xref: /linux/drivers/net/ethernet/intel/ice/ice_ptp.c (revision d642ef71)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2021, Intel Corporation. */
3 
4 #include "ice.h"
5 #include "ice_lib.h"
6 #include "ice_trace.h"
7 
8 #define E810_OUT_PROP_DELAY_NS 1
9 
10 #define UNKNOWN_INCVAL_E822 0x100000000ULL
11 
12 static const struct ptp_pin_desc ice_pin_desc_e810t[] = {
13 	/* name    idx   func         chan */
14 	{ "GNSS",  GNSS, PTP_PF_EXTTS, 0, { 0, } },
15 	{ "SMA1",  SMA1, PTP_PF_NONE, 1, { 0, } },
16 	{ "U.FL1", UFL1, PTP_PF_NONE, 1, { 0, } },
17 	{ "SMA2",  SMA2, PTP_PF_NONE, 2, { 0, } },
18 	{ "U.FL2", UFL2, PTP_PF_NONE, 2, { 0, } },
19 };
20 
21 /**
22  * ice_get_sma_config_e810t
23  * @hw: pointer to the hw struct
24  * @ptp_pins: pointer to the ptp_pin_desc struture
25  *
26  * Read the configuration of the SMA control logic and put it into the
27  * ptp_pin_desc structure
28  */
29 static int
30 ice_get_sma_config_e810t(struct ice_hw *hw, struct ptp_pin_desc *ptp_pins)
31 {
32 	u8 data, i;
33 	int status;
34 
35 	/* Read initial pin state */
36 	status = ice_read_sma_ctrl_e810t(hw, &data);
37 	if (status)
38 		return status;
39 
40 	/* initialize with defaults */
41 	for (i = 0; i < NUM_PTP_PINS_E810T; i++) {
42 		strscpy(ptp_pins[i].name, ice_pin_desc_e810t[i].name,
43 			sizeof(ptp_pins[i].name));
44 		ptp_pins[i].index = ice_pin_desc_e810t[i].index;
45 		ptp_pins[i].func = ice_pin_desc_e810t[i].func;
46 		ptp_pins[i].chan = ice_pin_desc_e810t[i].chan;
47 	}
48 
49 	/* Parse SMA1/UFL1 */
50 	switch (data & ICE_SMA1_MASK_E810T) {
51 	case ICE_SMA1_MASK_E810T:
52 	default:
53 		ptp_pins[SMA1].func = PTP_PF_NONE;
54 		ptp_pins[UFL1].func = PTP_PF_NONE;
55 		break;
56 	case ICE_SMA1_DIR_EN_E810T:
57 		ptp_pins[SMA1].func = PTP_PF_PEROUT;
58 		ptp_pins[UFL1].func = PTP_PF_NONE;
59 		break;
60 	case ICE_SMA1_TX_EN_E810T:
61 		ptp_pins[SMA1].func = PTP_PF_EXTTS;
62 		ptp_pins[UFL1].func = PTP_PF_NONE;
63 		break;
64 	case 0:
65 		ptp_pins[SMA1].func = PTP_PF_EXTTS;
66 		ptp_pins[UFL1].func = PTP_PF_PEROUT;
67 		break;
68 	}
69 
70 	/* Parse SMA2/UFL2 */
71 	switch (data & ICE_SMA2_MASK_E810T) {
72 	case ICE_SMA2_MASK_E810T:
73 	default:
74 		ptp_pins[SMA2].func = PTP_PF_NONE;
75 		ptp_pins[UFL2].func = PTP_PF_NONE;
76 		break;
77 	case (ICE_SMA2_TX_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T):
78 		ptp_pins[SMA2].func = PTP_PF_EXTTS;
79 		ptp_pins[UFL2].func = PTP_PF_NONE;
80 		break;
81 	case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T):
82 		ptp_pins[SMA2].func = PTP_PF_PEROUT;
83 		ptp_pins[UFL2].func = PTP_PF_NONE;
84 		break;
85 	case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T):
86 		ptp_pins[SMA2].func = PTP_PF_NONE;
87 		ptp_pins[UFL2].func = PTP_PF_EXTTS;
88 		break;
89 	case ICE_SMA2_DIR_EN_E810T:
90 		ptp_pins[SMA2].func = PTP_PF_PEROUT;
91 		ptp_pins[UFL2].func = PTP_PF_EXTTS;
92 		break;
93 	}
94 
95 	return 0;
96 }
97 
98 /**
99  * ice_ptp_set_sma_config_e810t
100  * @hw: pointer to the hw struct
101  * @ptp_pins: pointer to the ptp_pin_desc struture
102  *
103  * Set the configuration of the SMA control logic based on the configuration in
104  * num_pins parameter
105  */
106 static int
107 ice_ptp_set_sma_config_e810t(struct ice_hw *hw,
108 			     const struct ptp_pin_desc *ptp_pins)
109 {
110 	int status;
111 	u8 data;
112 
113 	/* SMA1 and UFL1 cannot be set to TX at the same time */
114 	if (ptp_pins[SMA1].func == PTP_PF_PEROUT &&
115 	    ptp_pins[UFL1].func == PTP_PF_PEROUT)
116 		return -EINVAL;
117 
118 	/* SMA2 and UFL2 cannot be set to RX at the same time */
119 	if (ptp_pins[SMA2].func == PTP_PF_EXTTS &&
120 	    ptp_pins[UFL2].func == PTP_PF_EXTTS)
121 		return -EINVAL;
122 
123 	/* Read initial pin state value */
124 	status = ice_read_sma_ctrl_e810t(hw, &data);
125 	if (status)
126 		return status;
127 
128 	/* Set the right sate based on the desired configuration */
129 	data &= ~ICE_SMA1_MASK_E810T;
130 	if (ptp_pins[SMA1].func == PTP_PF_NONE &&
131 	    ptp_pins[UFL1].func == PTP_PF_NONE) {
132 		dev_info(ice_hw_to_dev(hw), "SMA1 + U.FL1 disabled");
133 		data |= ICE_SMA1_MASK_E810T;
134 	} else if (ptp_pins[SMA1].func == PTP_PF_EXTTS &&
135 		   ptp_pins[UFL1].func == PTP_PF_NONE) {
136 		dev_info(ice_hw_to_dev(hw), "SMA1 RX");
137 		data |= ICE_SMA1_TX_EN_E810T;
138 	} else if (ptp_pins[SMA1].func == PTP_PF_NONE &&
139 		   ptp_pins[UFL1].func == PTP_PF_PEROUT) {
140 		/* U.FL 1 TX will always enable SMA 1 RX */
141 		dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX");
142 	} else if (ptp_pins[SMA1].func == PTP_PF_EXTTS &&
143 		   ptp_pins[UFL1].func == PTP_PF_PEROUT) {
144 		dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX");
145 	} else if (ptp_pins[SMA1].func == PTP_PF_PEROUT &&
146 		   ptp_pins[UFL1].func == PTP_PF_NONE) {
147 		dev_info(ice_hw_to_dev(hw), "SMA1 TX");
148 		data |= ICE_SMA1_DIR_EN_E810T;
149 	}
150 
151 	data &= ~ICE_SMA2_MASK_E810T;
152 	if (ptp_pins[SMA2].func == PTP_PF_NONE &&
153 	    ptp_pins[UFL2].func == PTP_PF_NONE) {
154 		dev_info(ice_hw_to_dev(hw), "SMA2 + U.FL2 disabled");
155 		data |= ICE_SMA2_MASK_E810T;
156 	} else if (ptp_pins[SMA2].func == PTP_PF_EXTTS &&
157 			ptp_pins[UFL2].func == PTP_PF_NONE) {
158 		dev_info(ice_hw_to_dev(hw), "SMA2 RX");
159 		data |= (ICE_SMA2_TX_EN_E810T |
160 			 ICE_SMA2_UFL2_RX_DIS_E810T);
161 	} else if (ptp_pins[SMA2].func == PTP_PF_NONE &&
162 		   ptp_pins[UFL2].func == PTP_PF_EXTTS) {
163 		dev_info(ice_hw_to_dev(hw), "UFL2 RX");
164 		data |= (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T);
165 	} else if (ptp_pins[SMA2].func == PTP_PF_PEROUT &&
166 		   ptp_pins[UFL2].func == PTP_PF_NONE) {
167 		dev_info(ice_hw_to_dev(hw), "SMA2 TX");
168 		data |= (ICE_SMA2_DIR_EN_E810T |
169 			 ICE_SMA2_UFL2_RX_DIS_E810T);
170 	} else if (ptp_pins[SMA2].func == PTP_PF_PEROUT &&
171 		   ptp_pins[UFL2].func == PTP_PF_EXTTS) {
172 		dev_info(ice_hw_to_dev(hw), "SMA2 TX + U.FL2 RX");
173 		data |= ICE_SMA2_DIR_EN_E810T;
174 	}
175 
176 	return ice_write_sma_ctrl_e810t(hw, data);
177 }
178 
179 /**
180  * ice_ptp_set_sma_e810t
181  * @info: the driver's PTP info structure
182  * @pin: pin index in kernel structure
183  * @func: Pin function to be set (PTP_PF_NONE, PTP_PF_EXTTS or PTP_PF_PEROUT)
184  *
185  * Set the configuration of a single SMA pin
186  */
187 static int
188 ice_ptp_set_sma_e810t(struct ptp_clock_info *info, unsigned int pin,
189 		      enum ptp_pin_function func)
190 {
191 	struct ptp_pin_desc ptp_pins[NUM_PTP_PINS_E810T];
192 	struct ice_pf *pf = ptp_info_to_pf(info);
193 	struct ice_hw *hw = &pf->hw;
194 	int err;
195 
196 	if (pin < SMA1 || func > PTP_PF_PEROUT)
197 		return -EOPNOTSUPP;
198 
199 	err = ice_get_sma_config_e810t(hw, ptp_pins);
200 	if (err)
201 		return err;
202 
203 	/* Disable the same function on the other pin sharing the channel */
204 	if (pin == SMA1 && ptp_pins[UFL1].func == func)
205 		ptp_pins[UFL1].func = PTP_PF_NONE;
206 	if (pin == UFL1 && ptp_pins[SMA1].func == func)
207 		ptp_pins[SMA1].func = PTP_PF_NONE;
208 
209 	if (pin == SMA2 && ptp_pins[UFL2].func == func)
210 		ptp_pins[UFL2].func = PTP_PF_NONE;
211 	if (pin == UFL2 && ptp_pins[SMA2].func == func)
212 		ptp_pins[SMA2].func = PTP_PF_NONE;
213 
214 	/* Set up new pin function in the temp table */
215 	ptp_pins[pin].func = func;
216 
217 	return ice_ptp_set_sma_config_e810t(hw, ptp_pins);
218 }
219 
220 /**
221  * ice_verify_pin_e810t
222  * @info: the driver's PTP info structure
223  * @pin: Pin index
224  * @func: Assigned function
225  * @chan: Assigned channel
226  *
227  * Verify if pin supports requested pin function. If the Check pins consistency.
228  * Reconfigure the SMA logic attached to the given pin to enable its
229  * desired functionality
230  */
231 static int
232 ice_verify_pin_e810t(struct ptp_clock_info *info, unsigned int pin,
233 		     enum ptp_pin_function func, unsigned int chan)
234 {
235 	/* Don't allow channel reassignment */
236 	if (chan != ice_pin_desc_e810t[pin].chan)
237 		return -EOPNOTSUPP;
238 
239 	/* Check if functions are properly assigned */
240 	switch (func) {
241 	case PTP_PF_NONE:
242 		break;
243 	case PTP_PF_EXTTS:
244 		if (pin == UFL1)
245 			return -EOPNOTSUPP;
246 		break;
247 	case PTP_PF_PEROUT:
248 		if (pin == UFL2 || pin == GNSS)
249 			return -EOPNOTSUPP;
250 		break;
251 	case PTP_PF_PHYSYNC:
252 		return -EOPNOTSUPP;
253 	}
254 
255 	return ice_ptp_set_sma_e810t(info, pin, func);
256 }
257 
258 /**
259  * ice_ptp_cfg_tx_interrupt - Configure Tx timestamp interrupt for the device
260  * @pf: Board private structure
261  *
262  * Program the device to respond appropriately to the Tx timestamp interrupt
263  * cause.
264  */
265 static void ice_ptp_cfg_tx_interrupt(struct ice_pf *pf)
266 {
267 	struct ice_hw *hw = &pf->hw;
268 	bool enable;
269 	u32 val;
270 
271 	switch (pf->ptp.tx_interrupt_mode) {
272 	case ICE_PTP_TX_INTERRUPT_ALL:
273 		/* React to interrupts across all quads. */
274 		wr32(hw, PFINT_TSYN_MSK + (0x4 * hw->pf_id), (u32)0x1f);
275 		enable = true;
276 		break;
277 	case ICE_PTP_TX_INTERRUPT_NONE:
278 		/* Do not react to interrupts on any quad. */
279 		wr32(hw, PFINT_TSYN_MSK + (0x4 * hw->pf_id), (u32)0x0);
280 		enable = false;
281 		break;
282 	case ICE_PTP_TX_INTERRUPT_SELF:
283 	default:
284 		enable = pf->ptp.tstamp_config.tx_type == HWTSTAMP_TX_ON;
285 		break;
286 	}
287 
288 	/* Configure the Tx timestamp interrupt */
289 	val = rd32(hw, PFINT_OICR_ENA);
290 	if (enable)
291 		val |= PFINT_OICR_TSYN_TX_M;
292 	else
293 		val &= ~PFINT_OICR_TSYN_TX_M;
294 	wr32(hw, PFINT_OICR_ENA, val);
295 }
296 
297 /**
298  * ice_set_rx_tstamp - Enable or disable Rx timestamping
299  * @pf: The PF pointer to search in
300  * @on: bool value for whether timestamps are enabled or disabled
301  */
302 static void ice_set_rx_tstamp(struct ice_pf *pf, bool on)
303 {
304 	struct ice_vsi *vsi;
305 	u16 i;
306 
307 	vsi = ice_get_main_vsi(pf);
308 	if (!vsi || !vsi->rx_rings)
309 		return;
310 
311 	/* Set the timestamp flag for all the Rx rings */
312 	ice_for_each_rxq(vsi, i) {
313 		if (!vsi->rx_rings[i])
314 			continue;
315 		vsi->rx_rings[i]->ptp_rx = on;
316 	}
317 }
318 
319 /**
320  * ice_ptp_disable_timestamp_mode - Disable current timestamp mode
321  * @pf: Board private structure
322  *
323  * Called during preparation for reset to temporarily disable timestamping on
324  * the device. Called during remove to disable timestamping while cleaning up
325  * driver resources.
326  */
327 static void ice_ptp_disable_timestamp_mode(struct ice_pf *pf)
328 {
329 	struct ice_hw *hw = &pf->hw;
330 	u32 val;
331 
332 	val = rd32(hw, PFINT_OICR_ENA);
333 	val &= ~PFINT_OICR_TSYN_TX_M;
334 	wr32(hw, PFINT_OICR_ENA, val);
335 
336 	ice_set_rx_tstamp(pf, false);
337 }
338 
339 /**
340  * ice_ptp_restore_timestamp_mode - Restore timestamp configuration
341  * @pf: Board private structure
342  *
343  * Called at the end of rebuild to restore timestamp configuration after
344  * a device reset.
345  */
346 void ice_ptp_restore_timestamp_mode(struct ice_pf *pf)
347 {
348 	struct ice_hw *hw = &pf->hw;
349 	bool enable_rx;
350 
351 	ice_ptp_cfg_tx_interrupt(pf);
352 
353 	enable_rx = pf->ptp.tstamp_config.rx_filter == HWTSTAMP_FILTER_ALL;
354 	ice_set_rx_tstamp(pf, enable_rx);
355 
356 	/* Trigger an immediate software interrupt to ensure that timestamps
357 	 * which occurred during reset are handled now.
358 	 */
359 	wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
360 	ice_flush(hw);
361 }
362 
363 /**
364  * ice_ptp_read_src_clk_reg - Read the source clock register
365  * @pf: Board private structure
366  * @sts: Optional parameter for holding a pair of system timestamps from
367  *       the system clock. Will be ignored if NULL is given.
368  */
369 static u64
370 ice_ptp_read_src_clk_reg(struct ice_pf *pf, struct ptp_system_timestamp *sts)
371 {
372 	struct ice_hw *hw = &pf->hw;
373 	u32 hi, lo, lo2;
374 	u8 tmr_idx;
375 
376 	tmr_idx = ice_get_ptp_src_clock_index(hw);
377 	/* Read the system timestamp pre PHC read */
378 	ptp_read_system_prets(sts);
379 
380 	lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
381 
382 	/* Read the system timestamp post PHC read */
383 	ptp_read_system_postts(sts);
384 
385 	hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
386 	lo2 = rd32(hw, GLTSYN_TIME_L(tmr_idx));
387 
388 	if (lo2 < lo) {
389 		/* if TIME_L rolled over read TIME_L again and update
390 		 * system timestamps
391 		 */
392 		ptp_read_system_prets(sts);
393 		lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
394 		ptp_read_system_postts(sts);
395 		hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
396 	}
397 
398 	return ((u64)hi << 32) | lo;
399 }
400 
401 /**
402  * ice_ptp_extend_32b_ts - Convert a 32b nanoseconds timestamp to 64b
403  * @cached_phc_time: recently cached copy of PHC time
404  * @in_tstamp: Ingress/egress 32b nanoseconds timestamp value
405  *
406  * Hardware captures timestamps which contain only 32 bits of nominal
407  * nanoseconds, as opposed to the 64bit timestamps that the stack expects.
408  * Note that the captured timestamp values may be 40 bits, but the lower
409  * 8 bits are sub-nanoseconds and generally discarded.
410  *
411  * Extend the 32bit nanosecond timestamp using the following algorithm and
412  * assumptions:
413  *
414  * 1) have a recently cached copy of the PHC time
415  * 2) assume that the in_tstamp was captured 2^31 nanoseconds (~2.1
416  *    seconds) before or after the PHC time was captured.
417  * 3) calculate the delta between the cached time and the timestamp
418  * 4) if the delta is smaller than 2^31 nanoseconds, then the timestamp was
419  *    captured after the PHC time. In this case, the full timestamp is just
420  *    the cached PHC time plus the delta.
421  * 5) otherwise, if the delta is larger than 2^31 nanoseconds, then the
422  *    timestamp was captured *before* the PHC time, i.e. because the PHC
423  *    cache was updated after the timestamp was captured by hardware. In this
424  *    case, the full timestamp is the cached time minus the inverse delta.
425  *
426  * This algorithm works even if the PHC time was updated after a Tx timestamp
427  * was requested, but before the Tx timestamp event was reported from
428  * hardware.
429  *
430  * This calculation primarily relies on keeping the cached PHC time up to
431  * date. If the timestamp was captured more than 2^31 nanoseconds after the
432  * PHC time, it is possible that the lower 32bits of PHC time have
433  * overflowed more than once, and we might generate an incorrect timestamp.
434  *
435  * This is prevented by (a) periodically updating the cached PHC time once
436  * a second, and (b) discarding any Tx timestamp packet if it has waited for
437  * a timestamp for more than one second.
438  */
439 static u64 ice_ptp_extend_32b_ts(u64 cached_phc_time, u32 in_tstamp)
440 {
441 	u32 delta, phc_time_lo;
442 	u64 ns;
443 
444 	/* Extract the lower 32 bits of the PHC time */
445 	phc_time_lo = (u32)cached_phc_time;
446 
447 	/* Calculate the delta between the lower 32bits of the cached PHC
448 	 * time and the in_tstamp value
449 	 */
450 	delta = (in_tstamp - phc_time_lo);
451 
452 	/* Do not assume that the in_tstamp is always more recent than the
453 	 * cached PHC time. If the delta is large, it indicates that the
454 	 * in_tstamp was taken in the past, and should be converted
455 	 * forward.
456 	 */
457 	if (delta > (U32_MAX / 2)) {
458 		/* reverse the delta calculation here */
459 		delta = (phc_time_lo - in_tstamp);
460 		ns = cached_phc_time - delta;
461 	} else {
462 		ns = cached_phc_time + delta;
463 	}
464 
465 	return ns;
466 }
467 
468 /**
469  * ice_ptp_extend_40b_ts - Convert a 40b timestamp to 64b nanoseconds
470  * @pf: Board private structure
471  * @in_tstamp: Ingress/egress 40b timestamp value
472  *
473  * The Tx and Rx timestamps are 40 bits wide, including 32 bits of nominal
474  * nanoseconds, 7 bits of sub-nanoseconds, and a valid bit.
475  *
476  *  *--------------------------------------------------------------*
477  *  | 32 bits of nanoseconds | 7 high bits of sub ns underflow | v |
478  *  *--------------------------------------------------------------*
479  *
480  * The low bit is an indicator of whether the timestamp is valid. The next
481  * 7 bits are a capture of the upper 7 bits of the sub-nanosecond underflow,
482  * and the remaining 32 bits are the lower 32 bits of the PHC timer.
483  *
484  * It is assumed that the caller verifies the timestamp is valid prior to
485  * calling this function.
486  *
487  * Extract the 32bit nominal nanoseconds and extend them. Use the cached PHC
488  * time stored in the device private PTP structure as the basis for timestamp
489  * extension.
490  *
491  * See ice_ptp_extend_32b_ts for a detailed explanation of the extension
492  * algorithm.
493  */
494 static u64 ice_ptp_extend_40b_ts(struct ice_pf *pf, u64 in_tstamp)
495 {
496 	const u64 mask = GENMASK_ULL(31, 0);
497 	unsigned long discard_time;
498 
499 	/* Discard the hardware timestamp if the cached PHC time is too old */
500 	discard_time = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000);
501 	if (time_is_before_jiffies(discard_time)) {
502 		pf->ptp.tx_hwtstamp_discarded++;
503 		return 0;
504 	}
505 
506 	return ice_ptp_extend_32b_ts(pf->ptp.cached_phc_time,
507 				     (in_tstamp >> 8) & mask);
508 }
509 
510 /**
511  * ice_ptp_is_tx_tracker_up - Check if Tx tracker is ready for new timestamps
512  * @tx: the PTP Tx timestamp tracker to check
513  *
514  * Check that a given PTP Tx timestamp tracker is up, i.e. that it is ready
515  * to accept new timestamp requests.
516  *
517  * Assumes the tx->lock spinlock is already held.
518  */
519 static bool
520 ice_ptp_is_tx_tracker_up(struct ice_ptp_tx *tx)
521 {
522 	lockdep_assert_held(&tx->lock);
523 
524 	return tx->init && !tx->calibrating;
525 }
526 
527 /**
528  * ice_ptp_process_tx_tstamp - Process Tx timestamps for a port
529  * @tx: the PTP Tx timestamp tracker
530  *
531  * Process timestamps captured by the PHY associated with this port. To do
532  * this, loop over each index with a waiting skb.
533  *
534  * If a given index has a valid timestamp, perform the following steps:
535  *
536  * 1) check that the timestamp request is not stale
537  * 2) check that a timestamp is ready and available in the PHY memory bank
538  * 3) read and copy the timestamp out of the PHY register
539  * 4) unlock the index by clearing the associated in_use bit
540  * 5) check if the timestamp is stale, and discard if so
541  * 6) extend the 40 bit timestamp value to get a 64 bit timestamp value
542  * 7) send this 64 bit timestamp to the stack
543  *
544  * Note that we do not hold the tracking lock while reading the Tx timestamp.
545  * This is because reading the timestamp requires taking a mutex that might
546  * sleep.
547  *
548  * The only place where we set in_use is when a new timestamp is initiated
549  * with a slot index. This is only called in the hard xmit routine where an
550  * SKB has a request flag set. The only places where we clear this bit is this
551  * function, or during teardown when the Tx timestamp tracker is being
552  * removed. A timestamp index will never be re-used until the in_use bit for
553  * that index is cleared.
554  *
555  * If a Tx thread starts a new timestamp, we might not begin processing it
556  * right away but we will notice it at the end when we re-queue the task.
557  *
558  * If a Tx thread starts a new timestamp just after this function exits, the
559  * interrupt for that timestamp should re-trigger this function once
560  * a timestamp is ready.
561  *
562  * In cases where the PTP hardware clock was directly adjusted, some
563  * timestamps may not be able to safely use the timestamp extension math. In
564  * this case, software will set the stale bit for any outstanding Tx
565  * timestamps when the clock is adjusted. Then this function will discard
566  * those captured timestamps instead of sending them to the stack.
567  *
568  * If a Tx packet has been waiting for more than 2 seconds, it is not possible
569  * to correctly extend the timestamp using the cached PHC time. It is
570  * extremely unlikely that a packet will ever take this long to timestamp. If
571  * we detect a Tx timestamp request that has waited for this long we assume
572  * the packet will never be sent by hardware and discard it without reading
573  * the timestamp register.
574  */
575 static void ice_ptp_process_tx_tstamp(struct ice_ptp_tx *tx)
576 {
577 	struct ice_ptp_port *ptp_port;
578 	struct ice_pf *pf;
579 	struct ice_hw *hw;
580 	u64 tstamp_ready;
581 	bool link_up;
582 	int err;
583 	u8 idx;
584 
585 	ptp_port = container_of(tx, struct ice_ptp_port, tx);
586 	pf = ptp_port_to_pf(ptp_port);
587 	hw = &pf->hw;
588 
589 	/* Read the Tx ready status first */
590 	err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready);
591 	if (err)
592 		return;
593 
594 	/* Drop packets if the link went down */
595 	link_up = ptp_port->link_up;
596 
597 	for_each_set_bit(idx, tx->in_use, tx->len) {
598 		struct skb_shared_hwtstamps shhwtstamps = {};
599 		u8 phy_idx = idx + tx->offset;
600 		u64 raw_tstamp = 0, tstamp;
601 		bool drop_ts = !link_up;
602 		struct sk_buff *skb;
603 
604 		/* Drop packets which have waited for more than 2 seconds */
605 		if (time_is_before_jiffies(tx->tstamps[idx].start + 2 * HZ)) {
606 			drop_ts = true;
607 
608 			/* Count the number of Tx timestamps that timed out */
609 			pf->ptp.tx_hwtstamp_timeouts++;
610 		}
611 
612 		/* Only read a timestamp from the PHY if its marked as ready
613 		 * by the tstamp_ready register. This avoids unnecessary
614 		 * reading of timestamps which are not yet valid. This is
615 		 * important as we must read all timestamps which are valid
616 		 * and only timestamps which are valid during each interrupt.
617 		 * If we do not, the hardware logic for generating a new
618 		 * interrupt can get stuck on some devices.
619 		 */
620 		if (!(tstamp_ready & BIT_ULL(phy_idx))) {
621 			if (drop_ts)
622 				goto skip_ts_read;
623 
624 			continue;
625 		}
626 
627 		ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx);
628 
629 		err = ice_read_phy_tstamp(hw, tx->block, phy_idx, &raw_tstamp);
630 		if (err && !drop_ts)
631 			continue;
632 
633 		ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx);
634 
635 		/* For PHYs which don't implement a proper timestamp ready
636 		 * bitmap, verify that the timestamp value is different
637 		 * from the last cached timestamp. If it is not, skip this for
638 		 * now assuming it hasn't yet been captured by hardware.
639 		 */
640 		if (!drop_ts && tx->verify_cached &&
641 		    raw_tstamp == tx->tstamps[idx].cached_tstamp)
642 			continue;
643 
644 		/* Discard any timestamp value without the valid bit set */
645 		if (!(raw_tstamp & ICE_PTP_TS_VALID))
646 			drop_ts = true;
647 
648 skip_ts_read:
649 		spin_lock(&tx->lock);
650 		if (tx->verify_cached && raw_tstamp)
651 			tx->tstamps[idx].cached_tstamp = raw_tstamp;
652 		clear_bit(idx, tx->in_use);
653 		skb = tx->tstamps[idx].skb;
654 		tx->tstamps[idx].skb = NULL;
655 		if (test_and_clear_bit(idx, tx->stale))
656 			drop_ts = true;
657 		spin_unlock(&tx->lock);
658 
659 		/* It is unlikely but possible that the SKB will have been
660 		 * flushed at this point due to link change or teardown.
661 		 */
662 		if (!skb)
663 			continue;
664 
665 		if (drop_ts) {
666 			dev_kfree_skb_any(skb);
667 			continue;
668 		}
669 
670 		/* Extend the timestamp using cached PHC time */
671 		tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp);
672 		if (tstamp) {
673 			shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
674 			ice_trace(tx_tstamp_complete, skb, idx);
675 		}
676 
677 		skb_tstamp_tx(skb, &shhwtstamps);
678 		dev_kfree_skb_any(skb);
679 	}
680 }
681 
682 /**
683  * ice_ptp_tx_tstamp_owner - Process Tx timestamps for all ports on the device
684  * @pf: Board private structure
685  */
686 static enum ice_tx_tstamp_work ice_ptp_tx_tstamp_owner(struct ice_pf *pf)
687 {
688 	struct ice_ptp_port *port;
689 	unsigned int i;
690 
691 	mutex_lock(&pf->ptp.ports_owner.lock);
692 	list_for_each_entry(port, &pf->ptp.ports_owner.ports, list_member) {
693 		struct ice_ptp_tx *tx = &port->tx;
694 
695 		if (!tx || !tx->init)
696 			continue;
697 
698 		ice_ptp_process_tx_tstamp(tx);
699 	}
700 	mutex_unlock(&pf->ptp.ports_owner.lock);
701 
702 	for (i = 0; i < ICE_MAX_QUAD; i++) {
703 		u64 tstamp_ready;
704 		int err;
705 
706 		/* Read the Tx ready status first */
707 		err = ice_get_phy_tx_tstamp_ready(&pf->hw, i, &tstamp_ready);
708 		if (err || tstamp_ready)
709 			return ICE_TX_TSTAMP_WORK_PENDING;
710 	}
711 
712 	return ICE_TX_TSTAMP_WORK_DONE;
713 }
714 
715 /**
716  * ice_ptp_tx_tstamp - Process Tx timestamps for this function.
717  * @tx: Tx tracking structure to initialize
718  *
719  * Returns: ICE_TX_TSTAMP_WORK_PENDING if there are any outstanding incomplete
720  * Tx timestamps, or ICE_TX_TSTAMP_WORK_DONE otherwise.
721  */
722 static enum ice_tx_tstamp_work ice_ptp_tx_tstamp(struct ice_ptp_tx *tx)
723 {
724 	bool more_timestamps;
725 
726 	if (!tx->init)
727 		return ICE_TX_TSTAMP_WORK_DONE;
728 
729 	/* Process the Tx timestamp tracker */
730 	ice_ptp_process_tx_tstamp(tx);
731 
732 	/* Check if there are outstanding Tx timestamps */
733 	spin_lock(&tx->lock);
734 	more_timestamps = tx->init && !bitmap_empty(tx->in_use, tx->len);
735 	spin_unlock(&tx->lock);
736 
737 	if (more_timestamps)
738 		return ICE_TX_TSTAMP_WORK_PENDING;
739 
740 	return ICE_TX_TSTAMP_WORK_DONE;
741 }
742 
743 /**
744  * ice_ptp_alloc_tx_tracker - Initialize tracking for Tx timestamps
745  * @tx: Tx tracking structure to initialize
746  *
747  * Assumes that the length has already been initialized. Do not call directly,
748  * use the ice_ptp_init_tx_* instead.
749  */
750 static int
751 ice_ptp_alloc_tx_tracker(struct ice_ptp_tx *tx)
752 {
753 	unsigned long *in_use, *stale;
754 	struct ice_tx_tstamp *tstamps;
755 
756 	tstamps = kcalloc(tx->len, sizeof(*tstamps), GFP_KERNEL);
757 	in_use = bitmap_zalloc(tx->len, GFP_KERNEL);
758 	stale = bitmap_zalloc(tx->len, GFP_KERNEL);
759 
760 	if (!tstamps || !in_use || !stale) {
761 		kfree(tstamps);
762 		bitmap_free(in_use);
763 		bitmap_free(stale);
764 
765 		return -ENOMEM;
766 	}
767 
768 	tx->tstamps = tstamps;
769 	tx->in_use = in_use;
770 	tx->stale = stale;
771 	tx->init = 1;
772 
773 	spin_lock_init(&tx->lock);
774 
775 	return 0;
776 }
777 
778 /**
779  * ice_ptp_flush_tx_tracker - Flush any remaining timestamps from the tracker
780  * @pf: Board private structure
781  * @tx: the tracker to flush
782  *
783  * Called during teardown when a Tx tracker is being removed.
784  */
785 static void
786 ice_ptp_flush_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
787 {
788 	struct ice_hw *hw = &pf->hw;
789 	u64 tstamp_ready;
790 	int err;
791 	u8 idx;
792 
793 	err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready);
794 	if (err) {
795 		dev_dbg(ice_pf_to_dev(pf), "Failed to get the Tx tstamp ready bitmap for block %u, err %d\n",
796 			tx->block, err);
797 
798 		/* If we fail to read the Tx timestamp ready bitmap just
799 		 * skip clearing the PHY timestamps.
800 		 */
801 		tstamp_ready = 0;
802 	}
803 
804 	for_each_set_bit(idx, tx->in_use, tx->len) {
805 		u8 phy_idx = idx + tx->offset;
806 		struct sk_buff *skb;
807 
808 		/* In case this timestamp is ready, we need to clear it. */
809 		if (!hw->reset_ongoing && (tstamp_ready & BIT_ULL(phy_idx)))
810 			ice_clear_phy_tstamp(hw, tx->block, phy_idx);
811 
812 		spin_lock(&tx->lock);
813 		skb = tx->tstamps[idx].skb;
814 		tx->tstamps[idx].skb = NULL;
815 		clear_bit(idx, tx->in_use);
816 		clear_bit(idx, tx->stale);
817 		spin_unlock(&tx->lock);
818 
819 		/* Count the number of Tx timestamps flushed */
820 		pf->ptp.tx_hwtstamp_flushed++;
821 
822 		/* Free the SKB after we've cleared the bit */
823 		dev_kfree_skb_any(skb);
824 	}
825 }
826 
827 /**
828  * ice_ptp_mark_tx_tracker_stale - Mark unfinished timestamps as stale
829  * @tx: the tracker to mark
830  *
831  * Mark currently outstanding Tx timestamps as stale. This prevents sending
832  * their timestamp value to the stack. This is required to prevent extending
833  * the 40bit hardware timestamp incorrectly.
834  *
835  * This should be called when the PTP clock is modified such as after a set
836  * time request.
837  */
838 static void
839 ice_ptp_mark_tx_tracker_stale(struct ice_ptp_tx *tx)
840 {
841 	spin_lock(&tx->lock);
842 	bitmap_or(tx->stale, tx->stale, tx->in_use, tx->len);
843 	spin_unlock(&tx->lock);
844 }
845 
846 /**
847  * ice_ptp_release_tx_tracker - Release allocated memory for Tx tracker
848  * @pf: Board private structure
849  * @tx: Tx tracking structure to release
850  *
851  * Free memory associated with the Tx timestamp tracker.
852  */
853 static void
854 ice_ptp_release_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
855 {
856 	spin_lock(&tx->lock);
857 	tx->init = 0;
858 	spin_unlock(&tx->lock);
859 
860 	/* wait for potentially outstanding interrupt to complete */
861 	synchronize_irq(pf->oicr_irq.virq);
862 
863 	ice_ptp_flush_tx_tracker(pf, tx);
864 
865 	kfree(tx->tstamps);
866 	tx->tstamps = NULL;
867 
868 	bitmap_free(tx->in_use);
869 	tx->in_use = NULL;
870 
871 	bitmap_free(tx->stale);
872 	tx->stale = NULL;
873 
874 	tx->len = 0;
875 }
876 
877 /**
878  * ice_ptp_init_tx_e822 - Initialize tracking for Tx timestamps
879  * @pf: Board private structure
880  * @tx: the Tx tracking structure to initialize
881  * @port: the port this structure tracks
882  *
883  * Initialize the Tx timestamp tracker for this port. For generic MAC devices,
884  * the timestamp block is shared for all ports in the same quad. To avoid
885  * ports using the same timestamp index, logically break the block of
886  * registers into chunks based on the port number.
887  */
888 static int
889 ice_ptp_init_tx_e822(struct ice_pf *pf, struct ice_ptp_tx *tx, u8 port)
890 {
891 	tx->block = port / ICE_PORTS_PER_QUAD;
892 	tx->offset = (port % ICE_PORTS_PER_QUAD) * INDEX_PER_PORT_E822;
893 	tx->len = INDEX_PER_PORT_E822;
894 	tx->verify_cached = 0;
895 
896 	return ice_ptp_alloc_tx_tracker(tx);
897 }
898 
899 /**
900  * ice_ptp_init_tx_e810 - Initialize tracking for Tx timestamps
901  * @pf: Board private structure
902  * @tx: the Tx tracking structure to initialize
903  *
904  * Initialize the Tx timestamp tracker for this PF. For E810 devices, each
905  * port has its own block of timestamps, independent of the other ports.
906  */
907 static int
908 ice_ptp_init_tx_e810(struct ice_pf *pf, struct ice_ptp_tx *tx)
909 {
910 	tx->block = pf->hw.port_info->lport;
911 	tx->offset = 0;
912 	tx->len = INDEX_PER_PORT_E810;
913 	/* The E810 PHY does not provide a timestamp ready bitmap. Instead,
914 	 * verify new timestamps against cached copy of the last read
915 	 * timestamp.
916 	 */
917 	tx->verify_cached = 1;
918 
919 	return ice_ptp_alloc_tx_tracker(tx);
920 }
921 
922 /**
923  * ice_ptp_update_cached_phctime - Update the cached PHC time values
924  * @pf: Board specific private structure
925  *
926  * This function updates the system time values which are cached in the PF
927  * structure and the Rx rings.
928  *
929  * This function must be called periodically to ensure that the cached value
930  * is never more than 2 seconds old.
931  *
932  * Note that the cached copy in the PF PTP structure is always updated, even
933  * if we can't update the copy in the Rx rings.
934  *
935  * Return:
936  * * 0 - OK, successfully updated
937  * * -EAGAIN - PF was busy, need to reschedule the update
938  */
939 static int ice_ptp_update_cached_phctime(struct ice_pf *pf)
940 {
941 	struct device *dev = ice_pf_to_dev(pf);
942 	unsigned long update_before;
943 	u64 systime;
944 	int i;
945 
946 	update_before = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000);
947 	if (pf->ptp.cached_phc_time &&
948 	    time_is_before_jiffies(update_before)) {
949 		unsigned long time_taken = jiffies - pf->ptp.cached_phc_jiffies;
950 
951 		dev_warn(dev, "%u msecs passed between update to cached PHC time\n",
952 			 jiffies_to_msecs(time_taken));
953 		pf->ptp.late_cached_phc_updates++;
954 	}
955 
956 	/* Read the current PHC time */
957 	systime = ice_ptp_read_src_clk_reg(pf, NULL);
958 
959 	/* Update the cached PHC time stored in the PF structure */
960 	WRITE_ONCE(pf->ptp.cached_phc_time, systime);
961 	WRITE_ONCE(pf->ptp.cached_phc_jiffies, jiffies);
962 
963 	if (test_and_set_bit(ICE_CFG_BUSY, pf->state))
964 		return -EAGAIN;
965 
966 	ice_for_each_vsi(pf, i) {
967 		struct ice_vsi *vsi = pf->vsi[i];
968 		int j;
969 
970 		if (!vsi)
971 			continue;
972 
973 		if (vsi->type != ICE_VSI_PF)
974 			continue;
975 
976 		ice_for_each_rxq(vsi, j) {
977 			if (!vsi->rx_rings[j])
978 				continue;
979 			WRITE_ONCE(vsi->rx_rings[j]->cached_phctime, systime);
980 		}
981 	}
982 	clear_bit(ICE_CFG_BUSY, pf->state);
983 
984 	return 0;
985 }
986 
987 /**
988  * ice_ptp_reset_cached_phctime - Reset cached PHC time after an update
989  * @pf: Board specific private structure
990  *
991  * This function must be called when the cached PHC time is no longer valid,
992  * such as after a time adjustment. It marks any currently outstanding Tx
993  * timestamps as stale and updates the cached PHC time for both the PF and Rx
994  * rings.
995  *
996  * If updating the PHC time cannot be done immediately, a warning message is
997  * logged and the work item is scheduled immediately to minimize the window
998  * with a wrong cached timestamp.
999  */
1000 static void ice_ptp_reset_cached_phctime(struct ice_pf *pf)
1001 {
1002 	struct device *dev = ice_pf_to_dev(pf);
1003 	int err;
1004 
1005 	/* Update the cached PHC time immediately if possible, otherwise
1006 	 * schedule the work item to execute soon.
1007 	 */
1008 	err = ice_ptp_update_cached_phctime(pf);
1009 	if (err) {
1010 		/* If another thread is updating the Rx rings, we won't
1011 		 * properly reset them here. This could lead to reporting of
1012 		 * invalid timestamps, but there isn't much we can do.
1013 		 */
1014 		dev_warn(dev, "%s: ICE_CFG_BUSY, unable to immediately update cached PHC time\n",
1015 			 __func__);
1016 
1017 		/* Queue the work item to update the Rx rings when possible */
1018 		kthread_queue_delayed_work(pf->ptp.kworker, &pf->ptp.work,
1019 					   msecs_to_jiffies(10));
1020 	}
1021 
1022 	/* Mark any outstanding timestamps as stale, since they might have
1023 	 * been captured in hardware before the time update. This could lead
1024 	 * to us extending them with the wrong cached value resulting in
1025 	 * incorrect timestamp values.
1026 	 */
1027 	ice_ptp_mark_tx_tracker_stale(&pf->ptp.port.tx);
1028 }
1029 
1030 /**
1031  * ice_ptp_read_time - Read the time from the device
1032  * @pf: Board private structure
1033  * @ts: timespec structure to hold the current time value
1034  * @sts: Optional parameter for holding a pair of system timestamps from
1035  *       the system clock. Will be ignored if NULL is given.
1036  *
1037  * This function reads the source clock registers and stores them in a timespec.
1038  * However, since the registers are 64 bits of nanoseconds, we must convert the
1039  * result to a timespec before we can return.
1040  */
1041 static void
1042 ice_ptp_read_time(struct ice_pf *pf, struct timespec64 *ts,
1043 		  struct ptp_system_timestamp *sts)
1044 {
1045 	u64 time_ns = ice_ptp_read_src_clk_reg(pf, sts);
1046 
1047 	*ts = ns_to_timespec64(time_ns);
1048 }
1049 
1050 /**
1051  * ice_ptp_write_init - Set PHC time to provided value
1052  * @pf: Board private structure
1053  * @ts: timespec structure that holds the new time value
1054  *
1055  * Set the PHC time to the specified time provided in the timespec.
1056  */
1057 static int ice_ptp_write_init(struct ice_pf *pf, struct timespec64 *ts)
1058 {
1059 	u64 ns = timespec64_to_ns(ts);
1060 	struct ice_hw *hw = &pf->hw;
1061 
1062 	return ice_ptp_init_time(hw, ns);
1063 }
1064 
1065 /**
1066  * ice_ptp_write_adj - Adjust PHC clock time atomically
1067  * @pf: Board private structure
1068  * @adj: Adjustment in nanoseconds
1069  *
1070  * Perform an atomic adjustment of the PHC time by the specified number of
1071  * nanoseconds.
1072  */
1073 static int ice_ptp_write_adj(struct ice_pf *pf, s32 adj)
1074 {
1075 	struct ice_hw *hw = &pf->hw;
1076 
1077 	return ice_ptp_adj_clock(hw, adj);
1078 }
1079 
1080 /**
1081  * ice_base_incval - Get base timer increment value
1082  * @pf: Board private structure
1083  *
1084  * Look up the base timer increment value for this device. The base increment
1085  * value is used to define the nominal clock tick rate. This increment value
1086  * is programmed during device initialization. It is also used as the basis
1087  * for calculating adjustments using scaled_ppm.
1088  */
1089 static u64 ice_base_incval(struct ice_pf *pf)
1090 {
1091 	struct ice_hw *hw = &pf->hw;
1092 	u64 incval;
1093 
1094 	if (ice_is_e810(hw))
1095 		incval = ICE_PTP_NOMINAL_INCVAL_E810;
1096 	else if (ice_e822_time_ref(hw) < NUM_ICE_TIME_REF_FREQ)
1097 		incval = ice_e822_nominal_incval(ice_e822_time_ref(hw));
1098 	else
1099 		incval = UNKNOWN_INCVAL_E822;
1100 
1101 	dev_dbg(ice_pf_to_dev(pf), "PTP: using base increment value of 0x%016llx\n",
1102 		incval);
1103 
1104 	return incval;
1105 }
1106 
1107 /**
1108  * ice_ptp_check_tx_fifo - Check whether Tx FIFO is in an OK state
1109  * @port: PTP port for which Tx FIFO is checked
1110  */
1111 static int ice_ptp_check_tx_fifo(struct ice_ptp_port *port)
1112 {
1113 	int quad = port->port_num / ICE_PORTS_PER_QUAD;
1114 	int offs = port->port_num % ICE_PORTS_PER_QUAD;
1115 	struct ice_pf *pf;
1116 	struct ice_hw *hw;
1117 	u32 val, phy_sts;
1118 	int err;
1119 
1120 	pf = ptp_port_to_pf(port);
1121 	hw = &pf->hw;
1122 
1123 	if (port->tx_fifo_busy_cnt == FIFO_OK)
1124 		return 0;
1125 
1126 	/* need to read FIFO state */
1127 	if (offs == 0 || offs == 1)
1128 		err = ice_read_quad_reg_e822(hw, quad, Q_REG_FIFO01_STATUS,
1129 					     &val);
1130 	else
1131 		err = ice_read_quad_reg_e822(hw, quad, Q_REG_FIFO23_STATUS,
1132 					     &val);
1133 
1134 	if (err) {
1135 		dev_err(ice_pf_to_dev(pf), "PTP failed to check port %d Tx FIFO, err %d\n",
1136 			port->port_num, err);
1137 		return err;
1138 	}
1139 
1140 	if (offs & 0x1)
1141 		phy_sts = (val & Q_REG_FIFO13_M) >> Q_REG_FIFO13_S;
1142 	else
1143 		phy_sts = (val & Q_REG_FIFO02_M) >> Q_REG_FIFO02_S;
1144 
1145 	if (phy_sts & FIFO_EMPTY) {
1146 		port->tx_fifo_busy_cnt = FIFO_OK;
1147 		return 0;
1148 	}
1149 
1150 	port->tx_fifo_busy_cnt++;
1151 
1152 	dev_dbg(ice_pf_to_dev(pf), "Try %d, port %d FIFO not empty\n",
1153 		port->tx_fifo_busy_cnt, port->port_num);
1154 
1155 	if (port->tx_fifo_busy_cnt == ICE_PTP_FIFO_NUM_CHECKS) {
1156 		dev_dbg(ice_pf_to_dev(pf),
1157 			"Port %d Tx FIFO still not empty; resetting quad %d\n",
1158 			port->port_num, quad);
1159 		ice_ptp_reset_ts_memory_quad_e822(hw, quad);
1160 		port->tx_fifo_busy_cnt = FIFO_OK;
1161 		return 0;
1162 	}
1163 
1164 	return -EAGAIN;
1165 }
1166 
1167 /**
1168  * ice_ptp_wait_for_offsets - Check for valid Tx and Rx offsets
1169  * @work: Pointer to the kthread_work structure for this task
1170  *
1171  * Check whether hardware has completed measuring the Tx and Rx offset values
1172  * used to configure and enable vernier timestamp calibration.
1173  *
1174  * Once the offset in either direction is measured, configure the associated
1175  * registers with the calibrated offset values and enable timestamping. The Tx
1176  * and Rx directions are configured independently as soon as their associated
1177  * offsets are known.
1178  *
1179  * This function reschedules itself until both Tx and Rx calibration have
1180  * completed.
1181  */
1182 static void ice_ptp_wait_for_offsets(struct kthread_work *work)
1183 {
1184 	struct ice_ptp_port *port;
1185 	struct ice_pf *pf;
1186 	struct ice_hw *hw;
1187 	int tx_err;
1188 	int rx_err;
1189 
1190 	port = container_of(work, struct ice_ptp_port, ov_work.work);
1191 	pf = ptp_port_to_pf(port);
1192 	hw = &pf->hw;
1193 
1194 	if (ice_is_reset_in_progress(pf->state)) {
1195 		/* wait for device driver to complete reset */
1196 		kthread_queue_delayed_work(pf->ptp.kworker,
1197 					   &port->ov_work,
1198 					   msecs_to_jiffies(100));
1199 		return;
1200 	}
1201 
1202 	tx_err = ice_ptp_check_tx_fifo(port);
1203 	if (!tx_err)
1204 		tx_err = ice_phy_cfg_tx_offset_e822(hw, port->port_num);
1205 	rx_err = ice_phy_cfg_rx_offset_e822(hw, port->port_num);
1206 	if (tx_err || rx_err) {
1207 		/* Tx and/or Rx offset not yet configured, try again later */
1208 		kthread_queue_delayed_work(pf->ptp.kworker,
1209 					   &port->ov_work,
1210 					   msecs_to_jiffies(100));
1211 		return;
1212 	}
1213 }
1214 
1215 /**
1216  * ice_ptp_port_phy_stop - Stop timestamping for a PHY port
1217  * @ptp_port: PTP port to stop
1218  */
1219 static int
1220 ice_ptp_port_phy_stop(struct ice_ptp_port *ptp_port)
1221 {
1222 	struct ice_pf *pf = ptp_port_to_pf(ptp_port);
1223 	u8 port = ptp_port->port_num;
1224 	struct ice_hw *hw = &pf->hw;
1225 	int err;
1226 
1227 	if (ice_is_e810(hw))
1228 		return 0;
1229 
1230 	mutex_lock(&ptp_port->ps_lock);
1231 
1232 	kthread_cancel_delayed_work_sync(&ptp_port->ov_work);
1233 
1234 	err = ice_stop_phy_timer_e822(hw, port, true);
1235 	if (err)
1236 		dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d down, err %d\n",
1237 			port, err);
1238 
1239 	mutex_unlock(&ptp_port->ps_lock);
1240 
1241 	return err;
1242 }
1243 
1244 /**
1245  * ice_ptp_port_phy_restart - (Re)start and calibrate PHY timestamping
1246  * @ptp_port: PTP port for which the PHY start is set
1247  *
1248  * Start the PHY timestamping block, and initiate Vernier timestamping
1249  * calibration. If timestamping cannot be calibrated (such as if link is down)
1250  * then disable the timestamping block instead.
1251  */
1252 static int
1253 ice_ptp_port_phy_restart(struct ice_ptp_port *ptp_port)
1254 {
1255 	struct ice_pf *pf = ptp_port_to_pf(ptp_port);
1256 	u8 port = ptp_port->port_num;
1257 	struct ice_hw *hw = &pf->hw;
1258 	int err;
1259 
1260 	if (ice_is_e810(hw))
1261 		return 0;
1262 
1263 	if (!ptp_port->link_up)
1264 		return ice_ptp_port_phy_stop(ptp_port);
1265 
1266 	mutex_lock(&ptp_port->ps_lock);
1267 
1268 	kthread_cancel_delayed_work_sync(&ptp_port->ov_work);
1269 
1270 	/* temporarily disable Tx timestamps while calibrating PHY offset */
1271 	spin_lock(&ptp_port->tx.lock);
1272 	ptp_port->tx.calibrating = true;
1273 	spin_unlock(&ptp_port->tx.lock);
1274 	ptp_port->tx_fifo_busy_cnt = 0;
1275 
1276 	/* Start the PHY timer in Vernier mode */
1277 	err = ice_start_phy_timer_e822(hw, port);
1278 	if (err)
1279 		goto out_unlock;
1280 
1281 	/* Enable Tx timestamps right away */
1282 	spin_lock(&ptp_port->tx.lock);
1283 	ptp_port->tx.calibrating = false;
1284 	spin_unlock(&ptp_port->tx.lock);
1285 
1286 	kthread_queue_delayed_work(pf->ptp.kworker, &ptp_port->ov_work, 0);
1287 
1288 out_unlock:
1289 	if (err)
1290 		dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d up, err %d\n",
1291 			port, err);
1292 
1293 	mutex_unlock(&ptp_port->ps_lock);
1294 
1295 	return err;
1296 }
1297 
1298 /**
1299  * ice_ptp_link_change - Reconfigure PTP after link status change
1300  * @pf: Board private structure
1301  * @port: Port for which the PHY start is set
1302  * @linkup: Link is up or down
1303  */
1304 void ice_ptp_link_change(struct ice_pf *pf, u8 port, bool linkup)
1305 {
1306 	struct ice_ptp_port *ptp_port;
1307 	struct ice_hw *hw = &pf->hw;
1308 
1309 	if (!test_bit(ICE_FLAG_PTP, pf->flags))
1310 		return;
1311 
1312 	if (WARN_ON_ONCE(port >= ICE_NUM_EXTERNAL_PORTS))
1313 		return;
1314 
1315 	ptp_port = &pf->ptp.port;
1316 	if (WARN_ON_ONCE(ptp_port->port_num != port))
1317 		return;
1318 
1319 	/* Update cached link status for this port immediately */
1320 	ptp_port->link_up = linkup;
1321 
1322 	switch (hw->phy_model) {
1323 	case ICE_PHY_E810:
1324 		/* Do not reconfigure E810 PHY */
1325 		return;
1326 	case ICE_PHY_E822:
1327 		ice_ptp_port_phy_restart(ptp_port);
1328 		return;
1329 	default:
1330 		dev_warn(ice_pf_to_dev(pf), "%s: Unknown PHY type\n", __func__);
1331 	}
1332 }
1333 
1334 /**
1335  * ice_ptp_tx_ena_intr - Enable or disable the Tx timestamp interrupt
1336  * @pf: PF private structure
1337  * @ena: bool value to enable or disable interrupt
1338  * @threshold: Minimum number of packets at which intr is triggered
1339  *
1340  * Utility function to enable or disable Tx timestamp interrupt and threshold
1341  */
1342 static int ice_ptp_tx_ena_intr(struct ice_pf *pf, bool ena, u32 threshold)
1343 {
1344 	struct ice_hw *hw = &pf->hw;
1345 	int err = 0;
1346 	int quad;
1347 	u32 val;
1348 
1349 	ice_ptp_reset_ts_memory(hw);
1350 
1351 	for (quad = 0; quad < ICE_MAX_QUAD; quad++) {
1352 		err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG,
1353 					     &val);
1354 		if (err)
1355 			break;
1356 
1357 		if (ena) {
1358 			val |= Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
1359 			val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_THR_M;
1360 			val |= ((threshold << Q_REG_TX_MEM_GBL_CFG_INTR_THR_S) &
1361 				Q_REG_TX_MEM_GBL_CFG_INTR_THR_M);
1362 		} else {
1363 			val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
1364 		}
1365 
1366 		err = ice_write_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG,
1367 					      val);
1368 		if (err)
1369 			break;
1370 	}
1371 
1372 	if (err)
1373 		dev_err(ice_pf_to_dev(pf), "PTP failed in intr ena, err %d\n",
1374 			err);
1375 	return err;
1376 }
1377 
1378 /**
1379  * ice_ptp_reset_phy_timestamping - Reset PHY timestamping block
1380  * @pf: Board private structure
1381  */
1382 static void ice_ptp_reset_phy_timestamping(struct ice_pf *pf)
1383 {
1384 	ice_ptp_port_phy_restart(&pf->ptp.port);
1385 }
1386 
1387 /**
1388  * ice_ptp_restart_all_phy - Restart all PHYs to recalibrate timestamping
1389  * @pf: Board private structure
1390  */
1391 static void ice_ptp_restart_all_phy(struct ice_pf *pf)
1392 {
1393 	struct list_head *entry;
1394 
1395 	list_for_each(entry, &pf->ptp.ports_owner.ports) {
1396 		struct ice_ptp_port *port = list_entry(entry,
1397 						       struct ice_ptp_port,
1398 						       list_member);
1399 
1400 		if (port->link_up)
1401 			ice_ptp_port_phy_restart(port);
1402 	}
1403 }
1404 
1405 /**
1406  * ice_ptp_adjfine - Adjust clock increment rate
1407  * @info: the driver's PTP info structure
1408  * @scaled_ppm: Parts per million with 16-bit fractional field
1409  *
1410  * Adjust the frequency of the clock by the indicated scaled ppm from the
1411  * base frequency.
1412  */
1413 static int ice_ptp_adjfine(struct ptp_clock_info *info, long scaled_ppm)
1414 {
1415 	struct ice_pf *pf = ptp_info_to_pf(info);
1416 	struct ice_hw *hw = &pf->hw;
1417 	u64 incval;
1418 	int err;
1419 
1420 	incval = adjust_by_scaled_ppm(ice_base_incval(pf), scaled_ppm);
1421 	err = ice_ptp_write_incval_locked(hw, incval);
1422 	if (err) {
1423 		dev_err(ice_pf_to_dev(pf), "PTP failed to set incval, err %d\n",
1424 			err);
1425 		return -EIO;
1426 	}
1427 
1428 	return 0;
1429 }
1430 
1431 /**
1432  * ice_ptp_extts_event - Process PTP external clock event
1433  * @pf: Board private structure
1434  */
1435 void ice_ptp_extts_event(struct ice_pf *pf)
1436 {
1437 	struct ptp_clock_event event;
1438 	struct ice_hw *hw = &pf->hw;
1439 	u8 chan, tmr_idx;
1440 	u32 hi, lo;
1441 
1442 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1443 	/* Event time is captured by one of the two matched registers
1444 	 *      GLTSYN_EVNT_L: 32 LSB of sampled time event
1445 	 *      GLTSYN_EVNT_H: 32 MSB of sampled time event
1446 	 * Event is defined in GLTSYN_EVNT_0 register
1447 	 */
1448 	for (chan = 0; chan < GLTSYN_EVNT_H_IDX_MAX; chan++) {
1449 		/* Check if channel is enabled */
1450 		if (pf->ptp.ext_ts_irq & (1 << chan)) {
1451 			lo = rd32(hw, GLTSYN_EVNT_L(chan, tmr_idx));
1452 			hi = rd32(hw, GLTSYN_EVNT_H(chan, tmr_idx));
1453 			event.timestamp = (((u64)hi) << 32) | lo;
1454 			event.type = PTP_CLOCK_EXTTS;
1455 			event.index = chan;
1456 
1457 			/* Fire event */
1458 			ptp_clock_event(pf->ptp.clock, &event);
1459 			pf->ptp.ext_ts_irq &= ~(1 << chan);
1460 		}
1461 	}
1462 }
1463 
1464 /**
1465  * ice_ptp_cfg_extts - Configure EXTTS pin and channel
1466  * @pf: Board private structure
1467  * @ena: true to enable; false to disable
1468  * @chan: GPIO channel (0-3)
1469  * @gpio_pin: GPIO pin
1470  * @extts_flags: request flags from the ptp_extts_request.flags
1471  */
1472 static int
1473 ice_ptp_cfg_extts(struct ice_pf *pf, bool ena, unsigned int chan, u32 gpio_pin,
1474 		  unsigned int extts_flags)
1475 {
1476 	u32 func, aux_reg, gpio_reg, irq_reg;
1477 	struct ice_hw *hw = &pf->hw;
1478 	u8 tmr_idx;
1479 
1480 	if (chan > (unsigned int)pf->ptp.info.n_ext_ts)
1481 		return -EINVAL;
1482 
1483 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1484 
1485 	irq_reg = rd32(hw, PFINT_OICR_ENA);
1486 
1487 	if (ena) {
1488 		/* Enable the interrupt */
1489 		irq_reg |= PFINT_OICR_TSYN_EVNT_M;
1490 		aux_reg = GLTSYN_AUX_IN_0_INT_ENA_M;
1491 
1492 #define GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE	BIT(0)
1493 #define GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE	BIT(1)
1494 
1495 		/* set event level to requested edge */
1496 		if (extts_flags & PTP_FALLING_EDGE)
1497 			aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE;
1498 		if (extts_flags & PTP_RISING_EDGE)
1499 			aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE;
1500 
1501 		/* Write GPIO CTL reg.
1502 		 * 0x1 is input sampled by EVENT register(channel)
1503 		 * + num_in_channels * tmr_idx
1504 		 */
1505 		func = 1 + chan + (tmr_idx * 3);
1506 		gpio_reg = ((func << GLGEN_GPIO_CTL_PIN_FUNC_S) &
1507 			    GLGEN_GPIO_CTL_PIN_FUNC_M);
1508 		pf->ptp.ext_ts_chan |= (1 << chan);
1509 	} else {
1510 		/* clear the values we set to reset defaults */
1511 		aux_reg = 0;
1512 		gpio_reg = 0;
1513 		pf->ptp.ext_ts_chan &= ~(1 << chan);
1514 		if (!pf->ptp.ext_ts_chan)
1515 			irq_reg &= ~PFINT_OICR_TSYN_EVNT_M;
1516 	}
1517 
1518 	wr32(hw, PFINT_OICR_ENA, irq_reg);
1519 	wr32(hw, GLTSYN_AUX_IN(chan, tmr_idx), aux_reg);
1520 	wr32(hw, GLGEN_GPIO_CTL(gpio_pin), gpio_reg);
1521 
1522 	return 0;
1523 }
1524 
1525 /**
1526  * ice_ptp_cfg_clkout - Configure clock to generate periodic wave
1527  * @pf: Board private structure
1528  * @chan: GPIO channel (0-3)
1529  * @config: desired periodic clk configuration. NULL will disable channel
1530  * @store: If set to true the values will be stored
1531  *
1532  * Configure the internal clock generator modules to generate the clock wave of
1533  * specified period.
1534  */
1535 static int ice_ptp_cfg_clkout(struct ice_pf *pf, unsigned int chan,
1536 			      struct ice_perout_channel *config, bool store)
1537 {
1538 	u64 current_time, period, start_time, phase;
1539 	struct ice_hw *hw = &pf->hw;
1540 	u32 func, val, gpio_pin;
1541 	u8 tmr_idx;
1542 
1543 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1544 
1545 	/* 0. Reset mode & out_en in AUX_OUT */
1546 	wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), 0);
1547 
1548 	/* If we're disabling the output, clear out CLKO and TGT and keep
1549 	 * output level low
1550 	 */
1551 	if (!config || !config->ena) {
1552 		wr32(hw, GLTSYN_CLKO(chan, tmr_idx), 0);
1553 		wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), 0);
1554 		wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), 0);
1555 
1556 		val = GLGEN_GPIO_CTL_PIN_DIR_M;
1557 		gpio_pin = pf->ptp.perout_channels[chan].gpio_pin;
1558 		wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);
1559 
1560 		/* Store the value if requested */
1561 		if (store)
1562 			memset(&pf->ptp.perout_channels[chan], 0,
1563 			       sizeof(struct ice_perout_channel));
1564 
1565 		return 0;
1566 	}
1567 	period = config->period;
1568 	start_time = config->start_time;
1569 	div64_u64_rem(start_time, period, &phase);
1570 	gpio_pin = config->gpio_pin;
1571 
1572 	/* 1. Write clkout with half of required period value */
1573 	if (period & 0x1) {
1574 		dev_err(ice_pf_to_dev(pf), "CLK Period must be an even value\n");
1575 		goto err;
1576 	}
1577 
1578 	period >>= 1;
1579 
1580 	/* For proper operation, the GLTSYN_CLKO must be larger than clock tick
1581 	 */
1582 #define MIN_PULSE 3
1583 	if (period <= MIN_PULSE || period > U32_MAX) {
1584 		dev_err(ice_pf_to_dev(pf), "CLK Period must be > %d && < 2^33",
1585 			MIN_PULSE * 2);
1586 		goto err;
1587 	}
1588 
1589 	wr32(hw, GLTSYN_CLKO(chan, tmr_idx), lower_32_bits(period));
1590 
1591 	/* Allow time for programming before start_time is hit */
1592 	current_time = ice_ptp_read_src_clk_reg(pf, NULL);
1593 
1594 	/* if start time is in the past start the timer at the nearest second
1595 	 * maintaining phase
1596 	 */
1597 	if (start_time < current_time)
1598 		start_time = div64_u64(current_time + NSEC_PER_SEC - 1,
1599 				       NSEC_PER_SEC) * NSEC_PER_SEC + phase;
1600 
1601 	if (ice_is_e810(hw))
1602 		start_time -= E810_OUT_PROP_DELAY_NS;
1603 	else
1604 		start_time -= ice_e822_pps_delay(ice_e822_time_ref(hw));
1605 
1606 	/* 2. Write TARGET time */
1607 	wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), lower_32_bits(start_time));
1608 	wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), upper_32_bits(start_time));
1609 
1610 	/* 3. Write AUX_OUT register */
1611 	val = GLTSYN_AUX_OUT_0_OUT_ENA_M | GLTSYN_AUX_OUT_0_OUTMOD_M;
1612 	wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), val);
1613 
1614 	/* 4. write GPIO CTL reg */
1615 	func = 8 + chan + (tmr_idx * 4);
1616 	val = GLGEN_GPIO_CTL_PIN_DIR_M |
1617 	      ((func << GLGEN_GPIO_CTL_PIN_FUNC_S) & GLGEN_GPIO_CTL_PIN_FUNC_M);
1618 	wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);
1619 
1620 	/* Store the value if requested */
1621 	if (store) {
1622 		memcpy(&pf->ptp.perout_channels[chan], config,
1623 		       sizeof(struct ice_perout_channel));
1624 		pf->ptp.perout_channels[chan].start_time = phase;
1625 	}
1626 
1627 	return 0;
1628 err:
1629 	dev_err(ice_pf_to_dev(pf), "PTP failed to cfg per_clk\n");
1630 	return -EFAULT;
1631 }
1632 
1633 /**
1634  * ice_ptp_disable_all_clkout - Disable all currently configured outputs
1635  * @pf: pointer to the PF structure
1636  *
1637  * Disable all currently configured clock outputs. This is necessary before
1638  * certain changes to the PTP hardware clock. Use ice_ptp_enable_all_clkout to
1639  * re-enable the clocks again.
1640  */
1641 static void ice_ptp_disable_all_clkout(struct ice_pf *pf)
1642 {
1643 	uint i;
1644 
1645 	for (i = 0; i < pf->ptp.info.n_per_out; i++)
1646 		if (pf->ptp.perout_channels[i].ena)
1647 			ice_ptp_cfg_clkout(pf, i, NULL, false);
1648 }
1649 
1650 /**
1651  * ice_ptp_enable_all_clkout - Enable all configured periodic clock outputs
1652  * @pf: pointer to the PF structure
1653  *
1654  * Enable all currently configured clock outputs. Use this after
1655  * ice_ptp_disable_all_clkout to reconfigure the output signals according to
1656  * their configuration.
1657  */
1658 static void ice_ptp_enable_all_clkout(struct ice_pf *pf)
1659 {
1660 	uint i;
1661 
1662 	for (i = 0; i < pf->ptp.info.n_per_out; i++)
1663 		if (pf->ptp.perout_channels[i].ena)
1664 			ice_ptp_cfg_clkout(pf, i, &pf->ptp.perout_channels[i],
1665 					   false);
1666 }
1667 
1668 /**
1669  * ice_ptp_gpio_enable_e810 - Enable/disable ancillary features of PHC
1670  * @info: the driver's PTP info structure
1671  * @rq: The requested feature to change
1672  * @on: Enable/disable flag
1673  */
1674 static int
1675 ice_ptp_gpio_enable_e810(struct ptp_clock_info *info,
1676 			 struct ptp_clock_request *rq, int on)
1677 {
1678 	struct ice_pf *pf = ptp_info_to_pf(info);
1679 	struct ice_perout_channel clk_cfg = {0};
1680 	bool sma_pres = false;
1681 	unsigned int chan;
1682 	u32 gpio_pin;
1683 	int err;
1684 
1685 	if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL))
1686 		sma_pres = true;
1687 
1688 	switch (rq->type) {
1689 	case PTP_CLK_REQ_PEROUT:
1690 		chan = rq->perout.index;
1691 		if (sma_pres) {
1692 			if (chan == ice_pin_desc_e810t[SMA1].chan)
1693 				clk_cfg.gpio_pin = GPIO_20;
1694 			else if (chan == ice_pin_desc_e810t[SMA2].chan)
1695 				clk_cfg.gpio_pin = GPIO_22;
1696 			else
1697 				return -1;
1698 		} else if (ice_is_e810t(&pf->hw)) {
1699 			if (chan == 0)
1700 				clk_cfg.gpio_pin = GPIO_20;
1701 			else
1702 				clk_cfg.gpio_pin = GPIO_22;
1703 		} else if (chan == PPS_CLK_GEN_CHAN) {
1704 			clk_cfg.gpio_pin = PPS_PIN_INDEX;
1705 		} else {
1706 			clk_cfg.gpio_pin = chan;
1707 		}
1708 
1709 		clk_cfg.period = ((rq->perout.period.sec * NSEC_PER_SEC) +
1710 				   rq->perout.period.nsec);
1711 		clk_cfg.start_time = ((rq->perout.start.sec * NSEC_PER_SEC) +
1712 				       rq->perout.start.nsec);
1713 		clk_cfg.ena = !!on;
1714 
1715 		err = ice_ptp_cfg_clkout(pf, chan, &clk_cfg, true);
1716 		break;
1717 	case PTP_CLK_REQ_EXTTS:
1718 		chan = rq->extts.index;
1719 		if (sma_pres) {
1720 			if (chan < ice_pin_desc_e810t[SMA2].chan)
1721 				gpio_pin = GPIO_21;
1722 			else
1723 				gpio_pin = GPIO_23;
1724 		} else if (ice_is_e810t(&pf->hw)) {
1725 			if (chan == 0)
1726 				gpio_pin = GPIO_21;
1727 			else
1728 				gpio_pin = GPIO_23;
1729 		} else {
1730 			gpio_pin = chan;
1731 		}
1732 
1733 		err = ice_ptp_cfg_extts(pf, !!on, chan, gpio_pin,
1734 					rq->extts.flags);
1735 		break;
1736 	default:
1737 		return -EOPNOTSUPP;
1738 	}
1739 
1740 	return err;
1741 }
1742 
1743 /**
1744  * ice_ptp_gpio_enable_e823 - Enable/disable ancillary features of PHC
1745  * @info: the driver's PTP info structure
1746  * @rq: The requested feature to change
1747  * @on: Enable/disable flag
1748  */
1749 static int ice_ptp_gpio_enable_e823(struct ptp_clock_info *info,
1750 				    struct ptp_clock_request *rq, int on)
1751 {
1752 	struct ice_pf *pf = ptp_info_to_pf(info);
1753 	struct ice_perout_channel clk_cfg = {0};
1754 	int err;
1755 
1756 	switch (rq->type) {
1757 	case PTP_CLK_REQ_PPS:
1758 		clk_cfg.gpio_pin = PPS_PIN_INDEX;
1759 		clk_cfg.period = NSEC_PER_SEC;
1760 		clk_cfg.ena = !!on;
1761 
1762 		err = ice_ptp_cfg_clkout(pf, PPS_CLK_GEN_CHAN, &clk_cfg, true);
1763 		break;
1764 	case PTP_CLK_REQ_EXTTS:
1765 		err = ice_ptp_cfg_extts(pf, !!on, rq->extts.index,
1766 					TIME_SYNC_PIN_INDEX, rq->extts.flags);
1767 		break;
1768 	default:
1769 		return -EOPNOTSUPP;
1770 	}
1771 
1772 	return err;
1773 }
1774 
1775 /**
1776  * ice_ptp_gettimex64 - Get the time of the clock
1777  * @info: the driver's PTP info structure
1778  * @ts: timespec64 structure to hold the current time value
1779  * @sts: Optional parameter for holding a pair of system timestamps from
1780  *       the system clock. Will be ignored if NULL is given.
1781  *
1782  * Read the device clock and return the correct value on ns, after converting it
1783  * into a timespec struct.
1784  */
1785 static int
1786 ice_ptp_gettimex64(struct ptp_clock_info *info, struct timespec64 *ts,
1787 		   struct ptp_system_timestamp *sts)
1788 {
1789 	struct ice_pf *pf = ptp_info_to_pf(info);
1790 	struct ice_hw *hw = &pf->hw;
1791 
1792 	if (!ice_ptp_lock(hw)) {
1793 		dev_err(ice_pf_to_dev(pf), "PTP failed to get time\n");
1794 		return -EBUSY;
1795 	}
1796 
1797 	ice_ptp_read_time(pf, ts, sts);
1798 	ice_ptp_unlock(hw);
1799 
1800 	return 0;
1801 }
1802 
1803 /**
1804  * ice_ptp_settime64 - Set the time of the clock
1805  * @info: the driver's PTP info structure
1806  * @ts: timespec64 structure that holds the new time value
1807  *
1808  * Set the device clock to the user input value. The conversion from timespec
1809  * to ns happens in the write function.
1810  */
1811 static int
1812 ice_ptp_settime64(struct ptp_clock_info *info, const struct timespec64 *ts)
1813 {
1814 	struct ice_pf *pf = ptp_info_to_pf(info);
1815 	struct timespec64 ts64 = *ts;
1816 	struct ice_hw *hw = &pf->hw;
1817 	int err;
1818 
1819 	/* For Vernier mode, we need to recalibrate after new settime
1820 	 * Start with disabling timestamp block
1821 	 */
1822 	if (pf->ptp.port.link_up)
1823 		ice_ptp_port_phy_stop(&pf->ptp.port);
1824 
1825 	if (!ice_ptp_lock(hw)) {
1826 		err = -EBUSY;
1827 		goto exit;
1828 	}
1829 
1830 	/* Disable periodic outputs */
1831 	ice_ptp_disable_all_clkout(pf);
1832 
1833 	err = ice_ptp_write_init(pf, &ts64);
1834 	ice_ptp_unlock(hw);
1835 
1836 	if (!err)
1837 		ice_ptp_reset_cached_phctime(pf);
1838 
1839 	/* Reenable periodic outputs */
1840 	ice_ptp_enable_all_clkout(pf);
1841 
1842 	/* Recalibrate and re-enable timestamp blocks for E822/E823 */
1843 	if (hw->phy_model == ICE_PHY_E822)
1844 		ice_ptp_restart_all_phy(pf);
1845 exit:
1846 	if (err) {
1847 		dev_err(ice_pf_to_dev(pf), "PTP failed to set time %d\n", err);
1848 		return err;
1849 	}
1850 
1851 	return 0;
1852 }
1853 
1854 /**
1855  * ice_ptp_adjtime_nonatomic - Do a non-atomic clock adjustment
1856  * @info: the driver's PTP info structure
1857  * @delta: Offset in nanoseconds to adjust the time by
1858  */
1859 static int ice_ptp_adjtime_nonatomic(struct ptp_clock_info *info, s64 delta)
1860 {
1861 	struct timespec64 now, then;
1862 	int ret;
1863 
1864 	then = ns_to_timespec64(delta);
1865 	ret = ice_ptp_gettimex64(info, &now, NULL);
1866 	if (ret)
1867 		return ret;
1868 	now = timespec64_add(now, then);
1869 
1870 	return ice_ptp_settime64(info, (const struct timespec64 *)&now);
1871 }
1872 
1873 /**
1874  * ice_ptp_adjtime - Adjust the time of the clock by the indicated delta
1875  * @info: the driver's PTP info structure
1876  * @delta: Offset in nanoseconds to adjust the time by
1877  */
1878 static int ice_ptp_adjtime(struct ptp_clock_info *info, s64 delta)
1879 {
1880 	struct ice_pf *pf = ptp_info_to_pf(info);
1881 	struct ice_hw *hw = &pf->hw;
1882 	struct device *dev;
1883 	int err;
1884 
1885 	dev = ice_pf_to_dev(pf);
1886 
1887 	/* Hardware only supports atomic adjustments using signed 32-bit
1888 	 * integers. For any adjustment outside this range, perform
1889 	 * a non-atomic get->adjust->set flow.
1890 	 */
1891 	if (delta > S32_MAX || delta < S32_MIN) {
1892 		dev_dbg(dev, "delta = %lld, adjtime non-atomic\n", delta);
1893 		return ice_ptp_adjtime_nonatomic(info, delta);
1894 	}
1895 
1896 	if (!ice_ptp_lock(hw)) {
1897 		dev_err(dev, "PTP failed to acquire semaphore in adjtime\n");
1898 		return -EBUSY;
1899 	}
1900 
1901 	/* Disable periodic outputs */
1902 	ice_ptp_disable_all_clkout(pf);
1903 
1904 	err = ice_ptp_write_adj(pf, delta);
1905 
1906 	/* Reenable periodic outputs */
1907 	ice_ptp_enable_all_clkout(pf);
1908 
1909 	ice_ptp_unlock(hw);
1910 
1911 	if (err) {
1912 		dev_err(dev, "PTP failed to adjust time, err %d\n", err);
1913 		return err;
1914 	}
1915 
1916 	ice_ptp_reset_cached_phctime(pf);
1917 
1918 	return 0;
1919 }
1920 
1921 #ifdef CONFIG_ICE_HWTS
1922 /**
1923  * ice_ptp_get_syncdevicetime - Get the cross time stamp info
1924  * @device: Current device time
1925  * @system: System counter value read synchronously with device time
1926  * @ctx: Context provided by timekeeping code
1927  *
1928  * Read device and system (ART) clock simultaneously and return the corrected
1929  * clock values in ns.
1930  */
1931 static int
1932 ice_ptp_get_syncdevicetime(ktime_t *device,
1933 			   struct system_counterval_t *system,
1934 			   void *ctx)
1935 {
1936 	struct ice_pf *pf = (struct ice_pf *)ctx;
1937 	struct ice_hw *hw = &pf->hw;
1938 	u32 hh_lock, hh_art_ctl;
1939 	int i;
1940 
1941 #define MAX_HH_HW_LOCK_TRIES	5
1942 #define MAX_HH_CTL_LOCK_TRIES	100
1943 
1944 	for (i = 0; i < MAX_HH_HW_LOCK_TRIES; i++) {
1945 		/* Get the HW lock */
1946 		hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
1947 		if (hh_lock & PFHH_SEM_BUSY_M) {
1948 			usleep_range(10000, 15000);
1949 			continue;
1950 		}
1951 		break;
1952 	}
1953 	if (hh_lock & PFHH_SEM_BUSY_M) {
1954 		dev_err(ice_pf_to_dev(pf), "PTP failed to get hh lock\n");
1955 		return -EBUSY;
1956 	}
1957 
1958 	/* Program cmd to master timer */
1959 	ice_ptp_src_cmd(hw, ICE_PTP_READ_TIME);
1960 
1961 	/* Start the ART and device clock sync sequence */
1962 	hh_art_ctl = rd32(hw, GLHH_ART_CTL);
1963 	hh_art_ctl = hh_art_ctl | GLHH_ART_CTL_ACTIVE_M;
1964 	wr32(hw, GLHH_ART_CTL, hh_art_ctl);
1965 
1966 	for (i = 0; i < MAX_HH_CTL_LOCK_TRIES; i++) {
1967 		/* Wait for sync to complete */
1968 		hh_art_ctl = rd32(hw, GLHH_ART_CTL);
1969 		if (hh_art_ctl & GLHH_ART_CTL_ACTIVE_M) {
1970 			udelay(1);
1971 			continue;
1972 		} else {
1973 			u32 hh_ts_lo, hh_ts_hi, tmr_idx;
1974 			u64 hh_ts;
1975 
1976 			tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
1977 			/* Read ART time */
1978 			hh_ts_lo = rd32(hw, GLHH_ART_TIME_L);
1979 			hh_ts_hi = rd32(hw, GLHH_ART_TIME_H);
1980 			hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo;
1981 			*system = convert_art_ns_to_tsc(hh_ts);
1982 			/* Read Device source clock time */
1983 			hh_ts_lo = rd32(hw, GLTSYN_HHTIME_L(tmr_idx));
1984 			hh_ts_hi = rd32(hw, GLTSYN_HHTIME_H(tmr_idx));
1985 			hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo;
1986 			*device = ns_to_ktime(hh_ts);
1987 			break;
1988 		}
1989 	}
1990 
1991 	/* Clear the master timer */
1992 	ice_ptp_src_cmd(hw, ICE_PTP_NOP);
1993 
1994 	/* Release HW lock */
1995 	hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
1996 	hh_lock = hh_lock & ~PFHH_SEM_BUSY_M;
1997 	wr32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), hh_lock);
1998 
1999 	if (i == MAX_HH_CTL_LOCK_TRIES)
2000 		return -ETIMEDOUT;
2001 
2002 	return 0;
2003 }
2004 
2005 /**
2006  * ice_ptp_getcrosststamp_e82x - Capture a device cross timestamp
2007  * @info: the driver's PTP info structure
2008  * @cts: The memory to fill the cross timestamp info
2009  *
2010  * Capture a cross timestamp between the ART and the device PTP hardware
2011  * clock. Fill the cross timestamp information and report it back to the
2012  * caller.
2013  *
2014  * This is only valid for E822 and E823 devices which have support for
2015  * generating the cross timestamp via PCIe PTM.
2016  *
2017  * In order to correctly correlate the ART timestamp back to the TSC time, the
2018  * CPU must have X86_FEATURE_TSC_KNOWN_FREQ.
2019  */
2020 static int
2021 ice_ptp_getcrosststamp_e82x(struct ptp_clock_info *info,
2022 			    struct system_device_crosststamp *cts)
2023 {
2024 	struct ice_pf *pf = ptp_info_to_pf(info);
2025 
2026 	return get_device_system_crosststamp(ice_ptp_get_syncdevicetime,
2027 					     pf, NULL, cts);
2028 }
2029 #endif /* CONFIG_ICE_HWTS */
2030 
2031 /**
2032  * ice_ptp_get_ts_config - ioctl interface to read the timestamping config
2033  * @pf: Board private structure
2034  * @ifr: ioctl data
2035  *
2036  * Copy the timestamping config to user buffer
2037  */
2038 int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr)
2039 {
2040 	struct hwtstamp_config *config;
2041 
2042 	if (!test_bit(ICE_FLAG_PTP, pf->flags))
2043 		return -EIO;
2044 
2045 	config = &pf->ptp.tstamp_config;
2046 
2047 	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
2048 		-EFAULT : 0;
2049 }
2050 
2051 /**
2052  * ice_ptp_set_timestamp_mode - Setup driver for requested timestamp mode
2053  * @pf: Board private structure
2054  * @config: hwtstamp settings requested or saved
2055  */
2056 static int
2057 ice_ptp_set_timestamp_mode(struct ice_pf *pf, struct hwtstamp_config *config)
2058 {
2059 	switch (config->tx_type) {
2060 	case HWTSTAMP_TX_OFF:
2061 		pf->ptp.tstamp_config.tx_type = HWTSTAMP_TX_OFF;
2062 		break;
2063 	case HWTSTAMP_TX_ON:
2064 		pf->ptp.tstamp_config.tx_type = HWTSTAMP_TX_ON;
2065 		break;
2066 	default:
2067 		return -ERANGE;
2068 	}
2069 
2070 	switch (config->rx_filter) {
2071 	case HWTSTAMP_FILTER_NONE:
2072 		pf->ptp.tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
2073 		break;
2074 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2075 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2076 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2077 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
2078 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2079 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2080 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
2081 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2082 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2083 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2084 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2085 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2086 	case HWTSTAMP_FILTER_NTP_ALL:
2087 	case HWTSTAMP_FILTER_ALL:
2088 		pf->ptp.tstamp_config.rx_filter = HWTSTAMP_FILTER_ALL;
2089 		break;
2090 	default:
2091 		return -ERANGE;
2092 	}
2093 
2094 	/* Immediately update the device timestamping mode */
2095 	ice_ptp_restore_timestamp_mode(pf);
2096 
2097 	return 0;
2098 }
2099 
2100 /**
2101  * ice_ptp_set_ts_config - ioctl interface to control the timestamping
2102  * @pf: Board private structure
2103  * @ifr: ioctl data
2104  *
2105  * Get the user config and store it
2106  */
2107 int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr)
2108 {
2109 	struct hwtstamp_config config;
2110 	int err;
2111 
2112 	if (!test_bit(ICE_FLAG_PTP, pf->flags))
2113 		return -EAGAIN;
2114 
2115 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2116 		return -EFAULT;
2117 
2118 	err = ice_ptp_set_timestamp_mode(pf, &config);
2119 	if (err)
2120 		return err;
2121 
2122 	/* Return the actual configuration set */
2123 	config = pf->ptp.tstamp_config;
2124 
2125 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2126 		-EFAULT : 0;
2127 }
2128 
2129 /**
2130  * ice_ptp_rx_hwtstamp - Check for an Rx timestamp
2131  * @rx_ring: Ring to get the VSI info
2132  * @rx_desc: Receive descriptor
2133  * @skb: Particular skb to send timestamp with
2134  *
2135  * The driver receives a notification in the receive descriptor with timestamp.
2136  * The timestamp is in ns, so we must convert the result first.
2137  */
2138 void
2139 ice_ptp_rx_hwtstamp(struct ice_rx_ring *rx_ring,
2140 		    union ice_32b_rx_flex_desc *rx_desc, struct sk_buff *skb)
2141 {
2142 	struct skb_shared_hwtstamps *hwtstamps;
2143 	u64 ts_ns, cached_time;
2144 	u32 ts_high;
2145 
2146 	if (!(rx_desc->wb.time_stamp_low & ICE_PTP_TS_VALID))
2147 		return;
2148 
2149 	cached_time = READ_ONCE(rx_ring->cached_phctime);
2150 
2151 	/* Do not report a timestamp if we don't have a cached PHC time */
2152 	if (!cached_time)
2153 		return;
2154 
2155 	/* Use ice_ptp_extend_32b_ts directly, using the ring-specific cached
2156 	 * PHC value, rather than accessing the PF. This also allows us to
2157 	 * simply pass the upper 32bits of nanoseconds directly. Calling
2158 	 * ice_ptp_extend_40b_ts is unnecessary as it would just discard these
2159 	 * bits itself.
2160 	 */
2161 	ts_high = le32_to_cpu(rx_desc->wb.flex_ts.ts_high);
2162 	ts_ns = ice_ptp_extend_32b_ts(cached_time, ts_high);
2163 
2164 	hwtstamps = skb_hwtstamps(skb);
2165 	memset(hwtstamps, 0, sizeof(*hwtstamps));
2166 	hwtstamps->hwtstamp = ns_to_ktime(ts_ns);
2167 }
2168 
2169 /**
2170  * ice_ptp_disable_sma_pins_e810t - Disable E810-T SMA pins
2171  * @pf: pointer to the PF structure
2172  * @info: PTP clock info structure
2173  *
2174  * Disable the OS access to the SMA pins. Called to clear out the OS
2175  * indications of pin support when we fail to setup the E810-T SMA control
2176  * register.
2177  */
2178 static void
2179 ice_ptp_disable_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info)
2180 {
2181 	struct device *dev = ice_pf_to_dev(pf);
2182 
2183 	dev_warn(dev, "Failed to configure E810-T SMA pin control\n");
2184 
2185 	info->enable = NULL;
2186 	info->verify = NULL;
2187 	info->n_pins = 0;
2188 	info->n_ext_ts = 0;
2189 	info->n_per_out = 0;
2190 }
2191 
2192 /**
2193  * ice_ptp_setup_sma_pins_e810t - Setup the SMA pins
2194  * @pf: pointer to the PF structure
2195  * @info: PTP clock info structure
2196  *
2197  * Finish setting up the SMA pins by allocating pin_config, and setting it up
2198  * according to the current status of the SMA. On failure, disable all of the
2199  * extended SMA pin support.
2200  */
2201 static void
2202 ice_ptp_setup_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info)
2203 {
2204 	struct device *dev = ice_pf_to_dev(pf);
2205 	int err;
2206 
2207 	/* Allocate memory for kernel pins interface */
2208 	info->pin_config = devm_kcalloc(dev, info->n_pins,
2209 					sizeof(*info->pin_config), GFP_KERNEL);
2210 	if (!info->pin_config) {
2211 		ice_ptp_disable_sma_pins_e810t(pf, info);
2212 		return;
2213 	}
2214 
2215 	/* Read current SMA status */
2216 	err = ice_get_sma_config_e810t(&pf->hw, info->pin_config);
2217 	if (err)
2218 		ice_ptp_disable_sma_pins_e810t(pf, info);
2219 }
2220 
2221 /**
2222  * ice_ptp_setup_pins_e810 - Setup PTP pins in sysfs
2223  * @pf: pointer to the PF instance
2224  * @info: PTP clock capabilities
2225  */
2226 static void
2227 ice_ptp_setup_pins_e810(struct ice_pf *pf, struct ptp_clock_info *info)
2228 {
2229 	if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) {
2230 		info->n_ext_ts = N_EXT_TS_E810;
2231 		info->n_per_out = N_PER_OUT_E810T;
2232 		info->n_pins = NUM_PTP_PINS_E810T;
2233 		info->verify = ice_verify_pin_e810t;
2234 
2235 		/* Complete setup of the SMA pins */
2236 		ice_ptp_setup_sma_pins_e810t(pf, info);
2237 	} else if (ice_is_e810t(&pf->hw)) {
2238 		info->n_ext_ts = N_EXT_TS_NO_SMA_E810T;
2239 		info->n_per_out = N_PER_OUT_NO_SMA_E810T;
2240 	} else {
2241 		info->n_per_out = N_PER_OUT_E810;
2242 		info->n_ext_ts = N_EXT_TS_E810;
2243 	}
2244 }
2245 
2246 /**
2247  * ice_ptp_setup_pins_e823 - Setup PTP pins in sysfs
2248  * @pf: pointer to the PF instance
2249  * @info: PTP clock capabilities
2250  */
2251 static void
2252 ice_ptp_setup_pins_e823(struct ice_pf *pf, struct ptp_clock_info *info)
2253 {
2254 	info->pps = 1;
2255 	info->n_per_out = 0;
2256 	info->n_ext_ts = 1;
2257 }
2258 
2259 /**
2260  * ice_ptp_set_funcs_e82x - Set specialized functions for E82x support
2261  * @pf: Board private structure
2262  * @info: PTP info to fill
2263  *
2264  * Assign functions to the PTP capabiltiies structure for E82x devices.
2265  * Functions which operate across all device families should be set directly
2266  * in ice_ptp_set_caps. Only add functions here which are distinct for E82x
2267  * devices.
2268  */
2269 static void
2270 ice_ptp_set_funcs_e82x(struct ice_pf *pf, struct ptp_clock_info *info)
2271 {
2272 #ifdef CONFIG_ICE_HWTS
2273 	if (boot_cpu_has(X86_FEATURE_ART) &&
2274 	    boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ))
2275 		info->getcrosststamp = ice_ptp_getcrosststamp_e82x;
2276 #endif /* CONFIG_ICE_HWTS */
2277 }
2278 
2279 /**
2280  * ice_ptp_set_funcs_e810 - Set specialized functions for E810 support
2281  * @pf: Board private structure
2282  * @info: PTP info to fill
2283  *
2284  * Assign functions to the PTP capabiltiies structure for E810 devices.
2285  * Functions which operate across all device families should be set directly
2286  * in ice_ptp_set_caps. Only add functions here which are distinct for e810
2287  * devices.
2288  */
2289 static void
2290 ice_ptp_set_funcs_e810(struct ice_pf *pf, struct ptp_clock_info *info)
2291 {
2292 	info->enable = ice_ptp_gpio_enable_e810;
2293 	ice_ptp_setup_pins_e810(pf, info);
2294 }
2295 
2296 /**
2297  * ice_ptp_set_funcs_e823 - Set specialized functions for E823 support
2298  * @pf: Board private structure
2299  * @info: PTP info to fill
2300  *
2301  * Assign functions to the PTP capabiltiies structure for E823 devices.
2302  * Functions which operate across all device families should be set directly
2303  * in ice_ptp_set_caps. Only add functions here which are distinct for e823
2304  * devices.
2305  */
2306 static void
2307 ice_ptp_set_funcs_e823(struct ice_pf *pf, struct ptp_clock_info *info)
2308 {
2309 	ice_ptp_set_funcs_e82x(pf, info);
2310 
2311 	info->enable = ice_ptp_gpio_enable_e823;
2312 	ice_ptp_setup_pins_e823(pf, info);
2313 }
2314 
2315 /**
2316  * ice_ptp_set_caps - Set PTP capabilities
2317  * @pf: Board private structure
2318  */
2319 static void ice_ptp_set_caps(struct ice_pf *pf)
2320 {
2321 	struct ptp_clock_info *info = &pf->ptp.info;
2322 	struct device *dev = ice_pf_to_dev(pf);
2323 
2324 	snprintf(info->name, sizeof(info->name) - 1, "%s-%s-clk",
2325 		 dev_driver_string(dev), dev_name(dev));
2326 	info->owner = THIS_MODULE;
2327 	info->max_adj = 100000000;
2328 	info->adjtime = ice_ptp_adjtime;
2329 	info->adjfine = ice_ptp_adjfine;
2330 	info->gettimex64 = ice_ptp_gettimex64;
2331 	info->settime64 = ice_ptp_settime64;
2332 
2333 	if (ice_is_e810(&pf->hw))
2334 		ice_ptp_set_funcs_e810(pf, info);
2335 	else if (ice_is_e823(&pf->hw))
2336 		ice_ptp_set_funcs_e823(pf, info);
2337 	else
2338 		ice_ptp_set_funcs_e82x(pf, info);
2339 }
2340 
2341 /**
2342  * ice_ptp_create_clock - Create PTP clock device for userspace
2343  * @pf: Board private structure
2344  *
2345  * This function creates a new PTP clock device. It only creates one if we
2346  * don't already have one. Will return error if it can't create one, but success
2347  * if we already have a device. Should be used by ice_ptp_init to create clock
2348  * initially, and prevent global resets from creating new clock devices.
2349  */
2350 static long ice_ptp_create_clock(struct ice_pf *pf)
2351 {
2352 	struct ptp_clock_info *info;
2353 	struct device *dev;
2354 
2355 	/* No need to create a clock device if we already have one */
2356 	if (pf->ptp.clock)
2357 		return 0;
2358 
2359 	ice_ptp_set_caps(pf);
2360 
2361 	info = &pf->ptp.info;
2362 	dev = ice_pf_to_dev(pf);
2363 
2364 	/* Attempt to register the clock before enabling the hardware. */
2365 	pf->ptp.clock = ptp_clock_register(info, dev);
2366 	if (IS_ERR(pf->ptp.clock)) {
2367 		dev_err(ice_pf_to_dev(pf), "Failed to register PTP clock device");
2368 		return PTR_ERR(pf->ptp.clock);
2369 	}
2370 
2371 	return 0;
2372 }
2373 
2374 /**
2375  * ice_ptp_request_ts - Request an available Tx timestamp index
2376  * @tx: the PTP Tx timestamp tracker to request from
2377  * @skb: the SKB to associate with this timestamp request
2378  */
2379 s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb)
2380 {
2381 	u8 idx;
2382 
2383 	spin_lock(&tx->lock);
2384 
2385 	/* Check that this tracker is accepting new timestamp requests */
2386 	if (!ice_ptp_is_tx_tracker_up(tx)) {
2387 		spin_unlock(&tx->lock);
2388 		return -1;
2389 	}
2390 
2391 	/* Find and set the first available index */
2392 	idx = find_first_zero_bit(tx->in_use, tx->len);
2393 	if (idx < tx->len) {
2394 		/* We got a valid index that no other thread could have set. Store
2395 		 * a reference to the skb and the start time to allow discarding old
2396 		 * requests.
2397 		 */
2398 		set_bit(idx, tx->in_use);
2399 		clear_bit(idx, tx->stale);
2400 		tx->tstamps[idx].start = jiffies;
2401 		tx->tstamps[idx].skb = skb_get(skb);
2402 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2403 		ice_trace(tx_tstamp_request, skb, idx);
2404 	}
2405 
2406 	spin_unlock(&tx->lock);
2407 
2408 	/* return the appropriate PHY timestamp register index, -1 if no
2409 	 * indexes were available.
2410 	 */
2411 	if (idx >= tx->len)
2412 		return -1;
2413 	else
2414 		return idx + tx->offset;
2415 }
2416 
2417 /**
2418  * ice_ptp_process_ts - Process the PTP Tx timestamps
2419  * @pf: Board private structure
2420  *
2421  * Returns: ICE_TX_TSTAMP_WORK_PENDING if there are any outstanding Tx
2422  * timestamps that need processing, and ICE_TX_TSTAMP_WORK_DONE otherwise.
2423  */
2424 enum ice_tx_tstamp_work ice_ptp_process_ts(struct ice_pf *pf)
2425 {
2426 	switch (pf->ptp.tx_interrupt_mode) {
2427 	case ICE_PTP_TX_INTERRUPT_NONE:
2428 		/* This device has the clock owner handle timestamps for it */
2429 		return ICE_TX_TSTAMP_WORK_DONE;
2430 	case ICE_PTP_TX_INTERRUPT_SELF:
2431 		/* This device handles its own timestamps */
2432 		return ice_ptp_tx_tstamp(&pf->ptp.port.tx);
2433 	case ICE_PTP_TX_INTERRUPT_ALL:
2434 		/* This device handles timestamps for all ports */
2435 		return ice_ptp_tx_tstamp_owner(pf);
2436 	default:
2437 		WARN_ONCE(1, "Unexpected Tx timestamp interrupt mode %u\n",
2438 			  pf->ptp.tx_interrupt_mode);
2439 		return ICE_TX_TSTAMP_WORK_DONE;
2440 	}
2441 }
2442 
2443 static void ice_ptp_periodic_work(struct kthread_work *work)
2444 {
2445 	struct ice_ptp *ptp = container_of(work, struct ice_ptp, work.work);
2446 	struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp);
2447 	int err;
2448 
2449 	if (!test_bit(ICE_FLAG_PTP, pf->flags))
2450 		return;
2451 
2452 	err = ice_ptp_update_cached_phctime(pf);
2453 
2454 	/* Run twice a second or reschedule if phc update failed */
2455 	kthread_queue_delayed_work(ptp->kworker, &ptp->work,
2456 				   msecs_to_jiffies(err ? 10 : 500));
2457 }
2458 
2459 /**
2460  * ice_ptp_reset - Initialize PTP hardware clock support after reset
2461  * @pf: Board private structure
2462  */
2463 void ice_ptp_reset(struct ice_pf *pf)
2464 {
2465 	struct ice_ptp *ptp = &pf->ptp;
2466 	struct ice_hw *hw = &pf->hw;
2467 	struct timespec64 ts;
2468 	int err, itr = 1;
2469 	u64 time_diff;
2470 
2471 	if (test_bit(ICE_PFR_REQ, pf->state))
2472 		goto pfr;
2473 
2474 	if (!ice_pf_src_tmr_owned(pf))
2475 		goto reset_ts;
2476 
2477 	err = ice_ptp_init_phc(hw);
2478 	if (err)
2479 		goto err;
2480 
2481 	/* Acquire the global hardware lock */
2482 	if (!ice_ptp_lock(hw)) {
2483 		err = -EBUSY;
2484 		goto err;
2485 	}
2486 
2487 	/* Write the increment time value to PHY and LAN */
2488 	err = ice_ptp_write_incval(hw, ice_base_incval(pf));
2489 	if (err) {
2490 		ice_ptp_unlock(hw);
2491 		goto err;
2492 	}
2493 
2494 	/* Write the initial Time value to PHY and LAN using the cached PHC
2495 	 * time before the reset and time difference between stopping and
2496 	 * starting the clock.
2497 	 */
2498 	if (ptp->cached_phc_time) {
2499 		time_diff = ktime_get_real_ns() - ptp->reset_time;
2500 		ts = ns_to_timespec64(ptp->cached_phc_time + time_diff);
2501 	} else {
2502 		ts = ktime_to_timespec64(ktime_get_real());
2503 	}
2504 	err = ice_ptp_write_init(pf, &ts);
2505 	if (err) {
2506 		ice_ptp_unlock(hw);
2507 		goto err;
2508 	}
2509 
2510 	/* Release the global hardware lock */
2511 	ice_ptp_unlock(hw);
2512 
2513 	if (!ice_is_e810(hw)) {
2514 		/* Enable quad interrupts */
2515 		err = ice_ptp_tx_ena_intr(pf, true, itr);
2516 		if (err)
2517 			goto err;
2518 	}
2519 
2520 reset_ts:
2521 	/* Restart the PHY timestamping block */
2522 	ice_ptp_reset_phy_timestamping(pf);
2523 
2524 pfr:
2525 	/* Init Tx structures */
2526 	if (ice_is_e810(&pf->hw)) {
2527 		err = ice_ptp_init_tx_e810(pf, &ptp->port.tx);
2528 	} else {
2529 		kthread_init_delayed_work(&ptp->port.ov_work,
2530 					  ice_ptp_wait_for_offsets);
2531 		err = ice_ptp_init_tx_e822(pf, &ptp->port.tx,
2532 					   ptp->port.port_num);
2533 	}
2534 	if (err)
2535 		goto err;
2536 
2537 	set_bit(ICE_FLAG_PTP, pf->flags);
2538 
2539 	/* Start periodic work going */
2540 	kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);
2541 
2542 	dev_info(ice_pf_to_dev(pf), "PTP reset successful\n");
2543 	return;
2544 
2545 err:
2546 	dev_err(ice_pf_to_dev(pf), "PTP reset failed %d\n", err);
2547 }
2548 
2549 /**
2550  * ice_ptp_aux_dev_to_aux_pf - Get auxiliary PF handle for the auxiliary device
2551  * @aux_dev: auxiliary device to get the auxiliary PF for
2552  */
2553 static struct ice_pf *
2554 ice_ptp_aux_dev_to_aux_pf(struct auxiliary_device *aux_dev)
2555 {
2556 	struct ice_ptp_port *aux_port;
2557 	struct ice_ptp *aux_ptp;
2558 
2559 	aux_port = container_of(aux_dev, struct ice_ptp_port, aux_dev);
2560 	aux_ptp = container_of(aux_port, struct ice_ptp, port);
2561 
2562 	return container_of(aux_ptp, struct ice_pf, ptp);
2563 }
2564 
2565 /**
2566  * ice_ptp_aux_dev_to_owner_pf - Get PF handle for the auxiliary device
2567  * @aux_dev: auxiliary device to get the PF for
2568  */
2569 static struct ice_pf *
2570 ice_ptp_aux_dev_to_owner_pf(struct auxiliary_device *aux_dev)
2571 {
2572 	struct ice_ptp_port_owner *ports_owner;
2573 	struct auxiliary_driver *aux_drv;
2574 	struct ice_ptp *owner_ptp;
2575 
2576 	if (!aux_dev->dev.driver)
2577 		return NULL;
2578 
2579 	aux_drv = to_auxiliary_drv(aux_dev->dev.driver);
2580 	ports_owner = container_of(aux_drv, struct ice_ptp_port_owner,
2581 				   aux_driver);
2582 	owner_ptp = container_of(ports_owner, struct ice_ptp, ports_owner);
2583 	return container_of(owner_ptp, struct ice_pf, ptp);
2584 }
2585 
2586 /**
2587  * ice_ptp_auxbus_probe - Probe auxiliary devices
2588  * @aux_dev: PF's auxiliary device
2589  * @id: Auxiliary device ID
2590  */
2591 static int ice_ptp_auxbus_probe(struct auxiliary_device *aux_dev,
2592 				const struct auxiliary_device_id *id)
2593 {
2594 	struct ice_pf *owner_pf = ice_ptp_aux_dev_to_owner_pf(aux_dev);
2595 	struct ice_pf *aux_pf = ice_ptp_aux_dev_to_aux_pf(aux_dev);
2596 
2597 	if (WARN_ON(!owner_pf))
2598 		return -ENODEV;
2599 
2600 	INIT_LIST_HEAD(&aux_pf->ptp.port.list_member);
2601 	mutex_lock(&owner_pf->ptp.ports_owner.lock);
2602 	list_add(&aux_pf->ptp.port.list_member,
2603 		 &owner_pf->ptp.ports_owner.ports);
2604 	mutex_unlock(&owner_pf->ptp.ports_owner.lock);
2605 
2606 	return 0;
2607 }
2608 
2609 /**
2610  * ice_ptp_auxbus_remove - Remove auxiliary devices from the bus
2611  * @aux_dev: PF's auxiliary device
2612  */
2613 static void ice_ptp_auxbus_remove(struct auxiliary_device *aux_dev)
2614 {
2615 	struct ice_pf *owner_pf = ice_ptp_aux_dev_to_owner_pf(aux_dev);
2616 	struct ice_pf *aux_pf = ice_ptp_aux_dev_to_aux_pf(aux_dev);
2617 
2618 	mutex_lock(&owner_pf->ptp.ports_owner.lock);
2619 	list_del(&aux_pf->ptp.port.list_member);
2620 	mutex_unlock(&owner_pf->ptp.ports_owner.lock);
2621 }
2622 
2623 /**
2624  * ice_ptp_auxbus_shutdown
2625  * @aux_dev: PF's auxiliary device
2626  */
2627 static void ice_ptp_auxbus_shutdown(struct auxiliary_device *aux_dev)
2628 {
2629 	/* Doing nothing here, but handle to auxbus driver must be satisfied */
2630 }
2631 
2632 /**
2633  * ice_ptp_auxbus_suspend
2634  * @aux_dev: PF's auxiliary device
2635  * @state: power management state indicator
2636  */
2637 static int
2638 ice_ptp_auxbus_suspend(struct auxiliary_device *aux_dev, pm_message_t state)
2639 {
2640 	/* Doing nothing here, but handle to auxbus driver must be satisfied */
2641 	return 0;
2642 }
2643 
2644 /**
2645  * ice_ptp_auxbus_resume
2646  * @aux_dev: PF's auxiliary device
2647  */
2648 static int ice_ptp_auxbus_resume(struct auxiliary_device *aux_dev)
2649 {
2650 	/* Doing nothing here, but handle to auxbus driver must be satisfied */
2651 	return 0;
2652 }
2653 
2654 /**
2655  * ice_ptp_auxbus_create_id_table - Create auxiliary device ID table
2656  * @pf: Board private structure
2657  * @name: auxiliary bus driver name
2658  */
2659 static struct auxiliary_device_id *
2660 ice_ptp_auxbus_create_id_table(struct ice_pf *pf, const char *name)
2661 {
2662 	struct auxiliary_device_id *ids;
2663 
2664 	/* Second id left empty to terminate the array */
2665 	ids = devm_kcalloc(ice_pf_to_dev(pf), 2,
2666 			   sizeof(struct auxiliary_device_id), GFP_KERNEL);
2667 	if (!ids)
2668 		return NULL;
2669 
2670 	snprintf(ids[0].name, sizeof(ids[0].name), "ice.%s", name);
2671 
2672 	return ids;
2673 }
2674 
2675 /**
2676  * ice_ptp_register_auxbus_driver - Register PTP auxiliary bus driver
2677  * @pf: Board private structure
2678  */
2679 static int ice_ptp_register_auxbus_driver(struct ice_pf *pf)
2680 {
2681 	struct auxiliary_driver *aux_driver;
2682 	struct ice_ptp *ptp;
2683 	struct device *dev;
2684 	char *name;
2685 	int err;
2686 
2687 	ptp = &pf->ptp;
2688 	dev = ice_pf_to_dev(pf);
2689 	aux_driver = &ptp->ports_owner.aux_driver;
2690 	INIT_LIST_HEAD(&ptp->ports_owner.ports);
2691 	mutex_init(&ptp->ports_owner.lock);
2692 	name = devm_kasprintf(dev, GFP_KERNEL, "ptp_aux_dev_%u_%u_clk%u",
2693 			      pf->pdev->bus->number, PCI_SLOT(pf->pdev->devfn),
2694 			      ice_get_ptp_src_clock_index(&pf->hw));
2695 
2696 	aux_driver->name = name;
2697 	aux_driver->shutdown = ice_ptp_auxbus_shutdown;
2698 	aux_driver->suspend = ice_ptp_auxbus_suspend;
2699 	aux_driver->remove = ice_ptp_auxbus_remove;
2700 	aux_driver->resume = ice_ptp_auxbus_resume;
2701 	aux_driver->probe = ice_ptp_auxbus_probe;
2702 	aux_driver->id_table = ice_ptp_auxbus_create_id_table(pf, name);
2703 	if (!aux_driver->id_table)
2704 		return -ENOMEM;
2705 
2706 	err = auxiliary_driver_register(aux_driver);
2707 	if (err) {
2708 		devm_kfree(dev, aux_driver->id_table);
2709 		dev_err(dev, "Failed registering aux_driver, name <%s>\n",
2710 			name);
2711 	}
2712 
2713 	return err;
2714 }
2715 
2716 /**
2717  * ice_ptp_unregister_auxbus_driver - Unregister PTP auxiliary bus driver
2718  * @pf: Board private structure
2719  */
2720 static void ice_ptp_unregister_auxbus_driver(struct ice_pf *pf)
2721 {
2722 	struct auxiliary_driver *aux_driver = &pf->ptp.ports_owner.aux_driver;
2723 
2724 	auxiliary_driver_unregister(aux_driver);
2725 	devm_kfree(ice_pf_to_dev(pf), aux_driver->id_table);
2726 
2727 	mutex_destroy(&pf->ptp.ports_owner.lock);
2728 }
2729 
2730 /**
2731  * ice_ptp_clock_index - Get the PTP clock index for this device
2732  * @pf: Board private structure
2733  *
2734  * Returns: the PTP clock index associated with this PF, or -1 if no PTP clock
2735  * is associated.
2736  */
2737 int ice_ptp_clock_index(struct ice_pf *pf)
2738 {
2739 	struct auxiliary_device *aux_dev;
2740 	struct ice_pf *owner_pf;
2741 	struct ptp_clock *clock;
2742 
2743 	aux_dev = &pf->ptp.port.aux_dev;
2744 	owner_pf = ice_ptp_aux_dev_to_owner_pf(aux_dev);
2745 	if (!owner_pf)
2746 		return -1;
2747 	clock = owner_pf->ptp.clock;
2748 
2749 	return clock ? ptp_clock_index(clock) : -1;
2750 }
2751 
2752 /**
2753  * ice_ptp_prepare_for_reset - Prepare PTP for reset
2754  * @pf: Board private structure
2755  */
2756 void ice_ptp_prepare_for_reset(struct ice_pf *pf)
2757 {
2758 	struct ice_ptp *ptp = &pf->ptp;
2759 	u8 src_tmr;
2760 
2761 	clear_bit(ICE_FLAG_PTP, pf->flags);
2762 
2763 	/* Disable timestamping for both Tx and Rx */
2764 	ice_ptp_disable_timestamp_mode(pf);
2765 
2766 	kthread_cancel_delayed_work_sync(&ptp->work);
2767 
2768 	if (test_bit(ICE_PFR_REQ, pf->state))
2769 		return;
2770 
2771 	ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
2772 
2773 	/* Disable periodic outputs */
2774 	ice_ptp_disable_all_clkout(pf);
2775 
2776 	src_tmr = ice_get_ptp_src_clock_index(&pf->hw);
2777 
2778 	/* Disable source clock */
2779 	wr32(&pf->hw, GLTSYN_ENA(src_tmr), (u32)~GLTSYN_ENA_TSYN_ENA_M);
2780 
2781 	/* Acquire PHC and system timer to restore after reset */
2782 	ptp->reset_time = ktime_get_real_ns();
2783 }
2784 
2785 /**
2786  * ice_ptp_init_owner - Initialize PTP_1588_CLOCK device
2787  * @pf: Board private structure
2788  *
2789  * Setup and initialize a PTP clock device that represents the device hardware
2790  * clock. Save the clock index for other functions connected to the same
2791  * hardware resource.
2792  */
2793 static int ice_ptp_init_owner(struct ice_pf *pf)
2794 {
2795 	struct ice_hw *hw = &pf->hw;
2796 	struct timespec64 ts;
2797 	int err, itr = 1;
2798 
2799 	err = ice_ptp_init_phc(hw);
2800 	if (err) {
2801 		dev_err(ice_pf_to_dev(pf), "Failed to initialize PHC, err %d\n",
2802 			err);
2803 		return err;
2804 	}
2805 
2806 	/* Acquire the global hardware lock */
2807 	if (!ice_ptp_lock(hw)) {
2808 		err = -EBUSY;
2809 		goto err_exit;
2810 	}
2811 
2812 	/* Write the increment time value to PHY and LAN */
2813 	err = ice_ptp_write_incval(hw, ice_base_incval(pf));
2814 	if (err) {
2815 		ice_ptp_unlock(hw);
2816 		goto err_exit;
2817 	}
2818 
2819 	ts = ktime_to_timespec64(ktime_get_real());
2820 	/* Write the initial Time value to PHY and LAN */
2821 	err = ice_ptp_write_init(pf, &ts);
2822 	if (err) {
2823 		ice_ptp_unlock(hw);
2824 		goto err_exit;
2825 	}
2826 
2827 	/* Release the global hardware lock */
2828 	ice_ptp_unlock(hw);
2829 
2830 	if (!ice_is_e810(hw)) {
2831 		/* Enable quad interrupts */
2832 		err = ice_ptp_tx_ena_intr(pf, true, itr);
2833 		if (err)
2834 			goto err_exit;
2835 	}
2836 
2837 	/* Ensure we have a clock device */
2838 	err = ice_ptp_create_clock(pf);
2839 	if (err)
2840 		goto err_clk;
2841 
2842 	err = ice_ptp_register_auxbus_driver(pf);
2843 	if (err) {
2844 		dev_err(ice_pf_to_dev(pf), "Failed to register PTP auxbus driver");
2845 		goto err_aux;
2846 	}
2847 
2848 	return 0;
2849 err_aux:
2850 	ptp_clock_unregister(pf->ptp.clock);
2851 err_clk:
2852 	pf->ptp.clock = NULL;
2853 err_exit:
2854 	return err;
2855 }
2856 
2857 /**
2858  * ice_ptp_init_work - Initialize PTP work threads
2859  * @pf: Board private structure
2860  * @ptp: PF PTP structure
2861  */
2862 static int ice_ptp_init_work(struct ice_pf *pf, struct ice_ptp *ptp)
2863 {
2864 	struct kthread_worker *kworker;
2865 
2866 	/* Initialize work functions */
2867 	kthread_init_delayed_work(&ptp->work, ice_ptp_periodic_work);
2868 
2869 	/* Allocate a kworker for handling work required for the ports
2870 	 * connected to the PTP hardware clock.
2871 	 */
2872 	kworker = kthread_create_worker(0, "ice-ptp-%s",
2873 					dev_name(ice_pf_to_dev(pf)));
2874 	if (IS_ERR(kworker))
2875 		return PTR_ERR(kworker);
2876 
2877 	ptp->kworker = kworker;
2878 
2879 	/* Start periodic work going */
2880 	kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);
2881 
2882 	return 0;
2883 }
2884 
2885 /**
2886  * ice_ptp_init_port - Initialize PTP port structure
2887  * @pf: Board private structure
2888  * @ptp_port: PTP port structure
2889  */
2890 static int ice_ptp_init_port(struct ice_pf *pf, struct ice_ptp_port *ptp_port)
2891 {
2892 	struct ice_hw *hw = &pf->hw;
2893 
2894 	mutex_init(&ptp_port->ps_lock);
2895 
2896 	switch (hw->phy_model) {
2897 	case ICE_PHY_E810:
2898 		return ice_ptp_init_tx_e810(pf, &ptp_port->tx);
2899 	case ICE_PHY_E822:
2900 		kthread_init_delayed_work(&ptp_port->ov_work,
2901 					  ice_ptp_wait_for_offsets);
2902 
2903 		return ice_ptp_init_tx_e822(pf, &ptp_port->tx,
2904 					    ptp_port->port_num);
2905 	default:
2906 		return -ENODEV;
2907 	}
2908 }
2909 
2910 /**
2911  * ice_ptp_release_auxbus_device
2912  * @dev: device that utilizes the auxbus
2913  */
2914 static void ice_ptp_release_auxbus_device(struct device *dev)
2915 {
2916 	/* Doing nothing here, but handle to auxbux device must be satisfied */
2917 }
2918 
2919 /**
2920  * ice_ptp_create_auxbus_device - Create PTP auxiliary bus device
2921  * @pf: Board private structure
2922  */
2923 static int ice_ptp_create_auxbus_device(struct ice_pf *pf)
2924 {
2925 	struct auxiliary_device *aux_dev;
2926 	struct ice_ptp *ptp;
2927 	struct device *dev;
2928 	char *name;
2929 	int err;
2930 	u32 id;
2931 
2932 	ptp = &pf->ptp;
2933 	id = ptp->port.port_num;
2934 	dev = ice_pf_to_dev(pf);
2935 
2936 	aux_dev = &ptp->port.aux_dev;
2937 
2938 	name = devm_kasprintf(dev, GFP_KERNEL, "ptp_aux_dev_%u_%u_clk%u",
2939 			      pf->pdev->bus->number, PCI_SLOT(pf->pdev->devfn),
2940 			      ice_get_ptp_src_clock_index(&pf->hw));
2941 
2942 	aux_dev->name = name;
2943 	aux_dev->id = id;
2944 	aux_dev->dev.release = ice_ptp_release_auxbus_device;
2945 	aux_dev->dev.parent = dev;
2946 
2947 	err = auxiliary_device_init(aux_dev);
2948 	if (err)
2949 		goto aux_err;
2950 
2951 	err = auxiliary_device_add(aux_dev);
2952 	if (err) {
2953 		auxiliary_device_uninit(aux_dev);
2954 		goto aux_err;
2955 	}
2956 
2957 	return 0;
2958 aux_err:
2959 	dev_err(dev, "Failed to create PTP auxiliary bus device <%s>\n", name);
2960 	devm_kfree(dev, name);
2961 	return err;
2962 }
2963 
2964 /**
2965  * ice_ptp_remove_auxbus_device - Remove PTP auxiliary bus device
2966  * @pf: Board private structure
2967  */
2968 static void ice_ptp_remove_auxbus_device(struct ice_pf *pf)
2969 {
2970 	struct auxiliary_device *aux_dev = &pf->ptp.port.aux_dev;
2971 
2972 	auxiliary_device_delete(aux_dev);
2973 	auxiliary_device_uninit(aux_dev);
2974 
2975 	memset(aux_dev, 0, sizeof(*aux_dev));
2976 }
2977 
2978 /**
2979  * ice_ptp_init_tx_interrupt_mode - Initialize device Tx interrupt mode
2980  * @pf: Board private structure
2981  *
2982  * Initialize the Tx timestamp interrupt mode for this device. For most device
2983  * types, each PF processes the interrupt and manages its own timestamps. For
2984  * E822-based devices, only the clock owner processes the timestamps. Other
2985  * PFs disable the interrupt and do not process their own timestamps.
2986  */
2987 static void ice_ptp_init_tx_interrupt_mode(struct ice_pf *pf)
2988 {
2989 	switch (pf->hw.phy_model) {
2990 	case ICE_PHY_E822:
2991 		/* E822 based PHY has the clock owner process the interrupt
2992 		 * for all ports.
2993 		 */
2994 		if (ice_pf_src_tmr_owned(pf))
2995 			pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_ALL;
2996 		else
2997 			pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_NONE;
2998 		break;
2999 	default:
3000 		/* other PHY types handle their own Tx interrupt */
3001 		pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_SELF;
3002 	}
3003 }
3004 
3005 /**
3006  * ice_ptp_init - Initialize PTP hardware clock support
3007  * @pf: Board private structure
3008  *
3009  * Set up the device for interacting with the PTP hardware clock for all
3010  * functions, both the function that owns the clock hardware, and the
3011  * functions connected to the clock hardware.
3012  *
3013  * The clock owner will allocate and register a ptp_clock with the
3014  * PTP_1588_CLOCK infrastructure. All functions allocate a kthread and work
3015  * items used for asynchronous work such as Tx timestamps and periodic work.
3016  */
3017 void ice_ptp_init(struct ice_pf *pf)
3018 {
3019 	struct ice_ptp *ptp = &pf->ptp;
3020 	struct ice_hw *hw = &pf->hw;
3021 	int err;
3022 
3023 	ice_ptp_init_phy_model(hw);
3024 
3025 	ice_ptp_init_tx_interrupt_mode(pf);
3026 
3027 	/* If this function owns the clock hardware, it must allocate and
3028 	 * configure the PTP clock device to represent it.
3029 	 */
3030 	if (ice_pf_src_tmr_owned(pf)) {
3031 		err = ice_ptp_init_owner(pf);
3032 		if (err)
3033 			goto err;
3034 	}
3035 
3036 	ptp->port.port_num = hw->pf_id;
3037 	err = ice_ptp_init_port(pf, &ptp->port);
3038 	if (err)
3039 		goto err;
3040 
3041 	/* Start the PHY timestamping block */
3042 	ice_ptp_reset_phy_timestamping(pf);
3043 
3044 	/* Configure initial Tx interrupt settings */
3045 	ice_ptp_cfg_tx_interrupt(pf);
3046 
3047 	set_bit(ICE_FLAG_PTP, pf->flags);
3048 	err = ice_ptp_init_work(pf, ptp);
3049 	if (err)
3050 		goto err;
3051 
3052 	err = ice_ptp_create_auxbus_device(pf);
3053 	if (err)
3054 		goto err;
3055 
3056 	dev_info(ice_pf_to_dev(pf), "PTP init successful\n");
3057 	return;
3058 
3059 err:
3060 	/* If we registered a PTP clock, release it */
3061 	if (pf->ptp.clock) {
3062 		ptp_clock_unregister(ptp->clock);
3063 		pf->ptp.clock = NULL;
3064 	}
3065 	clear_bit(ICE_FLAG_PTP, pf->flags);
3066 	dev_err(ice_pf_to_dev(pf), "PTP failed %d\n", err);
3067 }
3068 
3069 /**
3070  * ice_ptp_release - Disable the driver/HW support and unregister the clock
3071  * @pf: Board private structure
3072  *
3073  * This function handles the cleanup work required from the initialization by
3074  * clearing out the important information and unregistering the clock
3075  */
3076 void ice_ptp_release(struct ice_pf *pf)
3077 {
3078 	if (!test_bit(ICE_FLAG_PTP, pf->flags))
3079 		return;
3080 
3081 	/* Disable timestamping for both Tx and Rx */
3082 	ice_ptp_disable_timestamp_mode(pf);
3083 
3084 	ice_ptp_remove_auxbus_device(pf);
3085 
3086 	ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
3087 
3088 	clear_bit(ICE_FLAG_PTP, pf->flags);
3089 
3090 	kthread_cancel_delayed_work_sync(&pf->ptp.work);
3091 
3092 	ice_ptp_port_phy_stop(&pf->ptp.port);
3093 	mutex_destroy(&pf->ptp.port.ps_lock);
3094 	if (pf->ptp.kworker) {
3095 		kthread_destroy_worker(pf->ptp.kworker);
3096 		pf->ptp.kworker = NULL;
3097 	}
3098 
3099 	if (!pf->ptp.clock)
3100 		return;
3101 
3102 	/* Disable periodic outputs */
3103 	ice_ptp_disable_all_clkout(pf);
3104 
3105 	ptp_clock_unregister(pf->ptp.clock);
3106 	pf->ptp.clock = NULL;
3107 
3108 	ice_ptp_unregister_auxbus_driver(pf);
3109 
3110 	dev_info(ice_pf_to_dev(pf), "Removed PTP clock\n");
3111 }
3112