_AQC_FW_LOG_ID_MAX)
525 				hw->fw_log.evnts[m].cur = flgs;
526 		}
527 	}
528 
529 	devm_kfree(ice_hw_to_dev(hw), config);
530 
531 	return status;
532 }
533 
534 /**
535  * ice_cfg_fw_log - configure FW logging
536  * @hw: pointer to the HW struct
537  * @enable: enable certain FW logging events if true, disable all if false
538  *
539  * This function enables/disables the FW logging via Rx CQ events and a UART
540  * port based on predetermined configurations. FW logging via the Rx CQ can be
541  * enabled/disabled for individual PF's. However, FW logging via the UART can
542  * only be enabled/disabled for all PFs on the same device.
543  *
544  * To enable overall FW logging, the "cq_en" and "uart_en" enable bits in
545  * hw->fw_log need to be set accordingly, e.g. based on user-provided input,
546  * before initializing the device.
547  *
548  * When re/configuring FW logging, callers need to update the "cfg" elements of
549  * the hw->fw_log.evnts array with the desired logging event configurations for
550  * modules of interest. When disabling FW logging completely, the callers can
551  * just pass false in the "enable" parameter. On completion, the function will
552  * update the "cur" element of the hw->fw_log.evnts array with the resulting
553  * logging event configurations of the modules that are being re/configured. FW
554  * logging modules that are not part of a reconfiguration operation retain their
555  * previous states.
556  *
557  * Before resetting the device, it is recommended that the driver disables FW
558  * logging before shutting down the control queue. When disabling FW logging
559  * ("enable" = false), the latest configurations of FW logging events stored in
560  * hw->fw_log.evnts[] are not overridden to allow them to be reconfigured after
561  * a device reset.
562  *
563  * When enabling FW logging to emit log messages via the Rx CQ during the
564  * device's initialization phase, a mechanism alternative to interrupt handlers
565  * needs to be used to extract FW log messages from the Rx CQ periodically and
566  * to prevent the Rx CQ from being full and stalling other types of control
567  * messages from FW to SW. Interrupts are typically disabled during the device's
568  * initialization phase.
569  */
570 static enum ice_status ice_cfg_fw_log(struct ice_hw *hw, bool enable)
571 {
572 	struct ice_aqc_fw_logging_data *data = NULL;
573 	struct ice_aqc_fw_logging *cmd;
574 	enum ice_status status = 0;
575 	u16 i, chgs = 0, len = 0;
576 	struct ice_aq_desc desc;
577 	u8 actv_evnts = 0;
578 	void *buf = NULL;
579 
580 	if (!hw->fw_log.cq_en && !hw->fw_log.uart_en)
581 		return 0;
582 
583 	/* Disable FW logging only when the control queue is still responsive */
584 	if (!enable &&
585 	    (!hw->fw_log.actv_evnts || !ice_check_sq_alive(hw, &hw->adminq)))
586 		return 0;
587 
588 	/* Get current FW log settings */
589 	status = ice_get_fw_log_cfg(hw);
590 	if (status)
591 		return status;
592 
593 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging);
594 	cmd = &desc.params.fw_logging;
595 
596 	/* Indicate which controls are valid */
597 	if (hw->fw_log.cq_en)
598 		cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_AQ_VALID;
599 
600 	if (hw->fw_log.uart_en)
601 		cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_UART_VALID;
602 
603 	if (enable) {
604 		/* Fill in an array of entries with FW logging modules and
605 		 * logging events being reconfigured.
606 		 */
607 		for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
608 			u16 val;
609 
610 			/* Keep track of enabled event types */
611 			actv_evnts |= hw->fw_log.evnts[i].cfg;
612 
613 			if (hw->fw_log.evnts[i].cfg == hw->fw_log.evnts[i].cur)
614 				continue;
615 
616 			if (!data) {
617 				data = devm_kzalloc(ice_hw_to_dev(hw),
618 						    ICE_FW_LOG_DESC_SIZE_MAX,
619 						    GFP_KERNEL);
620 				if (!data)
621 					return ICE_ERR_NO_MEMORY;
622 			}
623 
624 			val = i << ICE_AQC_FW_LOG_ID_S;
625 			val |= hw->fw_log.evnts[i].cfg << ICE_AQC_FW_LOG_EN_S;
626 			data->entry[chgs++] = cpu_to_le16(val);
627 		}
628 
629 		/* Only enable FW logging if at least one module is specified.
630 		 * If FW logging is currently enabled but all modules are not
631 		 * enabled to emit log messages, disable FW logging altogether.
632 		 */
633 		if (actv_evnts) {
634 			/* Leave if there is effectively no change */
635 			if (!chgs)
636 				goto out;
637 
638 			if (hw->fw_log.cq_en)
639 				cmd->log_ctrl |= ICE_AQC_FW_LOG_AQ_EN;
640 
641 			if (hw->fw_log.uart_en)
642 				cmd->log_ctrl |= ICE_AQC_FW_LOG_UART_EN;
643 
644 			buf = data;
645 			len = ICE_FW_LOG_DESC_SIZE(chgs);
646 			desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
647 		}
648 	}
649 
650 	status = ice_aq_send_cmd(hw, &desc, buf, len, NULL);
651 	if (!status) {
652 		/* Update the current configuration to reflect events enabled.
653 		 * hw->fw_log.cq_en and hw->fw_log.uart_en indicate if the FW
654 		 * logging mode is enabled for the device. They do not reflect
655 		 * actual modules being enabled to emit log messages. So, their
656 		 * values remain unchanged even when all modules are disabled.
657 		 */
658 		u16 cnt = enable ? chgs : (u16)ICE_AQC_FW_LOG_ID_MAX;
659 
660 		hw->fw_log.actv_evnts = actv_evnts;
661 		for (i = 0; i < cnt; i++) {
662 			u16 v, m;
663 
664 			if (!enable) {
665 				/* When disabling all FW logging events as part
666 				 * of device's de-initialization, the original
667 				 * configurations are retained, and can be used
668 				 * to reconfigure FW logging later if the device
669 				 * is re-initialized.
670 				 */
671 				hw->fw_log.evnts[i].cur = 0;
672 				continue;
673 			}
674 
675 			v = le16_to_cpu(data->entry[i]);
676 			m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
677 			hw->fw_log.evnts[m].cur = hw->fw_log.evnts[m].cfg;
678 		}
679 	}
680 
681 out:
682 	if (data)
683 		devm_kfree(ice_hw_to_dev(hw), data);
684 
685 	return status;
686 }
687 
688 /**
689  * ice_output_fw_log
690  * @hw: pointer to the HW struct
691  * @desc: pointer to the AQ message descriptor
692  * @buf: pointer to the buffer accompanying the AQ message
693  *
694  * Formats a FW Log message and outputs it via the standard driver logs.
695  */
696 void ice_output_fw_log(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf)
697 {
698 	ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg Start ]\n");
699 	ice_debug_array(hw, ICE_DBG_FW_LOG, 16, 1, (u8 *)buf,
700 			le16_to_cpu(desc->datalen));
701 	ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg End ]\n");
702 }
703 
704 /**
705  * ice_get_itr_intrl_gran - determine int/intrl granularity
706  * @hw: pointer to the HW struct
707  *
708  * Determines the ITR/intrl granularities based on the maximum aggregate
709  * bandwidth according to the device's configuration during power-on.
710  */
711 static void ice_get_itr_intrl_gran(struct ice_hw *hw)
712 {
713 	u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) &
714 			 GL_PWR_MODE_CTL_CAR_MAX_BW_M) >>
715 			GL_PWR_MODE_CTL_CAR_MAX_BW_S;
716 
717 	switch (max_agg_bw) {
718 	case ICE_MAX_AGG_BW_200G:
719 	case ICE_MAX_AGG_BW_100G:
720 	case ICE_MAX_AGG_BW_50G:
721 		hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
722 		hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
723 		break;
724 	case ICE_MAX_AGG_BW_25G:
725 		hw->itr_gran = ICE_ITR_GRAN_MAX_25;
726 		hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
727 		break;
728 	}
729 }
730 
731 /**
732  * ice_get_nvm_version - get cached NVM version data
733  * @hw: pointer to the hardware structure
734  * @oem_ver: 8 bit NVM version
735  * @oem_build: 16 bit NVM build number
736  * @oem_patch: 8 NVM patch number
737  * @ver_hi: high 16 bits of the NVM version
738  * @ver_lo: low 16 bits of the NVM version
739  */
740 void
741 ice_get_nvm_version(struct ice_hw *hw, u8 *oem_ver, u16 *oem_build,
742 		    u8 *oem_patch, u8 *ver_hi, u8 *ver_lo)
743 {
744 	struct ice_nvm_info *nvm = &hw->nvm;
745 
746 	*oem_ver = (u8)((nvm->oem_ver & ICE_OEM_VER_MASK) >> ICE_OEM_VER_SHIFT);
747 	*oem_patch = (u8)(nvm->oem_ver & ICE_OEM_VER_PATCH_MASK);
748 	*oem_build = (u16)((nvm->oem_ver & ICE_OEM_VER_BUILD_MASK) >>
749 			   ICE_OEM_VER_BUILD_SHIFT);
750 	*ver_hi = (nvm->ver & ICE_NVM_VER_HI_MASK) >> ICE_NVM_VER_HI_SHIFT;
751 	*ver_lo = (nvm->ver & ICE_NVM_VER_LO_MASK) >> ICE_NVM_VER_LO_SHIFT;
752 }
753 
754 /**
755  * ice_init_hw - main hardware initialization routine
756  * @hw: pointer to the hardware structure
757  */
758 enum ice_status ice_init_hw(struct ice_hw *hw)
759 {
760 	struct ice_aqc_get_phy_caps_data *pcaps;
761 	enum ice_status status;
762 	u16 mac_buf_len;
763 	void *mac_buf;
764 
765 	/* Set MAC type based on DeviceID */
766 	status = ice_set_mac_type(hw);
767 	if (status)
768 		return status;
769 
770 	hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
771 			 PF_FUNC_RID_FUNC_NUM_M) >>
772 		PF_FUNC_RID_FUNC_NUM_S;
773 
774 	status = ice_reset(hw, ICE_RESET_PFR);
775 	if (status)
776 		return status;
777 
778 	ice_get_itr_intrl_gran(hw);
779 
780 	status = ice_create_all_ctrlq(hw);
781 	if (status)
782 		goto err_unroll_cqinit;
783 
784 	/* Enable FW logging. Not fatal if this fails. */
785 	status = ice_cfg_fw_log(hw, true);
786 	if (status)
787 		ice_debug(hw, ICE_DBG_INIT, "Failed to enable FW logging.\n");
788 
789 	status = ice_clear_pf_cfg(hw);
790 	if (status)
791 		goto err_unroll_cqinit;
792 
793 	ice_clear_pxe_mode(hw);
794 
795 	status = ice_init_nvm(hw);
796 	if (status)
797 		goto err_unroll_cqinit;
798 
799 	status = ice_get_caps(hw);
800 	if (status)
801 		goto err_unroll_cqinit;
802 
803 	hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
804 				     sizeof(*hw->port_info), GFP_KERNEL);
805 	if (!hw->port_info) {
806 		status = ICE_ERR_NO_MEMORY;
807 		goto err_unroll_cqinit;
808 	}
809 
810 	/* set the back pointer to HW */
811 	hw->port_info->hw = hw;
812 
813 	/* Initialize port_info struct with switch configuration data */
814 	status = ice_get_initial_sw_cfg(hw);
815 	if (status)
816 		goto err_unroll_alloc;
817 
818 	hw->evb_veb = true;
819 
820 	/* Query the allocated resources for Tx scheduler */
821 	status = ice_sched_query_res_alloc(hw);
822 	if (status) {
823 		ice_debug(hw, ICE_DBG_SCHED,
824 			  "Failed to get scheduler allocated resources\n");
825 		goto err_unroll_alloc;
826 	}
827 
828 	/* Initialize port_info struct with scheduler data */
829 	status = ice_sched_init_port(hw->port_info);
830 	if (status)
831 		goto err_unroll_sched;
832 
833 	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
834 	if (!pcaps) {
835 		status = ICE_ERR_NO_MEMORY;
836 		goto err_unroll_sched;
837 	}
838 
839 	/* Initialize port_info struct with PHY capabilities */
840 	status = ice_aq_get_phy_caps(hw->port_info, false,
841 				     ICE_AQC_REPORT_TOPO_CAP, pcaps, NULL);
842 	devm_kfree(ice_hw_to_dev(hw), pcaps);
843 	if (status)
844 		goto err_unroll_sched;
845 
846 	/* Initialize port_info struct with link information */
847 	status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
848 	if (status)
849 		goto err_unroll_sched;
850 
851 	/* need a valid SW entry point to build a Tx tree */
852 	if (!hw->sw_entry_point_layer) {
853 		ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
854 		status = ICE_ERR_CFG;
855 		goto err_unroll_sched;
856 	}
857 	INIT_LIST_HEAD(&hw->agg_list);
858 
859 	status = ice_init_fltr_mgmt_struct(hw);
860 	if (status)
861 		goto err_unroll_sched;
862 
863 	ice_dev_onetime_setup(hw);
864 
865 	/* Get MAC information */
866 	/* A single port can report up to two (LAN and WoL) addresses */
867 	mac_buf = devm_kcalloc(ice_hw_to_dev(hw), 2,
868 			       sizeof(struct ice_aqc_manage_mac_read_resp),
869 			       GFP_KERNEL);
870 	mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
871 
872 	if (!mac_buf) {
873 		status = ICE_ERR_NO_MEMORY;
874 		goto err_unroll_fltr_mgmt_struct;
875 	}
876 
877 	status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
878 	devm_kfree(ice_hw_to_dev(hw), mac_buf);
879 
880 	if (status)
881 		goto err_unroll_fltr_mgmt_struct;
882 
883 	ice_init_flex_flds(hw, ICE_RXDID_FLEX_NIC);
884 	ice_init_flex_flds(hw, ICE_RXDID_FLEX_NIC_2);
885 	status = ice_init_hw_tbls(hw);
886 	if (status)
887 		goto err_unroll_fltr_mgmt_struct;
888 	return 0;
889 
890 err_unroll_fltr_mgmt_struct:
891 	ice_cleanup_fltr_mgmt_struct(hw);
892 err_unroll_sched:
893 	ice_sched_cleanup_all(hw);
894 err_unroll_alloc:
895 	devm_kfree(ice_hw_to_dev(hw), hw->port_info);
896 err_unroll_cqinit:
897 	ice_destroy_all_ctrlq(hw);
898 	return status;
899 }
900 
901 /**
902  * ice_deinit_hw - unroll initialization operations done by ice_init_hw
903  * @hw: pointer to the hardware structure
904  *
905  * This should be called only during nominal operation, not as a result of
906  * ice_init_hw() failing since ice_init_hw() will take care of unrolling
907  * applicable initializations if it fails for any reason.
908  */
909 void ice_deinit_hw(struct ice_hw *hw)
910 {
911 	ice_cleanup_fltr_mgmt_struct(hw);
912 
913 	ice_sched_cleanup_all(hw);
914 	ice_sched_clear_agg(hw);
915 	ice_free_seg(hw);
916 	ice_free_hw_tbls(hw);
917 
918 	if (hw->port_info) {
919 		devm_kfree(ice_hw_to_dev(hw), hw->port_info);
920 		hw->port_info = NULL;
921 	}
922 
923 	/* Attempt to disable FW logging before shutting down control queues */
924 	ice_cfg_fw_log(hw, false);
925 	ice_destroy_all_ctrlq(hw);
926 
927 	/* Clear VSI contexts if not already cleared */
928 	ice_clear_all_vsi_ctx(hw);
929 }
930 
931 /**
932  * ice_check_reset - Check to see if a global reset is complete
933  * @hw: pointer to the hardware structure
934  */
935 enum ice_status ice_check_reset(struct ice_hw *hw)
936 {
937 	u32 cnt, reg = 0, grst_delay;
938 
939 	/* Poll for Device Active state in case a recent CORER, GLOBR,
940 	 * or EMPR has occurred. The grst delay value is in 100ms units.
941 	 * Add 1sec for outstanding AQ commands that can take a long time.
942 	 */
943 	grst_delay = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
944 		      GLGEN_RSTCTL_GRSTDEL_S) + 10;
945 
946 	for (cnt = 0; cnt < grst_delay; cnt++) {
947 		mdelay(100);
948 		reg = rd32(hw, GLGEN_RSTAT);
949 		if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
950 			break;
951 	}
952 
953 	if (cnt == grst_delay) {
954 		ice_debug(hw, ICE_DBG_INIT,
955 			  "Global reset polling failed to complete.\n");
956 		return ICE_ERR_RESET_FAILED;
957 	}
958 
959 #define ICE_RESET_DONE_MASK	(GLNVM_ULD_CORER_DONE_M | \
960 				 GLNVM_ULD_GLOBR_DONE_M)
961 
962 	/* Device is Active; check Global Reset processes are done */
963 	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
964 		reg = rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK;
965 		if (reg == ICE_RESET_DONE_MASK) {
966 			ice_debug(hw, ICE_DBG_INIT,
967 				  "Global reset processes done. %d\n", cnt);
968 			break;
969 		}
970 		mdelay(10);
971 	}
972 
973 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
974 		ice_debug(hw, ICE_DBG_INIT,
975 			  "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
976 			  reg);
977 		return ICE_ERR_RESET_FAILED;
978 	}
979 
980 	return 0;
981 }
982 
983 /**
984  * ice_pf_reset - Reset the PF
985  * @hw: pointer to the hardware structure
986  *
987  * If a global reset has been triggered, this function checks
988  * for its completion and then issues the PF reset
989  */
990 static enum ice_status ice_pf_reset(struct ice_hw *hw)
991 {
992 	u32 cnt, reg;
993 
994 	/* If at function entry a global reset was already in progress, i.e.
995 	 * state is not 'device active' or any of the reset done bits are not
996 	 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
997 	 * global reset is done.
998 	 */
999 	if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1000 	    (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1001 		/* poll on global reset currently in progress until done */
1002 		if (ice_check_reset(hw))
1003 			return ICE_ERR_RESET_FAILED;
1004 
1005 		return 0;
1006 	}
1007 
1008 	/* Reset the PF */
1009 	reg = rd32(hw, PFGEN_CTRL);
1010 
1011 	wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1012 
1013 	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
1014 		reg = rd32(hw, PFGEN_CTRL);
1015 		if (!(reg & PFGEN_CTRL_PFSWR_M))
1016 			break;
1017 
1018 		mdelay(1);
1019 	}
1020 
1021 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1022 		ice_debug(hw, ICE_DBG_INIT,
1023 			  "PF reset polling failed to complete.\n");
1024 		return ICE_ERR_RESET_FAILED;
1025 	}
1026 
1027 	return 0;
1028 }
1029 
1030 /**
1031  * ice_reset - Perform different types of reset
1032  * @hw: pointer to the hardware structure
1033  * @req: reset request
1034  *
1035  * This function triggers a reset as specified by the req parameter.
1036  *
1037  * Note:
1038  * If anything other than a PF reset is triggered, PXE mode is restored.
1039  * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1040  * interface has been restored in the rebuild flow.
1041  */
1042 enum ice_status ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1043 {
1044 	u32 val = 0;
1045 
1046 	switch (req) {
1047 	case ICE_RESET_PFR:
1048 		return ice_pf_reset(hw);
1049 	case ICE_RESET_CORER:
1050 		ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1051 		val = GLGEN_RTRIG_CORER_M;
1052 		break;
1053 	case ICE_RESET_GLOBR:
1054 		ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1055 		val = GLGEN_RTRIG_GLOBR_M;
1056 		break;
1057 	default:
1058 		return ICE_ERR_PARAM;
1059 	}
1060 
1061 	val |= rd32(hw, GLGEN_RTRIG);
1062 	wr32(hw, GLGEN_RTRIG, val);
1063 	ice_flush(hw);
1064 
1065 	/* wait for the FW to be ready */
1066 	return ice_check_reset(hw);
1067 }
1068 
1069 /**
1070  * ice_copy_rxq_ctx_to_hw
1071  * @hw: pointer to the hardware structure
1072  * @ice_rxq_ctx: pointer to the rxq context
1073  * @rxq_index: the index of the Rx queue
1074  *
1075  * Copies rxq context from dense structure to HW register space
1076  */
1077 static enum ice_status
1078 ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1079 {
1080 	u8 i;
1081 
1082 	if (!ice_rxq_ctx)
1083 		return ICE_ERR_BAD_PTR;
1084 
1085 	if (rxq_index > QRX_CTRL_MAX_INDEX)
1086 		return ICE_ERR_PARAM;
1087 
1088 	/* Copy each dword separately to HW */
1089 	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1090 		wr32(hw, QRX_CONTEXT(i, rxq_index),
1091 		     *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1092 
1093 		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1094 			  *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1095 	}
1096 
1097 	return 0;
1098 }
1099 
1100 /* LAN Rx Queue Context */
1101 static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1102 	/* Field		Width	LSB */
1103 	ICE_CTX_STORE(ice_rlan_ctx, head,		13,	0),
1104 	ICE_CTX_STORE(ice_rlan_ctx, cpuid,		8,	13),
1105 	ICE_CTX_STORE(ice_rlan_ctx, base,		57,	32),
1106 	ICE_CTX_STORE(ice_rlan_ctx, qlen,		13,	89),
1107 	ICE_CTX_STORE(ice_rlan_ctx, dbuf,		7,	102),
1108 	ICE_CTX_STORE(ice_rlan_ctx, hbuf,		5,	109),
1109 	ICE_CTX_STORE(ice_rlan_ctx, dtype,		2,	114),
1110 	ICE_CTX_STORE(ice_rlan_ctx, dsize,		1,	116),
1111 	ICE_CTX_STORE(ice_rlan_ctx, crcstrip,		1,	117),
1112 	ICE_CTX_STORE(ice_rlan_ctx, l2tsel,		1,	119),
1113 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,		4,	120),
1114 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,		2,	124),
1115 	ICE_CTX_STORE(ice_rlan_ctx, showiv,		1,	127),
1116 	ICE_CTX_STORE(ice_rlan_ctx, rxmax,		14,	174),
1117 	ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,	1,	193),
1118 	ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,	1,	194),
1119 	ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,	1,	195),
1120 	ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,	1,	196),
1121 	ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,		3,	198),
1122 	ICE_CTX_STORE(ice_rlan_ctx, prefena,		1,	201),
1123 	{ 0 }
1124 };
1125 
1126 /**
1127  * ice_write_rxq_ctx
1128  * @hw: pointer to the hardware structure
1129  * @rlan_ctx: pointer to the rxq context
1130  * @rxq_index: the index of the Rx queue
1131  *
1132  * Converts rxq context from sparse to dense structure and then writes
1133  * it to HW register space and enables the hardware to prefetch descriptors
1134  * instead of only fetching them on demand
1135  */
1136 enum ice_status
1137 ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1138 		  u32 rxq_index)
1139 {
1140 	u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1141 
1142 	if (!rlan_ctx)
1143 		return ICE_ERR_BAD_PTR;
1144 
1145 	rlan_ctx->prefena = 1;
1146 
1147 	ice_set_ctx((u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1148 	return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1149 }
1150 
1151 /* LAN Tx Queue Context */
1152 const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1153 				    /* Field			Width	LSB */
1154 	ICE_CTX_STORE(ice_tlan_ctx, base,			57,	0),
1155 	ICE_CTX_STORE(ice_tlan_ctx, port_num,			3,	57),
1156 	ICE_CTX_STORE(ice_tlan_ctx, cgd_num,			5,	60),
1157 	ICE_CTX_STORE(ice_tlan_ctx, pf_num,			3,	65),
1158 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,			10,	68),
1159 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,			2,	78),
1160 	ICE_CTX_STORE(ice_tlan_ctx, src_vsi,			10,	80),
1161 	ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,			1,	90),
1162 	ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag,	1,	91),
1163 	ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,			1,	92),
1164 	ICE_CTX_STORE(ice_tlan_ctx, cpuid,			8,	93),
1165 	ICE_CTX_STORE(ice_tlan_ctx, wb_mode,			1,	101),
1166 	ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,			1,	102),
1167 	ICE_CTX_STORE(ice_tlan_ctx, tphrd,			1,	103),
1168 	ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,			1,	104),
1169 	ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,			9,	105),
1170 	ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,		14,	114),
1171 	ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,	1,	128),
1172 	ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,		6,	129),
1173 	ICE_CTX_STORE(ice_tlan_ctx, qlen,			13,	135),
1174 	ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,		4,	148),
1175 	ICE_CTX_STORE(ice_tlan_ctx, tso_ena,			1,	152),
1176 	ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,			11,	153),
1177 	ICE_CTX_STORE(ice_tlan_ctx, legacy_int,			1,	164),
1178 	ICE_CTX_STORE(ice_tlan_ctx, drop_ena,			1,	165),
1179 	ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,		2,	166),
1180 	ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,	3,	168),
1181 	ICE_CTX_STORE(ice_tlan_ctx, int_q_state,		122,	171),
1182 	{ 0 }
1183 };
1184 
1185 /**
1186  * ice_debug_cq
1187  * @hw: pointer to the hardware structure
1188  * @mask: debug mask
1189  * @desc: pointer to control queue descriptor
1190  * @buf: pointer to command buffer
1191  * @buf_len: max length of buf
1192  *
1193  * Dumps debug log about control command with descriptor contents.
1194  */
1195 void
1196 ice_debug_cq(struct ice_hw *hw, u32 __maybe_unused mask, void *desc, void *buf,
1197 	     u16 buf_len)
1198 {
1199 	struct ice_aq_desc *cq_desc = (struct ice_aq_desc *)desc;
1200 	u16 len;
1201 
1202 #ifndef CONFIG_DYNAMIC_DEBUG
1203 	if (!(mask & hw->debug_mask))
1204 		return;
1205 #endif
1206 
1207 	if (!desc)
1208 		return;
1209 
1210 	len = le16_to_cpu(cq_desc->datalen);
1211 
1212 	ice_debug(hw, mask,
1213 		  "CQ CMD: opcode 0x%04X, flags 0x%04X, datalen 0x%04X, retval 0x%04X\n",
1214 		  le16_to_cpu(cq_desc->opcode),
1215 		  le16_to_cpu(cq_desc->flags),
1216 		  le16_to_cpu(cq_desc->datalen), le16_to_cpu(cq_desc->retval));
1217 	ice_debug(hw, mask, "\tcookie (h,l) 0x%08X 0x%08X\n",
1218 		  le32_to_cpu(cq_desc->cookie_high),
1219 		  le32_to_cpu(cq_desc->cookie_low));
1220 	ice_debug(hw, mask, "\tparam (0,1)  0x%08X 0x%08X\n",
1221 		  le32_to_cpu(cq_desc->params.generic.param0),
1222 		  le32_to_cpu(cq_desc->params.generic.param1));
1223 	ice_debug(hw, mask, "\taddr (h,l)   0x%08X 0x%08X\n",
1224 		  le32_to_cpu(cq_desc->params.generic.addr_high),
1225 		  le32_to_cpu(cq_desc->params.generic.addr_low));
1226 	if (buf && cq_desc->datalen != 0) {
1227 		ice_debug(hw, mask, "Buffer:\n");
1228 		if (buf_len < len)
1229 			len = buf_len;
1230 
1231 		ice_debug_array(hw, mask, 16, 1, (u8 *)buf, len);
1232 	}
1233 }
1234 
1235 /* FW Admin Queue command wrappers */
1236 
1237 /* Software lock/mutex that is meant to be held while the Global Config Lock
1238  * in firmware is acquired by the software to prevent most (but not all) types
1239  * of AQ commands from being sent to FW
1240  */
1241 DEFINE_MUTEX(ice_global_cfg_lock_sw);
1242 
1243 /**
1244  * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1245  * @hw: pointer to the HW struct
1246  * @desc: descriptor describing the command
1247  * @buf: buffer to use for indirect commands (NULL for direct commands)
1248  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1249  * @cd: pointer to command details structure
1250  *
1251  * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1252  */
1253 enum ice_status
1254 ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1255 		u16 buf_size, struct ice_sq_cd *cd)
1256 {
1257 	struct ice_aqc_req_res *cmd = &desc->params.res_owner;
1258 	bool lock_acquired = false;
1259 	enum ice_status status;
1260 
1261 	/* When a package download is in process (i.e. when the firmware's
1262 	 * Global Configuration Lock resource is held), only the Download
1263 	 * Package, Get Version, Get Package Info List and Release Resource
1264 	 * (with resource ID set to Global Config Lock) AdminQ commands are
1265 	 * allowed; all others must block until the package download completes
1266 	 * and the Global Config Lock is released.  See also
1267 	 * ice_acquire_global_cfg_lock().
1268 	 */
1269 	switch (le16_to_cpu(desc->opcode)) {
1270 	case ice_aqc_opc_download_pkg:
1271 	case ice_aqc_opc_get_pkg_info_list:
1272 	case ice_aqc_opc_get_ver:
1273 		break;
1274 	case ice_aqc_opc_release_res:
1275 		if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK)
1276 			break;
1277 		/* fall-through */
1278 	default:
1279 		mutex_lock(&ice_global_cfg_lock_sw);
1280 		lock_acquired = true;
1281 		break;
1282 	}
1283 
1284 	status = ice_sq_send_cmd(hw, &hw->adminq, desc, buf, buf_size, cd);
1285 	if (lock_acquired)
1286 		mutex_unlock(&ice_global_cfg_lock_sw);
1287 
1288 	return status;
1289 }
1290 
1291 /**
1292  * ice_aq_get_fw_ver
1293  * @hw: pointer to the HW struct
1294  * @cd: pointer to command details structure or NULL
1295  *
1296  * Get the firmware version (0x0001) from the admin queue commands
1297  */
1298 enum ice_status ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1299 {
1300 	struct ice_aqc_get_ver *resp;
1301 	struct ice_aq_desc desc;
1302 	enum ice_status status;
1303 
1304 	resp = &desc.params.get_ver;
1305 
1306 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1307 
1308 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1309 
1310 	if (!status) {
1311 		hw->fw_branch = resp->fw_branch;
1312 		hw->fw_maj_ver = resp->fw_major;
1313 		hw->fw_min_ver = resp->fw_minor;
1314 		hw->fw_patch = resp->fw_patch;
1315 		hw->fw_build = le32_to_cpu(resp->fw_build);
1316 		hw->api_branch = resp->api_branch;
1317 		hw->api_maj_ver = resp->api_major;
1318 		hw->api_min_ver = resp->api_minor;
1319 		hw->api_patch = resp->api_patch;
1320 	}
1321 
1322 	return status;
1323 }
1324 
1325 /**
1326  * ice_aq_send_driver_ver
1327  * @hw: pointer to the HW struct
1328  * @dv: driver's major, minor version
1329  * @cd: pointer to command details structure or NULL
1330  *
1331  * Send the driver version (0x0002) to the firmware
1332  */
1333 enum ice_status
1334 ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1335 		       struct ice_sq_cd *cd)
1336 {
1337 	struct ice_aqc_driver_ver *cmd;
1338 	struct ice_aq_desc desc;
1339 	u16 len;
1340 
1341 	cmd = &desc.params.driver_ver;
1342 
1343 	if (!dv)
1344 		return ICE_ERR_PARAM;
1345 
1346 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
1347 
1348 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1349 	cmd->major_ver = dv->major_ver;
1350 	cmd->minor_ver = dv->minor_ver;
1351 	cmd->build_ver = dv->build_ver;
1352 	cmd->subbuild_ver = dv->subbuild_ver;
1353 
1354 	len = 0;
1355 	while (len < sizeof(dv->driver_string) &&
1356 	       isascii(dv->driver_string[len]) && dv->driver_string[len])
1357 		len++;
1358 
1359 	return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
1360 }
1361 
1362 /**
1363  * ice_aq_q_shutdown
1364  * @hw: pointer to the HW struct
1365  * @unloading: is the driver unloading itself
1366  *
1367  * Tell the Firmware that we're shutting down the AdminQ and whether
1368  * or not the driver is unloading as well (0x0003).
1369  */
1370 enum ice_status ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1371 {
1372 	struct ice_aqc_q_shutdown *cmd;
1373 	struct ice_aq_desc desc;
1374 
1375 	cmd = &desc.params.q_shutdown;
1376 
1377 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1378 
1379 	if (unloading)
1380 		cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1381 
1382 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1383 }
1384 
1385 /**
1386  * ice_aq_req_res
1387  * @hw: pointer to the HW struct
1388  * @res: resource ID
1389  * @access: access type
1390  * @sdp_number: resource number
1391  * @timeout: the maximum time in ms that the driver may hold the resource
1392  * @cd: pointer to command details structure or NULL
1393  *
1394  * Requests common resource using the admin queue commands (0x0008).
1395  * When attempting to acquire the Global Config Lock, the driver can
1396  * learn of three states:
1397  *  1) ICE_SUCCESS -        acquired lock, and can perform download package
1398  *  2) ICE_ERR_AQ_ERROR -   did not get lock, driver should fail to load
1399  *  3) ICE_ERR_AQ_NO_WORK - did not get lock, but another driver has
1400  *                          successfully downloaded the package; the driver does
1401  *                          not have to download the package and can continue
1402  *                          loading
1403  *
1404  * Note that if the caller is in an acquire lock, perform action, release lock
1405  * phase of operation, it is possible that the FW may detect a timeout and issue
1406  * a CORER. In this case, the driver will receive a CORER interrupt and will
1407  * have to determine its cause. The calling thread that is handling this flow
1408  * will likely get an error propagated back to it indicating the Download
1409  * Package, Update Package or the Release Resource AQ commands timed out.
1410  */
1411 static enum ice_status
1412 ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1413 	       enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1414 	       struct ice_sq_cd *cd)
1415 {
1416 	struct ice_aqc_req_res *cmd_resp;
1417 	struct ice_aq_desc desc;
1418 	enum ice_status status;
1419 
1420 	cmd_resp = &desc.params.res_owner;
1421 
1422 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1423 
1424 	cmd_resp->res_id = cpu_to_le16(res);
1425 	cmd_resp->access_type = cpu_to_le16(access);
1426 	cmd_resp->res_number = cpu_to_le32(sdp_number);
1427 	cmd_resp->timeout = cpu_to_le32(*timeout);
1428 	*timeout = 0;
1429 
1430 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1431 
1432 	/* The completion specifies the maximum time in ms that the driver
1433 	 * may hold the resource in the Timeout field.
1434 	 */
1435 
1436 	/* Global config lock response utilizes an additional status field.
1437 	 *
1438 	 * If the Global config lock resource is held by some other driver, the
1439 	 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1440 	 * and the timeout field indicates the maximum time the current owner
1441 	 * of the resource has to free it.
1442 	 */
1443 	if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1444 		if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1445 			*timeout = le32_to_cpu(cmd_resp->timeout);
1446 			return 0;
1447 		} else if (le16_to_cpu(cmd_resp->status) ==
1448 			   ICE_AQ_RES_GLBL_IN_PROG) {
1449 			*timeout = le32_to_cpu(cmd_resp->timeout);
1450 			return ICE_ERR_AQ_ERROR;
1451 		} else if (le16_to_cpu(cmd_resp->status) ==
1452 			   ICE_AQ_RES_GLBL_DONE) {
1453 			return ICE_ERR_AQ_NO_WORK;
1454 		}
1455 
1456 		/* invalid FW response, force a timeout immediately */
1457 		*timeout = 0;
1458 		return ICE_ERR_AQ_ERROR;
1459 	}
1460 
1461 	/* If the resource is held by some other driver, the command completes
1462 	 * with a busy return value and the timeout field indicates the maximum
1463 	 * time the current owner of the resource has to free it.
1464 	 */
1465 	if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1466 		*timeout = le32_to_cpu(cmd_resp->timeout);
1467 
1468 	return status;
1469 }
1470 
1471 /**
1472  * ice_aq_release_res
1473  * @hw: pointer to the HW struct
1474  * @res: resource ID
1475  * @sdp_number: resource number
1476  * @cd: pointer to command details structure or NULL
1477  *
1478  * release common resource using the admin queue commands (0x0009)
1479  */
1480 static enum ice_status
1481 ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1482 		   struct ice_sq_cd *cd)
1483 {
1484 	struct ice_aqc_req_res *cmd;
1485 	struct ice_aq_desc desc;
1486 
1487 	cmd = &desc.params.res_owner;
1488 
1489 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1490 
1491 	cmd->res_id = cpu_to_le16(res);
1492 	cmd->res_number = cpu_to_le32(sdp_number);
1493 
1494 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1495 }
1496 
1497 /**
1498  * ice_acquire_res
1499  * @hw: pointer to the HW structure
1500  * @res: resource ID
1501  * @access: access type (read or write)
1502  * @timeout: timeout in milliseconds
1503  *
1504  * This function will attempt to acquire the ownership of a resource.
1505  */
1506 enum ice_status
1507 ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1508 		enum ice_aq_res_access_type access, u32 timeout)
1509 {
1510 #define ICE_RES_POLLING_DELAY_MS	10
1511 	u32 delay = ICE_RES_POLLING_DELAY_MS;
1512 	u32 time_left = timeout;
1513 	enum ice_status status;
1514 
1515 	status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1516 
1517 	/* A return code of ICE_ERR_AQ_NO_WORK means that another driver has
1518 	 * previously acquired the resource and performed any necessary updates;
1519 	 * in this case the caller does not obtain the resource and has no
1520 	 * further work to do.
1521 	 */
1522 	if (status == ICE_ERR_AQ_NO_WORK)
1523 		goto ice_acquire_res_exit;
1524 
1525 	if (status)
1526 		ice_debug(hw, ICE_DBG_RES,
1527 			  "resource %d acquire type %d failed.\n", res, access);
1528 
1529 	/* If necessary, poll until the current lock owner timeouts */
1530 	timeout = time_left;
1531 	while (status && timeout && time_left) {
1532 		mdelay(delay);
1533 		timeout = (timeout > delay) ? timeout - delay : 0;
1534 		status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1535 
1536 		if (status == ICE_ERR_AQ_NO_WORK)
1537 			/* lock free, but no work to do */
1538 			break;
1539 
1540 		if (!status)
1541 			/* lock acquired */
1542 			break;
1543 	}
1544 	if (status && status != ICE_ERR_AQ_NO_WORK)
1545 		ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1546 
1547 ice_acquire_res_exit:
1548 	if (status == ICE_ERR_AQ_NO_WORK) {
1549 		if (access == ICE_RES_WRITE)
1550 			ice_debug(hw, ICE_DBG_RES,
1551 				  "resource indicates no work to do.\n");
1552 		else
1553 			ice_debug(hw, ICE_DBG_RES,
1554 				  "Warning: ICE_ERR_AQ_NO_WORK not expected\n");
1555 	}
1556 	return status;
1557 }
1558 
1559 /**
1560  * ice_release_res
1561  * @hw: pointer to the HW structure
1562  * @res: resource ID
1563  *
1564  * This function will release a resource using the proper Admin Command.
1565  */
1566 void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1567 {
1568 	enum ice_status status;
1569 	u32 total_delay = 0;
1570 
1571 	status = ice_aq_release_res(hw, res, 0, NULL);
1572 
1573 	/* there are some rare cases when trying to release the resource
1574 	 * results in an admin queue timeout, so handle them correctly
1575 	 */
1576 	while ((status == ICE_ERR_AQ_TIMEOUT) &&
1577 	       (total_delay < hw->adminq.sq_cmd_timeout)) {
1578 		mdelay(1);
1579 		status = ice_aq_release_res(hw, res, 0, NULL);
1580 		total_delay++;
1581 	}
1582 }
1583 
1584 /**
1585  * ice_get_num_per_func - determine number of resources per PF
1586  * @hw: pointer to the HW structure
1587  * @max: value to be evenly split between each PF
1588  *
1589  * Determine the number of valid functions by going through the bitmap returned
1590  * from parsing capabilities and use this to calculate the number of resources
1591  * per PF based on the max value passed in.
1592  */
1593 static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
1594 {
1595 	u8 funcs;
1596 
1597 #define ICE_CAPS_VALID_FUNCS_M	0xFF
1598 	funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
1599 			 ICE_CAPS_VALID_FUNCS_M);
1600 
1601 	if (!funcs)
1602 		return 0;
1603 
1604 	return max / funcs;
1605 }
1606 
1607 /**
1608  * ice_parse_caps - parse function/device capabilities
1609  * @hw: pointer to the HW struct
1610  * @buf: pointer to a buffer containing function/device capability records
1611  * @cap_count: number of capability records in the list
1612  * @opc: type of capabilities list to parse
1613  *
1614  * Helper function to parse function(0x000a)/device(0x000b) capabilities list.
1615  */
1616 static void
1617 ice_parse_caps(struct ice_hw *hw, void *buf, u32 cap_count,
1618 	       enum ice_adminq_opc opc)
1619 {
1620 	struct ice_aqc_list_caps_elem *cap_resp;
1621 	struct ice_hw_func_caps *func_p = NULL;
1622 	struct ice_hw_dev_caps *dev_p = NULL;
1623 	struct ice_hw_common_caps *caps;
1624 	char const *prefix;
1625 	u32 i;
1626 
1627 	if (!buf)
1628 		return;
1629 
1630 	cap_resp = (struct ice_aqc_list_caps_elem *)buf;
1631 
1632 	if (opc == ice_aqc_opc_list_dev_caps) {
1633 		dev_p = &hw->dev_caps;
1634 		caps = &dev_p->common_cap;
1635 		prefix = "dev cap";
1636 	} else if (opc == ice_aqc_opc_list_func_caps) {
1637 		func_p = &hw->func_caps;
1638 		caps = &func_p->common_cap;
1639 		prefix = "func cap";
1640 	} else {
1641 		ice_debug(hw, ICE_DBG_INIT, "wrong opcode\n");
1642 		return;
1643 	}
1644 
1645 	for (i = 0; caps && i < cap_count; i++, cap_resp++) {
1646 		u32 logical_id = le32_to_cpu(cap_resp->logical_id);
1647 		u32 phys_id = le32_to_cpu(cap_resp->phys_id);
1648 		u32 number = le32_to_cpu(cap_resp->number);
1649 		u16 cap = le16_to_cpu(cap_resp->cap);
1650 
1651 		switch (cap) {
1652 		case ICE_AQC_CAPS_VALID_FUNCTIONS:
1653 			caps->valid_functions = number;
1654 			ice_debug(hw, ICE_DBG_INIT,
1655 				  "%s: valid_functions (bitmap) = %d\n", prefix,
1656 				  caps->valid_functions);
1657 			break;
1658 		case ICE_AQC_CAPS_SRIOV:
1659 			caps->sr_iov_1_1 = (number == 1);
1660 			ice_debug(hw, ICE_DBG_INIT,
1661 				  "%s: sr_iov_1_1 = %d\n", prefix,
1662 				  caps->sr_iov_1_1);
1663 			break;
1664 		case ICE_AQC_CAPS_VF:
1665 			if (dev_p) {
1666 				dev_p->num_vfs_exposed = number;
1667 				ice_debug(hw, ICE_DBG_INIT,
1668 					  "%s: num_vfs_exposed = %d\n", prefix,
1669 					  dev_p->num_vfs_exposed);
1670 			} else if (func_p) {
1671 				func_p->num_allocd_vfs = number;
1672 				func_p->vf_base_id = logical_id;
1673 				ice_debug(hw, ICE_DBG_INIT,
1674 					  "%s: num_allocd_vfs = %d\n", prefix,
1675 					  func_p->num_allocd_vfs);
1676 				ice_debug(hw, ICE_DBG_INIT,
1677 					  "%s: vf_base_id = %d\n", prefix,
1678 					  func_p->vf_base_id);
1679 			}
1680 			break;
1681 		case ICE_AQC_CAPS_VSI:
1682 			if (dev_p) {
1683 				dev_p->num_vsi_allocd_to_host = number;
1684 				ice_debug(hw, ICE_DBG_INIT,
1685 					  "%s: num_vsi_allocd_to_host = %d\n",
1686 					  prefix,
1687 					  dev_p->num_vsi_allocd_to_host);
1688 			} else if (func_p) {
1689 				func_p->guar_num_vsi =
1690 					ice_get_num_per_func(hw, ICE_MAX_VSI);
1691 				ice_debug(hw, ICE_DBG_INIT,
1692 					  "%s: guar_num_vsi (fw) = %d\n",
1693 					  prefix, number);
1694 				ice_debug(hw, ICE_DBG_INIT,
1695 					  "%s: guar_num_vsi = %d\n",
1696 					  prefix, func_p->guar_num_vsi);
1697 			}
1698 			break;
1699 		case ICE_AQC_CAPS_DCB:
1700 			caps->dcb = (number == 1);
1701 			caps->active_tc_bitmap = logical_id;
1702 			caps->maxtc = phys_id;
1703 			ice_debug(hw, ICE_DBG_INIT,
1704 				  "%s: dcb = %d\n", prefix, caps->dcb);
1705 			ice_debug(hw, ICE_DBG_INIT,
1706 				  "%s: active_tc_bitmap = %d\n", prefix,
1707 				  caps->active_tc_bitmap);
1708 			ice_debug(hw, ICE_DBG_INIT,
1709 				  "%s: maxtc = %d\n", prefix, caps->maxtc);
1710 			break;
1711 		case ICE_AQC_CAPS_RSS:
1712 			caps->rss_table_size = number;
1713 			caps->rss_table_entry_width = logical_id;
1714 			ice_debug(hw, ICE_DBG_INIT,
1715 				  "%s: rss_table_size = %d\n", prefix,
1716 				  caps->rss_table_size);
1717 			ice_debug(hw, ICE_DBG_INIT,
1718 				  "%s: rss_table_entry_width = %d\n", prefix,
1719 				  caps->rss_table_entry_width);
1720 			break;
1721 		case ICE_AQC_CAPS_RXQS:
1722 			caps->num_rxq = number;
1723 			caps->rxq_first_id = phys_id;
1724 			ice_debug(hw, ICE_DBG_INIT,
1725 				  "%s: num_rxq = %d\n", prefix,
1726 				  caps->num_rxq);
1727 			ice_debug(hw, ICE_DBG_INIT,
1728 				  "%s: rxq_first_id = %d\n", prefix,
1729 				  caps->rxq_first_id);
1730 			break;
1731 		case ICE_AQC_CAPS_TXQS:
1732 			caps->num_txq = number;
1733 			caps->txq_first_id = phys_id;
1734 			ice_debug(hw, ICE_DBG_INIT,
1735 				  "%s: num_txq = %d\n", prefix,
1736 				  caps->num_txq);
1737 			ice_debug(hw, ICE_DBG_INIT,
1738 				  "%s: txq_first_id = %d\n", prefix,
1739 				  caps->txq_first_id);
1740 			break;
1741 		case ICE_AQC_CAPS_MSIX:
1742 			caps->num_msix_vectors = number;
1743 			caps->msix_vector_first_id = phys_id;
1744 			ice_debug(hw, ICE_DBG_INIT,
1745 				  "%s: num_msix_vectors = %d\n", prefix,
1746 				  caps->num_msix_vectors);
1747 			ice_debug(hw, ICE_DBG_INIT,
1748 				  "%s: msix_vector_first_id = %d\n", prefix,
1749 				  caps->msix_vector_first_id);
1750 			break;
1751 		case ICE_AQC_CAPS_MAX_MTU:
1752 			caps->max_mtu = number;
1753 			ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
1754 				  prefix, caps->max_mtu);
1755 			break;
1756 		default:
1757 			ice_debug(hw, ICE_DBG_INIT,
1758 				  "%s: unknown capability[%d]: 0x%x\n", prefix,
1759 				  i, cap);
1760 			break;
1761 		}
1762 	}
1763 }
1764 
1765 /**
1766  * ice_aq_discover_caps - query function/device capabilities
1767  * @hw: pointer to the HW struct
1768  * @buf: a virtual buffer to hold the capabilities
1769  * @buf_size: Size of the virtual buffer
1770  * @cap_count: cap count needed if AQ err==ENOMEM
1771  * @opc: capabilities type to discover - pass in the command opcode
1772  * @cd: pointer to command details structure or NULL
1773  *
1774  * Get the function(0x000a)/device(0x000b) capabilities description from
1775  * the firmware.
1776  */
1777 static enum ice_status
1778 ice_aq_discover_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
1779 		     enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1780 {
1781 	struct ice_aqc_list_caps *cmd;
1782 	struct ice_aq_desc desc;
1783 	enum ice_status status;
1784 
1785 	cmd = &desc.params.get_cap;
1786 
1787 	if (opc != ice_aqc_opc_list_func_caps &&
1788 	    opc != ice_aqc_opc_list_dev_caps)
1789 		return ICE_ERR_PARAM;
1790 
1791 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
1792 
1793 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1794 	if (!status)
1795 		ice_parse_caps(hw, buf, le32_to_cpu(cmd->count), opc);
1796 	else if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOMEM)
1797 		*cap_count = le32_to_cpu(cmd->count);
1798 	return status;
1799 }
1800 
1801 /**
1802  * ice_discover_caps - get info about the HW
1803  * @hw: pointer to the hardware structure
1804  * @opc: capabilities type to discover - pass in the command opcode
1805  */
1806 static enum ice_status
1807 ice_discover_caps(struct ice_hw *hw, enum ice_adminq_opc opc)
1808 {
1809 	enum ice_status status;
1810 	u32 cap_count;
1811 	u16 cbuf_len;
1812 	u8 retries;
1813 
1814 	/* The driver doesn't know how many capabilities the device will return
1815 	 * so the buffer size required isn't known ahead of time. The driver
1816 	 * starts with cbuf_len and if this turns out to be insufficient, the
1817 	 * device returns ICE_AQ_RC_ENOMEM and also the cap_count it needs.
1818 	 * The driver then allocates the buffer based on the count and retries
1819 	 * the operation. So it follows that the retry count is 2.
1820 	 */
1821 #define ICE_GET_CAP_BUF_COUNT	40
1822 #define ICE_GET_CAP_RETRY_COUNT	2
1823 
1824 	cap_count = ICE_GET_CAP_BUF_COUNT;
1825 	retries = ICE_GET_CAP_RETRY_COUNT;
1826 
1827 	do {
1828 		void *cbuf;
1829 
1830 		cbuf_len = (u16)(cap_count *
1831 				 sizeof(struct ice_aqc_list_caps_elem));
1832 		cbuf = devm_kzalloc(ice_hw_to_dev(hw), cbuf_len, GFP_KERNEL);
1833 		if (!cbuf)
1834 			return ICE_ERR_NO_MEMORY;
1835 
1836 		status = ice_aq_discover_caps(hw, cbuf, cbuf_len, &cap_count,
1837 					      opc, NULL);
1838 		devm_kfree(ice_hw_to_dev(hw), cbuf);
1839 
1840 		if (!status || hw->adminq.sq_last_status != ICE_AQ_RC_ENOMEM)
1841 			break;
1842 
1843 		/* If ENOMEM is returned, try again with bigger buffer */
1844 	} while (--retries);
1845 
1846 	return status;
1847 }
1848 
1849 /**
1850  * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
1851  * @hw: pointer to the hardware structure
1852  */
1853 void ice_set_safe_mode_caps(struct ice_hw *hw)
1854 {
1855 	struct ice_hw_func_caps *func_caps = &hw->func_caps;
1856 	struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
1857 	u32 valid_func, rxq_first_id, txq_first_id;
1858 	u32 msix_vector_first_id, max_mtu;
1859 	u32 num_func = 0;
1860 	u8 i;
1861 
1862 	/* cache some func_caps values that should be restored after memset */
1863 	valid_func = func_caps->common_cap.valid_functions;
1864 	txq_first_id = func_caps->common_cap.txq_first_id;
1865 	rxq_first_id = func_caps->common_cap.rxq_first_id;
1866 	msix_vector_first_id = func_caps->common_cap.msix_vector_first_id;
1867 	max_mtu = func_caps->common_cap.max_mtu;
1868 
1869 	/* unset func capabilities */
1870 	memset(func_caps, 0, sizeof(*func_caps));
1871 
1872 	/* restore cached values */
1873 	func_caps->common_cap.valid_functions = valid_func;
1874 	func_caps->common_cap.txq_first_id = txq_first_id;
1875 	func_caps->common_cap.rxq_first_id = rxq_first_id;
1876 	func_caps->common_cap.msix_vector_first_id = msix_vector_first_id;
1877 	func_caps->common_cap.max_mtu = max_mtu;
1878 
1879 	/* one Tx and one Rx queue in safe mode */
1880 	func_caps->common_cap.num_rxq = 1;
1881 	func_caps->common_cap.num_txq = 1;
1882 
1883 	/* two MSIX vectors, one for traffic and one for misc causes */
1884 	func_caps->common_cap.num_msix_vectors = 2;
1885 	func_caps->guar_num_vsi = 1;
1886 
1887 	/* cache some dev_caps values that should be restored after memset */
1888 	valid_func = dev_caps->common_cap.valid_functions;
1889 	txq_first_id = dev_caps->common_cap.txq_first_id;
1890 	rxq_first_id = dev_caps->common_cap.rxq_first_id;
1891 	msix_vector_first_id = dev_caps->common_cap.msix_vector_first_id;
1892 	max_mtu = dev_caps->common_cap.max_mtu;
1893 
1894 	/* unset dev capabilities */
1895 	memset(dev_caps, 0, sizeof(*dev_caps));
1896 
1897 	/* restore cached values */
1898 	dev_caps->common_cap.valid_functions = valid_func;
1899 	dev_caps->common_cap.txq_first_id = txq_first_id;
1900 	dev_caps->common_cap.rxq_first_id = rxq_first_id;
1901 	dev_caps->common_cap.msix_vector_first_id = msix_vector_first_id;
1902 	dev_caps->common_cap.max_mtu = max_mtu;
1903 
1904 	/* valid_func is a bitmap. get number of functions */
1905 #define ICE_MAX_FUNCS 8
1906 	for (i = 0; i < ICE_MAX_FUNCS; i++)
1907 		if (valid_func & BIT(i))
1908 			num_func++;
1909 
1910 	/* one Tx and one Rx queue per function in safe mode */
1911 	dev_caps->common_cap.num_rxq = num_func;
1912 	dev_caps->common_cap.num_txq = num_func;
1913 
1914 	/* two MSIX vectors per function */
1915 	dev_caps->common_cap.num_msix_vectors = 2 * num_func;
1916 }
1917 
1918 /**
1919  * ice_get_caps - get info about the HW
1920  * @hw: pointer to the hardware structure
1921  */
1922 enum ice_status ice_get_caps(struct ice_hw *hw)
1923 {
1924 	enum ice_status status;
1925 
1926 	status = ice_discover_caps(hw, ice_aqc_opc_list_dev_caps);
1927 	if (!status)
1928 		status = ice_discover_caps(hw, ice_aqc_opc_list_func_caps);
1929 
1930 	return status;
1931 }
1932 
1933 /**
1934  * ice_aq_manage_mac_write - manage MAC address write command
1935  * @hw: pointer to the HW struct
1936  * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
1937  * @flags: flags to control write behavior
1938  * @cd: pointer to command details structure or NULL
1939  *
1940  * This function is used to write MAC address to the NVM (0x0108).
1941  */
1942 enum ice_status
1943 ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
1944 			struct ice_sq_cd *cd)
1945 {
1946 	struct ice_aqc_manage_mac_write *cmd;
1947 	struct ice_aq_desc desc;
1948 
1949 	cmd = &desc.params.mac_write;
1950 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
1951 
1952 	cmd->flags = flags;
1953 
1954 	/* Prep values for flags, sah, sal */
1955 	cmd->sah = htons(*((const u16 *)mac_addr));
1956 	cmd->sal = htonl(*((const u32 *)(mac_addr + 2)));
1957 
1958 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1959 }
1960 
1961 /**
1962  * ice_aq_clear_pxe_mode
1963  * @hw: pointer to the HW struct
1964  *
1965  * Tell the firmware that the driver is taking over from PXE (0x0110).
1966  */
1967 static enum ice_status ice_aq_clear_pxe_mode(struct ice_hw *hw)
1968 {
1969 	struct ice_aq_desc desc;
1970 
1971 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
1972 	desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
1973 
1974 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1975 }
1976 
1977 /**
1978  * ice_clear_pxe_mode - clear pxe operations mode
1979  * @hw: pointer to the HW struct
1980  *
1981  * Make sure all PXE mode settings are cleared, including things
1982  * like descriptor fetch/write-back mode.
1983  */
1984 void ice_clear_pxe_mode(struct ice_hw *hw)
1985 {
1986 	if (ice_check_sq_alive(hw, &hw->adminq))
1987 		ice_aq_clear_pxe_mode(hw);
1988 }
1989 
1990 /**
1991  * ice_get_link_speed_based_on_phy_type - returns link speed
1992  * @phy_type_low: lower part of phy_type
1993  * @phy_type_high: higher part of phy_type
1994  *
1995  * This helper function will convert an entry in PHY type structure
1996  * [phy_type_low, phy_type_high] to its corresponding link speed.
1997  * Note: In the structure of [phy_type_low, phy_type_high], there should
1998  * be one bit set, as this function will convert one PHY type to its
1999  * speed.
2000  * If no bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
2001  * If more than one bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
2002  */
2003 static u16
2004 ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
2005 {
2006 	u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
2007 	u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
2008 
2009 	switch (phy_type_low) {
2010 	case ICE_PHY_TYPE_LOW_100BASE_TX:
2011 	case ICE_PHY_TYPE_LOW_100M_SGMII:
2012 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
2013 		break;
2014 	case ICE_PHY_TYPE_LOW_1000BASE_T:
2015 	case ICE_PHY_TYPE_LOW_1000BASE_SX:
2016 	case ICE_PHY_TYPE_LOW_1000BASE_LX:
2017 	case ICE_PHY_TYPE_LOW_1000BASE_KX:
2018 	case ICE_PHY_TYPE_LOW_1G_SGMII:
2019 		speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
2020 		break;
2021 	case ICE_PHY_TYPE_LOW_2500BASE_T:
2022 	case ICE_PHY_TYPE_LOW_2500BASE_X:
2023 	case ICE_PHY_TYPE_LOW_2500BASE_KX:
2024 		speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
2025 		break;
2026 	case ICE_PHY_TYPE_LOW_5GBASE_T:
2027 	case ICE_PHY_TYPE_LOW_5GBASE_KR:
2028 		speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
2029 		break;
2030 	case ICE_PHY_TYPE_LOW_10GBASE_T:
2031 	case ICE_PHY_TYPE_LOW_10G_SFI_DA:
2032 	case ICE_PHY_TYPE_LOW_10GBASE_SR:
2033 	case ICE_PHY_TYPE_LOW_10GBASE_LR:
2034 	case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
2035 	case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
2036 	case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
2037 		speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
2038 		break;
2039 	case ICE_PHY_TYPE_LOW_25GBASE_T:
2040 	case ICE_PHY_TYPE_LOW_25GBASE_CR:
2041 	case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
2042 	case ICE_PHY_TYPE_LOW_25GBASE_CR1:
2043 	case ICE_PHY_TYPE_LOW_25GBASE_SR:
2044 	case ICE_PHY_TYPE_LOW_25GBASE_LR:
2045 	case ICE_PHY_TYPE_LOW_25GBASE_KR:
2046 	case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
2047 	case ICE_PHY_TYPE_LOW_25GBASE_KR1:
2048 	case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
2049 	case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
2050 		speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
2051 		break;
2052 	case ICE_PHY_TYPE_LOW_40GBASE_CR4:
2053 	case ICE_PHY_TYPE_LOW_40GBASE_SR4:
2054 	case ICE_PHY_TYPE_LOW_40GBASE_LR4:
2055 	case ICE_PHY_TYPE_LOW_40GBASE_KR4:
2056 	case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
2057 	case ICE_PHY_TYPE_LOW_40G_XLAUI:
2058 		speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
2059 		break;
2060 	case ICE_PHY_TYPE_LOW_50GBASE_CR2:
2061 	case ICE_PHY_TYPE_LOW_50GBASE_SR2:
2062 	case ICE_PHY_TYPE_LOW_50GBASE_LR2:
2063 	case ICE_PHY_TYPE_LOW_50GBASE_KR2:
2064 	case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
2065 	case ICE_PHY_TYPE_LOW_50G_LAUI2:
2066 	case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
2067 	case ICE_PHY_TYPE_LOW_50G_AUI2:
2068 	case ICE_PHY_TYPE_LOW_50GBASE_CP:
2069 	case ICE_PHY_TYPE_LOW_50GBASE_SR:
2070 	case ICE_PHY_TYPE_LOW_50GBASE_FR:
2071 	case ICE_PHY_TYPE_LOW_50GBASE_LR:
2072 	case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
2073 	case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
2074 	case ICE_PHY_TYPE_LOW_50G_AUI1:
2075 		speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
2076 		break;
2077 	case ICE_PHY_TYPE_LOW_100GBASE_CR4:
2078 	case ICE_PHY_TYPE_LOW_100GBASE_SR4:
2079 	case ICE_PHY_TYPE_LOW_100GBASE_LR4:
2080 	case ICE_PHY_TYPE_LOW_100GBASE_KR4:
2081 	case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
2082 	case ICE_PHY_TYPE_LOW_100G_CAUI4:
2083 	case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
2084 	case ICE_PHY_TYPE_LOW_100G_AUI4:
2085 	case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
2086 	case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
2087 	case ICE_PHY_TYPE_LOW_100GBASE_CP2:
2088 	case ICE_PHY_TYPE_LOW_100GBASE_SR2:
2089 	case ICE_PHY_TYPE_LOW_100GBASE_DR:
2090 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
2091 		break;
2092 	default:
2093 		speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
2094 		break;
2095 	}
2096 
2097 	switch (phy_type_high) {
2098 	case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
2099 	case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
2100 	case ICE_PHY_TYPE_HIGH_100G_CAUI2:
2101 	case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
2102 	case ICE_PHY_TYPE_HIGH_100G_AUI2:
2103 		speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
2104 		break;
2105 	default:
2106 		speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
2107 		break;
2108 	}
2109 
2110 	if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
2111 	    speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
2112 		return ICE_AQ_LINK_SPEED_UNKNOWN;
2113 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
2114 		 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
2115 		return ICE_AQ_LINK_SPEED_UNKNOWN;
2116 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
2117 		 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
2118 		return speed_phy_type_low;
2119 	else
2120 		return speed_phy_type_high;
2121 }
2122 
2123 /**
2124  * ice_update_phy_type
2125  * @phy_type_low: pointer to the lower part of phy_type
2126  * @phy_type_high: pointer to the higher part of phy_type
2127  * @link_speeds_bitmap: targeted link speeds bitmap
2128  *
2129  * Note: For the link_speeds_bitmap structure, you can check it at
2130  * [ice_aqc_get_link_status->link_speed]. Caller can pass in
2131  * link_speeds_bitmap include multiple speeds.
2132  *
2133  * Each entry in this [phy_type_low, phy_type_high] structure will
2134  * present a certain link speed. This helper function will turn on bits
2135  * in [phy_type_low, phy_type_high] structure based on the value of
2136  * link_speeds_bitmap input parameter.
2137  */
2138 void
2139 ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
2140 		    u16 link_speeds_bitmap)
2141 {
2142 	u64 pt_high;
2143 	u64 pt_low;
2144 	int index;
2145 	u16 speed;
2146 
2147 	/* We first check with low part of phy_type */
2148 	for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
2149 		pt_low = BIT_ULL(index);
2150 		speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
2151 
2152 		if (link_speeds_bitmap & speed)
2153 			*phy_type_low |= BIT_ULL(index);
2154 	}
2155 
2156 	/* We then check with high part of phy_type */
2157 	for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
2158 		pt_high = BIT_ULL(index);
2159 		speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
2160 
2161 		if (link_speeds_bitmap & speed)
2162 			*phy_type_high |= BIT_ULL(index);
2163 	}
2164 }
2165 
2166 /**
2167  * ice_aq_set_phy_cfg
2168  * @hw: pointer to the HW struct
2169  * @lport: logical port number
2170  * @cfg: structure with PHY configuration data to be set
2171  * @cd: pointer to command details structure or NULL
2172  *
2173  * Set the various PHY configuration parameters supported on the Port.
2174  * One or more of the Set PHY config parameters may be ignored in an MFP
2175  * mode as the PF may not have the privilege to set some of the PHY Config
2176  * parameters. This status will be indicated by the command response (0x0601).
2177  */
2178 enum ice_status
2179 ice_aq_set_phy_cfg(struct ice_hw *hw, u8 lport,
2180 		   struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
2181 {
2182 	struct ice_aq_desc desc;
2183 
2184 	if (!cfg)
2185 		return ICE_ERR_PARAM;
2186 
2187 	/* Ensure that only valid bits of cfg->caps can be turned on. */
2188 	if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
2189 		ice_debug(hw, ICE_DBG_PHY,
2190 			  "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
2191 			  cfg->caps);
2192 
2193 		cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
2194 	}
2195 
2196 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
2197 	desc.params.set_phy.lport_num = lport;
2198 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2199 
2200 	ice_debug(hw, ICE_DBG_LINK, "phy_type_low = 0x%llx\n",
2201 		  (unsigned long long)le64_to_cpu(cfg->phy_type_low));
2202 	ice_debug(hw, ICE_DBG_LINK, "phy_type_high = 0x%llx\n",
2203 		  (unsigned long long)le64_to_cpu(cfg->phy_type_high));
2204 	ice_debug(hw, ICE_DBG_LINK, "caps = 0x%x\n", cfg->caps);
2205 	ice_debug(hw, ICE_DBG_LINK, "low_power_ctrl = 0x%x\n",
2206 		  cfg->low_power_ctrl);
2207 	ice_debug(hw, ICE_DBG_LINK, "eee_cap = 0x%x\n", cfg->eee_cap);
2208 	ice_debug(hw, ICE_DBG_LINK, "eeer_value = 0x%x\n", cfg->eeer_value);
2209 	ice_debug(hw, ICE_DBG_LINK, "link_fec_opt = 0x%x\n", cfg->link_fec_opt);
2210 
2211 	return ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
2212 }
2213 
2214 /**
2215  * ice_update_link_info - update status of the HW network link
2216  * @pi: port info structure of the interested logical port
2217  */
2218 enum ice_status ice_update_link_info(struct ice_port_info *pi)
2219 {
2220 	struct ice_link_status *li;
2221 	enum ice_status status;
2222 
2223 	if (!pi)
2224 		return ICE_ERR_PARAM;
2225 
2226 	li = &pi->phy.link_info;
2227 
2228 	status = ice_aq_get_link_info(pi, true, NULL, NULL);
2229 	if (status)
2230 		return status;
2231 
2232 	if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
2233 		struct ice_aqc_get_phy_caps_data *pcaps;
2234 		struct ice_hw *hw;
2235 
2236 		hw = pi->hw;
2237 		pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps),
2238 				     GFP_KERNEL);
2239 		if (!pcaps)
2240 			return ICE_ERR_NO_MEMORY;
2241 
2242 		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP,
2243 					     pcaps, NULL);
2244 		if (!status)
2245 			memcpy(li->module_type, &pcaps->module_type,
2246 			       sizeof(li->module_type));
2247 
2248 		devm_kfree(ice_hw_to_dev(hw), pcaps);
2249 	}
2250 
2251 	return status;
2252 }
2253 
2254 /**
2255  * ice_set_fc
2256  * @pi: port information structure
2257  * @aq_failures: pointer to status code, specific to ice_set_fc routine
2258  * @ena_auto_link_update: enable automatic link update
2259  *
2260  * Set the requested flow control mode.
2261  */
2262 enum ice_status
2263 ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
2264 {
2265 	struct ice_aqc_set_phy_cfg_data cfg = { 0 };
2266 	struct ice_aqc_get_phy_caps_data *pcaps;
2267 	enum ice_status status;
2268 	u8 pause_mask = 0x0;
2269 	struct ice_hw *hw;
2270 
2271 	if (!pi)
2272 		return ICE_ERR_PARAM;
2273 	hw = pi->hw;
2274 	*aq_failures = ICE_SET_FC_AQ_FAIL_NONE;
2275 
2276 	switch (pi->fc.req_mode) {
2277 	case ICE_FC_FULL:
2278 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
2279 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
2280 		break;
2281 	case ICE_FC_RX_PAUSE:
2282 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
2283 		break;
2284 	case ICE_FC_TX_PAUSE:
2285 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
2286 		break;
2287 	default:
2288 		break;
2289 	}
2290 
2291 	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
2292 	if (!pcaps)
2293 		return ICE_ERR_NO_MEMORY;
2294 
2295 	/* Get the current PHY config */
2296 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
2297 				     NULL);
2298 	if (status) {
2299 		*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
2300 		goto out;
2301 	}
2302 
2303 	/* clear the old pause settings */
2304 	cfg.caps = pcaps->caps & ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
2305 				   ICE_AQC_PHY_EN_RX_LINK_PAUSE);
2306 
2307 	/* set the new capabilities */
2308 	cfg.caps |= pause_mask;
2309 
2310 	/* If the capabilities have changed, then set the new config */
2311 	if (cfg.caps != pcaps->caps) {
2312 		int retry_count, retry_max = 10;
2313 
2314 		/* Auto restart link so settings take effect */
2315 		if (ena_auto_link_update)
2316 			cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
2317 		/* Copy over all the old settings */
2318 		cfg.phy_type_high = pcaps->phy_type_high;
2319 		cfg.phy_type_low = pcaps->phy_type_low;
2320 		cfg.low_power_ctrl = pcaps->low_power_ctrl;
2321 		cfg.eee_cap = pcaps->eee_cap;
2322 		cfg.eeer_value = pcaps->eeer_value;
2323 		cfg.link_fec_opt = pcaps->link_fec_options;
2324 
2325 		status = ice_aq_set_phy_cfg(hw, pi->lport, &cfg, NULL);
2326 		if (status) {
2327 			*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
2328 			goto out;
2329 		}
2330 
2331 		/* Update the link info
2332 		 * It sometimes takes a really long time for link to
2333 		 * come back from the atomic reset. Thus, we wait a
2334 		 * little bit.
2335 		 */
2336 		for (retry_count = 0; retry_count < retry_max; retry_count++) {
2337 			status = ice_update_link_info(pi);
2338 
2339 			if (!status)
2340 				break;
2341 
2342 			mdelay(100);
2343 		}
2344 
2345 		if (status)
2346 			*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
2347 	}
2348 
2349 out:
2350 	devm_kfree(ice_hw_to_dev(hw), pcaps);
2351 	return status;
2352 }
2353 
2354 /**
2355  * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
2356  * @caps: PHY ability structure to copy date from
2357  * @cfg: PHY configuration structure to copy data to
2358  *
2359  * Helper function to copy AQC PHY get ability data to PHY set configuration
2360  * data structure
2361  */
2362 void
2363 ice_copy_phy_caps_to_cfg(struct ice_aqc_get_phy_caps_data *caps,
2364 			 struct ice_aqc_set_phy_cfg_data *cfg)
2365 {
2366 	if (!caps || !cfg)
2367 		return;
2368 
2369 	cfg->phy_type_low = caps->phy_type_low;
2370 	cfg->phy_type_high = caps->phy_type_high;
2371 	cfg->caps = caps->caps;
2372 	cfg->low_power_ctrl = caps->low_power_ctrl;
2373 	cfg->eee_cap = caps->eee_cap;
2374 	cfg->eeer_value = caps->eeer_value;
2375 	cfg->link_fec_opt = caps->link_fec_options;
2376 }
2377 
2378 /**
2379  * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
2380  * @cfg: PHY configuration data to set FEC mode
2381  * @fec: FEC mode to configure
2382  *
2383  * Caller should copy ice_aqc_get_phy_caps_data.caps ICE_AQC_PHY_EN_AUTO_FEC
2384  * (bit 7) and ice_aqc_get_phy_caps_data.link_fec_options to cfg.caps
2385  * ICE_AQ_PHY_ENA_AUTO_FEC (bit 7) and cfg.link_fec_options before calling.
2386  */
2387 void
2388 ice_cfg_phy_fec(struct ice_aqc_set_phy_cfg_data *cfg, enum ice_fec_mode fec)
2389 {
2390 	switch (fec) {
2391 	case ICE_FEC_BASER:
2392 		/* Clear RS bits, and AND BASE-R ability
2393 		 * bits and OR request bits.
2394 		 */
2395 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
2396 				     ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
2397 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
2398 				     ICE_AQC_PHY_FEC_25G_KR_REQ;
2399 		break;
2400 	case ICE_FEC_RS:
2401 		/* Clear BASE-R bits, and AND RS ability
2402 		 * bits and OR request bits.
2403 		 */
2404 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
2405 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
2406 				     ICE_AQC_PHY_FEC_25G_RS_544_REQ;
2407 		break;
2408 	case ICE_FEC_NONE:
2409 		/* Clear all FEC option bits. */
2410 		cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
2411 		break;
2412 	case ICE_FEC_AUTO:
2413 		/* AND auto FEC bit, and all caps bits. */
2414 		cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
2415 		break;
2416 	}
2417 }
2418 
2419 /**
2420  * ice_get_link_status - get status of the HW network link
2421  * @pi: port information structure
2422  * @link_up: pointer to bool (true/false = linkup/linkdown)
2423  *
2424  * Variable link_up is true if link is up, false if link is down.
2425  * The variable link_up is invalid if status is non zero. As a
2426  * result of this call, link status reporting becomes enabled
2427  */
2428 enum ice_status ice_get_link_status(struct ice_port_info *pi, bool *link_up)
2429 {
2430 	struct ice_phy_info *phy_info;
2431 	enum ice_status status = 0;
2432 
2433 	if (!pi || !link_up)
2434 		return ICE_ERR_PARAM;
2435 
2436 	phy_info = &pi->phy;
2437 
2438 	if (phy_info->get_link_info) {
2439 		status = ice_update_link_info(pi);
2440 
2441 		if (status)
2442 			ice_debug(pi->hw, ICE_DBG_LINK,
2443 				  "get link status error, status = %d\n",
2444 				  status);
2445 	}
2446 
2447 	*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
2448 
2449 	return status;
2450 }
2451 
2452 /**
2453  * ice_aq_set_link_restart_an
2454  * @pi: pointer to the port information structure
2455  * @ena_link: if true: enable link, if false: disable link
2456  * @cd: pointer to command details structure or NULL
2457  *
2458  * Sets up the link and restarts the Auto-Negotiation over the link.
2459  */
2460 enum ice_status
2461 ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
2462 			   struct ice_sq_cd *cd)
2463 {
2464 	struct ice_aqc_restart_an *cmd;
2465 	struct ice_aq_desc desc;
2466 
2467 	cmd = &desc.params.restart_an;
2468 
2469 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
2470 
2471 	cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
2472 	cmd->lport_num = pi->lport;
2473 	if (ena_link)
2474 		cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
2475 	else
2476 		cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
2477 
2478 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
2479 }
2480 
2481 /**
2482  * ice_aq_set_event_mask
2483  * @hw: pointer to the HW struct
2484  * @port_num: port number of the physical function
2485  * @mask: event mask to be set
2486  * @cd: pointer to command details structure or NULL
2487  *
2488  * Set event mask (0x0613)
2489  */
2490 enum ice_status
2491 ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
2492 		      struct ice_sq_cd *cd)
2493 {
2494 	struct ice_aqc_set_event_mask *cmd;
2495 	struct ice_aq_desc desc;
2496 
2497 	cmd = &desc.params.set_event_mask;
2498 
2499 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
2500 
2501 	cmd->lport_num = port_num;
2502 
2503 	cmd->event_mask = cpu_to_le16(mask);
2504 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2505 }
2506 
2507 /**
2508  * ice_aq_set_mac_loopback
2509  * @hw: pointer to the HW struct
2510  * @ena_lpbk: Enable or Disable loopback
2511  * @cd: pointer to command details structure or NULL
2512  *
2513  * Enable/disable loopback on a given port
2514  */
2515 enum ice_status
2516 ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
2517 {
2518 	struct ice_aqc_set_mac_lb *cmd;
2519 	struct ice_aq_desc desc;
2520 
2521 	cmd = &desc.params.set_mac_lb;
2522 
2523 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
2524 	if (ena_lpbk)
2525 		cmd->lb_mode = ICE_AQ_MAC_LB_EN;
2526 
2527 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2528 }
2529 
2530 /**
2531  * ice_aq_set_port_id_led
2532  * @pi: pointer to the port information
2533  * @is_orig_mode: is this LED set to original mode (by the net-list)
2534  * @cd: pointer to command details structure or NULL
2535  *
2536  * Set LED value for the given port (0x06e9)
2537  */
2538 enum ice_status
2539 ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
2540 		       struct ice_sq_cd *cd)
2541 {
2542 	struct ice_aqc_set_port_id_led *cmd;
2543 	struct ice_hw *hw = pi->hw;
2544 	struct ice_aq_desc desc;
2545 
2546 	cmd = &desc.params.set_port_id_led;
2547 
2548 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
2549 
2550 	if (is_orig_mode)
2551 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
2552 	else
2553 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
2554 
2555 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2556 }
2557 
2558 /**
2559  * __ice_aq_get_set_rss_lut
2560  * @hw: pointer to the hardware structure
2561  * @vsi_id: VSI FW index
2562  * @lut_type: LUT table type
2563  * @lut: pointer to the LUT buffer provided by the caller
2564  * @lut_size: size of the LUT buffer
2565  * @glob_lut_idx: global LUT index
2566  * @set: set true to set the table, false to get the table
2567  *
2568  * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
2569  */
2570 static enum ice_status
2571 __ice_aq_get_set_rss_lut(struct ice_hw *hw, u16 vsi_id, u8 lut_type, u8 *lut,
2572 			 u16 lut_size, u8 glob_lut_idx, bool set)
2573 {
2574 	struct ice_aqc_get_set_rss_lut *cmd_resp;
2575 	struct ice_aq_desc desc;
2576 	enum ice_status status;
2577 	u16 flags = 0;
2578 
2579 	cmd_resp = &desc.params.get_set_rss_lut;
2580 
2581 	if (set) {
2582 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut);
2583 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2584 	} else {
2585 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut);
2586 	}
2587 
2588 	cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
2589 					 ICE_AQC_GSET_RSS_LUT_VSI_ID_S) &
2590 					ICE_AQC_GSET_RSS_LUT_VSI_ID_M) |
2591 				       ICE_AQC_GSET_RSS_LUT_VSI_VALID);
2592 
2593 	switch (lut_type) {
2594 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI:
2595 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF:
2596 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL:
2597 		flags |= ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) &
2598 			  ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M);
2599 		break;
2600 	default:
2601 		status = ICE_ERR_PARAM;
2602 		goto ice_aq_get_set_rss_lut_exit;
2603 	}
2604 
2605 	if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL) {
2606 		flags |= ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) &
2607 			  ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M);
2608 
2609 		if (!set)
2610 			goto ice_aq_get_set_rss_lut_send;
2611 	} else if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
2612 		if (!set)
2613 			goto ice_aq_get_set_rss_lut_send;
2614 	} else {
2615 		goto ice_aq_get_set_rss_lut_send;
2616 	}
2617 
2618 	/* LUT size is only valid for Global and PF table types */
2619 	switch (lut_size) {
2620 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128:
2621 		break;
2622 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512:
2623 		flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG <<
2624 			  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
2625 			 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
2626 		break;
2627 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K:
2628 		if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
2629 			flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG <<
2630 				  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
2631 				 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
2632 			break;
2633 		}
2634 		/* fall-through */
2635 	default:
2636 		status = ICE_ERR_PARAM;
2637 		goto ice_aq_get_set_rss_lut_exit;
2638 	}
2639 
2640 ice_aq_get_set_rss_lut_send:
2641 	cmd_resp->flags = cpu_to_le16(flags);
2642 	status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
2643 
2644 ice_aq_get_set_rss_lut_exit:
2645 	return status;
2646 }
2647 
2648 /**
2649  * ice_aq_get_rss_lut
2650  * @hw: pointer to the hardware structure
2651  * @vsi_handle: software VSI handle
2652  * @lut_type: LUT table type
2653  * @lut: pointer to the LUT buffer provided by the caller
2654  * @lut_size: size of the LUT buffer
2655  *
2656  * get the RSS lookup table, PF or VSI type
2657  */
2658 enum ice_status
2659 ice_aq_get_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type,
2660 		   u8 *lut, u16 lut_size)
2661 {
2662 	if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
2663 		return ICE_ERR_PARAM;
2664 
2665 	return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle),
2666 					lut_type, lut, lut_size, 0, false);
2667 }
2668 
2669 /**
2670  * ice_aq_set_rss_lut
2671  * @hw: pointer to the hardware structure
2672  * @vsi_handle: software VSI handle
2673  * @lut_type: LUT table type
2674  * @lut: pointer to the LUT buffer provided by the caller
2675  * @lut_size: size of the LUT buffer
2676  *
2677  * set the RSS lookup table, PF or VSI type
2678  */
2679 enum ice_status
2680 ice_aq_set_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type,
2681 		   u8 *lut, u16 lut_size)
2682 {
2683 	if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
2684 		return ICE_ERR_PARAM;
2685 
2686 	return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle),
2687 					lut_type, lut, lut_size, 0, true);
2688 }
2689 
2690 /**
2691  * __ice_aq_get_set_rss_key
2692  * @hw: pointer to the HW struct
2693  * @vsi_id: VSI FW index
2694  * @key: pointer to key info struct
2695  * @set: set true to set the key, false to get the key
2696  *
2697  * get (0x0B04) or set (0x0B02) the RSS key per VSI
2698  */
2699 static enum
2700 ice_status __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
2701 				    struct ice_aqc_get_set_rss_keys *key,
2702 				    bool set)
2703 {
2704 	struct ice_aqc_get_set_rss_key *cmd_resp;
2705 	u16 key_size = sizeof(*key);
2706 	struct ice_aq_desc desc;
2707 
2708 	cmd_resp = &desc.params.get_set_rss_key;
2709 
2710 	if (set) {
2711 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
2712 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2713 	} else {
2714 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
2715 	}
2716 
2717 	cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
2718 					 ICE_AQC_GSET_RSS_KEY_VSI_ID_S) &
2719 					ICE_AQC_GSET_RSS_KEY_VSI_ID_M) |
2720 				       ICE_AQC_GSET_RSS_KEY_VSI_VALID);
2721 
2722 	return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
2723 }
2724 
2725 /**
2726  * ice_aq_get_rss_key
2727  * @hw: pointer to the HW struct
2728  * @vsi_handle: software VSI handle
2729  * @key: pointer to key info struct
2730  *
2731  * get the RSS key per VSI
2732  */
2733 enum ice_status
2734 ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
2735 		   struct ice_aqc_get_set_rss_keys *key)
2736 {
2737 	if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
2738 		return ICE_ERR_PARAM;
2739 
2740 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
2741 					key, false);
2742 }
2743 
2744 /**
2745  * ice_aq_set_rss_key
2746  * @hw: pointer to the HW struct
2747  * @vsi_handle: software VSI handle
2748  * @keys: pointer to key info struct
2749  *
2750  * set the RSS key per VSI
2751  */
2752 enum ice_status
2753 ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
2754 		   struct ice_aqc_get_set_rss_keys *keys)
2755 {
2756 	if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
2757 		return ICE_ERR_PARAM;
2758 
2759 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
2760 					keys, true);
2761 }
2762 
2763 /**
2764  * ice_aq_add_lan_txq
2765  * @hw: pointer to the hardware structure
2766  * @num_qgrps: Number of added queue groups
2767  * @qg_list: list of queue groups to be added
2768  * @buf_size: size of buffer for indirect command
2769  * @cd: pointer to command details structure or NULL
2770  *
2771  * Add Tx LAN queue (0x0C30)
2772  *
2773  * NOTE:
2774  * Prior to calling add Tx LAN queue:
2775  * Initialize the following as part of the Tx queue context:
2776  * Completion queue ID if the queue uses Completion queue, Quanta profile,
2777  * Cache profile and Packet shaper profile.
2778  *
2779  * After add Tx LAN queue AQ command is completed:
2780  * Interrupts should be associated with specific queues,
2781  * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
2782  * flow.
2783  */
2784 static enum ice_status
2785 ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
2786 		   struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
2787 		   struct ice_sq_cd *cd)
2788 {
2789 	u16 i, sum_header_size, sum_q_size = 0;
2790 	struct ice_aqc_add_tx_qgrp *list;
2791 	struct ice_aqc_add_txqs *cmd;
2792 	struct ice_aq_desc desc;
2793 
2794 	cmd = &desc.params.add_txqs;
2795 
2796 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
2797 
2798 	if (!qg_list)
2799 		return ICE_ERR_PARAM;
2800 
2801 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
2802 		return ICE_ERR_PARAM;
2803 
2804 	sum_header_size = num_qgrps *
2805 		(sizeof(*qg_list) - sizeof(*qg_list->txqs));
2806 
2807 	list = qg_list;
2808 	for (i = 0; i < num_qgrps; i++) {
2809 		struct ice_aqc_add_txqs_perq *q = list->txqs;
2810 
2811 		sum_q_size += list->num_txqs * sizeof(*q);
2812 		list = (struct ice_aqc_add_tx_qgrp *)(q + list->num_txqs);
2813 	}
2814 
2815 	if (buf_size != (sum_header_size + sum_q_size))
2816 		return ICE_ERR_PARAM;
2817 
2818 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2819 
2820 	cmd->num_qgrps = num_qgrps;
2821 
2822 	return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
2823 }
2824 
2825 /**
2826  * ice_aq_dis_lan_txq
2827  * @hw: pointer to the hardware structure
2828  * @num_qgrps: number of groups in the list
2829  * @qg_list: the list of groups to disable
2830  * @buf_size: the total size of the qg_list buffer in bytes
2831  * @rst_src: if called due to reset, specifies the reset source
2832  * @vmvf_num: the relative VM or VF number that is undergoing the reset
2833  * @cd: pointer to command details structure or NULL
2834  *
2835  * Disable LAN Tx queue (0x0C31)
2836  */
2837 static enum ice_status
2838 ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
2839 		   struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
2840 		   enum ice_disq_rst_src rst_src, u16 vmvf_num,
2841 		   struct ice_sq_cd *cd)
2842 {
2843 	struct ice_aqc_dis_txqs *cmd;
2844 	struct ice_aq_desc desc;
2845 	enum ice_status status;
2846 	u16 i, sz = 0;
2847 
2848 	cmd = &desc.params.dis_txqs;
2849 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
2850 
2851 	/* qg_list can be NULL only in VM/VF reset flow */
2852 	if (!qg_list && !rst_src)
2853 		return ICE_ERR_PARAM;
2854 
2855 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
2856 		return ICE_ERR_PARAM;
2857 
2858 	cmd->num_entries = num_qgrps;
2859 
2860 	cmd->vmvf_and_timeout = cpu_to_le16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) &
2861 					    ICE_AQC_Q_DIS_TIMEOUT_M);
2862 
2863 	switch (rst_src) {
2864 	case ICE_VM_RESET:
2865 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
2866 		cmd->vmvf_and_timeout |=
2867 			cpu_to_le16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M);
2868 		break;
2869 	case ICE_VF_RESET:
2870 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
2871 		/* In this case, FW expects vmvf_num to be absolute VF ID */
2872 		cmd->vmvf_and_timeout |=
2873 			cpu_to_le16((vmvf_num + hw->func_caps.vf_base_id) &
2874 				    ICE_AQC_Q_DIS_VMVF_NUM_M);
2875 		break;
2876 	case ICE_NO_RESET:
2877 	default:
2878 		break;
2879 	}
2880 
2881 	/* flush pipe on time out */
2882 	cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
2883 	/* If no queue group info, we are in a reset flow. Issue the AQ */
2884 	if (!qg_list)
2885 		goto do_aq;
2886 
2887 	/* set RD bit to indicate that command buffer is provided by the driver
2888 	 * and it needs to be read by the firmware
2889 	 */
2890 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2891 
2892 	for (i = 0; i < num_qgrps; ++i) {
2893 		/* Calculate the size taken up by the queue IDs in this group */
2894 		sz += qg_list[i].num_qs * sizeof(qg_list[i].q_id);
2895 
2896 		/* Add the size of the group header */
2897 		sz += sizeof(qg_list[i]) - sizeof(qg_list[i].q_id);
2898 
2899 		/* If the num of queues is even, add 2 bytes of padding */
2900 		if ((qg_list[i].num_qs % 2) == 0)
2901 			sz += 2;
2902 	}
2903 
2904 	if (buf_size != sz)
2905 		return ICE_ERR_PARAM;
2906 
2907 do_aq:
2908 	status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
2909 	if (status) {
2910 		if (!qg_list)
2911 			ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
2912 				  vmvf_num, hw->adminq.sq_last_status);
2913 		else
2914 			ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
2915 				  le16_to_cpu(qg_list[0].q_id[0]),
2916 				  hw->adminq.sq_last_status);
2917 	}
2918 	return status;
2919 }
2920 
2921 /* End of FW Admin Queue command wrappers */
2922 
2923 /**
2924  * ice_write_byte - write a byte to a packed context structure
2925  * @src_ctx:  the context structure to read from
2926  * @dest_ctx: the context to be written to
2927  * @ce_info:  a description of the struct to be filled
2928  */
2929 static void
2930 ice_write_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
2931 {
2932 	u8 src_byte, dest_byte, mask;
2933 	u8 *from, *dest;
2934 	u16 shift_width;
2935 
2936 	/* copy from the next struct field */
2937 	from = src_ctx + ce_info->offset;
2938 
2939 	/* prepare the bits and mask */
2940 	shift_width = ce_info->lsb % 8;
2941 	mask = (u8)(BIT(ce_info->width) - 1);
2942 
2943 	src_byte = *from;
2944 	src_byte &= mask;
2945 
2946 	/* shift to correct alignment */
2947 	mask <<= shift_width;
2948 	src_byte <<= shift_width;
2949 
2950 	/* get the current bits from the target bit string */
2951 	dest = dest_ctx + (ce_info->lsb / 8);
2952 
2953 	memcpy(&dest_byte, dest, sizeof(dest_byte));
2954 
2955 	dest_byte &= ~mask;	/* get the bits not changing */
2956 	dest_byte |= src_byte;	/* add in the new bits */
2957 
2958 	/* put it all back */
2959 	memcpy(dest, &dest_byte, sizeof(dest_byte));
2960 }
2961 
2962 /**
2963  * ice_write_word - write a word to a packed context structure
2964  * @src_ctx:  the context structure to read from
2965  * @dest_ctx: the context to be written to
2966  * @ce_info:  a description of the struct to be filled
2967  */
2968 static void
2969 ice_write_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
2970 {
2971 	u16 src_word, mask;
2972 	__le16 dest_word;
2973 	u8 *from, *dest;
2974 	u16 shift_width;
2975 
2976 	/* copy from the next struct field */
2977 	from = src_ctx + ce_info->offset;
2978 
2979 	/* prepare the bits and mask */
2980 	shift_width = ce_info->lsb % 8;
2981 	mask = BIT(ce_info->width) - 1;
2982 
2983 	/* don't swizzle the bits until after the mask because the mask bits
2984 	 * will be in a different bit position on big endian machines
2985 	 */
2986 	src_word = *(u16 *)from;
2987 	src_word &= mask;
2988 
2989 	/* shift to correct alignment */
2990 	mask <<= shift_width;
2991 	src_word <<= shift_width;
2992 
2993 	/* get the current bits from the target bit string */
2994 	dest = dest_ctx + (ce_info->lsb / 8);
2995 
2996 	memcpy(&dest_word, dest, sizeof(dest_word));
2997 
2998 	dest_word &= ~(cpu_to_le16(mask));	/* get the bits not changing */
2999 	dest_word |= cpu_to_le16(src_word);	/* add in the new bits */
3000 
3001 	/* put it all back */
3002 	memcpy(dest, &dest_word, sizeof(dest_word));
3003 }
3004 
3005 /**
3006  * ice_write_dword - write a dword to a packed context structure
3007  * @src_ctx:  the context structure to read from
3008  * @dest_ctx: the context to be written to
3009  * @ce_info:  a description of the struct to be filled
3010  */
3011 static void
3012 ice_write_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3013 {
3014 	u32 src_dword, mask;
3015 	__le32 dest_dword;
3016 	u8 *from, *dest;
3017 	u16 shift_width;
3018 
3019 	/* copy from the next struct field */
3020 	from = src_ctx + ce_info->offset;
3021 
3022 	/* prepare the bits and mask */
3023 	shift_width = ce_info->lsb % 8;
3024 
3025 	/* if the field width is exactly 32 on an x86 machine, then the shift
3026 	 * operation will not work because the SHL instructions count is masked
3027 	 * to 5 bits so the shift will do nothing
3028 	 */
3029 	if (ce_info->width < 32)
3030 		mask = BIT(ce_info->width) - 1;
3031 	else
3032 		mask = (u32)~0;
3033 
3034 	/* don't swizzle the bits until after the mask because the mask bits
3035 	 * will be in a different bit position on big endian machines
3036 	 */
3037 	src_dword = *(u32 *)from;
3038 	src_dword &= mask;
3039 
3040 	/* shift to correct alignment */
3041 	mask <<= shift_width;
3042 	src_dword <<= shift_width;
3043 
3044 	/* get the current bits from the target bit string */
3045 	dest = dest_ctx + (ce_info->lsb / 8);
3046 
3047 	memcpy(&dest_dword, dest, sizeof(dest_dword));
3048 
3049 	dest_dword &= ~(cpu_to_le32(mask));	/* get the bits not changing */
3050 	dest_dword |= cpu_to_le32(src_dword);	/* add in the new bits */
3051 
3052 	/* put it all back */
3053 	memcpy(dest, &dest_dword, sizeof(dest_dword));
3054 }
3055 
3056 /**
3057  * ice_write_qword - write a qword to a packed context structure
3058  * @src_ctx:  the context structure to read from
3059  * @dest_ctx: the context to be written to
3060  * @ce_info:  a description of the struct to be filled
3061  */
3062 static void
3063 ice_write_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3064 {
3065 	u64 src_qword, mask;
3066 	__le64 dest_qword;
3067 	u8 *from, *dest;
3068 	u16 shift_width;
3069 
3070 	/* copy from the next struct field */
3071 	from = src_ctx + ce_info->offset;
3072 
3073 	/* prepare the bits and mask */
3074 	shift_width = ce_info->lsb % 8;
3075 
3076 	/* if the field width is exactly 64 on an x86 machine, then the shift
3077 	 * operation will not work because the SHL instructions count is masked
3078 	 * to 6 bits so the shift will do nothing
3079 	 */
3080 	if (ce_info->width < 64)
3081 		mask = BIT_ULL(ce_info->width) - 1;
3082 	else
3083 		mask = (u64)~0;
3084 
3085 	/* don't swizzle the bits until after the mask because the mask bits
3086 	 * will be in a different bit position on big endian machines
3087 	 */
3088 	src_qword = *(u64 *)from;
3089 	src_qword &= mask;
3090 
3091 	/* shift to correct alignment */
3092 	mask <<= shift_width;
3093 	src_qword <<= shift_width;
3094 
3095 	/* get the current bits from the target bit string */
3096 	dest = dest_ctx + (ce_info->lsb / 8);
3097 
3098 	memcpy(&dest_qword, dest, sizeof(dest_qword));
3099 
3100 	dest_qword &= ~(cpu_to_le64(mask));	/* get the bits not changing */
3101 	dest_qword |= cpu_to_le64(src_qword);	/* add in the new bits */
3102 
3103 	/* put it all back */
3104 	memcpy(dest, &dest_qword, sizeof(dest_qword));
3105 }
3106 
3107 /**
3108  * ice_set_ctx - set context bits in packed structure
3109  * @src_ctx:  pointer to a generic non-packed context structure
3110  * @dest_ctx: pointer to memory for the packed structure
3111  * @ce_info:  a description of the structure to be transformed
3112  */
3113 enum ice_status
3114 ice_set_ctx(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3115 {
3116 	int f;
3117 
3118 	for (f = 0; ce_info[f].width; f++) {
3119 		/* We have to deal with each element of the FW response
3120 		 * using the correct size so that we are correct regardless
3121 		 * of the endianness of the machine.
3122 		 */
3123 		switch (ce_info[f].size_of) {
3124 		case sizeof(u8):
3125 			ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
3126 			break;
3127 		case sizeof(u16):
3128 			ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
3129 			break;
3130 		case sizeof(u32):
3131 			ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
3132 			break;
3133 		case sizeof(u64):
3134 			ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
3135 			break;
3136 		default:
3137 			return ICE_ERR_INVAL_SIZE;
3138 		}
3139 	}
3140 
3141 	return 0;
3142 }
3143 
3144 /**
3145  * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
3146  * @hw: pointer to the HW struct
3147  * @vsi_handle: software VSI handle
3148  * @tc: TC number
3149  * @q_handle: software queue handle
3150  */
3151 static struct ice_q_ctx *
3152 ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
3153 {
3154 	struct ice_vsi_ctx *vsi;
3155 	struct ice_q_ctx *q_ctx;
3156 
3157 	vsi = ice_get_vsi_ctx(hw, vsi_handle);
3158 	if (!vsi)
3159 		return NULL;
3160 	if (q_handle >= vsi->num_lan_q_entries[tc])
3161 		return NULL;
3162 	if (!vsi->lan_q_ctx[tc])
3163 		return NULL;
3164 	q_ctx = vsi->lan_q_ctx[tc];
3165 	return &q_ctx[q_handle];
3166 }
3167 
3168 /**
3169  * ice_ena_vsi_txq
3170  * @pi: port information structure
3171  * @vsi_handle: software VSI handle
3172  * @tc: TC number
3173  * @q_handle: software queue handle
3174  * @num_qgrps: Number of added queue groups
3175  * @buf: list of queue groups to be added
3176  * @buf_size: size of buffer for indirect command
3177  * @cd: pointer to command details structure or NULL
3178  *
3179  * This function adds one LAN queue
3180  */
3181 enum ice_status
3182 ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
3183 		u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
3184 		struct ice_sq_cd *cd)
3185 {
3186 	struct ice_aqc_txsched_elem_data node = { 0 };
3187 	struct ice_sched_node *parent;
3188 	struct ice_q_ctx *q_ctx;
3189 	enum ice_status status;
3190 	struct ice_hw *hw;
3191 
3192 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
3193 		return ICE_ERR_CFG;
3194 
3195 	if (num_qgrps > 1 || buf->num_txqs > 1)
3196 		return ICE_ERR_MAX_LIMIT;
3197 
3198 	hw = pi->hw;
3199 
3200 	if (!ice_is_vsi_valid(hw, vsi_handle))
3201 		return ICE_ERR_PARAM;
3202 
3203 	mutex_lock(&pi->sched_lock);
3204 
3205 	q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
3206 	if (!q_ctx) {
3207 		ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
3208 			  q_handle);
3209 		status = ICE_ERR_PARAM;
3210 		goto ena_txq_exit;
3211 	}
3212 
3213 	/* find a parent node */
3214 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
3215 					    ICE_SCHED_NODE_OWNER_LAN);
3216 	if (!parent) {
3217 		status = ICE_ERR_PARAM;
3218 		goto ena_txq_exit;
3219 	}
3220 
3221 	buf->parent_teid = parent->info.node_teid;
3222 	node.parent_teid = parent->info.node_teid;
3223 	/* Mark that the values in the "generic" section as valid. The default
3224 	 * value in the "generic" section is zero. This means that :
3225 	 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
3226 	 * - 0 priority among siblings, indicated by Bit 1-3.
3227 	 * - WFQ, indicated by Bit 4.
3228 	 * - 0 Adjustment value is used in PSM credit update flow, indicated by
3229 	 * Bit 5-6.
3230 	 * - Bit 7 is reserved.
3231 	 * Without setting the generic section as valid in valid_sections, the
3232 	 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
3233 	 */
3234 	buf->txqs[0].info.valid_sections = ICE_AQC_ELEM_VALID_GENERIC;
3235 
3236 	/* add the LAN queue */
3237 	status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
3238 	if (status) {
3239 		ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
3240 			  le16_to_cpu(buf->txqs[0].txq_id),
3241 			  hw->adminq.sq_last_status);
3242 		goto ena_txq_exit;
3243 	}
3244 
3245 	node.node_teid = buf->txqs[0].q_teid;
3246 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
3247 	q_ctx->q_handle = q_handle;
3248 
3249 	/* add a leaf node into schduler tree queue layer */
3250 	status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node);
3251 
3252 ena_txq_exit:
3253 	mutex_unlock(&pi->sched_lock);
3254 	return status;
3255 }
3256 
3257 /**
3258  * ice_dis_vsi_txq
3259  * @pi: port information structure
3260  * @vsi_handle: software VSI handle
3261  * @tc: TC number
3262  * @num_queues: number of queues
3263  * @q_handles: pointer to software queue handle array
3264  * @q_ids: pointer to the q_id array
3265  * @q_teids: pointer to queue node teids
3266  * @rst_src: if called due to reset, specifies the reset source
3267  * @vmvf_num: the relative VM or VF number that is undergoing the reset
3268  * @cd: pointer to command details structure or NULL
3269  *
3270  * This function removes queues and their corresponding nodes in SW DB
3271  */
3272 enum ice_status
3273 ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
3274 		u16 *q_handles, u16 *q_ids, u32 *q_teids,
3275 		enum ice_disq_rst_src rst_src, u16 vmvf_num,
3276 		struct ice_sq_cd *cd)
3277 {
3278 	enum ice_status status = ICE_ERR_DOES_NOT_EXIST;
3279 	struct ice_aqc_dis_txq_item qg_list;
3280 	struct ice_q_ctx *q_ctx;
3281 	u16 i;
3282 
3283 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
3284 		return ICE_ERR_CFG;
3285 
3286 	if (!num_queues) {
3287 		/* if queue is disabled already yet the disable queue command
3288 		 * has to be sent to complete the VF reset, then call
3289 		 * ice_aq_dis_lan_txq without any queue information
3290 		 */
3291 		if (rst_src)
3292 			return ice_aq_dis_lan_txq(pi->hw, 0, NULL, 0, rst_src,
3293 						  vmvf_num, NULL);
3294 		return ICE_ERR_CFG;
3295 	}
3296 
3297 	mutex_lock(&pi->sched_lock);
3298 
3299 	for (i = 0; i < num_queues; i++) {
3300 		struct ice_sched_node *node;
3301 
3302 		node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
3303 		if (!node)
3304 			continue;
3305 		q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handles[i]);
3306 		if (!q_ctx) {
3307 			ice_debug(pi->hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
3308 				  q_handles[i]);
3309 			continue;
3310 		}
3311 		if (q_ctx->q_handle != q_handles[i]) {
3312 			ice_debug(pi->hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
3313 				  q_ctx->q_handle, q_handles[i]);
3314 			continue;
3315 		}
3316 		qg_list.parent_teid = node->info.parent_teid;
3317 		qg_list.num_qs = 1;
3318 		qg_list.q_id[0] = cpu_to_le16(q_ids[i]);
3319 		status = ice_aq_dis_lan_txq(pi->hw, 1, &qg_list,
3320 					    sizeof(qg_list), rst_src, vmvf_num,
3321 					    cd);
3322 
3323 		if (status)
3324 			break;
3325 		ice_free_sched_node(pi, node);
3326 		q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
3327 	}
3328 	mutex_unlock(&pi->sched_lock);
3329 	return status;
3330 }
3331 
3332 /**
3333  * ice_cfg_vsi_qs - configure the new/existing VSI queues
3334  * @pi: port information structure
3335  * @vsi_handle: software VSI handle
3336  * @tc_bitmap: TC bitmap
3337  * @maxqs: max queues array per TC
3338  * @owner: LAN or RDMA
3339  *
3340  * This function adds/updates the VSI queues per TC.
3341  */
3342 static enum ice_status
3343 ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
3344 	       u16 *maxqs, u8 owner)
3345 {
3346 	enum ice_status status = 0;
3347 	u8 i;
3348 
3349 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
3350 		return ICE_ERR_CFG;
3351 
3352 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3353 		return ICE_ERR_PARAM;
3354 
3355 	mutex_lock(&pi->sched_lock);
3356 
3357 	ice_for_each_traffic_class(i) {
3358 		/* configuration is possible only if TC node is present */
3359 		if (!ice_sched_get_tc_node(pi, i))
3360 			continue;
3361 
3362 		status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
3363 					   ice_is_tc_ena(tc_bitmap, i));
3364 		if (status)
3365 			break;
3366 	}
3367 
3368 	mutex_unlock(&pi->sched_lock);
3369 	return status;
3370 }
3371 
3372 /**
3373  * ice_cfg_vsi_lan - configure VSI LAN queues
3374  * @pi: port information structure
3375  * @vsi_handle: software VSI handle
3376  * @tc_bitmap: TC bitmap
3377  * @max_lanqs: max LAN queues array per TC
3378  *
3379  * This function adds/updates the VSI LAN queues per TC.
3380  */
3381 enum ice_status
3382 ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
3383 		u16 *max_lanqs)
3384 {
3385 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
3386 			      ICE_SCHED_NODE_OWNER_LAN);
3387 }
3388 
3389 /**
3390  * ice_replay_pre_init - replay pre initialization
3391  * @hw: pointer to the HW struct
3392  *
3393  * Initializes required config data for VSI, FD, ACL, and RSS before replay.
3394  */
3395 static enum ice_status ice_replay_pre_init(struct ice_hw *hw)
3396 {
3397 	struct ice_switch_info *sw = hw->switch_info;
3398 	u8 i;
3399 
3400 	/* Delete old entries from replay filter list head if there is any */
3401 	ice_rm_all_sw_replay_rule_info(hw);
3402 	/* In start of replay, move entries into replay_rules list, it
3403 	 * will allow adding rules entries back to filt_rules list,
3404 	 * which is operational list.
3405 	 */
3406 	for (i = 0; i < ICE_SW_LKUP_LAST; i++)
3407 		list_replace_init(&sw->recp_list[i].filt_rules,
3408 				  &sw->recp_list[i].filt_replay_rules);
3409 
3410 	return 0;
3411 }
3412 
3413 /**
3414  * ice_replay_vsi - replay VSI configuration
3415  * @hw: pointer to the HW struct
3416  * @vsi_handle: driver VSI handle
3417  *
3418  * Restore all VSI configuration after reset. It is required to call this
3419  * function with main VSI first.
3420  */
3421 enum ice_status ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
3422 {
3423 	enum ice_status status;
3424 
3425 	if (!ice_is_vsi_valid(hw, vsi_handle))
3426 		return ICE_ERR_PARAM;
3427 
3428 	/* Replay pre-initialization if there is any */
3429 	if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
3430 		status = ice_replay_pre_init(hw);
3431 		if (status)
3432 			return status;
3433 	}
3434 
3435 	/* Replay per VSI all filters */
3436 	status = ice_replay_vsi_all_fltr(hw, vsi_handle);
3437 	return status;
3438 }
3439 
3440 /**
3441  * ice_replay_post - post replay configuration cleanup
3442  * @hw: pointer to the HW struct
3443  *
3444  * Post replay cleanup.
3445  */
3446 void ice_replay_post(struct ice_hw *hw)
3447 {
3448 	/* Delete old entries from replay filter list head */
3449 	ice_rm_all_sw_replay_rule_info(hw);
3450 }
3451 
3452 /**
3453  * ice_stat_update40 - read 40 bit stat from the chip and update stat values
3454  * @hw: ptr to the hardware info
3455  * @reg: offset of 64 bit HW register to read from
3456  * @prev_stat_loaded: bool to specify if previous stats are loaded
3457  * @prev_stat: ptr to previous loaded stat value
3458  * @cur_stat: ptr to current stat value
3459  */
3460 void
3461 ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
3462 		  u64 *prev_stat, u64 *cur_stat)
3463 {
3464 	u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
3465 
3466 	/* device stats are not reset at PFR, they likely will not be zeroed
3467 	 * when the driver starts. Thus, save the value from the first read
3468 	 * without adding to the statistic value so that we report stats which
3469 	 * count up from zero.
3470 	 */
3471 	if (!prev_stat_loaded) {
3472 		*prev_stat = new_data;
3473 		return;
3474 	}
3475 
3476 	/* Calculate the difference between the new and old values, and then
3477 	 * add it to the software stat value.
3478 	 */
3479 	if (new_data >= *prev_stat)
3480 		*cur_stat += new_data - *prev_stat;
3481 	else
3482 		/* to manage the potential roll-over */
3483 		*cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
3484 
3485 	/* Update the previously stored value to prepare for next read */
3486 	*prev_stat = new_data;
3487 }
3488 
3489 /**
3490  * ice_stat_update32 - read 32 bit stat from the chip and update stat values
3491  * @hw: ptr to the hardware info
3492  * @reg: offset of HW register to read from
3493  * @prev_stat_loaded: bool to specify if previous stats are loaded
3494  * @prev_stat: ptr to previous loaded stat value
3495  * @cur_stat: ptr to current stat value
3496  */
3497 void
3498 ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
3499 		  u64 *prev_stat, u64 *cur_stat)
3500 {
3501 	u32 new_data;
3502 
3503 	new_data = rd32(hw, reg);
3504 
3505 	/* device stats are not reset at PFR, they likely will not be zeroed
3506 	 * when the driver starts. Thus, save the value from the first read
3507 	 * without adding to the statistic value so that we report stats which
3508 	 * count up from zero.
3509 	 */
3510 	if (!prev_stat_loaded) {
3511 		*prev_stat = new_data;
3512 		return;
3513 	}
3514 
3515 	/* Calculate the difference between the new and old values, and then
3516 	 * add it to the software stat value.
3517 	 */
3518 	if (new_data >= *prev_stat)
3519 		*cur_stat += new_data - *prev_stat;
3520 	else
3521 		/* to manage the potential roll-over */
3522 		*cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
3523 
3524 	/* Update the previously stored value to prepare for next read */
3525 	*prev_stat = new_data;
3526 }
3527 
3528 /**
3529  * ice_sched_query_elem - query element information from HW
3530  * @hw: pointer to the HW struct
3531  * @node_teid: node TEID to be queried
3532  * @buf: buffer to element information
3533  *
3534  * This function queries HW element information
3535  */
3536 enum ice_status
3537 ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
3538 		     struct ice_aqc_get_elem *buf)
3539 {
3540 	u16 buf_size, num_elem_ret = 0;
3541 	enum ice_status status;
3542 
3543 	buf_size = sizeof(*buf);
3544 	memset(buf, 0, buf_size);
3545 	buf->generic[0].node_teid = cpu_to_le32(node_teid);
3546 	status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
3547 					  NULL);
3548 	if (status || num_elem_ret != 1)
3549 		ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
3550 	return status;
3551 }
3552