xref: /linux/drivers/net/ethernet/intel/ice/ice_sched.c (revision d642ef71)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include <net/devlink.h>
5 #include "ice_sched.h"
6 
7 /**
8  * ice_sched_add_root_node - Insert the Tx scheduler root node in SW DB
9  * @pi: port information structure
10  * @info: Scheduler element information from firmware
11  *
12  * This function inserts the root node of the scheduling tree topology
13  * to the SW DB.
14  */
15 static int
16 ice_sched_add_root_node(struct ice_port_info *pi,
17 			struct ice_aqc_txsched_elem_data *info)
18 {
19 	struct ice_sched_node *root;
20 	struct ice_hw *hw;
21 
22 	if (!pi)
23 		return -EINVAL;
24 
25 	hw = pi->hw;
26 
27 	root = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*root), GFP_KERNEL);
28 	if (!root)
29 		return -ENOMEM;
30 
31 	/* coverity[suspicious_sizeof] */
32 	root->children = devm_kcalloc(ice_hw_to_dev(hw), hw->max_children[0],
33 				      sizeof(*root), GFP_KERNEL);
34 	if (!root->children) {
35 		devm_kfree(ice_hw_to_dev(hw), root);
36 		return -ENOMEM;
37 	}
38 
39 	memcpy(&root->info, info, sizeof(*info));
40 	pi->root = root;
41 	return 0;
42 }
43 
44 /**
45  * ice_sched_find_node_by_teid - Find the Tx scheduler node in SW DB
46  * @start_node: pointer to the starting ice_sched_node struct in a sub-tree
47  * @teid: node TEID to search
48  *
49  * This function searches for a node matching the TEID in the scheduling tree
50  * from the SW DB. The search is recursive and is restricted by the number of
51  * layers it has searched through; stopping at the max supported layer.
52  *
53  * This function needs to be called when holding the port_info->sched_lock
54  */
55 struct ice_sched_node *
56 ice_sched_find_node_by_teid(struct ice_sched_node *start_node, u32 teid)
57 {
58 	u16 i;
59 
60 	/* The TEID is same as that of the start_node */
61 	if (ICE_TXSCHED_GET_NODE_TEID(start_node) == teid)
62 		return start_node;
63 
64 	/* The node has no children or is at the max layer */
65 	if (!start_node->num_children ||
66 	    start_node->tx_sched_layer >= ICE_AQC_TOPO_MAX_LEVEL_NUM ||
67 	    start_node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF)
68 		return NULL;
69 
70 	/* Check if TEID matches to any of the children nodes */
71 	for (i = 0; i < start_node->num_children; i++)
72 		if (ICE_TXSCHED_GET_NODE_TEID(start_node->children[i]) == teid)
73 			return start_node->children[i];
74 
75 	/* Search within each child's sub-tree */
76 	for (i = 0; i < start_node->num_children; i++) {
77 		struct ice_sched_node *tmp;
78 
79 		tmp = ice_sched_find_node_by_teid(start_node->children[i],
80 						  teid);
81 		if (tmp)
82 			return tmp;
83 	}
84 
85 	return NULL;
86 }
87 
88 /**
89  * ice_aqc_send_sched_elem_cmd - send scheduling elements cmd
90  * @hw: pointer to the HW struct
91  * @cmd_opc: cmd opcode
92  * @elems_req: number of elements to request
93  * @buf: pointer to buffer
94  * @buf_size: buffer size in bytes
95  * @elems_resp: returns total number of elements response
96  * @cd: pointer to command details structure or NULL
97  *
98  * This function sends a scheduling elements cmd (cmd_opc)
99  */
100 static int
101 ice_aqc_send_sched_elem_cmd(struct ice_hw *hw, enum ice_adminq_opc cmd_opc,
102 			    u16 elems_req, void *buf, u16 buf_size,
103 			    u16 *elems_resp, struct ice_sq_cd *cd)
104 {
105 	struct ice_aqc_sched_elem_cmd *cmd;
106 	struct ice_aq_desc desc;
107 	int status;
108 
109 	cmd = &desc.params.sched_elem_cmd;
110 	ice_fill_dflt_direct_cmd_desc(&desc, cmd_opc);
111 	cmd->num_elem_req = cpu_to_le16(elems_req);
112 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
113 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
114 	if (!status && elems_resp)
115 		*elems_resp = le16_to_cpu(cmd->num_elem_resp);
116 
117 	return status;
118 }
119 
120 /**
121  * ice_aq_query_sched_elems - query scheduler elements
122  * @hw: pointer to the HW struct
123  * @elems_req: number of elements to query
124  * @buf: pointer to buffer
125  * @buf_size: buffer size in bytes
126  * @elems_ret: returns total number of elements returned
127  * @cd: pointer to command details structure or NULL
128  *
129  * Query scheduling elements (0x0404)
130  */
131 int
132 ice_aq_query_sched_elems(struct ice_hw *hw, u16 elems_req,
133 			 struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
134 			 u16 *elems_ret, struct ice_sq_cd *cd)
135 {
136 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_get_sched_elems,
137 					   elems_req, (void *)buf, buf_size,
138 					   elems_ret, cd);
139 }
140 
141 /**
142  * ice_sched_add_node - Insert the Tx scheduler node in SW DB
143  * @pi: port information structure
144  * @layer: Scheduler layer of the node
145  * @info: Scheduler element information from firmware
146  * @prealloc_node: preallocated ice_sched_node struct for SW DB
147  *
148  * This function inserts a scheduler node to the SW DB.
149  */
150 int
151 ice_sched_add_node(struct ice_port_info *pi, u8 layer,
152 		   struct ice_aqc_txsched_elem_data *info,
153 		   struct ice_sched_node *prealloc_node)
154 {
155 	struct ice_aqc_txsched_elem_data elem;
156 	struct ice_sched_node *parent;
157 	struct ice_sched_node *node;
158 	struct ice_hw *hw;
159 	int status;
160 
161 	if (!pi)
162 		return -EINVAL;
163 
164 	hw = pi->hw;
165 
166 	/* A valid parent node should be there */
167 	parent = ice_sched_find_node_by_teid(pi->root,
168 					     le32_to_cpu(info->parent_teid));
169 	if (!parent) {
170 		ice_debug(hw, ICE_DBG_SCHED, "Parent Node not found for parent_teid=0x%x\n",
171 			  le32_to_cpu(info->parent_teid));
172 		return -EINVAL;
173 	}
174 
175 	/* query the current node information from FW before adding it
176 	 * to the SW DB
177 	 */
178 	status = ice_sched_query_elem(hw, le32_to_cpu(info->node_teid), &elem);
179 	if (status)
180 		return status;
181 
182 	if (prealloc_node)
183 		node = prealloc_node;
184 	else
185 		node = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*node), GFP_KERNEL);
186 	if (!node)
187 		return -ENOMEM;
188 	if (hw->max_children[layer]) {
189 		/* coverity[suspicious_sizeof] */
190 		node->children = devm_kcalloc(ice_hw_to_dev(hw),
191 					      hw->max_children[layer],
192 					      sizeof(*node), GFP_KERNEL);
193 		if (!node->children) {
194 			devm_kfree(ice_hw_to_dev(hw), node);
195 			return -ENOMEM;
196 		}
197 	}
198 
199 	node->in_use = true;
200 	node->parent = parent;
201 	node->tx_sched_layer = layer;
202 	parent->children[parent->num_children++] = node;
203 	node->info = elem;
204 	return 0;
205 }
206 
207 /**
208  * ice_aq_delete_sched_elems - delete scheduler elements
209  * @hw: pointer to the HW struct
210  * @grps_req: number of groups to delete
211  * @buf: pointer to buffer
212  * @buf_size: buffer size in bytes
213  * @grps_del: returns total number of elements deleted
214  * @cd: pointer to command details structure or NULL
215  *
216  * Delete scheduling elements (0x040F)
217  */
218 static int
219 ice_aq_delete_sched_elems(struct ice_hw *hw, u16 grps_req,
220 			  struct ice_aqc_delete_elem *buf, u16 buf_size,
221 			  u16 *grps_del, struct ice_sq_cd *cd)
222 {
223 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_delete_sched_elems,
224 					   grps_req, (void *)buf, buf_size,
225 					   grps_del, cd);
226 }
227 
228 /**
229  * ice_sched_remove_elems - remove nodes from HW
230  * @hw: pointer to the HW struct
231  * @parent: pointer to the parent node
232  * @node_teid: node teid to be deleted
233  *
234  * This function remove nodes from HW
235  */
236 static int
237 ice_sched_remove_elems(struct ice_hw *hw, struct ice_sched_node *parent,
238 		       u32 node_teid)
239 {
240 	DEFINE_FLEX(struct ice_aqc_delete_elem, buf, teid, 1);
241 	u16 buf_size = __struct_size(buf);
242 	u16 num_groups_removed = 0;
243 	int status;
244 
245 	buf->hdr.parent_teid = parent->info.node_teid;
246 	buf->hdr.num_elems = cpu_to_le16(1);
247 	buf->teid[0] = cpu_to_le32(node_teid);
248 
249 	status = ice_aq_delete_sched_elems(hw, 1, buf, buf_size,
250 					   &num_groups_removed, NULL);
251 	if (status || num_groups_removed != 1)
252 		ice_debug(hw, ICE_DBG_SCHED, "remove node failed FW error %d\n",
253 			  hw->adminq.sq_last_status);
254 
255 	return status;
256 }
257 
258 /**
259  * ice_sched_get_first_node - get the first node of the given layer
260  * @pi: port information structure
261  * @parent: pointer the base node of the subtree
262  * @layer: layer number
263  *
264  * This function retrieves the first node of the given layer from the subtree
265  */
266 static struct ice_sched_node *
267 ice_sched_get_first_node(struct ice_port_info *pi,
268 			 struct ice_sched_node *parent, u8 layer)
269 {
270 	return pi->sib_head[parent->tc_num][layer];
271 }
272 
273 /**
274  * ice_sched_get_tc_node - get pointer to TC node
275  * @pi: port information structure
276  * @tc: TC number
277  *
278  * This function returns the TC node pointer
279  */
280 struct ice_sched_node *ice_sched_get_tc_node(struct ice_port_info *pi, u8 tc)
281 {
282 	u8 i;
283 
284 	if (!pi || !pi->root)
285 		return NULL;
286 	for (i = 0; i < pi->root->num_children; i++)
287 		if (pi->root->children[i]->tc_num == tc)
288 			return pi->root->children[i];
289 	return NULL;
290 }
291 
292 /**
293  * ice_free_sched_node - Free a Tx scheduler node from SW DB
294  * @pi: port information structure
295  * @node: pointer to the ice_sched_node struct
296  *
297  * This function frees up a node from SW DB as well as from HW
298  *
299  * This function needs to be called with the port_info->sched_lock held
300  */
301 void ice_free_sched_node(struct ice_port_info *pi, struct ice_sched_node *node)
302 {
303 	struct ice_sched_node *parent;
304 	struct ice_hw *hw = pi->hw;
305 	u8 i, j;
306 
307 	/* Free the children before freeing up the parent node
308 	 * The parent array is updated below and that shifts the nodes
309 	 * in the array. So always pick the first child if num children > 0
310 	 */
311 	while (node->num_children)
312 		ice_free_sched_node(pi, node->children[0]);
313 
314 	/* Leaf, TC and root nodes can't be deleted by SW */
315 	if (node->tx_sched_layer >= hw->sw_entry_point_layer &&
316 	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
317 	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT &&
318 	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) {
319 		u32 teid = le32_to_cpu(node->info.node_teid);
320 
321 		ice_sched_remove_elems(hw, node->parent, teid);
322 	}
323 	parent = node->parent;
324 	/* root has no parent */
325 	if (parent) {
326 		struct ice_sched_node *p;
327 
328 		/* update the parent */
329 		for (i = 0; i < parent->num_children; i++)
330 			if (parent->children[i] == node) {
331 				for (j = i + 1; j < parent->num_children; j++)
332 					parent->children[j - 1] =
333 						parent->children[j];
334 				parent->num_children--;
335 				break;
336 			}
337 
338 		p = ice_sched_get_first_node(pi, node, node->tx_sched_layer);
339 		while (p) {
340 			if (p->sibling == node) {
341 				p->sibling = node->sibling;
342 				break;
343 			}
344 			p = p->sibling;
345 		}
346 
347 		/* update the sibling head if head is getting removed */
348 		if (pi->sib_head[node->tc_num][node->tx_sched_layer] == node)
349 			pi->sib_head[node->tc_num][node->tx_sched_layer] =
350 				node->sibling;
351 	}
352 
353 	devm_kfree(ice_hw_to_dev(hw), node->children);
354 	kfree(node->name);
355 	xa_erase(&pi->sched_node_ids, node->id);
356 	devm_kfree(ice_hw_to_dev(hw), node);
357 }
358 
359 /**
360  * ice_aq_get_dflt_topo - gets default scheduler topology
361  * @hw: pointer to the HW struct
362  * @lport: logical port number
363  * @buf: pointer to buffer
364  * @buf_size: buffer size in bytes
365  * @num_branches: returns total number of queue to port branches
366  * @cd: pointer to command details structure or NULL
367  *
368  * Get default scheduler topology (0x400)
369  */
370 static int
371 ice_aq_get_dflt_topo(struct ice_hw *hw, u8 lport,
372 		     struct ice_aqc_get_topo_elem *buf, u16 buf_size,
373 		     u8 *num_branches, struct ice_sq_cd *cd)
374 {
375 	struct ice_aqc_get_topo *cmd;
376 	struct ice_aq_desc desc;
377 	int status;
378 
379 	cmd = &desc.params.get_topo;
380 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_dflt_topo);
381 	cmd->port_num = lport;
382 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
383 	if (!status && num_branches)
384 		*num_branches = cmd->num_branches;
385 
386 	return status;
387 }
388 
389 /**
390  * ice_aq_add_sched_elems - adds scheduling element
391  * @hw: pointer to the HW struct
392  * @grps_req: the number of groups that are requested to be added
393  * @buf: pointer to buffer
394  * @buf_size: buffer size in bytes
395  * @grps_added: returns total number of groups added
396  * @cd: pointer to command details structure or NULL
397  *
398  * Add scheduling elements (0x0401)
399  */
400 static int
401 ice_aq_add_sched_elems(struct ice_hw *hw, u16 grps_req,
402 		       struct ice_aqc_add_elem *buf, u16 buf_size,
403 		       u16 *grps_added, struct ice_sq_cd *cd)
404 {
405 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_add_sched_elems,
406 					   grps_req, (void *)buf, buf_size,
407 					   grps_added, cd);
408 }
409 
410 /**
411  * ice_aq_cfg_sched_elems - configures scheduler elements
412  * @hw: pointer to the HW struct
413  * @elems_req: number of elements to configure
414  * @buf: pointer to buffer
415  * @buf_size: buffer size in bytes
416  * @elems_cfgd: returns total number of elements configured
417  * @cd: pointer to command details structure or NULL
418  *
419  * Configure scheduling elements (0x0403)
420  */
421 static int
422 ice_aq_cfg_sched_elems(struct ice_hw *hw, u16 elems_req,
423 		       struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
424 		       u16 *elems_cfgd, struct ice_sq_cd *cd)
425 {
426 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_cfg_sched_elems,
427 					   elems_req, (void *)buf, buf_size,
428 					   elems_cfgd, cd);
429 }
430 
431 /**
432  * ice_aq_move_sched_elems - move scheduler element (just 1 group)
433  * @hw: pointer to the HW struct
434  * @buf: pointer to buffer
435  * @buf_size: buffer size in bytes
436  * @grps_movd: returns total number of groups moved
437  *
438  * Move scheduling elements (0x0408)
439  */
440 int
441 ice_aq_move_sched_elems(struct ice_hw *hw, struct ice_aqc_move_elem *buf,
442 			u16 buf_size, u16 *grps_movd)
443 {
444 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_move_sched_elems,
445 					   1, buf, buf_size, grps_movd, NULL);
446 }
447 
448 /**
449  * ice_aq_suspend_sched_elems - suspend scheduler elements
450  * @hw: pointer to the HW struct
451  * @elems_req: number of elements to suspend
452  * @buf: pointer to buffer
453  * @buf_size: buffer size in bytes
454  * @elems_ret: returns total number of elements suspended
455  * @cd: pointer to command details structure or NULL
456  *
457  * Suspend scheduling elements (0x0409)
458  */
459 static int
460 ice_aq_suspend_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
461 			   u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
462 {
463 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_suspend_sched_elems,
464 					   elems_req, (void *)buf, buf_size,
465 					   elems_ret, cd);
466 }
467 
468 /**
469  * ice_aq_resume_sched_elems - resume scheduler elements
470  * @hw: pointer to the HW struct
471  * @elems_req: number of elements to resume
472  * @buf: pointer to buffer
473  * @buf_size: buffer size in bytes
474  * @elems_ret: returns total number of elements resumed
475  * @cd: pointer to command details structure or NULL
476  *
477  * resume scheduling elements (0x040A)
478  */
479 static int
480 ice_aq_resume_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
481 			  u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
482 {
483 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_resume_sched_elems,
484 					   elems_req, (void *)buf, buf_size,
485 					   elems_ret, cd);
486 }
487 
488 /**
489  * ice_aq_query_sched_res - query scheduler resource
490  * @hw: pointer to the HW struct
491  * @buf_size: buffer size in bytes
492  * @buf: pointer to buffer
493  * @cd: pointer to command details structure or NULL
494  *
495  * Query scheduler resource allocation (0x0412)
496  */
497 static int
498 ice_aq_query_sched_res(struct ice_hw *hw, u16 buf_size,
499 		       struct ice_aqc_query_txsched_res_resp *buf,
500 		       struct ice_sq_cd *cd)
501 {
502 	struct ice_aq_desc desc;
503 
504 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_sched_res);
505 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
506 }
507 
508 /**
509  * ice_sched_suspend_resume_elems - suspend or resume HW nodes
510  * @hw: pointer to the HW struct
511  * @num_nodes: number of nodes
512  * @node_teids: array of node teids to be suspended or resumed
513  * @suspend: true means suspend / false means resume
514  *
515  * This function suspends or resumes HW nodes
516  */
517 int
518 ice_sched_suspend_resume_elems(struct ice_hw *hw, u8 num_nodes, u32 *node_teids,
519 			       bool suspend)
520 {
521 	u16 i, buf_size, num_elem_ret = 0;
522 	__le32 *buf;
523 	int status;
524 
525 	buf_size = sizeof(*buf) * num_nodes;
526 	buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
527 	if (!buf)
528 		return -ENOMEM;
529 
530 	for (i = 0; i < num_nodes; i++)
531 		buf[i] = cpu_to_le32(node_teids[i]);
532 
533 	if (suspend)
534 		status = ice_aq_suspend_sched_elems(hw, num_nodes, buf,
535 						    buf_size, &num_elem_ret,
536 						    NULL);
537 	else
538 		status = ice_aq_resume_sched_elems(hw, num_nodes, buf,
539 						   buf_size, &num_elem_ret,
540 						   NULL);
541 	if (status || num_elem_ret != num_nodes)
542 		ice_debug(hw, ICE_DBG_SCHED, "suspend/resume failed\n");
543 
544 	devm_kfree(ice_hw_to_dev(hw), buf);
545 	return status;
546 }
547 
548 /**
549  * ice_alloc_lan_q_ctx - allocate LAN queue contexts for the given VSI and TC
550  * @hw: pointer to the HW struct
551  * @vsi_handle: VSI handle
552  * @tc: TC number
553  * @new_numqs: number of queues
554  */
555 static int
556 ice_alloc_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs)
557 {
558 	struct ice_vsi_ctx *vsi_ctx;
559 	struct ice_q_ctx *q_ctx;
560 	u16 idx;
561 
562 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
563 	if (!vsi_ctx)
564 		return -EINVAL;
565 	/* allocate LAN queue contexts */
566 	if (!vsi_ctx->lan_q_ctx[tc]) {
567 		q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs,
568 				     sizeof(*q_ctx), GFP_KERNEL);
569 		if (!q_ctx)
570 			return -ENOMEM;
571 
572 		for (idx = 0; idx < new_numqs; idx++) {
573 			q_ctx[idx].q_handle = ICE_INVAL_Q_HANDLE;
574 			q_ctx[idx].q_teid = ICE_INVAL_TEID;
575 		}
576 
577 		vsi_ctx->lan_q_ctx[tc] = q_ctx;
578 		vsi_ctx->num_lan_q_entries[tc] = new_numqs;
579 		return 0;
580 	}
581 	/* num queues are increased, update the queue contexts */
582 	if (new_numqs > vsi_ctx->num_lan_q_entries[tc]) {
583 		u16 prev_num = vsi_ctx->num_lan_q_entries[tc];
584 
585 		q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs,
586 				     sizeof(*q_ctx), GFP_KERNEL);
587 		if (!q_ctx)
588 			return -ENOMEM;
589 
590 		memcpy(q_ctx, vsi_ctx->lan_q_ctx[tc],
591 		       prev_num * sizeof(*q_ctx));
592 		devm_kfree(ice_hw_to_dev(hw), vsi_ctx->lan_q_ctx[tc]);
593 
594 		for (idx = prev_num; idx < new_numqs; idx++) {
595 			q_ctx[idx].q_handle = ICE_INVAL_Q_HANDLE;
596 			q_ctx[idx].q_teid = ICE_INVAL_TEID;
597 		}
598 
599 		vsi_ctx->lan_q_ctx[tc] = q_ctx;
600 		vsi_ctx->num_lan_q_entries[tc] = new_numqs;
601 	}
602 	return 0;
603 }
604 
605 /**
606  * ice_alloc_rdma_q_ctx - allocate RDMA queue contexts for the given VSI and TC
607  * @hw: pointer to the HW struct
608  * @vsi_handle: VSI handle
609  * @tc: TC number
610  * @new_numqs: number of queues
611  */
612 static int
613 ice_alloc_rdma_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs)
614 {
615 	struct ice_vsi_ctx *vsi_ctx;
616 	struct ice_q_ctx *q_ctx;
617 
618 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
619 	if (!vsi_ctx)
620 		return -EINVAL;
621 	/* allocate RDMA queue contexts */
622 	if (!vsi_ctx->rdma_q_ctx[tc]) {
623 		vsi_ctx->rdma_q_ctx[tc] = devm_kcalloc(ice_hw_to_dev(hw),
624 						       new_numqs,
625 						       sizeof(*q_ctx),
626 						       GFP_KERNEL);
627 		if (!vsi_ctx->rdma_q_ctx[tc])
628 			return -ENOMEM;
629 		vsi_ctx->num_rdma_q_entries[tc] = new_numqs;
630 		return 0;
631 	}
632 	/* num queues are increased, update the queue contexts */
633 	if (new_numqs > vsi_ctx->num_rdma_q_entries[tc]) {
634 		u16 prev_num = vsi_ctx->num_rdma_q_entries[tc];
635 
636 		q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs,
637 				     sizeof(*q_ctx), GFP_KERNEL);
638 		if (!q_ctx)
639 			return -ENOMEM;
640 		memcpy(q_ctx, vsi_ctx->rdma_q_ctx[tc],
641 		       prev_num * sizeof(*q_ctx));
642 		devm_kfree(ice_hw_to_dev(hw), vsi_ctx->rdma_q_ctx[tc]);
643 		vsi_ctx->rdma_q_ctx[tc] = q_ctx;
644 		vsi_ctx->num_rdma_q_entries[tc] = new_numqs;
645 	}
646 	return 0;
647 }
648 
649 /**
650  * ice_aq_rl_profile - performs a rate limiting task
651  * @hw: pointer to the HW struct
652  * @opcode: opcode for add, query, or remove profile(s)
653  * @num_profiles: the number of profiles
654  * @buf: pointer to buffer
655  * @buf_size: buffer size in bytes
656  * @num_processed: number of processed add or remove profile(s) to return
657  * @cd: pointer to command details structure
658  *
659  * RL profile function to add, query, or remove profile(s)
660  */
661 static int
662 ice_aq_rl_profile(struct ice_hw *hw, enum ice_adminq_opc opcode,
663 		  u16 num_profiles, struct ice_aqc_rl_profile_elem *buf,
664 		  u16 buf_size, u16 *num_processed, struct ice_sq_cd *cd)
665 {
666 	struct ice_aqc_rl_profile *cmd;
667 	struct ice_aq_desc desc;
668 	int status;
669 
670 	cmd = &desc.params.rl_profile;
671 
672 	ice_fill_dflt_direct_cmd_desc(&desc, opcode);
673 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
674 	cmd->num_profiles = cpu_to_le16(num_profiles);
675 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
676 	if (!status && num_processed)
677 		*num_processed = le16_to_cpu(cmd->num_processed);
678 	return status;
679 }
680 
681 /**
682  * ice_aq_add_rl_profile - adds rate limiting profile(s)
683  * @hw: pointer to the HW struct
684  * @num_profiles: the number of profile(s) to be add
685  * @buf: pointer to buffer
686  * @buf_size: buffer size in bytes
687  * @num_profiles_added: total number of profiles added to return
688  * @cd: pointer to command details structure
689  *
690  * Add RL profile (0x0410)
691  */
692 static int
693 ice_aq_add_rl_profile(struct ice_hw *hw, u16 num_profiles,
694 		      struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
695 		      u16 *num_profiles_added, struct ice_sq_cd *cd)
696 {
697 	return ice_aq_rl_profile(hw, ice_aqc_opc_add_rl_profiles, num_profiles,
698 				 buf, buf_size, num_profiles_added, cd);
699 }
700 
701 /**
702  * ice_aq_remove_rl_profile - removes RL profile(s)
703  * @hw: pointer to the HW struct
704  * @num_profiles: the number of profile(s) to remove
705  * @buf: pointer to buffer
706  * @buf_size: buffer size in bytes
707  * @num_profiles_removed: total number of profiles removed to return
708  * @cd: pointer to command details structure or NULL
709  *
710  * Remove RL profile (0x0415)
711  */
712 static int
713 ice_aq_remove_rl_profile(struct ice_hw *hw, u16 num_profiles,
714 			 struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
715 			 u16 *num_profiles_removed, struct ice_sq_cd *cd)
716 {
717 	return ice_aq_rl_profile(hw, ice_aqc_opc_remove_rl_profiles,
718 				 num_profiles, buf, buf_size,
719 				 num_profiles_removed, cd);
720 }
721 
722 /**
723  * ice_sched_del_rl_profile - remove RL profile
724  * @hw: pointer to the HW struct
725  * @rl_info: rate limit profile information
726  *
727  * If the profile ID is not referenced anymore, it removes profile ID with
728  * its associated parameters from HW DB,and locally. The caller needs to
729  * hold scheduler lock.
730  */
731 static int
732 ice_sched_del_rl_profile(struct ice_hw *hw,
733 			 struct ice_aqc_rl_profile_info *rl_info)
734 {
735 	struct ice_aqc_rl_profile_elem *buf;
736 	u16 num_profiles_removed;
737 	u16 num_profiles = 1;
738 	int status;
739 
740 	if (rl_info->prof_id_ref != 0)
741 		return -EBUSY;
742 
743 	/* Safe to remove profile ID */
744 	buf = &rl_info->profile;
745 	status = ice_aq_remove_rl_profile(hw, num_profiles, buf, sizeof(*buf),
746 					  &num_profiles_removed, NULL);
747 	if (status || num_profiles_removed != num_profiles)
748 		return -EIO;
749 
750 	/* Delete stale entry now */
751 	list_del(&rl_info->list_entry);
752 	devm_kfree(ice_hw_to_dev(hw), rl_info);
753 	return status;
754 }
755 
756 /**
757  * ice_sched_clear_rl_prof - clears RL prof entries
758  * @pi: port information structure
759  *
760  * This function removes all RL profile from HW as well as from SW DB.
761  */
762 static void ice_sched_clear_rl_prof(struct ice_port_info *pi)
763 {
764 	u16 ln;
765 
766 	for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) {
767 		struct ice_aqc_rl_profile_info *rl_prof_elem;
768 		struct ice_aqc_rl_profile_info *rl_prof_tmp;
769 
770 		list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp,
771 					 &pi->rl_prof_list[ln], list_entry) {
772 			struct ice_hw *hw = pi->hw;
773 			int status;
774 
775 			rl_prof_elem->prof_id_ref = 0;
776 			status = ice_sched_del_rl_profile(hw, rl_prof_elem);
777 			if (status) {
778 				ice_debug(hw, ICE_DBG_SCHED, "Remove rl profile failed\n");
779 				/* On error, free mem required */
780 				list_del(&rl_prof_elem->list_entry);
781 				devm_kfree(ice_hw_to_dev(hw), rl_prof_elem);
782 			}
783 		}
784 	}
785 }
786 
787 /**
788  * ice_sched_clear_agg - clears the aggregator related information
789  * @hw: pointer to the hardware structure
790  *
791  * This function removes aggregator list and free up aggregator related memory
792  * previously allocated.
793  */
794 void ice_sched_clear_agg(struct ice_hw *hw)
795 {
796 	struct ice_sched_agg_info *agg_info;
797 	struct ice_sched_agg_info *atmp;
798 
799 	list_for_each_entry_safe(agg_info, atmp, &hw->agg_list, list_entry) {
800 		struct ice_sched_agg_vsi_info *agg_vsi_info;
801 		struct ice_sched_agg_vsi_info *vtmp;
802 
803 		list_for_each_entry_safe(agg_vsi_info, vtmp,
804 					 &agg_info->agg_vsi_list, list_entry) {
805 			list_del(&agg_vsi_info->list_entry);
806 			devm_kfree(ice_hw_to_dev(hw), agg_vsi_info);
807 		}
808 		list_del(&agg_info->list_entry);
809 		devm_kfree(ice_hw_to_dev(hw), agg_info);
810 	}
811 }
812 
813 /**
814  * ice_sched_clear_tx_topo - clears the scheduler tree nodes
815  * @pi: port information structure
816  *
817  * This function removes all the nodes from HW as well as from SW DB.
818  */
819 static void ice_sched_clear_tx_topo(struct ice_port_info *pi)
820 {
821 	if (!pi)
822 		return;
823 	/* remove RL profiles related lists */
824 	ice_sched_clear_rl_prof(pi);
825 	if (pi->root) {
826 		ice_free_sched_node(pi, pi->root);
827 		pi->root = NULL;
828 	}
829 }
830 
831 /**
832  * ice_sched_clear_port - clear the scheduler elements from SW DB for a port
833  * @pi: port information structure
834  *
835  * Cleanup scheduling elements from SW DB
836  */
837 void ice_sched_clear_port(struct ice_port_info *pi)
838 {
839 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
840 		return;
841 
842 	pi->port_state = ICE_SCHED_PORT_STATE_INIT;
843 	mutex_lock(&pi->sched_lock);
844 	ice_sched_clear_tx_topo(pi);
845 	mutex_unlock(&pi->sched_lock);
846 	mutex_destroy(&pi->sched_lock);
847 }
848 
849 /**
850  * ice_sched_cleanup_all - cleanup scheduler elements from SW DB for all ports
851  * @hw: pointer to the HW struct
852  *
853  * Cleanup scheduling elements from SW DB for all the ports
854  */
855 void ice_sched_cleanup_all(struct ice_hw *hw)
856 {
857 	if (!hw)
858 		return;
859 
860 	devm_kfree(ice_hw_to_dev(hw), hw->layer_info);
861 	hw->layer_info = NULL;
862 
863 	ice_sched_clear_port(hw->port_info);
864 
865 	hw->num_tx_sched_layers = 0;
866 	hw->num_tx_sched_phys_layers = 0;
867 	hw->flattened_layers = 0;
868 	hw->max_cgds = 0;
869 }
870 
871 /**
872  * ice_sched_add_elems - add nodes to HW and SW DB
873  * @pi: port information structure
874  * @tc_node: pointer to the branch node
875  * @parent: pointer to the parent node
876  * @layer: layer number to add nodes
877  * @num_nodes: number of nodes
878  * @num_nodes_added: pointer to num nodes added
879  * @first_node_teid: if new nodes are added then return the TEID of first node
880  * @prealloc_nodes: preallocated nodes struct for software DB
881  *
882  * This function add nodes to HW as well as to SW DB for a given layer
883  */
884 int
885 ice_sched_add_elems(struct ice_port_info *pi, struct ice_sched_node *tc_node,
886 		    struct ice_sched_node *parent, u8 layer, u16 num_nodes,
887 		    u16 *num_nodes_added, u32 *first_node_teid,
888 		    struct ice_sched_node **prealloc_nodes)
889 {
890 	struct ice_sched_node *prev, *new_node;
891 	struct ice_aqc_add_elem *buf;
892 	u16 i, num_groups_added = 0;
893 	struct ice_hw *hw = pi->hw;
894 	size_t buf_size;
895 	int status = 0;
896 	u32 teid;
897 
898 	buf_size = struct_size(buf, generic, num_nodes);
899 	buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
900 	if (!buf)
901 		return -ENOMEM;
902 
903 	buf->hdr.parent_teid = parent->info.node_teid;
904 	buf->hdr.num_elems = cpu_to_le16(num_nodes);
905 	for (i = 0; i < num_nodes; i++) {
906 		buf->generic[i].parent_teid = parent->info.node_teid;
907 		buf->generic[i].data.elem_type = ICE_AQC_ELEM_TYPE_SE_GENERIC;
908 		buf->generic[i].data.valid_sections =
909 			ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
910 			ICE_AQC_ELEM_VALID_EIR;
911 		buf->generic[i].data.generic = 0;
912 		buf->generic[i].data.cir_bw.bw_profile_idx =
913 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
914 		buf->generic[i].data.cir_bw.bw_alloc =
915 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
916 		buf->generic[i].data.eir_bw.bw_profile_idx =
917 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
918 		buf->generic[i].data.eir_bw.bw_alloc =
919 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
920 	}
921 
922 	status = ice_aq_add_sched_elems(hw, 1, buf, buf_size,
923 					&num_groups_added, NULL);
924 	if (status || num_groups_added != 1) {
925 		ice_debug(hw, ICE_DBG_SCHED, "add node failed FW Error %d\n",
926 			  hw->adminq.sq_last_status);
927 		devm_kfree(ice_hw_to_dev(hw), buf);
928 		return -EIO;
929 	}
930 
931 	*num_nodes_added = num_nodes;
932 	/* add nodes to the SW DB */
933 	for (i = 0; i < num_nodes; i++) {
934 		if (prealloc_nodes)
935 			status = ice_sched_add_node(pi, layer, &buf->generic[i], prealloc_nodes[i]);
936 		else
937 			status = ice_sched_add_node(pi, layer, &buf->generic[i], NULL);
938 
939 		if (status) {
940 			ice_debug(hw, ICE_DBG_SCHED, "add nodes in SW DB failed status =%d\n",
941 				  status);
942 			break;
943 		}
944 
945 		teid = le32_to_cpu(buf->generic[i].node_teid);
946 		new_node = ice_sched_find_node_by_teid(parent, teid);
947 		if (!new_node) {
948 			ice_debug(hw, ICE_DBG_SCHED, "Node is missing for teid =%d\n", teid);
949 			break;
950 		}
951 
952 		new_node->sibling = NULL;
953 		new_node->tc_num = tc_node->tc_num;
954 		new_node->tx_weight = ICE_SCHED_DFLT_BW_WT;
955 		new_node->tx_share = ICE_SCHED_DFLT_BW;
956 		new_node->tx_max = ICE_SCHED_DFLT_BW;
957 		new_node->name = kzalloc(SCHED_NODE_NAME_MAX_LEN, GFP_KERNEL);
958 		if (!new_node->name)
959 			return -ENOMEM;
960 
961 		status = xa_alloc(&pi->sched_node_ids, &new_node->id, NULL, XA_LIMIT(0, UINT_MAX),
962 				  GFP_KERNEL);
963 		if (status) {
964 			ice_debug(hw, ICE_DBG_SCHED, "xa_alloc failed for sched node status =%d\n",
965 				  status);
966 			break;
967 		}
968 
969 		snprintf(new_node->name, SCHED_NODE_NAME_MAX_LEN, "node_%u", new_node->id);
970 
971 		/* add it to previous node sibling pointer */
972 		/* Note: siblings are not linked across branches */
973 		prev = ice_sched_get_first_node(pi, tc_node, layer);
974 		if (prev && prev != new_node) {
975 			while (prev->sibling)
976 				prev = prev->sibling;
977 			prev->sibling = new_node;
978 		}
979 
980 		/* initialize the sibling head */
981 		if (!pi->sib_head[tc_node->tc_num][layer])
982 			pi->sib_head[tc_node->tc_num][layer] = new_node;
983 
984 		if (i == 0)
985 			*first_node_teid = teid;
986 	}
987 
988 	devm_kfree(ice_hw_to_dev(hw), buf);
989 	return status;
990 }
991 
992 /**
993  * ice_sched_add_nodes_to_hw_layer - Add nodes to HW layer
994  * @pi: port information structure
995  * @tc_node: pointer to TC node
996  * @parent: pointer to parent node
997  * @layer: layer number to add nodes
998  * @num_nodes: number of nodes to be added
999  * @first_node_teid: pointer to the first node TEID
1000  * @num_nodes_added: pointer to number of nodes added
1001  *
1002  * Add nodes into specific HW layer.
1003  */
1004 static int
1005 ice_sched_add_nodes_to_hw_layer(struct ice_port_info *pi,
1006 				struct ice_sched_node *tc_node,
1007 				struct ice_sched_node *parent, u8 layer,
1008 				u16 num_nodes, u32 *first_node_teid,
1009 				u16 *num_nodes_added)
1010 {
1011 	u16 max_child_nodes;
1012 
1013 	*num_nodes_added = 0;
1014 
1015 	if (!num_nodes)
1016 		return 0;
1017 
1018 	if (!parent || layer < pi->hw->sw_entry_point_layer)
1019 		return -EINVAL;
1020 
1021 	/* max children per node per layer */
1022 	max_child_nodes = pi->hw->max_children[parent->tx_sched_layer];
1023 
1024 	/* current number of children + required nodes exceed max children */
1025 	if ((parent->num_children + num_nodes) > max_child_nodes) {
1026 		/* Fail if the parent is a TC node */
1027 		if (parent == tc_node)
1028 			return -EIO;
1029 		return -ENOSPC;
1030 	}
1031 
1032 	return ice_sched_add_elems(pi, tc_node, parent, layer, num_nodes,
1033 				   num_nodes_added, first_node_teid, NULL);
1034 }
1035 
1036 /**
1037  * ice_sched_add_nodes_to_layer - Add nodes to a given layer
1038  * @pi: port information structure
1039  * @tc_node: pointer to TC node
1040  * @parent: pointer to parent node
1041  * @layer: layer number to add nodes
1042  * @num_nodes: number of nodes to be added
1043  * @first_node_teid: pointer to the first node TEID
1044  * @num_nodes_added: pointer to number of nodes added
1045  *
1046  * This function add nodes to a given layer.
1047  */
1048 int
1049 ice_sched_add_nodes_to_layer(struct ice_port_info *pi,
1050 			     struct ice_sched_node *tc_node,
1051 			     struct ice_sched_node *parent, u8 layer,
1052 			     u16 num_nodes, u32 *first_node_teid,
1053 			     u16 *num_nodes_added)
1054 {
1055 	u32 *first_teid_ptr = first_node_teid;
1056 	u16 new_num_nodes = num_nodes;
1057 	int status = 0;
1058 
1059 	*num_nodes_added = 0;
1060 	while (*num_nodes_added < num_nodes) {
1061 		u16 max_child_nodes, num_added = 0;
1062 		u32 temp;
1063 
1064 		status = ice_sched_add_nodes_to_hw_layer(pi, tc_node, parent,
1065 							 layer,	new_num_nodes,
1066 							 first_teid_ptr,
1067 							 &num_added);
1068 		if (!status)
1069 			*num_nodes_added += num_added;
1070 		/* added more nodes than requested ? */
1071 		if (*num_nodes_added > num_nodes) {
1072 			ice_debug(pi->hw, ICE_DBG_SCHED, "added extra nodes %d %d\n", num_nodes,
1073 				  *num_nodes_added);
1074 			status = -EIO;
1075 			break;
1076 		}
1077 		/* break if all the nodes are added successfully */
1078 		if (!status && (*num_nodes_added == num_nodes))
1079 			break;
1080 		/* break if the error is not max limit */
1081 		if (status && status != -ENOSPC)
1082 			break;
1083 		/* Exceeded the max children */
1084 		max_child_nodes = pi->hw->max_children[parent->tx_sched_layer];
1085 		/* utilize all the spaces if the parent is not full */
1086 		if (parent->num_children < max_child_nodes) {
1087 			new_num_nodes = max_child_nodes - parent->num_children;
1088 		} else {
1089 			/* This parent is full, try the next sibling */
1090 			parent = parent->sibling;
1091 			/* Don't modify the first node TEID memory if the
1092 			 * first node was added already in the above call.
1093 			 * Instead send some temp memory for all other
1094 			 * recursive calls.
1095 			 */
1096 			if (num_added)
1097 				first_teid_ptr = &temp;
1098 
1099 			new_num_nodes = num_nodes - *num_nodes_added;
1100 		}
1101 	}
1102 	return status;
1103 }
1104 
1105 /**
1106  * ice_sched_get_qgrp_layer - get the current queue group layer number
1107  * @hw: pointer to the HW struct
1108  *
1109  * This function returns the current queue group layer number
1110  */
1111 static u8 ice_sched_get_qgrp_layer(struct ice_hw *hw)
1112 {
1113 	/* It's always total layers - 1, the array is 0 relative so -2 */
1114 	return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET;
1115 }
1116 
1117 /**
1118  * ice_sched_get_vsi_layer - get the current VSI layer number
1119  * @hw: pointer to the HW struct
1120  *
1121  * This function returns the current VSI layer number
1122  */
1123 u8 ice_sched_get_vsi_layer(struct ice_hw *hw)
1124 {
1125 	/* Num Layers       VSI layer
1126 	 *     9               6
1127 	 *     7               4
1128 	 *     5 or less       sw_entry_point_layer
1129 	 */
1130 	/* calculate the VSI layer based on number of layers. */
1131 	if (hw->num_tx_sched_layers > ICE_VSI_LAYER_OFFSET + 1) {
1132 		u8 layer = hw->num_tx_sched_layers - ICE_VSI_LAYER_OFFSET;
1133 
1134 		if (layer > hw->sw_entry_point_layer)
1135 			return layer;
1136 	}
1137 	return hw->sw_entry_point_layer;
1138 }
1139 
1140 /**
1141  * ice_sched_get_agg_layer - get the current aggregator layer number
1142  * @hw: pointer to the HW struct
1143  *
1144  * This function returns the current aggregator layer number
1145  */
1146 u8 ice_sched_get_agg_layer(struct ice_hw *hw)
1147 {
1148 	/* Num Layers       aggregator layer
1149 	 *     9               4
1150 	 *     7 or less       sw_entry_point_layer
1151 	 */
1152 	/* calculate the aggregator layer based on number of layers. */
1153 	if (hw->num_tx_sched_layers > ICE_AGG_LAYER_OFFSET + 1) {
1154 		u8 layer = hw->num_tx_sched_layers - ICE_AGG_LAYER_OFFSET;
1155 
1156 		if (layer > hw->sw_entry_point_layer)
1157 			return layer;
1158 	}
1159 	return hw->sw_entry_point_layer;
1160 }
1161 
1162 /**
1163  * ice_rm_dflt_leaf_node - remove the default leaf node in the tree
1164  * @pi: port information structure
1165  *
1166  * This function removes the leaf node that was created by the FW
1167  * during initialization
1168  */
1169 static void ice_rm_dflt_leaf_node(struct ice_port_info *pi)
1170 {
1171 	struct ice_sched_node *node;
1172 
1173 	node = pi->root;
1174 	while (node) {
1175 		if (!node->num_children)
1176 			break;
1177 		node = node->children[0];
1178 	}
1179 	if (node && node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) {
1180 		u32 teid = le32_to_cpu(node->info.node_teid);
1181 		int status;
1182 
1183 		/* remove the default leaf node */
1184 		status = ice_sched_remove_elems(pi->hw, node->parent, teid);
1185 		if (!status)
1186 			ice_free_sched_node(pi, node);
1187 	}
1188 }
1189 
1190 /**
1191  * ice_sched_rm_dflt_nodes - free the default nodes in the tree
1192  * @pi: port information structure
1193  *
1194  * This function frees all the nodes except root and TC that were created by
1195  * the FW during initialization
1196  */
1197 static void ice_sched_rm_dflt_nodes(struct ice_port_info *pi)
1198 {
1199 	struct ice_sched_node *node;
1200 
1201 	ice_rm_dflt_leaf_node(pi);
1202 
1203 	/* remove the default nodes except TC and root nodes */
1204 	node = pi->root;
1205 	while (node) {
1206 		if (node->tx_sched_layer >= pi->hw->sw_entry_point_layer &&
1207 		    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
1208 		    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT) {
1209 			ice_free_sched_node(pi, node);
1210 			break;
1211 		}
1212 
1213 		if (!node->num_children)
1214 			break;
1215 		node = node->children[0];
1216 	}
1217 }
1218 
1219 /**
1220  * ice_sched_init_port - Initialize scheduler by querying information from FW
1221  * @pi: port info structure for the tree to cleanup
1222  *
1223  * This function is the initial call to find the total number of Tx scheduler
1224  * resources, default topology created by firmware and storing the information
1225  * in SW DB.
1226  */
1227 int ice_sched_init_port(struct ice_port_info *pi)
1228 {
1229 	struct ice_aqc_get_topo_elem *buf;
1230 	struct ice_hw *hw;
1231 	u8 num_branches;
1232 	u16 num_elems;
1233 	int status;
1234 	u8 i, j;
1235 
1236 	if (!pi)
1237 		return -EINVAL;
1238 	hw = pi->hw;
1239 
1240 	/* Query the Default Topology from FW */
1241 	buf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
1242 	if (!buf)
1243 		return -ENOMEM;
1244 
1245 	/* Query default scheduling tree topology */
1246 	status = ice_aq_get_dflt_topo(hw, pi->lport, buf, ICE_AQ_MAX_BUF_LEN,
1247 				      &num_branches, NULL);
1248 	if (status)
1249 		goto err_init_port;
1250 
1251 	/* num_branches should be between 1-8 */
1252 	if (num_branches < 1 || num_branches > ICE_TXSCHED_MAX_BRANCHES) {
1253 		ice_debug(hw, ICE_DBG_SCHED, "num_branches unexpected %d\n",
1254 			  num_branches);
1255 		status = -EINVAL;
1256 		goto err_init_port;
1257 	}
1258 
1259 	/* get the number of elements on the default/first branch */
1260 	num_elems = le16_to_cpu(buf[0].hdr.num_elems);
1261 
1262 	/* num_elems should always be between 1-9 */
1263 	if (num_elems < 1 || num_elems > ICE_AQC_TOPO_MAX_LEVEL_NUM) {
1264 		ice_debug(hw, ICE_DBG_SCHED, "num_elems unexpected %d\n",
1265 			  num_elems);
1266 		status = -EINVAL;
1267 		goto err_init_port;
1268 	}
1269 
1270 	/* If the last node is a leaf node then the index of the queue group
1271 	 * layer is two less than the number of elements.
1272 	 */
1273 	if (num_elems > 2 && buf[0].generic[num_elems - 1].data.elem_type ==
1274 	    ICE_AQC_ELEM_TYPE_LEAF)
1275 		pi->last_node_teid =
1276 			le32_to_cpu(buf[0].generic[num_elems - 2].node_teid);
1277 	else
1278 		pi->last_node_teid =
1279 			le32_to_cpu(buf[0].generic[num_elems - 1].node_teid);
1280 
1281 	/* Insert the Tx Sched root node */
1282 	status = ice_sched_add_root_node(pi, &buf[0].generic[0]);
1283 	if (status)
1284 		goto err_init_port;
1285 
1286 	/* Parse the default tree and cache the information */
1287 	for (i = 0; i < num_branches; i++) {
1288 		num_elems = le16_to_cpu(buf[i].hdr.num_elems);
1289 
1290 		/* Skip root element as already inserted */
1291 		for (j = 1; j < num_elems; j++) {
1292 			/* update the sw entry point */
1293 			if (buf[0].generic[j].data.elem_type ==
1294 			    ICE_AQC_ELEM_TYPE_ENTRY_POINT)
1295 				hw->sw_entry_point_layer = j;
1296 
1297 			status = ice_sched_add_node(pi, j, &buf[i].generic[j], NULL);
1298 			if (status)
1299 				goto err_init_port;
1300 		}
1301 	}
1302 
1303 	/* Remove the default nodes. */
1304 	if (pi->root)
1305 		ice_sched_rm_dflt_nodes(pi);
1306 
1307 	/* initialize the port for handling the scheduler tree */
1308 	pi->port_state = ICE_SCHED_PORT_STATE_READY;
1309 	mutex_init(&pi->sched_lock);
1310 	for (i = 0; i < ICE_AQC_TOPO_MAX_LEVEL_NUM; i++)
1311 		INIT_LIST_HEAD(&pi->rl_prof_list[i]);
1312 
1313 err_init_port:
1314 	if (status && pi->root) {
1315 		ice_free_sched_node(pi, pi->root);
1316 		pi->root = NULL;
1317 	}
1318 
1319 	kfree(buf);
1320 	return status;
1321 }
1322 
1323 /**
1324  * ice_sched_query_res_alloc - query the FW for num of logical sched layers
1325  * @hw: pointer to the HW struct
1326  *
1327  * query FW for allocated scheduler resources and store in HW struct
1328  */
1329 int ice_sched_query_res_alloc(struct ice_hw *hw)
1330 {
1331 	struct ice_aqc_query_txsched_res_resp *buf;
1332 	__le16 max_sibl;
1333 	int status = 0;
1334 	u16 i;
1335 
1336 	if (hw->layer_info)
1337 		return status;
1338 
1339 	buf = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*buf), GFP_KERNEL);
1340 	if (!buf)
1341 		return -ENOMEM;
1342 
1343 	status = ice_aq_query_sched_res(hw, sizeof(*buf), buf, NULL);
1344 	if (status)
1345 		goto sched_query_out;
1346 
1347 	hw->num_tx_sched_layers = le16_to_cpu(buf->sched_props.logical_levels);
1348 	hw->num_tx_sched_phys_layers =
1349 		le16_to_cpu(buf->sched_props.phys_levels);
1350 	hw->flattened_layers = buf->sched_props.flattening_bitmap;
1351 	hw->max_cgds = buf->sched_props.max_pf_cgds;
1352 
1353 	/* max sibling group size of current layer refers to the max children
1354 	 * of the below layer node.
1355 	 * layer 1 node max children will be layer 2 max sibling group size
1356 	 * layer 2 node max children will be layer 3 max sibling group size
1357 	 * and so on. This array will be populated from root (index 0) to
1358 	 * qgroup layer 7. Leaf node has no children.
1359 	 */
1360 	for (i = 0; i < hw->num_tx_sched_layers - 1; i++) {
1361 		max_sibl = buf->layer_props[i + 1].max_sibl_grp_sz;
1362 		hw->max_children[i] = le16_to_cpu(max_sibl);
1363 	}
1364 
1365 	hw->layer_info = devm_kmemdup(ice_hw_to_dev(hw), buf->layer_props,
1366 				      (hw->num_tx_sched_layers *
1367 				       sizeof(*hw->layer_info)),
1368 				      GFP_KERNEL);
1369 	if (!hw->layer_info) {
1370 		status = -ENOMEM;
1371 		goto sched_query_out;
1372 	}
1373 
1374 sched_query_out:
1375 	devm_kfree(ice_hw_to_dev(hw), buf);
1376 	return status;
1377 }
1378 
1379 /**
1380  * ice_sched_get_psm_clk_freq - determine the PSM clock frequency
1381  * @hw: pointer to the HW struct
1382  *
1383  * Determine the PSM clock frequency and store in HW struct
1384  */
1385 void ice_sched_get_psm_clk_freq(struct ice_hw *hw)
1386 {
1387 	u32 val, clk_src;
1388 
1389 	val = rd32(hw, GLGEN_CLKSTAT_SRC);
1390 	clk_src = (val & GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_M) >>
1391 		GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_S;
1392 
1393 #define PSM_CLK_SRC_367_MHZ 0x0
1394 #define PSM_CLK_SRC_416_MHZ 0x1
1395 #define PSM_CLK_SRC_446_MHZ 0x2
1396 #define PSM_CLK_SRC_390_MHZ 0x3
1397 
1398 	switch (clk_src) {
1399 	case PSM_CLK_SRC_367_MHZ:
1400 		hw->psm_clk_freq = ICE_PSM_CLK_367MHZ_IN_HZ;
1401 		break;
1402 	case PSM_CLK_SRC_416_MHZ:
1403 		hw->psm_clk_freq = ICE_PSM_CLK_416MHZ_IN_HZ;
1404 		break;
1405 	case PSM_CLK_SRC_446_MHZ:
1406 		hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ;
1407 		break;
1408 	case PSM_CLK_SRC_390_MHZ:
1409 		hw->psm_clk_freq = ICE_PSM_CLK_390MHZ_IN_HZ;
1410 		break;
1411 	default:
1412 		ice_debug(hw, ICE_DBG_SCHED, "PSM clk_src unexpected %u\n",
1413 			  clk_src);
1414 		/* fall back to a safe default */
1415 		hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ;
1416 	}
1417 }
1418 
1419 /**
1420  * ice_sched_find_node_in_subtree - Find node in part of base node subtree
1421  * @hw: pointer to the HW struct
1422  * @base: pointer to the base node
1423  * @node: pointer to the node to search
1424  *
1425  * This function checks whether a given node is part of the base node
1426  * subtree or not
1427  */
1428 static bool
1429 ice_sched_find_node_in_subtree(struct ice_hw *hw, struct ice_sched_node *base,
1430 			       struct ice_sched_node *node)
1431 {
1432 	u8 i;
1433 
1434 	for (i = 0; i < base->num_children; i++) {
1435 		struct ice_sched_node *child = base->children[i];
1436 
1437 		if (node == child)
1438 			return true;
1439 
1440 		if (child->tx_sched_layer > node->tx_sched_layer)
1441 			return false;
1442 
1443 		/* this recursion is intentional, and wouldn't
1444 		 * go more than 8 calls
1445 		 */
1446 		if (ice_sched_find_node_in_subtree(hw, child, node))
1447 			return true;
1448 	}
1449 	return false;
1450 }
1451 
1452 /**
1453  * ice_sched_get_free_qgrp - Scan all queue group siblings and find a free node
1454  * @pi: port information structure
1455  * @vsi_node: software VSI handle
1456  * @qgrp_node: first queue group node identified for scanning
1457  * @owner: LAN or RDMA
1458  *
1459  * This function retrieves a free LAN or RDMA queue group node by scanning
1460  * qgrp_node and its siblings for the queue group with the fewest number
1461  * of queues currently assigned.
1462  */
1463 static struct ice_sched_node *
1464 ice_sched_get_free_qgrp(struct ice_port_info *pi,
1465 			struct ice_sched_node *vsi_node,
1466 			struct ice_sched_node *qgrp_node, u8 owner)
1467 {
1468 	struct ice_sched_node *min_qgrp;
1469 	u8 min_children;
1470 
1471 	if (!qgrp_node)
1472 		return qgrp_node;
1473 	min_children = qgrp_node->num_children;
1474 	if (!min_children)
1475 		return qgrp_node;
1476 	min_qgrp = qgrp_node;
1477 	/* scan all queue groups until find a node which has less than the
1478 	 * minimum number of children. This way all queue group nodes get
1479 	 * equal number of shares and active. The bandwidth will be equally
1480 	 * distributed across all queues.
1481 	 */
1482 	while (qgrp_node) {
1483 		/* make sure the qgroup node is part of the VSI subtree */
1484 		if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1485 			if (qgrp_node->num_children < min_children &&
1486 			    qgrp_node->owner == owner) {
1487 				/* replace the new min queue group node */
1488 				min_qgrp = qgrp_node;
1489 				min_children = min_qgrp->num_children;
1490 				/* break if it has no children, */
1491 				if (!min_children)
1492 					break;
1493 			}
1494 		qgrp_node = qgrp_node->sibling;
1495 	}
1496 	return min_qgrp;
1497 }
1498 
1499 /**
1500  * ice_sched_get_free_qparent - Get a free LAN or RDMA queue group node
1501  * @pi: port information structure
1502  * @vsi_handle: software VSI handle
1503  * @tc: branch number
1504  * @owner: LAN or RDMA
1505  *
1506  * This function retrieves a free LAN or RDMA queue group node
1507  */
1508 struct ice_sched_node *
1509 ice_sched_get_free_qparent(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
1510 			   u8 owner)
1511 {
1512 	struct ice_sched_node *vsi_node, *qgrp_node;
1513 	struct ice_vsi_ctx *vsi_ctx;
1514 	u16 max_children;
1515 	u8 qgrp_layer;
1516 
1517 	qgrp_layer = ice_sched_get_qgrp_layer(pi->hw);
1518 	max_children = pi->hw->max_children[qgrp_layer];
1519 
1520 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
1521 	if (!vsi_ctx)
1522 		return NULL;
1523 	vsi_node = vsi_ctx->sched.vsi_node[tc];
1524 	/* validate invalid VSI ID */
1525 	if (!vsi_node)
1526 		return NULL;
1527 
1528 	/* get the first queue group node from VSI sub-tree */
1529 	qgrp_node = ice_sched_get_first_node(pi, vsi_node, qgrp_layer);
1530 	while (qgrp_node) {
1531 		/* make sure the qgroup node is part of the VSI subtree */
1532 		if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1533 			if (qgrp_node->num_children < max_children &&
1534 			    qgrp_node->owner == owner)
1535 				break;
1536 		qgrp_node = qgrp_node->sibling;
1537 	}
1538 
1539 	/* Select the best queue group */
1540 	return ice_sched_get_free_qgrp(pi, vsi_node, qgrp_node, owner);
1541 }
1542 
1543 /**
1544  * ice_sched_get_vsi_node - Get a VSI node based on VSI ID
1545  * @pi: pointer to the port information structure
1546  * @tc_node: pointer to the TC node
1547  * @vsi_handle: software VSI handle
1548  *
1549  * This function retrieves a VSI node for a given VSI ID from a given
1550  * TC branch
1551  */
1552 static struct ice_sched_node *
1553 ice_sched_get_vsi_node(struct ice_port_info *pi, struct ice_sched_node *tc_node,
1554 		       u16 vsi_handle)
1555 {
1556 	struct ice_sched_node *node;
1557 	u8 vsi_layer;
1558 
1559 	vsi_layer = ice_sched_get_vsi_layer(pi->hw);
1560 	node = ice_sched_get_first_node(pi, tc_node, vsi_layer);
1561 
1562 	/* Check whether it already exists */
1563 	while (node) {
1564 		if (node->vsi_handle == vsi_handle)
1565 			return node;
1566 		node = node->sibling;
1567 	}
1568 
1569 	return node;
1570 }
1571 
1572 /**
1573  * ice_sched_get_agg_node - Get an aggregator node based on aggregator ID
1574  * @pi: pointer to the port information structure
1575  * @tc_node: pointer to the TC node
1576  * @agg_id: aggregator ID
1577  *
1578  * This function retrieves an aggregator node for a given aggregator ID from
1579  * a given TC branch
1580  */
1581 struct ice_sched_node *
1582 ice_sched_get_agg_node(struct ice_port_info *pi, struct ice_sched_node *tc_node,
1583 		       u32 agg_id)
1584 {
1585 	struct ice_sched_node *node;
1586 	struct ice_hw *hw = pi->hw;
1587 	u8 agg_layer;
1588 
1589 	if (!hw)
1590 		return NULL;
1591 	agg_layer = ice_sched_get_agg_layer(hw);
1592 	node = ice_sched_get_first_node(pi, tc_node, agg_layer);
1593 
1594 	/* Check whether it already exists */
1595 	while (node) {
1596 		if (node->agg_id == agg_id)
1597 			return node;
1598 		node = node->sibling;
1599 	}
1600 
1601 	return node;
1602 }
1603 
1604 /**
1605  * ice_sched_calc_vsi_child_nodes - calculate number of VSI child nodes
1606  * @hw: pointer to the HW struct
1607  * @num_qs: number of queues
1608  * @num_nodes: num nodes array
1609  *
1610  * This function calculates the number of VSI child nodes based on the
1611  * number of queues.
1612  */
1613 static void
1614 ice_sched_calc_vsi_child_nodes(struct ice_hw *hw, u16 num_qs, u16 *num_nodes)
1615 {
1616 	u16 num = num_qs;
1617 	u8 i, qgl, vsil;
1618 
1619 	qgl = ice_sched_get_qgrp_layer(hw);
1620 	vsil = ice_sched_get_vsi_layer(hw);
1621 
1622 	/* calculate num nodes from queue group to VSI layer */
1623 	for (i = qgl; i > vsil; i--) {
1624 		/* round to the next integer if there is a remainder */
1625 		num = DIV_ROUND_UP(num, hw->max_children[i]);
1626 
1627 		/* need at least one node */
1628 		num_nodes[i] = num ? num : 1;
1629 	}
1630 }
1631 
1632 /**
1633  * ice_sched_add_vsi_child_nodes - add VSI child nodes to tree
1634  * @pi: port information structure
1635  * @vsi_handle: software VSI handle
1636  * @tc_node: pointer to the TC node
1637  * @num_nodes: pointer to the num nodes that needs to be added per layer
1638  * @owner: node owner (LAN or RDMA)
1639  *
1640  * This function adds the VSI child nodes to tree. It gets called for
1641  * LAN and RDMA separately.
1642  */
1643 static int
1644 ice_sched_add_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1645 			      struct ice_sched_node *tc_node, u16 *num_nodes,
1646 			      u8 owner)
1647 {
1648 	struct ice_sched_node *parent, *node;
1649 	struct ice_hw *hw = pi->hw;
1650 	u32 first_node_teid;
1651 	u16 num_added = 0;
1652 	u8 i, qgl, vsil;
1653 
1654 	qgl = ice_sched_get_qgrp_layer(hw);
1655 	vsil = ice_sched_get_vsi_layer(hw);
1656 	parent = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1657 	for (i = vsil + 1; i <= qgl; i++) {
1658 		int status;
1659 
1660 		if (!parent)
1661 			return -EIO;
1662 
1663 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
1664 						      num_nodes[i],
1665 						      &first_node_teid,
1666 						      &num_added);
1667 		if (status || num_nodes[i] != num_added)
1668 			return -EIO;
1669 
1670 		/* The newly added node can be a new parent for the next
1671 		 * layer nodes
1672 		 */
1673 		if (num_added) {
1674 			parent = ice_sched_find_node_by_teid(tc_node,
1675 							     first_node_teid);
1676 			node = parent;
1677 			while (node) {
1678 				node->owner = owner;
1679 				node = node->sibling;
1680 			}
1681 		} else {
1682 			parent = parent->children[0];
1683 		}
1684 	}
1685 
1686 	return 0;
1687 }
1688 
1689 /**
1690  * ice_sched_calc_vsi_support_nodes - calculate number of VSI support nodes
1691  * @pi: pointer to the port info structure
1692  * @tc_node: pointer to TC node
1693  * @num_nodes: pointer to num nodes array
1694  *
1695  * This function calculates the number of supported nodes needed to add this
1696  * VSI into Tx tree including the VSI, parent and intermediate nodes in below
1697  * layers
1698  */
1699 static void
1700 ice_sched_calc_vsi_support_nodes(struct ice_port_info *pi,
1701 				 struct ice_sched_node *tc_node, u16 *num_nodes)
1702 {
1703 	struct ice_sched_node *node;
1704 	u8 vsil;
1705 	int i;
1706 
1707 	vsil = ice_sched_get_vsi_layer(pi->hw);
1708 	for (i = vsil; i >= pi->hw->sw_entry_point_layer; i--)
1709 		/* Add intermediate nodes if TC has no children and
1710 		 * need at least one node for VSI
1711 		 */
1712 		if (!tc_node->num_children || i == vsil) {
1713 			num_nodes[i]++;
1714 		} else {
1715 			/* If intermediate nodes are reached max children
1716 			 * then add a new one.
1717 			 */
1718 			node = ice_sched_get_first_node(pi, tc_node, (u8)i);
1719 			/* scan all the siblings */
1720 			while (node) {
1721 				if (node->num_children < pi->hw->max_children[i])
1722 					break;
1723 				node = node->sibling;
1724 			}
1725 
1726 			/* tree has one intermediate node to add this new VSI.
1727 			 * So no need to calculate supported nodes for below
1728 			 * layers.
1729 			 */
1730 			if (node)
1731 				break;
1732 			/* all the nodes are full, allocate a new one */
1733 			num_nodes[i]++;
1734 		}
1735 }
1736 
1737 /**
1738  * ice_sched_add_vsi_support_nodes - add VSI supported nodes into Tx tree
1739  * @pi: port information structure
1740  * @vsi_handle: software VSI handle
1741  * @tc_node: pointer to TC node
1742  * @num_nodes: pointer to num nodes array
1743  *
1744  * This function adds the VSI supported nodes into Tx tree including the
1745  * VSI, its parent and intermediate nodes in below layers
1746  */
1747 static int
1748 ice_sched_add_vsi_support_nodes(struct ice_port_info *pi, u16 vsi_handle,
1749 				struct ice_sched_node *tc_node, u16 *num_nodes)
1750 {
1751 	struct ice_sched_node *parent = tc_node;
1752 	u32 first_node_teid;
1753 	u16 num_added = 0;
1754 	u8 i, vsil;
1755 
1756 	if (!pi)
1757 		return -EINVAL;
1758 
1759 	vsil = ice_sched_get_vsi_layer(pi->hw);
1760 	for (i = pi->hw->sw_entry_point_layer; i <= vsil; i++) {
1761 		int status;
1762 
1763 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent,
1764 						      i, num_nodes[i],
1765 						      &first_node_teid,
1766 						      &num_added);
1767 		if (status || num_nodes[i] != num_added)
1768 			return -EIO;
1769 
1770 		/* The newly added node can be a new parent for the next
1771 		 * layer nodes
1772 		 */
1773 		if (num_added)
1774 			parent = ice_sched_find_node_by_teid(tc_node,
1775 							     first_node_teid);
1776 		else
1777 			parent = parent->children[0];
1778 
1779 		if (!parent)
1780 			return -EIO;
1781 
1782 		if (i == vsil)
1783 			parent->vsi_handle = vsi_handle;
1784 	}
1785 
1786 	return 0;
1787 }
1788 
1789 /**
1790  * ice_sched_add_vsi_to_topo - add a new VSI into tree
1791  * @pi: port information structure
1792  * @vsi_handle: software VSI handle
1793  * @tc: TC number
1794  *
1795  * This function adds a new VSI into scheduler tree
1796  */
1797 static int
1798 ice_sched_add_vsi_to_topo(struct ice_port_info *pi, u16 vsi_handle, u8 tc)
1799 {
1800 	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1801 	struct ice_sched_node *tc_node;
1802 
1803 	tc_node = ice_sched_get_tc_node(pi, tc);
1804 	if (!tc_node)
1805 		return -EINVAL;
1806 
1807 	/* calculate number of supported nodes needed for this VSI */
1808 	ice_sched_calc_vsi_support_nodes(pi, tc_node, num_nodes);
1809 
1810 	/* add VSI supported nodes to TC subtree */
1811 	return ice_sched_add_vsi_support_nodes(pi, vsi_handle, tc_node,
1812 					       num_nodes);
1813 }
1814 
1815 /**
1816  * ice_sched_update_vsi_child_nodes - update VSI child nodes
1817  * @pi: port information structure
1818  * @vsi_handle: software VSI handle
1819  * @tc: TC number
1820  * @new_numqs: new number of max queues
1821  * @owner: owner of this subtree
1822  *
1823  * This function updates the VSI child nodes based on the number of queues
1824  */
1825 static int
1826 ice_sched_update_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1827 				 u8 tc, u16 new_numqs, u8 owner)
1828 {
1829 	u16 new_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1830 	struct ice_sched_node *vsi_node;
1831 	struct ice_sched_node *tc_node;
1832 	struct ice_vsi_ctx *vsi_ctx;
1833 	struct ice_hw *hw = pi->hw;
1834 	u16 prev_numqs;
1835 	int status = 0;
1836 
1837 	tc_node = ice_sched_get_tc_node(pi, tc);
1838 	if (!tc_node)
1839 		return -EIO;
1840 
1841 	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1842 	if (!vsi_node)
1843 		return -EIO;
1844 
1845 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1846 	if (!vsi_ctx)
1847 		return -EINVAL;
1848 
1849 	if (owner == ICE_SCHED_NODE_OWNER_LAN)
1850 		prev_numqs = vsi_ctx->sched.max_lanq[tc];
1851 	else
1852 		prev_numqs = vsi_ctx->sched.max_rdmaq[tc];
1853 	/* num queues are not changed or less than the previous number */
1854 	if (new_numqs <= prev_numqs)
1855 		return status;
1856 	if (owner == ICE_SCHED_NODE_OWNER_LAN) {
1857 		status = ice_alloc_lan_q_ctx(hw, vsi_handle, tc, new_numqs);
1858 		if (status)
1859 			return status;
1860 	} else {
1861 		status = ice_alloc_rdma_q_ctx(hw, vsi_handle, tc, new_numqs);
1862 		if (status)
1863 			return status;
1864 	}
1865 
1866 	if (new_numqs)
1867 		ice_sched_calc_vsi_child_nodes(hw, new_numqs, new_num_nodes);
1868 	/* Keep the max number of queue configuration all the time. Update the
1869 	 * tree only if number of queues > previous number of queues. This may
1870 	 * leave some extra nodes in the tree if number of queues < previous
1871 	 * number but that wouldn't harm anything. Removing those extra nodes
1872 	 * may complicate the code if those nodes are part of SRL or
1873 	 * individually rate limited.
1874 	 */
1875 	status = ice_sched_add_vsi_child_nodes(pi, vsi_handle, tc_node,
1876 					       new_num_nodes, owner);
1877 	if (status)
1878 		return status;
1879 	if (owner == ICE_SCHED_NODE_OWNER_LAN)
1880 		vsi_ctx->sched.max_lanq[tc] = new_numqs;
1881 	else
1882 		vsi_ctx->sched.max_rdmaq[tc] = new_numqs;
1883 
1884 	return 0;
1885 }
1886 
1887 /**
1888  * ice_sched_cfg_vsi - configure the new/existing VSI
1889  * @pi: port information structure
1890  * @vsi_handle: software VSI handle
1891  * @tc: TC number
1892  * @maxqs: max number of queues
1893  * @owner: LAN or RDMA
1894  * @enable: TC enabled or disabled
1895  *
1896  * This function adds/updates VSI nodes based on the number of queues. If TC is
1897  * enabled and VSI is in suspended state then resume the VSI back. If TC is
1898  * disabled then suspend the VSI if it is not already.
1899  */
1900 int
1901 ice_sched_cfg_vsi(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 maxqs,
1902 		  u8 owner, bool enable)
1903 {
1904 	struct ice_sched_node *vsi_node, *tc_node;
1905 	struct ice_vsi_ctx *vsi_ctx;
1906 	struct ice_hw *hw = pi->hw;
1907 	int status = 0;
1908 
1909 	ice_debug(pi->hw, ICE_DBG_SCHED, "add/config VSI %d\n", vsi_handle);
1910 	tc_node = ice_sched_get_tc_node(pi, tc);
1911 	if (!tc_node)
1912 		return -EINVAL;
1913 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1914 	if (!vsi_ctx)
1915 		return -EINVAL;
1916 	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1917 
1918 	/* suspend the VSI if TC is not enabled */
1919 	if (!enable) {
1920 		if (vsi_node && vsi_node->in_use) {
1921 			u32 teid = le32_to_cpu(vsi_node->info.node_teid);
1922 
1923 			status = ice_sched_suspend_resume_elems(hw, 1, &teid,
1924 								true);
1925 			if (!status)
1926 				vsi_node->in_use = false;
1927 		}
1928 		return status;
1929 	}
1930 
1931 	/* TC is enabled, if it is a new VSI then add it to the tree */
1932 	if (!vsi_node) {
1933 		status = ice_sched_add_vsi_to_topo(pi, vsi_handle, tc);
1934 		if (status)
1935 			return status;
1936 
1937 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1938 		if (!vsi_node)
1939 			return -EIO;
1940 
1941 		vsi_ctx->sched.vsi_node[tc] = vsi_node;
1942 		vsi_node->in_use = true;
1943 		/* invalidate the max queues whenever VSI gets added first time
1944 		 * into the scheduler tree (boot or after reset). We need to
1945 		 * recreate the child nodes all the time in these cases.
1946 		 */
1947 		vsi_ctx->sched.max_lanq[tc] = 0;
1948 		vsi_ctx->sched.max_rdmaq[tc] = 0;
1949 	}
1950 
1951 	/* update the VSI child nodes */
1952 	status = ice_sched_update_vsi_child_nodes(pi, vsi_handle, tc, maxqs,
1953 						  owner);
1954 	if (status)
1955 		return status;
1956 
1957 	/* TC is enabled, resume the VSI if it is in the suspend state */
1958 	if (!vsi_node->in_use) {
1959 		u32 teid = le32_to_cpu(vsi_node->info.node_teid);
1960 
1961 		status = ice_sched_suspend_resume_elems(hw, 1, &teid, false);
1962 		if (!status)
1963 			vsi_node->in_use = true;
1964 	}
1965 
1966 	return status;
1967 }
1968 
1969 /**
1970  * ice_sched_rm_agg_vsi_info - remove aggregator related VSI info entry
1971  * @pi: port information structure
1972  * @vsi_handle: software VSI handle
1973  *
1974  * This function removes single aggregator VSI info entry from
1975  * aggregator list.
1976  */
1977 static void ice_sched_rm_agg_vsi_info(struct ice_port_info *pi, u16 vsi_handle)
1978 {
1979 	struct ice_sched_agg_info *agg_info;
1980 	struct ice_sched_agg_info *atmp;
1981 
1982 	list_for_each_entry_safe(agg_info, atmp, &pi->hw->agg_list,
1983 				 list_entry) {
1984 		struct ice_sched_agg_vsi_info *agg_vsi_info;
1985 		struct ice_sched_agg_vsi_info *vtmp;
1986 
1987 		list_for_each_entry_safe(agg_vsi_info, vtmp,
1988 					 &agg_info->agg_vsi_list, list_entry)
1989 			if (agg_vsi_info->vsi_handle == vsi_handle) {
1990 				list_del(&agg_vsi_info->list_entry);
1991 				devm_kfree(ice_hw_to_dev(pi->hw),
1992 					   agg_vsi_info);
1993 				return;
1994 			}
1995 	}
1996 }
1997 
1998 /**
1999  * ice_sched_is_leaf_node_present - check for a leaf node in the sub-tree
2000  * @node: pointer to the sub-tree node
2001  *
2002  * This function checks for a leaf node presence in a given sub-tree node.
2003  */
2004 static bool ice_sched_is_leaf_node_present(struct ice_sched_node *node)
2005 {
2006 	u8 i;
2007 
2008 	for (i = 0; i < node->num_children; i++)
2009 		if (ice_sched_is_leaf_node_present(node->children[i]))
2010 			return true;
2011 	/* check for a leaf node */
2012 	return (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF);
2013 }
2014 
2015 /**
2016  * ice_sched_rm_vsi_cfg - remove the VSI and its children nodes
2017  * @pi: port information structure
2018  * @vsi_handle: software VSI handle
2019  * @owner: LAN or RDMA
2020  *
2021  * This function removes the VSI and its LAN or RDMA children nodes from the
2022  * scheduler tree.
2023  */
2024 static int
2025 ice_sched_rm_vsi_cfg(struct ice_port_info *pi, u16 vsi_handle, u8 owner)
2026 {
2027 	struct ice_vsi_ctx *vsi_ctx;
2028 	int status = -EINVAL;
2029 	u8 i;
2030 
2031 	ice_debug(pi->hw, ICE_DBG_SCHED, "removing VSI %d\n", vsi_handle);
2032 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2033 		return status;
2034 	mutex_lock(&pi->sched_lock);
2035 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
2036 	if (!vsi_ctx)
2037 		goto exit_sched_rm_vsi_cfg;
2038 
2039 	ice_for_each_traffic_class(i) {
2040 		struct ice_sched_node *vsi_node, *tc_node;
2041 		u8 j = 0;
2042 
2043 		tc_node = ice_sched_get_tc_node(pi, i);
2044 		if (!tc_node)
2045 			continue;
2046 
2047 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2048 		if (!vsi_node)
2049 			continue;
2050 
2051 		if (ice_sched_is_leaf_node_present(vsi_node)) {
2052 			ice_debug(pi->hw, ICE_DBG_SCHED, "VSI has leaf nodes in TC %d\n", i);
2053 			status = -EBUSY;
2054 			goto exit_sched_rm_vsi_cfg;
2055 		}
2056 		while (j < vsi_node->num_children) {
2057 			if (vsi_node->children[j]->owner == owner) {
2058 				ice_free_sched_node(pi, vsi_node->children[j]);
2059 
2060 				/* reset the counter again since the num
2061 				 * children will be updated after node removal
2062 				 */
2063 				j = 0;
2064 			} else {
2065 				j++;
2066 			}
2067 		}
2068 		/* remove the VSI if it has no children */
2069 		if (!vsi_node->num_children) {
2070 			ice_free_sched_node(pi, vsi_node);
2071 			vsi_ctx->sched.vsi_node[i] = NULL;
2072 
2073 			/* clean up aggregator related VSI info if any */
2074 			ice_sched_rm_agg_vsi_info(pi, vsi_handle);
2075 		}
2076 		if (owner == ICE_SCHED_NODE_OWNER_LAN)
2077 			vsi_ctx->sched.max_lanq[i] = 0;
2078 		else
2079 			vsi_ctx->sched.max_rdmaq[i] = 0;
2080 	}
2081 	status = 0;
2082 
2083 exit_sched_rm_vsi_cfg:
2084 	mutex_unlock(&pi->sched_lock);
2085 	return status;
2086 }
2087 
2088 /**
2089  * ice_rm_vsi_lan_cfg - remove VSI and its LAN children nodes
2090  * @pi: port information structure
2091  * @vsi_handle: software VSI handle
2092  *
2093  * This function clears the VSI and its LAN children nodes from scheduler tree
2094  * for all TCs.
2095  */
2096 int ice_rm_vsi_lan_cfg(struct ice_port_info *pi, u16 vsi_handle)
2097 {
2098 	return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_LAN);
2099 }
2100 
2101 /**
2102  * ice_rm_vsi_rdma_cfg - remove VSI and its RDMA children nodes
2103  * @pi: port information structure
2104  * @vsi_handle: software VSI handle
2105  *
2106  * This function clears the VSI and its RDMA children nodes from scheduler tree
2107  * for all TCs.
2108  */
2109 int ice_rm_vsi_rdma_cfg(struct ice_port_info *pi, u16 vsi_handle)
2110 {
2111 	return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_RDMA);
2112 }
2113 
2114 /**
2115  * ice_get_agg_info - get the aggregator ID
2116  * @hw: pointer to the hardware structure
2117  * @agg_id: aggregator ID
2118  *
2119  * This function validates aggregator ID. The function returns info if
2120  * aggregator ID is present in list otherwise it returns null.
2121  */
2122 static struct ice_sched_agg_info *
2123 ice_get_agg_info(struct ice_hw *hw, u32 agg_id)
2124 {
2125 	struct ice_sched_agg_info *agg_info;
2126 
2127 	list_for_each_entry(agg_info, &hw->agg_list, list_entry)
2128 		if (agg_info->agg_id == agg_id)
2129 			return agg_info;
2130 
2131 	return NULL;
2132 }
2133 
2134 /**
2135  * ice_sched_get_free_vsi_parent - Find a free parent node in aggregator subtree
2136  * @hw: pointer to the HW struct
2137  * @node: pointer to a child node
2138  * @num_nodes: num nodes count array
2139  *
2140  * This function walks through the aggregator subtree to find a free parent
2141  * node
2142  */
2143 struct ice_sched_node *
2144 ice_sched_get_free_vsi_parent(struct ice_hw *hw, struct ice_sched_node *node,
2145 			      u16 *num_nodes)
2146 {
2147 	u8 l = node->tx_sched_layer;
2148 	u8 vsil, i;
2149 
2150 	vsil = ice_sched_get_vsi_layer(hw);
2151 
2152 	/* Is it VSI parent layer ? */
2153 	if (l == vsil - 1)
2154 		return (node->num_children < hw->max_children[l]) ? node : NULL;
2155 
2156 	/* We have intermediate nodes. Let's walk through the subtree. If the
2157 	 * intermediate node has space to add a new node then clear the count
2158 	 */
2159 	if (node->num_children < hw->max_children[l])
2160 		num_nodes[l] = 0;
2161 	/* The below recursive call is intentional and wouldn't go more than
2162 	 * 2 or 3 iterations.
2163 	 */
2164 
2165 	for (i = 0; i < node->num_children; i++) {
2166 		struct ice_sched_node *parent;
2167 
2168 		parent = ice_sched_get_free_vsi_parent(hw, node->children[i],
2169 						       num_nodes);
2170 		if (parent)
2171 			return parent;
2172 	}
2173 
2174 	return NULL;
2175 }
2176 
2177 /**
2178  * ice_sched_update_parent - update the new parent in SW DB
2179  * @new_parent: pointer to a new parent node
2180  * @node: pointer to a child node
2181  *
2182  * This function removes the child from the old parent and adds it to a new
2183  * parent
2184  */
2185 void
2186 ice_sched_update_parent(struct ice_sched_node *new_parent,
2187 			struct ice_sched_node *node)
2188 {
2189 	struct ice_sched_node *old_parent;
2190 	u8 i, j;
2191 
2192 	old_parent = node->parent;
2193 
2194 	/* update the old parent children */
2195 	for (i = 0; i < old_parent->num_children; i++)
2196 		if (old_parent->children[i] == node) {
2197 			for (j = i + 1; j < old_parent->num_children; j++)
2198 				old_parent->children[j - 1] =
2199 					old_parent->children[j];
2200 			old_parent->num_children--;
2201 			break;
2202 		}
2203 
2204 	/* now move the node to a new parent */
2205 	new_parent->children[new_parent->num_children++] = node;
2206 	node->parent = new_parent;
2207 	node->info.parent_teid = new_parent->info.node_teid;
2208 }
2209 
2210 /**
2211  * ice_sched_move_nodes - move child nodes to a given parent
2212  * @pi: port information structure
2213  * @parent: pointer to parent node
2214  * @num_items: number of child nodes to be moved
2215  * @list: pointer to child node teids
2216  *
2217  * This function move the child nodes to a given parent.
2218  */
2219 int
2220 ice_sched_move_nodes(struct ice_port_info *pi, struct ice_sched_node *parent,
2221 		     u16 num_items, u32 *list)
2222 {
2223 	DEFINE_FLEX(struct ice_aqc_move_elem, buf, teid, 1);
2224 	u16 buf_len = __struct_size(buf);
2225 	struct ice_sched_node *node;
2226 	u16 i, grps_movd = 0;
2227 	struct ice_hw *hw;
2228 	int status = 0;
2229 
2230 	hw = pi->hw;
2231 
2232 	if (!parent || !num_items)
2233 		return -EINVAL;
2234 
2235 	/* Does parent have enough space */
2236 	if (parent->num_children + num_items >
2237 	    hw->max_children[parent->tx_sched_layer])
2238 		return -ENOSPC;
2239 
2240 	for (i = 0; i < num_items; i++) {
2241 		node = ice_sched_find_node_by_teid(pi->root, list[i]);
2242 		if (!node) {
2243 			status = -EINVAL;
2244 			break;
2245 		}
2246 
2247 		buf->hdr.src_parent_teid = node->info.parent_teid;
2248 		buf->hdr.dest_parent_teid = parent->info.node_teid;
2249 		buf->teid[0] = node->info.node_teid;
2250 		buf->hdr.num_elems = cpu_to_le16(1);
2251 		status = ice_aq_move_sched_elems(hw, buf, buf_len, &grps_movd);
2252 		if (status && grps_movd != 1) {
2253 			status = -EIO;
2254 			break;
2255 		}
2256 
2257 		/* update the SW DB */
2258 		ice_sched_update_parent(parent, node);
2259 	}
2260 
2261 	return status;
2262 }
2263 
2264 /**
2265  * ice_sched_move_vsi_to_agg - move VSI to aggregator node
2266  * @pi: port information structure
2267  * @vsi_handle: software VSI handle
2268  * @agg_id: aggregator ID
2269  * @tc: TC number
2270  *
2271  * This function moves a VSI to an aggregator node or its subtree.
2272  * Intermediate nodes may be created if required.
2273  */
2274 static int
2275 ice_sched_move_vsi_to_agg(struct ice_port_info *pi, u16 vsi_handle, u32 agg_id,
2276 			  u8 tc)
2277 {
2278 	struct ice_sched_node *vsi_node, *agg_node, *tc_node, *parent;
2279 	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
2280 	u32 first_node_teid, vsi_teid;
2281 	u16 num_nodes_added;
2282 	u8 aggl, vsil, i;
2283 	int status;
2284 
2285 	tc_node = ice_sched_get_tc_node(pi, tc);
2286 	if (!tc_node)
2287 		return -EIO;
2288 
2289 	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2290 	if (!agg_node)
2291 		return -ENOENT;
2292 
2293 	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2294 	if (!vsi_node)
2295 		return -ENOENT;
2296 
2297 	/* Is this VSI already part of given aggregator? */
2298 	if (ice_sched_find_node_in_subtree(pi->hw, agg_node, vsi_node))
2299 		return 0;
2300 
2301 	aggl = ice_sched_get_agg_layer(pi->hw);
2302 	vsil = ice_sched_get_vsi_layer(pi->hw);
2303 
2304 	/* set intermediate node count to 1 between aggregator and VSI layers */
2305 	for (i = aggl + 1; i < vsil; i++)
2306 		num_nodes[i] = 1;
2307 
2308 	/* Check if the aggregator subtree has any free node to add the VSI */
2309 	for (i = 0; i < agg_node->num_children; i++) {
2310 		parent = ice_sched_get_free_vsi_parent(pi->hw,
2311 						       agg_node->children[i],
2312 						       num_nodes);
2313 		if (parent)
2314 			goto move_nodes;
2315 	}
2316 
2317 	/* add new nodes */
2318 	parent = agg_node;
2319 	for (i = aggl + 1; i < vsil; i++) {
2320 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
2321 						      num_nodes[i],
2322 						      &first_node_teid,
2323 						      &num_nodes_added);
2324 		if (status || num_nodes[i] != num_nodes_added)
2325 			return -EIO;
2326 
2327 		/* The newly added node can be a new parent for the next
2328 		 * layer nodes
2329 		 */
2330 		if (num_nodes_added)
2331 			parent = ice_sched_find_node_by_teid(tc_node,
2332 							     first_node_teid);
2333 		else
2334 			parent = parent->children[0];
2335 
2336 		if (!parent)
2337 			return -EIO;
2338 	}
2339 
2340 move_nodes:
2341 	vsi_teid = le32_to_cpu(vsi_node->info.node_teid);
2342 	return ice_sched_move_nodes(pi, parent, 1, &vsi_teid);
2343 }
2344 
2345 /**
2346  * ice_move_all_vsi_to_dflt_agg - move all VSI(s) to default aggregator
2347  * @pi: port information structure
2348  * @agg_info: aggregator info
2349  * @tc: traffic class number
2350  * @rm_vsi_info: true or false
2351  *
2352  * This function move all the VSI(s) to the default aggregator and delete
2353  * aggregator VSI info based on passed in boolean parameter rm_vsi_info. The
2354  * caller holds the scheduler lock.
2355  */
2356 static int
2357 ice_move_all_vsi_to_dflt_agg(struct ice_port_info *pi,
2358 			     struct ice_sched_agg_info *agg_info, u8 tc,
2359 			     bool rm_vsi_info)
2360 {
2361 	struct ice_sched_agg_vsi_info *agg_vsi_info;
2362 	struct ice_sched_agg_vsi_info *tmp;
2363 	int status = 0;
2364 
2365 	list_for_each_entry_safe(agg_vsi_info, tmp, &agg_info->agg_vsi_list,
2366 				 list_entry) {
2367 		u16 vsi_handle = agg_vsi_info->vsi_handle;
2368 
2369 		/* Move VSI to default aggregator */
2370 		if (!ice_is_tc_ena(agg_vsi_info->tc_bitmap[0], tc))
2371 			continue;
2372 
2373 		status = ice_sched_move_vsi_to_agg(pi, vsi_handle,
2374 						   ICE_DFLT_AGG_ID, tc);
2375 		if (status)
2376 			break;
2377 
2378 		clear_bit(tc, agg_vsi_info->tc_bitmap);
2379 		if (rm_vsi_info && !agg_vsi_info->tc_bitmap[0]) {
2380 			list_del(&agg_vsi_info->list_entry);
2381 			devm_kfree(ice_hw_to_dev(pi->hw), agg_vsi_info);
2382 		}
2383 	}
2384 
2385 	return status;
2386 }
2387 
2388 /**
2389  * ice_sched_is_agg_inuse - check whether the aggregator is in use or not
2390  * @pi: port information structure
2391  * @node: node pointer
2392  *
2393  * This function checks whether the aggregator is attached with any VSI or not.
2394  */
2395 static bool
2396 ice_sched_is_agg_inuse(struct ice_port_info *pi, struct ice_sched_node *node)
2397 {
2398 	u8 vsil, i;
2399 
2400 	vsil = ice_sched_get_vsi_layer(pi->hw);
2401 	if (node->tx_sched_layer < vsil - 1) {
2402 		for (i = 0; i < node->num_children; i++)
2403 			if (ice_sched_is_agg_inuse(pi, node->children[i]))
2404 				return true;
2405 		return false;
2406 	} else {
2407 		return node->num_children ? true : false;
2408 	}
2409 }
2410 
2411 /**
2412  * ice_sched_rm_agg_cfg - remove the aggregator node
2413  * @pi: port information structure
2414  * @agg_id: aggregator ID
2415  * @tc: TC number
2416  *
2417  * This function removes the aggregator node and intermediate nodes if any
2418  * from the given TC
2419  */
2420 static int
2421 ice_sched_rm_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc)
2422 {
2423 	struct ice_sched_node *tc_node, *agg_node;
2424 	struct ice_hw *hw = pi->hw;
2425 
2426 	tc_node = ice_sched_get_tc_node(pi, tc);
2427 	if (!tc_node)
2428 		return -EIO;
2429 
2430 	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2431 	if (!agg_node)
2432 		return -ENOENT;
2433 
2434 	/* Can't remove the aggregator node if it has children */
2435 	if (ice_sched_is_agg_inuse(pi, agg_node))
2436 		return -EBUSY;
2437 
2438 	/* need to remove the whole subtree if aggregator node is the
2439 	 * only child.
2440 	 */
2441 	while (agg_node->tx_sched_layer > hw->sw_entry_point_layer) {
2442 		struct ice_sched_node *parent = agg_node->parent;
2443 
2444 		if (!parent)
2445 			return -EIO;
2446 
2447 		if (parent->num_children > 1)
2448 			break;
2449 
2450 		agg_node = parent;
2451 	}
2452 
2453 	ice_free_sched_node(pi, agg_node);
2454 	return 0;
2455 }
2456 
2457 /**
2458  * ice_rm_agg_cfg_tc - remove aggregator configuration for TC
2459  * @pi: port information structure
2460  * @agg_info: aggregator ID
2461  * @tc: TC number
2462  * @rm_vsi_info: bool value true or false
2463  *
2464  * This function removes aggregator reference to VSI of given TC. It removes
2465  * the aggregator configuration completely for requested TC. The caller needs
2466  * to hold the scheduler lock.
2467  */
2468 static int
2469 ice_rm_agg_cfg_tc(struct ice_port_info *pi, struct ice_sched_agg_info *agg_info,
2470 		  u8 tc, bool rm_vsi_info)
2471 {
2472 	int status = 0;
2473 
2474 	/* If nothing to remove - return success */
2475 	if (!ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
2476 		goto exit_rm_agg_cfg_tc;
2477 
2478 	status = ice_move_all_vsi_to_dflt_agg(pi, agg_info, tc, rm_vsi_info);
2479 	if (status)
2480 		goto exit_rm_agg_cfg_tc;
2481 
2482 	/* Delete aggregator node(s) */
2483 	status = ice_sched_rm_agg_cfg(pi, agg_info->agg_id, tc);
2484 	if (status)
2485 		goto exit_rm_agg_cfg_tc;
2486 
2487 	clear_bit(tc, agg_info->tc_bitmap);
2488 exit_rm_agg_cfg_tc:
2489 	return status;
2490 }
2491 
2492 /**
2493  * ice_save_agg_tc_bitmap - save aggregator TC bitmap
2494  * @pi: port information structure
2495  * @agg_id: aggregator ID
2496  * @tc_bitmap: 8 bits TC bitmap
2497  *
2498  * Save aggregator TC bitmap. This function needs to be called with scheduler
2499  * lock held.
2500  */
2501 static int
2502 ice_save_agg_tc_bitmap(struct ice_port_info *pi, u32 agg_id,
2503 		       unsigned long *tc_bitmap)
2504 {
2505 	struct ice_sched_agg_info *agg_info;
2506 
2507 	agg_info = ice_get_agg_info(pi->hw, agg_id);
2508 	if (!agg_info)
2509 		return -EINVAL;
2510 	bitmap_copy(agg_info->replay_tc_bitmap, tc_bitmap,
2511 		    ICE_MAX_TRAFFIC_CLASS);
2512 	return 0;
2513 }
2514 
2515 /**
2516  * ice_sched_add_agg_cfg - create an aggregator node
2517  * @pi: port information structure
2518  * @agg_id: aggregator ID
2519  * @tc: TC number
2520  *
2521  * This function creates an aggregator node and intermediate nodes if required
2522  * for the given TC
2523  */
2524 static int
2525 ice_sched_add_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc)
2526 {
2527 	struct ice_sched_node *parent, *agg_node, *tc_node;
2528 	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
2529 	struct ice_hw *hw = pi->hw;
2530 	u32 first_node_teid;
2531 	u16 num_nodes_added;
2532 	int status = 0;
2533 	u8 i, aggl;
2534 
2535 	tc_node = ice_sched_get_tc_node(pi, tc);
2536 	if (!tc_node)
2537 		return -EIO;
2538 
2539 	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2540 	/* Does Agg node already exist ? */
2541 	if (agg_node)
2542 		return status;
2543 
2544 	aggl = ice_sched_get_agg_layer(hw);
2545 
2546 	/* need one node in Agg layer */
2547 	num_nodes[aggl] = 1;
2548 
2549 	/* Check whether the intermediate nodes have space to add the
2550 	 * new aggregator. If they are full, then SW needs to allocate a new
2551 	 * intermediate node on those layers
2552 	 */
2553 	for (i = hw->sw_entry_point_layer; i < aggl; i++) {
2554 		parent = ice_sched_get_first_node(pi, tc_node, i);
2555 
2556 		/* scan all the siblings */
2557 		while (parent) {
2558 			if (parent->num_children < hw->max_children[i])
2559 				break;
2560 			parent = parent->sibling;
2561 		}
2562 
2563 		/* all the nodes are full, reserve one for this layer */
2564 		if (!parent)
2565 			num_nodes[i]++;
2566 	}
2567 
2568 	/* add the aggregator node */
2569 	parent = tc_node;
2570 	for (i = hw->sw_entry_point_layer; i <= aggl; i++) {
2571 		if (!parent)
2572 			return -EIO;
2573 
2574 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
2575 						      num_nodes[i],
2576 						      &first_node_teid,
2577 						      &num_nodes_added);
2578 		if (status || num_nodes[i] != num_nodes_added)
2579 			return -EIO;
2580 
2581 		/* The newly added node can be a new parent for the next
2582 		 * layer nodes
2583 		 */
2584 		if (num_nodes_added) {
2585 			parent = ice_sched_find_node_by_teid(tc_node,
2586 							     first_node_teid);
2587 			/* register aggregator ID with the aggregator node */
2588 			if (parent && i == aggl)
2589 				parent->agg_id = agg_id;
2590 		} else {
2591 			parent = parent->children[0];
2592 		}
2593 	}
2594 
2595 	return 0;
2596 }
2597 
2598 /**
2599  * ice_sched_cfg_agg - configure aggregator node
2600  * @pi: port information structure
2601  * @agg_id: aggregator ID
2602  * @agg_type: aggregator type queue, VSI, or aggregator group
2603  * @tc_bitmap: bits TC bitmap
2604  *
2605  * It registers a unique aggregator node into scheduler services. It
2606  * allows a user to register with a unique ID to track it's resources.
2607  * The aggregator type determines if this is a queue group, VSI group
2608  * or aggregator group. It then creates the aggregator node(s) for requested
2609  * TC(s) or removes an existing aggregator node including its configuration
2610  * if indicated via tc_bitmap. Call ice_rm_agg_cfg to release aggregator
2611  * resources and remove aggregator ID.
2612  * This function needs to be called with scheduler lock held.
2613  */
2614 static int
2615 ice_sched_cfg_agg(struct ice_port_info *pi, u32 agg_id,
2616 		  enum ice_agg_type agg_type, unsigned long *tc_bitmap)
2617 {
2618 	struct ice_sched_agg_info *agg_info;
2619 	struct ice_hw *hw = pi->hw;
2620 	int status = 0;
2621 	u8 tc;
2622 
2623 	agg_info = ice_get_agg_info(hw, agg_id);
2624 	if (!agg_info) {
2625 		/* Create new entry for new aggregator ID */
2626 		agg_info = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*agg_info),
2627 					GFP_KERNEL);
2628 		if (!agg_info)
2629 			return -ENOMEM;
2630 
2631 		agg_info->agg_id = agg_id;
2632 		agg_info->agg_type = agg_type;
2633 		agg_info->tc_bitmap[0] = 0;
2634 
2635 		/* Initialize the aggregator VSI list head */
2636 		INIT_LIST_HEAD(&agg_info->agg_vsi_list);
2637 
2638 		/* Add new entry in aggregator list */
2639 		list_add(&agg_info->list_entry, &hw->agg_list);
2640 	}
2641 	/* Create aggregator node(s) for requested TC(s) */
2642 	ice_for_each_traffic_class(tc) {
2643 		if (!ice_is_tc_ena(*tc_bitmap, tc)) {
2644 			/* Delete aggregator cfg TC if it exists previously */
2645 			status = ice_rm_agg_cfg_tc(pi, agg_info, tc, false);
2646 			if (status)
2647 				break;
2648 			continue;
2649 		}
2650 
2651 		/* Check if aggregator node for TC already exists */
2652 		if (ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
2653 			continue;
2654 
2655 		/* Create new aggregator node for TC */
2656 		status = ice_sched_add_agg_cfg(pi, agg_id, tc);
2657 		if (status)
2658 			break;
2659 
2660 		/* Save aggregator node's TC information */
2661 		set_bit(tc, agg_info->tc_bitmap);
2662 	}
2663 
2664 	return status;
2665 }
2666 
2667 /**
2668  * ice_cfg_agg - config aggregator node
2669  * @pi: port information structure
2670  * @agg_id: aggregator ID
2671  * @agg_type: aggregator type queue, VSI, or aggregator group
2672  * @tc_bitmap: bits TC bitmap
2673  *
2674  * This function configures aggregator node(s).
2675  */
2676 int
2677 ice_cfg_agg(struct ice_port_info *pi, u32 agg_id, enum ice_agg_type agg_type,
2678 	    u8 tc_bitmap)
2679 {
2680 	unsigned long bitmap = tc_bitmap;
2681 	int status;
2682 
2683 	mutex_lock(&pi->sched_lock);
2684 	status = ice_sched_cfg_agg(pi, agg_id, agg_type, &bitmap);
2685 	if (!status)
2686 		status = ice_save_agg_tc_bitmap(pi, agg_id, &bitmap);
2687 	mutex_unlock(&pi->sched_lock);
2688 	return status;
2689 }
2690 
2691 /**
2692  * ice_get_agg_vsi_info - get the aggregator ID
2693  * @agg_info: aggregator info
2694  * @vsi_handle: software VSI handle
2695  *
2696  * The function returns aggregator VSI info based on VSI handle. This function
2697  * needs to be called with scheduler lock held.
2698  */
2699 static struct ice_sched_agg_vsi_info *
2700 ice_get_agg_vsi_info(struct ice_sched_agg_info *agg_info, u16 vsi_handle)
2701 {
2702 	struct ice_sched_agg_vsi_info *agg_vsi_info;
2703 
2704 	list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list, list_entry)
2705 		if (agg_vsi_info->vsi_handle == vsi_handle)
2706 			return agg_vsi_info;
2707 
2708 	return NULL;
2709 }
2710 
2711 /**
2712  * ice_get_vsi_agg_info - get the aggregator info of VSI
2713  * @hw: pointer to the hardware structure
2714  * @vsi_handle: Sw VSI handle
2715  *
2716  * The function returns aggregator info of VSI represented via vsi_handle. The
2717  * VSI has in this case a different aggregator than the default one. This
2718  * function needs to be called with scheduler lock held.
2719  */
2720 static struct ice_sched_agg_info *
2721 ice_get_vsi_agg_info(struct ice_hw *hw, u16 vsi_handle)
2722 {
2723 	struct ice_sched_agg_info *agg_info;
2724 
2725 	list_for_each_entry(agg_info, &hw->agg_list, list_entry) {
2726 		struct ice_sched_agg_vsi_info *agg_vsi_info;
2727 
2728 		agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2729 		if (agg_vsi_info)
2730 			return agg_info;
2731 	}
2732 	return NULL;
2733 }
2734 
2735 /**
2736  * ice_save_agg_vsi_tc_bitmap - save aggregator VSI TC bitmap
2737  * @pi: port information structure
2738  * @agg_id: aggregator ID
2739  * @vsi_handle: software VSI handle
2740  * @tc_bitmap: TC bitmap of enabled TC(s)
2741  *
2742  * Save VSI to aggregator TC bitmap. This function needs to call with scheduler
2743  * lock held.
2744  */
2745 static int
2746 ice_save_agg_vsi_tc_bitmap(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle,
2747 			   unsigned long *tc_bitmap)
2748 {
2749 	struct ice_sched_agg_vsi_info *agg_vsi_info;
2750 	struct ice_sched_agg_info *agg_info;
2751 
2752 	agg_info = ice_get_agg_info(pi->hw, agg_id);
2753 	if (!agg_info)
2754 		return -EINVAL;
2755 	/* check if entry already exist */
2756 	agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2757 	if (!agg_vsi_info)
2758 		return -EINVAL;
2759 	bitmap_copy(agg_vsi_info->replay_tc_bitmap, tc_bitmap,
2760 		    ICE_MAX_TRAFFIC_CLASS);
2761 	return 0;
2762 }
2763 
2764 /**
2765  * ice_sched_assoc_vsi_to_agg - associate/move VSI to new/default aggregator
2766  * @pi: port information structure
2767  * @agg_id: aggregator ID
2768  * @vsi_handle: software VSI handle
2769  * @tc_bitmap: TC bitmap of enabled TC(s)
2770  *
2771  * This function moves VSI to a new or default aggregator node. If VSI is
2772  * already associated to the aggregator node then no operation is performed on
2773  * the tree. This function needs to be called with scheduler lock held.
2774  */
2775 static int
2776 ice_sched_assoc_vsi_to_agg(struct ice_port_info *pi, u32 agg_id,
2777 			   u16 vsi_handle, unsigned long *tc_bitmap)
2778 {
2779 	struct ice_sched_agg_vsi_info *agg_vsi_info, *iter, *old_agg_vsi_info = NULL;
2780 	struct ice_sched_agg_info *agg_info, *old_agg_info;
2781 	struct ice_hw *hw = pi->hw;
2782 	int status = 0;
2783 	u8 tc;
2784 
2785 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2786 		return -EINVAL;
2787 	agg_info = ice_get_agg_info(hw, agg_id);
2788 	if (!agg_info)
2789 		return -EINVAL;
2790 	/* If the VSI is already part of another aggregator then update
2791 	 * its VSI info list
2792 	 */
2793 	old_agg_info = ice_get_vsi_agg_info(hw, vsi_handle);
2794 	if (old_agg_info && old_agg_info != agg_info) {
2795 		struct ice_sched_agg_vsi_info *vtmp;
2796 
2797 		list_for_each_entry_safe(iter, vtmp,
2798 					 &old_agg_info->agg_vsi_list,
2799 					 list_entry)
2800 			if (iter->vsi_handle == vsi_handle) {
2801 				old_agg_vsi_info = iter;
2802 				break;
2803 			}
2804 	}
2805 
2806 	/* check if entry already exist */
2807 	agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2808 	if (!agg_vsi_info) {
2809 		/* Create new entry for VSI under aggregator list */
2810 		agg_vsi_info = devm_kzalloc(ice_hw_to_dev(hw),
2811 					    sizeof(*agg_vsi_info), GFP_KERNEL);
2812 		if (!agg_vsi_info)
2813 			return -EINVAL;
2814 
2815 		/* add VSI ID into the aggregator list */
2816 		agg_vsi_info->vsi_handle = vsi_handle;
2817 		list_add(&agg_vsi_info->list_entry, &agg_info->agg_vsi_list);
2818 	}
2819 	/* Move VSI node to new aggregator node for requested TC(s) */
2820 	ice_for_each_traffic_class(tc) {
2821 		if (!ice_is_tc_ena(*tc_bitmap, tc))
2822 			continue;
2823 
2824 		/* Move VSI to new aggregator */
2825 		status = ice_sched_move_vsi_to_agg(pi, vsi_handle, agg_id, tc);
2826 		if (status)
2827 			break;
2828 
2829 		set_bit(tc, agg_vsi_info->tc_bitmap);
2830 		if (old_agg_vsi_info)
2831 			clear_bit(tc, old_agg_vsi_info->tc_bitmap);
2832 	}
2833 	if (old_agg_vsi_info && !old_agg_vsi_info->tc_bitmap[0]) {
2834 		list_del(&old_agg_vsi_info->list_entry);
2835 		devm_kfree(ice_hw_to_dev(pi->hw), old_agg_vsi_info);
2836 	}
2837 	return status;
2838 }
2839 
2840 /**
2841  * ice_sched_rm_unused_rl_prof - remove unused RL profile
2842  * @pi: port information structure
2843  *
2844  * This function removes unused rate limit profiles from the HW and
2845  * SW DB. The caller needs to hold scheduler lock.
2846  */
2847 static void ice_sched_rm_unused_rl_prof(struct ice_port_info *pi)
2848 {
2849 	u16 ln;
2850 
2851 	for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) {
2852 		struct ice_aqc_rl_profile_info *rl_prof_elem;
2853 		struct ice_aqc_rl_profile_info *rl_prof_tmp;
2854 
2855 		list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp,
2856 					 &pi->rl_prof_list[ln], list_entry) {
2857 			if (!ice_sched_del_rl_profile(pi->hw, rl_prof_elem))
2858 				ice_debug(pi->hw, ICE_DBG_SCHED, "Removed rl profile\n");
2859 		}
2860 	}
2861 }
2862 
2863 /**
2864  * ice_sched_update_elem - update element
2865  * @hw: pointer to the HW struct
2866  * @node: pointer to node
2867  * @info: node info to update
2868  *
2869  * Update the HW DB, and local SW DB of node. Update the scheduling
2870  * parameters of node from argument info data buffer (Info->data buf) and
2871  * returns success or error on config sched element failure. The caller
2872  * needs to hold scheduler lock.
2873  */
2874 static int
2875 ice_sched_update_elem(struct ice_hw *hw, struct ice_sched_node *node,
2876 		      struct ice_aqc_txsched_elem_data *info)
2877 {
2878 	struct ice_aqc_txsched_elem_data buf;
2879 	u16 elem_cfgd = 0;
2880 	u16 num_elems = 1;
2881 	int status;
2882 
2883 	buf = *info;
2884 	/* Parent TEID is reserved field in this aq call */
2885 	buf.parent_teid = 0;
2886 	/* Element type is reserved field in this aq call */
2887 	buf.data.elem_type = 0;
2888 	/* Flags is reserved field in this aq call */
2889 	buf.data.flags = 0;
2890 
2891 	/* Update HW DB */
2892 	/* Configure element node */
2893 	status = ice_aq_cfg_sched_elems(hw, num_elems, &buf, sizeof(buf),
2894 					&elem_cfgd, NULL);
2895 	if (status || elem_cfgd != num_elems) {
2896 		ice_debug(hw, ICE_DBG_SCHED, "Config sched elem error\n");
2897 		return -EIO;
2898 	}
2899 
2900 	/* Config success case */
2901 	/* Now update local SW DB */
2902 	/* Only copy the data portion of info buffer */
2903 	node->info.data = info->data;
2904 	return status;
2905 }
2906 
2907 /**
2908  * ice_sched_cfg_node_bw_alloc - configure node BW weight/alloc params
2909  * @hw: pointer to the HW struct
2910  * @node: sched node to configure
2911  * @rl_type: rate limit type CIR, EIR, or shared
2912  * @bw_alloc: BW weight/allocation
2913  *
2914  * This function configures node element's BW allocation.
2915  */
2916 static int
2917 ice_sched_cfg_node_bw_alloc(struct ice_hw *hw, struct ice_sched_node *node,
2918 			    enum ice_rl_type rl_type, u16 bw_alloc)
2919 {
2920 	struct ice_aqc_txsched_elem_data buf;
2921 	struct ice_aqc_txsched_elem *data;
2922 
2923 	buf = node->info;
2924 	data = &buf.data;
2925 	if (rl_type == ICE_MIN_BW) {
2926 		data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
2927 		data->cir_bw.bw_alloc = cpu_to_le16(bw_alloc);
2928 	} else if (rl_type == ICE_MAX_BW) {
2929 		data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
2930 		data->eir_bw.bw_alloc = cpu_to_le16(bw_alloc);
2931 	} else {
2932 		return -EINVAL;
2933 	}
2934 
2935 	/* Configure element */
2936 	return ice_sched_update_elem(hw, node, &buf);
2937 }
2938 
2939 /**
2940  * ice_move_vsi_to_agg - moves VSI to new or default aggregator
2941  * @pi: port information structure
2942  * @agg_id: aggregator ID
2943  * @vsi_handle: software VSI handle
2944  * @tc_bitmap: TC bitmap of enabled TC(s)
2945  *
2946  * Move or associate VSI to a new or default aggregator node.
2947  */
2948 int
2949 ice_move_vsi_to_agg(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle,
2950 		    u8 tc_bitmap)
2951 {
2952 	unsigned long bitmap = tc_bitmap;
2953 	int status;
2954 
2955 	mutex_lock(&pi->sched_lock);
2956 	status = ice_sched_assoc_vsi_to_agg(pi, agg_id, vsi_handle,
2957 					    (unsigned long *)&bitmap);
2958 	if (!status)
2959 		status = ice_save_agg_vsi_tc_bitmap(pi, agg_id, vsi_handle,
2960 						    (unsigned long *)&bitmap);
2961 	mutex_unlock(&pi->sched_lock);
2962 	return status;
2963 }
2964 
2965 /**
2966  * ice_set_clear_cir_bw - set or clear CIR BW
2967  * @bw_t_info: bandwidth type information structure
2968  * @bw: bandwidth in Kbps - Kilo bits per sec
2969  *
2970  * Save or clear CIR bandwidth (BW) in the passed param bw_t_info.
2971  */
2972 static void ice_set_clear_cir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
2973 {
2974 	if (bw == ICE_SCHED_DFLT_BW) {
2975 		clear_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
2976 		bw_t_info->cir_bw.bw = 0;
2977 	} else {
2978 		/* Save type of BW information */
2979 		set_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
2980 		bw_t_info->cir_bw.bw = bw;
2981 	}
2982 }
2983 
2984 /**
2985  * ice_set_clear_eir_bw - set or clear EIR BW
2986  * @bw_t_info: bandwidth type information structure
2987  * @bw: bandwidth in Kbps - Kilo bits per sec
2988  *
2989  * Save or clear EIR bandwidth (BW) in the passed param bw_t_info.
2990  */
2991 static void ice_set_clear_eir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
2992 {
2993 	if (bw == ICE_SCHED_DFLT_BW) {
2994 		clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
2995 		bw_t_info->eir_bw.bw = 0;
2996 	} else {
2997 		/* EIR BW and Shared BW profiles are mutually exclusive and
2998 		 * hence only one of them may be set for any given element.
2999 		 * First clear earlier saved shared BW information.
3000 		 */
3001 		clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3002 		bw_t_info->shared_bw = 0;
3003 		/* save EIR BW information */
3004 		set_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
3005 		bw_t_info->eir_bw.bw = bw;
3006 	}
3007 }
3008 
3009 /**
3010  * ice_set_clear_shared_bw - set or clear shared BW
3011  * @bw_t_info: bandwidth type information structure
3012  * @bw: bandwidth in Kbps - Kilo bits per sec
3013  *
3014  * Save or clear shared bandwidth (BW) in the passed param bw_t_info.
3015  */
3016 static void ice_set_clear_shared_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
3017 {
3018 	if (bw == ICE_SCHED_DFLT_BW) {
3019 		clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3020 		bw_t_info->shared_bw = 0;
3021 	} else {
3022 		/* EIR BW and Shared BW profiles are mutually exclusive and
3023 		 * hence only one of them may be set for any given element.
3024 		 * First clear earlier saved EIR BW information.
3025 		 */
3026 		clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
3027 		bw_t_info->eir_bw.bw = 0;
3028 		/* save shared BW information */
3029 		set_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3030 		bw_t_info->shared_bw = bw;
3031 	}
3032 }
3033 
3034 /**
3035  * ice_sched_save_vsi_bw - save VSI node's BW information
3036  * @pi: port information structure
3037  * @vsi_handle: sw VSI handle
3038  * @tc: traffic class
3039  * @rl_type: rate limit type min, max, or shared
3040  * @bw: bandwidth in Kbps - Kilo bits per sec
3041  *
3042  * Save BW information of VSI type node for post replay use.
3043  */
3044 static int
3045 ice_sched_save_vsi_bw(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3046 		      enum ice_rl_type rl_type, u32 bw)
3047 {
3048 	struct ice_vsi_ctx *vsi_ctx;
3049 
3050 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3051 		return -EINVAL;
3052 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
3053 	if (!vsi_ctx)
3054 		return -EINVAL;
3055 	switch (rl_type) {
3056 	case ICE_MIN_BW:
3057 		ice_set_clear_cir_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3058 		break;
3059 	case ICE_MAX_BW:
3060 		ice_set_clear_eir_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3061 		break;
3062 	case ICE_SHARED_BW:
3063 		ice_set_clear_shared_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3064 		break;
3065 	default:
3066 		return -EINVAL;
3067 	}
3068 	return 0;
3069 }
3070 
3071 /**
3072  * ice_sched_calc_wakeup - calculate RL profile wakeup parameter
3073  * @hw: pointer to the HW struct
3074  * @bw: bandwidth in Kbps
3075  *
3076  * This function calculates the wakeup parameter of RL profile.
3077  */
3078 static u16 ice_sched_calc_wakeup(struct ice_hw *hw, s32 bw)
3079 {
3080 	s64 bytes_per_sec, wakeup_int, wakeup_a, wakeup_b, wakeup_f;
3081 	s32 wakeup_f_int;
3082 	u16 wakeup = 0;
3083 
3084 	/* Get the wakeup integer value */
3085 	bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE);
3086 	wakeup_int = div64_long(hw->psm_clk_freq, bytes_per_sec);
3087 	if (wakeup_int > 63) {
3088 		wakeup = (u16)((1 << 15) | wakeup_int);
3089 	} else {
3090 		/* Calculate fraction value up to 4 decimals
3091 		 * Convert Integer value to a constant multiplier
3092 		 */
3093 		wakeup_b = (s64)ICE_RL_PROF_MULTIPLIER * wakeup_int;
3094 		wakeup_a = div64_long((s64)ICE_RL_PROF_MULTIPLIER *
3095 					   hw->psm_clk_freq, bytes_per_sec);
3096 
3097 		/* Get Fraction value */
3098 		wakeup_f = wakeup_a - wakeup_b;
3099 
3100 		/* Round up the Fractional value via Ceil(Fractional value) */
3101 		if (wakeup_f > div64_long(ICE_RL_PROF_MULTIPLIER, 2))
3102 			wakeup_f += 1;
3103 
3104 		wakeup_f_int = (s32)div64_long(wakeup_f * ICE_RL_PROF_FRACTION,
3105 					       ICE_RL_PROF_MULTIPLIER);
3106 		wakeup |= (u16)(wakeup_int << 9);
3107 		wakeup |= (u16)(0x1ff & wakeup_f_int);
3108 	}
3109 
3110 	return wakeup;
3111 }
3112 
3113 /**
3114  * ice_sched_bw_to_rl_profile - convert BW to profile parameters
3115  * @hw: pointer to the HW struct
3116  * @bw: bandwidth in Kbps
3117  * @profile: profile parameters to return
3118  *
3119  * This function converts the BW to profile structure format.
3120  */
3121 static int
3122 ice_sched_bw_to_rl_profile(struct ice_hw *hw, u32 bw,
3123 			   struct ice_aqc_rl_profile_elem *profile)
3124 {
3125 	s64 bytes_per_sec, ts_rate, mv_tmp;
3126 	int status = -EINVAL;
3127 	bool found = false;
3128 	s32 encode = 0;
3129 	s64 mv = 0;
3130 	s32 i;
3131 
3132 	/* Bw settings range is from 0.5Mb/sec to 100Gb/sec */
3133 	if (bw < ICE_SCHED_MIN_BW || bw > ICE_SCHED_MAX_BW)
3134 		return status;
3135 
3136 	/* Bytes per second from Kbps */
3137 	bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE);
3138 
3139 	/* encode is 6 bits but really useful are 5 bits */
3140 	for (i = 0; i < 64; i++) {
3141 		u64 pow_result = BIT_ULL(i);
3142 
3143 		ts_rate = div64_long((s64)hw->psm_clk_freq,
3144 				     pow_result * ICE_RL_PROF_TS_MULTIPLIER);
3145 		if (ts_rate <= 0)
3146 			continue;
3147 
3148 		/* Multiplier value */
3149 		mv_tmp = div64_long(bytes_per_sec * ICE_RL_PROF_MULTIPLIER,
3150 				    ts_rate);
3151 
3152 		/* Round to the nearest ICE_RL_PROF_MULTIPLIER */
3153 		mv = round_up_64bit(mv_tmp, ICE_RL_PROF_MULTIPLIER);
3154 
3155 		/* First multiplier value greater than the given
3156 		 * accuracy bytes
3157 		 */
3158 		if (mv > ICE_RL_PROF_ACCURACY_BYTES) {
3159 			encode = i;
3160 			found = true;
3161 			break;
3162 		}
3163 	}
3164 	if (found) {
3165 		u16 wm;
3166 
3167 		wm = ice_sched_calc_wakeup(hw, bw);
3168 		profile->rl_multiply = cpu_to_le16(mv);
3169 		profile->wake_up_calc = cpu_to_le16(wm);
3170 		profile->rl_encode = cpu_to_le16(encode);
3171 		status = 0;
3172 	} else {
3173 		status = -ENOENT;
3174 	}
3175 
3176 	return status;
3177 }
3178 
3179 /**
3180  * ice_sched_add_rl_profile - add RL profile
3181  * @pi: port information structure
3182  * @rl_type: type of rate limit BW - min, max, or shared
3183  * @bw: bandwidth in Kbps - Kilo bits per sec
3184  * @layer_num: specifies in which layer to create profile
3185  *
3186  * This function first checks the existing list for corresponding BW
3187  * parameter. If it exists, it returns the associated profile otherwise
3188  * it creates a new rate limit profile for requested BW, and adds it to
3189  * the HW DB and local list. It returns the new profile or null on error.
3190  * The caller needs to hold the scheduler lock.
3191  */
3192 static struct ice_aqc_rl_profile_info *
3193 ice_sched_add_rl_profile(struct ice_port_info *pi,
3194 			 enum ice_rl_type rl_type, u32 bw, u8 layer_num)
3195 {
3196 	struct ice_aqc_rl_profile_info *rl_prof_elem;
3197 	u16 profiles_added = 0, num_profiles = 1;
3198 	struct ice_aqc_rl_profile_elem *buf;
3199 	struct ice_hw *hw;
3200 	u8 profile_type;
3201 	int status;
3202 
3203 	if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM)
3204 		return NULL;
3205 	switch (rl_type) {
3206 	case ICE_MIN_BW:
3207 		profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
3208 		break;
3209 	case ICE_MAX_BW:
3210 		profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
3211 		break;
3212 	case ICE_SHARED_BW:
3213 		profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
3214 		break;
3215 	default:
3216 		return NULL;
3217 	}
3218 
3219 	if (!pi)
3220 		return NULL;
3221 	hw = pi->hw;
3222 	list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num],
3223 			    list_entry)
3224 		if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
3225 		    profile_type && rl_prof_elem->bw == bw)
3226 			/* Return existing profile ID info */
3227 			return rl_prof_elem;
3228 
3229 	/* Create new profile ID */
3230 	rl_prof_elem = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rl_prof_elem),
3231 				    GFP_KERNEL);
3232 
3233 	if (!rl_prof_elem)
3234 		return NULL;
3235 
3236 	status = ice_sched_bw_to_rl_profile(hw, bw, &rl_prof_elem->profile);
3237 	if (status)
3238 		goto exit_add_rl_prof;
3239 
3240 	rl_prof_elem->bw = bw;
3241 	/* layer_num is zero relative, and fw expects level from 1 to 9 */
3242 	rl_prof_elem->profile.level = layer_num + 1;
3243 	rl_prof_elem->profile.flags = profile_type;
3244 	rl_prof_elem->profile.max_burst_size = cpu_to_le16(hw->max_burst_size);
3245 
3246 	/* Create new entry in HW DB */
3247 	buf = &rl_prof_elem->profile;
3248 	status = ice_aq_add_rl_profile(hw, num_profiles, buf, sizeof(*buf),
3249 				       &profiles_added, NULL);
3250 	if (status || profiles_added != num_profiles)
3251 		goto exit_add_rl_prof;
3252 
3253 	/* Good entry - add in the list */
3254 	rl_prof_elem->prof_id_ref = 0;
3255 	list_add(&rl_prof_elem->list_entry, &pi->rl_prof_list[layer_num]);
3256 	return rl_prof_elem;
3257 
3258 exit_add_rl_prof:
3259 	devm_kfree(ice_hw_to_dev(hw), rl_prof_elem);
3260 	return NULL;
3261 }
3262 
3263 /**
3264  * ice_sched_cfg_node_bw_lmt - configure node sched params
3265  * @hw: pointer to the HW struct
3266  * @node: sched node to configure
3267  * @rl_type: rate limit type CIR, EIR, or shared
3268  * @rl_prof_id: rate limit profile ID
3269  *
3270  * This function configures node element's BW limit.
3271  */
3272 static int
3273 ice_sched_cfg_node_bw_lmt(struct ice_hw *hw, struct ice_sched_node *node,
3274 			  enum ice_rl_type rl_type, u16 rl_prof_id)
3275 {
3276 	struct ice_aqc_txsched_elem_data buf;
3277 	struct ice_aqc_txsched_elem *data;
3278 
3279 	buf = node->info;
3280 	data = &buf.data;
3281 	switch (rl_type) {
3282 	case ICE_MIN_BW:
3283 		data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
3284 		data->cir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id);
3285 		break;
3286 	case ICE_MAX_BW:
3287 		/* EIR BW and Shared BW profiles are mutually exclusive and
3288 		 * hence only one of them may be set for any given element
3289 		 */
3290 		if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
3291 			return -EIO;
3292 		data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
3293 		data->eir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id);
3294 		break;
3295 	case ICE_SHARED_BW:
3296 		/* Check for removing shared BW */
3297 		if (rl_prof_id == ICE_SCHED_NO_SHARED_RL_PROF_ID) {
3298 			/* remove shared profile */
3299 			data->valid_sections &= ~ICE_AQC_ELEM_VALID_SHARED;
3300 			data->srl_id = 0; /* clear SRL field */
3301 
3302 			/* enable back EIR to default profile */
3303 			data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
3304 			data->eir_bw.bw_profile_idx =
3305 				cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
3306 			break;
3307 		}
3308 		/* EIR BW and Shared BW profiles are mutually exclusive and
3309 		 * hence only one of them may be set for any given element
3310 		 */
3311 		if ((data->valid_sections & ICE_AQC_ELEM_VALID_EIR) &&
3312 		    (le16_to_cpu(data->eir_bw.bw_profile_idx) !=
3313 			    ICE_SCHED_DFLT_RL_PROF_ID))
3314 			return -EIO;
3315 		/* EIR BW is set to default, disable it */
3316 		data->valid_sections &= ~ICE_AQC_ELEM_VALID_EIR;
3317 		/* Okay to enable shared BW now */
3318 		data->valid_sections |= ICE_AQC_ELEM_VALID_SHARED;
3319 		data->srl_id = cpu_to_le16(rl_prof_id);
3320 		break;
3321 	default:
3322 		/* Unknown rate limit type */
3323 		return -EINVAL;
3324 	}
3325 
3326 	/* Configure element */
3327 	return ice_sched_update_elem(hw, node, &buf);
3328 }
3329 
3330 /**
3331  * ice_sched_get_node_rl_prof_id - get node's rate limit profile ID
3332  * @node: sched node
3333  * @rl_type: rate limit type
3334  *
3335  * If existing profile matches, it returns the corresponding rate
3336  * limit profile ID, otherwise it returns an invalid ID as error.
3337  */
3338 static u16
3339 ice_sched_get_node_rl_prof_id(struct ice_sched_node *node,
3340 			      enum ice_rl_type rl_type)
3341 {
3342 	u16 rl_prof_id = ICE_SCHED_INVAL_PROF_ID;
3343 	struct ice_aqc_txsched_elem *data;
3344 
3345 	data = &node->info.data;
3346 	switch (rl_type) {
3347 	case ICE_MIN_BW:
3348 		if (data->valid_sections & ICE_AQC_ELEM_VALID_CIR)
3349 			rl_prof_id = le16_to_cpu(data->cir_bw.bw_profile_idx);
3350 		break;
3351 	case ICE_MAX_BW:
3352 		if (data->valid_sections & ICE_AQC_ELEM_VALID_EIR)
3353 			rl_prof_id = le16_to_cpu(data->eir_bw.bw_profile_idx);
3354 		break;
3355 	case ICE_SHARED_BW:
3356 		if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
3357 			rl_prof_id = le16_to_cpu(data->srl_id);
3358 		break;
3359 	default:
3360 		break;
3361 	}
3362 
3363 	return rl_prof_id;
3364 }
3365 
3366 /**
3367  * ice_sched_get_rl_prof_layer - selects rate limit profile creation layer
3368  * @pi: port information structure
3369  * @rl_type: type of rate limit BW - min, max, or shared
3370  * @layer_index: layer index
3371  *
3372  * This function returns requested profile creation layer.
3373  */
3374 static u8
3375 ice_sched_get_rl_prof_layer(struct ice_port_info *pi, enum ice_rl_type rl_type,
3376 			    u8 layer_index)
3377 {
3378 	struct ice_hw *hw = pi->hw;
3379 
3380 	if (layer_index >= hw->num_tx_sched_layers)
3381 		return ICE_SCHED_INVAL_LAYER_NUM;
3382 	switch (rl_type) {
3383 	case ICE_MIN_BW:
3384 		if (hw->layer_info[layer_index].max_cir_rl_profiles)
3385 			return layer_index;
3386 		break;
3387 	case ICE_MAX_BW:
3388 		if (hw->layer_info[layer_index].max_eir_rl_profiles)
3389 			return layer_index;
3390 		break;
3391 	case ICE_SHARED_BW:
3392 		/* if current layer doesn't support SRL profile creation
3393 		 * then try a layer up or down.
3394 		 */
3395 		if (hw->layer_info[layer_index].max_srl_profiles)
3396 			return layer_index;
3397 		else if (layer_index < hw->num_tx_sched_layers - 1 &&
3398 			 hw->layer_info[layer_index + 1].max_srl_profiles)
3399 			return layer_index + 1;
3400 		else if (layer_index > 0 &&
3401 			 hw->layer_info[layer_index - 1].max_srl_profiles)
3402 			return layer_index - 1;
3403 		break;
3404 	default:
3405 		break;
3406 	}
3407 	return ICE_SCHED_INVAL_LAYER_NUM;
3408 }
3409 
3410 /**
3411  * ice_sched_get_srl_node - get shared rate limit node
3412  * @node: tree node
3413  * @srl_layer: shared rate limit layer
3414  *
3415  * This function returns SRL node to be used for shared rate limit purpose.
3416  * The caller needs to hold scheduler lock.
3417  */
3418 static struct ice_sched_node *
3419 ice_sched_get_srl_node(struct ice_sched_node *node, u8 srl_layer)
3420 {
3421 	if (srl_layer > node->tx_sched_layer)
3422 		return node->children[0];
3423 	else if (srl_layer < node->tx_sched_layer)
3424 		/* Node can't be created without a parent. It will always
3425 		 * have a valid parent except root node.
3426 		 */
3427 		return node->parent;
3428 	else
3429 		return node;
3430 }
3431 
3432 /**
3433  * ice_sched_rm_rl_profile - remove RL profile ID
3434  * @pi: port information structure
3435  * @layer_num: layer number where profiles are saved
3436  * @profile_type: profile type like EIR, CIR, or SRL
3437  * @profile_id: profile ID to remove
3438  *
3439  * This function removes rate limit profile from layer 'layer_num' of type
3440  * 'profile_type' and profile ID as 'profile_id'. The caller needs to hold
3441  * scheduler lock.
3442  */
3443 static int
3444 ice_sched_rm_rl_profile(struct ice_port_info *pi, u8 layer_num, u8 profile_type,
3445 			u16 profile_id)
3446 {
3447 	struct ice_aqc_rl_profile_info *rl_prof_elem;
3448 	int status = 0;
3449 
3450 	if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM)
3451 		return -EINVAL;
3452 	/* Check the existing list for RL profile */
3453 	list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num],
3454 			    list_entry)
3455 		if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
3456 		    profile_type &&
3457 		    le16_to_cpu(rl_prof_elem->profile.profile_id) ==
3458 		    profile_id) {
3459 			if (rl_prof_elem->prof_id_ref)
3460 				rl_prof_elem->prof_id_ref--;
3461 
3462 			/* Remove old profile ID from database */
3463 			status = ice_sched_del_rl_profile(pi->hw, rl_prof_elem);
3464 			if (status && status != -EBUSY)
3465 				ice_debug(pi->hw, ICE_DBG_SCHED, "Remove rl profile failed\n");
3466 			break;
3467 		}
3468 	if (status == -EBUSY)
3469 		status = 0;
3470 	return status;
3471 }
3472 
3473 /**
3474  * ice_sched_set_node_bw_dflt - set node's bandwidth limit to default
3475  * @pi: port information structure
3476  * @node: pointer to node structure
3477  * @rl_type: rate limit type min, max, or shared
3478  * @layer_num: layer number where RL profiles are saved
3479  *
3480  * This function configures node element's BW rate limit profile ID of
3481  * type CIR, EIR, or SRL to default. This function needs to be called
3482  * with the scheduler lock held.
3483  */
3484 static int
3485 ice_sched_set_node_bw_dflt(struct ice_port_info *pi,
3486 			   struct ice_sched_node *node,
3487 			   enum ice_rl_type rl_type, u8 layer_num)
3488 {
3489 	struct ice_hw *hw;
3490 	u8 profile_type;
3491 	u16 rl_prof_id;
3492 	u16 old_id;
3493 	int status;
3494 
3495 	hw = pi->hw;
3496 	switch (rl_type) {
3497 	case ICE_MIN_BW:
3498 		profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
3499 		rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
3500 		break;
3501 	case ICE_MAX_BW:
3502 		profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
3503 		rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
3504 		break;
3505 	case ICE_SHARED_BW:
3506 		profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
3507 		/* No SRL is configured for default case */
3508 		rl_prof_id = ICE_SCHED_NO_SHARED_RL_PROF_ID;
3509 		break;
3510 	default:
3511 		return -EINVAL;
3512 	}
3513 	/* Save existing RL prof ID for later clean up */
3514 	old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
3515 	/* Configure BW scheduling parameters */
3516 	status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
3517 	if (status)
3518 		return status;
3519 
3520 	/* Remove stale RL profile ID */
3521 	if (old_id == ICE_SCHED_DFLT_RL_PROF_ID ||
3522 	    old_id == ICE_SCHED_INVAL_PROF_ID)
3523 		return 0;
3524 
3525 	return ice_sched_rm_rl_profile(pi, layer_num, profile_type, old_id);
3526 }
3527 
3528 /**
3529  * ice_sched_set_eir_srl_excl - set EIR/SRL exclusiveness
3530  * @pi: port information structure
3531  * @node: pointer to node structure
3532  * @layer_num: layer number where rate limit profiles are saved
3533  * @rl_type: rate limit type min, max, or shared
3534  * @bw: bandwidth value
3535  *
3536  * This function prepares node element's bandwidth to SRL or EIR exclusively.
3537  * EIR BW and Shared BW profiles are mutually exclusive and hence only one of
3538  * them may be set for any given element. This function needs to be called
3539  * with the scheduler lock held.
3540  */
3541 static int
3542 ice_sched_set_eir_srl_excl(struct ice_port_info *pi,
3543 			   struct ice_sched_node *node,
3544 			   u8 layer_num, enum ice_rl_type rl_type, u32 bw)
3545 {
3546 	if (rl_type == ICE_SHARED_BW) {
3547 		/* SRL node passed in this case, it may be different node */
3548 		if (bw == ICE_SCHED_DFLT_BW)
3549 			/* SRL being removed, ice_sched_cfg_node_bw_lmt()
3550 			 * enables EIR to default. EIR is not set in this
3551 			 * case, so no additional action is required.
3552 			 */
3553 			return 0;
3554 
3555 		/* SRL being configured, set EIR to default here.
3556 		 * ice_sched_cfg_node_bw_lmt() disables EIR when it
3557 		 * configures SRL
3558 		 */
3559 		return ice_sched_set_node_bw_dflt(pi, node, ICE_MAX_BW,
3560 						  layer_num);
3561 	} else if (rl_type == ICE_MAX_BW &&
3562 		   node->info.data.valid_sections & ICE_AQC_ELEM_VALID_SHARED) {
3563 		/* Remove Shared profile. Set default shared BW call
3564 		 * removes shared profile for a node.
3565 		 */
3566 		return ice_sched_set_node_bw_dflt(pi, node,
3567 						  ICE_SHARED_BW,
3568 						  layer_num);
3569 	}
3570 	return 0;
3571 }
3572 
3573 /**
3574  * ice_sched_set_node_bw - set node's bandwidth
3575  * @pi: port information structure
3576  * @node: tree node
3577  * @rl_type: rate limit type min, max, or shared
3578  * @bw: bandwidth in Kbps - Kilo bits per sec
3579  * @layer_num: layer number
3580  *
3581  * This function adds new profile corresponding to requested BW, configures
3582  * node's RL profile ID of type CIR, EIR, or SRL, and removes old profile
3583  * ID from local database. The caller needs to hold scheduler lock.
3584  */
3585 int
3586 ice_sched_set_node_bw(struct ice_port_info *pi, struct ice_sched_node *node,
3587 		      enum ice_rl_type rl_type, u32 bw, u8 layer_num)
3588 {
3589 	struct ice_aqc_rl_profile_info *rl_prof_info;
3590 	struct ice_hw *hw = pi->hw;
3591 	u16 old_id, rl_prof_id;
3592 	int status = -EINVAL;
3593 
3594 	rl_prof_info = ice_sched_add_rl_profile(pi, rl_type, bw, layer_num);
3595 	if (!rl_prof_info)
3596 		return status;
3597 
3598 	rl_prof_id = le16_to_cpu(rl_prof_info->profile.profile_id);
3599 
3600 	/* Save existing RL prof ID for later clean up */
3601 	old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
3602 	/* Configure BW scheduling parameters */
3603 	status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
3604 	if (status)
3605 		return status;
3606 
3607 	/* New changes has been applied */
3608 	/* Increment the profile ID reference count */
3609 	rl_prof_info->prof_id_ref++;
3610 
3611 	/* Check for old ID removal */
3612 	if ((old_id == ICE_SCHED_DFLT_RL_PROF_ID && rl_type != ICE_SHARED_BW) ||
3613 	    old_id == ICE_SCHED_INVAL_PROF_ID || old_id == rl_prof_id)
3614 		return 0;
3615 
3616 	return ice_sched_rm_rl_profile(pi, layer_num,
3617 				       rl_prof_info->profile.flags &
3618 				       ICE_AQC_RL_PROFILE_TYPE_M, old_id);
3619 }
3620 
3621 /**
3622  * ice_sched_set_node_priority - set node's priority
3623  * @pi: port information structure
3624  * @node: tree node
3625  * @priority: number 0-7 representing priority among siblings
3626  *
3627  * This function sets priority of a node among it's siblings.
3628  */
3629 int
3630 ice_sched_set_node_priority(struct ice_port_info *pi, struct ice_sched_node *node,
3631 			    u16 priority)
3632 {
3633 	struct ice_aqc_txsched_elem_data buf;
3634 	struct ice_aqc_txsched_elem *data;
3635 
3636 	buf = node->info;
3637 	data = &buf.data;
3638 
3639 	data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
3640 	data->generic |= FIELD_PREP(ICE_AQC_ELEM_GENERIC_PRIO_M, priority);
3641 
3642 	return ice_sched_update_elem(pi->hw, node, &buf);
3643 }
3644 
3645 /**
3646  * ice_sched_set_node_weight - set node's weight
3647  * @pi: port information structure
3648  * @node: tree node
3649  * @weight: number 1-200 representing weight for WFQ
3650  *
3651  * This function sets weight of the node for WFQ algorithm.
3652  */
3653 int
3654 ice_sched_set_node_weight(struct ice_port_info *pi, struct ice_sched_node *node, u16 weight)
3655 {
3656 	struct ice_aqc_txsched_elem_data buf;
3657 	struct ice_aqc_txsched_elem *data;
3658 
3659 	buf = node->info;
3660 	data = &buf.data;
3661 
3662 	data->valid_sections = ICE_AQC_ELEM_VALID_CIR | ICE_AQC_ELEM_VALID_EIR |
3663 			       ICE_AQC_ELEM_VALID_GENERIC;
3664 	data->cir_bw.bw_alloc = cpu_to_le16(weight);
3665 	data->eir_bw.bw_alloc = cpu_to_le16(weight);
3666 
3667 	data->generic |= FIELD_PREP(ICE_AQC_ELEM_GENERIC_SP_M, 0x0);
3668 
3669 	return ice_sched_update_elem(pi->hw, node, &buf);
3670 }
3671 
3672 /**
3673  * ice_sched_set_node_bw_lmt - set node's BW limit
3674  * @pi: port information structure
3675  * @node: tree node
3676  * @rl_type: rate limit type min, max, or shared
3677  * @bw: bandwidth in Kbps - Kilo bits per sec
3678  *
3679  * It updates node's BW limit parameters like BW RL profile ID of type CIR,
3680  * EIR, or SRL. The caller needs to hold scheduler lock.
3681  */
3682 int
3683 ice_sched_set_node_bw_lmt(struct ice_port_info *pi, struct ice_sched_node *node,
3684 			  enum ice_rl_type rl_type, u32 bw)
3685 {
3686 	struct ice_sched_node *cfg_node = node;
3687 	int status;
3688 
3689 	struct ice_hw *hw;
3690 	u8 layer_num;
3691 
3692 	if (!pi)
3693 		return -EINVAL;
3694 	hw = pi->hw;
3695 	/* Remove unused RL profile IDs from HW and SW DB */
3696 	ice_sched_rm_unused_rl_prof(pi);
3697 	layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
3698 						node->tx_sched_layer);
3699 	if (layer_num >= hw->num_tx_sched_layers)
3700 		return -EINVAL;
3701 
3702 	if (rl_type == ICE_SHARED_BW) {
3703 		/* SRL node may be different */
3704 		cfg_node = ice_sched_get_srl_node(node, layer_num);
3705 		if (!cfg_node)
3706 			return -EIO;
3707 	}
3708 	/* EIR BW and Shared BW profiles are mutually exclusive and
3709 	 * hence only one of them may be set for any given element
3710 	 */
3711 	status = ice_sched_set_eir_srl_excl(pi, cfg_node, layer_num, rl_type,
3712 					    bw);
3713 	if (status)
3714 		return status;
3715 	if (bw == ICE_SCHED_DFLT_BW)
3716 		return ice_sched_set_node_bw_dflt(pi, cfg_node, rl_type,
3717 						  layer_num);
3718 	return ice_sched_set_node_bw(pi, cfg_node, rl_type, bw, layer_num);
3719 }
3720 
3721 /**
3722  * ice_sched_set_node_bw_dflt_lmt - set node's BW limit to default
3723  * @pi: port information structure
3724  * @node: pointer to node structure
3725  * @rl_type: rate limit type min, max, or shared
3726  *
3727  * This function configures node element's BW rate limit profile ID of
3728  * type CIR, EIR, or SRL to default. This function needs to be called
3729  * with the scheduler lock held.
3730  */
3731 static int
3732 ice_sched_set_node_bw_dflt_lmt(struct ice_port_info *pi,
3733 			       struct ice_sched_node *node,
3734 			       enum ice_rl_type rl_type)
3735 {
3736 	return ice_sched_set_node_bw_lmt(pi, node, rl_type,
3737 					 ICE_SCHED_DFLT_BW);
3738 }
3739 
3740 /**
3741  * ice_sched_validate_srl_node - Check node for SRL applicability
3742  * @node: sched node to configure
3743  * @sel_layer: selected SRL layer
3744  *
3745  * This function checks if the SRL can be applied to a selected layer node on
3746  * behalf of the requested node (first argument). This function needs to be
3747  * called with scheduler lock held.
3748  */
3749 static int
3750 ice_sched_validate_srl_node(struct ice_sched_node *node, u8 sel_layer)
3751 {
3752 	/* SRL profiles are not available on all layers. Check if the
3753 	 * SRL profile can be applied to a node above or below the
3754 	 * requested node. SRL configuration is possible only if the
3755 	 * selected layer's node has single child.
3756 	 */
3757 	if (sel_layer == node->tx_sched_layer ||
3758 	    ((sel_layer == node->tx_sched_layer + 1) &&
3759 	    node->num_children == 1) ||
3760 	    ((sel_layer == node->tx_sched_layer - 1) &&
3761 	    (node->parent && node->parent->num_children == 1)))
3762 		return 0;
3763 
3764 	return -EIO;
3765 }
3766 
3767 /**
3768  * ice_sched_save_q_bw - save queue node's BW information
3769  * @q_ctx: queue context structure
3770  * @rl_type: rate limit type min, max, or shared
3771  * @bw: bandwidth in Kbps - Kilo bits per sec
3772  *
3773  * Save BW information of queue type node for post replay use.
3774  */
3775 static int
3776 ice_sched_save_q_bw(struct ice_q_ctx *q_ctx, enum ice_rl_type rl_type, u32 bw)
3777 {
3778 	switch (rl_type) {
3779 	case ICE_MIN_BW:
3780 		ice_set_clear_cir_bw(&q_ctx->bw_t_info, bw);
3781 		break;
3782 	case ICE_MAX_BW:
3783 		ice_set_clear_eir_bw(&q_ctx->bw_t_info, bw);
3784 		break;
3785 	case ICE_SHARED_BW:
3786 		ice_set_clear_shared_bw(&q_ctx->bw_t_info, bw);
3787 		break;
3788 	default:
3789 		return -EINVAL;
3790 	}
3791 	return 0;
3792 }
3793 
3794 /**
3795  * ice_sched_set_q_bw_lmt - sets queue BW limit
3796  * @pi: port information structure
3797  * @vsi_handle: sw VSI handle
3798  * @tc: traffic class
3799  * @q_handle: software queue handle
3800  * @rl_type: min, max, or shared
3801  * @bw: bandwidth in Kbps
3802  *
3803  * This function sets BW limit of queue scheduling node.
3804  */
3805 static int
3806 ice_sched_set_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3807 		       u16 q_handle, enum ice_rl_type rl_type, u32 bw)
3808 {
3809 	struct ice_sched_node *node;
3810 	struct ice_q_ctx *q_ctx;
3811 	int status = -EINVAL;
3812 
3813 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3814 		return -EINVAL;
3815 	mutex_lock(&pi->sched_lock);
3816 	q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handle);
3817 	if (!q_ctx)
3818 		goto exit_q_bw_lmt;
3819 	node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
3820 	if (!node) {
3821 		ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong q_teid\n");
3822 		goto exit_q_bw_lmt;
3823 	}
3824 
3825 	/* Return error if it is not a leaf node */
3826 	if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF)
3827 		goto exit_q_bw_lmt;
3828 
3829 	/* SRL bandwidth layer selection */
3830 	if (rl_type == ICE_SHARED_BW) {
3831 		u8 sel_layer; /* selected layer */
3832 
3833 		sel_layer = ice_sched_get_rl_prof_layer(pi, rl_type,
3834 							node->tx_sched_layer);
3835 		if (sel_layer >= pi->hw->num_tx_sched_layers) {
3836 			status = -EINVAL;
3837 			goto exit_q_bw_lmt;
3838 		}
3839 		status = ice_sched_validate_srl_node(node, sel_layer);
3840 		if (status)
3841 			goto exit_q_bw_lmt;
3842 	}
3843 
3844 	if (bw == ICE_SCHED_DFLT_BW)
3845 		status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
3846 	else
3847 		status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
3848 
3849 	if (!status)
3850 		status = ice_sched_save_q_bw(q_ctx, rl_type, bw);
3851 
3852 exit_q_bw_lmt:
3853 	mutex_unlock(&pi->sched_lock);
3854 	return status;
3855 }
3856 
3857 /**
3858  * ice_cfg_q_bw_lmt - configure queue BW limit
3859  * @pi: port information structure
3860  * @vsi_handle: sw VSI handle
3861  * @tc: traffic class
3862  * @q_handle: software queue handle
3863  * @rl_type: min, max, or shared
3864  * @bw: bandwidth in Kbps
3865  *
3866  * This function configures BW limit of queue scheduling node.
3867  */
3868 int
3869 ice_cfg_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3870 		 u16 q_handle, enum ice_rl_type rl_type, u32 bw)
3871 {
3872 	return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
3873 				      bw);
3874 }
3875 
3876 /**
3877  * ice_cfg_q_bw_dflt_lmt - configure queue BW default limit
3878  * @pi: port information structure
3879  * @vsi_handle: sw VSI handle
3880  * @tc: traffic class
3881  * @q_handle: software queue handle
3882  * @rl_type: min, max, or shared
3883  *
3884  * This function configures BW default limit of queue scheduling node.
3885  */
3886 int
3887 ice_cfg_q_bw_dflt_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3888 		      u16 q_handle, enum ice_rl_type rl_type)
3889 {
3890 	return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
3891 				      ICE_SCHED_DFLT_BW);
3892 }
3893 
3894 /**
3895  * ice_sched_get_node_by_id_type - get node from ID type
3896  * @pi: port information structure
3897  * @id: identifier
3898  * @agg_type: type of aggregator
3899  * @tc: traffic class
3900  *
3901  * This function returns node identified by ID of type aggregator, and
3902  * based on traffic class (TC). This function needs to be called with
3903  * the scheduler lock held.
3904  */
3905 static struct ice_sched_node *
3906 ice_sched_get_node_by_id_type(struct ice_port_info *pi, u32 id,
3907 			      enum ice_agg_type agg_type, u8 tc)
3908 {
3909 	struct ice_sched_node *node = NULL;
3910 
3911 	switch (agg_type) {
3912 	case ICE_AGG_TYPE_VSI: {
3913 		struct ice_vsi_ctx *vsi_ctx;
3914 		u16 vsi_handle = (u16)id;
3915 
3916 		if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3917 			break;
3918 		/* Get sched_vsi_info */
3919 		vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
3920 		if (!vsi_ctx)
3921 			break;
3922 		node = vsi_ctx->sched.vsi_node[tc];
3923 		break;
3924 	}
3925 
3926 	case ICE_AGG_TYPE_AGG: {
3927 		struct ice_sched_node *tc_node;
3928 
3929 		tc_node = ice_sched_get_tc_node(pi, tc);
3930 		if (tc_node)
3931 			node = ice_sched_get_agg_node(pi, tc_node, id);
3932 		break;
3933 	}
3934 
3935 	default:
3936 		break;
3937 	}
3938 
3939 	return node;
3940 }
3941 
3942 /**
3943  * ice_sched_set_node_bw_lmt_per_tc - set node BW limit per TC
3944  * @pi: port information structure
3945  * @id: ID (software VSI handle or AGG ID)
3946  * @agg_type: aggregator type (VSI or AGG type node)
3947  * @tc: traffic class
3948  * @rl_type: min or max
3949  * @bw: bandwidth in Kbps
3950  *
3951  * This function sets BW limit of VSI or Aggregator scheduling node
3952  * based on TC information from passed in argument BW.
3953  */
3954 static int
3955 ice_sched_set_node_bw_lmt_per_tc(struct ice_port_info *pi, u32 id,
3956 				 enum ice_agg_type agg_type, u8 tc,
3957 				 enum ice_rl_type rl_type, u32 bw)
3958 {
3959 	struct ice_sched_node *node;
3960 	int status = -EINVAL;
3961 
3962 	if (!pi)
3963 		return status;
3964 
3965 	if (rl_type == ICE_UNKNOWN_BW)
3966 		return status;
3967 
3968 	mutex_lock(&pi->sched_lock);
3969 	node = ice_sched_get_node_by_id_type(pi, id, agg_type, tc);
3970 	if (!node) {
3971 		ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong id, agg type, or tc\n");
3972 		goto exit_set_node_bw_lmt_per_tc;
3973 	}
3974 	if (bw == ICE_SCHED_DFLT_BW)
3975 		status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
3976 	else
3977 		status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
3978 
3979 exit_set_node_bw_lmt_per_tc:
3980 	mutex_unlock(&pi->sched_lock);
3981 	return status;
3982 }
3983 
3984 /**
3985  * ice_cfg_vsi_bw_lmt_per_tc - configure VSI BW limit per TC
3986  * @pi: port information structure
3987  * @vsi_handle: software VSI handle
3988  * @tc: traffic class
3989  * @rl_type: min or max
3990  * @bw: bandwidth in Kbps
3991  *
3992  * This function configures BW limit of VSI scheduling node based on TC
3993  * information.
3994  */
3995 int
3996 ice_cfg_vsi_bw_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3997 			  enum ice_rl_type rl_type, u32 bw)
3998 {
3999 	int status;
4000 
4001 	status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle,
4002 						  ICE_AGG_TYPE_VSI,
4003 						  tc, rl_type, bw);
4004 	if (!status) {
4005 		mutex_lock(&pi->sched_lock);
4006 		status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type, bw);
4007 		mutex_unlock(&pi->sched_lock);
4008 	}
4009 	return status;
4010 }
4011 
4012 /**
4013  * ice_cfg_vsi_bw_dflt_lmt_per_tc - configure default VSI BW limit per TC
4014  * @pi: port information structure
4015  * @vsi_handle: software VSI handle
4016  * @tc: traffic class
4017  * @rl_type: min or max
4018  *
4019  * This function configures default BW limit of VSI scheduling node based on TC
4020  * information.
4021  */
4022 int
4023 ice_cfg_vsi_bw_dflt_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4024 			       enum ice_rl_type rl_type)
4025 {
4026 	int status;
4027 
4028 	status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle,
4029 						  ICE_AGG_TYPE_VSI,
4030 						  tc, rl_type,
4031 						  ICE_SCHED_DFLT_BW);
4032 	if (!status) {
4033 		mutex_lock(&pi->sched_lock);
4034 		status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type,
4035 					       ICE_SCHED_DFLT_BW);
4036 		mutex_unlock(&pi->sched_lock);
4037 	}
4038 	return status;
4039 }
4040 
4041 /**
4042  * ice_cfg_rl_burst_size - Set burst size value
4043  * @hw: pointer to the HW struct
4044  * @bytes: burst size in bytes
4045  *
4046  * This function configures/set the burst size to requested new value. The new
4047  * burst size value is used for future rate limit calls. It doesn't change the
4048  * existing or previously created RL profiles.
4049  */
4050 int ice_cfg_rl_burst_size(struct ice_hw *hw, u32 bytes)
4051 {
4052 	u16 burst_size_to_prog;
4053 
4054 	if (bytes < ICE_MIN_BURST_SIZE_ALLOWED ||
4055 	    bytes > ICE_MAX_BURST_SIZE_ALLOWED)
4056 		return -EINVAL;
4057 	if (ice_round_to_num(bytes, 64) <=
4058 	    ICE_MAX_BURST_SIZE_64_BYTE_GRANULARITY) {
4059 		/* 64 byte granularity case */
4060 		/* Disable MSB granularity bit */
4061 		burst_size_to_prog = ICE_64_BYTE_GRANULARITY;
4062 		/* round number to nearest 64 byte granularity */
4063 		bytes = ice_round_to_num(bytes, 64);
4064 		/* The value is in 64 byte chunks */
4065 		burst_size_to_prog |= (u16)(bytes / 64);
4066 	} else {
4067 		/* k bytes granularity case */
4068 		/* Enable MSB granularity bit */
4069 		burst_size_to_prog = ICE_KBYTE_GRANULARITY;
4070 		/* round number to nearest 1024 granularity */
4071 		bytes = ice_round_to_num(bytes, 1024);
4072 		/* check rounding doesn't go beyond allowed */
4073 		if (bytes > ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY)
4074 			bytes = ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY;
4075 		/* The value is in k bytes */
4076 		burst_size_to_prog |= (u16)(bytes / 1024);
4077 	}
4078 	hw->max_burst_size = burst_size_to_prog;
4079 	return 0;
4080 }
4081 
4082 /**
4083  * ice_sched_replay_node_prio - re-configure node priority
4084  * @hw: pointer to the HW struct
4085  * @node: sched node to configure
4086  * @priority: priority value
4087  *
4088  * This function configures node element's priority value. It
4089  * needs to be called with scheduler lock held.
4090  */
4091 static int
4092 ice_sched_replay_node_prio(struct ice_hw *hw, struct ice_sched_node *node,
4093 			   u8 priority)
4094 {
4095 	struct ice_aqc_txsched_elem_data buf;
4096 	struct ice_aqc_txsched_elem *data;
4097 	int status;
4098 
4099 	buf = node->info;
4100 	data = &buf.data;
4101 	data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
4102 	data->generic = priority;
4103 
4104 	/* Configure element */
4105 	status = ice_sched_update_elem(hw, node, &buf);
4106 	return status;
4107 }
4108 
4109 /**
4110  * ice_sched_replay_node_bw - replay node(s) BW
4111  * @hw: pointer to the HW struct
4112  * @node: sched node to configure
4113  * @bw_t_info: BW type information
4114  *
4115  * This function restores node's BW from bw_t_info. The caller needs
4116  * to hold the scheduler lock.
4117  */
4118 static int
4119 ice_sched_replay_node_bw(struct ice_hw *hw, struct ice_sched_node *node,
4120 			 struct ice_bw_type_info *bw_t_info)
4121 {
4122 	struct ice_port_info *pi = hw->port_info;
4123 	int status = -EINVAL;
4124 	u16 bw_alloc;
4125 
4126 	if (!node)
4127 		return status;
4128 	if (bitmap_empty(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CNT))
4129 		return 0;
4130 	if (test_bit(ICE_BW_TYPE_PRIO, bw_t_info->bw_t_bitmap)) {
4131 		status = ice_sched_replay_node_prio(hw, node,
4132 						    bw_t_info->generic);
4133 		if (status)
4134 			return status;
4135 	}
4136 	if (test_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap)) {
4137 		status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW,
4138 						   bw_t_info->cir_bw.bw);
4139 		if (status)
4140 			return status;
4141 	}
4142 	if (test_bit(ICE_BW_TYPE_CIR_WT, bw_t_info->bw_t_bitmap)) {
4143 		bw_alloc = bw_t_info->cir_bw.bw_alloc;
4144 		status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MIN_BW,
4145 						     bw_alloc);
4146 		if (status)
4147 			return status;
4148 	}
4149 	if (test_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap)) {
4150 		status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW,
4151 						   bw_t_info->eir_bw.bw);
4152 		if (status)
4153 			return status;
4154 	}
4155 	if (test_bit(ICE_BW_TYPE_EIR_WT, bw_t_info->bw_t_bitmap)) {
4156 		bw_alloc = bw_t_info->eir_bw.bw_alloc;
4157 		status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MAX_BW,
4158 						     bw_alloc);
4159 		if (status)
4160 			return status;
4161 	}
4162 	if (test_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap))
4163 		status = ice_sched_set_node_bw_lmt(pi, node, ICE_SHARED_BW,
4164 						   bw_t_info->shared_bw);
4165 	return status;
4166 }
4167 
4168 /**
4169  * ice_sched_get_ena_tc_bitmap - get enabled TC bitmap
4170  * @pi: port info struct
4171  * @tc_bitmap: 8 bits TC bitmap to check
4172  * @ena_tc_bitmap: 8 bits enabled TC bitmap to return
4173  *
4174  * This function returns enabled TC bitmap in variable ena_tc_bitmap. Some TCs
4175  * may be missing, it returns enabled TCs. This function needs to be called with
4176  * scheduler lock held.
4177  */
4178 static void
4179 ice_sched_get_ena_tc_bitmap(struct ice_port_info *pi,
4180 			    unsigned long *tc_bitmap,
4181 			    unsigned long *ena_tc_bitmap)
4182 {
4183 	u8 tc;
4184 
4185 	/* Some TC(s) may be missing after reset, adjust for replay */
4186 	ice_for_each_traffic_class(tc)
4187 		if (ice_is_tc_ena(*tc_bitmap, tc) &&
4188 		    (ice_sched_get_tc_node(pi, tc)))
4189 			set_bit(tc, ena_tc_bitmap);
4190 }
4191 
4192 /**
4193  * ice_sched_replay_agg - recreate aggregator node(s)
4194  * @hw: pointer to the HW struct
4195  *
4196  * This function recreate aggregator type nodes which are not replayed earlier.
4197  * It also replay aggregator BW information. These aggregator nodes are not
4198  * associated with VSI type node yet.
4199  */
4200 void ice_sched_replay_agg(struct ice_hw *hw)
4201 {
4202 	struct ice_port_info *pi = hw->port_info;
4203 	struct ice_sched_agg_info *agg_info;
4204 
4205 	mutex_lock(&pi->sched_lock);
4206 	list_for_each_entry(agg_info, &hw->agg_list, list_entry)
4207 		/* replay aggregator (re-create aggregator node) */
4208 		if (!bitmap_equal(agg_info->tc_bitmap, agg_info->replay_tc_bitmap,
4209 				  ICE_MAX_TRAFFIC_CLASS)) {
4210 			DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4211 			int status;
4212 
4213 			bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4214 			ice_sched_get_ena_tc_bitmap(pi,
4215 						    agg_info->replay_tc_bitmap,
4216 						    replay_bitmap);
4217 			status = ice_sched_cfg_agg(hw->port_info,
4218 						   agg_info->agg_id,
4219 						   ICE_AGG_TYPE_AGG,
4220 						   replay_bitmap);
4221 			if (status) {
4222 				dev_info(ice_hw_to_dev(hw),
4223 					 "Replay agg id[%d] failed\n",
4224 					 agg_info->agg_id);
4225 				/* Move on to next one */
4226 				continue;
4227 			}
4228 		}
4229 	mutex_unlock(&pi->sched_lock);
4230 }
4231 
4232 /**
4233  * ice_sched_replay_agg_vsi_preinit - Agg/VSI replay pre initialization
4234  * @hw: pointer to the HW struct
4235  *
4236  * This function initialize aggregator(s) TC bitmap to zero. A required
4237  * preinit step for replaying aggregators.
4238  */
4239 void ice_sched_replay_agg_vsi_preinit(struct ice_hw *hw)
4240 {
4241 	struct ice_port_info *pi = hw->port_info;
4242 	struct ice_sched_agg_info *agg_info;
4243 
4244 	mutex_lock(&pi->sched_lock);
4245 	list_for_each_entry(agg_info, &hw->agg_list, list_entry) {
4246 		struct ice_sched_agg_vsi_info *agg_vsi_info;
4247 
4248 		agg_info->tc_bitmap[0] = 0;
4249 		list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list,
4250 				    list_entry)
4251 			agg_vsi_info->tc_bitmap[0] = 0;
4252 	}
4253 	mutex_unlock(&pi->sched_lock);
4254 }
4255 
4256 /**
4257  * ice_sched_replay_vsi_agg - replay aggregator & VSI to aggregator node(s)
4258  * @hw: pointer to the HW struct
4259  * @vsi_handle: software VSI handle
4260  *
4261  * This function replays aggregator node, VSI to aggregator type nodes, and
4262  * their node bandwidth information. This function needs to be called with
4263  * scheduler lock held.
4264  */
4265 static int ice_sched_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle)
4266 {
4267 	DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4268 	struct ice_sched_agg_vsi_info *agg_vsi_info;
4269 	struct ice_port_info *pi = hw->port_info;
4270 	struct ice_sched_agg_info *agg_info;
4271 	int status;
4272 
4273 	bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4274 	if (!ice_is_vsi_valid(hw, vsi_handle))
4275 		return -EINVAL;
4276 	agg_info = ice_get_vsi_agg_info(hw, vsi_handle);
4277 	if (!agg_info)
4278 		return 0; /* Not present in list - default Agg case */
4279 	agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
4280 	if (!agg_vsi_info)
4281 		return 0; /* Not present in list - default Agg case */
4282 	ice_sched_get_ena_tc_bitmap(pi, agg_info->replay_tc_bitmap,
4283 				    replay_bitmap);
4284 	/* Replay aggregator node associated to vsi_handle */
4285 	status = ice_sched_cfg_agg(hw->port_info, agg_info->agg_id,
4286 				   ICE_AGG_TYPE_AGG, replay_bitmap);
4287 	if (status)
4288 		return status;
4289 
4290 	bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4291 	ice_sched_get_ena_tc_bitmap(pi, agg_vsi_info->replay_tc_bitmap,
4292 				    replay_bitmap);
4293 	/* Move this VSI (vsi_handle) to above aggregator */
4294 	return ice_sched_assoc_vsi_to_agg(pi, agg_info->agg_id, vsi_handle,
4295 					  replay_bitmap);
4296 }
4297 
4298 /**
4299  * ice_replay_vsi_agg - replay VSI to aggregator node
4300  * @hw: pointer to the HW struct
4301  * @vsi_handle: software VSI handle
4302  *
4303  * This function replays association of VSI to aggregator type nodes, and
4304  * node bandwidth information.
4305  */
4306 int ice_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle)
4307 {
4308 	struct ice_port_info *pi = hw->port_info;
4309 	int status;
4310 
4311 	mutex_lock(&pi->sched_lock);
4312 	status = ice_sched_replay_vsi_agg(hw, vsi_handle);
4313 	mutex_unlock(&pi->sched_lock);
4314 	return status;
4315 }
4316 
4317 /**
4318  * ice_sched_replay_q_bw - replay queue type node BW
4319  * @pi: port information structure
4320  * @q_ctx: queue context structure
4321  *
4322  * This function replays queue type node bandwidth. This function needs to be
4323  * called with scheduler lock held.
4324  */
4325 int ice_sched_replay_q_bw(struct ice_port_info *pi, struct ice_q_ctx *q_ctx)
4326 {
4327 	struct ice_sched_node *q_node;
4328 
4329 	/* Following also checks the presence of node in tree */
4330 	q_node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
4331 	if (!q_node)
4332 		return -EINVAL;
4333 	return ice_sched_replay_node_bw(pi->hw, q_node, &q_ctx->bw_t_info);
4334 }
4335