xref: /linux/drivers/net/ethernet/intel/igc/igc_main.c (revision 44f57d78)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2018 Intel Corporation */
3 
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/aer.h>
8 
9 #include "igc.h"
10 #include "igc_hw.h"
11 
12 #define DRV_VERSION	"0.0.1-k"
13 #define DRV_SUMMARY	"Intel(R) 2.5G Ethernet Linux Driver"
14 
15 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
16 
17 static int debug = -1;
18 
19 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
20 MODULE_DESCRIPTION(DRV_SUMMARY);
21 MODULE_LICENSE("GPL v2");
22 MODULE_VERSION(DRV_VERSION);
23 module_param(debug, int, 0);
24 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
25 
26 char igc_driver_name[] = "igc";
27 char igc_driver_version[] = DRV_VERSION;
28 static const char igc_driver_string[] = DRV_SUMMARY;
29 static const char igc_copyright[] =
30 	"Copyright(c) 2018 Intel Corporation.";
31 
32 static const struct igc_info *igc_info_tbl[] = {
33 	[board_base] = &igc_base_info,
34 };
35 
36 static const struct pci_device_id igc_pci_tbl[] = {
37 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
38 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
39 	/* required last entry */
40 	{0, }
41 };
42 
43 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
44 
45 /* forward declaration */
46 static void igc_clean_tx_ring(struct igc_ring *tx_ring);
47 static int igc_sw_init(struct igc_adapter *);
48 static void igc_configure(struct igc_adapter *adapter);
49 static void igc_power_down_link(struct igc_adapter *adapter);
50 static void igc_set_default_mac_filter(struct igc_adapter *adapter);
51 static void igc_set_rx_mode(struct net_device *netdev);
52 static void igc_write_itr(struct igc_q_vector *q_vector);
53 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector);
54 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx);
55 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
56 					 bool msix);
57 static void igc_free_q_vectors(struct igc_adapter *adapter);
58 static void igc_irq_disable(struct igc_adapter *adapter);
59 static void igc_irq_enable(struct igc_adapter *adapter);
60 static void igc_configure_msix(struct igc_adapter *adapter);
61 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
62 				  struct igc_rx_buffer *bi);
63 
64 enum latency_range {
65 	lowest_latency = 0,
66 	low_latency = 1,
67 	bulk_latency = 2,
68 	latency_invalid = 255
69 };
70 
71 void igc_reset(struct igc_adapter *adapter)
72 {
73 	struct pci_dev *pdev = adapter->pdev;
74 	struct igc_hw *hw = &adapter->hw;
75 
76 	hw->mac.ops.reset_hw(hw);
77 
78 	if (hw->mac.ops.init_hw(hw))
79 		dev_err(&pdev->dev, "Hardware Error\n");
80 
81 	if (!netif_running(adapter->netdev))
82 		igc_power_down_link(adapter);
83 
84 	igc_get_phy_info(hw);
85 }
86 
87 /**
88  * igc_power_up_link - Power up the phy/serdes link
89  * @adapter: address of board private structure
90  */
91 static void igc_power_up_link(struct igc_adapter *adapter)
92 {
93 	igc_reset_phy(&adapter->hw);
94 
95 	if (adapter->hw.phy.media_type == igc_media_type_copper)
96 		igc_power_up_phy_copper(&adapter->hw);
97 
98 	igc_setup_link(&adapter->hw);
99 }
100 
101 /**
102  * igc_power_down_link - Power down the phy/serdes link
103  * @adapter: address of board private structure
104  */
105 static void igc_power_down_link(struct igc_adapter *adapter)
106 {
107 	if (adapter->hw.phy.media_type == igc_media_type_copper)
108 		igc_power_down_phy_copper_base(&adapter->hw);
109 }
110 
111 /**
112  * igc_release_hw_control - release control of the h/w to f/w
113  * @adapter: address of board private structure
114  *
115  * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
116  * For ASF and Pass Through versions of f/w this means that the
117  * driver is no longer loaded.
118  */
119 static void igc_release_hw_control(struct igc_adapter *adapter)
120 {
121 	struct igc_hw *hw = &adapter->hw;
122 	u32 ctrl_ext;
123 
124 	/* Let firmware take over control of h/w */
125 	ctrl_ext = rd32(IGC_CTRL_EXT);
126 	wr32(IGC_CTRL_EXT,
127 	     ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
128 }
129 
130 /**
131  * igc_get_hw_control - get control of the h/w from f/w
132  * @adapter: address of board private structure
133  *
134  * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
135  * For ASF and Pass Through versions of f/w this means that
136  * the driver is loaded.
137  */
138 static void igc_get_hw_control(struct igc_adapter *adapter)
139 {
140 	struct igc_hw *hw = &adapter->hw;
141 	u32 ctrl_ext;
142 
143 	/* Let firmware know the driver has taken over */
144 	ctrl_ext = rd32(IGC_CTRL_EXT);
145 	wr32(IGC_CTRL_EXT,
146 	     ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
147 }
148 
149 /**
150  * igc_free_tx_resources - Free Tx Resources per Queue
151  * @tx_ring: Tx descriptor ring for a specific queue
152  *
153  * Free all transmit software resources
154  */
155 void igc_free_tx_resources(struct igc_ring *tx_ring)
156 {
157 	igc_clean_tx_ring(tx_ring);
158 
159 	vfree(tx_ring->tx_buffer_info);
160 	tx_ring->tx_buffer_info = NULL;
161 
162 	/* if not set, then don't free */
163 	if (!tx_ring->desc)
164 		return;
165 
166 	dma_free_coherent(tx_ring->dev, tx_ring->size,
167 			  tx_ring->desc, tx_ring->dma);
168 
169 	tx_ring->desc = NULL;
170 }
171 
172 /**
173  * igc_free_all_tx_resources - Free Tx Resources for All Queues
174  * @adapter: board private structure
175  *
176  * Free all transmit software resources
177  */
178 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
179 {
180 	int i;
181 
182 	for (i = 0; i < adapter->num_tx_queues; i++)
183 		igc_free_tx_resources(adapter->tx_ring[i]);
184 }
185 
186 /**
187  * igc_clean_tx_ring - Free Tx Buffers
188  * @tx_ring: ring to be cleaned
189  */
190 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
191 {
192 	u16 i = tx_ring->next_to_clean;
193 	struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
194 
195 	while (i != tx_ring->next_to_use) {
196 		union igc_adv_tx_desc *eop_desc, *tx_desc;
197 
198 		/* Free all the Tx ring sk_buffs */
199 		dev_kfree_skb_any(tx_buffer->skb);
200 
201 		/* unmap skb header data */
202 		dma_unmap_single(tx_ring->dev,
203 				 dma_unmap_addr(tx_buffer, dma),
204 				 dma_unmap_len(tx_buffer, len),
205 				 DMA_TO_DEVICE);
206 
207 		/* check for eop_desc to determine the end of the packet */
208 		eop_desc = tx_buffer->next_to_watch;
209 		tx_desc = IGC_TX_DESC(tx_ring, i);
210 
211 		/* unmap remaining buffers */
212 		while (tx_desc != eop_desc) {
213 			tx_buffer++;
214 			tx_desc++;
215 			i++;
216 			if (unlikely(i == tx_ring->count)) {
217 				i = 0;
218 				tx_buffer = tx_ring->tx_buffer_info;
219 				tx_desc = IGC_TX_DESC(tx_ring, 0);
220 			}
221 
222 			/* unmap any remaining paged data */
223 			if (dma_unmap_len(tx_buffer, len))
224 				dma_unmap_page(tx_ring->dev,
225 					       dma_unmap_addr(tx_buffer, dma),
226 					       dma_unmap_len(tx_buffer, len),
227 					       DMA_TO_DEVICE);
228 		}
229 
230 		/* move us one more past the eop_desc for start of next pkt */
231 		tx_buffer++;
232 		i++;
233 		if (unlikely(i == tx_ring->count)) {
234 			i = 0;
235 			tx_buffer = tx_ring->tx_buffer_info;
236 		}
237 	}
238 
239 	/* reset BQL for queue */
240 	netdev_tx_reset_queue(txring_txq(tx_ring));
241 
242 	/* reset next_to_use and next_to_clean */
243 	tx_ring->next_to_use = 0;
244 	tx_ring->next_to_clean = 0;
245 }
246 
247 /**
248  * igc_clean_all_tx_rings - Free Tx Buffers for all queues
249  * @adapter: board private structure
250  */
251 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
252 {
253 	int i;
254 
255 	for (i = 0; i < adapter->num_tx_queues; i++)
256 		if (adapter->tx_ring[i])
257 			igc_clean_tx_ring(adapter->tx_ring[i]);
258 }
259 
260 /**
261  * igc_setup_tx_resources - allocate Tx resources (Descriptors)
262  * @tx_ring: tx descriptor ring (for a specific queue) to setup
263  *
264  * Return 0 on success, negative on failure
265  */
266 int igc_setup_tx_resources(struct igc_ring *tx_ring)
267 {
268 	struct device *dev = tx_ring->dev;
269 	int size = 0;
270 
271 	size = sizeof(struct igc_tx_buffer) * tx_ring->count;
272 	tx_ring->tx_buffer_info = vzalloc(size);
273 	if (!tx_ring->tx_buffer_info)
274 		goto err;
275 
276 	/* round up to nearest 4K */
277 	tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
278 	tx_ring->size = ALIGN(tx_ring->size, 4096);
279 
280 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
281 					   &tx_ring->dma, GFP_KERNEL);
282 
283 	if (!tx_ring->desc)
284 		goto err;
285 
286 	tx_ring->next_to_use = 0;
287 	tx_ring->next_to_clean = 0;
288 
289 	return 0;
290 
291 err:
292 	vfree(tx_ring->tx_buffer_info);
293 	dev_err(dev,
294 		"Unable to allocate memory for the transmit descriptor ring\n");
295 	return -ENOMEM;
296 }
297 
298 /**
299  * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
300  * @adapter: board private structure
301  *
302  * Return 0 on success, negative on failure
303  */
304 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
305 {
306 	struct pci_dev *pdev = adapter->pdev;
307 	int i, err = 0;
308 
309 	for (i = 0; i < adapter->num_tx_queues; i++) {
310 		err = igc_setup_tx_resources(adapter->tx_ring[i]);
311 		if (err) {
312 			dev_err(&pdev->dev,
313 				"Allocation for Tx Queue %u failed\n", i);
314 			for (i--; i >= 0; i--)
315 				igc_free_tx_resources(adapter->tx_ring[i]);
316 			break;
317 		}
318 	}
319 
320 	return err;
321 }
322 
323 /**
324  * igc_clean_rx_ring - Free Rx Buffers per Queue
325  * @rx_ring: ring to free buffers from
326  */
327 static void igc_clean_rx_ring(struct igc_ring *rx_ring)
328 {
329 	u16 i = rx_ring->next_to_clean;
330 
331 	if (rx_ring->skb)
332 		dev_kfree_skb(rx_ring->skb);
333 	rx_ring->skb = NULL;
334 
335 	/* Free all the Rx ring sk_buffs */
336 	while (i != rx_ring->next_to_alloc) {
337 		struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
338 
339 		/* Invalidate cache lines that may have been written to by
340 		 * device so that we avoid corrupting memory.
341 		 */
342 		dma_sync_single_range_for_cpu(rx_ring->dev,
343 					      buffer_info->dma,
344 					      buffer_info->page_offset,
345 					      igc_rx_bufsz(rx_ring),
346 					      DMA_FROM_DEVICE);
347 
348 		/* free resources associated with mapping */
349 		dma_unmap_page_attrs(rx_ring->dev,
350 				     buffer_info->dma,
351 				     igc_rx_pg_size(rx_ring),
352 				     DMA_FROM_DEVICE,
353 				     IGC_RX_DMA_ATTR);
354 		__page_frag_cache_drain(buffer_info->page,
355 					buffer_info->pagecnt_bias);
356 
357 		i++;
358 		if (i == rx_ring->count)
359 			i = 0;
360 	}
361 
362 	rx_ring->next_to_alloc = 0;
363 	rx_ring->next_to_clean = 0;
364 	rx_ring->next_to_use = 0;
365 }
366 
367 /**
368  * igc_clean_all_rx_rings - Free Rx Buffers for all queues
369  * @adapter: board private structure
370  */
371 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
372 {
373 	int i;
374 
375 	for (i = 0; i < adapter->num_rx_queues; i++)
376 		if (adapter->rx_ring[i])
377 			igc_clean_rx_ring(adapter->rx_ring[i]);
378 }
379 
380 /**
381  * igc_free_rx_resources - Free Rx Resources
382  * @rx_ring: ring to clean the resources from
383  *
384  * Free all receive software resources
385  */
386 void igc_free_rx_resources(struct igc_ring *rx_ring)
387 {
388 	igc_clean_rx_ring(rx_ring);
389 
390 	vfree(rx_ring->rx_buffer_info);
391 	rx_ring->rx_buffer_info = NULL;
392 
393 	/* if not set, then don't free */
394 	if (!rx_ring->desc)
395 		return;
396 
397 	dma_free_coherent(rx_ring->dev, rx_ring->size,
398 			  rx_ring->desc, rx_ring->dma);
399 
400 	rx_ring->desc = NULL;
401 }
402 
403 /**
404  * igc_free_all_rx_resources - Free Rx Resources for All Queues
405  * @adapter: board private structure
406  *
407  * Free all receive software resources
408  */
409 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
410 {
411 	int i;
412 
413 	for (i = 0; i < adapter->num_rx_queues; i++)
414 		igc_free_rx_resources(adapter->rx_ring[i]);
415 }
416 
417 /**
418  * igc_setup_rx_resources - allocate Rx resources (Descriptors)
419  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
420  *
421  * Returns 0 on success, negative on failure
422  */
423 int igc_setup_rx_resources(struct igc_ring *rx_ring)
424 {
425 	struct device *dev = rx_ring->dev;
426 	int size, desc_len;
427 
428 	size = sizeof(struct igc_rx_buffer) * rx_ring->count;
429 	rx_ring->rx_buffer_info = vzalloc(size);
430 	if (!rx_ring->rx_buffer_info)
431 		goto err;
432 
433 	desc_len = sizeof(union igc_adv_rx_desc);
434 
435 	/* Round up to nearest 4K */
436 	rx_ring->size = rx_ring->count * desc_len;
437 	rx_ring->size = ALIGN(rx_ring->size, 4096);
438 
439 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
440 					   &rx_ring->dma, GFP_KERNEL);
441 
442 	if (!rx_ring->desc)
443 		goto err;
444 
445 	rx_ring->next_to_alloc = 0;
446 	rx_ring->next_to_clean = 0;
447 	rx_ring->next_to_use = 0;
448 
449 	return 0;
450 
451 err:
452 	vfree(rx_ring->rx_buffer_info);
453 	rx_ring->rx_buffer_info = NULL;
454 	dev_err(dev,
455 		"Unable to allocate memory for the receive descriptor ring\n");
456 	return -ENOMEM;
457 }
458 
459 /**
460  * igc_setup_all_rx_resources - wrapper to allocate Rx resources
461  *                                (Descriptors) for all queues
462  * @adapter: board private structure
463  *
464  * Return 0 on success, negative on failure
465  */
466 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
467 {
468 	struct pci_dev *pdev = adapter->pdev;
469 	int i, err = 0;
470 
471 	for (i = 0; i < adapter->num_rx_queues; i++) {
472 		err = igc_setup_rx_resources(adapter->rx_ring[i]);
473 		if (err) {
474 			dev_err(&pdev->dev,
475 				"Allocation for Rx Queue %u failed\n", i);
476 			for (i--; i >= 0; i--)
477 				igc_free_rx_resources(adapter->rx_ring[i]);
478 			break;
479 		}
480 	}
481 
482 	return err;
483 }
484 
485 /**
486  * igc_configure_rx_ring - Configure a receive ring after Reset
487  * @adapter: board private structure
488  * @ring: receive ring to be configured
489  *
490  * Configure the Rx unit of the MAC after a reset.
491  */
492 static void igc_configure_rx_ring(struct igc_adapter *adapter,
493 				  struct igc_ring *ring)
494 {
495 	struct igc_hw *hw = &adapter->hw;
496 	union igc_adv_rx_desc *rx_desc;
497 	int reg_idx = ring->reg_idx;
498 	u32 srrctl = 0, rxdctl = 0;
499 	u64 rdba = ring->dma;
500 
501 	/* disable the queue */
502 	wr32(IGC_RXDCTL(reg_idx), 0);
503 
504 	/* Set DMA base address registers */
505 	wr32(IGC_RDBAL(reg_idx),
506 	     rdba & 0x00000000ffffffffULL);
507 	wr32(IGC_RDBAH(reg_idx), rdba >> 32);
508 	wr32(IGC_RDLEN(reg_idx),
509 	     ring->count * sizeof(union igc_adv_rx_desc));
510 
511 	/* initialize head and tail */
512 	ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
513 	wr32(IGC_RDH(reg_idx), 0);
514 	writel(0, ring->tail);
515 
516 	/* reset next-to- use/clean to place SW in sync with hardware */
517 	ring->next_to_clean = 0;
518 	ring->next_to_use = 0;
519 
520 	/* set descriptor configuration */
521 	srrctl = IGC_RX_HDR_LEN << IGC_SRRCTL_BSIZEHDRSIZE_SHIFT;
522 	if (ring_uses_large_buffer(ring))
523 		srrctl |= IGC_RXBUFFER_3072 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
524 	else
525 		srrctl |= IGC_RXBUFFER_2048 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
526 	srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
527 
528 	wr32(IGC_SRRCTL(reg_idx), srrctl);
529 
530 	rxdctl |= IGC_RX_PTHRESH;
531 	rxdctl |= IGC_RX_HTHRESH << 8;
532 	rxdctl |= IGC_RX_WTHRESH << 16;
533 
534 	/* initialize rx_buffer_info */
535 	memset(ring->rx_buffer_info, 0,
536 	       sizeof(struct igc_rx_buffer) * ring->count);
537 
538 	/* initialize Rx descriptor 0 */
539 	rx_desc = IGC_RX_DESC(ring, 0);
540 	rx_desc->wb.upper.length = 0;
541 
542 	/* enable receive descriptor fetching */
543 	rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
544 
545 	wr32(IGC_RXDCTL(reg_idx), rxdctl);
546 }
547 
548 /**
549  * igc_configure_rx - Configure receive Unit after Reset
550  * @adapter: board private structure
551  *
552  * Configure the Rx unit of the MAC after a reset.
553  */
554 static void igc_configure_rx(struct igc_adapter *adapter)
555 {
556 	int i;
557 
558 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
559 	 * the Base and Length of the Rx Descriptor Ring
560 	 */
561 	for (i = 0; i < adapter->num_rx_queues; i++)
562 		igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
563 }
564 
565 /**
566  * igc_configure_tx_ring - Configure transmit ring after Reset
567  * @adapter: board private structure
568  * @ring: tx ring to configure
569  *
570  * Configure a transmit ring after a reset.
571  */
572 static void igc_configure_tx_ring(struct igc_adapter *adapter,
573 				  struct igc_ring *ring)
574 {
575 	struct igc_hw *hw = &adapter->hw;
576 	int reg_idx = ring->reg_idx;
577 	u64 tdba = ring->dma;
578 	u32 txdctl = 0;
579 
580 	/* disable the queue */
581 	wr32(IGC_TXDCTL(reg_idx), 0);
582 	wrfl();
583 	mdelay(10);
584 
585 	wr32(IGC_TDLEN(reg_idx),
586 	     ring->count * sizeof(union igc_adv_tx_desc));
587 	wr32(IGC_TDBAL(reg_idx),
588 	     tdba & 0x00000000ffffffffULL);
589 	wr32(IGC_TDBAH(reg_idx), tdba >> 32);
590 
591 	ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
592 	wr32(IGC_TDH(reg_idx), 0);
593 	writel(0, ring->tail);
594 
595 	txdctl |= IGC_TX_PTHRESH;
596 	txdctl |= IGC_TX_HTHRESH << 8;
597 	txdctl |= IGC_TX_WTHRESH << 16;
598 
599 	txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
600 	wr32(IGC_TXDCTL(reg_idx), txdctl);
601 }
602 
603 /**
604  * igc_configure_tx - Configure transmit Unit after Reset
605  * @adapter: board private structure
606  *
607  * Configure the Tx unit of the MAC after a reset.
608  */
609 static void igc_configure_tx(struct igc_adapter *adapter)
610 {
611 	int i;
612 
613 	for (i = 0; i < adapter->num_tx_queues; i++)
614 		igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
615 }
616 
617 /**
618  * igc_setup_mrqc - configure the multiple receive queue control registers
619  * @adapter: Board private structure
620  */
621 static void igc_setup_mrqc(struct igc_adapter *adapter)
622 {
623 	struct igc_hw *hw = &adapter->hw;
624 	u32 j, num_rx_queues;
625 	u32 mrqc, rxcsum;
626 	u32 rss_key[10];
627 
628 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
629 	for (j = 0; j < 10; j++)
630 		wr32(IGC_RSSRK(j), rss_key[j]);
631 
632 	num_rx_queues = adapter->rss_queues;
633 
634 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
635 		for (j = 0; j < IGC_RETA_SIZE; j++)
636 			adapter->rss_indir_tbl[j] =
637 			(j * num_rx_queues) / IGC_RETA_SIZE;
638 		adapter->rss_indir_tbl_init = num_rx_queues;
639 	}
640 	igc_write_rss_indir_tbl(adapter);
641 
642 	/* Disable raw packet checksumming so that RSS hash is placed in
643 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
644 	 * offloads as they are enabled by default
645 	 */
646 	rxcsum = rd32(IGC_RXCSUM);
647 	rxcsum |= IGC_RXCSUM_PCSD;
648 
649 	/* Enable Receive Checksum Offload for SCTP */
650 	rxcsum |= IGC_RXCSUM_CRCOFL;
651 
652 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
653 	wr32(IGC_RXCSUM, rxcsum);
654 
655 	/* Generate RSS hash based on packet types, TCP/UDP
656 	 * port numbers and/or IPv4/v6 src and dst addresses
657 	 */
658 	mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
659 	       IGC_MRQC_RSS_FIELD_IPV4_TCP |
660 	       IGC_MRQC_RSS_FIELD_IPV6 |
661 	       IGC_MRQC_RSS_FIELD_IPV6_TCP |
662 	       IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
663 
664 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
665 		mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
666 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
667 		mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
668 
669 	mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
670 
671 	wr32(IGC_MRQC, mrqc);
672 }
673 
674 /**
675  * igc_setup_rctl - configure the receive control registers
676  * @adapter: Board private structure
677  */
678 static void igc_setup_rctl(struct igc_adapter *adapter)
679 {
680 	struct igc_hw *hw = &adapter->hw;
681 	u32 rctl;
682 
683 	rctl = rd32(IGC_RCTL);
684 
685 	rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
686 	rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
687 
688 	rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
689 		(hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
690 
691 	/* enable stripping of CRC. Newer features require
692 	 * that the HW strips the CRC.
693 	 */
694 	rctl |= IGC_RCTL_SECRC;
695 
696 	/* disable store bad packets and clear size bits. */
697 	rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
698 
699 	/* enable LPE to allow for reception of jumbo frames */
700 	rctl |= IGC_RCTL_LPE;
701 
702 	/* disable queue 0 to prevent tail write w/o re-config */
703 	wr32(IGC_RXDCTL(0), 0);
704 
705 	/* This is useful for sniffing bad packets. */
706 	if (adapter->netdev->features & NETIF_F_RXALL) {
707 		/* UPE and MPE will be handled by normal PROMISC logic
708 		 * in set_rx_mode
709 		 */
710 		rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
711 			 IGC_RCTL_BAM | /* RX All Bcast Pkts */
712 			 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
713 
714 		rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
715 			  IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
716 	}
717 
718 	wr32(IGC_RCTL, rctl);
719 }
720 
721 /**
722  * igc_setup_tctl - configure the transmit control registers
723  * @adapter: Board private structure
724  */
725 static void igc_setup_tctl(struct igc_adapter *adapter)
726 {
727 	struct igc_hw *hw = &adapter->hw;
728 	u32 tctl;
729 
730 	/* disable queue 0 which icould be enabled by default */
731 	wr32(IGC_TXDCTL(0), 0);
732 
733 	/* Program the Transmit Control Register */
734 	tctl = rd32(IGC_TCTL);
735 	tctl &= ~IGC_TCTL_CT;
736 	tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
737 		(IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
738 
739 	/* Enable transmits */
740 	tctl |= IGC_TCTL_EN;
741 
742 	wr32(IGC_TCTL, tctl);
743 }
744 
745 /**
746  * igc_set_mac - Change the Ethernet Address of the NIC
747  * @netdev: network interface device structure
748  * @p: pointer to an address structure
749  *
750  * Returns 0 on success, negative on failure
751  */
752 static int igc_set_mac(struct net_device *netdev, void *p)
753 {
754 	struct igc_adapter *adapter = netdev_priv(netdev);
755 	struct igc_hw *hw = &adapter->hw;
756 	struct sockaddr *addr = p;
757 
758 	if (!is_valid_ether_addr(addr->sa_data))
759 		return -EADDRNOTAVAIL;
760 
761 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
762 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
763 
764 	/* set the correct pool for the new PF MAC address in entry 0 */
765 	igc_set_default_mac_filter(adapter);
766 
767 	return 0;
768 }
769 
770 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first)
771 {
772 }
773 
774 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
775 {
776 	struct net_device *netdev = tx_ring->netdev;
777 
778 	netif_stop_subqueue(netdev, tx_ring->queue_index);
779 
780 	/* memory barriier comment */
781 	smp_mb();
782 
783 	/* We need to check again in a case another CPU has just
784 	 * made room available.
785 	 */
786 	if (igc_desc_unused(tx_ring) < size)
787 		return -EBUSY;
788 
789 	/* A reprieve! */
790 	netif_wake_subqueue(netdev, tx_ring->queue_index);
791 
792 	u64_stats_update_begin(&tx_ring->tx_syncp2);
793 	tx_ring->tx_stats.restart_queue2++;
794 	u64_stats_update_end(&tx_ring->tx_syncp2);
795 
796 	return 0;
797 }
798 
799 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
800 {
801 	if (igc_desc_unused(tx_ring) >= size)
802 		return 0;
803 	return __igc_maybe_stop_tx(tx_ring, size);
804 }
805 
806 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
807 {
808 	/* set type for advanced descriptor with frame checksum insertion */
809 	u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
810 		       IGC_ADVTXD_DCMD_DEXT |
811 		       IGC_ADVTXD_DCMD_IFCS;
812 
813 	return cmd_type;
814 }
815 
816 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
817 				 union igc_adv_tx_desc *tx_desc,
818 				 u32 tx_flags, unsigned int paylen)
819 {
820 	u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
821 
822 	/* insert L4 checksum */
823 	olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) *
824 			  ((IGC_TXD_POPTS_TXSM << 8) /
825 			  IGC_TX_FLAGS_CSUM);
826 
827 	/* insert IPv4 checksum */
828 	olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) *
829 			  (((IGC_TXD_POPTS_IXSM << 8)) /
830 			  IGC_TX_FLAGS_IPV4);
831 
832 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
833 }
834 
835 static int igc_tx_map(struct igc_ring *tx_ring,
836 		      struct igc_tx_buffer *first,
837 		      const u8 hdr_len)
838 {
839 	struct sk_buff *skb = first->skb;
840 	struct igc_tx_buffer *tx_buffer;
841 	union igc_adv_tx_desc *tx_desc;
842 	u32 tx_flags = first->tx_flags;
843 	struct skb_frag_struct *frag;
844 	u16 i = tx_ring->next_to_use;
845 	unsigned int data_len, size;
846 	dma_addr_t dma;
847 	u32 cmd_type = igc_tx_cmd_type(skb, tx_flags);
848 
849 	tx_desc = IGC_TX_DESC(tx_ring, i);
850 
851 	igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
852 
853 	size = skb_headlen(skb);
854 	data_len = skb->data_len;
855 
856 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
857 
858 	tx_buffer = first;
859 
860 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
861 		if (dma_mapping_error(tx_ring->dev, dma))
862 			goto dma_error;
863 
864 		/* record length, and DMA address */
865 		dma_unmap_len_set(tx_buffer, len, size);
866 		dma_unmap_addr_set(tx_buffer, dma, dma);
867 
868 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
869 
870 		while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
871 			tx_desc->read.cmd_type_len =
872 				cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
873 
874 			i++;
875 			tx_desc++;
876 			if (i == tx_ring->count) {
877 				tx_desc = IGC_TX_DESC(tx_ring, 0);
878 				i = 0;
879 			}
880 			tx_desc->read.olinfo_status = 0;
881 
882 			dma += IGC_MAX_DATA_PER_TXD;
883 			size -= IGC_MAX_DATA_PER_TXD;
884 
885 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
886 		}
887 
888 		if (likely(!data_len))
889 			break;
890 
891 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
892 
893 		i++;
894 		tx_desc++;
895 		if (i == tx_ring->count) {
896 			tx_desc = IGC_TX_DESC(tx_ring, 0);
897 			i = 0;
898 		}
899 		tx_desc->read.olinfo_status = 0;
900 
901 		size = skb_frag_size(frag);
902 		data_len -= size;
903 
904 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
905 				       size, DMA_TO_DEVICE);
906 
907 		tx_buffer = &tx_ring->tx_buffer_info[i];
908 	}
909 
910 	/* write last descriptor with RS and EOP bits */
911 	cmd_type |= size | IGC_TXD_DCMD;
912 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
913 
914 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
915 
916 	/* set the timestamp */
917 	first->time_stamp = jiffies;
918 
919 	skb_tx_timestamp(skb);
920 
921 	/* Force memory writes to complete before letting h/w know there
922 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
923 	 * memory model archs, such as IA-64).
924 	 *
925 	 * We also need this memory barrier to make certain all of the
926 	 * status bits have been updated before next_to_watch is written.
927 	 */
928 	wmb();
929 
930 	/* set next_to_watch value indicating a packet is present */
931 	first->next_to_watch = tx_desc;
932 
933 	i++;
934 	if (i == tx_ring->count)
935 		i = 0;
936 
937 	tx_ring->next_to_use = i;
938 
939 	/* Make sure there is space in the ring for the next send. */
940 	igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
941 
942 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
943 		writel(i, tx_ring->tail);
944 	}
945 
946 	return 0;
947 dma_error:
948 	dev_err(tx_ring->dev, "TX DMA map failed\n");
949 	tx_buffer = &tx_ring->tx_buffer_info[i];
950 
951 	/* clear dma mappings for failed tx_buffer_info map */
952 	while (tx_buffer != first) {
953 		if (dma_unmap_len(tx_buffer, len))
954 			dma_unmap_page(tx_ring->dev,
955 				       dma_unmap_addr(tx_buffer, dma),
956 				       dma_unmap_len(tx_buffer, len),
957 				       DMA_TO_DEVICE);
958 		dma_unmap_len_set(tx_buffer, len, 0);
959 
960 		if (i-- == 0)
961 			i += tx_ring->count;
962 		tx_buffer = &tx_ring->tx_buffer_info[i];
963 	}
964 
965 	if (dma_unmap_len(tx_buffer, len))
966 		dma_unmap_single(tx_ring->dev,
967 				 dma_unmap_addr(tx_buffer, dma),
968 				 dma_unmap_len(tx_buffer, len),
969 				 DMA_TO_DEVICE);
970 	dma_unmap_len_set(tx_buffer, len, 0);
971 
972 	dev_kfree_skb_any(tx_buffer->skb);
973 	tx_buffer->skb = NULL;
974 
975 	tx_ring->next_to_use = i;
976 
977 	return -1;
978 }
979 
980 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
981 				       struct igc_ring *tx_ring)
982 {
983 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
984 	__be16 protocol = vlan_get_protocol(skb);
985 	struct igc_tx_buffer *first;
986 	u32 tx_flags = 0;
987 	unsigned short f;
988 	u8 hdr_len = 0;
989 
990 	/* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
991 	 *	+ 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
992 	 *	+ 2 desc gap to keep tail from touching head,
993 	 *	+ 1 desc for context descriptor,
994 	 * otherwise try next time
995 	 */
996 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
997 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
998 
999 	if (igc_maybe_stop_tx(tx_ring, count + 3)) {
1000 		/* this is a hard error */
1001 		return NETDEV_TX_BUSY;
1002 	}
1003 
1004 	/* record the location of the first descriptor for this packet */
1005 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1006 	first->skb = skb;
1007 	first->bytecount = skb->len;
1008 	first->gso_segs = 1;
1009 
1010 	/* record initial flags and protocol */
1011 	first->tx_flags = tx_flags;
1012 	first->protocol = protocol;
1013 
1014 	igc_tx_csum(tx_ring, first);
1015 
1016 	igc_tx_map(tx_ring, first, hdr_len);
1017 
1018 	return NETDEV_TX_OK;
1019 }
1020 
1021 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1022 						    struct sk_buff *skb)
1023 {
1024 	unsigned int r_idx = skb->queue_mapping;
1025 
1026 	if (r_idx >= adapter->num_tx_queues)
1027 		r_idx = r_idx % adapter->num_tx_queues;
1028 
1029 	return adapter->tx_ring[r_idx];
1030 }
1031 
1032 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1033 				  struct net_device *netdev)
1034 {
1035 	struct igc_adapter *adapter = netdev_priv(netdev);
1036 
1037 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1038 	 * in order to meet this minimum size requirement.
1039 	 */
1040 	if (skb->len < 17) {
1041 		if (skb_padto(skb, 17))
1042 			return NETDEV_TX_OK;
1043 		skb->len = 17;
1044 	}
1045 
1046 	return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1047 }
1048 
1049 static inline void igc_rx_hash(struct igc_ring *ring,
1050 			       union igc_adv_rx_desc *rx_desc,
1051 			       struct sk_buff *skb)
1052 {
1053 	if (ring->netdev->features & NETIF_F_RXHASH)
1054 		skb_set_hash(skb,
1055 			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
1056 			     PKT_HASH_TYPE_L3);
1057 }
1058 
1059 /**
1060  * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1061  * @rx_ring: rx descriptor ring packet is being transacted on
1062  * @rx_desc: pointer to the EOP Rx descriptor
1063  * @skb: pointer to current skb being populated
1064  *
1065  * This function checks the ring, descriptor, and packet information in
1066  * order to populate the hash, checksum, VLAN, timestamp, protocol, and
1067  * other fields within the skb.
1068  */
1069 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1070 				   union igc_adv_rx_desc *rx_desc,
1071 				   struct sk_buff *skb)
1072 {
1073 	igc_rx_hash(rx_ring, rx_desc, skb);
1074 
1075 	skb_record_rx_queue(skb, rx_ring->queue_index);
1076 
1077 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1078 }
1079 
1080 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1081 					       const unsigned int size)
1082 {
1083 	struct igc_rx_buffer *rx_buffer;
1084 
1085 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1086 	prefetchw(rx_buffer->page);
1087 
1088 	/* we are reusing so sync this buffer for CPU use */
1089 	dma_sync_single_range_for_cpu(rx_ring->dev,
1090 				      rx_buffer->dma,
1091 				      rx_buffer->page_offset,
1092 				      size,
1093 				      DMA_FROM_DEVICE);
1094 
1095 	rx_buffer->pagecnt_bias--;
1096 
1097 	return rx_buffer;
1098 }
1099 
1100 /**
1101  * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1102  * @rx_ring: rx descriptor ring to transact packets on
1103  * @rx_buffer: buffer containing page to add
1104  * @skb: sk_buff to place the data into
1105  * @size: size of buffer to be added
1106  *
1107  * This function will add the data contained in rx_buffer->page to the skb.
1108  */
1109 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1110 			    struct igc_rx_buffer *rx_buffer,
1111 			    struct sk_buff *skb,
1112 			    unsigned int size)
1113 {
1114 #if (PAGE_SIZE < 8192)
1115 	unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1116 
1117 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1118 			rx_buffer->page_offset, size, truesize);
1119 	rx_buffer->page_offset ^= truesize;
1120 #else
1121 	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
1122 				SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1123 				SKB_DATA_ALIGN(size);
1124 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1125 			rx_buffer->page_offset, size, truesize);
1126 	rx_buffer->page_offset += truesize;
1127 #endif
1128 }
1129 
1130 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1131 				     struct igc_rx_buffer *rx_buffer,
1132 				     union igc_adv_rx_desc *rx_desc,
1133 				     unsigned int size)
1134 {
1135 	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1136 #if (PAGE_SIZE < 8192)
1137 	unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1138 #else
1139 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1140 				SKB_DATA_ALIGN(IGC_SKB_PAD + size);
1141 #endif
1142 	struct sk_buff *skb;
1143 
1144 	/* prefetch first cache line of first page */
1145 	prefetch(va);
1146 #if L1_CACHE_BYTES < 128
1147 	prefetch(va + L1_CACHE_BYTES);
1148 #endif
1149 
1150 	/* build an skb around the page buffer */
1151 	skb = build_skb(va - IGC_SKB_PAD, truesize);
1152 	if (unlikely(!skb))
1153 		return NULL;
1154 
1155 	/* update pointers within the skb to store the data */
1156 	skb_reserve(skb, IGC_SKB_PAD);
1157 	__skb_put(skb, size);
1158 
1159 	/* update buffer offset */
1160 #if (PAGE_SIZE < 8192)
1161 	rx_buffer->page_offset ^= truesize;
1162 #else
1163 	rx_buffer->page_offset += truesize;
1164 #endif
1165 
1166 	return skb;
1167 }
1168 
1169 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1170 					 struct igc_rx_buffer *rx_buffer,
1171 					 union igc_adv_rx_desc *rx_desc,
1172 					 unsigned int size)
1173 {
1174 	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1175 #if (PAGE_SIZE < 8192)
1176 	unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1177 #else
1178 	unsigned int truesize = SKB_DATA_ALIGN(size);
1179 #endif
1180 	unsigned int headlen;
1181 	struct sk_buff *skb;
1182 
1183 	/* prefetch first cache line of first page */
1184 	prefetch(va);
1185 #if L1_CACHE_BYTES < 128
1186 	prefetch(va + L1_CACHE_BYTES);
1187 #endif
1188 
1189 	/* allocate a skb to store the frags */
1190 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGC_RX_HDR_LEN);
1191 	if (unlikely(!skb))
1192 		return NULL;
1193 
1194 	/* Determine available headroom for copy */
1195 	headlen = size;
1196 	if (headlen > IGC_RX_HDR_LEN)
1197 		headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1198 
1199 	/* align pull length to size of long to optimize memcpy performance */
1200 	memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1201 
1202 	/* update all of the pointers */
1203 	size -= headlen;
1204 	if (size) {
1205 		skb_add_rx_frag(skb, 0, rx_buffer->page,
1206 				(va + headlen) - page_address(rx_buffer->page),
1207 				size, truesize);
1208 #if (PAGE_SIZE < 8192)
1209 		rx_buffer->page_offset ^= truesize;
1210 #else
1211 		rx_buffer->page_offset += truesize;
1212 #endif
1213 	} else {
1214 		rx_buffer->pagecnt_bias++;
1215 	}
1216 
1217 	return skb;
1218 }
1219 
1220 /**
1221  * igc_reuse_rx_page - page flip buffer and store it back on the ring
1222  * @rx_ring: rx descriptor ring to store buffers on
1223  * @old_buff: donor buffer to have page reused
1224  *
1225  * Synchronizes page for reuse by the adapter
1226  */
1227 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
1228 			      struct igc_rx_buffer *old_buff)
1229 {
1230 	u16 nta = rx_ring->next_to_alloc;
1231 	struct igc_rx_buffer *new_buff;
1232 
1233 	new_buff = &rx_ring->rx_buffer_info[nta];
1234 
1235 	/* update, and store next to alloc */
1236 	nta++;
1237 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1238 
1239 	/* Transfer page from old buffer to new buffer.
1240 	 * Move each member individually to avoid possible store
1241 	 * forwarding stalls.
1242 	 */
1243 	new_buff->dma		= old_buff->dma;
1244 	new_buff->page		= old_buff->page;
1245 	new_buff->page_offset	= old_buff->page_offset;
1246 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1247 }
1248 
1249 static inline bool igc_page_is_reserved(struct page *page)
1250 {
1251 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
1252 }
1253 
1254 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer)
1255 {
1256 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1257 	struct page *page = rx_buffer->page;
1258 
1259 	/* avoid re-using remote pages */
1260 	if (unlikely(igc_page_is_reserved(page)))
1261 		return false;
1262 
1263 #if (PAGE_SIZE < 8192)
1264 	/* if we are only owner of page we can reuse it */
1265 	if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
1266 		return false;
1267 #else
1268 #define IGC_LAST_OFFSET \
1269 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
1270 
1271 	if (rx_buffer->page_offset > IGC_LAST_OFFSET)
1272 		return false;
1273 #endif
1274 
1275 	/* If we have drained the page fragment pool we need to update
1276 	 * the pagecnt_bias and page count so that we fully restock the
1277 	 * number of references the driver holds.
1278 	 */
1279 	if (unlikely(!pagecnt_bias)) {
1280 		page_ref_add(page, USHRT_MAX);
1281 		rx_buffer->pagecnt_bias = USHRT_MAX;
1282 	}
1283 
1284 	return true;
1285 }
1286 
1287 /**
1288  * igc_is_non_eop - process handling of non-EOP buffers
1289  * @rx_ring: Rx ring being processed
1290  * @rx_desc: Rx descriptor for current buffer
1291  * @skb: current socket buffer containing buffer in progress
1292  *
1293  * This function updates next to clean.  If the buffer is an EOP buffer
1294  * this function exits returning false, otherwise it will place the
1295  * sk_buff in the next buffer to be chained and return true indicating
1296  * that this is in fact a non-EOP buffer.
1297  */
1298 static bool igc_is_non_eop(struct igc_ring *rx_ring,
1299 			   union igc_adv_rx_desc *rx_desc)
1300 {
1301 	u32 ntc = rx_ring->next_to_clean + 1;
1302 
1303 	/* fetch, update, and store next to clean */
1304 	ntc = (ntc < rx_ring->count) ? ntc : 0;
1305 	rx_ring->next_to_clean = ntc;
1306 
1307 	prefetch(IGC_RX_DESC(rx_ring, ntc));
1308 
1309 	if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
1310 		return false;
1311 
1312 	return true;
1313 }
1314 
1315 /**
1316  * igc_cleanup_headers - Correct corrupted or empty headers
1317  * @rx_ring: rx descriptor ring packet is being transacted on
1318  * @rx_desc: pointer to the EOP Rx descriptor
1319  * @skb: pointer to current skb being fixed
1320  *
1321  * Address the case where we are pulling data in on pages only
1322  * and as such no data is present in the skb header.
1323  *
1324  * In addition if skb is not at least 60 bytes we need to pad it so that
1325  * it is large enough to qualify as a valid Ethernet frame.
1326  *
1327  * Returns true if an error was encountered and skb was freed.
1328  */
1329 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
1330 				union igc_adv_rx_desc *rx_desc,
1331 				struct sk_buff *skb)
1332 {
1333 	if (unlikely((igc_test_staterr(rx_desc,
1334 				       IGC_RXDEXT_ERR_FRAME_ERR_MASK)))) {
1335 		struct net_device *netdev = rx_ring->netdev;
1336 
1337 		if (!(netdev->features & NETIF_F_RXALL)) {
1338 			dev_kfree_skb_any(skb);
1339 			return true;
1340 		}
1341 	}
1342 
1343 	/* if eth_skb_pad returns an error the skb was freed */
1344 	if (eth_skb_pad(skb))
1345 		return true;
1346 
1347 	return false;
1348 }
1349 
1350 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
1351 			      struct igc_rx_buffer *rx_buffer)
1352 {
1353 	if (igc_can_reuse_rx_page(rx_buffer)) {
1354 		/* hand second half of page back to the ring */
1355 		igc_reuse_rx_page(rx_ring, rx_buffer);
1356 	} else {
1357 		/* We are not reusing the buffer so unmap it and free
1358 		 * any references we are holding to it
1359 		 */
1360 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1361 				     igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1362 				     IGC_RX_DMA_ATTR);
1363 		__page_frag_cache_drain(rx_buffer->page,
1364 					rx_buffer->pagecnt_bias);
1365 	}
1366 
1367 	/* clear contents of rx_buffer */
1368 	rx_buffer->page = NULL;
1369 }
1370 
1371 /**
1372  * igc_alloc_rx_buffers - Replace used receive buffers; packet split
1373  * @adapter: address of board private structure
1374  */
1375 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
1376 {
1377 	union igc_adv_rx_desc *rx_desc;
1378 	u16 i = rx_ring->next_to_use;
1379 	struct igc_rx_buffer *bi;
1380 	u16 bufsz;
1381 
1382 	/* nothing to do */
1383 	if (!cleaned_count)
1384 		return;
1385 
1386 	rx_desc = IGC_RX_DESC(rx_ring, i);
1387 	bi = &rx_ring->rx_buffer_info[i];
1388 	i -= rx_ring->count;
1389 
1390 	bufsz = igc_rx_bufsz(rx_ring);
1391 
1392 	do {
1393 		if (!igc_alloc_mapped_page(rx_ring, bi))
1394 			break;
1395 
1396 		/* sync the buffer for use by the device */
1397 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1398 						 bi->page_offset, bufsz,
1399 						 DMA_FROM_DEVICE);
1400 
1401 		/* Refresh the desc even if buffer_addrs didn't change
1402 		 * because each write-back erases this info.
1403 		 */
1404 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1405 
1406 		rx_desc++;
1407 		bi++;
1408 		i++;
1409 		if (unlikely(!i)) {
1410 			rx_desc = IGC_RX_DESC(rx_ring, 0);
1411 			bi = rx_ring->rx_buffer_info;
1412 			i -= rx_ring->count;
1413 		}
1414 
1415 		/* clear the length for the next_to_use descriptor */
1416 		rx_desc->wb.upper.length = 0;
1417 
1418 		cleaned_count--;
1419 	} while (cleaned_count);
1420 
1421 	i += rx_ring->count;
1422 
1423 	if (rx_ring->next_to_use != i) {
1424 		/* record the next descriptor to use */
1425 		rx_ring->next_to_use = i;
1426 
1427 		/* update next to alloc since we have filled the ring */
1428 		rx_ring->next_to_alloc = i;
1429 
1430 		/* Force memory writes to complete before letting h/w
1431 		 * know there are new descriptors to fetch.  (Only
1432 		 * applicable for weak-ordered memory model archs,
1433 		 * such as IA-64).
1434 		 */
1435 		wmb();
1436 		writel(i, rx_ring->tail);
1437 	}
1438 }
1439 
1440 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
1441 {
1442 	unsigned int total_bytes = 0, total_packets = 0;
1443 	struct igc_ring *rx_ring = q_vector->rx.ring;
1444 	struct sk_buff *skb = rx_ring->skb;
1445 	u16 cleaned_count = igc_desc_unused(rx_ring);
1446 
1447 	while (likely(total_packets < budget)) {
1448 		union igc_adv_rx_desc *rx_desc;
1449 		struct igc_rx_buffer *rx_buffer;
1450 		unsigned int size;
1451 
1452 		/* return some buffers to hardware, one at a time is too slow */
1453 		if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
1454 			igc_alloc_rx_buffers(rx_ring, cleaned_count);
1455 			cleaned_count = 0;
1456 		}
1457 
1458 		rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
1459 		size = le16_to_cpu(rx_desc->wb.upper.length);
1460 		if (!size)
1461 			break;
1462 
1463 		/* This memory barrier is needed to keep us from reading
1464 		 * any other fields out of the rx_desc until we know the
1465 		 * descriptor has been written back
1466 		 */
1467 		dma_rmb();
1468 
1469 		rx_buffer = igc_get_rx_buffer(rx_ring, size);
1470 
1471 		/* retrieve a buffer from the ring */
1472 		if (skb)
1473 			igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
1474 		else if (ring_uses_build_skb(rx_ring))
1475 			skb = igc_build_skb(rx_ring, rx_buffer, rx_desc, size);
1476 		else
1477 			skb = igc_construct_skb(rx_ring, rx_buffer,
1478 						rx_desc, size);
1479 
1480 		/* exit if we failed to retrieve a buffer */
1481 		if (!skb) {
1482 			rx_ring->rx_stats.alloc_failed++;
1483 			rx_buffer->pagecnt_bias++;
1484 			break;
1485 		}
1486 
1487 		igc_put_rx_buffer(rx_ring, rx_buffer);
1488 		cleaned_count++;
1489 
1490 		/* fetch next buffer in frame if non-eop */
1491 		if (igc_is_non_eop(rx_ring, rx_desc))
1492 			continue;
1493 
1494 		/* verify the packet layout is correct */
1495 		if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
1496 			skb = NULL;
1497 			continue;
1498 		}
1499 
1500 		/* probably a little skewed due to removing CRC */
1501 		total_bytes += skb->len;
1502 
1503 		/* populate checksum, timestamp, VLAN, and protocol */
1504 		igc_process_skb_fields(rx_ring, rx_desc, skb);
1505 
1506 		napi_gro_receive(&q_vector->napi, skb);
1507 
1508 		/* reset skb pointer */
1509 		skb = NULL;
1510 
1511 		/* update budget accounting */
1512 		total_packets++;
1513 	}
1514 
1515 	/* place incomplete frames back on ring for completion */
1516 	rx_ring->skb = skb;
1517 
1518 	u64_stats_update_begin(&rx_ring->rx_syncp);
1519 	rx_ring->rx_stats.packets += total_packets;
1520 	rx_ring->rx_stats.bytes += total_bytes;
1521 	u64_stats_update_end(&rx_ring->rx_syncp);
1522 	q_vector->rx.total_packets += total_packets;
1523 	q_vector->rx.total_bytes += total_bytes;
1524 
1525 	if (cleaned_count)
1526 		igc_alloc_rx_buffers(rx_ring, cleaned_count);
1527 
1528 	return total_packets;
1529 }
1530 
1531 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
1532 {
1533 	return ring_uses_build_skb(rx_ring) ? IGC_SKB_PAD : 0;
1534 }
1535 
1536 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
1537 				  struct igc_rx_buffer *bi)
1538 {
1539 	struct page *page = bi->page;
1540 	dma_addr_t dma;
1541 
1542 	/* since we are recycling buffers we should seldom need to alloc */
1543 	if (likely(page))
1544 		return true;
1545 
1546 	/* alloc new page for storage */
1547 	page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
1548 	if (unlikely(!page)) {
1549 		rx_ring->rx_stats.alloc_failed++;
1550 		return false;
1551 	}
1552 
1553 	/* map page for use */
1554 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1555 				 igc_rx_pg_size(rx_ring),
1556 				 DMA_FROM_DEVICE,
1557 				 IGC_RX_DMA_ATTR);
1558 
1559 	/* if mapping failed free memory back to system since
1560 	 * there isn't much point in holding memory we can't use
1561 	 */
1562 	if (dma_mapping_error(rx_ring->dev, dma)) {
1563 		__free_page(page);
1564 
1565 		rx_ring->rx_stats.alloc_failed++;
1566 		return false;
1567 	}
1568 
1569 	bi->dma = dma;
1570 	bi->page = page;
1571 	bi->page_offset = igc_rx_offset(rx_ring);
1572 	bi->pagecnt_bias = 1;
1573 
1574 	return true;
1575 }
1576 
1577 /**
1578  * igc_clean_tx_irq - Reclaim resources after transmit completes
1579  * @q_vector: pointer to q_vector containing needed info
1580  * @napi_budget: Used to determine if we are in netpoll
1581  *
1582  * returns true if ring is completely cleaned
1583  */
1584 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
1585 {
1586 	struct igc_adapter *adapter = q_vector->adapter;
1587 	unsigned int total_bytes = 0, total_packets = 0;
1588 	unsigned int budget = q_vector->tx.work_limit;
1589 	struct igc_ring *tx_ring = q_vector->tx.ring;
1590 	unsigned int i = tx_ring->next_to_clean;
1591 	struct igc_tx_buffer *tx_buffer;
1592 	union igc_adv_tx_desc *tx_desc;
1593 
1594 	if (test_bit(__IGC_DOWN, &adapter->state))
1595 		return true;
1596 
1597 	tx_buffer = &tx_ring->tx_buffer_info[i];
1598 	tx_desc = IGC_TX_DESC(tx_ring, i);
1599 	i -= tx_ring->count;
1600 
1601 	do {
1602 		union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
1603 
1604 		/* if next_to_watch is not set then there is no work pending */
1605 		if (!eop_desc)
1606 			break;
1607 
1608 		/* prevent any other reads prior to eop_desc */
1609 		smp_rmb();
1610 
1611 		/* if DD is not set pending work has not been completed */
1612 		if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
1613 			break;
1614 
1615 		/* clear next_to_watch to prevent false hangs */
1616 		tx_buffer->next_to_watch = NULL;
1617 
1618 		/* update the statistics for this packet */
1619 		total_bytes += tx_buffer->bytecount;
1620 		total_packets += tx_buffer->gso_segs;
1621 
1622 		/* free the skb */
1623 		napi_consume_skb(tx_buffer->skb, napi_budget);
1624 
1625 		/* unmap skb header data */
1626 		dma_unmap_single(tx_ring->dev,
1627 				 dma_unmap_addr(tx_buffer, dma),
1628 				 dma_unmap_len(tx_buffer, len),
1629 				 DMA_TO_DEVICE);
1630 
1631 		/* clear tx_buffer data */
1632 		dma_unmap_len_set(tx_buffer, len, 0);
1633 
1634 		/* clear last DMA location and unmap remaining buffers */
1635 		while (tx_desc != eop_desc) {
1636 			tx_buffer++;
1637 			tx_desc++;
1638 			i++;
1639 			if (unlikely(!i)) {
1640 				i -= tx_ring->count;
1641 				tx_buffer = tx_ring->tx_buffer_info;
1642 				tx_desc = IGC_TX_DESC(tx_ring, 0);
1643 			}
1644 
1645 			/* unmap any remaining paged data */
1646 			if (dma_unmap_len(tx_buffer, len)) {
1647 				dma_unmap_page(tx_ring->dev,
1648 					       dma_unmap_addr(tx_buffer, dma),
1649 					       dma_unmap_len(tx_buffer, len),
1650 					       DMA_TO_DEVICE);
1651 				dma_unmap_len_set(tx_buffer, len, 0);
1652 			}
1653 		}
1654 
1655 		/* move us one more past the eop_desc for start of next pkt */
1656 		tx_buffer++;
1657 		tx_desc++;
1658 		i++;
1659 		if (unlikely(!i)) {
1660 			i -= tx_ring->count;
1661 			tx_buffer = tx_ring->tx_buffer_info;
1662 			tx_desc = IGC_TX_DESC(tx_ring, 0);
1663 		}
1664 
1665 		/* issue prefetch for next Tx descriptor */
1666 		prefetch(tx_desc);
1667 
1668 		/* update budget accounting */
1669 		budget--;
1670 	} while (likely(budget));
1671 
1672 	netdev_tx_completed_queue(txring_txq(tx_ring),
1673 				  total_packets, total_bytes);
1674 
1675 	i += tx_ring->count;
1676 	tx_ring->next_to_clean = i;
1677 	u64_stats_update_begin(&tx_ring->tx_syncp);
1678 	tx_ring->tx_stats.bytes += total_bytes;
1679 	tx_ring->tx_stats.packets += total_packets;
1680 	u64_stats_update_end(&tx_ring->tx_syncp);
1681 	q_vector->tx.total_bytes += total_bytes;
1682 	q_vector->tx.total_packets += total_packets;
1683 
1684 	if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
1685 		struct igc_hw *hw = &adapter->hw;
1686 
1687 		/* Detect a transmit hang in hardware, this serializes the
1688 		 * check with the clearing of time_stamp and movement of i
1689 		 */
1690 		clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
1691 		if (tx_buffer->next_to_watch &&
1692 		    time_after(jiffies, tx_buffer->time_stamp +
1693 		    (adapter->tx_timeout_factor * HZ)) &&
1694 		    !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF)) {
1695 			/* detected Tx unit hang */
1696 			dev_err(tx_ring->dev,
1697 				"Detected Tx Unit Hang\n"
1698 				"  Tx Queue             <%d>\n"
1699 				"  TDH                  <%x>\n"
1700 				"  TDT                  <%x>\n"
1701 				"  next_to_use          <%x>\n"
1702 				"  next_to_clean        <%x>\n"
1703 				"buffer_info[next_to_clean]\n"
1704 				"  time_stamp           <%lx>\n"
1705 				"  next_to_watch        <%p>\n"
1706 				"  jiffies              <%lx>\n"
1707 				"  desc.status          <%x>\n",
1708 				tx_ring->queue_index,
1709 				rd32(IGC_TDH(tx_ring->reg_idx)),
1710 				readl(tx_ring->tail),
1711 				tx_ring->next_to_use,
1712 				tx_ring->next_to_clean,
1713 				tx_buffer->time_stamp,
1714 				tx_buffer->next_to_watch,
1715 				jiffies,
1716 				tx_buffer->next_to_watch->wb.status);
1717 			netif_stop_subqueue(tx_ring->netdev,
1718 					    tx_ring->queue_index);
1719 
1720 			/* we are about to reset, no point in enabling stuff */
1721 			return true;
1722 		}
1723 	}
1724 
1725 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
1726 	if (unlikely(total_packets &&
1727 		     netif_carrier_ok(tx_ring->netdev) &&
1728 		     igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
1729 		/* Make sure that anybody stopping the queue after this
1730 		 * sees the new next_to_clean.
1731 		 */
1732 		smp_mb();
1733 		if (__netif_subqueue_stopped(tx_ring->netdev,
1734 					     tx_ring->queue_index) &&
1735 		    !(test_bit(__IGC_DOWN, &adapter->state))) {
1736 			netif_wake_subqueue(tx_ring->netdev,
1737 					    tx_ring->queue_index);
1738 
1739 			u64_stats_update_begin(&tx_ring->tx_syncp);
1740 			tx_ring->tx_stats.restart_queue++;
1741 			u64_stats_update_end(&tx_ring->tx_syncp);
1742 		}
1743 	}
1744 
1745 	return !!budget;
1746 }
1747 
1748 /**
1749  * igc_up - Open the interface and prepare it to handle traffic
1750  * @adapter: board private structure
1751  */
1752 void igc_up(struct igc_adapter *adapter)
1753 {
1754 	struct igc_hw *hw = &adapter->hw;
1755 	int i = 0;
1756 
1757 	/* hardware has been reset, we need to reload some things */
1758 	igc_configure(adapter);
1759 
1760 	clear_bit(__IGC_DOWN, &adapter->state);
1761 
1762 	for (i = 0; i < adapter->num_q_vectors; i++)
1763 		napi_enable(&adapter->q_vector[i]->napi);
1764 
1765 	if (adapter->msix_entries)
1766 		igc_configure_msix(adapter);
1767 	else
1768 		igc_assign_vector(adapter->q_vector[0], 0);
1769 
1770 	/* Clear any pending interrupts. */
1771 	rd32(IGC_ICR);
1772 	igc_irq_enable(adapter);
1773 
1774 	netif_tx_start_all_queues(adapter->netdev);
1775 
1776 	/* start the watchdog. */
1777 	hw->mac.get_link_status = 1;
1778 	schedule_work(&adapter->watchdog_task);
1779 }
1780 
1781 /**
1782  * igc_update_stats - Update the board statistics counters
1783  * @adapter: board private structure
1784  */
1785 void igc_update_stats(struct igc_adapter *adapter)
1786 {
1787 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
1788 	struct pci_dev *pdev = adapter->pdev;
1789 	struct igc_hw *hw = &adapter->hw;
1790 	u64 _bytes, _packets;
1791 	u64 bytes, packets;
1792 	unsigned int start;
1793 	u32 mpc;
1794 	int i;
1795 
1796 	/* Prevent stats update while adapter is being reset, or if the pci
1797 	 * connection is down.
1798 	 */
1799 	if (adapter->link_speed == 0)
1800 		return;
1801 	if (pci_channel_offline(pdev))
1802 		return;
1803 
1804 	packets = 0;
1805 	bytes = 0;
1806 
1807 	rcu_read_lock();
1808 	for (i = 0; i < adapter->num_rx_queues; i++) {
1809 		struct igc_ring *ring = adapter->rx_ring[i];
1810 		u32 rqdpc = rd32(IGC_RQDPC(i));
1811 
1812 		if (hw->mac.type >= igc_i225)
1813 			wr32(IGC_RQDPC(i), 0);
1814 
1815 		if (rqdpc) {
1816 			ring->rx_stats.drops += rqdpc;
1817 			net_stats->rx_fifo_errors += rqdpc;
1818 		}
1819 
1820 		do {
1821 			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
1822 			_bytes = ring->rx_stats.bytes;
1823 			_packets = ring->rx_stats.packets;
1824 		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
1825 		bytes += _bytes;
1826 		packets += _packets;
1827 	}
1828 
1829 	net_stats->rx_bytes = bytes;
1830 	net_stats->rx_packets = packets;
1831 
1832 	packets = 0;
1833 	bytes = 0;
1834 	for (i = 0; i < adapter->num_tx_queues; i++) {
1835 		struct igc_ring *ring = adapter->tx_ring[i];
1836 
1837 		do {
1838 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
1839 			_bytes = ring->tx_stats.bytes;
1840 			_packets = ring->tx_stats.packets;
1841 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
1842 		bytes += _bytes;
1843 		packets += _packets;
1844 	}
1845 	net_stats->tx_bytes = bytes;
1846 	net_stats->tx_packets = packets;
1847 	rcu_read_unlock();
1848 
1849 	/* read stats registers */
1850 	adapter->stats.crcerrs += rd32(IGC_CRCERRS);
1851 	adapter->stats.gprc += rd32(IGC_GPRC);
1852 	adapter->stats.gorc += rd32(IGC_GORCL);
1853 	rd32(IGC_GORCH); /* clear GORCL */
1854 	adapter->stats.bprc += rd32(IGC_BPRC);
1855 	adapter->stats.mprc += rd32(IGC_MPRC);
1856 	adapter->stats.roc += rd32(IGC_ROC);
1857 
1858 	adapter->stats.prc64 += rd32(IGC_PRC64);
1859 	adapter->stats.prc127 += rd32(IGC_PRC127);
1860 	adapter->stats.prc255 += rd32(IGC_PRC255);
1861 	adapter->stats.prc511 += rd32(IGC_PRC511);
1862 	adapter->stats.prc1023 += rd32(IGC_PRC1023);
1863 	adapter->stats.prc1522 += rd32(IGC_PRC1522);
1864 	adapter->stats.symerrs += rd32(IGC_SYMERRS);
1865 	adapter->stats.sec += rd32(IGC_SEC);
1866 
1867 	mpc = rd32(IGC_MPC);
1868 	adapter->stats.mpc += mpc;
1869 	net_stats->rx_fifo_errors += mpc;
1870 	adapter->stats.scc += rd32(IGC_SCC);
1871 	adapter->stats.ecol += rd32(IGC_ECOL);
1872 	adapter->stats.mcc += rd32(IGC_MCC);
1873 	adapter->stats.latecol += rd32(IGC_LATECOL);
1874 	adapter->stats.dc += rd32(IGC_DC);
1875 	adapter->stats.rlec += rd32(IGC_RLEC);
1876 	adapter->stats.xonrxc += rd32(IGC_XONRXC);
1877 	adapter->stats.xontxc += rd32(IGC_XONTXC);
1878 	adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
1879 	adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
1880 	adapter->stats.fcruc += rd32(IGC_FCRUC);
1881 	adapter->stats.gptc += rd32(IGC_GPTC);
1882 	adapter->stats.gotc += rd32(IGC_GOTCL);
1883 	rd32(IGC_GOTCH); /* clear GOTCL */
1884 	adapter->stats.rnbc += rd32(IGC_RNBC);
1885 	adapter->stats.ruc += rd32(IGC_RUC);
1886 	adapter->stats.rfc += rd32(IGC_RFC);
1887 	adapter->stats.rjc += rd32(IGC_RJC);
1888 	adapter->stats.tor += rd32(IGC_TORH);
1889 	adapter->stats.tot += rd32(IGC_TOTH);
1890 	adapter->stats.tpr += rd32(IGC_TPR);
1891 
1892 	adapter->stats.ptc64 += rd32(IGC_PTC64);
1893 	adapter->stats.ptc127 += rd32(IGC_PTC127);
1894 	adapter->stats.ptc255 += rd32(IGC_PTC255);
1895 	adapter->stats.ptc511 += rd32(IGC_PTC511);
1896 	adapter->stats.ptc1023 += rd32(IGC_PTC1023);
1897 	adapter->stats.ptc1522 += rd32(IGC_PTC1522);
1898 
1899 	adapter->stats.mptc += rd32(IGC_MPTC);
1900 	adapter->stats.bptc += rd32(IGC_BPTC);
1901 
1902 	adapter->stats.tpt += rd32(IGC_TPT);
1903 	adapter->stats.colc += rd32(IGC_COLC);
1904 
1905 	adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
1906 
1907 	adapter->stats.tsctc += rd32(IGC_TSCTC);
1908 	adapter->stats.tsctfc += rd32(IGC_TSCTFC);
1909 
1910 	adapter->stats.iac += rd32(IGC_IAC);
1911 	adapter->stats.icrxoc += rd32(IGC_ICRXOC);
1912 	adapter->stats.icrxptc += rd32(IGC_ICRXPTC);
1913 	adapter->stats.icrxatc += rd32(IGC_ICRXATC);
1914 	adapter->stats.ictxptc += rd32(IGC_ICTXPTC);
1915 	adapter->stats.ictxatc += rd32(IGC_ICTXATC);
1916 	adapter->stats.ictxqec += rd32(IGC_ICTXQEC);
1917 	adapter->stats.ictxqmtc += rd32(IGC_ICTXQMTC);
1918 	adapter->stats.icrxdmtc += rd32(IGC_ICRXDMTC);
1919 
1920 	/* Fill out the OS statistics structure */
1921 	net_stats->multicast = adapter->stats.mprc;
1922 	net_stats->collisions = adapter->stats.colc;
1923 
1924 	/* Rx Errors */
1925 
1926 	/* RLEC on some newer hardware can be incorrect so build
1927 	 * our own version based on RUC and ROC
1928 	 */
1929 	net_stats->rx_errors = adapter->stats.rxerrc +
1930 		adapter->stats.crcerrs + adapter->stats.algnerrc +
1931 		adapter->stats.ruc + adapter->stats.roc +
1932 		adapter->stats.cexterr;
1933 	net_stats->rx_length_errors = adapter->stats.ruc +
1934 				      adapter->stats.roc;
1935 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
1936 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
1937 	net_stats->rx_missed_errors = adapter->stats.mpc;
1938 
1939 	/* Tx Errors */
1940 	net_stats->tx_errors = adapter->stats.ecol +
1941 			       adapter->stats.latecol;
1942 	net_stats->tx_aborted_errors = adapter->stats.ecol;
1943 	net_stats->tx_window_errors = adapter->stats.latecol;
1944 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
1945 
1946 	/* Tx Dropped needs to be maintained elsewhere */
1947 
1948 	/* Management Stats */
1949 	adapter->stats.mgptc += rd32(IGC_MGTPTC);
1950 	adapter->stats.mgprc += rd32(IGC_MGTPRC);
1951 	adapter->stats.mgpdc += rd32(IGC_MGTPDC);
1952 }
1953 
1954 static void igc_nfc_filter_exit(struct igc_adapter *adapter)
1955 {
1956 	struct igc_nfc_filter *rule;
1957 
1958 	spin_lock(&adapter->nfc_lock);
1959 
1960 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
1961 		igc_erase_filter(adapter, rule);
1962 
1963 	hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
1964 		igc_erase_filter(adapter, rule);
1965 
1966 	spin_unlock(&adapter->nfc_lock);
1967 }
1968 
1969 static void igc_nfc_filter_restore(struct igc_adapter *adapter)
1970 {
1971 	struct igc_nfc_filter *rule;
1972 
1973 	spin_lock(&adapter->nfc_lock);
1974 
1975 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
1976 		igc_add_filter(adapter, rule);
1977 
1978 	spin_unlock(&adapter->nfc_lock);
1979 }
1980 
1981 /**
1982  * igc_down - Close the interface
1983  * @adapter: board private structure
1984  */
1985 void igc_down(struct igc_adapter *adapter)
1986 {
1987 	struct net_device *netdev = adapter->netdev;
1988 	struct igc_hw *hw = &adapter->hw;
1989 	u32 tctl, rctl;
1990 	int i = 0;
1991 
1992 	set_bit(__IGC_DOWN, &adapter->state);
1993 
1994 	/* disable receives in the hardware */
1995 	rctl = rd32(IGC_RCTL);
1996 	wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
1997 	/* flush and sleep below */
1998 
1999 	igc_nfc_filter_exit(adapter);
2000 
2001 	/* set trans_start so we don't get spurious watchdogs during reset */
2002 	netif_trans_update(netdev);
2003 
2004 	netif_carrier_off(netdev);
2005 	netif_tx_stop_all_queues(netdev);
2006 
2007 	/* disable transmits in the hardware */
2008 	tctl = rd32(IGC_TCTL);
2009 	tctl &= ~IGC_TCTL_EN;
2010 	wr32(IGC_TCTL, tctl);
2011 	/* flush both disables and wait for them to finish */
2012 	wrfl();
2013 	usleep_range(10000, 20000);
2014 
2015 	igc_irq_disable(adapter);
2016 
2017 	adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
2018 
2019 	for (i = 0; i < adapter->num_q_vectors; i++) {
2020 		if (adapter->q_vector[i]) {
2021 			napi_synchronize(&adapter->q_vector[i]->napi);
2022 			napi_disable(&adapter->q_vector[i]->napi);
2023 		}
2024 	}
2025 
2026 	del_timer_sync(&adapter->watchdog_timer);
2027 	del_timer_sync(&adapter->phy_info_timer);
2028 
2029 	/* record the stats before reset*/
2030 	spin_lock(&adapter->stats64_lock);
2031 	igc_update_stats(adapter);
2032 	spin_unlock(&adapter->stats64_lock);
2033 
2034 	adapter->link_speed = 0;
2035 	adapter->link_duplex = 0;
2036 
2037 	if (!pci_channel_offline(adapter->pdev))
2038 		igc_reset(adapter);
2039 
2040 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
2041 	adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
2042 
2043 	igc_clean_all_tx_rings(adapter);
2044 	igc_clean_all_rx_rings(adapter);
2045 }
2046 
2047 void igc_reinit_locked(struct igc_adapter *adapter)
2048 {
2049 	WARN_ON(in_interrupt());
2050 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
2051 		usleep_range(1000, 2000);
2052 	igc_down(adapter);
2053 	igc_up(adapter);
2054 	clear_bit(__IGC_RESETTING, &adapter->state);
2055 }
2056 
2057 static void igc_reset_task(struct work_struct *work)
2058 {
2059 	struct igc_adapter *adapter;
2060 
2061 	adapter = container_of(work, struct igc_adapter, reset_task);
2062 
2063 	netdev_err(adapter->netdev, "Reset adapter\n");
2064 	igc_reinit_locked(adapter);
2065 }
2066 
2067 /**
2068  * igc_change_mtu - Change the Maximum Transfer Unit
2069  * @netdev: network interface device structure
2070  * @new_mtu: new value for maximum frame size
2071  *
2072  * Returns 0 on success, negative on failure
2073  */
2074 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
2075 {
2076 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
2077 	struct igc_adapter *adapter = netdev_priv(netdev);
2078 	struct pci_dev *pdev = adapter->pdev;
2079 
2080 	/* adjust max frame to be at least the size of a standard frame */
2081 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
2082 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
2083 
2084 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
2085 		usleep_range(1000, 2000);
2086 
2087 	/* igc_down has a dependency on max_frame_size */
2088 	adapter->max_frame_size = max_frame;
2089 
2090 	if (netif_running(netdev))
2091 		igc_down(adapter);
2092 
2093 	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
2094 		 netdev->mtu, new_mtu);
2095 	netdev->mtu = new_mtu;
2096 
2097 	if (netif_running(netdev))
2098 		igc_up(adapter);
2099 	else
2100 		igc_reset(adapter);
2101 
2102 	clear_bit(__IGC_RESETTING, &adapter->state);
2103 
2104 	return 0;
2105 }
2106 
2107 /**
2108  * igc_get_stats - Get System Network Statistics
2109  * @netdev: network interface device structure
2110  *
2111  * Returns the address of the device statistics structure.
2112  * The statistics are updated here and also from the timer callback.
2113  */
2114 static struct net_device_stats *igc_get_stats(struct net_device *netdev)
2115 {
2116 	struct igc_adapter *adapter = netdev_priv(netdev);
2117 
2118 	if (!test_bit(__IGC_RESETTING, &adapter->state))
2119 		igc_update_stats(adapter);
2120 
2121 	/* only return the current stats */
2122 	return &netdev->stats;
2123 }
2124 
2125 static netdev_features_t igc_fix_features(struct net_device *netdev,
2126 					  netdev_features_t features)
2127 {
2128 	/* Since there is no support for separate Rx/Tx vlan accel
2129 	 * enable/disable make sure Tx flag is always in same state as Rx.
2130 	 */
2131 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2132 		features |= NETIF_F_HW_VLAN_CTAG_TX;
2133 	else
2134 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2135 
2136 	return features;
2137 }
2138 
2139 static int igc_set_features(struct net_device *netdev,
2140 			    netdev_features_t features)
2141 {
2142 	netdev_features_t changed = netdev->features ^ features;
2143 	struct igc_adapter *adapter = netdev_priv(netdev);
2144 
2145 	/* Add VLAN support */
2146 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2147 		return 0;
2148 
2149 	if (!(features & NETIF_F_NTUPLE)) {
2150 		struct hlist_node *node2;
2151 		struct igc_nfc_filter *rule;
2152 
2153 		spin_lock(&adapter->nfc_lock);
2154 		hlist_for_each_entry_safe(rule, node2,
2155 					  &adapter->nfc_filter_list, nfc_node) {
2156 			igc_erase_filter(adapter, rule);
2157 			hlist_del(&rule->nfc_node);
2158 			kfree(rule);
2159 		}
2160 		spin_unlock(&adapter->nfc_lock);
2161 		adapter->nfc_filter_count = 0;
2162 	}
2163 
2164 	netdev->features = features;
2165 
2166 	if (netif_running(netdev))
2167 		igc_reinit_locked(adapter);
2168 	else
2169 		igc_reset(adapter);
2170 
2171 	return 1;
2172 }
2173 
2174 static netdev_features_t
2175 igc_features_check(struct sk_buff *skb, struct net_device *dev,
2176 		   netdev_features_t features)
2177 {
2178 	unsigned int network_hdr_len, mac_hdr_len;
2179 
2180 	/* Make certain the headers can be described by a context descriptor */
2181 	mac_hdr_len = skb_network_header(skb) - skb->data;
2182 	if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
2183 		return features & ~(NETIF_F_HW_CSUM |
2184 				    NETIF_F_SCTP_CRC |
2185 				    NETIF_F_HW_VLAN_CTAG_TX |
2186 				    NETIF_F_TSO |
2187 				    NETIF_F_TSO6);
2188 
2189 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2190 	if (unlikely(network_hdr_len >  IGC_MAX_NETWORK_HDR_LEN))
2191 		return features & ~(NETIF_F_HW_CSUM |
2192 				    NETIF_F_SCTP_CRC |
2193 				    NETIF_F_TSO |
2194 				    NETIF_F_TSO6);
2195 
2196 	/* We can only support IPv4 TSO in tunnels if we can mangle the
2197 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2198 	 */
2199 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2200 		features &= ~NETIF_F_TSO;
2201 
2202 	return features;
2203 }
2204 
2205 /**
2206  * igc_configure - configure the hardware for RX and TX
2207  * @adapter: private board structure
2208  */
2209 static void igc_configure(struct igc_adapter *adapter)
2210 {
2211 	struct net_device *netdev = adapter->netdev;
2212 	int i = 0;
2213 
2214 	igc_get_hw_control(adapter);
2215 	igc_set_rx_mode(netdev);
2216 
2217 	igc_setup_tctl(adapter);
2218 	igc_setup_mrqc(adapter);
2219 	igc_setup_rctl(adapter);
2220 
2221 	igc_nfc_filter_restore(adapter);
2222 	igc_configure_tx(adapter);
2223 	igc_configure_rx(adapter);
2224 
2225 	igc_rx_fifo_flush_base(&adapter->hw);
2226 
2227 	/* call igc_desc_unused which always leaves
2228 	 * at least 1 descriptor unused to make sure
2229 	 * next_to_use != next_to_clean
2230 	 */
2231 	for (i = 0; i < adapter->num_rx_queues; i++) {
2232 		struct igc_ring *ring = adapter->rx_ring[i];
2233 
2234 		igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
2235 	}
2236 }
2237 
2238 /**
2239  * igc_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
2240  * @adapter: address of board private structure
2241  * @index: Index of the RAR entry which need to be synced with MAC table
2242  */
2243 static void igc_rar_set_index(struct igc_adapter *adapter, u32 index)
2244 {
2245 	u8 *addr = adapter->mac_table[index].addr;
2246 	struct igc_hw *hw = &adapter->hw;
2247 	u32 rar_low, rar_high;
2248 
2249 	/* HW expects these to be in network order when they are plugged
2250 	 * into the registers which are little endian.  In order to guarantee
2251 	 * that ordering we need to do an leXX_to_cpup here in order to be
2252 	 * ready for the byteswap that occurs with writel
2253 	 */
2254 	rar_low = le32_to_cpup((__le32 *)(addr));
2255 	rar_high = le16_to_cpup((__le16 *)(addr + 4));
2256 
2257 	/* Indicate to hardware the Address is Valid. */
2258 	if (adapter->mac_table[index].state & IGC_MAC_STATE_IN_USE) {
2259 		if (is_valid_ether_addr(addr))
2260 			rar_high |= IGC_RAH_AV;
2261 
2262 		rar_high |= IGC_RAH_POOL_1 <<
2263 			adapter->mac_table[index].queue;
2264 	}
2265 
2266 	wr32(IGC_RAL(index), rar_low);
2267 	wrfl();
2268 	wr32(IGC_RAH(index), rar_high);
2269 	wrfl();
2270 }
2271 
2272 /* Set default MAC address for the PF in the first RAR entry */
2273 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
2274 {
2275 	struct igc_mac_addr *mac_table = &adapter->mac_table[0];
2276 
2277 	ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
2278 	mac_table->state = IGC_MAC_STATE_DEFAULT | IGC_MAC_STATE_IN_USE;
2279 
2280 	igc_rar_set_index(adapter, 0);
2281 }
2282 
2283 /* If the filter to be added and an already existing filter express
2284  * the same address and address type, it should be possible to only
2285  * override the other configurations, for example the queue to steer
2286  * traffic.
2287  */
2288 static bool igc_mac_entry_can_be_used(const struct igc_mac_addr *entry,
2289 				      const u8 *addr, const u8 flags)
2290 {
2291 	if (!(entry->state & IGC_MAC_STATE_IN_USE))
2292 		return true;
2293 
2294 	if ((entry->state & IGC_MAC_STATE_SRC_ADDR) !=
2295 	    (flags & IGC_MAC_STATE_SRC_ADDR))
2296 		return false;
2297 
2298 	if (!ether_addr_equal(addr, entry->addr))
2299 		return false;
2300 
2301 	return true;
2302 }
2303 
2304 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
2305  * 'flags' is used to indicate what kind of match is made, match is by
2306  * default for the destination address, if matching by source address
2307  * is desired the flag IGC_MAC_STATE_SRC_ADDR can be used.
2308  */
2309 static int igc_add_mac_filter_flags(struct igc_adapter *adapter,
2310 				    const u8 *addr, const u8 queue,
2311 				    const u8 flags)
2312 {
2313 	struct igc_hw *hw = &adapter->hw;
2314 	int rar_entries = hw->mac.rar_entry_count;
2315 	int i;
2316 
2317 	if (is_zero_ether_addr(addr))
2318 		return -EINVAL;
2319 
2320 	/* Search for the first empty entry in the MAC table.
2321 	 * Do not touch entries at the end of the table reserved for the VF MAC
2322 	 * addresses.
2323 	 */
2324 	for (i = 0; i < rar_entries; i++) {
2325 		if (!igc_mac_entry_can_be_used(&adapter->mac_table[i],
2326 					       addr, flags))
2327 			continue;
2328 
2329 		ether_addr_copy(adapter->mac_table[i].addr, addr);
2330 		adapter->mac_table[i].queue = queue;
2331 		adapter->mac_table[i].state |= IGC_MAC_STATE_IN_USE | flags;
2332 
2333 		igc_rar_set_index(adapter, i);
2334 		return i;
2335 	}
2336 
2337 	return -ENOSPC;
2338 }
2339 
2340 int igc_add_mac_steering_filter(struct igc_adapter *adapter,
2341 				const u8 *addr, u8 queue, u8 flags)
2342 {
2343 	return igc_add_mac_filter_flags(adapter, addr, queue,
2344 					IGC_MAC_STATE_QUEUE_STEERING | flags);
2345 }
2346 
2347 /* Remove a MAC filter for 'addr' directing matching traffic to
2348  * 'queue', 'flags' is used to indicate what kind of match need to be
2349  * removed, match is by default for the destination address, if
2350  * matching by source address is to be removed the flag
2351  * IGC_MAC_STATE_SRC_ADDR can be used.
2352  */
2353 static int igc_del_mac_filter_flags(struct igc_adapter *adapter,
2354 				    const u8 *addr, const u8 queue,
2355 				    const u8 flags)
2356 {
2357 	struct igc_hw *hw = &adapter->hw;
2358 	int rar_entries = hw->mac.rar_entry_count;
2359 	int i;
2360 
2361 	if (is_zero_ether_addr(addr))
2362 		return -EINVAL;
2363 
2364 	/* Search for matching entry in the MAC table based on given address
2365 	 * and queue. Do not touch entries at the end of the table reserved
2366 	 * for the VF MAC addresses.
2367 	 */
2368 	for (i = 0; i < rar_entries; i++) {
2369 		if (!(adapter->mac_table[i].state & IGC_MAC_STATE_IN_USE))
2370 			continue;
2371 		if ((adapter->mac_table[i].state & flags) != flags)
2372 			continue;
2373 		if (adapter->mac_table[i].queue != queue)
2374 			continue;
2375 		if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
2376 			continue;
2377 
2378 		/* When a filter for the default address is "deleted",
2379 		 * we return it to its initial configuration
2380 		 */
2381 		if (adapter->mac_table[i].state & IGC_MAC_STATE_DEFAULT) {
2382 			adapter->mac_table[i].state =
2383 				IGC_MAC_STATE_DEFAULT | IGC_MAC_STATE_IN_USE;
2384 		} else {
2385 			adapter->mac_table[i].state = 0;
2386 			adapter->mac_table[i].queue = 0;
2387 			memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
2388 		}
2389 
2390 		igc_rar_set_index(adapter, i);
2391 		return 0;
2392 	}
2393 
2394 	return -ENOENT;
2395 }
2396 
2397 int igc_del_mac_steering_filter(struct igc_adapter *adapter,
2398 				const u8 *addr, u8 queue, u8 flags)
2399 {
2400 	return igc_del_mac_filter_flags(adapter, addr, queue,
2401 					IGC_MAC_STATE_QUEUE_STEERING | flags);
2402 }
2403 
2404 /**
2405  * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2406  * @netdev: network interface device structure
2407  *
2408  * The set_rx_mode entry point is called whenever the unicast or multicast
2409  * address lists or the network interface flags are updated.  This routine is
2410  * responsible for configuring the hardware for proper unicast, multicast,
2411  * promiscuous mode, and all-multi behavior.
2412  */
2413 static void igc_set_rx_mode(struct net_device *netdev)
2414 {
2415 }
2416 
2417 /**
2418  * igc_msix_other - msix other interrupt handler
2419  * @irq: interrupt number
2420  * @data: pointer to a q_vector
2421  */
2422 static irqreturn_t igc_msix_other(int irq, void *data)
2423 {
2424 	struct igc_adapter *adapter = data;
2425 	struct igc_hw *hw = &adapter->hw;
2426 	u32 icr = rd32(IGC_ICR);
2427 
2428 	/* reading ICR causes bit 31 of EICR to be cleared */
2429 	if (icr & IGC_ICR_DRSTA)
2430 		schedule_work(&adapter->reset_task);
2431 
2432 	if (icr & IGC_ICR_DOUTSYNC) {
2433 		/* HW is reporting DMA is out of sync */
2434 		adapter->stats.doosync++;
2435 	}
2436 
2437 	if (icr & IGC_ICR_LSC) {
2438 		hw->mac.get_link_status = 1;
2439 		/* guard against interrupt when we're going down */
2440 		if (!test_bit(__IGC_DOWN, &adapter->state))
2441 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
2442 	}
2443 
2444 	wr32(IGC_EIMS, adapter->eims_other);
2445 
2446 	return IRQ_HANDLED;
2447 }
2448 
2449 /**
2450  * igc_write_ivar - configure ivar for given MSI-X vector
2451  * @hw: pointer to the HW structure
2452  * @msix_vector: vector number we are allocating to a given ring
2453  * @index: row index of IVAR register to write within IVAR table
2454  * @offset: column offset of in IVAR, should be multiple of 8
2455  *
2456  * The IVAR table consists of 2 columns,
2457  * each containing an cause allocation for an Rx and Tx ring, and a
2458  * variable number of rows depending on the number of queues supported.
2459  */
2460 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
2461 			   int index, int offset)
2462 {
2463 	u32 ivar = array_rd32(IGC_IVAR0, index);
2464 
2465 	/* clear any bits that are currently set */
2466 	ivar &= ~((u32)0xFF << offset);
2467 
2468 	/* write vector and valid bit */
2469 	ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
2470 
2471 	array_wr32(IGC_IVAR0, index, ivar);
2472 }
2473 
2474 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
2475 {
2476 	struct igc_adapter *adapter = q_vector->adapter;
2477 	struct igc_hw *hw = &adapter->hw;
2478 	int rx_queue = IGC_N0_QUEUE;
2479 	int tx_queue = IGC_N0_QUEUE;
2480 
2481 	if (q_vector->rx.ring)
2482 		rx_queue = q_vector->rx.ring->reg_idx;
2483 	if (q_vector->tx.ring)
2484 		tx_queue = q_vector->tx.ring->reg_idx;
2485 
2486 	switch (hw->mac.type) {
2487 	case igc_i225:
2488 		if (rx_queue > IGC_N0_QUEUE)
2489 			igc_write_ivar(hw, msix_vector,
2490 				       rx_queue >> 1,
2491 				       (rx_queue & 0x1) << 4);
2492 		if (tx_queue > IGC_N0_QUEUE)
2493 			igc_write_ivar(hw, msix_vector,
2494 				       tx_queue >> 1,
2495 				       ((tx_queue & 0x1) << 4) + 8);
2496 		q_vector->eims_value = BIT(msix_vector);
2497 		break;
2498 	default:
2499 		WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
2500 		break;
2501 	}
2502 
2503 	/* add q_vector eims value to global eims_enable_mask */
2504 	adapter->eims_enable_mask |= q_vector->eims_value;
2505 
2506 	/* configure q_vector to set itr on first interrupt */
2507 	q_vector->set_itr = 1;
2508 }
2509 
2510 /**
2511  * igc_configure_msix - Configure MSI-X hardware
2512  * @adapter: Pointer to adapter structure
2513  *
2514  * igc_configure_msix sets up the hardware to properly
2515  * generate MSI-X interrupts.
2516  */
2517 static void igc_configure_msix(struct igc_adapter *adapter)
2518 {
2519 	struct igc_hw *hw = &adapter->hw;
2520 	int i, vector = 0;
2521 	u32 tmp;
2522 
2523 	adapter->eims_enable_mask = 0;
2524 
2525 	/* set vector for other causes, i.e. link changes */
2526 	switch (hw->mac.type) {
2527 	case igc_i225:
2528 		/* Turn on MSI-X capability first, or our settings
2529 		 * won't stick.  And it will take days to debug.
2530 		 */
2531 		wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
2532 		     IGC_GPIE_PBA | IGC_GPIE_EIAME |
2533 		     IGC_GPIE_NSICR);
2534 
2535 		/* enable msix_other interrupt */
2536 		adapter->eims_other = BIT(vector);
2537 		tmp = (vector++ | IGC_IVAR_VALID) << 8;
2538 
2539 		wr32(IGC_IVAR_MISC, tmp);
2540 		break;
2541 	default:
2542 		/* do nothing, since nothing else supports MSI-X */
2543 		break;
2544 	} /* switch (hw->mac.type) */
2545 
2546 	adapter->eims_enable_mask |= adapter->eims_other;
2547 
2548 	for (i = 0; i < adapter->num_q_vectors; i++)
2549 		igc_assign_vector(adapter->q_vector[i], vector++);
2550 
2551 	wrfl();
2552 }
2553 
2554 static irqreturn_t igc_msix_ring(int irq, void *data)
2555 {
2556 	struct igc_q_vector *q_vector = data;
2557 
2558 	/* Write the ITR value calculated from the previous interrupt. */
2559 	igc_write_itr(q_vector);
2560 
2561 	napi_schedule(&q_vector->napi);
2562 
2563 	return IRQ_HANDLED;
2564 }
2565 
2566 /**
2567  * igc_request_msix - Initialize MSI-X interrupts
2568  * @adapter: Pointer to adapter structure
2569  *
2570  * igc_request_msix allocates MSI-X vectors and requests interrupts from the
2571  * kernel.
2572  */
2573 static int igc_request_msix(struct igc_adapter *adapter)
2574 {
2575 	int i = 0, err = 0, vector = 0, free_vector = 0;
2576 	struct net_device *netdev = adapter->netdev;
2577 
2578 	err = request_irq(adapter->msix_entries[vector].vector,
2579 			  &igc_msix_other, 0, netdev->name, adapter);
2580 	if (err)
2581 		goto err_out;
2582 
2583 	for (i = 0; i < adapter->num_q_vectors; i++) {
2584 		struct igc_q_vector *q_vector = adapter->q_vector[i];
2585 
2586 		vector++;
2587 
2588 		q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
2589 
2590 		if (q_vector->rx.ring && q_vector->tx.ring)
2591 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
2592 				q_vector->rx.ring->queue_index);
2593 		else if (q_vector->tx.ring)
2594 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
2595 				q_vector->tx.ring->queue_index);
2596 		else if (q_vector->rx.ring)
2597 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
2598 				q_vector->rx.ring->queue_index);
2599 		else
2600 			sprintf(q_vector->name, "%s-unused", netdev->name);
2601 
2602 		err = request_irq(adapter->msix_entries[vector].vector,
2603 				  igc_msix_ring, 0, q_vector->name,
2604 				  q_vector);
2605 		if (err)
2606 			goto err_free;
2607 	}
2608 
2609 	igc_configure_msix(adapter);
2610 	return 0;
2611 
2612 err_free:
2613 	/* free already assigned IRQs */
2614 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
2615 
2616 	vector--;
2617 	for (i = 0; i < vector; i++) {
2618 		free_irq(adapter->msix_entries[free_vector++].vector,
2619 			 adapter->q_vector[i]);
2620 	}
2621 err_out:
2622 	return err;
2623 }
2624 
2625 /**
2626  * igc_reset_q_vector - Reset config for interrupt vector
2627  * @adapter: board private structure to initialize
2628  * @v_idx: Index of vector to be reset
2629  *
2630  * If NAPI is enabled it will delete any references to the
2631  * NAPI struct. This is preparation for igc_free_q_vector.
2632  */
2633 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
2634 {
2635 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
2636 
2637 	/* if we're coming from igc_set_interrupt_capability, the vectors are
2638 	 * not yet allocated
2639 	 */
2640 	if (!q_vector)
2641 		return;
2642 
2643 	if (q_vector->tx.ring)
2644 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
2645 
2646 	if (q_vector->rx.ring)
2647 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
2648 
2649 	netif_napi_del(&q_vector->napi);
2650 }
2651 
2652 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
2653 {
2654 	int v_idx = adapter->num_q_vectors;
2655 
2656 	if (adapter->msix_entries) {
2657 		pci_disable_msix(adapter->pdev);
2658 		kfree(adapter->msix_entries);
2659 		adapter->msix_entries = NULL;
2660 	} else if (adapter->flags & IGC_FLAG_HAS_MSI) {
2661 		pci_disable_msi(adapter->pdev);
2662 	}
2663 
2664 	while (v_idx--)
2665 		igc_reset_q_vector(adapter, v_idx);
2666 }
2667 
2668 /**
2669  * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
2670  * @adapter: Pointer to adapter structure
2671  *
2672  * This function resets the device so that it has 0 rx queues, tx queues, and
2673  * MSI-X interrupts allocated.
2674  */
2675 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
2676 {
2677 	igc_free_q_vectors(adapter);
2678 	igc_reset_interrupt_capability(adapter);
2679 }
2680 
2681 /**
2682  * igc_free_q_vectors - Free memory allocated for interrupt vectors
2683  * @adapter: board private structure to initialize
2684  *
2685  * This function frees the memory allocated to the q_vectors.  In addition if
2686  * NAPI is enabled it will delete any references to the NAPI struct prior
2687  * to freeing the q_vector.
2688  */
2689 static void igc_free_q_vectors(struct igc_adapter *adapter)
2690 {
2691 	int v_idx = adapter->num_q_vectors;
2692 
2693 	adapter->num_tx_queues = 0;
2694 	adapter->num_rx_queues = 0;
2695 	adapter->num_q_vectors = 0;
2696 
2697 	while (v_idx--) {
2698 		igc_reset_q_vector(adapter, v_idx);
2699 		igc_free_q_vector(adapter, v_idx);
2700 	}
2701 }
2702 
2703 /**
2704  * igc_free_q_vector - Free memory allocated for specific interrupt vector
2705  * @adapter: board private structure to initialize
2706  * @v_idx: Index of vector to be freed
2707  *
2708  * This function frees the memory allocated to the q_vector.
2709  */
2710 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
2711 {
2712 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
2713 
2714 	adapter->q_vector[v_idx] = NULL;
2715 
2716 	/* igc_get_stats64() might access the rings on this vector,
2717 	 * we must wait a grace period before freeing it.
2718 	 */
2719 	if (q_vector)
2720 		kfree_rcu(q_vector, rcu);
2721 }
2722 
2723 /* Need to wait a few seconds after link up to get diagnostic information from
2724  * the phy
2725  */
2726 static void igc_update_phy_info(struct timer_list *t)
2727 {
2728 	struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
2729 
2730 	igc_get_phy_info(&adapter->hw);
2731 }
2732 
2733 /**
2734  * igc_has_link - check shared code for link and determine up/down
2735  * @adapter: pointer to driver private info
2736  */
2737 bool igc_has_link(struct igc_adapter *adapter)
2738 {
2739 	struct igc_hw *hw = &adapter->hw;
2740 	bool link_active = false;
2741 
2742 	/* get_link_status is set on LSC (link status) interrupt or
2743 	 * rx sequence error interrupt.  get_link_status will stay
2744 	 * false until the igc_check_for_link establishes link
2745 	 * for copper adapters ONLY
2746 	 */
2747 	switch (hw->phy.media_type) {
2748 	case igc_media_type_copper:
2749 		if (!hw->mac.get_link_status)
2750 			return true;
2751 		hw->mac.ops.check_for_link(hw);
2752 		link_active = !hw->mac.get_link_status;
2753 		break;
2754 	default:
2755 	case igc_media_type_unknown:
2756 		break;
2757 	}
2758 
2759 	if (hw->mac.type == igc_i225 &&
2760 	    hw->phy.id == I225_I_PHY_ID) {
2761 		if (!netif_carrier_ok(adapter->netdev)) {
2762 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
2763 		} else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
2764 			adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
2765 			adapter->link_check_timeout = jiffies;
2766 		}
2767 	}
2768 
2769 	return link_active;
2770 }
2771 
2772 /**
2773  * igc_watchdog - Timer Call-back
2774  * @data: pointer to adapter cast into an unsigned long
2775  */
2776 static void igc_watchdog(struct timer_list *t)
2777 {
2778 	struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
2779 	/* Do the rest outside of interrupt context */
2780 	schedule_work(&adapter->watchdog_task);
2781 }
2782 
2783 static void igc_watchdog_task(struct work_struct *work)
2784 {
2785 	struct igc_adapter *adapter = container_of(work,
2786 						   struct igc_adapter,
2787 						   watchdog_task);
2788 	struct net_device *netdev = adapter->netdev;
2789 	struct igc_hw *hw = &adapter->hw;
2790 	struct igc_phy_info *phy = &hw->phy;
2791 	u16 phy_data, retry_count = 20;
2792 	u32 connsw;
2793 	u32 link;
2794 	int i;
2795 
2796 	link = igc_has_link(adapter);
2797 
2798 	if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
2799 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
2800 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
2801 		else
2802 			link = false;
2803 	}
2804 
2805 	/* Force link down if we have fiber to swap to */
2806 	if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
2807 		if (hw->phy.media_type == igc_media_type_copper) {
2808 			connsw = rd32(IGC_CONNSW);
2809 			if (!(connsw & IGC_CONNSW_AUTOSENSE_EN))
2810 				link = 0;
2811 		}
2812 	}
2813 	if (link) {
2814 		if (!netif_carrier_ok(netdev)) {
2815 			u32 ctrl;
2816 
2817 			hw->mac.ops.get_speed_and_duplex(hw,
2818 							 &adapter->link_speed,
2819 							 &adapter->link_duplex);
2820 
2821 			ctrl = rd32(IGC_CTRL);
2822 			/* Link status message must follow this format */
2823 			netdev_info(netdev,
2824 				    "igc: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
2825 				    netdev->name,
2826 				    adapter->link_speed,
2827 				    adapter->link_duplex == FULL_DUPLEX ?
2828 				    "Full" : "Half",
2829 				    (ctrl & IGC_CTRL_TFCE) &&
2830 				    (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
2831 				    (ctrl & IGC_CTRL_RFCE) ?  "RX" :
2832 				    (ctrl & IGC_CTRL_TFCE) ?  "TX" : "None");
2833 
2834 			/* check if SmartSpeed worked */
2835 			igc_check_downshift(hw);
2836 			if (phy->speed_downgraded)
2837 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
2838 
2839 			/* adjust timeout factor according to speed/duplex */
2840 			adapter->tx_timeout_factor = 1;
2841 			switch (adapter->link_speed) {
2842 			case SPEED_10:
2843 				adapter->tx_timeout_factor = 14;
2844 				break;
2845 			case SPEED_100:
2846 				/* maybe add some timeout factor ? */
2847 				break;
2848 			}
2849 
2850 			if (adapter->link_speed != SPEED_1000)
2851 				goto no_wait;
2852 
2853 			/* wait for Remote receiver status OK */
2854 retry_read_status:
2855 			if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
2856 					      &phy_data)) {
2857 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
2858 				    retry_count) {
2859 					msleep(100);
2860 					retry_count--;
2861 					goto retry_read_status;
2862 				} else if (!retry_count) {
2863 					dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
2864 				}
2865 			} else {
2866 				dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
2867 			}
2868 no_wait:
2869 			netif_carrier_on(netdev);
2870 
2871 			/* link state has changed, schedule phy info update */
2872 			if (!test_bit(__IGC_DOWN, &adapter->state))
2873 				mod_timer(&adapter->phy_info_timer,
2874 					  round_jiffies(jiffies + 2 * HZ));
2875 		}
2876 	} else {
2877 		if (netif_carrier_ok(netdev)) {
2878 			adapter->link_speed = 0;
2879 			adapter->link_duplex = 0;
2880 
2881 			/* Links status message must follow this format */
2882 			netdev_info(netdev, "igc: %s NIC Link is Down\n",
2883 				    netdev->name);
2884 			netif_carrier_off(netdev);
2885 
2886 			/* link state has changed, schedule phy info update */
2887 			if (!test_bit(__IGC_DOWN, &adapter->state))
2888 				mod_timer(&adapter->phy_info_timer,
2889 					  round_jiffies(jiffies + 2 * HZ));
2890 
2891 			/* link is down, time to check for alternate media */
2892 			if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
2893 				if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
2894 					schedule_work(&adapter->reset_task);
2895 					/* return immediately */
2896 					return;
2897 				}
2898 			}
2899 
2900 		/* also check for alternate media here */
2901 		} else if (!netif_carrier_ok(netdev) &&
2902 			   (adapter->flags & IGC_FLAG_MAS_ENABLE)) {
2903 			if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
2904 				schedule_work(&adapter->reset_task);
2905 				/* return immediately */
2906 				return;
2907 			}
2908 		}
2909 	}
2910 
2911 	spin_lock(&adapter->stats64_lock);
2912 	igc_update_stats(adapter);
2913 	spin_unlock(&adapter->stats64_lock);
2914 
2915 	for (i = 0; i < adapter->num_tx_queues; i++) {
2916 		struct igc_ring *tx_ring = adapter->tx_ring[i];
2917 
2918 		if (!netif_carrier_ok(netdev)) {
2919 			/* We've lost link, so the controller stops DMA,
2920 			 * but we've got queued Tx work that's never going
2921 			 * to get done, so reset controller to flush Tx.
2922 			 * (Do the reset outside of interrupt context).
2923 			 */
2924 			if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
2925 				adapter->tx_timeout_count++;
2926 				schedule_work(&adapter->reset_task);
2927 				/* return immediately since reset is imminent */
2928 				return;
2929 			}
2930 		}
2931 
2932 		/* Force detection of hung controller every watchdog period */
2933 		set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
2934 	}
2935 
2936 	/* Cause software interrupt to ensure Rx ring is cleaned */
2937 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
2938 		u32 eics = 0;
2939 
2940 		for (i = 0; i < adapter->num_q_vectors; i++)
2941 			eics |= adapter->q_vector[i]->eims_value;
2942 		wr32(IGC_EICS, eics);
2943 	} else {
2944 		wr32(IGC_ICS, IGC_ICS_RXDMT0);
2945 	}
2946 
2947 	/* Reset the timer */
2948 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
2949 		if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
2950 			mod_timer(&adapter->watchdog_timer,
2951 				  round_jiffies(jiffies +  HZ));
2952 		else
2953 			mod_timer(&adapter->watchdog_timer,
2954 				  round_jiffies(jiffies + 2 * HZ));
2955 	}
2956 }
2957 
2958 /**
2959  * igc_update_ring_itr - update the dynamic ITR value based on packet size
2960  * @q_vector: pointer to q_vector
2961  *
2962  * Stores a new ITR value based on strictly on packet size.  This
2963  * algorithm is less sophisticated than that used in igc_update_itr,
2964  * due to the difficulty of synchronizing statistics across multiple
2965  * receive rings.  The divisors and thresholds used by this function
2966  * were determined based on theoretical maximum wire speed and testing
2967  * data, in order to minimize response time while increasing bulk
2968  * throughput.
2969  * NOTE: This function is called only when operating in a multiqueue
2970  * receive environment.
2971  */
2972 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
2973 {
2974 	struct igc_adapter *adapter = q_vector->adapter;
2975 	int new_val = q_vector->itr_val;
2976 	int avg_wire_size = 0;
2977 	unsigned int packets;
2978 
2979 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
2980 	 * ints/sec - ITR timer value of 120 ticks.
2981 	 */
2982 	switch (adapter->link_speed) {
2983 	case SPEED_10:
2984 	case SPEED_100:
2985 		new_val = IGC_4K_ITR;
2986 		goto set_itr_val;
2987 	default:
2988 		break;
2989 	}
2990 
2991 	packets = q_vector->rx.total_packets;
2992 	if (packets)
2993 		avg_wire_size = q_vector->rx.total_bytes / packets;
2994 
2995 	packets = q_vector->tx.total_packets;
2996 	if (packets)
2997 		avg_wire_size = max_t(u32, avg_wire_size,
2998 				      q_vector->tx.total_bytes / packets);
2999 
3000 	/* if avg_wire_size isn't set no work was done */
3001 	if (!avg_wire_size)
3002 		goto clear_counts;
3003 
3004 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
3005 	avg_wire_size += 24;
3006 
3007 	/* Don't starve jumbo frames */
3008 	avg_wire_size = min(avg_wire_size, 3000);
3009 
3010 	/* Give a little boost to mid-size frames */
3011 	if (avg_wire_size > 300 && avg_wire_size < 1200)
3012 		new_val = avg_wire_size / 3;
3013 	else
3014 		new_val = avg_wire_size / 2;
3015 
3016 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3017 	if (new_val < IGC_20K_ITR &&
3018 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3019 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3020 		new_val = IGC_20K_ITR;
3021 
3022 set_itr_val:
3023 	if (new_val != q_vector->itr_val) {
3024 		q_vector->itr_val = new_val;
3025 		q_vector->set_itr = 1;
3026 	}
3027 clear_counts:
3028 	q_vector->rx.total_bytes = 0;
3029 	q_vector->rx.total_packets = 0;
3030 	q_vector->tx.total_bytes = 0;
3031 	q_vector->tx.total_packets = 0;
3032 }
3033 
3034 /**
3035  * igc_update_itr - update the dynamic ITR value based on statistics
3036  * @q_vector: pointer to q_vector
3037  * @ring_container: ring info to update the itr for
3038  *
3039  * Stores a new ITR value based on packets and byte
3040  * counts during the last interrupt.  The advantage of per interrupt
3041  * computation is faster updates and more accurate ITR for the current
3042  * traffic pattern.  Constants in this function were computed
3043  * based on theoretical maximum wire speed and thresholds were set based
3044  * on testing data as well as attempting to minimize response time
3045  * while increasing bulk throughput.
3046  * NOTE: These calculations are only valid when operating in a single-
3047  * queue environment.
3048  */
3049 static void igc_update_itr(struct igc_q_vector *q_vector,
3050 			   struct igc_ring_container *ring_container)
3051 {
3052 	unsigned int packets = ring_container->total_packets;
3053 	unsigned int bytes = ring_container->total_bytes;
3054 	u8 itrval = ring_container->itr;
3055 
3056 	/* no packets, exit with status unchanged */
3057 	if (packets == 0)
3058 		return;
3059 
3060 	switch (itrval) {
3061 	case lowest_latency:
3062 		/* handle TSO and jumbo frames */
3063 		if (bytes / packets > 8000)
3064 			itrval = bulk_latency;
3065 		else if ((packets < 5) && (bytes > 512))
3066 			itrval = low_latency;
3067 		break;
3068 	case low_latency:  /* 50 usec aka 20000 ints/s */
3069 		if (bytes > 10000) {
3070 			/* this if handles the TSO accounting */
3071 			if (bytes / packets > 8000)
3072 				itrval = bulk_latency;
3073 			else if ((packets < 10) || ((bytes / packets) > 1200))
3074 				itrval = bulk_latency;
3075 			else if ((packets > 35))
3076 				itrval = lowest_latency;
3077 		} else if (bytes / packets > 2000) {
3078 			itrval = bulk_latency;
3079 		} else if (packets <= 2 && bytes < 512) {
3080 			itrval = lowest_latency;
3081 		}
3082 		break;
3083 	case bulk_latency: /* 250 usec aka 4000 ints/s */
3084 		if (bytes > 25000) {
3085 			if (packets > 35)
3086 				itrval = low_latency;
3087 		} else if (bytes < 1500) {
3088 			itrval = low_latency;
3089 		}
3090 		break;
3091 	}
3092 
3093 	/* clear work counters since we have the values we need */
3094 	ring_container->total_bytes = 0;
3095 	ring_container->total_packets = 0;
3096 
3097 	/* write updated itr to ring container */
3098 	ring_container->itr = itrval;
3099 }
3100 
3101 /**
3102  * igc_intr_msi - Interrupt Handler
3103  * @irq: interrupt number
3104  * @data: pointer to a network interface device structure
3105  */
3106 static irqreturn_t igc_intr_msi(int irq, void *data)
3107 {
3108 	struct igc_adapter *adapter = data;
3109 	struct igc_q_vector *q_vector = adapter->q_vector[0];
3110 	struct igc_hw *hw = &adapter->hw;
3111 	/* read ICR disables interrupts using IAM */
3112 	u32 icr = rd32(IGC_ICR);
3113 
3114 	igc_write_itr(q_vector);
3115 
3116 	if (icr & IGC_ICR_DRSTA)
3117 		schedule_work(&adapter->reset_task);
3118 
3119 	if (icr & IGC_ICR_DOUTSYNC) {
3120 		/* HW is reporting DMA is out of sync */
3121 		adapter->stats.doosync++;
3122 	}
3123 
3124 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
3125 		hw->mac.get_link_status = 1;
3126 		if (!test_bit(__IGC_DOWN, &adapter->state))
3127 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
3128 	}
3129 
3130 	napi_schedule(&q_vector->napi);
3131 
3132 	return IRQ_HANDLED;
3133 }
3134 
3135 /**
3136  * igc_intr - Legacy Interrupt Handler
3137  * @irq: interrupt number
3138  * @data: pointer to a network interface device structure
3139  */
3140 static irqreturn_t igc_intr(int irq, void *data)
3141 {
3142 	struct igc_adapter *adapter = data;
3143 	struct igc_q_vector *q_vector = adapter->q_vector[0];
3144 	struct igc_hw *hw = &adapter->hw;
3145 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
3146 	 * need for the IMC write
3147 	 */
3148 	u32 icr = rd32(IGC_ICR);
3149 
3150 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3151 	 * not set, then the adapter didn't send an interrupt
3152 	 */
3153 	if (!(icr & IGC_ICR_INT_ASSERTED))
3154 		return IRQ_NONE;
3155 
3156 	igc_write_itr(q_vector);
3157 
3158 	if (icr & IGC_ICR_DRSTA)
3159 		schedule_work(&adapter->reset_task);
3160 
3161 	if (icr & IGC_ICR_DOUTSYNC) {
3162 		/* HW is reporting DMA is out of sync */
3163 		adapter->stats.doosync++;
3164 	}
3165 
3166 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
3167 		hw->mac.get_link_status = 1;
3168 		/* guard against interrupt when we're going down */
3169 		if (!test_bit(__IGC_DOWN, &adapter->state))
3170 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
3171 	}
3172 
3173 	napi_schedule(&q_vector->napi);
3174 
3175 	return IRQ_HANDLED;
3176 }
3177 
3178 static void igc_set_itr(struct igc_q_vector *q_vector)
3179 {
3180 	struct igc_adapter *adapter = q_vector->adapter;
3181 	u32 new_itr = q_vector->itr_val;
3182 	u8 current_itr = 0;
3183 
3184 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3185 	switch (adapter->link_speed) {
3186 	case SPEED_10:
3187 	case SPEED_100:
3188 		current_itr = 0;
3189 		new_itr = IGC_4K_ITR;
3190 		goto set_itr_now;
3191 	default:
3192 		break;
3193 	}
3194 
3195 	igc_update_itr(q_vector, &q_vector->tx);
3196 	igc_update_itr(q_vector, &q_vector->rx);
3197 
3198 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
3199 
3200 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3201 	if (current_itr == lowest_latency &&
3202 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3203 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3204 		current_itr = low_latency;
3205 
3206 	switch (current_itr) {
3207 	/* counts and packets in update_itr are dependent on these numbers */
3208 	case lowest_latency:
3209 		new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
3210 		break;
3211 	case low_latency:
3212 		new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
3213 		break;
3214 	case bulk_latency:
3215 		new_itr = IGC_4K_ITR;  /* 4,000 ints/sec */
3216 		break;
3217 	default:
3218 		break;
3219 	}
3220 
3221 set_itr_now:
3222 	if (new_itr != q_vector->itr_val) {
3223 		/* this attempts to bias the interrupt rate towards Bulk
3224 		 * by adding intermediate steps when interrupt rate is
3225 		 * increasing
3226 		 */
3227 		new_itr = new_itr > q_vector->itr_val ?
3228 			  max((new_itr * q_vector->itr_val) /
3229 			  (new_itr + (q_vector->itr_val >> 2)),
3230 			  new_itr) : new_itr;
3231 		/* Don't write the value here; it resets the adapter's
3232 		 * internal timer, and causes us to delay far longer than
3233 		 * we should between interrupts.  Instead, we write the ITR
3234 		 * value at the beginning of the next interrupt so the timing
3235 		 * ends up being correct.
3236 		 */
3237 		q_vector->itr_val = new_itr;
3238 		q_vector->set_itr = 1;
3239 	}
3240 }
3241 
3242 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
3243 {
3244 	struct igc_adapter *adapter = q_vector->adapter;
3245 	struct igc_hw *hw = &adapter->hw;
3246 
3247 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
3248 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
3249 		if (adapter->num_q_vectors == 1)
3250 			igc_set_itr(q_vector);
3251 		else
3252 			igc_update_ring_itr(q_vector);
3253 	}
3254 
3255 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
3256 		if (adapter->msix_entries)
3257 			wr32(IGC_EIMS, q_vector->eims_value);
3258 		else
3259 			igc_irq_enable(adapter);
3260 	}
3261 }
3262 
3263 /**
3264  * igc_poll - NAPI Rx polling callback
3265  * @napi: napi polling structure
3266  * @budget: count of how many packets we should handle
3267  */
3268 static int igc_poll(struct napi_struct *napi, int budget)
3269 {
3270 	struct igc_q_vector *q_vector = container_of(napi,
3271 						     struct igc_q_vector,
3272 						     napi);
3273 	bool clean_complete = true;
3274 	int work_done = 0;
3275 
3276 	if (q_vector->tx.ring)
3277 		clean_complete = igc_clean_tx_irq(q_vector, budget);
3278 
3279 	if (q_vector->rx.ring) {
3280 		int cleaned = igc_clean_rx_irq(q_vector, budget);
3281 
3282 		work_done += cleaned;
3283 		if (cleaned >= budget)
3284 			clean_complete = false;
3285 	}
3286 
3287 	/* If all work not completed, return budget and keep polling */
3288 	if (!clean_complete)
3289 		return budget;
3290 
3291 	/* Exit the polling mode, but don't re-enable interrupts if stack might
3292 	 * poll us due to busy-polling
3293 	 */
3294 	if (likely(napi_complete_done(napi, work_done)))
3295 		igc_ring_irq_enable(q_vector);
3296 
3297 	return min(work_done, budget - 1);
3298 }
3299 
3300 /**
3301  * igc_set_interrupt_capability - set MSI or MSI-X if supported
3302  * @adapter: Pointer to adapter structure
3303  *
3304  * Attempt to configure interrupts using the best available
3305  * capabilities of the hardware and kernel.
3306  */
3307 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
3308 					 bool msix)
3309 {
3310 	int numvecs, i;
3311 	int err;
3312 
3313 	if (!msix)
3314 		goto msi_only;
3315 	adapter->flags |= IGC_FLAG_HAS_MSIX;
3316 
3317 	/* Number of supported queues. */
3318 	adapter->num_rx_queues = adapter->rss_queues;
3319 
3320 	adapter->num_tx_queues = adapter->rss_queues;
3321 
3322 	/* start with one vector for every Rx queue */
3323 	numvecs = adapter->num_rx_queues;
3324 
3325 	/* if Tx handler is separate add 1 for every Tx queue */
3326 	if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
3327 		numvecs += adapter->num_tx_queues;
3328 
3329 	/* store the number of vectors reserved for queues */
3330 	adapter->num_q_vectors = numvecs;
3331 
3332 	/* add 1 vector for link status interrupts */
3333 	numvecs++;
3334 
3335 	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
3336 					GFP_KERNEL);
3337 
3338 	if (!adapter->msix_entries)
3339 		return;
3340 
3341 	/* populate entry values */
3342 	for (i = 0; i < numvecs; i++)
3343 		adapter->msix_entries[i].entry = i;
3344 
3345 	err = pci_enable_msix_range(adapter->pdev,
3346 				    adapter->msix_entries,
3347 				    numvecs,
3348 				    numvecs);
3349 	if (err > 0)
3350 		return;
3351 
3352 	kfree(adapter->msix_entries);
3353 	adapter->msix_entries = NULL;
3354 
3355 	igc_reset_interrupt_capability(adapter);
3356 
3357 msi_only:
3358 	adapter->flags &= ~IGC_FLAG_HAS_MSIX;
3359 
3360 	adapter->rss_queues = 1;
3361 	adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
3362 	adapter->num_rx_queues = 1;
3363 	adapter->num_tx_queues = 1;
3364 	adapter->num_q_vectors = 1;
3365 	if (!pci_enable_msi(adapter->pdev))
3366 		adapter->flags |= IGC_FLAG_HAS_MSI;
3367 }
3368 
3369 static void igc_add_ring(struct igc_ring *ring,
3370 			 struct igc_ring_container *head)
3371 {
3372 	head->ring = ring;
3373 	head->count++;
3374 }
3375 
3376 /**
3377  * igc_alloc_q_vector - Allocate memory for a single interrupt vector
3378  * @adapter: board private structure to initialize
3379  * @v_count: q_vectors allocated on adapter, used for ring interleaving
3380  * @v_idx: index of vector in adapter struct
3381  * @txr_count: total number of Tx rings to allocate
3382  * @txr_idx: index of first Tx ring to allocate
3383  * @rxr_count: total number of Rx rings to allocate
3384  * @rxr_idx: index of first Rx ring to allocate
3385  *
3386  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
3387  */
3388 static int igc_alloc_q_vector(struct igc_adapter *adapter,
3389 			      unsigned int v_count, unsigned int v_idx,
3390 			      unsigned int txr_count, unsigned int txr_idx,
3391 			      unsigned int rxr_count, unsigned int rxr_idx)
3392 {
3393 	struct igc_q_vector *q_vector;
3394 	struct igc_ring *ring;
3395 	int ring_count;
3396 
3397 	/* igc only supports 1 Tx and/or 1 Rx queue per vector */
3398 	if (txr_count > 1 || rxr_count > 1)
3399 		return -ENOMEM;
3400 
3401 	ring_count = txr_count + rxr_count;
3402 
3403 	/* allocate q_vector and rings */
3404 	q_vector = adapter->q_vector[v_idx];
3405 	if (!q_vector)
3406 		q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
3407 				   GFP_KERNEL);
3408 	else
3409 		memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
3410 	if (!q_vector)
3411 		return -ENOMEM;
3412 
3413 	/* initialize NAPI */
3414 	netif_napi_add(adapter->netdev, &q_vector->napi,
3415 		       igc_poll, 64);
3416 
3417 	/* tie q_vector and adapter together */
3418 	adapter->q_vector[v_idx] = q_vector;
3419 	q_vector->adapter = adapter;
3420 
3421 	/* initialize work limits */
3422 	q_vector->tx.work_limit = adapter->tx_work_limit;
3423 
3424 	/* initialize ITR configuration */
3425 	q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
3426 	q_vector->itr_val = IGC_START_ITR;
3427 
3428 	/* initialize pointer to rings */
3429 	ring = q_vector->ring;
3430 
3431 	/* initialize ITR */
3432 	if (rxr_count) {
3433 		/* rx or rx/tx vector */
3434 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
3435 			q_vector->itr_val = adapter->rx_itr_setting;
3436 	} else {
3437 		/* tx only vector */
3438 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
3439 			q_vector->itr_val = adapter->tx_itr_setting;
3440 	}
3441 
3442 	if (txr_count) {
3443 		/* assign generic ring traits */
3444 		ring->dev = &adapter->pdev->dev;
3445 		ring->netdev = adapter->netdev;
3446 
3447 		/* configure backlink on ring */
3448 		ring->q_vector = q_vector;
3449 
3450 		/* update q_vector Tx values */
3451 		igc_add_ring(ring, &q_vector->tx);
3452 
3453 		/* apply Tx specific ring traits */
3454 		ring->count = adapter->tx_ring_count;
3455 		ring->queue_index = txr_idx;
3456 
3457 		/* assign ring to adapter */
3458 		adapter->tx_ring[txr_idx] = ring;
3459 
3460 		/* push pointer to next ring */
3461 		ring++;
3462 	}
3463 
3464 	if (rxr_count) {
3465 		/* assign generic ring traits */
3466 		ring->dev = &adapter->pdev->dev;
3467 		ring->netdev = adapter->netdev;
3468 
3469 		/* configure backlink on ring */
3470 		ring->q_vector = q_vector;
3471 
3472 		/* update q_vector Rx values */
3473 		igc_add_ring(ring, &q_vector->rx);
3474 
3475 		/* apply Rx specific ring traits */
3476 		ring->count = adapter->rx_ring_count;
3477 		ring->queue_index = rxr_idx;
3478 
3479 		/* assign ring to adapter */
3480 		adapter->rx_ring[rxr_idx] = ring;
3481 	}
3482 
3483 	return 0;
3484 }
3485 
3486 /**
3487  * igc_alloc_q_vectors - Allocate memory for interrupt vectors
3488  * @adapter: board private structure to initialize
3489  *
3490  * We allocate one q_vector per queue interrupt.  If allocation fails we
3491  * return -ENOMEM.
3492  */
3493 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
3494 {
3495 	int rxr_remaining = adapter->num_rx_queues;
3496 	int txr_remaining = adapter->num_tx_queues;
3497 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
3498 	int q_vectors = adapter->num_q_vectors;
3499 	int err;
3500 
3501 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
3502 		for (; rxr_remaining; v_idx++) {
3503 			err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
3504 						 0, 0, 1, rxr_idx);
3505 
3506 			if (err)
3507 				goto err_out;
3508 
3509 			/* update counts and index */
3510 			rxr_remaining--;
3511 			rxr_idx++;
3512 		}
3513 	}
3514 
3515 	for (; v_idx < q_vectors; v_idx++) {
3516 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
3517 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
3518 
3519 		err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
3520 					 tqpv, txr_idx, rqpv, rxr_idx);
3521 
3522 		if (err)
3523 			goto err_out;
3524 
3525 		/* update counts and index */
3526 		rxr_remaining -= rqpv;
3527 		txr_remaining -= tqpv;
3528 		rxr_idx++;
3529 		txr_idx++;
3530 	}
3531 
3532 	return 0;
3533 
3534 err_out:
3535 	adapter->num_tx_queues = 0;
3536 	adapter->num_rx_queues = 0;
3537 	adapter->num_q_vectors = 0;
3538 
3539 	while (v_idx--)
3540 		igc_free_q_vector(adapter, v_idx);
3541 
3542 	return -ENOMEM;
3543 }
3544 
3545 /**
3546  * igc_cache_ring_register - Descriptor ring to register mapping
3547  * @adapter: board private structure to initialize
3548  *
3549  * Once we know the feature-set enabled for the device, we'll cache
3550  * the register offset the descriptor ring is assigned to.
3551  */
3552 static void igc_cache_ring_register(struct igc_adapter *adapter)
3553 {
3554 	int i = 0, j = 0;
3555 
3556 	switch (adapter->hw.mac.type) {
3557 	case igc_i225:
3558 	/* Fall through */
3559 	default:
3560 		for (; i < adapter->num_rx_queues; i++)
3561 			adapter->rx_ring[i]->reg_idx = i;
3562 		for (; j < adapter->num_tx_queues; j++)
3563 			adapter->tx_ring[j]->reg_idx = j;
3564 		break;
3565 	}
3566 }
3567 
3568 /**
3569  * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
3570  * @adapter: Pointer to adapter structure
3571  *
3572  * This function initializes the interrupts and allocates all of the queues.
3573  */
3574 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
3575 {
3576 	struct pci_dev *pdev = adapter->pdev;
3577 	int err = 0;
3578 
3579 	igc_set_interrupt_capability(adapter, msix);
3580 
3581 	err = igc_alloc_q_vectors(adapter);
3582 	if (err) {
3583 		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
3584 		goto err_alloc_q_vectors;
3585 	}
3586 
3587 	igc_cache_ring_register(adapter);
3588 
3589 	return 0;
3590 
3591 err_alloc_q_vectors:
3592 	igc_reset_interrupt_capability(adapter);
3593 	return err;
3594 }
3595 
3596 static void igc_free_irq(struct igc_adapter *adapter)
3597 {
3598 	if (adapter->msix_entries) {
3599 		int vector = 0, i;
3600 
3601 		free_irq(adapter->msix_entries[vector++].vector, adapter);
3602 
3603 		for (i = 0; i < adapter->num_q_vectors; i++)
3604 			free_irq(adapter->msix_entries[vector++].vector,
3605 				 adapter->q_vector[i]);
3606 	} else {
3607 		free_irq(adapter->pdev->irq, adapter);
3608 	}
3609 }
3610 
3611 /**
3612  * igc_irq_disable - Mask off interrupt generation on the NIC
3613  * @adapter: board private structure
3614  */
3615 static void igc_irq_disable(struct igc_adapter *adapter)
3616 {
3617 	struct igc_hw *hw = &adapter->hw;
3618 
3619 	if (adapter->msix_entries) {
3620 		u32 regval = rd32(IGC_EIAM);
3621 
3622 		wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
3623 		wr32(IGC_EIMC, adapter->eims_enable_mask);
3624 		regval = rd32(IGC_EIAC);
3625 		wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
3626 	}
3627 
3628 	wr32(IGC_IAM, 0);
3629 	wr32(IGC_IMC, ~0);
3630 	wrfl();
3631 
3632 	if (adapter->msix_entries) {
3633 		int vector = 0, i;
3634 
3635 		synchronize_irq(adapter->msix_entries[vector++].vector);
3636 
3637 		for (i = 0; i < adapter->num_q_vectors; i++)
3638 			synchronize_irq(adapter->msix_entries[vector++].vector);
3639 	} else {
3640 		synchronize_irq(adapter->pdev->irq);
3641 	}
3642 }
3643 
3644 /**
3645  * igc_irq_enable - Enable default interrupt generation settings
3646  * @adapter: board private structure
3647  */
3648 static void igc_irq_enable(struct igc_adapter *adapter)
3649 {
3650 	struct igc_hw *hw = &adapter->hw;
3651 
3652 	if (adapter->msix_entries) {
3653 		u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
3654 		u32 regval = rd32(IGC_EIAC);
3655 
3656 		wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
3657 		regval = rd32(IGC_EIAM);
3658 		wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
3659 		wr32(IGC_EIMS, adapter->eims_enable_mask);
3660 		wr32(IGC_IMS, ims);
3661 	} else {
3662 		wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3663 		wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3664 	}
3665 }
3666 
3667 /**
3668  * igc_request_irq - initialize interrupts
3669  * @adapter: Pointer to adapter structure
3670  *
3671  * Attempts to configure interrupts using the best available
3672  * capabilities of the hardware and kernel.
3673  */
3674 static int igc_request_irq(struct igc_adapter *adapter)
3675 {
3676 	struct net_device *netdev = adapter->netdev;
3677 	struct pci_dev *pdev = adapter->pdev;
3678 	int err = 0;
3679 
3680 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
3681 		err = igc_request_msix(adapter);
3682 		if (!err)
3683 			goto request_done;
3684 		/* fall back to MSI */
3685 		igc_free_all_tx_resources(adapter);
3686 		igc_free_all_rx_resources(adapter);
3687 
3688 		igc_clear_interrupt_scheme(adapter);
3689 		err = igc_init_interrupt_scheme(adapter, false);
3690 		if (err)
3691 			goto request_done;
3692 		igc_setup_all_tx_resources(adapter);
3693 		igc_setup_all_rx_resources(adapter);
3694 		igc_configure(adapter);
3695 	}
3696 
3697 	igc_assign_vector(adapter->q_vector[0], 0);
3698 
3699 	if (adapter->flags & IGC_FLAG_HAS_MSI) {
3700 		err = request_irq(pdev->irq, &igc_intr_msi, 0,
3701 				  netdev->name, adapter);
3702 		if (!err)
3703 			goto request_done;
3704 
3705 		/* fall back to legacy interrupts */
3706 		igc_reset_interrupt_capability(adapter);
3707 		adapter->flags &= ~IGC_FLAG_HAS_MSI;
3708 	}
3709 
3710 	err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
3711 			  netdev->name, adapter);
3712 
3713 	if (err)
3714 		dev_err(&pdev->dev, "Error %d getting interrupt\n",
3715 			err);
3716 
3717 request_done:
3718 	return err;
3719 }
3720 
3721 static void igc_write_itr(struct igc_q_vector *q_vector)
3722 {
3723 	u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
3724 
3725 	if (!q_vector->set_itr)
3726 		return;
3727 
3728 	if (!itr_val)
3729 		itr_val = IGC_ITR_VAL_MASK;
3730 
3731 	itr_val |= IGC_EITR_CNT_IGNR;
3732 
3733 	writel(itr_val, q_vector->itr_register);
3734 	q_vector->set_itr = 0;
3735 }
3736 
3737 /**
3738  * igc_open - Called when a network interface is made active
3739  * @netdev: network interface device structure
3740  *
3741  * Returns 0 on success, negative value on failure
3742  *
3743  * The open entry point is called when a network interface is made
3744  * active by the system (IFF_UP).  At this point all resources needed
3745  * for transmit and receive operations are allocated, the interrupt
3746  * handler is registered with the OS, the watchdog timer is started,
3747  * and the stack is notified that the interface is ready.
3748  */
3749 static int __igc_open(struct net_device *netdev, bool resuming)
3750 {
3751 	struct igc_adapter *adapter = netdev_priv(netdev);
3752 	struct igc_hw *hw = &adapter->hw;
3753 	int err = 0;
3754 	int i = 0;
3755 
3756 	/* disallow open during test */
3757 
3758 	if (test_bit(__IGC_TESTING, &adapter->state)) {
3759 		WARN_ON(resuming);
3760 		return -EBUSY;
3761 	}
3762 
3763 	netif_carrier_off(netdev);
3764 
3765 	/* allocate transmit descriptors */
3766 	err = igc_setup_all_tx_resources(adapter);
3767 	if (err)
3768 		goto err_setup_tx;
3769 
3770 	/* allocate receive descriptors */
3771 	err = igc_setup_all_rx_resources(adapter);
3772 	if (err)
3773 		goto err_setup_rx;
3774 
3775 	igc_power_up_link(adapter);
3776 
3777 	igc_configure(adapter);
3778 
3779 	err = igc_request_irq(adapter);
3780 	if (err)
3781 		goto err_req_irq;
3782 
3783 	/* Notify the stack of the actual queue counts. */
3784 	err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
3785 	if (err)
3786 		goto err_set_queues;
3787 
3788 	err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
3789 	if (err)
3790 		goto err_set_queues;
3791 
3792 	clear_bit(__IGC_DOWN, &adapter->state);
3793 
3794 	for (i = 0; i < adapter->num_q_vectors; i++)
3795 		napi_enable(&adapter->q_vector[i]->napi);
3796 
3797 	/* Clear any pending interrupts. */
3798 	rd32(IGC_ICR);
3799 	igc_irq_enable(adapter);
3800 
3801 	netif_tx_start_all_queues(netdev);
3802 
3803 	/* start the watchdog. */
3804 	hw->mac.get_link_status = 1;
3805 	schedule_work(&adapter->watchdog_task);
3806 
3807 	return IGC_SUCCESS;
3808 
3809 err_set_queues:
3810 	igc_free_irq(adapter);
3811 err_req_irq:
3812 	igc_release_hw_control(adapter);
3813 	igc_power_down_link(adapter);
3814 	igc_free_all_rx_resources(adapter);
3815 err_setup_rx:
3816 	igc_free_all_tx_resources(adapter);
3817 err_setup_tx:
3818 	igc_reset(adapter);
3819 
3820 	return err;
3821 }
3822 
3823 static int igc_open(struct net_device *netdev)
3824 {
3825 	return __igc_open(netdev, false);
3826 }
3827 
3828 /**
3829  * igc_close - Disables a network interface
3830  * @netdev: network interface device structure
3831  *
3832  * Returns 0, this is not allowed to fail
3833  *
3834  * The close entry point is called when an interface is de-activated
3835  * by the OS.  The hardware is still under the driver's control, but
3836  * needs to be disabled.  A global MAC reset is issued to stop the
3837  * hardware, and all transmit and receive resources are freed.
3838  */
3839 static int __igc_close(struct net_device *netdev, bool suspending)
3840 {
3841 	struct igc_adapter *adapter = netdev_priv(netdev);
3842 
3843 	WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
3844 
3845 	igc_down(adapter);
3846 
3847 	igc_release_hw_control(adapter);
3848 
3849 	igc_free_irq(adapter);
3850 
3851 	igc_free_all_tx_resources(adapter);
3852 	igc_free_all_rx_resources(adapter);
3853 
3854 	return 0;
3855 }
3856 
3857 static int igc_close(struct net_device *netdev)
3858 {
3859 	if (netif_device_present(netdev) || netdev->dismantle)
3860 		return __igc_close(netdev, false);
3861 	return 0;
3862 }
3863 
3864 static const struct net_device_ops igc_netdev_ops = {
3865 	.ndo_open		= igc_open,
3866 	.ndo_stop		= igc_close,
3867 	.ndo_start_xmit		= igc_xmit_frame,
3868 	.ndo_set_mac_address	= igc_set_mac,
3869 	.ndo_change_mtu		= igc_change_mtu,
3870 	.ndo_get_stats		= igc_get_stats,
3871 	.ndo_fix_features	= igc_fix_features,
3872 	.ndo_set_features	= igc_set_features,
3873 	.ndo_features_check	= igc_features_check,
3874 };
3875 
3876 /* PCIe configuration access */
3877 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
3878 {
3879 	struct igc_adapter *adapter = hw->back;
3880 
3881 	pci_read_config_word(adapter->pdev, reg, value);
3882 }
3883 
3884 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
3885 {
3886 	struct igc_adapter *adapter = hw->back;
3887 
3888 	pci_write_config_word(adapter->pdev, reg, *value);
3889 }
3890 
3891 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
3892 {
3893 	struct igc_adapter *adapter = hw->back;
3894 	u16 cap_offset;
3895 
3896 	cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
3897 	if (!cap_offset)
3898 		return -IGC_ERR_CONFIG;
3899 
3900 	pci_read_config_word(adapter->pdev, cap_offset + reg, value);
3901 
3902 	return IGC_SUCCESS;
3903 }
3904 
3905 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
3906 {
3907 	struct igc_adapter *adapter = hw->back;
3908 	u16 cap_offset;
3909 
3910 	cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
3911 	if (!cap_offset)
3912 		return -IGC_ERR_CONFIG;
3913 
3914 	pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
3915 
3916 	return IGC_SUCCESS;
3917 }
3918 
3919 u32 igc_rd32(struct igc_hw *hw, u32 reg)
3920 {
3921 	struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
3922 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
3923 	u32 value = 0;
3924 
3925 	if (IGC_REMOVED(hw_addr))
3926 		return ~value;
3927 
3928 	value = readl(&hw_addr[reg]);
3929 
3930 	/* reads should not return all F's */
3931 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
3932 		struct net_device *netdev = igc->netdev;
3933 
3934 		hw->hw_addr = NULL;
3935 		netif_device_detach(netdev);
3936 		netdev_err(netdev, "PCIe link lost, device now detached\n");
3937 	}
3938 
3939 	return value;
3940 }
3941 
3942 int igc_set_spd_dplx(struct igc_adapter *adapter, u32 spd, u8 dplx)
3943 {
3944 	struct pci_dev *pdev = adapter->pdev;
3945 	struct igc_mac_info *mac = &adapter->hw.mac;
3946 
3947 	mac->autoneg = 0;
3948 
3949 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
3950 	 * for the switch() below to work
3951 	 */
3952 	if ((spd & 1) || (dplx & ~1))
3953 		goto err_inval;
3954 
3955 	switch (spd + dplx) {
3956 	case SPEED_10 + DUPLEX_HALF:
3957 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
3958 		break;
3959 	case SPEED_10 + DUPLEX_FULL:
3960 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
3961 		break;
3962 	case SPEED_100 + DUPLEX_HALF:
3963 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
3964 		break;
3965 	case SPEED_100 + DUPLEX_FULL:
3966 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
3967 		break;
3968 	case SPEED_1000 + DUPLEX_FULL:
3969 		mac->autoneg = 1;
3970 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
3971 		break;
3972 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
3973 		goto err_inval;
3974 	case SPEED_2500 + DUPLEX_FULL:
3975 		mac->autoneg = 1;
3976 		adapter->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
3977 		break;
3978 	case SPEED_2500 + DUPLEX_HALF: /* not supported */
3979 	default:
3980 		goto err_inval;
3981 	}
3982 
3983 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
3984 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
3985 
3986 	return 0;
3987 
3988 err_inval:
3989 	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
3990 	return -EINVAL;
3991 }
3992 
3993 /**
3994  * igc_probe - Device Initialization Routine
3995  * @pdev: PCI device information struct
3996  * @ent: entry in igc_pci_tbl
3997  *
3998  * Returns 0 on success, negative on failure
3999  *
4000  * igc_probe initializes an adapter identified by a pci_dev structure.
4001  * The OS initialization, configuring the adapter private structure,
4002  * and a hardware reset occur.
4003  */
4004 static int igc_probe(struct pci_dev *pdev,
4005 		     const struct pci_device_id *ent)
4006 {
4007 	struct igc_adapter *adapter;
4008 	struct net_device *netdev;
4009 	struct igc_hw *hw;
4010 	const struct igc_info *ei = igc_info_tbl[ent->driver_data];
4011 	int err;
4012 
4013 	err = pci_enable_device_mem(pdev);
4014 	if (err)
4015 		return err;
4016 
4017 	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
4018 	if (!err) {
4019 		err = dma_set_coherent_mask(&pdev->dev,
4020 					    DMA_BIT_MASK(64));
4021 	} else {
4022 		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
4023 		if (err) {
4024 			err = dma_set_coherent_mask(&pdev->dev,
4025 						    DMA_BIT_MASK(32));
4026 			if (err) {
4027 				dev_err(&pdev->dev, "igc: Wrong DMA config\n");
4028 				goto err_dma;
4029 			}
4030 		}
4031 	}
4032 
4033 	err = pci_request_selected_regions(pdev,
4034 					   pci_select_bars(pdev,
4035 							   IORESOURCE_MEM),
4036 					   igc_driver_name);
4037 	if (err)
4038 		goto err_pci_reg;
4039 
4040 	pci_enable_pcie_error_reporting(pdev);
4041 
4042 	pci_set_master(pdev);
4043 
4044 	err = -ENOMEM;
4045 	netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
4046 				   IGC_MAX_TX_QUEUES);
4047 
4048 	if (!netdev)
4049 		goto err_alloc_etherdev;
4050 
4051 	SET_NETDEV_DEV(netdev, &pdev->dev);
4052 
4053 	pci_set_drvdata(pdev, netdev);
4054 	adapter = netdev_priv(netdev);
4055 	adapter->netdev = netdev;
4056 	adapter->pdev = pdev;
4057 	hw = &adapter->hw;
4058 	hw->back = adapter;
4059 	adapter->port_num = hw->bus.func;
4060 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
4061 
4062 	err = pci_save_state(pdev);
4063 	if (err)
4064 		goto err_ioremap;
4065 
4066 	err = -EIO;
4067 	adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
4068 				   pci_resource_len(pdev, 0));
4069 	if (!adapter->io_addr)
4070 		goto err_ioremap;
4071 
4072 	/* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
4073 	hw->hw_addr = adapter->io_addr;
4074 
4075 	netdev->netdev_ops = &igc_netdev_ops;
4076 	igc_set_ethtool_ops(netdev);
4077 	netdev->watchdog_timeo = 5 * HZ;
4078 
4079 	netdev->mem_start = pci_resource_start(pdev, 0);
4080 	netdev->mem_end = pci_resource_end(pdev, 0);
4081 
4082 	/* PCI config space info */
4083 	hw->vendor_id = pdev->vendor;
4084 	hw->device_id = pdev->device;
4085 	hw->revision_id = pdev->revision;
4086 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
4087 	hw->subsystem_device_id = pdev->subsystem_device;
4088 
4089 	/* Copy the default MAC and PHY function pointers */
4090 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
4091 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
4092 
4093 	/* Initialize skew-specific constants */
4094 	err = ei->get_invariants(hw);
4095 	if (err)
4096 		goto err_sw_init;
4097 
4098 	/* setup the private structure */
4099 	err = igc_sw_init(adapter);
4100 	if (err)
4101 		goto err_sw_init;
4102 
4103 	/* copy netdev features into list of user selectable features */
4104 	netdev->hw_features |= NETIF_F_NTUPLE;
4105 
4106 	/* MTU range: 68 - 9216 */
4107 	netdev->min_mtu = ETH_MIN_MTU;
4108 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
4109 
4110 	/* before reading the NVM, reset the controller to put the device in a
4111 	 * known good starting state
4112 	 */
4113 	hw->mac.ops.reset_hw(hw);
4114 
4115 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
4116 		/* copy the MAC address out of the NVM */
4117 		if (hw->mac.ops.read_mac_addr(hw))
4118 			dev_err(&pdev->dev, "NVM Read Error\n");
4119 	}
4120 
4121 	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
4122 
4123 	if (!is_valid_ether_addr(netdev->dev_addr)) {
4124 		dev_err(&pdev->dev, "Invalid MAC Address\n");
4125 		err = -EIO;
4126 		goto err_eeprom;
4127 	}
4128 
4129 	/* configure RXPBSIZE and TXPBSIZE */
4130 	wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
4131 	wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
4132 
4133 	timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
4134 	timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
4135 
4136 	INIT_WORK(&adapter->reset_task, igc_reset_task);
4137 	INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
4138 
4139 	/* Initialize link properties that are user-changeable */
4140 	adapter->fc_autoneg = true;
4141 	hw->mac.autoneg = true;
4142 	hw->phy.autoneg_advertised = 0xaf;
4143 
4144 	hw->fc.requested_mode = igc_fc_default;
4145 	hw->fc.current_mode = igc_fc_default;
4146 
4147 	/* reset the hardware with the new settings */
4148 	igc_reset(adapter);
4149 
4150 	/* let the f/w know that the h/w is now under the control of the
4151 	 * driver.
4152 	 */
4153 	igc_get_hw_control(adapter);
4154 
4155 	strncpy(netdev->name, "eth%d", IFNAMSIZ);
4156 	err = register_netdev(netdev);
4157 	if (err)
4158 		goto err_register;
4159 
4160 	 /* carrier off reporting is important to ethtool even BEFORE open */
4161 	netif_carrier_off(netdev);
4162 
4163 	/* Check if Media Autosense is enabled */
4164 	adapter->ei = *ei;
4165 
4166 	/* print pcie link status and MAC address */
4167 	pcie_print_link_status(pdev);
4168 	netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
4169 
4170 	return 0;
4171 
4172 err_register:
4173 	igc_release_hw_control(adapter);
4174 err_eeprom:
4175 	if (!igc_check_reset_block(hw))
4176 		igc_reset_phy(hw);
4177 err_sw_init:
4178 	igc_clear_interrupt_scheme(adapter);
4179 	iounmap(adapter->io_addr);
4180 err_ioremap:
4181 	free_netdev(netdev);
4182 err_alloc_etherdev:
4183 	pci_release_selected_regions(pdev,
4184 				     pci_select_bars(pdev, IORESOURCE_MEM));
4185 err_pci_reg:
4186 err_dma:
4187 	pci_disable_device(pdev);
4188 	return err;
4189 }
4190 
4191 /**
4192  * igc_remove - Device Removal Routine
4193  * @pdev: PCI device information struct
4194  *
4195  * igc_remove is called by the PCI subsystem to alert the driver
4196  * that it should release a PCI device.  This could be caused by a
4197  * Hot-Plug event, or because the driver is going to be removed from
4198  * memory.
4199  */
4200 static void igc_remove(struct pci_dev *pdev)
4201 {
4202 	struct net_device *netdev = pci_get_drvdata(pdev);
4203 	struct igc_adapter *adapter = netdev_priv(netdev);
4204 
4205 	set_bit(__IGC_DOWN, &adapter->state);
4206 
4207 	del_timer_sync(&adapter->watchdog_timer);
4208 	del_timer_sync(&adapter->phy_info_timer);
4209 
4210 	cancel_work_sync(&adapter->reset_task);
4211 	cancel_work_sync(&adapter->watchdog_task);
4212 
4213 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
4214 	 * would have already happened in close and is redundant.
4215 	 */
4216 	igc_release_hw_control(adapter);
4217 	unregister_netdev(netdev);
4218 
4219 	igc_clear_interrupt_scheme(adapter);
4220 	pci_iounmap(pdev, adapter->io_addr);
4221 	pci_release_mem_regions(pdev);
4222 
4223 	kfree(adapter->mac_table);
4224 	kfree(adapter->shadow_vfta);
4225 	free_netdev(netdev);
4226 
4227 	pci_disable_pcie_error_reporting(pdev);
4228 
4229 	pci_disable_device(pdev);
4230 }
4231 
4232 static struct pci_driver igc_driver = {
4233 	.name     = igc_driver_name,
4234 	.id_table = igc_pci_tbl,
4235 	.probe    = igc_probe,
4236 	.remove   = igc_remove,
4237 };
4238 
4239 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
4240 			      const u32 max_rss_queues)
4241 {
4242 	/* Determine if we need to pair queues. */
4243 	/* If rss_queues > half of max_rss_queues, pair the queues in
4244 	 * order to conserve interrupts due to limited supply.
4245 	 */
4246 	if (adapter->rss_queues > (max_rss_queues / 2))
4247 		adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4248 	else
4249 		adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
4250 }
4251 
4252 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
4253 {
4254 	unsigned int max_rss_queues;
4255 
4256 	/* Determine the maximum number of RSS queues supported. */
4257 	max_rss_queues = IGC_MAX_RX_QUEUES;
4258 
4259 	return max_rss_queues;
4260 }
4261 
4262 static void igc_init_queue_configuration(struct igc_adapter *adapter)
4263 {
4264 	u32 max_rss_queues;
4265 
4266 	max_rss_queues = igc_get_max_rss_queues(adapter);
4267 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
4268 
4269 	igc_set_flag_queue_pairs(adapter, max_rss_queues);
4270 }
4271 
4272 /**
4273  * igc_sw_init - Initialize general software structures (struct igc_adapter)
4274  * @adapter: board private structure to initialize
4275  *
4276  * igc_sw_init initializes the Adapter private data structure.
4277  * Fields are initialized based on PCI device information and
4278  * OS network device settings (MTU size).
4279  */
4280 static int igc_sw_init(struct igc_adapter *adapter)
4281 {
4282 	struct net_device *netdev = adapter->netdev;
4283 	struct pci_dev *pdev = adapter->pdev;
4284 	struct igc_hw *hw = &adapter->hw;
4285 
4286 	int size = sizeof(struct igc_mac_addr) * hw->mac.rar_entry_count;
4287 
4288 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4289 
4290 	/* set default ring sizes */
4291 	adapter->tx_ring_count = IGC_DEFAULT_TXD;
4292 	adapter->rx_ring_count = IGC_DEFAULT_RXD;
4293 
4294 	/* set default ITR values */
4295 	adapter->rx_itr_setting = IGC_DEFAULT_ITR;
4296 	adapter->tx_itr_setting = IGC_DEFAULT_ITR;
4297 
4298 	/* set default work limits */
4299 	adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
4300 
4301 	/* adjust max frame to be at least the size of a standard frame */
4302 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
4303 				VLAN_HLEN;
4304 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4305 
4306 	spin_lock_init(&adapter->nfc_lock);
4307 	spin_lock_init(&adapter->stats64_lock);
4308 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
4309 	adapter->flags |= IGC_FLAG_HAS_MSIX;
4310 
4311 	adapter->mac_table = kzalloc(size, GFP_ATOMIC);
4312 	if (!adapter->mac_table)
4313 		return -ENOMEM;
4314 
4315 	igc_init_queue_configuration(adapter);
4316 
4317 	/* This call may decrease the number of queues */
4318 	if (igc_init_interrupt_scheme(adapter, true)) {
4319 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4320 		return -ENOMEM;
4321 	}
4322 
4323 	/* Explicitly disable IRQ since the NIC can be in any state. */
4324 	igc_irq_disable(adapter);
4325 
4326 	set_bit(__IGC_DOWN, &adapter->state);
4327 
4328 	return 0;
4329 }
4330 
4331 /**
4332  * igc_reinit_queues - return error
4333  * @adapter: pointer to adapter structure
4334  */
4335 int igc_reinit_queues(struct igc_adapter *adapter)
4336 {
4337 	struct net_device *netdev = adapter->netdev;
4338 	struct pci_dev *pdev = adapter->pdev;
4339 	int err = 0;
4340 
4341 	if (netif_running(netdev))
4342 		igc_close(netdev);
4343 
4344 	igc_reset_interrupt_capability(adapter);
4345 
4346 	if (igc_init_interrupt_scheme(adapter, true)) {
4347 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4348 		return -ENOMEM;
4349 	}
4350 
4351 	if (netif_running(netdev))
4352 		err = igc_open(netdev);
4353 
4354 	return err;
4355 }
4356 
4357 /**
4358  * igc_get_hw_dev - return device
4359  * @hw: pointer to hardware structure
4360  *
4361  * used by hardware layer to print debugging information
4362  */
4363 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
4364 {
4365 	struct igc_adapter *adapter = hw->back;
4366 
4367 	return adapter->netdev;
4368 }
4369 
4370 /**
4371  * igc_init_module - Driver Registration Routine
4372  *
4373  * igc_init_module is the first routine called when the driver is
4374  * loaded. All it does is register with the PCI subsystem.
4375  */
4376 static int __init igc_init_module(void)
4377 {
4378 	int ret;
4379 
4380 	pr_info("%s - version %s\n",
4381 		igc_driver_string, igc_driver_version);
4382 
4383 	pr_info("%s\n", igc_copyright);
4384 
4385 	ret = pci_register_driver(&igc_driver);
4386 	return ret;
4387 }
4388 
4389 module_init(igc_init_module);
4390 
4391 /**
4392  * igc_exit_module - Driver Exit Cleanup Routine
4393  *
4394  * igc_exit_module is called just before the driver is removed
4395  * from memory.
4396  */
4397 static void __exit igc_exit_module(void)
4398 {
4399 	pci_unregister_driver(&igc_driver);
4400 }
4401 
4402 module_exit(igc_exit_module);
4403 /* igc_main.c */
4404