xref: /linux/drivers/net/ethernet/neterion/s2io.c (revision dd093fb0)
1 /************************************************************************
2  * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3  * Copyright(c) 2002-2010 Exar Corp.
4  *
5  * This software may be used and distributed according to the terms of
6  * the GNU General Public License (GPL), incorporated herein by reference.
7  * Drivers based on or derived from this code fall under the GPL and must
8  * retain the authorship, copyright and license notice.  This file is not
9  * a complete program and may only be used when the entire operating
10  * system is licensed under the GPL.
11  * See the file COPYING in this distribution for more information.
12  *
13  * Credits:
14  * Jeff Garzik		: For pointing out the improper error condition
15  *			  check in the s2io_xmit routine and also some
16  *			  issues in the Tx watch dog function. Also for
17  *			  patiently answering all those innumerable
18  *			  questions regaring the 2.6 porting issues.
19  * Stephen Hemminger	: Providing proper 2.6 porting mechanism for some
20  *			  macros available only in 2.6 Kernel.
21  * Francois Romieu	: For pointing out all code part that were
22  *			  deprecated and also styling related comments.
23  * Grant Grundler	: For helping me get rid of some Architecture
24  *			  dependent code.
25  * Christopher Hellwig	: Some more 2.6 specific issues in the driver.
26  *
27  * The module loadable parameters that are supported by the driver and a brief
28  * explanation of all the variables.
29  *
30  * rx_ring_num : This can be used to program the number of receive rings used
31  * in the driver.
32  * rx_ring_sz: This defines the number of receive blocks each ring can have.
33  *     This is also an array of size 8.
34  * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35  *		values are 1, 2.
36  * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37  * tx_fifo_len: This too is an array of 8. Each element defines the number of
38  * Tx descriptors that can be associated with each corresponding FIFO.
39  * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40  *     2(MSI_X). Default value is '2(MSI_X)'
41  * lro_max_pkts: This parameter defines maximum number of packets can be
42  *     aggregated as a single large packet
43  * napi: This parameter used to enable/disable NAPI (polling Rx)
44  *     Possible values '1' for enable and '0' for disable. Default is '1'
45  * vlan_tag_strip: This can be used to enable or disable vlan stripping.
46  *                 Possible values '1' for enable , '0' for disable.
47  *                 Default is '2' - which means disable in promisc mode
48  *                 and enable in non-promiscuous mode.
49  * multiq: This parameter used to enable/disable MULTIQUEUE support.
50  *      Possible values '1' for enable and '0' for disable. Default is '0'
51  ************************************************************************/
52 
53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
54 
55 #include <linux/module.h>
56 #include <linux/types.h>
57 #include <linux/errno.h>
58 #include <linux/ioport.h>
59 #include <linux/pci.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/kernel.h>
62 #include <linux/netdevice.h>
63 #include <linux/etherdevice.h>
64 #include <linux/mdio.h>
65 #include <linux/skbuff.h>
66 #include <linux/init.h>
67 #include <linux/delay.h>
68 #include <linux/stddef.h>
69 #include <linux/ioctl.h>
70 #include <linux/timex.h>
71 #include <linux/ethtool.h>
72 #include <linux/workqueue.h>
73 #include <linux/if_vlan.h>
74 #include <linux/ip.h>
75 #include <linux/tcp.h>
76 #include <linux/uaccess.h>
77 #include <linux/io.h>
78 #include <linux/io-64-nonatomic-lo-hi.h>
79 #include <linux/slab.h>
80 #include <linux/prefetch.h>
81 #include <net/tcp.h>
82 #include <net/checksum.h>
83 
84 #include <asm/div64.h>
85 #include <asm/irq.h>
86 
87 /* local include */
88 #include "s2io.h"
89 #include "s2io-regs.h"
90 
91 #define DRV_VERSION "2.0.26.28"
92 
93 /* S2io Driver name & version. */
94 static const char s2io_driver_name[] = "Neterion";
95 static const char s2io_driver_version[] = DRV_VERSION;
96 
97 static const int rxd_size[2] = {32, 48};
98 static const int rxd_count[2] = {127, 85};
99 
100 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
101 {
102 	int ret;
103 
104 	ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
105 	       (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
106 
107 	return ret;
108 }
109 
110 /*
111  * Cards with following subsystem_id have a link state indication
112  * problem, 600B, 600C, 600D, 640B, 640C and 640D.
113  * macro below identifies these cards given the subsystem_id.
114  */
115 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid)		\
116 	(dev_type == XFRAME_I_DEVICE) ?					\
117 	((((subid >= 0x600B) && (subid <= 0x600D)) ||			\
118 	  ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
119 
120 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
121 				      ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
122 
123 static inline int is_s2io_card_up(const struct s2io_nic *sp)
124 {
125 	return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
126 }
127 
128 /* Ethtool related variables and Macros. */
129 static const char s2io_gstrings[][ETH_GSTRING_LEN] = {
130 	"Register test\t(offline)",
131 	"Eeprom test\t(offline)",
132 	"Link test\t(online)",
133 	"RLDRAM test\t(offline)",
134 	"BIST Test\t(offline)"
135 };
136 
137 static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
138 	{"tmac_frms"},
139 	{"tmac_data_octets"},
140 	{"tmac_drop_frms"},
141 	{"tmac_mcst_frms"},
142 	{"tmac_bcst_frms"},
143 	{"tmac_pause_ctrl_frms"},
144 	{"tmac_ttl_octets"},
145 	{"tmac_ucst_frms"},
146 	{"tmac_nucst_frms"},
147 	{"tmac_any_err_frms"},
148 	{"tmac_ttl_less_fb_octets"},
149 	{"tmac_vld_ip_octets"},
150 	{"tmac_vld_ip"},
151 	{"tmac_drop_ip"},
152 	{"tmac_icmp"},
153 	{"tmac_rst_tcp"},
154 	{"tmac_tcp"},
155 	{"tmac_udp"},
156 	{"rmac_vld_frms"},
157 	{"rmac_data_octets"},
158 	{"rmac_fcs_err_frms"},
159 	{"rmac_drop_frms"},
160 	{"rmac_vld_mcst_frms"},
161 	{"rmac_vld_bcst_frms"},
162 	{"rmac_in_rng_len_err_frms"},
163 	{"rmac_out_rng_len_err_frms"},
164 	{"rmac_long_frms"},
165 	{"rmac_pause_ctrl_frms"},
166 	{"rmac_unsup_ctrl_frms"},
167 	{"rmac_ttl_octets"},
168 	{"rmac_accepted_ucst_frms"},
169 	{"rmac_accepted_nucst_frms"},
170 	{"rmac_discarded_frms"},
171 	{"rmac_drop_events"},
172 	{"rmac_ttl_less_fb_octets"},
173 	{"rmac_ttl_frms"},
174 	{"rmac_usized_frms"},
175 	{"rmac_osized_frms"},
176 	{"rmac_frag_frms"},
177 	{"rmac_jabber_frms"},
178 	{"rmac_ttl_64_frms"},
179 	{"rmac_ttl_65_127_frms"},
180 	{"rmac_ttl_128_255_frms"},
181 	{"rmac_ttl_256_511_frms"},
182 	{"rmac_ttl_512_1023_frms"},
183 	{"rmac_ttl_1024_1518_frms"},
184 	{"rmac_ip"},
185 	{"rmac_ip_octets"},
186 	{"rmac_hdr_err_ip"},
187 	{"rmac_drop_ip"},
188 	{"rmac_icmp"},
189 	{"rmac_tcp"},
190 	{"rmac_udp"},
191 	{"rmac_err_drp_udp"},
192 	{"rmac_xgmii_err_sym"},
193 	{"rmac_frms_q0"},
194 	{"rmac_frms_q1"},
195 	{"rmac_frms_q2"},
196 	{"rmac_frms_q3"},
197 	{"rmac_frms_q4"},
198 	{"rmac_frms_q5"},
199 	{"rmac_frms_q6"},
200 	{"rmac_frms_q7"},
201 	{"rmac_full_q0"},
202 	{"rmac_full_q1"},
203 	{"rmac_full_q2"},
204 	{"rmac_full_q3"},
205 	{"rmac_full_q4"},
206 	{"rmac_full_q5"},
207 	{"rmac_full_q6"},
208 	{"rmac_full_q7"},
209 	{"rmac_pause_cnt"},
210 	{"rmac_xgmii_data_err_cnt"},
211 	{"rmac_xgmii_ctrl_err_cnt"},
212 	{"rmac_accepted_ip"},
213 	{"rmac_err_tcp"},
214 	{"rd_req_cnt"},
215 	{"new_rd_req_cnt"},
216 	{"new_rd_req_rtry_cnt"},
217 	{"rd_rtry_cnt"},
218 	{"wr_rtry_rd_ack_cnt"},
219 	{"wr_req_cnt"},
220 	{"new_wr_req_cnt"},
221 	{"new_wr_req_rtry_cnt"},
222 	{"wr_rtry_cnt"},
223 	{"wr_disc_cnt"},
224 	{"rd_rtry_wr_ack_cnt"},
225 	{"txp_wr_cnt"},
226 	{"txd_rd_cnt"},
227 	{"txd_wr_cnt"},
228 	{"rxd_rd_cnt"},
229 	{"rxd_wr_cnt"},
230 	{"txf_rd_cnt"},
231 	{"rxf_wr_cnt"}
232 };
233 
234 static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
235 	{"rmac_ttl_1519_4095_frms"},
236 	{"rmac_ttl_4096_8191_frms"},
237 	{"rmac_ttl_8192_max_frms"},
238 	{"rmac_ttl_gt_max_frms"},
239 	{"rmac_osized_alt_frms"},
240 	{"rmac_jabber_alt_frms"},
241 	{"rmac_gt_max_alt_frms"},
242 	{"rmac_vlan_frms"},
243 	{"rmac_len_discard"},
244 	{"rmac_fcs_discard"},
245 	{"rmac_pf_discard"},
246 	{"rmac_da_discard"},
247 	{"rmac_red_discard"},
248 	{"rmac_rts_discard"},
249 	{"rmac_ingm_full_discard"},
250 	{"link_fault_cnt"}
251 };
252 
253 static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
254 	{"\n DRIVER STATISTICS"},
255 	{"single_bit_ecc_errs"},
256 	{"double_bit_ecc_errs"},
257 	{"parity_err_cnt"},
258 	{"serious_err_cnt"},
259 	{"soft_reset_cnt"},
260 	{"fifo_full_cnt"},
261 	{"ring_0_full_cnt"},
262 	{"ring_1_full_cnt"},
263 	{"ring_2_full_cnt"},
264 	{"ring_3_full_cnt"},
265 	{"ring_4_full_cnt"},
266 	{"ring_5_full_cnt"},
267 	{"ring_6_full_cnt"},
268 	{"ring_7_full_cnt"},
269 	{"alarm_transceiver_temp_high"},
270 	{"alarm_transceiver_temp_low"},
271 	{"alarm_laser_bias_current_high"},
272 	{"alarm_laser_bias_current_low"},
273 	{"alarm_laser_output_power_high"},
274 	{"alarm_laser_output_power_low"},
275 	{"warn_transceiver_temp_high"},
276 	{"warn_transceiver_temp_low"},
277 	{"warn_laser_bias_current_high"},
278 	{"warn_laser_bias_current_low"},
279 	{"warn_laser_output_power_high"},
280 	{"warn_laser_output_power_low"},
281 	{"lro_aggregated_pkts"},
282 	{"lro_flush_both_count"},
283 	{"lro_out_of_sequence_pkts"},
284 	{"lro_flush_due_to_max_pkts"},
285 	{"lro_avg_aggr_pkts"},
286 	{"mem_alloc_fail_cnt"},
287 	{"pci_map_fail_cnt"},
288 	{"watchdog_timer_cnt"},
289 	{"mem_allocated"},
290 	{"mem_freed"},
291 	{"link_up_cnt"},
292 	{"link_down_cnt"},
293 	{"link_up_time"},
294 	{"link_down_time"},
295 	{"tx_tcode_buf_abort_cnt"},
296 	{"tx_tcode_desc_abort_cnt"},
297 	{"tx_tcode_parity_err_cnt"},
298 	{"tx_tcode_link_loss_cnt"},
299 	{"tx_tcode_list_proc_err_cnt"},
300 	{"rx_tcode_parity_err_cnt"},
301 	{"rx_tcode_abort_cnt"},
302 	{"rx_tcode_parity_abort_cnt"},
303 	{"rx_tcode_rda_fail_cnt"},
304 	{"rx_tcode_unkn_prot_cnt"},
305 	{"rx_tcode_fcs_err_cnt"},
306 	{"rx_tcode_buf_size_err_cnt"},
307 	{"rx_tcode_rxd_corrupt_cnt"},
308 	{"rx_tcode_unkn_err_cnt"},
309 	{"tda_err_cnt"},
310 	{"pfc_err_cnt"},
311 	{"pcc_err_cnt"},
312 	{"tti_err_cnt"},
313 	{"tpa_err_cnt"},
314 	{"sm_err_cnt"},
315 	{"lso_err_cnt"},
316 	{"mac_tmac_err_cnt"},
317 	{"mac_rmac_err_cnt"},
318 	{"xgxs_txgxs_err_cnt"},
319 	{"xgxs_rxgxs_err_cnt"},
320 	{"rc_err_cnt"},
321 	{"prc_pcix_err_cnt"},
322 	{"rpa_err_cnt"},
323 	{"rda_err_cnt"},
324 	{"rti_err_cnt"},
325 	{"mc_err_cnt"}
326 };
327 
328 #define S2IO_XENA_STAT_LEN	ARRAY_SIZE(ethtool_xena_stats_keys)
329 #define S2IO_ENHANCED_STAT_LEN	ARRAY_SIZE(ethtool_enhanced_stats_keys)
330 #define S2IO_DRIVER_STAT_LEN	ARRAY_SIZE(ethtool_driver_stats_keys)
331 
332 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
333 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
334 
335 #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
336 #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
337 
338 #define S2IO_TEST_LEN	ARRAY_SIZE(s2io_gstrings)
339 #define S2IO_STRINGS_LEN	(S2IO_TEST_LEN * ETH_GSTRING_LEN)
340 
341 /* copy mac addr to def_mac_addr array */
342 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
343 {
344 	sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
345 	sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
346 	sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
347 	sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
348 	sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
349 	sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
350 }
351 
352 /*
353  * Constants to be programmed into the Xena's registers, to configure
354  * the XAUI.
355  */
356 
357 #define	END_SIGN	0x0
358 static const u64 herc_act_dtx_cfg[] = {
359 	/* Set address */
360 	0x8000051536750000ULL, 0x80000515367500E0ULL,
361 	/* Write data */
362 	0x8000051536750004ULL, 0x80000515367500E4ULL,
363 	/* Set address */
364 	0x80010515003F0000ULL, 0x80010515003F00E0ULL,
365 	/* Write data */
366 	0x80010515003F0004ULL, 0x80010515003F00E4ULL,
367 	/* Set address */
368 	0x801205150D440000ULL, 0x801205150D4400E0ULL,
369 	/* Write data */
370 	0x801205150D440004ULL, 0x801205150D4400E4ULL,
371 	/* Set address */
372 	0x80020515F2100000ULL, 0x80020515F21000E0ULL,
373 	/* Write data */
374 	0x80020515F2100004ULL, 0x80020515F21000E4ULL,
375 	/* Done */
376 	END_SIGN
377 };
378 
379 static const u64 xena_dtx_cfg[] = {
380 	/* Set address */
381 	0x8000051500000000ULL, 0x80000515000000E0ULL,
382 	/* Write data */
383 	0x80000515D9350004ULL, 0x80000515D93500E4ULL,
384 	/* Set address */
385 	0x8001051500000000ULL, 0x80010515000000E0ULL,
386 	/* Write data */
387 	0x80010515001E0004ULL, 0x80010515001E00E4ULL,
388 	/* Set address */
389 	0x8002051500000000ULL, 0x80020515000000E0ULL,
390 	/* Write data */
391 	0x80020515F2100004ULL, 0x80020515F21000E4ULL,
392 	END_SIGN
393 };
394 
395 /*
396  * Constants for Fixing the MacAddress problem seen mostly on
397  * Alpha machines.
398  */
399 static const u64 fix_mac[] = {
400 	0x0060000000000000ULL, 0x0060600000000000ULL,
401 	0x0040600000000000ULL, 0x0000600000000000ULL,
402 	0x0020600000000000ULL, 0x0060600000000000ULL,
403 	0x0020600000000000ULL, 0x0060600000000000ULL,
404 	0x0020600000000000ULL, 0x0060600000000000ULL,
405 	0x0020600000000000ULL, 0x0060600000000000ULL,
406 	0x0020600000000000ULL, 0x0060600000000000ULL,
407 	0x0020600000000000ULL, 0x0060600000000000ULL,
408 	0x0020600000000000ULL, 0x0060600000000000ULL,
409 	0x0020600000000000ULL, 0x0060600000000000ULL,
410 	0x0020600000000000ULL, 0x0060600000000000ULL,
411 	0x0020600000000000ULL, 0x0060600000000000ULL,
412 	0x0020600000000000ULL, 0x0000600000000000ULL,
413 	0x0040600000000000ULL, 0x0060600000000000ULL,
414 	END_SIGN
415 };
416 
417 MODULE_LICENSE("GPL");
418 MODULE_VERSION(DRV_VERSION);
419 
420 
421 /* Module Loadable parameters. */
422 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
423 S2IO_PARM_INT(rx_ring_num, 1);
424 S2IO_PARM_INT(multiq, 0);
425 S2IO_PARM_INT(rx_ring_mode, 1);
426 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
427 S2IO_PARM_INT(rmac_pause_time, 0x100);
428 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
429 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
430 S2IO_PARM_INT(shared_splits, 0);
431 S2IO_PARM_INT(tmac_util_period, 5);
432 S2IO_PARM_INT(rmac_util_period, 5);
433 S2IO_PARM_INT(l3l4hdr_size, 128);
434 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
435 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
436 /* Frequency of Rx desc syncs expressed as power of 2 */
437 S2IO_PARM_INT(rxsync_frequency, 3);
438 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
439 S2IO_PARM_INT(intr_type, 2);
440 /* Large receive offload feature */
441 
442 /* Max pkts to be aggregated by LRO at one time. If not specified,
443  * aggregation happens until we hit max IP pkt size(64K)
444  */
445 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
446 S2IO_PARM_INT(indicate_max_pkts, 0);
447 
448 S2IO_PARM_INT(napi, 1);
449 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
450 
451 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
452 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
453 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
454 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
455 static unsigned int rts_frm_len[MAX_RX_RINGS] =
456 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
457 
458 module_param_array(tx_fifo_len, uint, NULL, 0);
459 module_param_array(rx_ring_sz, uint, NULL, 0);
460 module_param_array(rts_frm_len, uint, NULL, 0);
461 
462 /*
463  * S2IO device table.
464  * This table lists all the devices that this driver supports.
465  */
466 static const struct pci_device_id s2io_tbl[] = {
467 	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
468 	 PCI_ANY_ID, PCI_ANY_ID},
469 	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
470 	 PCI_ANY_ID, PCI_ANY_ID},
471 	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
472 	 PCI_ANY_ID, PCI_ANY_ID},
473 	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
474 	 PCI_ANY_ID, PCI_ANY_ID},
475 	{0,}
476 };
477 
478 MODULE_DEVICE_TABLE(pci, s2io_tbl);
479 
480 static const struct pci_error_handlers s2io_err_handler = {
481 	.error_detected = s2io_io_error_detected,
482 	.slot_reset = s2io_io_slot_reset,
483 	.resume = s2io_io_resume,
484 };
485 
486 static struct pci_driver s2io_driver = {
487 	.name = "S2IO",
488 	.id_table = s2io_tbl,
489 	.probe = s2io_init_nic,
490 	.remove = s2io_rem_nic,
491 	.err_handler = &s2io_err_handler,
492 };
493 
494 /* A simplifier macro used both by init and free shared_mem Fns(). */
495 #define TXD_MEM_PAGE_CNT(len, per_each) DIV_ROUND_UP(len, per_each)
496 
497 /* netqueue manipulation helper functions */
498 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
499 {
500 	if (!sp->config.multiq) {
501 		int i;
502 
503 		for (i = 0; i < sp->config.tx_fifo_num; i++)
504 			sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
505 	}
506 	netif_tx_stop_all_queues(sp->dev);
507 }
508 
509 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
510 {
511 	if (!sp->config.multiq)
512 		sp->mac_control.fifos[fifo_no].queue_state =
513 			FIFO_QUEUE_STOP;
514 
515 	netif_tx_stop_all_queues(sp->dev);
516 }
517 
518 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
519 {
520 	if (!sp->config.multiq) {
521 		int i;
522 
523 		for (i = 0; i < sp->config.tx_fifo_num; i++)
524 			sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
525 	}
526 	netif_tx_start_all_queues(sp->dev);
527 }
528 
529 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
530 {
531 	if (!sp->config.multiq) {
532 		int i;
533 
534 		for (i = 0; i < sp->config.tx_fifo_num; i++)
535 			sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
536 	}
537 	netif_tx_wake_all_queues(sp->dev);
538 }
539 
540 static inline void s2io_wake_tx_queue(
541 	struct fifo_info *fifo, int cnt, u8 multiq)
542 {
543 
544 	if (multiq) {
545 		if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
546 			netif_wake_subqueue(fifo->dev, fifo->fifo_no);
547 	} else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
548 		if (netif_queue_stopped(fifo->dev)) {
549 			fifo->queue_state = FIFO_QUEUE_START;
550 			netif_wake_queue(fifo->dev);
551 		}
552 	}
553 }
554 
555 /**
556  * init_shared_mem - Allocation and Initialization of Memory
557  * @nic: Device private variable.
558  * Description: The function allocates all the memory areas shared
559  * between the NIC and the driver. This includes Tx descriptors,
560  * Rx descriptors and the statistics block.
561  */
562 
563 static int init_shared_mem(struct s2io_nic *nic)
564 {
565 	u32 size;
566 	void *tmp_v_addr, *tmp_v_addr_next;
567 	dma_addr_t tmp_p_addr, tmp_p_addr_next;
568 	struct RxD_block *pre_rxd_blk = NULL;
569 	int i, j, blk_cnt;
570 	int lst_size, lst_per_page;
571 	struct net_device *dev = nic->dev;
572 	unsigned long tmp;
573 	struct buffAdd *ba;
574 	struct config_param *config = &nic->config;
575 	struct mac_info *mac_control = &nic->mac_control;
576 	unsigned long long mem_allocated = 0;
577 
578 	/* Allocation and initialization of TXDLs in FIFOs */
579 	size = 0;
580 	for (i = 0; i < config->tx_fifo_num; i++) {
581 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
582 
583 		size += tx_cfg->fifo_len;
584 	}
585 	if (size > MAX_AVAILABLE_TXDS) {
586 		DBG_PRINT(ERR_DBG,
587 			  "Too many TxDs requested: %d, max supported: %d\n",
588 			  size, MAX_AVAILABLE_TXDS);
589 		return -EINVAL;
590 	}
591 
592 	size = 0;
593 	for (i = 0; i < config->tx_fifo_num; i++) {
594 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
595 
596 		size = tx_cfg->fifo_len;
597 		/*
598 		 * Legal values are from 2 to 8192
599 		 */
600 		if (size < 2) {
601 			DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - "
602 				  "Valid lengths are 2 through 8192\n",
603 				  i, size);
604 			return -EINVAL;
605 		}
606 	}
607 
608 	lst_size = (sizeof(struct TxD) * config->max_txds);
609 	lst_per_page = PAGE_SIZE / lst_size;
610 
611 	for (i = 0; i < config->tx_fifo_num; i++) {
612 		struct fifo_info *fifo = &mac_control->fifos[i];
613 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
614 		int fifo_len = tx_cfg->fifo_len;
615 		int list_holder_size = fifo_len * sizeof(struct list_info_hold);
616 
617 		fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL);
618 		if (!fifo->list_info) {
619 			DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n");
620 			return -ENOMEM;
621 		}
622 		mem_allocated += list_holder_size;
623 	}
624 	for (i = 0; i < config->tx_fifo_num; i++) {
625 		int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
626 						lst_per_page);
627 		struct fifo_info *fifo = &mac_control->fifos[i];
628 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
629 
630 		fifo->tx_curr_put_info.offset = 0;
631 		fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1;
632 		fifo->tx_curr_get_info.offset = 0;
633 		fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1;
634 		fifo->fifo_no = i;
635 		fifo->nic = nic;
636 		fifo->max_txds = MAX_SKB_FRAGS + 2;
637 		fifo->dev = dev;
638 
639 		for (j = 0; j < page_num; j++) {
640 			int k = 0;
641 			dma_addr_t tmp_p;
642 			void *tmp_v;
643 			tmp_v = dma_alloc_coherent(&nic->pdev->dev, PAGE_SIZE,
644 						   &tmp_p, GFP_KERNEL);
645 			if (!tmp_v) {
646 				DBG_PRINT(INFO_DBG,
647 					  "dma_alloc_coherent failed for TxDL\n");
648 				return -ENOMEM;
649 			}
650 			/* If we got a zero DMA address(can happen on
651 			 * certain platforms like PPC), reallocate.
652 			 * Store virtual address of page we don't want,
653 			 * to be freed later.
654 			 */
655 			if (!tmp_p) {
656 				mac_control->zerodma_virt_addr = tmp_v;
657 				DBG_PRINT(INIT_DBG,
658 					  "%s: Zero DMA address for TxDL. "
659 					  "Virtual address %p\n",
660 					  dev->name, tmp_v);
661 				tmp_v = dma_alloc_coherent(&nic->pdev->dev,
662 							   PAGE_SIZE, &tmp_p,
663 							   GFP_KERNEL);
664 				if (!tmp_v) {
665 					DBG_PRINT(INFO_DBG,
666 						  "dma_alloc_coherent failed for TxDL\n");
667 					return -ENOMEM;
668 				}
669 				mem_allocated += PAGE_SIZE;
670 			}
671 			while (k < lst_per_page) {
672 				int l = (j * lst_per_page) + k;
673 				if (l == tx_cfg->fifo_len)
674 					break;
675 				fifo->list_info[l].list_virt_addr =
676 					tmp_v + (k * lst_size);
677 				fifo->list_info[l].list_phy_addr =
678 					tmp_p + (k * lst_size);
679 				k++;
680 			}
681 		}
682 	}
683 
684 	for (i = 0; i < config->tx_fifo_num; i++) {
685 		struct fifo_info *fifo = &mac_control->fifos[i];
686 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
687 
688 		size = tx_cfg->fifo_len;
689 		fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
690 		if (!fifo->ufo_in_band_v)
691 			return -ENOMEM;
692 		mem_allocated += (size * sizeof(u64));
693 	}
694 
695 	/* Allocation and initialization of RXDs in Rings */
696 	size = 0;
697 	for (i = 0; i < config->rx_ring_num; i++) {
698 		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
699 		struct ring_info *ring = &mac_control->rings[i];
700 
701 		if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) {
702 			DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a "
703 				  "multiple of RxDs per Block\n",
704 				  dev->name, i);
705 			return FAILURE;
706 		}
707 		size += rx_cfg->num_rxd;
708 		ring->block_count = rx_cfg->num_rxd /
709 			(rxd_count[nic->rxd_mode] + 1);
710 		ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count;
711 	}
712 	if (nic->rxd_mode == RXD_MODE_1)
713 		size = (size * (sizeof(struct RxD1)));
714 	else
715 		size = (size * (sizeof(struct RxD3)));
716 
717 	for (i = 0; i < config->rx_ring_num; i++) {
718 		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
719 		struct ring_info *ring = &mac_control->rings[i];
720 
721 		ring->rx_curr_get_info.block_index = 0;
722 		ring->rx_curr_get_info.offset = 0;
723 		ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1;
724 		ring->rx_curr_put_info.block_index = 0;
725 		ring->rx_curr_put_info.offset = 0;
726 		ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1;
727 		ring->nic = nic;
728 		ring->ring_no = i;
729 
730 		blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1);
731 		/*  Allocating all the Rx blocks */
732 		for (j = 0; j < blk_cnt; j++) {
733 			struct rx_block_info *rx_blocks;
734 			int l;
735 
736 			rx_blocks = &ring->rx_blocks[j];
737 			size = SIZE_OF_BLOCK;	/* size is always page size */
738 			tmp_v_addr = dma_alloc_coherent(&nic->pdev->dev, size,
739 							&tmp_p_addr, GFP_KERNEL);
740 			if (tmp_v_addr == NULL) {
741 				/*
742 				 * In case of failure, free_shared_mem()
743 				 * is called, which should free any
744 				 * memory that was alloced till the
745 				 * failure happened.
746 				 */
747 				rx_blocks->block_virt_addr = tmp_v_addr;
748 				return -ENOMEM;
749 			}
750 			mem_allocated += size;
751 
752 			size = sizeof(struct rxd_info) *
753 				rxd_count[nic->rxd_mode];
754 			rx_blocks->block_virt_addr = tmp_v_addr;
755 			rx_blocks->block_dma_addr = tmp_p_addr;
756 			rx_blocks->rxds = kmalloc(size,  GFP_KERNEL);
757 			if (!rx_blocks->rxds)
758 				return -ENOMEM;
759 			mem_allocated += size;
760 			for (l = 0; l < rxd_count[nic->rxd_mode]; l++) {
761 				rx_blocks->rxds[l].virt_addr =
762 					rx_blocks->block_virt_addr +
763 					(rxd_size[nic->rxd_mode] * l);
764 				rx_blocks->rxds[l].dma_addr =
765 					rx_blocks->block_dma_addr +
766 					(rxd_size[nic->rxd_mode] * l);
767 			}
768 		}
769 		/* Interlinking all Rx Blocks */
770 		for (j = 0; j < blk_cnt; j++) {
771 			int next = (j + 1) % blk_cnt;
772 			tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
773 			tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr;
774 			tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
775 			tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr;
776 
777 			pre_rxd_blk = tmp_v_addr;
778 			pre_rxd_blk->reserved_2_pNext_RxD_block =
779 				(unsigned long)tmp_v_addr_next;
780 			pre_rxd_blk->pNext_RxD_Blk_physical =
781 				(u64)tmp_p_addr_next;
782 		}
783 	}
784 	if (nic->rxd_mode == RXD_MODE_3B) {
785 		/*
786 		 * Allocation of Storages for buffer addresses in 2BUFF mode
787 		 * and the buffers as well.
788 		 */
789 		for (i = 0; i < config->rx_ring_num; i++) {
790 			struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
791 			struct ring_info *ring = &mac_control->rings[i];
792 
793 			blk_cnt = rx_cfg->num_rxd /
794 				(rxd_count[nic->rxd_mode] + 1);
795 			size = sizeof(struct buffAdd *) * blk_cnt;
796 			ring->ba = kmalloc(size, GFP_KERNEL);
797 			if (!ring->ba)
798 				return -ENOMEM;
799 			mem_allocated += size;
800 			for (j = 0; j < blk_cnt; j++) {
801 				int k = 0;
802 
803 				size = sizeof(struct buffAdd) *
804 					(rxd_count[nic->rxd_mode] + 1);
805 				ring->ba[j] = kmalloc(size, GFP_KERNEL);
806 				if (!ring->ba[j])
807 					return -ENOMEM;
808 				mem_allocated += size;
809 				while (k != rxd_count[nic->rxd_mode]) {
810 					ba = &ring->ba[j][k];
811 					size = BUF0_LEN + ALIGN_SIZE;
812 					ba->ba_0_org = kmalloc(size, GFP_KERNEL);
813 					if (!ba->ba_0_org)
814 						return -ENOMEM;
815 					mem_allocated += size;
816 					tmp = (unsigned long)ba->ba_0_org;
817 					tmp += ALIGN_SIZE;
818 					tmp &= ~((unsigned long)ALIGN_SIZE);
819 					ba->ba_0 = (void *)tmp;
820 
821 					size = BUF1_LEN + ALIGN_SIZE;
822 					ba->ba_1_org = kmalloc(size, GFP_KERNEL);
823 					if (!ba->ba_1_org)
824 						return -ENOMEM;
825 					mem_allocated += size;
826 					tmp = (unsigned long)ba->ba_1_org;
827 					tmp += ALIGN_SIZE;
828 					tmp &= ~((unsigned long)ALIGN_SIZE);
829 					ba->ba_1 = (void *)tmp;
830 					k++;
831 				}
832 			}
833 		}
834 	}
835 
836 	/* Allocation and initialization of Statistics block */
837 	size = sizeof(struct stat_block);
838 	mac_control->stats_mem =
839 		dma_alloc_coherent(&nic->pdev->dev, size,
840 				   &mac_control->stats_mem_phy, GFP_KERNEL);
841 
842 	if (!mac_control->stats_mem) {
843 		/*
844 		 * In case of failure, free_shared_mem() is called, which
845 		 * should free any memory that was alloced till the
846 		 * failure happened.
847 		 */
848 		return -ENOMEM;
849 	}
850 	mem_allocated += size;
851 	mac_control->stats_mem_sz = size;
852 
853 	tmp_v_addr = mac_control->stats_mem;
854 	mac_control->stats_info = tmp_v_addr;
855 	memset(tmp_v_addr, 0, size);
856 	DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n",
857 		dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr);
858 	mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
859 	return SUCCESS;
860 }
861 
862 /**
863  * free_shared_mem - Free the allocated Memory
864  * @nic:  Device private variable.
865  * Description: This function is to free all memory locations allocated by
866  * the init_shared_mem() function and return it to the kernel.
867  */
868 
869 static void free_shared_mem(struct s2io_nic *nic)
870 {
871 	int i, j, blk_cnt, size;
872 	void *tmp_v_addr;
873 	dma_addr_t tmp_p_addr;
874 	int lst_size, lst_per_page;
875 	struct net_device *dev;
876 	int page_num = 0;
877 	struct config_param *config;
878 	struct mac_info *mac_control;
879 	struct stat_block *stats;
880 	struct swStat *swstats;
881 
882 	if (!nic)
883 		return;
884 
885 	dev = nic->dev;
886 
887 	config = &nic->config;
888 	mac_control = &nic->mac_control;
889 	stats = mac_control->stats_info;
890 	swstats = &stats->sw_stat;
891 
892 	lst_size = sizeof(struct TxD) * config->max_txds;
893 	lst_per_page = PAGE_SIZE / lst_size;
894 
895 	for (i = 0; i < config->tx_fifo_num; i++) {
896 		struct fifo_info *fifo = &mac_control->fifos[i];
897 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
898 
899 		page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page);
900 		for (j = 0; j < page_num; j++) {
901 			int mem_blks = (j * lst_per_page);
902 			struct list_info_hold *fli;
903 
904 			if (!fifo->list_info)
905 				return;
906 
907 			fli = &fifo->list_info[mem_blks];
908 			if (!fli->list_virt_addr)
909 				break;
910 			dma_free_coherent(&nic->pdev->dev, PAGE_SIZE,
911 					  fli->list_virt_addr,
912 					  fli->list_phy_addr);
913 			swstats->mem_freed += PAGE_SIZE;
914 		}
915 		/* If we got a zero DMA address during allocation,
916 		 * free the page now
917 		 */
918 		if (mac_control->zerodma_virt_addr) {
919 			dma_free_coherent(&nic->pdev->dev, PAGE_SIZE,
920 					  mac_control->zerodma_virt_addr,
921 					  (dma_addr_t)0);
922 			DBG_PRINT(INIT_DBG,
923 				  "%s: Freeing TxDL with zero DMA address. "
924 				  "Virtual address %p\n",
925 				  dev->name, mac_control->zerodma_virt_addr);
926 			swstats->mem_freed += PAGE_SIZE;
927 		}
928 		kfree(fifo->list_info);
929 		swstats->mem_freed += tx_cfg->fifo_len *
930 			sizeof(struct list_info_hold);
931 	}
932 
933 	size = SIZE_OF_BLOCK;
934 	for (i = 0; i < config->rx_ring_num; i++) {
935 		struct ring_info *ring = &mac_control->rings[i];
936 
937 		blk_cnt = ring->block_count;
938 		for (j = 0; j < blk_cnt; j++) {
939 			tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
940 			tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
941 			if (tmp_v_addr == NULL)
942 				break;
943 			dma_free_coherent(&nic->pdev->dev, size, tmp_v_addr,
944 					  tmp_p_addr);
945 			swstats->mem_freed += size;
946 			kfree(ring->rx_blocks[j].rxds);
947 			swstats->mem_freed += sizeof(struct rxd_info) *
948 				rxd_count[nic->rxd_mode];
949 		}
950 	}
951 
952 	if (nic->rxd_mode == RXD_MODE_3B) {
953 		/* Freeing buffer storage addresses in 2BUFF mode. */
954 		for (i = 0; i < config->rx_ring_num; i++) {
955 			struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
956 			struct ring_info *ring = &mac_control->rings[i];
957 
958 			blk_cnt = rx_cfg->num_rxd /
959 				(rxd_count[nic->rxd_mode] + 1);
960 			for (j = 0; j < blk_cnt; j++) {
961 				int k = 0;
962 				if (!ring->ba[j])
963 					continue;
964 				while (k != rxd_count[nic->rxd_mode]) {
965 					struct buffAdd *ba = &ring->ba[j][k];
966 					kfree(ba->ba_0_org);
967 					swstats->mem_freed +=
968 						BUF0_LEN + ALIGN_SIZE;
969 					kfree(ba->ba_1_org);
970 					swstats->mem_freed +=
971 						BUF1_LEN + ALIGN_SIZE;
972 					k++;
973 				}
974 				kfree(ring->ba[j]);
975 				swstats->mem_freed += sizeof(struct buffAdd) *
976 					(rxd_count[nic->rxd_mode] + 1);
977 			}
978 			kfree(ring->ba);
979 			swstats->mem_freed += sizeof(struct buffAdd *) *
980 				blk_cnt;
981 		}
982 	}
983 
984 	for (i = 0; i < nic->config.tx_fifo_num; i++) {
985 		struct fifo_info *fifo = &mac_control->fifos[i];
986 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
987 
988 		if (fifo->ufo_in_band_v) {
989 			swstats->mem_freed += tx_cfg->fifo_len *
990 				sizeof(u64);
991 			kfree(fifo->ufo_in_band_v);
992 		}
993 	}
994 
995 	if (mac_control->stats_mem) {
996 		swstats->mem_freed += mac_control->stats_mem_sz;
997 		dma_free_coherent(&nic->pdev->dev, mac_control->stats_mem_sz,
998 				  mac_control->stats_mem,
999 				  mac_control->stats_mem_phy);
1000 	}
1001 }
1002 
1003 /*
1004  * s2io_verify_pci_mode -
1005  */
1006 
1007 static int s2io_verify_pci_mode(struct s2io_nic *nic)
1008 {
1009 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1010 	register u64 val64 = 0;
1011 	int     mode;
1012 
1013 	val64 = readq(&bar0->pci_mode);
1014 	mode = (u8)GET_PCI_MODE(val64);
1015 
1016 	if (val64 & PCI_MODE_UNKNOWN_MODE)
1017 		return -1;      /* Unknown PCI mode */
1018 	return mode;
1019 }
1020 
1021 #define NEC_VENID   0x1033
1022 #define NEC_DEVID   0x0125
1023 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1024 {
1025 	struct pci_dev *tdev = NULL;
1026 	for_each_pci_dev(tdev) {
1027 		if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1028 			if (tdev->bus == s2io_pdev->bus->parent) {
1029 				pci_dev_put(tdev);
1030 				return 1;
1031 			}
1032 		}
1033 	}
1034 	return 0;
1035 }
1036 
1037 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1038 /*
1039  * s2io_print_pci_mode -
1040  */
1041 static int s2io_print_pci_mode(struct s2io_nic *nic)
1042 {
1043 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1044 	register u64 val64 = 0;
1045 	int	mode;
1046 	struct config_param *config = &nic->config;
1047 	const char *pcimode;
1048 
1049 	val64 = readq(&bar0->pci_mode);
1050 	mode = (u8)GET_PCI_MODE(val64);
1051 
1052 	if (val64 & PCI_MODE_UNKNOWN_MODE)
1053 		return -1;	/* Unknown PCI mode */
1054 
1055 	config->bus_speed = bus_speed[mode];
1056 
1057 	if (s2io_on_nec_bridge(nic->pdev)) {
1058 		DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1059 			  nic->dev->name);
1060 		return mode;
1061 	}
1062 
1063 	switch (mode) {
1064 	case PCI_MODE_PCI_33:
1065 		pcimode = "33MHz PCI bus";
1066 		break;
1067 	case PCI_MODE_PCI_66:
1068 		pcimode = "66MHz PCI bus";
1069 		break;
1070 	case PCI_MODE_PCIX_M1_66:
1071 		pcimode = "66MHz PCIX(M1) bus";
1072 		break;
1073 	case PCI_MODE_PCIX_M1_100:
1074 		pcimode = "100MHz PCIX(M1) bus";
1075 		break;
1076 	case PCI_MODE_PCIX_M1_133:
1077 		pcimode = "133MHz PCIX(M1) bus";
1078 		break;
1079 	case PCI_MODE_PCIX_M2_66:
1080 		pcimode = "133MHz PCIX(M2) bus";
1081 		break;
1082 	case PCI_MODE_PCIX_M2_100:
1083 		pcimode = "200MHz PCIX(M2) bus";
1084 		break;
1085 	case PCI_MODE_PCIX_M2_133:
1086 		pcimode = "266MHz PCIX(M2) bus";
1087 		break;
1088 	default:
1089 		pcimode = "unsupported bus!";
1090 		mode = -1;
1091 	}
1092 
1093 	DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n",
1094 		  nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode);
1095 
1096 	return mode;
1097 }
1098 
1099 /**
1100  *  init_tti - Initialization transmit traffic interrupt scheme
1101  *  @nic: device private variable
1102  *  @link: link status (UP/DOWN) used to enable/disable continuous
1103  *  transmit interrupts
1104  *  @may_sleep: parameter indicates if sleeping when waiting for
1105  *  command complete
1106  *  Description: The function configures transmit traffic interrupts
1107  *  Return Value:  SUCCESS on success and
1108  *  '-1' on failure
1109  */
1110 
1111 static int init_tti(struct s2io_nic *nic, int link, bool may_sleep)
1112 {
1113 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1114 	register u64 val64 = 0;
1115 	int i;
1116 	struct config_param *config = &nic->config;
1117 
1118 	for (i = 0; i < config->tx_fifo_num; i++) {
1119 		/*
1120 		 * TTI Initialization. Default Tx timer gets us about
1121 		 * 250 interrupts per sec. Continuous interrupts are enabled
1122 		 * by default.
1123 		 */
1124 		if (nic->device_type == XFRAME_II_DEVICE) {
1125 			int count = (nic->config.bus_speed * 125)/2;
1126 			val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1127 		} else
1128 			val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1129 
1130 		val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1131 			TTI_DATA1_MEM_TX_URNG_B(0x10) |
1132 			TTI_DATA1_MEM_TX_URNG_C(0x30) |
1133 			TTI_DATA1_MEM_TX_TIMER_AC_EN;
1134 		if (i == 0)
1135 			if (use_continuous_tx_intrs && (link == LINK_UP))
1136 				val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1137 		writeq(val64, &bar0->tti_data1_mem);
1138 
1139 		if (nic->config.intr_type == MSI_X) {
1140 			val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1141 				TTI_DATA2_MEM_TX_UFC_B(0x100) |
1142 				TTI_DATA2_MEM_TX_UFC_C(0x200) |
1143 				TTI_DATA2_MEM_TX_UFC_D(0x300);
1144 		} else {
1145 			if ((nic->config.tx_steering_type ==
1146 			     TX_DEFAULT_STEERING) &&
1147 			    (config->tx_fifo_num > 1) &&
1148 			    (i >= nic->udp_fifo_idx) &&
1149 			    (i < (nic->udp_fifo_idx +
1150 				  nic->total_udp_fifos)))
1151 				val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1152 					TTI_DATA2_MEM_TX_UFC_B(0x80) |
1153 					TTI_DATA2_MEM_TX_UFC_C(0x100) |
1154 					TTI_DATA2_MEM_TX_UFC_D(0x120);
1155 			else
1156 				val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1157 					TTI_DATA2_MEM_TX_UFC_B(0x20) |
1158 					TTI_DATA2_MEM_TX_UFC_C(0x40) |
1159 					TTI_DATA2_MEM_TX_UFC_D(0x80);
1160 		}
1161 
1162 		writeq(val64, &bar0->tti_data2_mem);
1163 
1164 		val64 = TTI_CMD_MEM_WE |
1165 			TTI_CMD_MEM_STROBE_NEW_CMD |
1166 			TTI_CMD_MEM_OFFSET(i);
1167 		writeq(val64, &bar0->tti_command_mem);
1168 
1169 		if (wait_for_cmd_complete(&bar0->tti_command_mem,
1170 					  TTI_CMD_MEM_STROBE_NEW_CMD,
1171 					  S2IO_BIT_RESET, may_sleep) != SUCCESS)
1172 			return FAILURE;
1173 	}
1174 
1175 	return SUCCESS;
1176 }
1177 
1178 /**
1179  *  init_nic - Initialization of hardware
1180  *  @nic: device private variable
1181  *  Description: The function sequentially configures every block
1182  *  of the H/W from their reset values.
1183  *  Return Value:  SUCCESS on success and
1184  *  '-1' on failure (endian settings incorrect).
1185  */
1186 
1187 static int init_nic(struct s2io_nic *nic)
1188 {
1189 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1190 	struct net_device *dev = nic->dev;
1191 	register u64 val64 = 0;
1192 	void __iomem *add;
1193 	u32 time;
1194 	int i, j;
1195 	int dtx_cnt = 0;
1196 	unsigned long long mem_share;
1197 	int mem_size;
1198 	struct config_param *config = &nic->config;
1199 	struct mac_info *mac_control = &nic->mac_control;
1200 
1201 	/* to set the swapper controle on the card */
1202 	if (s2io_set_swapper(nic)) {
1203 		DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n");
1204 		return -EIO;
1205 	}
1206 
1207 	/*
1208 	 * Herc requires EOI to be removed from reset before XGXS, so..
1209 	 */
1210 	if (nic->device_type & XFRAME_II_DEVICE) {
1211 		val64 = 0xA500000000ULL;
1212 		writeq(val64, &bar0->sw_reset);
1213 		msleep(500);
1214 		val64 = readq(&bar0->sw_reset);
1215 	}
1216 
1217 	/* Remove XGXS from reset state */
1218 	val64 = 0;
1219 	writeq(val64, &bar0->sw_reset);
1220 	msleep(500);
1221 	val64 = readq(&bar0->sw_reset);
1222 
1223 	/* Ensure that it's safe to access registers by checking
1224 	 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1225 	 */
1226 	if (nic->device_type == XFRAME_II_DEVICE) {
1227 		for (i = 0; i < 50; i++) {
1228 			val64 = readq(&bar0->adapter_status);
1229 			if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1230 				break;
1231 			msleep(10);
1232 		}
1233 		if (i == 50)
1234 			return -ENODEV;
1235 	}
1236 
1237 	/*  Enable Receiving broadcasts */
1238 	add = &bar0->mac_cfg;
1239 	val64 = readq(&bar0->mac_cfg);
1240 	val64 |= MAC_RMAC_BCAST_ENABLE;
1241 	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1242 	writel((u32)val64, add);
1243 	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1244 	writel((u32) (val64 >> 32), (add + 4));
1245 
1246 	/* Read registers in all blocks */
1247 	val64 = readq(&bar0->mac_int_mask);
1248 	val64 = readq(&bar0->mc_int_mask);
1249 	val64 = readq(&bar0->xgxs_int_mask);
1250 
1251 	/*  Set MTU */
1252 	val64 = dev->mtu;
1253 	writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1254 
1255 	if (nic->device_type & XFRAME_II_DEVICE) {
1256 		while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1257 			SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1258 					  &bar0->dtx_control, UF);
1259 			if (dtx_cnt & 0x1)
1260 				msleep(1); /* Necessary!! */
1261 			dtx_cnt++;
1262 		}
1263 	} else {
1264 		while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1265 			SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1266 					  &bar0->dtx_control, UF);
1267 			val64 = readq(&bar0->dtx_control);
1268 			dtx_cnt++;
1269 		}
1270 	}
1271 
1272 	/*  Tx DMA Initialization */
1273 	val64 = 0;
1274 	writeq(val64, &bar0->tx_fifo_partition_0);
1275 	writeq(val64, &bar0->tx_fifo_partition_1);
1276 	writeq(val64, &bar0->tx_fifo_partition_2);
1277 	writeq(val64, &bar0->tx_fifo_partition_3);
1278 
1279 	for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1280 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1281 
1282 		val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) |
1283 			vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3);
1284 
1285 		if (i == (config->tx_fifo_num - 1)) {
1286 			if (i % 2 == 0)
1287 				i++;
1288 		}
1289 
1290 		switch (i) {
1291 		case 1:
1292 			writeq(val64, &bar0->tx_fifo_partition_0);
1293 			val64 = 0;
1294 			j = 0;
1295 			break;
1296 		case 3:
1297 			writeq(val64, &bar0->tx_fifo_partition_1);
1298 			val64 = 0;
1299 			j = 0;
1300 			break;
1301 		case 5:
1302 			writeq(val64, &bar0->tx_fifo_partition_2);
1303 			val64 = 0;
1304 			j = 0;
1305 			break;
1306 		case 7:
1307 			writeq(val64, &bar0->tx_fifo_partition_3);
1308 			val64 = 0;
1309 			j = 0;
1310 			break;
1311 		default:
1312 			j++;
1313 			break;
1314 		}
1315 	}
1316 
1317 	/*
1318 	 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1319 	 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1320 	 */
1321 	if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4))
1322 		writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1323 
1324 	val64 = readq(&bar0->tx_fifo_partition_0);
1325 	DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1326 		  &bar0->tx_fifo_partition_0, (unsigned long long)val64);
1327 
1328 	/*
1329 	 * Initialization of Tx_PA_CONFIG register to ignore packet
1330 	 * integrity checking.
1331 	 */
1332 	val64 = readq(&bar0->tx_pa_cfg);
1333 	val64 |= TX_PA_CFG_IGNORE_FRM_ERR |
1334 		TX_PA_CFG_IGNORE_SNAP_OUI |
1335 		TX_PA_CFG_IGNORE_LLC_CTRL |
1336 		TX_PA_CFG_IGNORE_L2_ERR;
1337 	writeq(val64, &bar0->tx_pa_cfg);
1338 
1339 	/* Rx DMA initialization. */
1340 	val64 = 0;
1341 	for (i = 0; i < config->rx_ring_num; i++) {
1342 		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1343 
1344 		val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3);
1345 	}
1346 	writeq(val64, &bar0->rx_queue_priority);
1347 
1348 	/*
1349 	 * Allocating equal share of memory to all the
1350 	 * configured Rings.
1351 	 */
1352 	val64 = 0;
1353 	if (nic->device_type & XFRAME_II_DEVICE)
1354 		mem_size = 32;
1355 	else
1356 		mem_size = 64;
1357 
1358 	for (i = 0; i < config->rx_ring_num; i++) {
1359 		switch (i) {
1360 		case 0:
1361 			mem_share = (mem_size / config->rx_ring_num +
1362 				     mem_size % config->rx_ring_num);
1363 			val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1364 			continue;
1365 		case 1:
1366 			mem_share = (mem_size / config->rx_ring_num);
1367 			val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1368 			continue;
1369 		case 2:
1370 			mem_share = (mem_size / config->rx_ring_num);
1371 			val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1372 			continue;
1373 		case 3:
1374 			mem_share = (mem_size / config->rx_ring_num);
1375 			val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1376 			continue;
1377 		case 4:
1378 			mem_share = (mem_size / config->rx_ring_num);
1379 			val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1380 			continue;
1381 		case 5:
1382 			mem_share = (mem_size / config->rx_ring_num);
1383 			val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1384 			continue;
1385 		case 6:
1386 			mem_share = (mem_size / config->rx_ring_num);
1387 			val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1388 			continue;
1389 		case 7:
1390 			mem_share = (mem_size / config->rx_ring_num);
1391 			val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1392 			continue;
1393 		}
1394 	}
1395 	writeq(val64, &bar0->rx_queue_cfg);
1396 
1397 	/*
1398 	 * Filling Tx round robin registers
1399 	 * as per the number of FIFOs for equal scheduling priority
1400 	 */
1401 	switch (config->tx_fifo_num) {
1402 	case 1:
1403 		val64 = 0x0;
1404 		writeq(val64, &bar0->tx_w_round_robin_0);
1405 		writeq(val64, &bar0->tx_w_round_robin_1);
1406 		writeq(val64, &bar0->tx_w_round_robin_2);
1407 		writeq(val64, &bar0->tx_w_round_robin_3);
1408 		writeq(val64, &bar0->tx_w_round_robin_4);
1409 		break;
1410 	case 2:
1411 		val64 = 0x0001000100010001ULL;
1412 		writeq(val64, &bar0->tx_w_round_robin_0);
1413 		writeq(val64, &bar0->tx_w_round_robin_1);
1414 		writeq(val64, &bar0->tx_w_round_robin_2);
1415 		writeq(val64, &bar0->tx_w_round_robin_3);
1416 		val64 = 0x0001000100000000ULL;
1417 		writeq(val64, &bar0->tx_w_round_robin_4);
1418 		break;
1419 	case 3:
1420 		val64 = 0x0001020001020001ULL;
1421 		writeq(val64, &bar0->tx_w_round_robin_0);
1422 		val64 = 0x0200010200010200ULL;
1423 		writeq(val64, &bar0->tx_w_round_robin_1);
1424 		val64 = 0x0102000102000102ULL;
1425 		writeq(val64, &bar0->tx_w_round_robin_2);
1426 		val64 = 0x0001020001020001ULL;
1427 		writeq(val64, &bar0->tx_w_round_robin_3);
1428 		val64 = 0x0200010200000000ULL;
1429 		writeq(val64, &bar0->tx_w_round_robin_4);
1430 		break;
1431 	case 4:
1432 		val64 = 0x0001020300010203ULL;
1433 		writeq(val64, &bar0->tx_w_round_robin_0);
1434 		writeq(val64, &bar0->tx_w_round_robin_1);
1435 		writeq(val64, &bar0->tx_w_round_robin_2);
1436 		writeq(val64, &bar0->tx_w_round_robin_3);
1437 		val64 = 0x0001020300000000ULL;
1438 		writeq(val64, &bar0->tx_w_round_robin_4);
1439 		break;
1440 	case 5:
1441 		val64 = 0x0001020304000102ULL;
1442 		writeq(val64, &bar0->tx_w_round_robin_0);
1443 		val64 = 0x0304000102030400ULL;
1444 		writeq(val64, &bar0->tx_w_round_robin_1);
1445 		val64 = 0x0102030400010203ULL;
1446 		writeq(val64, &bar0->tx_w_round_robin_2);
1447 		val64 = 0x0400010203040001ULL;
1448 		writeq(val64, &bar0->tx_w_round_robin_3);
1449 		val64 = 0x0203040000000000ULL;
1450 		writeq(val64, &bar0->tx_w_round_robin_4);
1451 		break;
1452 	case 6:
1453 		val64 = 0x0001020304050001ULL;
1454 		writeq(val64, &bar0->tx_w_round_robin_0);
1455 		val64 = 0x0203040500010203ULL;
1456 		writeq(val64, &bar0->tx_w_round_robin_1);
1457 		val64 = 0x0405000102030405ULL;
1458 		writeq(val64, &bar0->tx_w_round_robin_2);
1459 		val64 = 0x0001020304050001ULL;
1460 		writeq(val64, &bar0->tx_w_round_robin_3);
1461 		val64 = 0x0203040500000000ULL;
1462 		writeq(val64, &bar0->tx_w_round_robin_4);
1463 		break;
1464 	case 7:
1465 		val64 = 0x0001020304050600ULL;
1466 		writeq(val64, &bar0->tx_w_round_robin_0);
1467 		val64 = 0x0102030405060001ULL;
1468 		writeq(val64, &bar0->tx_w_round_robin_1);
1469 		val64 = 0x0203040506000102ULL;
1470 		writeq(val64, &bar0->tx_w_round_robin_2);
1471 		val64 = 0x0304050600010203ULL;
1472 		writeq(val64, &bar0->tx_w_round_robin_3);
1473 		val64 = 0x0405060000000000ULL;
1474 		writeq(val64, &bar0->tx_w_round_robin_4);
1475 		break;
1476 	case 8:
1477 		val64 = 0x0001020304050607ULL;
1478 		writeq(val64, &bar0->tx_w_round_robin_0);
1479 		writeq(val64, &bar0->tx_w_round_robin_1);
1480 		writeq(val64, &bar0->tx_w_round_robin_2);
1481 		writeq(val64, &bar0->tx_w_round_robin_3);
1482 		val64 = 0x0001020300000000ULL;
1483 		writeq(val64, &bar0->tx_w_round_robin_4);
1484 		break;
1485 	}
1486 
1487 	/* Enable all configured Tx FIFO partitions */
1488 	val64 = readq(&bar0->tx_fifo_partition_0);
1489 	val64 |= (TX_FIFO_PARTITION_EN);
1490 	writeq(val64, &bar0->tx_fifo_partition_0);
1491 
1492 	/* Filling the Rx round robin registers as per the
1493 	 * number of Rings and steering based on QoS with
1494 	 * equal priority.
1495 	 */
1496 	switch (config->rx_ring_num) {
1497 	case 1:
1498 		val64 = 0x0;
1499 		writeq(val64, &bar0->rx_w_round_robin_0);
1500 		writeq(val64, &bar0->rx_w_round_robin_1);
1501 		writeq(val64, &bar0->rx_w_round_robin_2);
1502 		writeq(val64, &bar0->rx_w_round_robin_3);
1503 		writeq(val64, &bar0->rx_w_round_robin_4);
1504 
1505 		val64 = 0x8080808080808080ULL;
1506 		writeq(val64, &bar0->rts_qos_steering);
1507 		break;
1508 	case 2:
1509 		val64 = 0x0001000100010001ULL;
1510 		writeq(val64, &bar0->rx_w_round_robin_0);
1511 		writeq(val64, &bar0->rx_w_round_robin_1);
1512 		writeq(val64, &bar0->rx_w_round_robin_2);
1513 		writeq(val64, &bar0->rx_w_round_robin_3);
1514 		val64 = 0x0001000100000000ULL;
1515 		writeq(val64, &bar0->rx_w_round_robin_4);
1516 
1517 		val64 = 0x8080808040404040ULL;
1518 		writeq(val64, &bar0->rts_qos_steering);
1519 		break;
1520 	case 3:
1521 		val64 = 0x0001020001020001ULL;
1522 		writeq(val64, &bar0->rx_w_round_robin_0);
1523 		val64 = 0x0200010200010200ULL;
1524 		writeq(val64, &bar0->rx_w_round_robin_1);
1525 		val64 = 0x0102000102000102ULL;
1526 		writeq(val64, &bar0->rx_w_round_robin_2);
1527 		val64 = 0x0001020001020001ULL;
1528 		writeq(val64, &bar0->rx_w_round_robin_3);
1529 		val64 = 0x0200010200000000ULL;
1530 		writeq(val64, &bar0->rx_w_round_robin_4);
1531 
1532 		val64 = 0x8080804040402020ULL;
1533 		writeq(val64, &bar0->rts_qos_steering);
1534 		break;
1535 	case 4:
1536 		val64 = 0x0001020300010203ULL;
1537 		writeq(val64, &bar0->rx_w_round_robin_0);
1538 		writeq(val64, &bar0->rx_w_round_robin_1);
1539 		writeq(val64, &bar0->rx_w_round_robin_2);
1540 		writeq(val64, &bar0->rx_w_round_robin_3);
1541 		val64 = 0x0001020300000000ULL;
1542 		writeq(val64, &bar0->rx_w_round_robin_4);
1543 
1544 		val64 = 0x8080404020201010ULL;
1545 		writeq(val64, &bar0->rts_qos_steering);
1546 		break;
1547 	case 5:
1548 		val64 = 0x0001020304000102ULL;
1549 		writeq(val64, &bar0->rx_w_round_robin_0);
1550 		val64 = 0x0304000102030400ULL;
1551 		writeq(val64, &bar0->rx_w_round_robin_1);
1552 		val64 = 0x0102030400010203ULL;
1553 		writeq(val64, &bar0->rx_w_round_robin_2);
1554 		val64 = 0x0400010203040001ULL;
1555 		writeq(val64, &bar0->rx_w_round_robin_3);
1556 		val64 = 0x0203040000000000ULL;
1557 		writeq(val64, &bar0->rx_w_round_robin_4);
1558 
1559 		val64 = 0x8080404020201008ULL;
1560 		writeq(val64, &bar0->rts_qos_steering);
1561 		break;
1562 	case 6:
1563 		val64 = 0x0001020304050001ULL;
1564 		writeq(val64, &bar0->rx_w_round_robin_0);
1565 		val64 = 0x0203040500010203ULL;
1566 		writeq(val64, &bar0->rx_w_round_robin_1);
1567 		val64 = 0x0405000102030405ULL;
1568 		writeq(val64, &bar0->rx_w_round_robin_2);
1569 		val64 = 0x0001020304050001ULL;
1570 		writeq(val64, &bar0->rx_w_round_robin_3);
1571 		val64 = 0x0203040500000000ULL;
1572 		writeq(val64, &bar0->rx_w_round_robin_4);
1573 
1574 		val64 = 0x8080404020100804ULL;
1575 		writeq(val64, &bar0->rts_qos_steering);
1576 		break;
1577 	case 7:
1578 		val64 = 0x0001020304050600ULL;
1579 		writeq(val64, &bar0->rx_w_round_robin_0);
1580 		val64 = 0x0102030405060001ULL;
1581 		writeq(val64, &bar0->rx_w_round_robin_1);
1582 		val64 = 0x0203040506000102ULL;
1583 		writeq(val64, &bar0->rx_w_round_robin_2);
1584 		val64 = 0x0304050600010203ULL;
1585 		writeq(val64, &bar0->rx_w_round_robin_3);
1586 		val64 = 0x0405060000000000ULL;
1587 		writeq(val64, &bar0->rx_w_round_robin_4);
1588 
1589 		val64 = 0x8080402010080402ULL;
1590 		writeq(val64, &bar0->rts_qos_steering);
1591 		break;
1592 	case 8:
1593 		val64 = 0x0001020304050607ULL;
1594 		writeq(val64, &bar0->rx_w_round_robin_0);
1595 		writeq(val64, &bar0->rx_w_round_robin_1);
1596 		writeq(val64, &bar0->rx_w_round_robin_2);
1597 		writeq(val64, &bar0->rx_w_round_robin_3);
1598 		val64 = 0x0001020300000000ULL;
1599 		writeq(val64, &bar0->rx_w_round_robin_4);
1600 
1601 		val64 = 0x8040201008040201ULL;
1602 		writeq(val64, &bar0->rts_qos_steering);
1603 		break;
1604 	}
1605 
1606 	/* UDP Fix */
1607 	val64 = 0;
1608 	for (i = 0; i < 8; i++)
1609 		writeq(val64, &bar0->rts_frm_len_n[i]);
1610 
1611 	/* Set the default rts frame length for the rings configured */
1612 	val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1613 	for (i = 0 ; i < config->rx_ring_num ; i++)
1614 		writeq(val64, &bar0->rts_frm_len_n[i]);
1615 
1616 	/* Set the frame length for the configured rings
1617 	 * desired by the user
1618 	 */
1619 	for (i = 0; i < config->rx_ring_num; i++) {
1620 		/* If rts_frm_len[i] == 0 then it is assumed that user not
1621 		 * specified frame length steering.
1622 		 * If the user provides the frame length then program
1623 		 * the rts_frm_len register for those values or else
1624 		 * leave it as it is.
1625 		 */
1626 		if (rts_frm_len[i] != 0) {
1627 			writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1628 			       &bar0->rts_frm_len_n[i]);
1629 		}
1630 	}
1631 
1632 	/* Disable differentiated services steering logic */
1633 	for (i = 0; i < 64; i++) {
1634 		if (rts_ds_steer(nic, i, 0) == FAILURE) {
1635 			DBG_PRINT(ERR_DBG,
1636 				  "%s: rts_ds_steer failed on codepoint %d\n",
1637 				  dev->name, i);
1638 			return -ENODEV;
1639 		}
1640 	}
1641 
1642 	/* Program statistics memory */
1643 	writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1644 
1645 	if (nic->device_type == XFRAME_II_DEVICE) {
1646 		val64 = STAT_BC(0x320);
1647 		writeq(val64, &bar0->stat_byte_cnt);
1648 	}
1649 
1650 	/*
1651 	 * Initializing the sampling rate for the device to calculate the
1652 	 * bandwidth utilization.
1653 	 */
1654 	val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1655 		MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1656 	writeq(val64, &bar0->mac_link_util);
1657 
1658 	/*
1659 	 * Initializing the Transmit and Receive Traffic Interrupt
1660 	 * Scheme.
1661 	 */
1662 
1663 	/* Initialize TTI */
1664 	if (SUCCESS != init_tti(nic, nic->last_link_state, true))
1665 		return -ENODEV;
1666 
1667 	/* RTI Initialization */
1668 	if (nic->device_type == XFRAME_II_DEVICE) {
1669 		/*
1670 		 * Programmed to generate Apprx 500 Intrs per
1671 		 * second
1672 		 */
1673 		int count = (nic->config.bus_speed * 125)/4;
1674 		val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1675 	} else
1676 		val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1677 	val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1678 		RTI_DATA1_MEM_RX_URNG_B(0x10) |
1679 		RTI_DATA1_MEM_RX_URNG_C(0x30) |
1680 		RTI_DATA1_MEM_RX_TIMER_AC_EN;
1681 
1682 	writeq(val64, &bar0->rti_data1_mem);
1683 
1684 	val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1685 		RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1686 	if (nic->config.intr_type == MSI_X)
1687 		val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1688 			  RTI_DATA2_MEM_RX_UFC_D(0x40));
1689 	else
1690 		val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1691 			  RTI_DATA2_MEM_RX_UFC_D(0x80));
1692 	writeq(val64, &bar0->rti_data2_mem);
1693 
1694 	for (i = 0; i < config->rx_ring_num; i++) {
1695 		val64 = RTI_CMD_MEM_WE |
1696 			RTI_CMD_MEM_STROBE_NEW_CMD |
1697 			RTI_CMD_MEM_OFFSET(i);
1698 		writeq(val64, &bar0->rti_command_mem);
1699 
1700 		/*
1701 		 * Once the operation completes, the Strobe bit of the
1702 		 * command register will be reset. We poll for this
1703 		 * particular condition. We wait for a maximum of 500ms
1704 		 * for the operation to complete, if it's not complete
1705 		 * by then we return error.
1706 		 */
1707 		time = 0;
1708 		while (true) {
1709 			val64 = readq(&bar0->rti_command_mem);
1710 			if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1711 				break;
1712 
1713 			if (time > 10) {
1714 				DBG_PRINT(ERR_DBG, "%s: RTI init failed\n",
1715 					  dev->name);
1716 				return -ENODEV;
1717 			}
1718 			time++;
1719 			msleep(50);
1720 		}
1721 	}
1722 
1723 	/*
1724 	 * Initializing proper values as Pause threshold into all
1725 	 * the 8 Queues on Rx side.
1726 	 */
1727 	writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1728 	writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1729 
1730 	/* Disable RMAC PAD STRIPPING */
1731 	add = &bar0->mac_cfg;
1732 	val64 = readq(&bar0->mac_cfg);
1733 	val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1734 	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1735 	writel((u32) (val64), add);
1736 	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1737 	writel((u32) (val64 >> 32), (add + 4));
1738 	val64 = readq(&bar0->mac_cfg);
1739 
1740 	/* Enable FCS stripping by adapter */
1741 	add = &bar0->mac_cfg;
1742 	val64 = readq(&bar0->mac_cfg);
1743 	val64 |= MAC_CFG_RMAC_STRIP_FCS;
1744 	if (nic->device_type == XFRAME_II_DEVICE)
1745 		writeq(val64, &bar0->mac_cfg);
1746 	else {
1747 		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1748 		writel((u32) (val64), add);
1749 		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1750 		writel((u32) (val64 >> 32), (add + 4));
1751 	}
1752 
1753 	/*
1754 	 * Set the time value to be inserted in the pause frame
1755 	 * generated by xena.
1756 	 */
1757 	val64 = readq(&bar0->rmac_pause_cfg);
1758 	val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1759 	val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1760 	writeq(val64, &bar0->rmac_pause_cfg);
1761 
1762 	/*
1763 	 * Set the Threshold Limit for Generating the pause frame
1764 	 * If the amount of data in any Queue exceeds ratio of
1765 	 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1766 	 * pause frame is generated
1767 	 */
1768 	val64 = 0;
1769 	for (i = 0; i < 4; i++) {
1770 		val64 |= (((u64)0xFF00 |
1771 			   nic->mac_control.mc_pause_threshold_q0q3)
1772 			  << (i * 2 * 8));
1773 	}
1774 	writeq(val64, &bar0->mc_pause_thresh_q0q3);
1775 
1776 	val64 = 0;
1777 	for (i = 0; i < 4; i++) {
1778 		val64 |= (((u64)0xFF00 |
1779 			   nic->mac_control.mc_pause_threshold_q4q7)
1780 			  << (i * 2 * 8));
1781 	}
1782 	writeq(val64, &bar0->mc_pause_thresh_q4q7);
1783 
1784 	/*
1785 	 * TxDMA will stop Read request if the number of read split has
1786 	 * exceeded the limit pointed by shared_splits
1787 	 */
1788 	val64 = readq(&bar0->pic_control);
1789 	val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1790 	writeq(val64, &bar0->pic_control);
1791 
1792 	if (nic->config.bus_speed == 266) {
1793 		writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1794 		writeq(0x0, &bar0->read_retry_delay);
1795 		writeq(0x0, &bar0->write_retry_delay);
1796 	}
1797 
1798 	/*
1799 	 * Programming the Herc to split every write transaction
1800 	 * that does not start on an ADB to reduce disconnects.
1801 	 */
1802 	if (nic->device_type == XFRAME_II_DEVICE) {
1803 		val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1804 			MISC_LINK_STABILITY_PRD(3);
1805 		writeq(val64, &bar0->misc_control);
1806 		val64 = readq(&bar0->pic_control2);
1807 		val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1808 		writeq(val64, &bar0->pic_control2);
1809 	}
1810 	if (strstr(nic->product_name, "CX4")) {
1811 		val64 = TMAC_AVG_IPG(0x17);
1812 		writeq(val64, &bar0->tmac_avg_ipg);
1813 	}
1814 
1815 	return SUCCESS;
1816 }
1817 #define LINK_UP_DOWN_INTERRUPT		1
1818 #define MAC_RMAC_ERR_TIMER		2
1819 
1820 static int s2io_link_fault_indication(struct s2io_nic *nic)
1821 {
1822 	if (nic->device_type == XFRAME_II_DEVICE)
1823 		return LINK_UP_DOWN_INTERRUPT;
1824 	else
1825 		return MAC_RMAC_ERR_TIMER;
1826 }
1827 
1828 /**
1829  *  do_s2io_write_bits -  update alarm bits in alarm register
1830  *  @value: alarm bits
1831  *  @flag: interrupt status
1832  *  @addr: address value
1833  *  Description: update alarm bits in alarm register
1834  *  Return Value:
1835  *  NONE.
1836  */
1837 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1838 {
1839 	u64 temp64;
1840 
1841 	temp64 = readq(addr);
1842 
1843 	if (flag == ENABLE_INTRS)
1844 		temp64 &= ~((u64)value);
1845 	else
1846 		temp64 |= ((u64)value);
1847 	writeq(temp64, addr);
1848 }
1849 
1850 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1851 {
1852 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1853 	register u64 gen_int_mask = 0;
1854 	u64 interruptible;
1855 
1856 	writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
1857 	if (mask & TX_DMA_INTR) {
1858 		gen_int_mask |= TXDMA_INT_M;
1859 
1860 		do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1861 				   TXDMA_PCC_INT | TXDMA_TTI_INT |
1862 				   TXDMA_LSO_INT | TXDMA_TPA_INT |
1863 				   TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1864 
1865 		do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1866 				   PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1867 				   PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1868 				   &bar0->pfc_err_mask);
1869 
1870 		do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1871 				   TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1872 				   TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1873 
1874 		do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1875 				   PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1876 				   PCC_N_SERR | PCC_6_COF_OV_ERR |
1877 				   PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1878 				   PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1879 				   PCC_TXB_ECC_SG_ERR,
1880 				   flag, &bar0->pcc_err_mask);
1881 
1882 		do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1883 				   TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1884 
1885 		do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1886 				   LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1887 				   LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1888 				   flag, &bar0->lso_err_mask);
1889 
1890 		do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1891 				   flag, &bar0->tpa_err_mask);
1892 
1893 		do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1894 	}
1895 
1896 	if (mask & TX_MAC_INTR) {
1897 		gen_int_mask |= TXMAC_INT_M;
1898 		do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1899 				   &bar0->mac_int_mask);
1900 		do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1901 				   TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1902 				   TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1903 				   flag, &bar0->mac_tmac_err_mask);
1904 	}
1905 
1906 	if (mask & TX_XGXS_INTR) {
1907 		gen_int_mask |= TXXGXS_INT_M;
1908 		do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1909 				   &bar0->xgxs_int_mask);
1910 		do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1911 				   TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1912 				   flag, &bar0->xgxs_txgxs_err_mask);
1913 	}
1914 
1915 	if (mask & RX_DMA_INTR) {
1916 		gen_int_mask |= RXDMA_INT_M;
1917 		do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1918 				   RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1919 				   flag, &bar0->rxdma_int_mask);
1920 		do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1921 				   RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1922 				   RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1923 				   RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1924 		do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1925 				   PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1926 				   PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1927 				   &bar0->prc_pcix_err_mask);
1928 		do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1929 				   RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1930 				   &bar0->rpa_err_mask);
1931 		do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1932 				   RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1933 				   RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1934 				   RDA_FRM_ECC_SG_ERR |
1935 				   RDA_MISC_ERR|RDA_PCIX_ERR,
1936 				   flag, &bar0->rda_err_mask);
1937 		do_s2io_write_bits(RTI_SM_ERR_ALARM |
1938 				   RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
1939 				   flag, &bar0->rti_err_mask);
1940 	}
1941 
1942 	if (mask & RX_MAC_INTR) {
1943 		gen_int_mask |= RXMAC_INT_M;
1944 		do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
1945 				   &bar0->mac_int_mask);
1946 		interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
1947 				 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
1948 				 RMAC_DOUBLE_ECC_ERR);
1949 		if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
1950 			interruptible |= RMAC_LINK_STATE_CHANGE_INT;
1951 		do_s2io_write_bits(interruptible,
1952 				   flag, &bar0->mac_rmac_err_mask);
1953 	}
1954 
1955 	if (mask & RX_XGXS_INTR) {
1956 		gen_int_mask |= RXXGXS_INT_M;
1957 		do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
1958 				   &bar0->xgxs_int_mask);
1959 		do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
1960 				   &bar0->xgxs_rxgxs_err_mask);
1961 	}
1962 
1963 	if (mask & MC_INTR) {
1964 		gen_int_mask |= MC_INT_M;
1965 		do_s2io_write_bits(MC_INT_MASK_MC_INT,
1966 				   flag, &bar0->mc_int_mask);
1967 		do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
1968 				   MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
1969 				   &bar0->mc_err_mask);
1970 	}
1971 	nic->general_int_mask = gen_int_mask;
1972 
1973 	/* Remove this line when alarm interrupts are enabled */
1974 	nic->general_int_mask = 0;
1975 }
1976 
1977 /**
1978  *  en_dis_able_nic_intrs - Enable or Disable the interrupts
1979  *  @nic: device private variable,
1980  *  @mask: A mask indicating which Intr block must be modified and,
1981  *  @flag: A flag indicating whether to enable or disable the Intrs.
1982  *  Description: This function will either disable or enable the interrupts
1983  *  depending on the flag argument. The mask argument can be used to
1984  *  enable/disable any Intr block.
1985  *  Return Value: NONE.
1986  */
1987 
1988 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1989 {
1990 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1991 	register u64 temp64 = 0, intr_mask = 0;
1992 
1993 	intr_mask = nic->general_int_mask;
1994 
1995 	/*  Top level interrupt classification */
1996 	/*  PIC Interrupts */
1997 	if (mask & TX_PIC_INTR) {
1998 		/*  Enable PIC Intrs in the general intr mask register */
1999 		intr_mask |= TXPIC_INT_M;
2000 		if (flag == ENABLE_INTRS) {
2001 			/*
2002 			 * If Hercules adapter enable GPIO otherwise
2003 			 * disable all PCIX, Flash, MDIO, IIC and GPIO
2004 			 * interrupts for now.
2005 			 * TODO
2006 			 */
2007 			if (s2io_link_fault_indication(nic) ==
2008 			    LINK_UP_DOWN_INTERRUPT) {
2009 				do_s2io_write_bits(PIC_INT_GPIO, flag,
2010 						   &bar0->pic_int_mask);
2011 				do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2012 						   &bar0->gpio_int_mask);
2013 			} else
2014 				writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2015 		} else if (flag == DISABLE_INTRS) {
2016 			/*
2017 			 * Disable PIC Intrs in the general
2018 			 * intr mask register
2019 			 */
2020 			writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2021 		}
2022 	}
2023 
2024 	/*  Tx traffic interrupts */
2025 	if (mask & TX_TRAFFIC_INTR) {
2026 		intr_mask |= TXTRAFFIC_INT_M;
2027 		if (flag == ENABLE_INTRS) {
2028 			/*
2029 			 * Enable all the Tx side interrupts
2030 			 * writing 0 Enables all 64 TX interrupt levels
2031 			 */
2032 			writeq(0x0, &bar0->tx_traffic_mask);
2033 		} else if (flag == DISABLE_INTRS) {
2034 			/*
2035 			 * Disable Tx Traffic Intrs in the general intr mask
2036 			 * register.
2037 			 */
2038 			writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2039 		}
2040 	}
2041 
2042 	/*  Rx traffic interrupts */
2043 	if (mask & RX_TRAFFIC_INTR) {
2044 		intr_mask |= RXTRAFFIC_INT_M;
2045 		if (flag == ENABLE_INTRS) {
2046 			/* writing 0 Enables all 8 RX interrupt levels */
2047 			writeq(0x0, &bar0->rx_traffic_mask);
2048 		} else if (flag == DISABLE_INTRS) {
2049 			/*
2050 			 * Disable Rx Traffic Intrs in the general intr mask
2051 			 * register.
2052 			 */
2053 			writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2054 		}
2055 	}
2056 
2057 	temp64 = readq(&bar0->general_int_mask);
2058 	if (flag == ENABLE_INTRS)
2059 		temp64 &= ~((u64)intr_mask);
2060 	else
2061 		temp64 = DISABLE_ALL_INTRS;
2062 	writeq(temp64, &bar0->general_int_mask);
2063 
2064 	nic->general_int_mask = readq(&bar0->general_int_mask);
2065 }
2066 
2067 /**
2068  *  verify_pcc_quiescent- Checks for PCC quiescent state
2069  *  @sp : private member of the device structure, which is a pointer to the
2070  *  s2io_nic structure.
2071  *  @flag: boolean controlling function path
2072  *  Return: 1 If PCC is quiescence
2073  *          0 If PCC is not quiescence
2074  */
2075 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2076 {
2077 	int ret = 0, herc;
2078 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
2079 	u64 val64 = readq(&bar0->adapter_status);
2080 
2081 	herc = (sp->device_type == XFRAME_II_DEVICE);
2082 
2083 	if (flag == false) {
2084 		if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2085 			if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2086 				ret = 1;
2087 		} else {
2088 			if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2089 				ret = 1;
2090 		}
2091 	} else {
2092 		if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2093 			if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2094 			     ADAPTER_STATUS_RMAC_PCC_IDLE))
2095 				ret = 1;
2096 		} else {
2097 			if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2098 			     ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2099 				ret = 1;
2100 		}
2101 	}
2102 
2103 	return ret;
2104 }
2105 /**
2106  *  verify_xena_quiescence - Checks whether the H/W is ready
2107  *  @sp : private member of the device structure, which is a pointer to the
2108  *  s2io_nic structure.
2109  *  Description: Returns whether the H/W is ready to go or not. Depending
2110  *  on whether adapter enable bit was written or not the comparison
2111  *  differs and the calling function passes the input argument flag to
2112  *  indicate this.
2113  *  Return: 1 If xena is quiescence
2114  *          0 If Xena is not quiescence
2115  */
2116 
2117 static int verify_xena_quiescence(struct s2io_nic *sp)
2118 {
2119 	int  mode;
2120 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
2121 	u64 val64 = readq(&bar0->adapter_status);
2122 	mode = s2io_verify_pci_mode(sp);
2123 
2124 	if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2125 		DBG_PRINT(ERR_DBG, "TDMA is not ready!\n");
2126 		return 0;
2127 	}
2128 	if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2129 		DBG_PRINT(ERR_DBG, "RDMA is not ready!\n");
2130 		return 0;
2131 	}
2132 	if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2133 		DBG_PRINT(ERR_DBG, "PFC is not ready!\n");
2134 		return 0;
2135 	}
2136 	if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2137 		DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n");
2138 		return 0;
2139 	}
2140 	if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2141 		DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n");
2142 		return 0;
2143 	}
2144 	if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2145 		DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n");
2146 		return 0;
2147 	}
2148 	if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2149 		DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n");
2150 		return 0;
2151 	}
2152 	if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2153 		DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n");
2154 		return 0;
2155 	}
2156 
2157 	/*
2158 	 * In PCI 33 mode, the P_PLL is not used, and therefore,
2159 	 * the P_PLL_LOCK bit in the adapter_status register will
2160 	 * not be asserted.
2161 	 */
2162 	if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2163 	    sp->device_type == XFRAME_II_DEVICE &&
2164 	    mode != PCI_MODE_PCI_33) {
2165 		DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n");
2166 		return 0;
2167 	}
2168 	if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2169 	      ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2170 		DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n");
2171 		return 0;
2172 	}
2173 	return 1;
2174 }
2175 
2176 /**
2177  * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
2178  * @sp: Pointer to device specifc structure
2179  * Description :
2180  * New procedure to clear mac address reading  problems on Alpha platforms
2181  *
2182  */
2183 
2184 static void fix_mac_address(struct s2io_nic *sp)
2185 {
2186 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
2187 	int i = 0;
2188 
2189 	while (fix_mac[i] != END_SIGN) {
2190 		writeq(fix_mac[i++], &bar0->gpio_control);
2191 		udelay(10);
2192 		(void) readq(&bar0->gpio_control);
2193 	}
2194 }
2195 
2196 /**
2197  *  start_nic - Turns the device on
2198  *  @nic : device private variable.
2199  *  Description:
2200  *  This function actually turns the device on. Before this  function is
2201  *  called,all Registers are configured from their reset states
2202  *  and shared memory is allocated but the NIC is still quiescent. On
2203  *  calling this function, the device interrupts are cleared and the NIC is
2204  *  literally switched on by writing into the adapter control register.
2205  *  Return Value:
2206  *  SUCCESS on success and -1 on failure.
2207  */
2208 
2209 static int start_nic(struct s2io_nic *nic)
2210 {
2211 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2212 	struct net_device *dev = nic->dev;
2213 	register u64 val64 = 0;
2214 	u16 subid, i;
2215 	struct config_param *config = &nic->config;
2216 	struct mac_info *mac_control = &nic->mac_control;
2217 
2218 	/*  PRC Initialization and configuration */
2219 	for (i = 0; i < config->rx_ring_num; i++) {
2220 		struct ring_info *ring = &mac_control->rings[i];
2221 
2222 		writeq((u64)ring->rx_blocks[0].block_dma_addr,
2223 		       &bar0->prc_rxd0_n[i]);
2224 
2225 		val64 = readq(&bar0->prc_ctrl_n[i]);
2226 		if (nic->rxd_mode == RXD_MODE_1)
2227 			val64 |= PRC_CTRL_RC_ENABLED;
2228 		else
2229 			val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2230 		if (nic->device_type == XFRAME_II_DEVICE)
2231 			val64 |= PRC_CTRL_GROUP_READS;
2232 		val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2233 		val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2234 		writeq(val64, &bar0->prc_ctrl_n[i]);
2235 	}
2236 
2237 	if (nic->rxd_mode == RXD_MODE_3B) {
2238 		/* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2239 		val64 = readq(&bar0->rx_pa_cfg);
2240 		val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2241 		writeq(val64, &bar0->rx_pa_cfg);
2242 	}
2243 
2244 	if (vlan_tag_strip == 0) {
2245 		val64 = readq(&bar0->rx_pa_cfg);
2246 		val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2247 		writeq(val64, &bar0->rx_pa_cfg);
2248 		nic->vlan_strip_flag = 0;
2249 	}
2250 
2251 	/*
2252 	 * Enabling MC-RLDRAM. After enabling the device, we timeout
2253 	 * for around 100ms, which is approximately the time required
2254 	 * for the device to be ready for operation.
2255 	 */
2256 	val64 = readq(&bar0->mc_rldram_mrs);
2257 	val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2258 	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2259 	val64 = readq(&bar0->mc_rldram_mrs);
2260 
2261 	msleep(100);	/* Delay by around 100 ms. */
2262 
2263 	/* Enabling ECC Protection. */
2264 	val64 = readq(&bar0->adapter_control);
2265 	val64 &= ~ADAPTER_ECC_EN;
2266 	writeq(val64, &bar0->adapter_control);
2267 
2268 	/*
2269 	 * Verify if the device is ready to be enabled, if so enable
2270 	 * it.
2271 	 */
2272 	val64 = readq(&bar0->adapter_status);
2273 	if (!verify_xena_quiescence(nic)) {
2274 		DBG_PRINT(ERR_DBG, "%s: device is not ready, "
2275 			  "Adapter status reads: 0x%llx\n",
2276 			  dev->name, (unsigned long long)val64);
2277 		return FAILURE;
2278 	}
2279 
2280 	/*
2281 	 * With some switches, link might be already up at this point.
2282 	 * Because of this weird behavior, when we enable laser,
2283 	 * we may not get link. We need to handle this. We cannot
2284 	 * figure out which switch is misbehaving. So we are forced to
2285 	 * make a global change.
2286 	 */
2287 
2288 	/* Enabling Laser. */
2289 	val64 = readq(&bar0->adapter_control);
2290 	val64 |= ADAPTER_EOI_TX_ON;
2291 	writeq(val64, &bar0->adapter_control);
2292 
2293 	if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2294 		/*
2295 		 * Dont see link state interrupts initially on some switches,
2296 		 * so directly scheduling the link state task here.
2297 		 */
2298 		schedule_work(&nic->set_link_task);
2299 	}
2300 	/* SXE-002: Initialize link and activity LED */
2301 	subid = nic->pdev->subsystem_device;
2302 	if (((subid & 0xFF) >= 0x07) &&
2303 	    (nic->device_type == XFRAME_I_DEVICE)) {
2304 		val64 = readq(&bar0->gpio_control);
2305 		val64 |= 0x0000800000000000ULL;
2306 		writeq(val64, &bar0->gpio_control);
2307 		val64 = 0x0411040400000000ULL;
2308 		writeq(val64, (void __iomem *)bar0 + 0x2700);
2309 	}
2310 
2311 	return SUCCESS;
2312 }
2313 /**
2314  * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2315  * @fifo_data: fifo data pointer
2316  * @txdlp: descriptor
2317  * @get_off: unused
2318  */
2319 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data,
2320 					struct TxD *txdlp, int get_off)
2321 {
2322 	struct s2io_nic *nic = fifo_data->nic;
2323 	struct sk_buff *skb;
2324 	struct TxD *txds;
2325 	u16 j, frg_cnt;
2326 
2327 	txds = txdlp;
2328 	if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2329 		dma_unmap_single(&nic->pdev->dev,
2330 				 (dma_addr_t)txds->Buffer_Pointer,
2331 				 sizeof(u64), DMA_TO_DEVICE);
2332 		txds++;
2333 	}
2334 
2335 	skb = (struct sk_buff *)((unsigned long)txds->Host_Control);
2336 	if (!skb) {
2337 		memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2338 		return NULL;
2339 	}
2340 	dma_unmap_single(&nic->pdev->dev, (dma_addr_t)txds->Buffer_Pointer,
2341 			 skb_headlen(skb), DMA_TO_DEVICE);
2342 	frg_cnt = skb_shinfo(skb)->nr_frags;
2343 	if (frg_cnt) {
2344 		txds++;
2345 		for (j = 0; j < frg_cnt; j++, txds++) {
2346 			const skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2347 			if (!txds->Buffer_Pointer)
2348 				break;
2349 			dma_unmap_page(&nic->pdev->dev,
2350 				       (dma_addr_t)txds->Buffer_Pointer,
2351 				       skb_frag_size(frag), DMA_TO_DEVICE);
2352 		}
2353 	}
2354 	memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2355 	return skb;
2356 }
2357 
2358 /**
2359  *  free_tx_buffers - Free all queued Tx buffers
2360  *  @nic : device private variable.
2361  *  Description:
2362  *  Free all queued Tx buffers.
2363  *  Return Value: void
2364  */
2365 
2366 static void free_tx_buffers(struct s2io_nic *nic)
2367 {
2368 	struct net_device *dev = nic->dev;
2369 	struct sk_buff *skb;
2370 	struct TxD *txdp;
2371 	int i, j;
2372 	int cnt = 0;
2373 	struct config_param *config = &nic->config;
2374 	struct mac_info *mac_control = &nic->mac_control;
2375 	struct stat_block *stats = mac_control->stats_info;
2376 	struct swStat *swstats = &stats->sw_stat;
2377 
2378 	for (i = 0; i < config->tx_fifo_num; i++) {
2379 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
2380 		struct fifo_info *fifo = &mac_control->fifos[i];
2381 		unsigned long flags;
2382 
2383 		spin_lock_irqsave(&fifo->tx_lock, flags);
2384 		for (j = 0; j < tx_cfg->fifo_len; j++) {
2385 			txdp = fifo->list_info[j].list_virt_addr;
2386 			skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2387 			if (skb) {
2388 				swstats->mem_freed += skb->truesize;
2389 				dev_kfree_skb_irq(skb);
2390 				cnt++;
2391 			}
2392 		}
2393 		DBG_PRINT(INTR_DBG,
2394 			  "%s: forcibly freeing %d skbs on FIFO%d\n",
2395 			  dev->name, cnt, i);
2396 		fifo->tx_curr_get_info.offset = 0;
2397 		fifo->tx_curr_put_info.offset = 0;
2398 		spin_unlock_irqrestore(&fifo->tx_lock, flags);
2399 	}
2400 }
2401 
2402 /**
2403  *   stop_nic -  To stop the nic
2404  *   @nic : device private variable.
2405  *   Description:
2406  *   This function does exactly the opposite of what the start_nic()
2407  *   function does. This function is called to stop the device.
2408  *   Return Value:
2409  *   void.
2410  */
2411 
2412 static void stop_nic(struct s2io_nic *nic)
2413 {
2414 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2415 	register u64 val64 = 0;
2416 	u16 interruptible;
2417 
2418 	/*  Disable all interrupts */
2419 	en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2420 	interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2421 	interruptible |= TX_PIC_INTR;
2422 	en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2423 
2424 	/* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2425 	val64 = readq(&bar0->adapter_control);
2426 	val64 &= ~(ADAPTER_CNTL_EN);
2427 	writeq(val64, &bar0->adapter_control);
2428 }
2429 
2430 /**
2431  *  fill_rx_buffers - Allocates the Rx side skbs
2432  *  @nic : device private variable.
2433  *  @ring: per ring structure
2434  *  @from_card_up: If this is true, we will map the buffer to get
2435  *     the dma address for buf0 and buf1 to give it to the card.
2436  *     Else we will sync the already mapped buffer to give it to the card.
2437  *  Description:
2438  *  The function allocates Rx side skbs and puts the physical
2439  *  address of these buffers into the RxD buffer pointers, so that the NIC
2440  *  can DMA the received frame into these locations.
2441  *  The NIC supports 3 receive modes, viz
2442  *  1. single buffer,
2443  *  2. three buffer and
2444  *  3. Five buffer modes.
2445  *  Each mode defines how many fragments the received frame will be split
2446  *  up into by the NIC. The frame is split into L3 header, L4 Header,
2447  *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2448  *  is split into 3 fragments. As of now only single buffer mode is
2449  *  supported.
2450  *   Return Value:
2451  *  SUCCESS on success or an appropriate -ve value on failure.
2452  */
2453 static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
2454 			   int from_card_up)
2455 {
2456 	struct sk_buff *skb;
2457 	struct RxD_t *rxdp;
2458 	int off, size, block_no, block_no1;
2459 	u32 alloc_tab = 0;
2460 	u32 alloc_cnt;
2461 	u64 tmp;
2462 	struct buffAdd *ba;
2463 	struct RxD_t *first_rxdp = NULL;
2464 	u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2465 	struct RxD1 *rxdp1;
2466 	struct RxD3 *rxdp3;
2467 	struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat;
2468 
2469 	alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
2470 
2471 	block_no1 = ring->rx_curr_get_info.block_index;
2472 	while (alloc_tab < alloc_cnt) {
2473 		block_no = ring->rx_curr_put_info.block_index;
2474 
2475 		off = ring->rx_curr_put_info.offset;
2476 
2477 		rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2478 
2479 		if ((block_no == block_no1) &&
2480 		    (off == ring->rx_curr_get_info.offset) &&
2481 		    (rxdp->Host_Control)) {
2482 			DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n",
2483 				  ring->dev->name);
2484 			goto end;
2485 		}
2486 		if (off && (off == ring->rxd_count)) {
2487 			ring->rx_curr_put_info.block_index++;
2488 			if (ring->rx_curr_put_info.block_index ==
2489 			    ring->block_count)
2490 				ring->rx_curr_put_info.block_index = 0;
2491 			block_no = ring->rx_curr_put_info.block_index;
2492 			off = 0;
2493 			ring->rx_curr_put_info.offset = off;
2494 			rxdp = ring->rx_blocks[block_no].block_virt_addr;
2495 			DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2496 				  ring->dev->name, rxdp);
2497 
2498 		}
2499 
2500 		if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2501 		    ((ring->rxd_mode == RXD_MODE_3B) &&
2502 		     (rxdp->Control_2 & s2BIT(0)))) {
2503 			ring->rx_curr_put_info.offset = off;
2504 			goto end;
2505 		}
2506 		/* calculate size of skb based on ring mode */
2507 		size = ring->mtu +
2508 			HEADER_ETHERNET_II_802_3_SIZE +
2509 			HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2510 		if (ring->rxd_mode == RXD_MODE_1)
2511 			size += NET_IP_ALIGN;
2512 		else
2513 			size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2514 
2515 		/* allocate skb */
2516 		skb = netdev_alloc_skb(nic->dev, size);
2517 		if (!skb) {
2518 			DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n",
2519 				  ring->dev->name);
2520 			if (first_rxdp) {
2521 				dma_wmb();
2522 				first_rxdp->Control_1 |= RXD_OWN_XENA;
2523 			}
2524 			swstats->mem_alloc_fail_cnt++;
2525 
2526 			return -ENOMEM ;
2527 		}
2528 		swstats->mem_allocated += skb->truesize;
2529 
2530 		if (ring->rxd_mode == RXD_MODE_1) {
2531 			/* 1 buffer mode - normal operation mode */
2532 			rxdp1 = (struct RxD1 *)rxdp;
2533 			memset(rxdp, 0, sizeof(struct RxD1));
2534 			skb_reserve(skb, NET_IP_ALIGN);
2535 			rxdp1->Buffer0_ptr =
2536 				dma_map_single(&ring->pdev->dev, skb->data,
2537 					       size - NET_IP_ALIGN,
2538 					       DMA_FROM_DEVICE);
2539 			if (dma_mapping_error(&nic->pdev->dev, rxdp1->Buffer0_ptr))
2540 				goto pci_map_failed;
2541 
2542 			rxdp->Control_2 =
2543 				SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2544 			rxdp->Host_Control = (unsigned long)skb;
2545 		} else if (ring->rxd_mode == RXD_MODE_3B) {
2546 			/*
2547 			 * 2 buffer mode -
2548 			 * 2 buffer mode provides 128
2549 			 * byte aligned receive buffers.
2550 			 */
2551 
2552 			rxdp3 = (struct RxD3 *)rxdp;
2553 			/* save buffer pointers to avoid frequent dma mapping */
2554 			Buffer0_ptr = rxdp3->Buffer0_ptr;
2555 			Buffer1_ptr = rxdp3->Buffer1_ptr;
2556 			memset(rxdp, 0, sizeof(struct RxD3));
2557 			/* restore the buffer pointers for dma sync*/
2558 			rxdp3->Buffer0_ptr = Buffer0_ptr;
2559 			rxdp3->Buffer1_ptr = Buffer1_ptr;
2560 
2561 			ba = &ring->ba[block_no][off];
2562 			skb_reserve(skb, BUF0_LEN);
2563 			tmp = (u64)(unsigned long)skb->data;
2564 			tmp += ALIGN_SIZE;
2565 			tmp &= ~ALIGN_SIZE;
2566 			skb->data = (void *) (unsigned long)tmp;
2567 			skb_reset_tail_pointer(skb);
2568 
2569 			if (from_card_up) {
2570 				rxdp3->Buffer0_ptr =
2571 					dma_map_single(&ring->pdev->dev,
2572 						       ba->ba_0, BUF0_LEN,
2573 						       DMA_FROM_DEVICE);
2574 				if (dma_mapping_error(&nic->pdev->dev, rxdp3->Buffer0_ptr))
2575 					goto pci_map_failed;
2576 			} else
2577 				dma_sync_single_for_device(&ring->pdev->dev,
2578 							   (dma_addr_t)rxdp3->Buffer0_ptr,
2579 							   BUF0_LEN,
2580 							   DMA_FROM_DEVICE);
2581 
2582 			rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2583 			if (ring->rxd_mode == RXD_MODE_3B) {
2584 				/* Two buffer mode */
2585 
2586 				/*
2587 				 * Buffer2 will have L3/L4 header plus
2588 				 * L4 payload
2589 				 */
2590 				rxdp3->Buffer2_ptr = dma_map_single(&ring->pdev->dev,
2591 								    skb->data,
2592 								    ring->mtu + 4,
2593 								    DMA_FROM_DEVICE);
2594 
2595 				if (dma_mapping_error(&nic->pdev->dev, rxdp3->Buffer2_ptr))
2596 					goto pci_map_failed;
2597 
2598 				if (from_card_up) {
2599 					rxdp3->Buffer1_ptr =
2600 						dma_map_single(&ring->pdev->dev,
2601 							       ba->ba_1,
2602 							       BUF1_LEN,
2603 							       DMA_FROM_DEVICE);
2604 
2605 					if (dma_mapping_error(&nic->pdev->dev,
2606 							      rxdp3->Buffer1_ptr)) {
2607 						dma_unmap_single(&ring->pdev->dev,
2608 								 (dma_addr_t)(unsigned long)
2609 								 skb->data,
2610 								 ring->mtu + 4,
2611 								 DMA_FROM_DEVICE);
2612 						goto pci_map_failed;
2613 					}
2614 				}
2615 				rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2616 				rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2617 					(ring->mtu + 4);
2618 			}
2619 			rxdp->Control_2 |= s2BIT(0);
2620 			rxdp->Host_Control = (unsigned long) (skb);
2621 		}
2622 		if (alloc_tab & ((1 << rxsync_frequency) - 1))
2623 			rxdp->Control_1 |= RXD_OWN_XENA;
2624 		off++;
2625 		if (off == (ring->rxd_count + 1))
2626 			off = 0;
2627 		ring->rx_curr_put_info.offset = off;
2628 
2629 		rxdp->Control_2 |= SET_RXD_MARKER;
2630 		if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2631 			if (first_rxdp) {
2632 				dma_wmb();
2633 				first_rxdp->Control_1 |= RXD_OWN_XENA;
2634 			}
2635 			first_rxdp = rxdp;
2636 		}
2637 		ring->rx_bufs_left += 1;
2638 		alloc_tab++;
2639 	}
2640 
2641 end:
2642 	/* Transfer ownership of first descriptor to adapter just before
2643 	 * exiting. Before that, use memory barrier so that ownership
2644 	 * and other fields are seen by adapter correctly.
2645 	 */
2646 	if (first_rxdp) {
2647 		dma_wmb();
2648 		first_rxdp->Control_1 |= RXD_OWN_XENA;
2649 	}
2650 
2651 	return SUCCESS;
2652 
2653 pci_map_failed:
2654 	swstats->pci_map_fail_cnt++;
2655 	swstats->mem_freed += skb->truesize;
2656 	dev_kfree_skb_irq(skb);
2657 	return -ENOMEM;
2658 }
2659 
2660 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2661 {
2662 	struct net_device *dev = sp->dev;
2663 	int j;
2664 	struct sk_buff *skb;
2665 	struct RxD_t *rxdp;
2666 	struct RxD1 *rxdp1;
2667 	struct RxD3 *rxdp3;
2668 	struct mac_info *mac_control = &sp->mac_control;
2669 	struct stat_block *stats = mac_control->stats_info;
2670 	struct swStat *swstats = &stats->sw_stat;
2671 
2672 	for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2673 		rxdp = mac_control->rings[ring_no].
2674 			rx_blocks[blk].rxds[j].virt_addr;
2675 		skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2676 		if (!skb)
2677 			continue;
2678 		if (sp->rxd_mode == RXD_MODE_1) {
2679 			rxdp1 = (struct RxD1 *)rxdp;
2680 			dma_unmap_single(&sp->pdev->dev,
2681 					 (dma_addr_t)rxdp1->Buffer0_ptr,
2682 					 dev->mtu +
2683 					 HEADER_ETHERNET_II_802_3_SIZE +
2684 					 HEADER_802_2_SIZE + HEADER_SNAP_SIZE,
2685 					 DMA_FROM_DEVICE);
2686 			memset(rxdp, 0, sizeof(struct RxD1));
2687 		} else if (sp->rxd_mode == RXD_MODE_3B) {
2688 			rxdp3 = (struct RxD3 *)rxdp;
2689 			dma_unmap_single(&sp->pdev->dev,
2690 					 (dma_addr_t)rxdp3->Buffer0_ptr,
2691 					 BUF0_LEN, DMA_FROM_DEVICE);
2692 			dma_unmap_single(&sp->pdev->dev,
2693 					 (dma_addr_t)rxdp3->Buffer1_ptr,
2694 					 BUF1_LEN, DMA_FROM_DEVICE);
2695 			dma_unmap_single(&sp->pdev->dev,
2696 					 (dma_addr_t)rxdp3->Buffer2_ptr,
2697 					 dev->mtu + 4, DMA_FROM_DEVICE);
2698 			memset(rxdp, 0, sizeof(struct RxD3));
2699 		}
2700 		swstats->mem_freed += skb->truesize;
2701 		dev_kfree_skb(skb);
2702 		mac_control->rings[ring_no].rx_bufs_left -= 1;
2703 	}
2704 }
2705 
2706 /**
2707  *  free_rx_buffers - Frees all Rx buffers
2708  *  @sp: device private variable.
2709  *  Description:
2710  *  This function will free all Rx buffers allocated by host.
2711  *  Return Value:
2712  *  NONE.
2713  */
2714 
2715 static void free_rx_buffers(struct s2io_nic *sp)
2716 {
2717 	struct net_device *dev = sp->dev;
2718 	int i, blk = 0, buf_cnt = 0;
2719 	struct config_param *config = &sp->config;
2720 	struct mac_info *mac_control = &sp->mac_control;
2721 
2722 	for (i = 0; i < config->rx_ring_num; i++) {
2723 		struct ring_info *ring = &mac_control->rings[i];
2724 
2725 		for (blk = 0; blk < rx_ring_sz[i]; blk++)
2726 			free_rxd_blk(sp, i, blk);
2727 
2728 		ring->rx_curr_put_info.block_index = 0;
2729 		ring->rx_curr_get_info.block_index = 0;
2730 		ring->rx_curr_put_info.offset = 0;
2731 		ring->rx_curr_get_info.offset = 0;
2732 		ring->rx_bufs_left = 0;
2733 		DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n",
2734 			  dev->name, buf_cnt, i);
2735 	}
2736 }
2737 
2738 static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
2739 {
2740 	if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2741 		DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n",
2742 			  ring->dev->name);
2743 	}
2744 	return 0;
2745 }
2746 
2747 /**
2748  * s2io_poll_msix - Rx interrupt handler for NAPI support
2749  * @napi : pointer to the napi structure.
2750  * @budget : The number of packets that were budgeted to be processed
2751  * during  one pass through the 'Poll" function.
2752  * Description:
2753  * Comes into picture only if NAPI support has been incorporated. It does
2754  * the same thing that rx_intr_handler does, but not in a interrupt context
2755  * also It will process only a given number of packets.
2756  * Return value:
2757  * 0 on success and 1 if there are No Rx packets to be processed.
2758  */
2759 
2760 static int s2io_poll_msix(struct napi_struct *napi, int budget)
2761 {
2762 	struct ring_info *ring = container_of(napi, struct ring_info, napi);
2763 	struct net_device *dev = ring->dev;
2764 	int pkts_processed = 0;
2765 	u8 __iomem *addr = NULL;
2766 	u8 val8 = 0;
2767 	struct s2io_nic *nic = netdev_priv(dev);
2768 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2769 	int budget_org = budget;
2770 
2771 	if (unlikely(!is_s2io_card_up(nic)))
2772 		return 0;
2773 
2774 	pkts_processed = rx_intr_handler(ring, budget);
2775 	s2io_chk_rx_buffers(nic, ring);
2776 
2777 	if (pkts_processed < budget_org) {
2778 		napi_complete_done(napi, pkts_processed);
2779 		/*Re Enable MSI-Rx Vector*/
2780 		addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
2781 		addr += 7 - ring->ring_no;
2782 		val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2783 		writeb(val8, addr);
2784 		val8 = readb(addr);
2785 	}
2786 	return pkts_processed;
2787 }
2788 
2789 static int s2io_poll_inta(struct napi_struct *napi, int budget)
2790 {
2791 	struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2792 	int pkts_processed = 0;
2793 	int ring_pkts_processed, i;
2794 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2795 	int budget_org = budget;
2796 	struct config_param *config = &nic->config;
2797 	struct mac_info *mac_control = &nic->mac_control;
2798 
2799 	if (unlikely(!is_s2io_card_up(nic)))
2800 		return 0;
2801 
2802 	for (i = 0; i < config->rx_ring_num; i++) {
2803 		struct ring_info *ring = &mac_control->rings[i];
2804 		ring_pkts_processed = rx_intr_handler(ring, budget);
2805 		s2io_chk_rx_buffers(nic, ring);
2806 		pkts_processed += ring_pkts_processed;
2807 		budget -= ring_pkts_processed;
2808 		if (budget <= 0)
2809 			break;
2810 	}
2811 	if (pkts_processed < budget_org) {
2812 		napi_complete_done(napi, pkts_processed);
2813 		/* Re enable the Rx interrupts for the ring */
2814 		writeq(0, &bar0->rx_traffic_mask);
2815 		readl(&bar0->rx_traffic_mask);
2816 	}
2817 	return pkts_processed;
2818 }
2819 
2820 #ifdef CONFIG_NET_POLL_CONTROLLER
2821 /**
2822  * s2io_netpoll - netpoll event handler entry point
2823  * @dev : pointer to the device structure.
2824  * Description:
2825  * 	This function will be called by upper layer to check for events on the
2826  * interface in situations where interrupts are disabled. It is used for
2827  * specific in-kernel networking tasks, such as remote consoles and kernel
2828  * debugging over the network (example netdump in RedHat).
2829  */
2830 static void s2io_netpoll(struct net_device *dev)
2831 {
2832 	struct s2io_nic *nic = netdev_priv(dev);
2833 	const int irq = nic->pdev->irq;
2834 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2835 	u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2836 	int i;
2837 	struct config_param *config = &nic->config;
2838 	struct mac_info *mac_control = &nic->mac_control;
2839 
2840 	if (pci_channel_offline(nic->pdev))
2841 		return;
2842 
2843 	disable_irq(irq);
2844 
2845 	writeq(val64, &bar0->rx_traffic_int);
2846 	writeq(val64, &bar0->tx_traffic_int);
2847 
2848 	/* we need to free up the transmitted skbufs or else netpoll will
2849 	 * run out of skbs and will fail and eventually netpoll application such
2850 	 * as netdump will fail.
2851 	 */
2852 	for (i = 0; i < config->tx_fifo_num; i++)
2853 		tx_intr_handler(&mac_control->fifos[i]);
2854 
2855 	/* check for received packet and indicate up to network */
2856 	for (i = 0; i < config->rx_ring_num; i++) {
2857 		struct ring_info *ring = &mac_control->rings[i];
2858 
2859 		rx_intr_handler(ring, 0);
2860 	}
2861 
2862 	for (i = 0; i < config->rx_ring_num; i++) {
2863 		struct ring_info *ring = &mac_control->rings[i];
2864 
2865 		if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2866 			DBG_PRINT(INFO_DBG,
2867 				  "%s: Out of memory in Rx Netpoll!!\n",
2868 				  dev->name);
2869 			break;
2870 		}
2871 	}
2872 	enable_irq(irq);
2873 }
2874 #endif
2875 
2876 /**
2877  *  rx_intr_handler - Rx interrupt handler
2878  *  @ring_data: per ring structure.
2879  *  @budget: budget for napi processing.
2880  *  Description:
2881  *  If the interrupt is because of a received frame or if the
2882  *  receive ring contains fresh as yet un-processed frames,this function is
2883  *  called. It picks out the RxD at which place the last Rx processing had
2884  *  stopped and sends the skb to the OSM's Rx handler and then increments
2885  *  the offset.
2886  *  Return Value:
2887  *  No. of napi packets processed.
2888  */
2889 static int rx_intr_handler(struct ring_info *ring_data, int budget)
2890 {
2891 	int get_block, put_block;
2892 	struct rx_curr_get_info get_info, put_info;
2893 	struct RxD_t *rxdp;
2894 	struct sk_buff *skb;
2895 	int pkt_cnt = 0, napi_pkts = 0;
2896 	int i;
2897 	struct RxD1 *rxdp1;
2898 	struct RxD3 *rxdp3;
2899 
2900 	if (budget <= 0)
2901 		return napi_pkts;
2902 
2903 	get_info = ring_data->rx_curr_get_info;
2904 	get_block = get_info.block_index;
2905 	memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2906 	put_block = put_info.block_index;
2907 	rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2908 
2909 	while (RXD_IS_UP2DT(rxdp)) {
2910 		/*
2911 		 * If your are next to put index then it's
2912 		 * FIFO full condition
2913 		 */
2914 		if ((get_block == put_block) &&
2915 		    (get_info.offset + 1) == put_info.offset) {
2916 			DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2917 				  ring_data->dev->name);
2918 			break;
2919 		}
2920 		skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2921 		if (skb == NULL) {
2922 			DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n",
2923 				  ring_data->dev->name);
2924 			return 0;
2925 		}
2926 		if (ring_data->rxd_mode == RXD_MODE_1) {
2927 			rxdp1 = (struct RxD1 *)rxdp;
2928 			dma_unmap_single(&ring_data->pdev->dev,
2929 					 (dma_addr_t)rxdp1->Buffer0_ptr,
2930 					 ring_data->mtu +
2931 					 HEADER_ETHERNET_II_802_3_SIZE +
2932 					 HEADER_802_2_SIZE +
2933 					 HEADER_SNAP_SIZE,
2934 					 DMA_FROM_DEVICE);
2935 		} else if (ring_data->rxd_mode == RXD_MODE_3B) {
2936 			rxdp3 = (struct RxD3 *)rxdp;
2937 			dma_sync_single_for_cpu(&ring_data->pdev->dev,
2938 						(dma_addr_t)rxdp3->Buffer0_ptr,
2939 						BUF0_LEN, DMA_FROM_DEVICE);
2940 			dma_unmap_single(&ring_data->pdev->dev,
2941 					 (dma_addr_t)rxdp3->Buffer2_ptr,
2942 					 ring_data->mtu + 4, DMA_FROM_DEVICE);
2943 		}
2944 		prefetch(skb->data);
2945 		rx_osm_handler(ring_data, rxdp);
2946 		get_info.offset++;
2947 		ring_data->rx_curr_get_info.offset = get_info.offset;
2948 		rxdp = ring_data->rx_blocks[get_block].
2949 			rxds[get_info.offset].virt_addr;
2950 		if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
2951 			get_info.offset = 0;
2952 			ring_data->rx_curr_get_info.offset = get_info.offset;
2953 			get_block++;
2954 			if (get_block == ring_data->block_count)
2955 				get_block = 0;
2956 			ring_data->rx_curr_get_info.block_index = get_block;
2957 			rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2958 		}
2959 
2960 		if (ring_data->nic->config.napi) {
2961 			budget--;
2962 			napi_pkts++;
2963 			if (!budget)
2964 				break;
2965 		}
2966 		pkt_cnt++;
2967 		if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2968 			break;
2969 	}
2970 	if (ring_data->lro) {
2971 		/* Clear all LRO sessions before exiting */
2972 		for (i = 0; i < MAX_LRO_SESSIONS; i++) {
2973 			struct lro *lro = &ring_data->lro0_n[i];
2974 			if (lro->in_use) {
2975 				update_L3L4_header(ring_data->nic, lro);
2976 				queue_rx_frame(lro->parent, lro->vlan_tag);
2977 				clear_lro_session(lro);
2978 			}
2979 		}
2980 	}
2981 	return napi_pkts;
2982 }
2983 
2984 /**
2985  *  tx_intr_handler - Transmit interrupt handler
2986  *  @fifo_data : fifo data pointer
2987  *  Description:
2988  *  If an interrupt was raised to indicate DMA complete of the
2989  *  Tx packet, this function is called. It identifies the last TxD
2990  *  whose buffer was freed and frees all skbs whose data have already
2991  *  DMA'ed into the NICs internal memory.
2992  *  Return Value:
2993  *  NONE
2994  */
2995 
2996 static void tx_intr_handler(struct fifo_info *fifo_data)
2997 {
2998 	struct s2io_nic *nic = fifo_data->nic;
2999 	struct tx_curr_get_info get_info, put_info;
3000 	struct sk_buff *skb = NULL;
3001 	struct TxD *txdlp;
3002 	int pkt_cnt = 0;
3003 	unsigned long flags = 0;
3004 	u8 err_mask;
3005 	struct stat_block *stats = nic->mac_control.stats_info;
3006 	struct swStat *swstats = &stats->sw_stat;
3007 
3008 	if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3009 		return;
3010 
3011 	get_info = fifo_data->tx_curr_get_info;
3012 	memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3013 	txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
3014 	while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3015 	       (get_info.offset != put_info.offset) &&
3016 	       (txdlp->Host_Control)) {
3017 		/* Check for TxD errors */
3018 		if (txdlp->Control_1 & TXD_T_CODE) {
3019 			unsigned long long err;
3020 			err = txdlp->Control_1 & TXD_T_CODE;
3021 			if (err & 0x1) {
3022 				swstats->parity_err_cnt++;
3023 			}
3024 
3025 			/* update t_code statistics */
3026 			err_mask = err >> 48;
3027 			switch (err_mask) {
3028 			case 2:
3029 				swstats->tx_buf_abort_cnt++;
3030 				break;
3031 
3032 			case 3:
3033 				swstats->tx_desc_abort_cnt++;
3034 				break;
3035 
3036 			case 7:
3037 				swstats->tx_parity_err_cnt++;
3038 				break;
3039 
3040 			case 10:
3041 				swstats->tx_link_loss_cnt++;
3042 				break;
3043 
3044 			case 15:
3045 				swstats->tx_list_proc_err_cnt++;
3046 				break;
3047 			}
3048 		}
3049 
3050 		skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3051 		if (skb == NULL) {
3052 			spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3053 			DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n",
3054 				  __func__);
3055 			return;
3056 		}
3057 		pkt_cnt++;
3058 
3059 		/* Updating the statistics block */
3060 		swstats->mem_freed += skb->truesize;
3061 		dev_consume_skb_irq(skb);
3062 
3063 		get_info.offset++;
3064 		if (get_info.offset == get_info.fifo_len + 1)
3065 			get_info.offset = 0;
3066 		txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
3067 		fifo_data->tx_curr_get_info.offset = get_info.offset;
3068 	}
3069 
3070 	s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3071 
3072 	spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3073 }
3074 
3075 /**
3076  *  s2io_mdio_write - Function to write in to MDIO registers
3077  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3078  *  @addr     : address value
3079  *  @value    : data value
3080  *  @dev      : pointer to net_device structure
3081  *  Description:
3082  *  This function is used to write values to the MDIO registers
3083  *  NONE
3084  */
3085 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value,
3086 			    struct net_device *dev)
3087 {
3088 	u64 val64;
3089 	struct s2io_nic *sp = netdev_priv(dev);
3090 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3091 
3092 	/* address transaction */
3093 	val64 = MDIO_MMD_INDX_ADDR(addr) |
3094 		MDIO_MMD_DEV_ADDR(mmd_type) |
3095 		MDIO_MMS_PRT_ADDR(0x0);
3096 	writeq(val64, &bar0->mdio_control);
3097 	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3098 	writeq(val64, &bar0->mdio_control);
3099 	udelay(100);
3100 
3101 	/* Data transaction */
3102 	val64 = MDIO_MMD_INDX_ADDR(addr) |
3103 		MDIO_MMD_DEV_ADDR(mmd_type) |
3104 		MDIO_MMS_PRT_ADDR(0x0) |
3105 		MDIO_MDIO_DATA(value) |
3106 		MDIO_OP(MDIO_OP_WRITE_TRANS);
3107 	writeq(val64, &bar0->mdio_control);
3108 	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3109 	writeq(val64, &bar0->mdio_control);
3110 	udelay(100);
3111 
3112 	val64 = MDIO_MMD_INDX_ADDR(addr) |
3113 		MDIO_MMD_DEV_ADDR(mmd_type) |
3114 		MDIO_MMS_PRT_ADDR(0x0) |
3115 		MDIO_OP(MDIO_OP_READ_TRANS);
3116 	writeq(val64, &bar0->mdio_control);
3117 	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3118 	writeq(val64, &bar0->mdio_control);
3119 	udelay(100);
3120 }
3121 
3122 /**
3123  *  s2io_mdio_read - Function to write in to MDIO registers
3124  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3125  *  @addr     : address value
3126  *  @dev      : pointer to net_device structure
3127  *  Description:
3128  *  This function is used to read values to the MDIO registers
3129  *  NONE
3130  */
3131 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3132 {
3133 	u64 val64 = 0x0;
3134 	u64 rval64 = 0x0;
3135 	struct s2io_nic *sp = netdev_priv(dev);
3136 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3137 
3138 	/* address transaction */
3139 	val64 = val64 | (MDIO_MMD_INDX_ADDR(addr)
3140 			 | MDIO_MMD_DEV_ADDR(mmd_type)
3141 			 | MDIO_MMS_PRT_ADDR(0x0));
3142 	writeq(val64, &bar0->mdio_control);
3143 	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3144 	writeq(val64, &bar0->mdio_control);
3145 	udelay(100);
3146 
3147 	/* Data transaction */
3148 	val64 = MDIO_MMD_INDX_ADDR(addr) |
3149 		MDIO_MMD_DEV_ADDR(mmd_type) |
3150 		MDIO_MMS_PRT_ADDR(0x0) |
3151 		MDIO_OP(MDIO_OP_READ_TRANS);
3152 	writeq(val64, &bar0->mdio_control);
3153 	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3154 	writeq(val64, &bar0->mdio_control);
3155 	udelay(100);
3156 
3157 	/* Read the value from regs */
3158 	rval64 = readq(&bar0->mdio_control);
3159 	rval64 = rval64 & 0xFFFF0000;
3160 	rval64 = rval64 >> 16;
3161 	return rval64;
3162 }
3163 
3164 /**
3165  *  s2io_chk_xpak_counter - Function to check the status of the xpak counters
3166  *  @counter      : counter value to be updated
3167  *  @regs_stat    : registers status
3168  *  @index        : index
3169  *  @flag         : flag to indicate the status
3170  *  @type         : counter type
3171  *  Description:
3172  *  This function is to check the status of the xpak counters value
3173  *  NONE
3174  */
3175 
3176 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index,
3177 				  u16 flag, u16 type)
3178 {
3179 	u64 mask = 0x3;
3180 	u64 val64;
3181 	int i;
3182 	for (i = 0; i < index; i++)
3183 		mask = mask << 0x2;
3184 
3185 	if (flag > 0) {
3186 		*counter = *counter + 1;
3187 		val64 = *regs_stat & mask;
3188 		val64 = val64 >> (index * 0x2);
3189 		val64 = val64 + 1;
3190 		if (val64 == 3) {
3191 			switch (type) {
3192 			case 1:
3193 				DBG_PRINT(ERR_DBG,
3194 					  "Take Xframe NIC out of service.\n");
3195 				DBG_PRINT(ERR_DBG,
3196 "Excessive temperatures may result in premature transceiver failure.\n");
3197 				break;
3198 			case 2:
3199 				DBG_PRINT(ERR_DBG,
3200 					  "Take Xframe NIC out of service.\n");
3201 				DBG_PRINT(ERR_DBG,
3202 "Excessive bias currents may indicate imminent laser diode failure.\n");
3203 				break;
3204 			case 3:
3205 				DBG_PRINT(ERR_DBG,
3206 					  "Take Xframe NIC out of service.\n");
3207 				DBG_PRINT(ERR_DBG,
3208 "Excessive laser output power may saturate far-end receiver.\n");
3209 				break;
3210 			default:
3211 				DBG_PRINT(ERR_DBG,
3212 					  "Incorrect XPAK Alarm type\n");
3213 			}
3214 			val64 = 0x0;
3215 		}
3216 		val64 = val64 << (index * 0x2);
3217 		*regs_stat = (*regs_stat & (~mask)) | (val64);
3218 
3219 	} else {
3220 		*regs_stat = *regs_stat & (~mask);
3221 	}
3222 }
3223 
3224 /**
3225  *  s2io_updt_xpak_counter - Function to update the xpak counters
3226  *  @dev         : pointer to net_device struct
3227  *  Description:
3228  *  This function is to upate the status of the xpak counters value
3229  *  NONE
3230  */
3231 static void s2io_updt_xpak_counter(struct net_device *dev)
3232 {
3233 	u16 flag  = 0x0;
3234 	u16 type  = 0x0;
3235 	u16 val16 = 0x0;
3236 	u64 val64 = 0x0;
3237 	u64 addr  = 0x0;
3238 
3239 	struct s2io_nic *sp = netdev_priv(dev);
3240 	struct stat_block *stats = sp->mac_control.stats_info;
3241 	struct xpakStat *xstats = &stats->xpak_stat;
3242 
3243 	/* Check the communication with the MDIO slave */
3244 	addr = MDIO_CTRL1;
3245 	val64 = 0x0;
3246 	val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3247 	if ((val64 == 0xFFFF) || (val64 == 0x0000)) {
3248 		DBG_PRINT(ERR_DBG,
3249 			  "ERR: MDIO slave access failed - Returned %llx\n",
3250 			  (unsigned long long)val64);
3251 		return;
3252 	}
3253 
3254 	/* Check for the expected value of control reg 1 */
3255 	if (val64 != MDIO_CTRL1_SPEED10G) {
3256 		DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - "
3257 			  "Returned: %llx- Expected: 0x%x\n",
3258 			  (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
3259 		return;
3260 	}
3261 
3262 	/* Loading the DOM register to MDIO register */
3263 	addr = 0xA100;
3264 	s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
3265 	val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3266 
3267 	/* Reading the Alarm flags */
3268 	addr = 0xA070;
3269 	val64 = 0x0;
3270 	val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3271 
3272 	flag = CHECKBIT(val64, 0x7);
3273 	type = 1;
3274 	s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high,
3275 			      &xstats->xpak_regs_stat,
3276 			      0x0, flag, type);
3277 
3278 	if (CHECKBIT(val64, 0x6))
3279 		xstats->alarm_transceiver_temp_low++;
3280 
3281 	flag = CHECKBIT(val64, 0x3);
3282 	type = 2;
3283 	s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high,
3284 			      &xstats->xpak_regs_stat,
3285 			      0x2, flag, type);
3286 
3287 	if (CHECKBIT(val64, 0x2))
3288 		xstats->alarm_laser_bias_current_low++;
3289 
3290 	flag = CHECKBIT(val64, 0x1);
3291 	type = 3;
3292 	s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high,
3293 			      &xstats->xpak_regs_stat,
3294 			      0x4, flag, type);
3295 
3296 	if (CHECKBIT(val64, 0x0))
3297 		xstats->alarm_laser_output_power_low++;
3298 
3299 	/* Reading the Warning flags */
3300 	addr = 0xA074;
3301 	val64 = 0x0;
3302 	val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3303 
3304 	if (CHECKBIT(val64, 0x7))
3305 		xstats->warn_transceiver_temp_high++;
3306 
3307 	if (CHECKBIT(val64, 0x6))
3308 		xstats->warn_transceiver_temp_low++;
3309 
3310 	if (CHECKBIT(val64, 0x3))
3311 		xstats->warn_laser_bias_current_high++;
3312 
3313 	if (CHECKBIT(val64, 0x2))
3314 		xstats->warn_laser_bias_current_low++;
3315 
3316 	if (CHECKBIT(val64, 0x1))
3317 		xstats->warn_laser_output_power_high++;
3318 
3319 	if (CHECKBIT(val64, 0x0))
3320 		xstats->warn_laser_output_power_low++;
3321 }
3322 
3323 /**
3324  *  wait_for_cmd_complete - waits for a command to complete.
3325  *  @addr: address
3326  *  @busy_bit: bit to check for busy
3327  *  @bit_state: state to check
3328  *  @may_sleep: parameter indicates if sleeping when waiting for
3329  *  command complete
3330  *  Description: Function that waits for a command to Write into RMAC
3331  *  ADDR DATA registers to be completed and returns either success or
3332  *  error depending on whether the command was complete or not.
3333  *  Return value:
3334  *   SUCCESS on success and FAILURE on failure.
3335  */
3336 
3337 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3338 				 int bit_state, bool may_sleep)
3339 {
3340 	int ret = FAILURE, cnt = 0, delay = 1;
3341 	u64 val64;
3342 
3343 	if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3344 		return FAILURE;
3345 
3346 	do {
3347 		val64 = readq(addr);
3348 		if (bit_state == S2IO_BIT_RESET) {
3349 			if (!(val64 & busy_bit)) {
3350 				ret = SUCCESS;
3351 				break;
3352 			}
3353 		} else {
3354 			if (val64 & busy_bit) {
3355 				ret = SUCCESS;
3356 				break;
3357 			}
3358 		}
3359 
3360 		if (!may_sleep)
3361 			mdelay(delay);
3362 		else
3363 			msleep(delay);
3364 
3365 		if (++cnt >= 10)
3366 			delay = 50;
3367 	} while (cnt < 20);
3368 	return ret;
3369 }
3370 /**
3371  * check_pci_device_id - Checks if the device id is supported
3372  * @id : device id
3373  * Description: Function to check if the pci device id is supported by driver.
3374  * Return value: Actual device id if supported else PCI_ANY_ID
3375  */
3376 static u16 check_pci_device_id(u16 id)
3377 {
3378 	switch (id) {
3379 	case PCI_DEVICE_ID_HERC_WIN:
3380 	case PCI_DEVICE_ID_HERC_UNI:
3381 		return XFRAME_II_DEVICE;
3382 	case PCI_DEVICE_ID_S2IO_UNI:
3383 	case PCI_DEVICE_ID_S2IO_WIN:
3384 		return XFRAME_I_DEVICE;
3385 	default:
3386 		return PCI_ANY_ID;
3387 	}
3388 }
3389 
3390 /**
3391  *  s2io_reset - Resets the card.
3392  *  @sp : private member of the device structure.
3393  *  Description: Function to Reset the card. This function then also
3394  *  restores the previously saved PCI configuration space registers as
3395  *  the card reset also resets the configuration space.
3396  *  Return value:
3397  *  void.
3398  */
3399 
3400 static void s2io_reset(struct s2io_nic *sp)
3401 {
3402 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3403 	u64 val64;
3404 	u16 subid, pci_cmd;
3405 	int i;
3406 	u16 val16;
3407 	unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3408 	unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3409 	struct stat_block *stats;
3410 	struct swStat *swstats;
3411 
3412 	DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n",
3413 		  __func__, pci_name(sp->pdev));
3414 
3415 	/* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3416 	pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3417 
3418 	val64 = SW_RESET_ALL;
3419 	writeq(val64, &bar0->sw_reset);
3420 	if (strstr(sp->product_name, "CX4"))
3421 		msleep(750);
3422 	msleep(250);
3423 	for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3424 
3425 		/* Restore the PCI state saved during initialization. */
3426 		pci_restore_state(sp->pdev);
3427 		pci_save_state(sp->pdev);
3428 		pci_read_config_word(sp->pdev, 0x2, &val16);
3429 		if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3430 			break;
3431 		msleep(200);
3432 	}
3433 
3434 	if (check_pci_device_id(val16) == (u16)PCI_ANY_ID)
3435 		DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__);
3436 
3437 	pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3438 
3439 	s2io_init_pci(sp);
3440 
3441 	/* Set swapper to enable I/O register access */
3442 	s2io_set_swapper(sp);
3443 
3444 	/* restore mac_addr entries */
3445 	do_s2io_restore_unicast_mc(sp);
3446 
3447 	/* Restore the MSIX table entries from local variables */
3448 	restore_xmsi_data(sp);
3449 
3450 	/* Clear certain PCI/PCI-X fields after reset */
3451 	if (sp->device_type == XFRAME_II_DEVICE) {
3452 		/* Clear "detected parity error" bit */
3453 		pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3454 
3455 		/* Clearing PCIX Ecc status register */
3456 		pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3457 
3458 		/* Clearing PCI_STATUS error reflected here */
3459 		writeq(s2BIT(62), &bar0->txpic_int_reg);
3460 	}
3461 
3462 	/* Reset device statistics maintained by OS */
3463 	memset(&sp->stats, 0, sizeof(struct net_device_stats));
3464 
3465 	stats = sp->mac_control.stats_info;
3466 	swstats = &stats->sw_stat;
3467 
3468 	/* save link up/down time/cnt, reset/memory/watchdog cnt */
3469 	up_cnt = swstats->link_up_cnt;
3470 	down_cnt = swstats->link_down_cnt;
3471 	up_time = swstats->link_up_time;
3472 	down_time = swstats->link_down_time;
3473 	reset_cnt = swstats->soft_reset_cnt;
3474 	mem_alloc_cnt = swstats->mem_allocated;
3475 	mem_free_cnt = swstats->mem_freed;
3476 	watchdog_cnt = swstats->watchdog_timer_cnt;
3477 
3478 	memset(stats, 0, sizeof(struct stat_block));
3479 
3480 	/* restore link up/down time/cnt, reset/memory/watchdog cnt */
3481 	swstats->link_up_cnt = up_cnt;
3482 	swstats->link_down_cnt = down_cnt;
3483 	swstats->link_up_time = up_time;
3484 	swstats->link_down_time = down_time;
3485 	swstats->soft_reset_cnt = reset_cnt;
3486 	swstats->mem_allocated = mem_alloc_cnt;
3487 	swstats->mem_freed = mem_free_cnt;
3488 	swstats->watchdog_timer_cnt = watchdog_cnt;
3489 
3490 	/* SXE-002: Configure link and activity LED to turn it off */
3491 	subid = sp->pdev->subsystem_device;
3492 	if (((subid & 0xFF) >= 0x07) &&
3493 	    (sp->device_type == XFRAME_I_DEVICE)) {
3494 		val64 = readq(&bar0->gpio_control);
3495 		val64 |= 0x0000800000000000ULL;
3496 		writeq(val64, &bar0->gpio_control);
3497 		val64 = 0x0411040400000000ULL;
3498 		writeq(val64, (void __iomem *)bar0 + 0x2700);
3499 	}
3500 
3501 	/*
3502 	 * Clear spurious ECC interrupts that would have occurred on
3503 	 * XFRAME II cards after reset.
3504 	 */
3505 	if (sp->device_type == XFRAME_II_DEVICE) {
3506 		val64 = readq(&bar0->pcc_err_reg);
3507 		writeq(val64, &bar0->pcc_err_reg);
3508 	}
3509 
3510 	sp->device_enabled_once = false;
3511 }
3512 
3513 /**
3514  *  s2io_set_swapper - to set the swapper controle on the card
3515  *  @sp : private member of the device structure,
3516  *  pointer to the s2io_nic structure.
3517  *  Description: Function to set the swapper control on the card
3518  *  correctly depending on the 'endianness' of the system.
3519  *  Return value:
3520  *  SUCCESS on success and FAILURE on failure.
3521  */
3522 
3523 static int s2io_set_swapper(struct s2io_nic *sp)
3524 {
3525 	struct net_device *dev = sp->dev;
3526 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3527 	u64 val64, valt, valr;
3528 
3529 	/*
3530 	 * Set proper endian settings and verify the same by reading
3531 	 * the PIF Feed-back register.
3532 	 */
3533 
3534 	val64 = readq(&bar0->pif_rd_swapper_fb);
3535 	if (val64 != 0x0123456789ABCDEFULL) {
3536 		int i = 0;
3537 		static const u64 value[] = {
3538 			0xC30000C3C30000C3ULL,	/* FE=1, SE=1 */
3539 			0x8100008181000081ULL,	/* FE=1, SE=0 */
3540 			0x4200004242000042ULL,	/* FE=0, SE=1 */
3541 			0			/* FE=0, SE=0 */
3542 		};
3543 
3544 		while (i < 4) {
3545 			writeq(value[i], &bar0->swapper_ctrl);
3546 			val64 = readq(&bar0->pif_rd_swapper_fb);
3547 			if (val64 == 0x0123456789ABCDEFULL)
3548 				break;
3549 			i++;
3550 		}
3551 		if (i == 4) {
3552 			DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, "
3553 				  "feedback read %llx\n",
3554 				  dev->name, (unsigned long long)val64);
3555 			return FAILURE;
3556 		}
3557 		valr = value[i];
3558 	} else {
3559 		valr = readq(&bar0->swapper_ctrl);
3560 	}
3561 
3562 	valt = 0x0123456789ABCDEFULL;
3563 	writeq(valt, &bar0->xmsi_address);
3564 	val64 = readq(&bar0->xmsi_address);
3565 
3566 	if (val64 != valt) {
3567 		int i = 0;
3568 		static const u64 value[] = {
3569 			0x00C3C30000C3C300ULL,	/* FE=1, SE=1 */
3570 			0x0081810000818100ULL,	/* FE=1, SE=0 */
3571 			0x0042420000424200ULL,	/* FE=0, SE=1 */
3572 			0			/* FE=0, SE=0 */
3573 		};
3574 
3575 		while (i < 4) {
3576 			writeq((value[i] | valr), &bar0->swapper_ctrl);
3577 			writeq(valt, &bar0->xmsi_address);
3578 			val64 = readq(&bar0->xmsi_address);
3579 			if (val64 == valt)
3580 				break;
3581 			i++;
3582 		}
3583 		if (i == 4) {
3584 			unsigned long long x = val64;
3585 			DBG_PRINT(ERR_DBG,
3586 				  "Write failed, Xmsi_addr reads:0x%llx\n", x);
3587 			return FAILURE;
3588 		}
3589 	}
3590 	val64 = readq(&bar0->swapper_ctrl);
3591 	val64 &= 0xFFFF000000000000ULL;
3592 
3593 #ifdef __BIG_ENDIAN
3594 	/*
3595 	 * The device by default set to a big endian format, so a
3596 	 * big endian driver need not set anything.
3597 	 */
3598 	val64 |= (SWAPPER_CTRL_TXP_FE |
3599 		  SWAPPER_CTRL_TXP_SE |
3600 		  SWAPPER_CTRL_TXD_R_FE |
3601 		  SWAPPER_CTRL_TXD_W_FE |
3602 		  SWAPPER_CTRL_TXF_R_FE |
3603 		  SWAPPER_CTRL_RXD_R_FE |
3604 		  SWAPPER_CTRL_RXD_W_FE |
3605 		  SWAPPER_CTRL_RXF_W_FE |
3606 		  SWAPPER_CTRL_XMSI_FE |
3607 		  SWAPPER_CTRL_STATS_FE |
3608 		  SWAPPER_CTRL_STATS_SE);
3609 	if (sp->config.intr_type == INTA)
3610 		val64 |= SWAPPER_CTRL_XMSI_SE;
3611 	writeq(val64, &bar0->swapper_ctrl);
3612 #else
3613 	/*
3614 	 * Initially we enable all bits to make it accessible by the
3615 	 * driver, then we selectively enable only those bits that
3616 	 * we want to set.
3617 	 */
3618 	val64 |= (SWAPPER_CTRL_TXP_FE |
3619 		  SWAPPER_CTRL_TXP_SE |
3620 		  SWAPPER_CTRL_TXD_R_FE |
3621 		  SWAPPER_CTRL_TXD_R_SE |
3622 		  SWAPPER_CTRL_TXD_W_FE |
3623 		  SWAPPER_CTRL_TXD_W_SE |
3624 		  SWAPPER_CTRL_TXF_R_FE |
3625 		  SWAPPER_CTRL_RXD_R_FE |
3626 		  SWAPPER_CTRL_RXD_R_SE |
3627 		  SWAPPER_CTRL_RXD_W_FE |
3628 		  SWAPPER_CTRL_RXD_W_SE |
3629 		  SWAPPER_CTRL_RXF_W_FE |
3630 		  SWAPPER_CTRL_XMSI_FE |
3631 		  SWAPPER_CTRL_STATS_FE |
3632 		  SWAPPER_CTRL_STATS_SE);
3633 	if (sp->config.intr_type == INTA)
3634 		val64 |= SWAPPER_CTRL_XMSI_SE;
3635 	writeq(val64, &bar0->swapper_ctrl);
3636 #endif
3637 	val64 = readq(&bar0->swapper_ctrl);
3638 
3639 	/*
3640 	 * Verifying if endian settings are accurate by reading a
3641 	 * feedback register.
3642 	 */
3643 	val64 = readq(&bar0->pif_rd_swapper_fb);
3644 	if (val64 != 0x0123456789ABCDEFULL) {
3645 		/* Endian settings are incorrect, calls for another dekko. */
3646 		DBG_PRINT(ERR_DBG,
3647 			  "%s: Endian settings are wrong, feedback read %llx\n",
3648 			  dev->name, (unsigned long long)val64);
3649 		return FAILURE;
3650 	}
3651 
3652 	return SUCCESS;
3653 }
3654 
3655 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3656 {
3657 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
3658 	u64 val64;
3659 	int ret = 0, cnt = 0;
3660 
3661 	do {
3662 		val64 = readq(&bar0->xmsi_access);
3663 		if (!(val64 & s2BIT(15)))
3664 			break;
3665 		mdelay(1);
3666 		cnt++;
3667 	} while (cnt < 5);
3668 	if (cnt == 5) {
3669 		DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3670 		ret = 1;
3671 	}
3672 
3673 	return ret;
3674 }
3675 
3676 static void restore_xmsi_data(struct s2io_nic *nic)
3677 {
3678 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
3679 	u64 val64;
3680 	int i, msix_index;
3681 
3682 	if (nic->device_type == XFRAME_I_DEVICE)
3683 		return;
3684 
3685 	for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3686 		msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3687 		writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3688 		writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3689 		val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
3690 		writeq(val64, &bar0->xmsi_access);
3691 		if (wait_for_msix_trans(nic, msix_index))
3692 			DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3693 				  __func__, msix_index);
3694 	}
3695 }
3696 
3697 static void store_xmsi_data(struct s2io_nic *nic)
3698 {
3699 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
3700 	u64 val64, addr, data;
3701 	int i, msix_index;
3702 
3703 	if (nic->device_type == XFRAME_I_DEVICE)
3704 		return;
3705 
3706 	/* Store and display */
3707 	for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3708 		msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3709 		val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
3710 		writeq(val64, &bar0->xmsi_access);
3711 		if (wait_for_msix_trans(nic, msix_index)) {
3712 			DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3713 				  __func__, msix_index);
3714 			continue;
3715 		}
3716 		addr = readq(&bar0->xmsi_address);
3717 		data = readq(&bar0->xmsi_data);
3718 		if (addr && data) {
3719 			nic->msix_info[i].addr = addr;
3720 			nic->msix_info[i].data = data;
3721 		}
3722 	}
3723 }
3724 
3725 static int s2io_enable_msi_x(struct s2io_nic *nic)
3726 {
3727 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
3728 	u64 rx_mat;
3729 	u16 msi_control; /* Temp variable */
3730 	int ret, i, j, msix_indx = 1;
3731 	int size;
3732 	struct stat_block *stats = nic->mac_control.stats_info;
3733 	struct swStat *swstats = &stats->sw_stat;
3734 
3735 	size = nic->num_entries * sizeof(struct msix_entry);
3736 	nic->entries = kzalloc(size, GFP_KERNEL);
3737 	if (!nic->entries) {
3738 		DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3739 			  __func__);
3740 		swstats->mem_alloc_fail_cnt++;
3741 		return -ENOMEM;
3742 	}
3743 	swstats->mem_allocated += size;
3744 
3745 	size = nic->num_entries * sizeof(struct s2io_msix_entry);
3746 	nic->s2io_entries = kzalloc(size, GFP_KERNEL);
3747 	if (!nic->s2io_entries) {
3748 		DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3749 			  __func__);
3750 		swstats->mem_alloc_fail_cnt++;
3751 		kfree(nic->entries);
3752 		swstats->mem_freed
3753 			+= (nic->num_entries * sizeof(struct msix_entry));
3754 		return -ENOMEM;
3755 	}
3756 	swstats->mem_allocated += size;
3757 
3758 	nic->entries[0].entry = 0;
3759 	nic->s2io_entries[0].entry = 0;
3760 	nic->s2io_entries[0].in_use = MSIX_FLG;
3761 	nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3762 	nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3763 
3764 	for (i = 1; i < nic->num_entries; i++) {
3765 		nic->entries[i].entry = ((i - 1) * 8) + 1;
3766 		nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
3767 		nic->s2io_entries[i].arg = NULL;
3768 		nic->s2io_entries[i].in_use = 0;
3769 	}
3770 
3771 	rx_mat = readq(&bar0->rx_mat);
3772 	for (j = 0; j < nic->config.rx_ring_num; j++) {
3773 		rx_mat |= RX_MAT_SET(j, msix_indx);
3774 		nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3775 		nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3776 		nic->s2io_entries[j+1].in_use = MSIX_FLG;
3777 		msix_indx += 8;
3778 	}
3779 	writeq(rx_mat, &bar0->rx_mat);
3780 	readq(&bar0->rx_mat);
3781 
3782 	ret = pci_enable_msix_range(nic->pdev, nic->entries,
3783 				    nic->num_entries, nic->num_entries);
3784 	/* We fail init if error or we get less vectors than min required */
3785 	if (ret < 0) {
3786 		DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n");
3787 		kfree(nic->entries);
3788 		swstats->mem_freed += nic->num_entries *
3789 			sizeof(struct msix_entry);
3790 		kfree(nic->s2io_entries);
3791 		swstats->mem_freed += nic->num_entries *
3792 			sizeof(struct s2io_msix_entry);
3793 		nic->entries = NULL;
3794 		nic->s2io_entries = NULL;
3795 		return -ENOMEM;
3796 	}
3797 
3798 	/*
3799 	 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3800 	 * in the herc NIC. (Temp change, needs to be removed later)
3801 	 */
3802 	pci_read_config_word(nic->pdev, 0x42, &msi_control);
3803 	msi_control |= 0x1; /* Enable MSI */
3804 	pci_write_config_word(nic->pdev, 0x42, msi_control);
3805 
3806 	return 0;
3807 }
3808 
3809 /* Handle software interrupt used during MSI(X) test */
3810 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3811 {
3812 	struct s2io_nic *sp = dev_id;
3813 
3814 	sp->msi_detected = 1;
3815 	wake_up(&sp->msi_wait);
3816 
3817 	return IRQ_HANDLED;
3818 }
3819 
3820 /* Test interrupt path by forcing a software IRQ */
3821 static int s2io_test_msi(struct s2io_nic *sp)
3822 {
3823 	struct pci_dev *pdev = sp->pdev;
3824 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3825 	int err;
3826 	u64 val64, saved64;
3827 
3828 	err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3829 			  sp->name, sp);
3830 	if (err) {
3831 		DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3832 			  sp->dev->name, pci_name(pdev), pdev->irq);
3833 		return err;
3834 	}
3835 
3836 	init_waitqueue_head(&sp->msi_wait);
3837 	sp->msi_detected = 0;
3838 
3839 	saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3840 	val64 |= SCHED_INT_CTRL_ONE_SHOT;
3841 	val64 |= SCHED_INT_CTRL_TIMER_EN;
3842 	val64 |= SCHED_INT_CTRL_INT2MSI(1);
3843 	writeq(val64, &bar0->scheduled_int_ctrl);
3844 
3845 	wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3846 
3847 	if (!sp->msi_detected) {
3848 		/* MSI(X) test failed, go back to INTx mode */
3849 		DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3850 			  "using MSI(X) during test\n",
3851 			  sp->dev->name, pci_name(pdev));
3852 
3853 		err = -EOPNOTSUPP;
3854 	}
3855 
3856 	free_irq(sp->entries[1].vector, sp);
3857 
3858 	writeq(saved64, &bar0->scheduled_int_ctrl);
3859 
3860 	return err;
3861 }
3862 
3863 static void remove_msix_isr(struct s2io_nic *sp)
3864 {
3865 	int i;
3866 	u16 msi_control;
3867 
3868 	for (i = 0; i < sp->num_entries; i++) {
3869 		if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) {
3870 			int vector = sp->entries[i].vector;
3871 			void *arg = sp->s2io_entries[i].arg;
3872 			free_irq(vector, arg);
3873 		}
3874 	}
3875 
3876 	kfree(sp->entries);
3877 	kfree(sp->s2io_entries);
3878 	sp->entries = NULL;
3879 	sp->s2io_entries = NULL;
3880 
3881 	pci_read_config_word(sp->pdev, 0x42, &msi_control);
3882 	msi_control &= 0xFFFE; /* Disable MSI */
3883 	pci_write_config_word(sp->pdev, 0x42, msi_control);
3884 
3885 	pci_disable_msix(sp->pdev);
3886 }
3887 
3888 static void remove_inta_isr(struct s2io_nic *sp)
3889 {
3890 	free_irq(sp->pdev->irq, sp->dev);
3891 }
3892 
3893 /* ********************************************************* *
3894  * Functions defined below concern the OS part of the driver *
3895  * ********************************************************* */
3896 
3897 /**
3898  *  s2io_open - open entry point of the driver
3899  *  @dev : pointer to the device structure.
3900  *  Description:
3901  *  This function is the open entry point of the driver. It mainly calls a
3902  *  function to allocate Rx buffers and inserts them into the buffer
3903  *  descriptors and then enables the Rx part of the NIC.
3904  *  Return value:
3905  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3906  *   file on failure.
3907  */
3908 
3909 static int s2io_open(struct net_device *dev)
3910 {
3911 	struct s2io_nic *sp = netdev_priv(dev);
3912 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
3913 	int err = 0;
3914 
3915 	/*
3916 	 * Make sure you have link off by default every time
3917 	 * Nic is initialized
3918 	 */
3919 	netif_carrier_off(dev);
3920 	sp->last_link_state = 0;
3921 
3922 	/* Initialize H/W and enable interrupts */
3923 	err = s2io_card_up(sp);
3924 	if (err) {
3925 		DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3926 			  dev->name);
3927 		goto hw_init_failed;
3928 	}
3929 
3930 	if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
3931 		DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3932 		s2io_card_down(sp);
3933 		err = -ENODEV;
3934 		goto hw_init_failed;
3935 	}
3936 	s2io_start_all_tx_queue(sp);
3937 	return 0;
3938 
3939 hw_init_failed:
3940 	if (sp->config.intr_type == MSI_X) {
3941 		if (sp->entries) {
3942 			kfree(sp->entries);
3943 			swstats->mem_freed += sp->num_entries *
3944 				sizeof(struct msix_entry);
3945 		}
3946 		if (sp->s2io_entries) {
3947 			kfree(sp->s2io_entries);
3948 			swstats->mem_freed += sp->num_entries *
3949 				sizeof(struct s2io_msix_entry);
3950 		}
3951 	}
3952 	return err;
3953 }
3954 
3955 /**
3956  *  s2io_close -close entry point of the driver
3957  *  @dev : device pointer.
3958  *  Description:
3959  *  This is the stop entry point of the driver. It needs to undo exactly
3960  *  whatever was done by the open entry point,thus it's usually referred to
3961  *  as the close function.Among other things this function mainly stops the
3962  *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3963  *  Return value:
3964  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3965  *  file on failure.
3966  */
3967 
3968 static int s2io_close(struct net_device *dev)
3969 {
3970 	struct s2io_nic *sp = netdev_priv(dev);
3971 	struct config_param *config = &sp->config;
3972 	u64 tmp64;
3973 	int offset;
3974 
3975 	/* Return if the device is already closed               *
3976 	 *  Can happen when s2io_card_up failed in change_mtu    *
3977 	 */
3978 	if (!is_s2io_card_up(sp))
3979 		return 0;
3980 
3981 	s2io_stop_all_tx_queue(sp);
3982 	/* delete all populated mac entries */
3983 	for (offset = 1; offset < config->max_mc_addr; offset++) {
3984 		tmp64 = do_s2io_read_unicast_mc(sp, offset);
3985 		if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
3986 			do_s2io_delete_unicast_mc(sp, tmp64);
3987 	}
3988 
3989 	s2io_card_down(sp);
3990 
3991 	return 0;
3992 }
3993 
3994 /**
3995  *  s2io_xmit - Tx entry point of te driver
3996  *  @skb : the socket buffer containing the Tx data.
3997  *  @dev : device pointer.
3998  *  Description :
3999  *  This function is the Tx entry point of the driver. S2IO NIC supports
4000  *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
4001  *  NOTE: when device can't queue the pkt,just the trans_start variable will
4002  *  not be upadted.
4003  *  Return value:
4004  *  0 on success & 1 on failure.
4005  */
4006 
4007 static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4008 {
4009 	struct s2io_nic *sp = netdev_priv(dev);
4010 	u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4011 	register u64 val64;
4012 	struct TxD *txdp;
4013 	struct TxFIFO_element __iomem *tx_fifo;
4014 	unsigned long flags = 0;
4015 	u16 vlan_tag = 0;
4016 	struct fifo_info *fifo = NULL;
4017 	int offload_type;
4018 	int enable_per_list_interrupt = 0;
4019 	struct config_param *config = &sp->config;
4020 	struct mac_info *mac_control = &sp->mac_control;
4021 	struct stat_block *stats = mac_control->stats_info;
4022 	struct swStat *swstats = &stats->sw_stat;
4023 
4024 	DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4025 
4026 	if (unlikely(skb->len <= 0)) {
4027 		DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name);
4028 		dev_kfree_skb_any(skb);
4029 		return NETDEV_TX_OK;
4030 	}
4031 
4032 	if (!is_s2io_card_up(sp)) {
4033 		DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4034 			  dev->name);
4035 		dev_kfree_skb_any(skb);
4036 		return NETDEV_TX_OK;
4037 	}
4038 
4039 	queue = 0;
4040 	if (skb_vlan_tag_present(skb))
4041 		vlan_tag = skb_vlan_tag_get(skb);
4042 	if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4043 		if (skb->protocol == htons(ETH_P_IP)) {
4044 			struct iphdr *ip;
4045 			struct tcphdr *th;
4046 			ip = ip_hdr(skb);
4047 
4048 			if (!ip_is_fragment(ip)) {
4049 				th = (struct tcphdr *)(((unsigned char *)ip) +
4050 						       ip->ihl*4);
4051 
4052 				if (ip->protocol == IPPROTO_TCP) {
4053 					queue_len = sp->total_tcp_fifos;
4054 					queue = (ntohs(th->source) +
4055 						 ntohs(th->dest)) &
4056 						sp->fifo_selector[queue_len - 1];
4057 					if (queue >= queue_len)
4058 						queue = queue_len - 1;
4059 				} else if (ip->protocol == IPPROTO_UDP) {
4060 					queue_len = sp->total_udp_fifos;
4061 					queue = (ntohs(th->source) +
4062 						 ntohs(th->dest)) &
4063 						sp->fifo_selector[queue_len - 1];
4064 					if (queue >= queue_len)
4065 						queue = queue_len - 1;
4066 					queue += sp->udp_fifo_idx;
4067 					if (skb->len > 1024)
4068 						enable_per_list_interrupt = 1;
4069 				}
4070 			}
4071 		}
4072 	} else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4073 		/* get fifo number based on skb->priority value */
4074 		queue = config->fifo_mapping
4075 			[skb->priority & (MAX_TX_FIFOS - 1)];
4076 	fifo = &mac_control->fifos[queue];
4077 
4078 	spin_lock_irqsave(&fifo->tx_lock, flags);
4079 
4080 	if (sp->config.multiq) {
4081 		if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4082 			spin_unlock_irqrestore(&fifo->tx_lock, flags);
4083 			return NETDEV_TX_BUSY;
4084 		}
4085 	} else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4086 		if (netif_queue_stopped(dev)) {
4087 			spin_unlock_irqrestore(&fifo->tx_lock, flags);
4088 			return NETDEV_TX_BUSY;
4089 		}
4090 	}
4091 
4092 	put_off = (u16)fifo->tx_curr_put_info.offset;
4093 	get_off = (u16)fifo->tx_curr_get_info.offset;
4094 	txdp = fifo->list_info[put_off].list_virt_addr;
4095 
4096 	queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4097 	/* Avoid "put" pointer going beyond "get" pointer */
4098 	if (txdp->Host_Control ||
4099 	    ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4100 		DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4101 		s2io_stop_tx_queue(sp, fifo->fifo_no);
4102 		dev_kfree_skb_any(skb);
4103 		spin_unlock_irqrestore(&fifo->tx_lock, flags);
4104 		return NETDEV_TX_OK;
4105 	}
4106 
4107 	offload_type = s2io_offload_type(skb);
4108 	if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4109 		txdp->Control_1 |= TXD_TCP_LSO_EN;
4110 		txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4111 	}
4112 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
4113 		txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN |
4114 				    TXD_TX_CKO_TCP_EN |
4115 				    TXD_TX_CKO_UDP_EN);
4116 	}
4117 	txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4118 	txdp->Control_1 |= TXD_LIST_OWN_XENA;
4119 	txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4120 	if (enable_per_list_interrupt)
4121 		if (put_off & (queue_len >> 5))
4122 			txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4123 	if (vlan_tag) {
4124 		txdp->Control_2 |= TXD_VLAN_ENABLE;
4125 		txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4126 	}
4127 
4128 	frg_len = skb_headlen(skb);
4129 	txdp->Buffer_Pointer = dma_map_single(&sp->pdev->dev, skb->data,
4130 					      frg_len, DMA_TO_DEVICE);
4131 	if (dma_mapping_error(&sp->pdev->dev, txdp->Buffer_Pointer))
4132 		goto pci_map_failed;
4133 
4134 	txdp->Host_Control = (unsigned long)skb;
4135 	txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4136 
4137 	frg_cnt = skb_shinfo(skb)->nr_frags;
4138 	/* For fragmented SKB. */
4139 	for (i = 0; i < frg_cnt; i++) {
4140 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4141 		/* A '0' length fragment will be ignored */
4142 		if (!skb_frag_size(frag))
4143 			continue;
4144 		txdp++;
4145 		txdp->Buffer_Pointer = (u64)skb_frag_dma_map(&sp->pdev->dev,
4146 							     frag, 0,
4147 							     skb_frag_size(frag),
4148 							     DMA_TO_DEVICE);
4149 		txdp->Control_1 = TXD_BUFFER0_SIZE(skb_frag_size(frag));
4150 	}
4151 	txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4152 
4153 	tx_fifo = mac_control->tx_FIFO_start[queue];
4154 	val64 = fifo->list_info[put_off].list_phy_addr;
4155 	writeq(val64, &tx_fifo->TxDL_Pointer);
4156 
4157 	val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4158 		 TX_FIFO_LAST_LIST);
4159 	if (offload_type)
4160 		val64 |= TX_FIFO_SPECIAL_FUNC;
4161 
4162 	writeq(val64, &tx_fifo->List_Control);
4163 
4164 	put_off++;
4165 	if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4166 		put_off = 0;
4167 	fifo->tx_curr_put_info.offset = put_off;
4168 
4169 	/* Avoid "put" pointer going beyond "get" pointer */
4170 	if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4171 		swstats->fifo_full_cnt++;
4172 		DBG_PRINT(TX_DBG,
4173 			  "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4174 			  put_off, get_off);
4175 		s2io_stop_tx_queue(sp, fifo->fifo_no);
4176 	}
4177 	swstats->mem_allocated += skb->truesize;
4178 	spin_unlock_irqrestore(&fifo->tx_lock, flags);
4179 
4180 	if (sp->config.intr_type == MSI_X)
4181 		tx_intr_handler(fifo);
4182 
4183 	return NETDEV_TX_OK;
4184 
4185 pci_map_failed:
4186 	swstats->pci_map_fail_cnt++;
4187 	s2io_stop_tx_queue(sp, fifo->fifo_no);
4188 	swstats->mem_freed += skb->truesize;
4189 	dev_kfree_skb_any(skb);
4190 	spin_unlock_irqrestore(&fifo->tx_lock, flags);
4191 	return NETDEV_TX_OK;
4192 }
4193 
4194 static void
4195 s2io_alarm_handle(struct timer_list *t)
4196 {
4197 	struct s2io_nic *sp = from_timer(sp, t, alarm_timer);
4198 	struct net_device *dev = sp->dev;
4199 
4200 	s2io_handle_errors(dev);
4201 	mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4202 }
4203 
4204 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4205 {
4206 	struct ring_info *ring = (struct ring_info *)dev_id;
4207 	struct s2io_nic *sp = ring->nic;
4208 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4209 
4210 	if (unlikely(!is_s2io_card_up(sp)))
4211 		return IRQ_HANDLED;
4212 
4213 	if (sp->config.napi) {
4214 		u8 __iomem *addr = NULL;
4215 		u8 val8 = 0;
4216 
4217 		addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
4218 		addr += (7 - ring->ring_no);
4219 		val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4220 		writeb(val8, addr);
4221 		val8 = readb(addr);
4222 		napi_schedule(&ring->napi);
4223 	} else {
4224 		rx_intr_handler(ring, 0);
4225 		s2io_chk_rx_buffers(sp, ring);
4226 	}
4227 
4228 	return IRQ_HANDLED;
4229 }
4230 
4231 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4232 {
4233 	int i;
4234 	struct fifo_info *fifos = (struct fifo_info *)dev_id;
4235 	struct s2io_nic *sp = fifos->nic;
4236 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4237 	struct config_param *config  = &sp->config;
4238 	u64 reason;
4239 
4240 	if (unlikely(!is_s2io_card_up(sp)))
4241 		return IRQ_NONE;
4242 
4243 	reason = readq(&bar0->general_int_status);
4244 	if (unlikely(reason == S2IO_MINUS_ONE))
4245 		/* Nothing much can be done. Get out */
4246 		return IRQ_HANDLED;
4247 
4248 	if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4249 		writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4250 
4251 		if (reason & GEN_INTR_TXPIC)
4252 			s2io_txpic_intr_handle(sp);
4253 
4254 		if (reason & GEN_INTR_TXTRAFFIC)
4255 			writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4256 
4257 		for (i = 0; i < config->tx_fifo_num; i++)
4258 			tx_intr_handler(&fifos[i]);
4259 
4260 		writeq(sp->general_int_mask, &bar0->general_int_mask);
4261 		readl(&bar0->general_int_status);
4262 		return IRQ_HANDLED;
4263 	}
4264 	/* The interrupt was not raised by us */
4265 	return IRQ_NONE;
4266 }
4267 
4268 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4269 {
4270 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4271 	u64 val64;
4272 
4273 	val64 = readq(&bar0->pic_int_status);
4274 	if (val64 & PIC_INT_GPIO) {
4275 		val64 = readq(&bar0->gpio_int_reg);
4276 		if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4277 		    (val64 & GPIO_INT_REG_LINK_UP)) {
4278 			/*
4279 			 * This is unstable state so clear both up/down
4280 			 * interrupt and adapter to re-evaluate the link state.
4281 			 */
4282 			val64 |= GPIO_INT_REG_LINK_DOWN;
4283 			val64 |= GPIO_INT_REG_LINK_UP;
4284 			writeq(val64, &bar0->gpio_int_reg);
4285 			val64 = readq(&bar0->gpio_int_mask);
4286 			val64 &= ~(GPIO_INT_MASK_LINK_UP |
4287 				   GPIO_INT_MASK_LINK_DOWN);
4288 			writeq(val64, &bar0->gpio_int_mask);
4289 		} else if (val64 & GPIO_INT_REG_LINK_UP) {
4290 			val64 = readq(&bar0->adapter_status);
4291 			/* Enable Adapter */
4292 			val64 = readq(&bar0->adapter_control);
4293 			val64 |= ADAPTER_CNTL_EN;
4294 			writeq(val64, &bar0->adapter_control);
4295 			val64 |= ADAPTER_LED_ON;
4296 			writeq(val64, &bar0->adapter_control);
4297 			if (!sp->device_enabled_once)
4298 				sp->device_enabled_once = 1;
4299 
4300 			s2io_link(sp, LINK_UP);
4301 			/*
4302 			 * unmask link down interrupt and mask link-up
4303 			 * intr
4304 			 */
4305 			val64 = readq(&bar0->gpio_int_mask);
4306 			val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4307 			val64 |= GPIO_INT_MASK_LINK_UP;
4308 			writeq(val64, &bar0->gpio_int_mask);
4309 
4310 		} else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4311 			val64 = readq(&bar0->adapter_status);
4312 			s2io_link(sp, LINK_DOWN);
4313 			/* Link is down so unmaks link up interrupt */
4314 			val64 = readq(&bar0->gpio_int_mask);
4315 			val64 &= ~GPIO_INT_MASK_LINK_UP;
4316 			val64 |= GPIO_INT_MASK_LINK_DOWN;
4317 			writeq(val64, &bar0->gpio_int_mask);
4318 
4319 			/* turn off LED */
4320 			val64 = readq(&bar0->adapter_control);
4321 			val64 = val64 & (~ADAPTER_LED_ON);
4322 			writeq(val64, &bar0->adapter_control);
4323 		}
4324 	}
4325 	val64 = readq(&bar0->gpio_int_mask);
4326 }
4327 
4328 /**
4329  *  do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4330  *  @value: alarm bits
4331  *  @addr: address value
4332  *  @cnt: counter variable
4333  *  Description: Check for alarm and increment the counter
4334  *  Return Value:
4335  *  1 - if alarm bit set
4336  *  0 - if alarm bit is not set
4337  */
4338 static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr,
4339 				 unsigned long long *cnt)
4340 {
4341 	u64 val64;
4342 	val64 = readq(addr);
4343 	if (val64 & value) {
4344 		writeq(val64, addr);
4345 		(*cnt)++;
4346 		return 1;
4347 	}
4348 	return 0;
4349 
4350 }
4351 
4352 /**
4353  *  s2io_handle_errors - Xframe error indication handler
4354  *  @dev_id: opaque handle to dev
4355  *  Description: Handle alarms such as loss of link, single or
4356  *  double ECC errors, critical and serious errors.
4357  *  Return Value:
4358  *  NONE
4359  */
4360 static void s2io_handle_errors(void *dev_id)
4361 {
4362 	struct net_device *dev = (struct net_device *)dev_id;
4363 	struct s2io_nic *sp = netdev_priv(dev);
4364 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4365 	u64 temp64 = 0, val64 = 0;
4366 	int i = 0;
4367 
4368 	struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4369 	struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4370 
4371 	if (!is_s2io_card_up(sp))
4372 		return;
4373 
4374 	if (pci_channel_offline(sp->pdev))
4375 		return;
4376 
4377 	memset(&sw_stat->ring_full_cnt, 0,
4378 	       sizeof(sw_stat->ring_full_cnt));
4379 
4380 	/* Handling the XPAK counters update */
4381 	if (stats->xpak_timer_count < 72000) {
4382 		/* waiting for an hour */
4383 		stats->xpak_timer_count++;
4384 	} else {
4385 		s2io_updt_xpak_counter(dev);
4386 		/* reset the count to zero */
4387 		stats->xpak_timer_count = 0;
4388 	}
4389 
4390 	/* Handling link status change error Intr */
4391 	if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4392 		val64 = readq(&bar0->mac_rmac_err_reg);
4393 		writeq(val64, &bar0->mac_rmac_err_reg);
4394 		if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4395 			schedule_work(&sp->set_link_task);
4396 	}
4397 
4398 	/* In case of a serious error, the device will be Reset. */
4399 	if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4400 				  &sw_stat->serious_err_cnt))
4401 		goto reset;
4402 
4403 	/* Check for data parity error */
4404 	if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4405 				  &sw_stat->parity_err_cnt))
4406 		goto reset;
4407 
4408 	/* Check for ring full counter */
4409 	if (sp->device_type == XFRAME_II_DEVICE) {
4410 		val64 = readq(&bar0->ring_bump_counter1);
4411 		for (i = 0; i < 4; i++) {
4412 			temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4413 			temp64 >>= 64 - ((i+1)*16);
4414 			sw_stat->ring_full_cnt[i] += temp64;
4415 		}
4416 
4417 		val64 = readq(&bar0->ring_bump_counter2);
4418 		for (i = 0; i < 4; i++) {
4419 			temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4420 			temp64 >>= 64 - ((i+1)*16);
4421 			sw_stat->ring_full_cnt[i+4] += temp64;
4422 		}
4423 	}
4424 
4425 	val64 = readq(&bar0->txdma_int_status);
4426 	/*check for pfc_err*/
4427 	if (val64 & TXDMA_PFC_INT) {
4428 		if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
4429 					  PFC_MISC_0_ERR | PFC_MISC_1_ERR |
4430 					  PFC_PCIX_ERR,
4431 					  &bar0->pfc_err_reg,
4432 					  &sw_stat->pfc_err_cnt))
4433 			goto reset;
4434 		do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR,
4435 				      &bar0->pfc_err_reg,
4436 				      &sw_stat->pfc_err_cnt);
4437 	}
4438 
4439 	/*check for tda_err*/
4440 	if (val64 & TXDMA_TDA_INT) {
4441 		if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR |
4442 					  TDA_SM0_ERR_ALARM |
4443 					  TDA_SM1_ERR_ALARM,
4444 					  &bar0->tda_err_reg,
4445 					  &sw_stat->tda_err_cnt))
4446 			goto reset;
4447 		do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4448 				      &bar0->tda_err_reg,
4449 				      &sw_stat->tda_err_cnt);
4450 	}
4451 	/*check for pcc_err*/
4452 	if (val64 & TXDMA_PCC_INT) {
4453 		if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
4454 					  PCC_N_SERR | PCC_6_COF_OV_ERR |
4455 					  PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
4456 					  PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
4457 					  PCC_TXB_ECC_DB_ERR,
4458 					  &bar0->pcc_err_reg,
4459 					  &sw_stat->pcc_err_cnt))
4460 			goto reset;
4461 		do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4462 				      &bar0->pcc_err_reg,
4463 				      &sw_stat->pcc_err_cnt);
4464 	}
4465 
4466 	/*check for tti_err*/
4467 	if (val64 & TXDMA_TTI_INT) {
4468 		if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM,
4469 					  &bar0->tti_err_reg,
4470 					  &sw_stat->tti_err_cnt))
4471 			goto reset;
4472 		do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4473 				      &bar0->tti_err_reg,
4474 				      &sw_stat->tti_err_cnt);
4475 	}
4476 
4477 	/*check for lso_err*/
4478 	if (val64 & TXDMA_LSO_INT) {
4479 		if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
4480 					  LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4481 					  &bar0->lso_err_reg,
4482 					  &sw_stat->lso_err_cnt))
4483 			goto reset;
4484 		do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4485 				      &bar0->lso_err_reg,
4486 				      &sw_stat->lso_err_cnt);
4487 	}
4488 
4489 	/*check for tpa_err*/
4490 	if (val64 & TXDMA_TPA_INT) {
4491 		if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM,
4492 					  &bar0->tpa_err_reg,
4493 					  &sw_stat->tpa_err_cnt))
4494 			goto reset;
4495 		do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP,
4496 				      &bar0->tpa_err_reg,
4497 				      &sw_stat->tpa_err_cnt);
4498 	}
4499 
4500 	/*check for sm_err*/
4501 	if (val64 & TXDMA_SM_INT) {
4502 		if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM,
4503 					  &bar0->sm_err_reg,
4504 					  &sw_stat->sm_err_cnt))
4505 			goto reset;
4506 	}
4507 
4508 	val64 = readq(&bar0->mac_int_status);
4509 	if (val64 & MAC_INT_STATUS_TMAC_INT) {
4510 		if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4511 					  &bar0->mac_tmac_err_reg,
4512 					  &sw_stat->mac_tmac_err_cnt))
4513 			goto reset;
4514 		do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
4515 				      TMAC_DESC_ECC_SG_ERR |
4516 				      TMAC_DESC_ECC_DB_ERR,
4517 				      &bar0->mac_tmac_err_reg,
4518 				      &sw_stat->mac_tmac_err_cnt);
4519 	}
4520 
4521 	val64 = readq(&bar0->xgxs_int_status);
4522 	if (val64 & XGXS_INT_STATUS_TXGXS) {
4523 		if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4524 					  &bar0->xgxs_txgxs_err_reg,
4525 					  &sw_stat->xgxs_txgxs_err_cnt))
4526 			goto reset;
4527 		do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4528 				      &bar0->xgxs_txgxs_err_reg,
4529 				      &sw_stat->xgxs_txgxs_err_cnt);
4530 	}
4531 
4532 	val64 = readq(&bar0->rxdma_int_status);
4533 	if (val64 & RXDMA_INT_RC_INT_M) {
4534 		if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR |
4535 					  RC_FTC_ECC_DB_ERR |
4536 					  RC_PRCn_SM_ERR_ALARM |
4537 					  RC_FTC_SM_ERR_ALARM,
4538 					  &bar0->rc_err_reg,
4539 					  &sw_stat->rc_err_cnt))
4540 			goto reset;
4541 		do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR |
4542 				      RC_FTC_ECC_SG_ERR |
4543 				      RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4544 				      &sw_stat->rc_err_cnt);
4545 		if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn |
4546 					  PRC_PCI_AB_WR_Rn |
4547 					  PRC_PCI_AB_F_WR_Rn,
4548 					  &bar0->prc_pcix_err_reg,
4549 					  &sw_stat->prc_pcix_err_cnt))
4550 			goto reset;
4551 		do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn |
4552 				      PRC_PCI_DP_WR_Rn |
4553 				      PRC_PCI_DP_F_WR_Rn,
4554 				      &bar0->prc_pcix_err_reg,
4555 				      &sw_stat->prc_pcix_err_cnt);
4556 	}
4557 
4558 	if (val64 & RXDMA_INT_RPA_INT_M) {
4559 		if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4560 					  &bar0->rpa_err_reg,
4561 					  &sw_stat->rpa_err_cnt))
4562 			goto reset;
4563 		do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4564 				      &bar0->rpa_err_reg,
4565 				      &sw_stat->rpa_err_cnt);
4566 	}
4567 
4568 	if (val64 & RXDMA_INT_RDA_INT_M) {
4569 		if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
4570 					  RDA_FRM_ECC_DB_N_AERR |
4571 					  RDA_SM1_ERR_ALARM |
4572 					  RDA_SM0_ERR_ALARM |
4573 					  RDA_RXD_ECC_DB_SERR,
4574 					  &bar0->rda_err_reg,
4575 					  &sw_stat->rda_err_cnt))
4576 			goto reset;
4577 		do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR |
4578 				      RDA_FRM_ECC_SG_ERR |
4579 				      RDA_MISC_ERR |
4580 				      RDA_PCIX_ERR,
4581 				      &bar0->rda_err_reg,
4582 				      &sw_stat->rda_err_cnt);
4583 	}
4584 
4585 	if (val64 & RXDMA_INT_RTI_INT_M) {
4586 		if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM,
4587 					  &bar0->rti_err_reg,
4588 					  &sw_stat->rti_err_cnt))
4589 			goto reset;
4590 		do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4591 				      &bar0->rti_err_reg,
4592 				      &sw_stat->rti_err_cnt);
4593 	}
4594 
4595 	val64 = readq(&bar0->mac_int_status);
4596 	if (val64 & MAC_INT_STATUS_RMAC_INT) {
4597 		if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4598 					  &bar0->mac_rmac_err_reg,
4599 					  &sw_stat->mac_rmac_err_cnt))
4600 			goto reset;
4601 		do_s2io_chk_alarm_bit(RMAC_UNUSED_INT |
4602 				      RMAC_SINGLE_ECC_ERR |
4603 				      RMAC_DOUBLE_ECC_ERR,
4604 				      &bar0->mac_rmac_err_reg,
4605 				      &sw_stat->mac_rmac_err_cnt);
4606 	}
4607 
4608 	val64 = readq(&bar0->xgxs_int_status);
4609 	if (val64 & XGXS_INT_STATUS_RXGXS) {
4610 		if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4611 					  &bar0->xgxs_rxgxs_err_reg,
4612 					  &sw_stat->xgxs_rxgxs_err_cnt))
4613 			goto reset;
4614 	}
4615 
4616 	val64 = readq(&bar0->mc_int_status);
4617 	if (val64 & MC_INT_STATUS_MC_INT) {
4618 		if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR,
4619 					  &bar0->mc_err_reg,
4620 					  &sw_stat->mc_err_cnt))
4621 			goto reset;
4622 
4623 		/* Handling Ecc errors */
4624 		if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4625 			writeq(val64, &bar0->mc_err_reg);
4626 			if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4627 				sw_stat->double_ecc_errs++;
4628 				if (sp->device_type != XFRAME_II_DEVICE) {
4629 					/*
4630 					 * Reset XframeI only if critical error
4631 					 */
4632 					if (val64 &
4633 					    (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4634 					     MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4635 						goto reset;
4636 				}
4637 			} else
4638 				sw_stat->single_ecc_errs++;
4639 		}
4640 	}
4641 	return;
4642 
4643 reset:
4644 	s2io_stop_all_tx_queue(sp);
4645 	schedule_work(&sp->rst_timer_task);
4646 	sw_stat->soft_reset_cnt++;
4647 }
4648 
4649 /**
4650  *  s2io_isr - ISR handler of the device .
4651  *  @irq: the irq of the device.
4652  *  @dev_id: a void pointer to the dev structure of the NIC.
4653  *  Description:  This function is the ISR handler of the device. It
4654  *  identifies the reason for the interrupt and calls the relevant
4655  *  service routines. As a contongency measure, this ISR allocates the
4656  *  recv buffers, if their numbers are below the panic value which is
4657  *  presently set to 25% of the original number of rcv buffers allocated.
4658  *  Return value:
4659  *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
4660  *   IRQ_NONE: will be returned if interrupt is not from our device
4661  */
4662 static irqreturn_t s2io_isr(int irq, void *dev_id)
4663 {
4664 	struct net_device *dev = (struct net_device *)dev_id;
4665 	struct s2io_nic *sp = netdev_priv(dev);
4666 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4667 	int i;
4668 	u64 reason = 0;
4669 	struct mac_info *mac_control;
4670 	struct config_param *config;
4671 
4672 	/* Pretend we handled any irq's from a disconnected card */
4673 	if (pci_channel_offline(sp->pdev))
4674 		return IRQ_NONE;
4675 
4676 	if (!is_s2io_card_up(sp))
4677 		return IRQ_NONE;
4678 
4679 	config = &sp->config;
4680 	mac_control = &sp->mac_control;
4681 
4682 	/*
4683 	 * Identify the cause for interrupt and call the appropriate
4684 	 * interrupt handler. Causes for the interrupt could be;
4685 	 * 1. Rx of packet.
4686 	 * 2. Tx complete.
4687 	 * 3. Link down.
4688 	 */
4689 	reason = readq(&bar0->general_int_status);
4690 
4691 	if (unlikely(reason == S2IO_MINUS_ONE))
4692 		return IRQ_HANDLED;	/* Nothing much can be done. Get out */
4693 
4694 	if (reason &
4695 	    (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) {
4696 		writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4697 
4698 		if (config->napi) {
4699 			if (reason & GEN_INTR_RXTRAFFIC) {
4700 				napi_schedule(&sp->napi);
4701 				writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4702 				writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4703 				readl(&bar0->rx_traffic_int);
4704 			}
4705 		} else {
4706 			/*
4707 			 * rx_traffic_int reg is an R1 register, writing all 1's
4708 			 * will ensure that the actual interrupt causing bit
4709 			 * get's cleared and hence a read can be avoided.
4710 			 */
4711 			if (reason & GEN_INTR_RXTRAFFIC)
4712 				writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4713 
4714 			for (i = 0; i < config->rx_ring_num; i++) {
4715 				struct ring_info *ring = &mac_control->rings[i];
4716 
4717 				rx_intr_handler(ring, 0);
4718 			}
4719 		}
4720 
4721 		/*
4722 		 * tx_traffic_int reg is an R1 register, writing all 1's
4723 		 * will ensure that the actual interrupt causing bit get's
4724 		 * cleared and hence a read can be avoided.
4725 		 */
4726 		if (reason & GEN_INTR_TXTRAFFIC)
4727 			writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4728 
4729 		for (i = 0; i < config->tx_fifo_num; i++)
4730 			tx_intr_handler(&mac_control->fifos[i]);
4731 
4732 		if (reason & GEN_INTR_TXPIC)
4733 			s2io_txpic_intr_handle(sp);
4734 
4735 		/*
4736 		 * Reallocate the buffers from the interrupt handler itself.
4737 		 */
4738 		if (!config->napi) {
4739 			for (i = 0; i < config->rx_ring_num; i++) {
4740 				struct ring_info *ring = &mac_control->rings[i];
4741 
4742 				s2io_chk_rx_buffers(sp, ring);
4743 			}
4744 		}
4745 		writeq(sp->general_int_mask, &bar0->general_int_mask);
4746 		readl(&bar0->general_int_status);
4747 
4748 		return IRQ_HANDLED;
4749 
4750 	} else if (!reason) {
4751 		/* The interrupt was not raised by us */
4752 		return IRQ_NONE;
4753 	}
4754 
4755 	return IRQ_HANDLED;
4756 }
4757 
4758 /*
4759  * s2io_updt_stats -
4760  */
4761 static void s2io_updt_stats(struct s2io_nic *sp)
4762 {
4763 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4764 	u64 val64;
4765 	int cnt = 0;
4766 
4767 	if (is_s2io_card_up(sp)) {
4768 		/* Apprx 30us on a 133 MHz bus */
4769 		val64 = SET_UPDT_CLICKS(10) |
4770 			STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4771 		writeq(val64, &bar0->stat_cfg);
4772 		do {
4773 			udelay(100);
4774 			val64 = readq(&bar0->stat_cfg);
4775 			if (!(val64 & s2BIT(0)))
4776 				break;
4777 			cnt++;
4778 			if (cnt == 5)
4779 				break; /* Updt failed */
4780 		} while (1);
4781 	}
4782 }
4783 
4784 /**
4785  *  s2io_get_stats - Updates the device statistics structure.
4786  *  @dev : pointer to the device structure.
4787  *  Description:
4788  *  This function updates the device statistics structure in the s2io_nic
4789  *  structure and returns a pointer to the same.
4790  *  Return value:
4791  *  pointer to the updated net_device_stats structure.
4792  */
4793 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4794 {
4795 	struct s2io_nic *sp = netdev_priv(dev);
4796 	struct mac_info *mac_control = &sp->mac_control;
4797 	struct stat_block *stats = mac_control->stats_info;
4798 	u64 delta;
4799 
4800 	/* Configure Stats for immediate updt */
4801 	s2io_updt_stats(sp);
4802 
4803 	/* A device reset will cause the on-adapter statistics to be zero'ed.
4804 	 * This can be done while running by changing the MTU.  To prevent the
4805 	 * system from having the stats zero'ed, the driver keeps a copy of the
4806 	 * last update to the system (which is also zero'ed on reset).  This
4807 	 * enables the driver to accurately know the delta between the last
4808 	 * update and the current update.
4809 	 */
4810 	delta = ((u64) le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
4811 		le32_to_cpu(stats->rmac_vld_frms)) - sp->stats.rx_packets;
4812 	sp->stats.rx_packets += delta;
4813 	dev->stats.rx_packets += delta;
4814 
4815 	delta = ((u64) le32_to_cpu(stats->tmac_frms_oflow) << 32 |
4816 		le32_to_cpu(stats->tmac_frms)) - sp->stats.tx_packets;
4817 	sp->stats.tx_packets += delta;
4818 	dev->stats.tx_packets += delta;
4819 
4820 	delta = ((u64) le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
4821 		le32_to_cpu(stats->rmac_data_octets)) - sp->stats.rx_bytes;
4822 	sp->stats.rx_bytes += delta;
4823 	dev->stats.rx_bytes += delta;
4824 
4825 	delta = ((u64) le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
4826 		le32_to_cpu(stats->tmac_data_octets)) - sp->stats.tx_bytes;
4827 	sp->stats.tx_bytes += delta;
4828 	dev->stats.tx_bytes += delta;
4829 
4830 	delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_errors;
4831 	sp->stats.rx_errors += delta;
4832 	dev->stats.rx_errors += delta;
4833 
4834 	delta = ((u64) le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
4835 		le32_to_cpu(stats->tmac_any_err_frms)) - sp->stats.tx_errors;
4836 	sp->stats.tx_errors += delta;
4837 	dev->stats.tx_errors += delta;
4838 
4839 	delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_dropped;
4840 	sp->stats.rx_dropped += delta;
4841 	dev->stats.rx_dropped += delta;
4842 
4843 	delta = le64_to_cpu(stats->tmac_drop_frms) - sp->stats.tx_dropped;
4844 	sp->stats.tx_dropped += delta;
4845 	dev->stats.tx_dropped += delta;
4846 
4847 	/* The adapter MAC interprets pause frames as multicast packets, but
4848 	 * does not pass them up.  This erroneously increases the multicast
4849 	 * packet count and needs to be deducted when the multicast frame count
4850 	 * is queried.
4851 	 */
4852 	delta = (u64) le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
4853 		le32_to_cpu(stats->rmac_vld_mcst_frms);
4854 	delta -= le64_to_cpu(stats->rmac_pause_ctrl_frms);
4855 	delta -= sp->stats.multicast;
4856 	sp->stats.multicast += delta;
4857 	dev->stats.multicast += delta;
4858 
4859 	delta = ((u64) le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
4860 		le32_to_cpu(stats->rmac_usized_frms)) +
4861 		le64_to_cpu(stats->rmac_long_frms) - sp->stats.rx_length_errors;
4862 	sp->stats.rx_length_errors += delta;
4863 	dev->stats.rx_length_errors += delta;
4864 
4865 	delta = le64_to_cpu(stats->rmac_fcs_err_frms) - sp->stats.rx_crc_errors;
4866 	sp->stats.rx_crc_errors += delta;
4867 	dev->stats.rx_crc_errors += delta;
4868 
4869 	return &dev->stats;
4870 }
4871 
4872 /**
4873  *  s2io_set_multicast - entry point for multicast address enable/disable.
4874  *  @dev : pointer to the device structure
4875  *  @may_sleep: parameter indicates if sleeping when waiting for command
4876  *  complete
4877  *  Description:
4878  *  This function is a driver entry point which gets called by the kernel
4879  *  whenever multicast addresses must be enabled/disabled. This also gets
4880  *  called to set/reset promiscuous mode. Depending on the deivce flag, we
4881  *  determine, if multicast address must be enabled or if promiscuous mode
4882  *  is to be disabled etc.
4883  *  Return value:
4884  *  void.
4885  */
4886 static void s2io_set_multicast(struct net_device *dev, bool may_sleep)
4887 {
4888 	int i, j, prev_cnt;
4889 	struct netdev_hw_addr *ha;
4890 	struct s2io_nic *sp = netdev_priv(dev);
4891 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4892 	u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4893 		0xfeffffffffffULL;
4894 	u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
4895 	void __iomem *add;
4896 	struct config_param *config = &sp->config;
4897 
4898 	if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4899 		/*  Enable all Multicast addresses */
4900 		writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4901 		       &bar0->rmac_addr_data0_mem);
4902 		writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4903 		       &bar0->rmac_addr_data1_mem);
4904 		val64 = RMAC_ADDR_CMD_MEM_WE |
4905 			RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4906 			RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
4907 		writeq(val64, &bar0->rmac_addr_cmd_mem);
4908 		/* Wait till command completes */
4909 		wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4910 				      RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4911 				      S2IO_BIT_RESET, may_sleep);
4912 
4913 		sp->m_cast_flg = 1;
4914 		sp->all_multi_pos = config->max_mc_addr - 1;
4915 	} else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4916 		/*  Disable all Multicast addresses */
4917 		writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4918 		       &bar0->rmac_addr_data0_mem);
4919 		writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4920 		       &bar0->rmac_addr_data1_mem);
4921 		val64 = RMAC_ADDR_CMD_MEM_WE |
4922 			RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4923 			RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4924 		writeq(val64, &bar0->rmac_addr_cmd_mem);
4925 		/* Wait till command completes */
4926 		wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4927 				      RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4928 				      S2IO_BIT_RESET, may_sleep);
4929 
4930 		sp->m_cast_flg = 0;
4931 		sp->all_multi_pos = 0;
4932 	}
4933 
4934 	if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4935 		/*  Put the NIC into promiscuous mode */
4936 		add = &bar0->mac_cfg;
4937 		val64 = readq(&bar0->mac_cfg);
4938 		val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4939 
4940 		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4941 		writel((u32)val64, add);
4942 		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4943 		writel((u32) (val64 >> 32), (add + 4));
4944 
4945 		if (vlan_tag_strip != 1) {
4946 			val64 = readq(&bar0->rx_pa_cfg);
4947 			val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
4948 			writeq(val64, &bar0->rx_pa_cfg);
4949 			sp->vlan_strip_flag = 0;
4950 		}
4951 
4952 		val64 = readq(&bar0->mac_cfg);
4953 		sp->promisc_flg = 1;
4954 		DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4955 			  dev->name);
4956 	} else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4957 		/*  Remove the NIC from promiscuous mode */
4958 		add = &bar0->mac_cfg;
4959 		val64 = readq(&bar0->mac_cfg);
4960 		val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4961 
4962 		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4963 		writel((u32)val64, add);
4964 		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4965 		writel((u32) (val64 >> 32), (add + 4));
4966 
4967 		if (vlan_tag_strip != 0) {
4968 			val64 = readq(&bar0->rx_pa_cfg);
4969 			val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
4970 			writeq(val64, &bar0->rx_pa_cfg);
4971 			sp->vlan_strip_flag = 1;
4972 		}
4973 
4974 		val64 = readq(&bar0->mac_cfg);
4975 		sp->promisc_flg = 0;
4976 		DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name);
4977 	}
4978 
4979 	/*  Update individual M_CAST address list */
4980 	if ((!sp->m_cast_flg) && netdev_mc_count(dev)) {
4981 		if (netdev_mc_count(dev) >
4982 		    (config->max_mc_addr - config->max_mac_addr)) {
4983 			DBG_PRINT(ERR_DBG,
4984 				  "%s: No more Rx filters can be added - "
4985 				  "please enable ALL_MULTI instead\n",
4986 				  dev->name);
4987 			return;
4988 		}
4989 
4990 		prev_cnt = sp->mc_addr_count;
4991 		sp->mc_addr_count = netdev_mc_count(dev);
4992 
4993 		/* Clear out the previous list of Mc in the H/W. */
4994 		for (i = 0; i < prev_cnt; i++) {
4995 			writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4996 			       &bar0->rmac_addr_data0_mem);
4997 			writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4998 			       &bar0->rmac_addr_data1_mem);
4999 			val64 = RMAC_ADDR_CMD_MEM_WE |
5000 				RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5001 				RMAC_ADDR_CMD_MEM_OFFSET
5002 				(config->mc_start_offset + i);
5003 			writeq(val64, &bar0->rmac_addr_cmd_mem);
5004 
5005 			/* Wait for command completes */
5006 			if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5007 						  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5008 						  S2IO_BIT_RESET, may_sleep)) {
5009 				DBG_PRINT(ERR_DBG,
5010 					  "%s: Adding Multicasts failed\n",
5011 					  dev->name);
5012 				return;
5013 			}
5014 		}
5015 
5016 		/* Create the new Rx filter list and update the same in H/W. */
5017 		i = 0;
5018 		netdev_for_each_mc_addr(ha, dev) {
5019 			mac_addr = 0;
5020 			for (j = 0; j < ETH_ALEN; j++) {
5021 				mac_addr |= ha->addr[j];
5022 				mac_addr <<= 8;
5023 			}
5024 			mac_addr >>= 8;
5025 			writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5026 			       &bar0->rmac_addr_data0_mem);
5027 			writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5028 			       &bar0->rmac_addr_data1_mem);
5029 			val64 = RMAC_ADDR_CMD_MEM_WE |
5030 				RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5031 				RMAC_ADDR_CMD_MEM_OFFSET
5032 				(i + config->mc_start_offset);
5033 			writeq(val64, &bar0->rmac_addr_cmd_mem);
5034 
5035 			/* Wait for command completes */
5036 			if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5037 						  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5038 						  S2IO_BIT_RESET, may_sleep)) {
5039 				DBG_PRINT(ERR_DBG,
5040 					  "%s: Adding Multicasts failed\n",
5041 					  dev->name);
5042 				return;
5043 			}
5044 			i++;
5045 		}
5046 	}
5047 }
5048 
5049 /* NDO wrapper for s2io_set_multicast */
5050 static void s2io_ndo_set_multicast(struct net_device *dev)
5051 {
5052 	s2io_set_multicast(dev, false);
5053 }
5054 
5055 /* read from CAM unicast & multicast addresses and store it in
5056  * def_mac_addr structure
5057  */
5058 static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5059 {
5060 	int offset;
5061 	u64 mac_addr = 0x0;
5062 	struct config_param *config = &sp->config;
5063 
5064 	/* store unicast & multicast mac addresses */
5065 	for (offset = 0; offset < config->max_mc_addr; offset++) {
5066 		mac_addr = do_s2io_read_unicast_mc(sp, offset);
5067 		/* if read fails disable the entry */
5068 		if (mac_addr == FAILURE)
5069 			mac_addr = S2IO_DISABLE_MAC_ENTRY;
5070 		do_s2io_copy_mac_addr(sp, offset, mac_addr);
5071 	}
5072 }
5073 
5074 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5075 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5076 {
5077 	int offset;
5078 	struct config_param *config = &sp->config;
5079 	/* restore unicast mac address */
5080 	for (offset = 0; offset < config->max_mac_addr; offset++)
5081 		do_s2io_prog_unicast(sp->dev,
5082 				     sp->def_mac_addr[offset].mac_addr);
5083 
5084 	/* restore multicast mac address */
5085 	for (offset = config->mc_start_offset;
5086 	     offset < config->max_mc_addr; offset++)
5087 		do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5088 }
5089 
5090 /* add a multicast MAC address to CAM */
5091 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5092 {
5093 	int i;
5094 	u64 mac_addr = 0;
5095 	struct config_param *config = &sp->config;
5096 
5097 	for (i = 0; i < ETH_ALEN; i++) {
5098 		mac_addr <<= 8;
5099 		mac_addr |= addr[i];
5100 	}
5101 	if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5102 		return SUCCESS;
5103 
5104 	/* check if the multicast mac already preset in CAM */
5105 	for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5106 		u64 tmp64;
5107 		tmp64 = do_s2io_read_unicast_mc(sp, i);
5108 		if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5109 			break;
5110 
5111 		if (tmp64 == mac_addr)
5112 			return SUCCESS;
5113 	}
5114 	if (i == config->max_mc_addr) {
5115 		DBG_PRINT(ERR_DBG,
5116 			  "CAM full no space left for multicast MAC\n");
5117 		return FAILURE;
5118 	}
5119 	/* Update the internal structure with this new mac address */
5120 	do_s2io_copy_mac_addr(sp, i, mac_addr);
5121 
5122 	return do_s2io_add_mac(sp, mac_addr, i);
5123 }
5124 
5125 /* add MAC address to CAM */
5126 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5127 {
5128 	u64 val64;
5129 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5130 
5131 	writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5132 	       &bar0->rmac_addr_data0_mem);
5133 
5134 	val64 =	RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5135 		RMAC_ADDR_CMD_MEM_OFFSET(off);
5136 	writeq(val64, &bar0->rmac_addr_cmd_mem);
5137 
5138 	/* Wait till command completes */
5139 	if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5140 				  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5141 				  S2IO_BIT_RESET, true)) {
5142 		DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5143 		return FAILURE;
5144 	}
5145 	return SUCCESS;
5146 }
5147 /* deletes a specified unicast/multicast mac entry from CAM */
5148 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5149 {
5150 	int offset;
5151 	u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5152 	struct config_param *config = &sp->config;
5153 
5154 	for (offset = 1;
5155 	     offset < config->max_mc_addr; offset++) {
5156 		tmp64 = do_s2io_read_unicast_mc(sp, offset);
5157 		if (tmp64 == addr) {
5158 			/* disable the entry by writing  0xffffffffffffULL */
5159 			if (do_s2io_add_mac(sp, dis_addr, offset) ==  FAILURE)
5160 				return FAILURE;
5161 			/* store the new mac list from CAM */
5162 			do_s2io_store_unicast_mc(sp);
5163 			return SUCCESS;
5164 		}
5165 	}
5166 	DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5167 		  (unsigned long long)addr);
5168 	return FAILURE;
5169 }
5170 
5171 /* read mac entries from CAM */
5172 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5173 {
5174 	u64 tmp64, val64;
5175 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5176 
5177 	/* read mac addr */
5178 	val64 =	RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5179 		RMAC_ADDR_CMD_MEM_OFFSET(offset);
5180 	writeq(val64, &bar0->rmac_addr_cmd_mem);
5181 
5182 	/* Wait till command completes */
5183 	if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5184 				  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5185 				  S2IO_BIT_RESET, true)) {
5186 		DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5187 		return FAILURE;
5188 	}
5189 	tmp64 = readq(&bar0->rmac_addr_data0_mem);
5190 
5191 	return tmp64 >> 16;
5192 }
5193 
5194 /*
5195  * s2io_set_mac_addr - driver entry point
5196  */
5197 
5198 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5199 {
5200 	struct sockaddr *addr = p;
5201 
5202 	if (!is_valid_ether_addr(addr->sa_data))
5203 		return -EADDRNOTAVAIL;
5204 
5205 	eth_hw_addr_set(dev, addr->sa_data);
5206 
5207 	/* store the MAC address in CAM */
5208 	return do_s2io_prog_unicast(dev, dev->dev_addr);
5209 }
5210 /**
5211  *  do_s2io_prog_unicast - Programs the Xframe mac address
5212  *  @dev : pointer to the device structure.
5213  *  @addr: a uchar pointer to the new mac address which is to be set.
5214  *  Description : This procedure will program the Xframe to receive
5215  *  frames with new Mac Address
5216  *  Return value: SUCCESS on success and an appropriate (-)ve integer
5217  *  as defined in errno.h file on failure.
5218  */
5219 
5220 static int do_s2io_prog_unicast(struct net_device *dev, const u8 *addr)
5221 {
5222 	struct s2io_nic *sp = netdev_priv(dev);
5223 	register u64 mac_addr = 0, perm_addr = 0;
5224 	int i;
5225 	u64 tmp64;
5226 	struct config_param *config = &sp->config;
5227 
5228 	/*
5229 	 * Set the new MAC address as the new unicast filter and reflect this
5230 	 * change on the device address registered with the OS. It will be
5231 	 * at offset 0.
5232 	 */
5233 	for (i = 0; i < ETH_ALEN; i++) {
5234 		mac_addr <<= 8;
5235 		mac_addr |= addr[i];
5236 		perm_addr <<= 8;
5237 		perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5238 	}
5239 
5240 	/* check if the dev_addr is different than perm_addr */
5241 	if (mac_addr == perm_addr)
5242 		return SUCCESS;
5243 
5244 	/* check if the mac already preset in CAM */
5245 	for (i = 1; i < config->max_mac_addr; i++) {
5246 		tmp64 = do_s2io_read_unicast_mc(sp, i);
5247 		if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5248 			break;
5249 
5250 		if (tmp64 == mac_addr) {
5251 			DBG_PRINT(INFO_DBG,
5252 				  "MAC addr:0x%llx already present in CAM\n",
5253 				  (unsigned long long)mac_addr);
5254 			return SUCCESS;
5255 		}
5256 	}
5257 	if (i == config->max_mac_addr) {
5258 		DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5259 		return FAILURE;
5260 	}
5261 	/* Update the internal structure with this new mac address */
5262 	do_s2io_copy_mac_addr(sp, i, mac_addr);
5263 
5264 	return do_s2io_add_mac(sp, mac_addr, i);
5265 }
5266 
5267 /**
5268  * s2io_ethtool_set_link_ksettings - Sets different link parameters.
5269  * @dev : pointer to netdev
5270  * @cmd: pointer to the structure with parameters given by ethtool to set
5271  * link information.
5272  * Description:
5273  * The function sets different link parameters provided by the user onto
5274  * the NIC.
5275  * Return value:
5276  * 0 on success.
5277  */
5278 
5279 static int
5280 s2io_ethtool_set_link_ksettings(struct net_device *dev,
5281 				const struct ethtool_link_ksettings *cmd)
5282 {
5283 	struct s2io_nic *sp = netdev_priv(dev);
5284 	if ((cmd->base.autoneg == AUTONEG_ENABLE) ||
5285 	    (cmd->base.speed != SPEED_10000) ||
5286 	    (cmd->base.duplex != DUPLEX_FULL))
5287 		return -EINVAL;
5288 	else {
5289 		s2io_close(sp->dev);
5290 		s2io_open(sp->dev);
5291 	}
5292 
5293 	return 0;
5294 }
5295 
5296 /**
5297  * s2io_ethtool_get_link_ksettings - Return link specific information.
5298  * @dev: pointer to netdev
5299  * @cmd : pointer to the structure with parameters given by ethtool
5300  * to return link information.
5301  * Description:
5302  * Returns link specific information like speed, duplex etc.. to ethtool.
5303  * Return value :
5304  * return 0 on success.
5305  */
5306 
5307 static int
5308 s2io_ethtool_get_link_ksettings(struct net_device *dev,
5309 				struct ethtool_link_ksettings *cmd)
5310 {
5311 	struct s2io_nic *sp = netdev_priv(dev);
5312 
5313 	ethtool_link_ksettings_zero_link_mode(cmd, supported);
5314 	ethtool_link_ksettings_add_link_mode(cmd, supported, 10000baseT_Full);
5315 	ethtool_link_ksettings_add_link_mode(cmd, supported, FIBRE);
5316 
5317 	ethtool_link_ksettings_zero_link_mode(cmd, advertising);
5318 	ethtool_link_ksettings_add_link_mode(cmd, advertising, 10000baseT_Full);
5319 	ethtool_link_ksettings_add_link_mode(cmd, advertising, FIBRE);
5320 
5321 	cmd->base.port = PORT_FIBRE;
5322 
5323 	if (netif_carrier_ok(sp->dev)) {
5324 		cmd->base.speed = SPEED_10000;
5325 		cmd->base.duplex = DUPLEX_FULL;
5326 	} else {
5327 		cmd->base.speed = SPEED_UNKNOWN;
5328 		cmd->base.duplex = DUPLEX_UNKNOWN;
5329 	}
5330 
5331 	cmd->base.autoneg = AUTONEG_DISABLE;
5332 	return 0;
5333 }
5334 
5335 /**
5336  * s2io_ethtool_gdrvinfo - Returns driver specific information.
5337  * @dev: pointer to netdev
5338  * @info : pointer to the structure with parameters given by ethtool to
5339  * return driver information.
5340  * Description:
5341  * Returns driver specefic information like name, version etc.. to ethtool.
5342  * Return value:
5343  *  void
5344  */
5345 
5346 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5347 				  struct ethtool_drvinfo *info)
5348 {
5349 	struct s2io_nic *sp = netdev_priv(dev);
5350 
5351 	strscpy(info->driver, s2io_driver_name, sizeof(info->driver));
5352 	strscpy(info->version, s2io_driver_version, sizeof(info->version));
5353 	strscpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5354 }
5355 
5356 /**
5357  *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5358  *  @dev: pointer to netdev
5359  *  @regs : pointer to the structure with parameters given by ethtool for
5360  *          dumping the registers.
5361  *  @space: The input argument into which all the registers are dumped.
5362  *  Description:
5363  *  Dumps the entire register space of xFrame NIC into the user given
5364  *  buffer area.
5365  * Return value :
5366  * void .
5367  */
5368 
5369 static void s2io_ethtool_gregs(struct net_device *dev,
5370 			       struct ethtool_regs *regs, void *space)
5371 {
5372 	int i;
5373 	u64 reg;
5374 	u8 *reg_space = (u8 *)space;
5375 	struct s2io_nic *sp = netdev_priv(dev);
5376 
5377 	regs->len = XENA_REG_SPACE;
5378 	regs->version = sp->pdev->subsystem_device;
5379 
5380 	for (i = 0; i < regs->len; i += 8) {
5381 		reg = readq(sp->bar0 + i);
5382 		memcpy((reg_space + i), &reg, 8);
5383 	}
5384 }
5385 
5386 /*
5387  *  s2io_set_led - control NIC led
5388  */
5389 static void s2io_set_led(struct s2io_nic *sp, bool on)
5390 {
5391 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5392 	u16 subid = sp->pdev->subsystem_device;
5393 	u64 val64;
5394 
5395 	if ((sp->device_type == XFRAME_II_DEVICE) ||
5396 	    ((subid & 0xFF) >= 0x07)) {
5397 		val64 = readq(&bar0->gpio_control);
5398 		if (on)
5399 			val64 |= GPIO_CTRL_GPIO_0;
5400 		else
5401 			val64 &= ~GPIO_CTRL_GPIO_0;
5402 
5403 		writeq(val64, &bar0->gpio_control);
5404 	} else {
5405 		val64 = readq(&bar0->adapter_control);
5406 		if (on)
5407 			val64 |= ADAPTER_LED_ON;
5408 		else
5409 			val64 &= ~ADAPTER_LED_ON;
5410 
5411 		writeq(val64, &bar0->adapter_control);
5412 	}
5413 
5414 }
5415 
5416 /**
5417  * s2io_ethtool_set_led - To physically identify the nic on the system.
5418  * @dev : network device
5419  * @state: led setting
5420  *
5421  * Description: Used to physically identify the NIC on the system.
5422  * The Link LED will blink for a time specified by the user for
5423  * identification.
5424  * NOTE: The Link has to be Up to be able to blink the LED. Hence
5425  * identification is possible only if it's link is up.
5426  */
5427 
5428 static int s2io_ethtool_set_led(struct net_device *dev,
5429 				enum ethtool_phys_id_state state)
5430 {
5431 	struct s2io_nic *sp = netdev_priv(dev);
5432 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5433 	u16 subid = sp->pdev->subsystem_device;
5434 
5435 	if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) {
5436 		u64 val64 = readq(&bar0->adapter_control);
5437 		if (!(val64 & ADAPTER_CNTL_EN)) {
5438 			pr_err("Adapter Link down, cannot blink LED\n");
5439 			return -EAGAIN;
5440 		}
5441 	}
5442 
5443 	switch (state) {
5444 	case ETHTOOL_ID_ACTIVE:
5445 		sp->adapt_ctrl_org = readq(&bar0->gpio_control);
5446 		return 1;	/* cycle on/off once per second */
5447 
5448 	case ETHTOOL_ID_ON:
5449 		s2io_set_led(sp, true);
5450 		break;
5451 
5452 	case ETHTOOL_ID_OFF:
5453 		s2io_set_led(sp, false);
5454 		break;
5455 
5456 	case ETHTOOL_ID_INACTIVE:
5457 		if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid))
5458 			writeq(sp->adapt_ctrl_org, &bar0->gpio_control);
5459 	}
5460 
5461 	return 0;
5462 }
5463 
5464 static void
5465 s2io_ethtool_gringparam(struct net_device *dev,
5466 			struct ethtool_ringparam *ering,
5467 			struct kernel_ethtool_ringparam *kernel_ering,
5468 			struct netlink_ext_ack *extack)
5469 {
5470 	struct s2io_nic *sp = netdev_priv(dev);
5471 	int i, tx_desc_count = 0, rx_desc_count = 0;
5472 
5473 	if (sp->rxd_mode == RXD_MODE_1) {
5474 		ering->rx_max_pending = MAX_RX_DESC_1;
5475 		ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5476 	} else {
5477 		ering->rx_max_pending = MAX_RX_DESC_2;
5478 		ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5479 	}
5480 
5481 	ering->tx_max_pending = MAX_TX_DESC;
5482 
5483 	for (i = 0; i < sp->config.rx_ring_num; i++)
5484 		rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5485 	ering->rx_pending = rx_desc_count;
5486 	ering->rx_jumbo_pending = rx_desc_count;
5487 
5488 	for (i = 0; i < sp->config.tx_fifo_num; i++)
5489 		tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5490 	ering->tx_pending = tx_desc_count;
5491 	DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds);
5492 }
5493 
5494 /**
5495  * s2io_ethtool_getpause_data -Pause frame generation and reception.
5496  * @dev: pointer to netdev
5497  * @ep : pointer to the structure with pause parameters given by ethtool.
5498  * Description:
5499  * Returns the Pause frame generation and reception capability of the NIC.
5500  * Return value:
5501  *  void
5502  */
5503 static void s2io_ethtool_getpause_data(struct net_device *dev,
5504 				       struct ethtool_pauseparam *ep)
5505 {
5506 	u64 val64;
5507 	struct s2io_nic *sp = netdev_priv(dev);
5508 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5509 
5510 	val64 = readq(&bar0->rmac_pause_cfg);
5511 	if (val64 & RMAC_PAUSE_GEN_ENABLE)
5512 		ep->tx_pause = true;
5513 	if (val64 & RMAC_PAUSE_RX_ENABLE)
5514 		ep->rx_pause = true;
5515 	ep->autoneg = false;
5516 }
5517 
5518 /**
5519  * s2io_ethtool_setpause_data -  set/reset pause frame generation.
5520  * @dev: pointer to netdev
5521  * @ep : pointer to the structure with pause parameters given by ethtool.
5522  * Description:
5523  * It can be used to set or reset Pause frame generation or reception
5524  * support of the NIC.
5525  * Return value:
5526  * int, returns 0 on Success
5527  */
5528 
5529 static int s2io_ethtool_setpause_data(struct net_device *dev,
5530 				      struct ethtool_pauseparam *ep)
5531 {
5532 	u64 val64;
5533 	struct s2io_nic *sp = netdev_priv(dev);
5534 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5535 
5536 	val64 = readq(&bar0->rmac_pause_cfg);
5537 	if (ep->tx_pause)
5538 		val64 |= RMAC_PAUSE_GEN_ENABLE;
5539 	else
5540 		val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5541 	if (ep->rx_pause)
5542 		val64 |= RMAC_PAUSE_RX_ENABLE;
5543 	else
5544 		val64 &= ~RMAC_PAUSE_RX_ENABLE;
5545 	writeq(val64, &bar0->rmac_pause_cfg);
5546 	return 0;
5547 }
5548 
5549 #define S2IO_DEV_ID		5
5550 /**
5551  * read_eeprom - reads 4 bytes of data from user given offset.
5552  * @sp : private member of the device structure, which is a pointer to the
5553  *      s2io_nic structure.
5554  * @off : offset at which the data must be written
5555  * @data : Its an output parameter where the data read at the given
5556  *	offset is stored.
5557  * Description:
5558  * Will read 4 bytes of data from the user given offset and return the
5559  * read data.
5560  * NOTE: Will allow to read only part of the EEPROM visible through the
5561  *   I2C bus.
5562  * Return value:
5563  *  -1 on failure and 0 on success.
5564  */
5565 static int read_eeprom(struct s2io_nic *sp, int off, u64 *data)
5566 {
5567 	int ret = -1;
5568 	u32 exit_cnt = 0;
5569 	u64 val64;
5570 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5571 
5572 	if (sp->device_type == XFRAME_I_DEVICE) {
5573 		val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5574 			I2C_CONTROL_ADDR(off) |
5575 			I2C_CONTROL_BYTE_CNT(0x3) |
5576 			I2C_CONTROL_READ |
5577 			I2C_CONTROL_CNTL_START;
5578 		SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5579 
5580 		while (exit_cnt < 5) {
5581 			val64 = readq(&bar0->i2c_control);
5582 			if (I2C_CONTROL_CNTL_END(val64)) {
5583 				*data = I2C_CONTROL_GET_DATA(val64);
5584 				ret = 0;
5585 				break;
5586 			}
5587 			msleep(50);
5588 			exit_cnt++;
5589 		}
5590 	}
5591 
5592 	if (sp->device_type == XFRAME_II_DEVICE) {
5593 		val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5594 			SPI_CONTROL_BYTECNT(0x3) |
5595 			SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5596 		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5597 		val64 |= SPI_CONTROL_REQ;
5598 		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5599 		while (exit_cnt < 5) {
5600 			val64 = readq(&bar0->spi_control);
5601 			if (val64 & SPI_CONTROL_NACK) {
5602 				ret = 1;
5603 				break;
5604 			} else if (val64 & SPI_CONTROL_DONE) {
5605 				*data = readq(&bar0->spi_data);
5606 				*data &= 0xffffff;
5607 				ret = 0;
5608 				break;
5609 			}
5610 			msleep(50);
5611 			exit_cnt++;
5612 		}
5613 	}
5614 	return ret;
5615 }
5616 
5617 /**
5618  *  write_eeprom - actually writes the relevant part of the data value.
5619  *  @sp : private member of the device structure, which is a pointer to the
5620  *       s2io_nic structure.
5621  *  @off : offset at which the data must be written
5622  *  @data : The data that is to be written
5623  *  @cnt : Number of bytes of the data that are actually to be written into
5624  *  the Eeprom. (max of 3)
5625  * Description:
5626  *  Actually writes the relevant part of the data value into the Eeprom
5627  *  through the I2C bus.
5628  * Return value:
5629  *  0 on success, -1 on failure.
5630  */
5631 
5632 static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt)
5633 {
5634 	int exit_cnt = 0, ret = -1;
5635 	u64 val64;
5636 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5637 
5638 	if (sp->device_type == XFRAME_I_DEVICE) {
5639 		val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5640 			I2C_CONTROL_ADDR(off) |
5641 			I2C_CONTROL_BYTE_CNT(cnt) |
5642 			I2C_CONTROL_SET_DATA((u32)data) |
5643 			I2C_CONTROL_CNTL_START;
5644 		SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5645 
5646 		while (exit_cnt < 5) {
5647 			val64 = readq(&bar0->i2c_control);
5648 			if (I2C_CONTROL_CNTL_END(val64)) {
5649 				if (!(val64 & I2C_CONTROL_NACK))
5650 					ret = 0;
5651 				break;
5652 			}
5653 			msleep(50);
5654 			exit_cnt++;
5655 		}
5656 	}
5657 
5658 	if (sp->device_type == XFRAME_II_DEVICE) {
5659 		int write_cnt = (cnt == 8) ? 0 : cnt;
5660 		writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data);
5661 
5662 		val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5663 			SPI_CONTROL_BYTECNT(write_cnt) |
5664 			SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5665 		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5666 		val64 |= SPI_CONTROL_REQ;
5667 		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5668 		while (exit_cnt < 5) {
5669 			val64 = readq(&bar0->spi_control);
5670 			if (val64 & SPI_CONTROL_NACK) {
5671 				ret = 1;
5672 				break;
5673 			} else if (val64 & SPI_CONTROL_DONE) {
5674 				ret = 0;
5675 				break;
5676 			}
5677 			msleep(50);
5678 			exit_cnt++;
5679 		}
5680 	}
5681 	return ret;
5682 }
5683 static void s2io_vpd_read(struct s2io_nic *nic)
5684 {
5685 	u8 *vpd_data;
5686 	u8 data;
5687 	int i = 0, cnt, len, fail = 0;
5688 	int vpd_addr = 0x80;
5689 	struct swStat *swstats = &nic->mac_control.stats_info->sw_stat;
5690 
5691 	if (nic->device_type == XFRAME_II_DEVICE) {
5692 		strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5693 		vpd_addr = 0x80;
5694 	} else {
5695 		strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5696 		vpd_addr = 0x50;
5697 	}
5698 	strcpy(nic->serial_num, "NOT AVAILABLE");
5699 
5700 	vpd_data = kmalloc(256, GFP_KERNEL);
5701 	if (!vpd_data) {
5702 		swstats->mem_alloc_fail_cnt++;
5703 		return;
5704 	}
5705 	swstats->mem_allocated += 256;
5706 
5707 	for (i = 0; i < 256; i += 4) {
5708 		pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5709 		pci_read_config_byte(nic->pdev,  (vpd_addr + 2), &data);
5710 		pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5711 		for (cnt = 0; cnt < 5; cnt++) {
5712 			msleep(2);
5713 			pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5714 			if (data == 0x80)
5715 				break;
5716 		}
5717 		if (cnt >= 5) {
5718 			DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5719 			fail = 1;
5720 			break;
5721 		}
5722 		pci_read_config_dword(nic->pdev,  (vpd_addr + 4),
5723 				      (u32 *)&vpd_data[i]);
5724 	}
5725 
5726 	if (!fail) {
5727 		/* read serial number of adapter */
5728 		for (cnt = 0; cnt < 252; cnt++) {
5729 			if ((vpd_data[cnt] == 'S') &&
5730 			    (vpd_data[cnt+1] == 'N')) {
5731 				len = vpd_data[cnt+2];
5732 				if (len < min(VPD_STRING_LEN, 256-cnt-2)) {
5733 					memcpy(nic->serial_num,
5734 					       &vpd_data[cnt + 3],
5735 					       len);
5736 					memset(nic->serial_num+len,
5737 					       0,
5738 					       VPD_STRING_LEN-len);
5739 					break;
5740 				}
5741 			}
5742 		}
5743 	}
5744 
5745 	if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5746 		len = vpd_data[1];
5747 		memcpy(nic->product_name, &vpd_data[3], len);
5748 		nic->product_name[len] = 0;
5749 	}
5750 	kfree(vpd_data);
5751 	swstats->mem_freed += 256;
5752 }
5753 
5754 /**
5755  *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
5756  *  @dev: pointer to netdev
5757  *  @eeprom : pointer to the user level structure provided by ethtool,
5758  *  containing all relevant information.
5759  *  @data_buf : user defined value to be written into Eeprom.
5760  *  Description: Reads the values stored in the Eeprom at given offset
5761  *  for a given length. Stores these values int the input argument data
5762  *  buffer 'data_buf' and returns these to the caller (ethtool.)
5763  *  Return value:
5764  *  int  0 on success
5765  */
5766 
5767 static int s2io_ethtool_geeprom(struct net_device *dev,
5768 				struct ethtool_eeprom *eeprom, u8 * data_buf)
5769 {
5770 	u32 i, valid;
5771 	u64 data;
5772 	struct s2io_nic *sp = netdev_priv(dev);
5773 
5774 	eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5775 
5776 	if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5777 		eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5778 
5779 	for (i = 0; i < eeprom->len; i += 4) {
5780 		if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5781 			DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5782 			return -EFAULT;
5783 		}
5784 		valid = INV(data);
5785 		memcpy((data_buf + i), &valid, 4);
5786 	}
5787 	return 0;
5788 }
5789 
5790 /**
5791  *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5792  *  @dev: pointer to netdev
5793  *  @eeprom : pointer to the user level structure provided by ethtool,
5794  *  containing all relevant information.
5795  *  @data_buf : user defined value to be written into Eeprom.
5796  *  Description:
5797  *  Tries to write the user provided value in the Eeprom, at the offset
5798  *  given by the user.
5799  *  Return value:
5800  *  0 on success, -EFAULT on failure.
5801  */
5802 
5803 static int s2io_ethtool_seeprom(struct net_device *dev,
5804 				struct ethtool_eeprom *eeprom,
5805 				u8 *data_buf)
5806 {
5807 	int len = eeprom->len, cnt = 0;
5808 	u64 valid = 0, data;
5809 	struct s2io_nic *sp = netdev_priv(dev);
5810 
5811 	if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5812 		DBG_PRINT(ERR_DBG,
5813 			  "ETHTOOL_WRITE_EEPROM Err: "
5814 			  "Magic value is wrong, it is 0x%x should be 0x%x\n",
5815 			  (sp->pdev->vendor | (sp->pdev->device << 16)),
5816 			  eeprom->magic);
5817 		return -EFAULT;
5818 	}
5819 
5820 	while (len) {
5821 		data = (u32)data_buf[cnt] & 0x000000FF;
5822 		if (data)
5823 			valid = (u32)(data << 24);
5824 		else
5825 			valid = data;
5826 
5827 		if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5828 			DBG_PRINT(ERR_DBG,
5829 				  "ETHTOOL_WRITE_EEPROM Err: "
5830 				  "Cannot write into the specified offset\n");
5831 			return -EFAULT;
5832 		}
5833 		cnt++;
5834 		len--;
5835 	}
5836 
5837 	return 0;
5838 }
5839 
5840 /**
5841  * s2io_register_test - reads and writes into all clock domains.
5842  * @sp : private member of the device structure, which is a pointer to the
5843  * s2io_nic structure.
5844  * @data : variable that returns the result of each of the test conducted b
5845  * by the driver.
5846  * Description:
5847  * Read and write into all clock domains. The NIC has 3 clock domains,
5848  * see that registers in all the three regions are accessible.
5849  * Return value:
5850  * 0 on success.
5851  */
5852 
5853 static int s2io_register_test(struct s2io_nic *sp, uint64_t *data)
5854 {
5855 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5856 	u64 val64 = 0, exp_val;
5857 	int fail = 0;
5858 
5859 	val64 = readq(&bar0->pif_rd_swapper_fb);
5860 	if (val64 != 0x123456789abcdefULL) {
5861 		fail = 1;
5862 		DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1);
5863 	}
5864 
5865 	val64 = readq(&bar0->rmac_pause_cfg);
5866 	if (val64 != 0xc000ffff00000000ULL) {
5867 		fail = 1;
5868 		DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2);
5869 	}
5870 
5871 	val64 = readq(&bar0->rx_queue_cfg);
5872 	if (sp->device_type == XFRAME_II_DEVICE)
5873 		exp_val = 0x0404040404040404ULL;
5874 	else
5875 		exp_val = 0x0808080808080808ULL;
5876 	if (val64 != exp_val) {
5877 		fail = 1;
5878 		DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3);
5879 	}
5880 
5881 	val64 = readq(&bar0->xgxs_efifo_cfg);
5882 	if (val64 != 0x000000001923141EULL) {
5883 		fail = 1;
5884 		DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4);
5885 	}
5886 
5887 	val64 = 0x5A5A5A5A5A5A5A5AULL;
5888 	writeq(val64, &bar0->xmsi_data);
5889 	val64 = readq(&bar0->xmsi_data);
5890 	if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5891 		fail = 1;
5892 		DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1);
5893 	}
5894 
5895 	val64 = 0xA5A5A5A5A5A5A5A5ULL;
5896 	writeq(val64, &bar0->xmsi_data);
5897 	val64 = readq(&bar0->xmsi_data);
5898 	if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5899 		fail = 1;
5900 		DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2);
5901 	}
5902 
5903 	*data = fail;
5904 	return fail;
5905 }
5906 
5907 /**
5908  * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5909  * @sp : private member of the device structure, which is a pointer to the
5910  * s2io_nic structure.
5911  * @data:variable that returns the result of each of the test conducted by
5912  * the driver.
5913  * Description:
5914  * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5915  * register.
5916  * Return value:
5917  * 0 on success.
5918  */
5919 
5920 static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data)
5921 {
5922 	int fail = 0;
5923 	u64 ret_data, org_4F0, org_7F0;
5924 	u8 saved_4F0 = 0, saved_7F0 = 0;
5925 	struct net_device *dev = sp->dev;
5926 
5927 	/* Test Write Error at offset 0 */
5928 	/* Note that SPI interface allows write access to all areas
5929 	 * of EEPROM. Hence doing all negative testing only for Xframe I.
5930 	 */
5931 	if (sp->device_type == XFRAME_I_DEVICE)
5932 		if (!write_eeprom(sp, 0, 0, 3))
5933 			fail = 1;
5934 
5935 	/* Save current values at offsets 0x4F0 and 0x7F0 */
5936 	if (!read_eeprom(sp, 0x4F0, &org_4F0))
5937 		saved_4F0 = 1;
5938 	if (!read_eeprom(sp, 0x7F0, &org_7F0))
5939 		saved_7F0 = 1;
5940 
5941 	/* Test Write at offset 4f0 */
5942 	if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5943 		fail = 1;
5944 	if (read_eeprom(sp, 0x4F0, &ret_data))
5945 		fail = 1;
5946 
5947 	if (ret_data != 0x012345) {
5948 		DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5949 			  "Data written %llx Data read %llx\n",
5950 			  dev->name, (unsigned long long)0x12345,
5951 			  (unsigned long long)ret_data);
5952 		fail = 1;
5953 	}
5954 
5955 	/* Reset the EEPROM data go FFFF */
5956 	write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5957 
5958 	/* Test Write Request Error at offset 0x7c */
5959 	if (sp->device_type == XFRAME_I_DEVICE)
5960 		if (!write_eeprom(sp, 0x07C, 0, 3))
5961 			fail = 1;
5962 
5963 	/* Test Write Request at offset 0x7f0 */
5964 	if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5965 		fail = 1;
5966 	if (read_eeprom(sp, 0x7F0, &ret_data))
5967 		fail = 1;
5968 
5969 	if (ret_data != 0x012345) {
5970 		DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5971 			  "Data written %llx Data read %llx\n",
5972 			  dev->name, (unsigned long long)0x12345,
5973 			  (unsigned long long)ret_data);
5974 		fail = 1;
5975 	}
5976 
5977 	/* Reset the EEPROM data go FFFF */
5978 	write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5979 
5980 	if (sp->device_type == XFRAME_I_DEVICE) {
5981 		/* Test Write Error at offset 0x80 */
5982 		if (!write_eeprom(sp, 0x080, 0, 3))
5983 			fail = 1;
5984 
5985 		/* Test Write Error at offset 0xfc */
5986 		if (!write_eeprom(sp, 0x0FC, 0, 3))
5987 			fail = 1;
5988 
5989 		/* Test Write Error at offset 0x100 */
5990 		if (!write_eeprom(sp, 0x100, 0, 3))
5991 			fail = 1;
5992 
5993 		/* Test Write Error at offset 4ec */
5994 		if (!write_eeprom(sp, 0x4EC, 0, 3))
5995 			fail = 1;
5996 	}
5997 
5998 	/* Restore values at offsets 0x4F0 and 0x7F0 */
5999 	if (saved_4F0)
6000 		write_eeprom(sp, 0x4F0, org_4F0, 3);
6001 	if (saved_7F0)
6002 		write_eeprom(sp, 0x7F0, org_7F0, 3);
6003 
6004 	*data = fail;
6005 	return fail;
6006 }
6007 
6008 /**
6009  * s2io_bist_test - invokes the MemBist test of the card .
6010  * @sp : private member of the device structure, which is a pointer to the
6011  * s2io_nic structure.
6012  * @data:variable that returns the result of each of the test conducted by
6013  * the driver.
6014  * Description:
6015  * This invokes the MemBist test of the card. We give around
6016  * 2 secs time for the Test to complete. If it's still not complete
6017  * within this peiod, we consider that the test failed.
6018  * Return value:
6019  * 0 on success and -1 on failure.
6020  */
6021 
6022 static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data)
6023 {
6024 	u8 bist = 0;
6025 	int cnt = 0, ret = -1;
6026 
6027 	pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6028 	bist |= PCI_BIST_START;
6029 	pci_write_config_word(sp->pdev, PCI_BIST, bist);
6030 
6031 	while (cnt < 20) {
6032 		pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6033 		if (!(bist & PCI_BIST_START)) {
6034 			*data = (bist & PCI_BIST_CODE_MASK);
6035 			ret = 0;
6036 			break;
6037 		}
6038 		msleep(100);
6039 		cnt++;
6040 	}
6041 
6042 	return ret;
6043 }
6044 
6045 /**
6046  * s2io_link_test - verifies the link state of the nic
6047  * @sp: private member of the device structure, which is a pointer to the
6048  * s2io_nic structure.
6049  * @data: variable that returns the result of each of the test conducted by
6050  * the driver.
6051  * Description:
6052  * The function verifies the link state of the NIC and updates the input
6053  * argument 'data' appropriately.
6054  * Return value:
6055  * 0 on success.
6056  */
6057 
6058 static int s2io_link_test(struct s2io_nic *sp, uint64_t *data)
6059 {
6060 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
6061 	u64 val64;
6062 
6063 	val64 = readq(&bar0->adapter_status);
6064 	if (!(LINK_IS_UP(val64)))
6065 		*data = 1;
6066 	else
6067 		*data = 0;
6068 
6069 	return *data;
6070 }
6071 
6072 /**
6073  * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6074  * @sp: private member of the device structure, which is a pointer to the
6075  * s2io_nic structure.
6076  * @data: variable that returns the result of each of the test
6077  * conducted by the driver.
6078  * Description:
6079  *  This is one of the offline test that tests the read and write
6080  *  access to the RldRam chip on the NIC.
6081  * Return value:
6082  *  0 on success.
6083  */
6084 
6085 static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data)
6086 {
6087 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
6088 	u64 val64;
6089 	int cnt, iteration = 0, test_fail = 0;
6090 
6091 	val64 = readq(&bar0->adapter_control);
6092 	val64 &= ~ADAPTER_ECC_EN;
6093 	writeq(val64, &bar0->adapter_control);
6094 
6095 	val64 = readq(&bar0->mc_rldram_test_ctrl);
6096 	val64 |= MC_RLDRAM_TEST_MODE;
6097 	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6098 
6099 	val64 = readq(&bar0->mc_rldram_mrs);
6100 	val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6101 	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6102 
6103 	val64 |= MC_RLDRAM_MRS_ENABLE;
6104 	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6105 
6106 	while (iteration < 2) {
6107 		val64 = 0x55555555aaaa0000ULL;
6108 		if (iteration == 1)
6109 			val64 ^= 0xFFFFFFFFFFFF0000ULL;
6110 		writeq(val64, &bar0->mc_rldram_test_d0);
6111 
6112 		val64 = 0xaaaa5a5555550000ULL;
6113 		if (iteration == 1)
6114 			val64 ^= 0xFFFFFFFFFFFF0000ULL;
6115 		writeq(val64, &bar0->mc_rldram_test_d1);
6116 
6117 		val64 = 0x55aaaaaaaa5a0000ULL;
6118 		if (iteration == 1)
6119 			val64 ^= 0xFFFFFFFFFFFF0000ULL;
6120 		writeq(val64, &bar0->mc_rldram_test_d2);
6121 
6122 		val64 = (u64) (0x0000003ffffe0100ULL);
6123 		writeq(val64, &bar0->mc_rldram_test_add);
6124 
6125 		val64 = MC_RLDRAM_TEST_MODE |
6126 			MC_RLDRAM_TEST_WRITE |
6127 			MC_RLDRAM_TEST_GO;
6128 		SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6129 
6130 		for (cnt = 0; cnt < 5; cnt++) {
6131 			val64 = readq(&bar0->mc_rldram_test_ctrl);
6132 			if (val64 & MC_RLDRAM_TEST_DONE)
6133 				break;
6134 			msleep(200);
6135 		}
6136 
6137 		if (cnt == 5)
6138 			break;
6139 
6140 		val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6141 		SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6142 
6143 		for (cnt = 0; cnt < 5; cnt++) {
6144 			val64 = readq(&bar0->mc_rldram_test_ctrl);
6145 			if (val64 & MC_RLDRAM_TEST_DONE)
6146 				break;
6147 			msleep(500);
6148 		}
6149 
6150 		if (cnt == 5)
6151 			break;
6152 
6153 		val64 = readq(&bar0->mc_rldram_test_ctrl);
6154 		if (!(val64 & MC_RLDRAM_TEST_PASS))
6155 			test_fail = 1;
6156 
6157 		iteration++;
6158 	}
6159 
6160 	*data = test_fail;
6161 
6162 	/* Bring the adapter out of test mode */
6163 	SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6164 
6165 	return test_fail;
6166 }
6167 
6168 /**
6169  *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6170  *  @dev: pointer to netdev
6171  *  @ethtest : pointer to a ethtool command specific structure that will be
6172  *  returned to the user.
6173  *  @data : variable that returns the result of each of the test
6174  * conducted by the driver.
6175  * Description:
6176  *  This function conducts 6 tests ( 4 offline and 2 online) to determine
6177  *  the health of the card.
6178  * Return value:
6179  *  void
6180  */
6181 
6182 static void s2io_ethtool_test(struct net_device *dev,
6183 			      struct ethtool_test *ethtest,
6184 			      uint64_t *data)
6185 {
6186 	struct s2io_nic *sp = netdev_priv(dev);
6187 	int orig_state = netif_running(sp->dev);
6188 
6189 	if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6190 		/* Offline Tests. */
6191 		if (orig_state)
6192 			s2io_close(sp->dev);
6193 
6194 		if (s2io_register_test(sp, &data[0]))
6195 			ethtest->flags |= ETH_TEST_FL_FAILED;
6196 
6197 		s2io_reset(sp);
6198 
6199 		if (s2io_rldram_test(sp, &data[3]))
6200 			ethtest->flags |= ETH_TEST_FL_FAILED;
6201 
6202 		s2io_reset(sp);
6203 
6204 		if (s2io_eeprom_test(sp, &data[1]))
6205 			ethtest->flags |= ETH_TEST_FL_FAILED;
6206 
6207 		if (s2io_bist_test(sp, &data[4]))
6208 			ethtest->flags |= ETH_TEST_FL_FAILED;
6209 
6210 		if (orig_state)
6211 			s2io_open(sp->dev);
6212 
6213 		data[2] = 0;
6214 	} else {
6215 		/* Online Tests. */
6216 		if (!orig_state) {
6217 			DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n",
6218 				  dev->name);
6219 			data[0] = -1;
6220 			data[1] = -1;
6221 			data[2] = -1;
6222 			data[3] = -1;
6223 			data[4] = -1;
6224 		}
6225 
6226 		if (s2io_link_test(sp, &data[2]))
6227 			ethtest->flags |= ETH_TEST_FL_FAILED;
6228 
6229 		data[0] = 0;
6230 		data[1] = 0;
6231 		data[3] = 0;
6232 		data[4] = 0;
6233 	}
6234 }
6235 
6236 static void s2io_get_ethtool_stats(struct net_device *dev,
6237 				   struct ethtool_stats *estats,
6238 				   u64 *tmp_stats)
6239 {
6240 	int i = 0, k;
6241 	struct s2io_nic *sp = netdev_priv(dev);
6242 	struct stat_block *stats = sp->mac_control.stats_info;
6243 	struct swStat *swstats = &stats->sw_stat;
6244 	struct xpakStat *xstats = &stats->xpak_stat;
6245 
6246 	s2io_updt_stats(sp);
6247 	tmp_stats[i++] =
6248 		(u64)le32_to_cpu(stats->tmac_frms_oflow) << 32  |
6249 		le32_to_cpu(stats->tmac_frms);
6250 	tmp_stats[i++] =
6251 		(u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
6252 		le32_to_cpu(stats->tmac_data_octets);
6253 	tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms);
6254 	tmp_stats[i++] =
6255 		(u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 |
6256 		le32_to_cpu(stats->tmac_mcst_frms);
6257 	tmp_stats[i++] =
6258 		(u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 |
6259 		le32_to_cpu(stats->tmac_bcst_frms);
6260 	tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms);
6261 	tmp_stats[i++] =
6262 		(u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 |
6263 		le32_to_cpu(stats->tmac_ttl_octets);
6264 	tmp_stats[i++] =
6265 		(u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 |
6266 		le32_to_cpu(stats->tmac_ucst_frms);
6267 	tmp_stats[i++] =
6268 		(u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 |
6269 		le32_to_cpu(stats->tmac_nucst_frms);
6270 	tmp_stats[i++] =
6271 		(u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
6272 		le32_to_cpu(stats->tmac_any_err_frms);
6273 	tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets);
6274 	tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets);
6275 	tmp_stats[i++] =
6276 		(u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 |
6277 		le32_to_cpu(stats->tmac_vld_ip);
6278 	tmp_stats[i++] =
6279 		(u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 |
6280 		le32_to_cpu(stats->tmac_drop_ip);
6281 	tmp_stats[i++] =
6282 		(u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 |
6283 		le32_to_cpu(stats->tmac_icmp);
6284 	tmp_stats[i++] =
6285 		(u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 |
6286 		le32_to_cpu(stats->tmac_rst_tcp);
6287 	tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp);
6288 	tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 |
6289 		le32_to_cpu(stats->tmac_udp);
6290 	tmp_stats[i++] =
6291 		(u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
6292 		le32_to_cpu(stats->rmac_vld_frms);
6293 	tmp_stats[i++] =
6294 		(u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
6295 		le32_to_cpu(stats->rmac_data_octets);
6296 	tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms);
6297 	tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms);
6298 	tmp_stats[i++] =
6299 		(u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
6300 		le32_to_cpu(stats->rmac_vld_mcst_frms);
6301 	tmp_stats[i++] =
6302 		(u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 |
6303 		le32_to_cpu(stats->rmac_vld_bcst_frms);
6304 	tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms);
6305 	tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms);
6306 	tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms);
6307 	tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms);
6308 	tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms);
6309 	tmp_stats[i++] =
6310 		(u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 |
6311 		le32_to_cpu(stats->rmac_ttl_octets);
6312 	tmp_stats[i++] =
6313 		(u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32
6314 		| le32_to_cpu(stats->rmac_accepted_ucst_frms);
6315 	tmp_stats[i++] =
6316 		(u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow)
6317 		<< 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms);
6318 	tmp_stats[i++] =
6319 		(u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 |
6320 		le32_to_cpu(stats->rmac_discarded_frms);
6321 	tmp_stats[i++] =
6322 		(u64)le32_to_cpu(stats->rmac_drop_events_oflow)
6323 		<< 32 | le32_to_cpu(stats->rmac_drop_events);
6324 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets);
6325 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms);
6326 	tmp_stats[i++] =
6327 		(u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
6328 		le32_to_cpu(stats->rmac_usized_frms);
6329 	tmp_stats[i++] =
6330 		(u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 |
6331 		le32_to_cpu(stats->rmac_osized_frms);
6332 	tmp_stats[i++] =
6333 		(u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 |
6334 		le32_to_cpu(stats->rmac_frag_frms);
6335 	tmp_stats[i++] =
6336 		(u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 |
6337 		le32_to_cpu(stats->rmac_jabber_frms);
6338 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms);
6339 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms);
6340 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms);
6341 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms);
6342 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms);
6343 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms);
6344 	tmp_stats[i++] =
6345 		(u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 |
6346 		le32_to_cpu(stats->rmac_ip);
6347 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets);
6348 	tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip);
6349 	tmp_stats[i++] =
6350 		(u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 |
6351 		le32_to_cpu(stats->rmac_drop_ip);
6352 	tmp_stats[i++] =
6353 		(u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 |
6354 		le32_to_cpu(stats->rmac_icmp);
6355 	tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp);
6356 	tmp_stats[i++] =
6357 		(u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 |
6358 		le32_to_cpu(stats->rmac_udp);
6359 	tmp_stats[i++] =
6360 		(u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 |
6361 		le32_to_cpu(stats->rmac_err_drp_udp);
6362 	tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym);
6363 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0);
6364 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1);
6365 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2);
6366 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3);
6367 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4);
6368 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5);
6369 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6);
6370 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7);
6371 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0);
6372 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1);
6373 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2);
6374 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3);
6375 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4);
6376 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5);
6377 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6);
6378 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7);
6379 	tmp_stats[i++] =
6380 		(u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 |
6381 		le32_to_cpu(stats->rmac_pause_cnt);
6382 	tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt);
6383 	tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt);
6384 	tmp_stats[i++] =
6385 		(u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 |
6386 		le32_to_cpu(stats->rmac_accepted_ip);
6387 	tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp);
6388 	tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt);
6389 	tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt);
6390 	tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt);
6391 	tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt);
6392 	tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt);
6393 	tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt);
6394 	tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt);
6395 	tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt);
6396 	tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt);
6397 	tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt);
6398 	tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt);
6399 	tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt);
6400 	tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt);
6401 	tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt);
6402 	tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt);
6403 	tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt);
6404 	tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt);
6405 	tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt);
6406 
6407 	/* Enhanced statistics exist only for Hercules */
6408 	if (sp->device_type == XFRAME_II_DEVICE) {
6409 		tmp_stats[i++] =
6410 			le64_to_cpu(stats->rmac_ttl_1519_4095_frms);
6411 		tmp_stats[i++] =
6412 			le64_to_cpu(stats->rmac_ttl_4096_8191_frms);
6413 		tmp_stats[i++] =
6414 			le64_to_cpu(stats->rmac_ttl_8192_max_frms);
6415 		tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms);
6416 		tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms);
6417 		tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms);
6418 		tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms);
6419 		tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms);
6420 		tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard);
6421 		tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard);
6422 		tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard);
6423 		tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard);
6424 		tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard);
6425 		tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard);
6426 		tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard);
6427 		tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt);
6428 	}
6429 
6430 	tmp_stats[i++] = 0;
6431 	tmp_stats[i++] = swstats->single_ecc_errs;
6432 	tmp_stats[i++] = swstats->double_ecc_errs;
6433 	tmp_stats[i++] = swstats->parity_err_cnt;
6434 	tmp_stats[i++] = swstats->serious_err_cnt;
6435 	tmp_stats[i++] = swstats->soft_reset_cnt;
6436 	tmp_stats[i++] = swstats->fifo_full_cnt;
6437 	for (k = 0; k < MAX_RX_RINGS; k++)
6438 		tmp_stats[i++] = swstats->ring_full_cnt[k];
6439 	tmp_stats[i++] = xstats->alarm_transceiver_temp_high;
6440 	tmp_stats[i++] = xstats->alarm_transceiver_temp_low;
6441 	tmp_stats[i++] = xstats->alarm_laser_bias_current_high;
6442 	tmp_stats[i++] = xstats->alarm_laser_bias_current_low;
6443 	tmp_stats[i++] = xstats->alarm_laser_output_power_high;
6444 	tmp_stats[i++] = xstats->alarm_laser_output_power_low;
6445 	tmp_stats[i++] = xstats->warn_transceiver_temp_high;
6446 	tmp_stats[i++] = xstats->warn_transceiver_temp_low;
6447 	tmp_stats[i++] = xstats->warn_laser_bias_current_high;
6448 	tmp_stats[i++] = xstats->warn_laser_bias_current_low;
6449 	tmp_stats[i++] = xstats->warn_laser_output_power_high;
6450 	tmp_stats[i++] = xstats->warn_laser_output_power_low;
6451 	tmp_stats[i++] = swstats->clubbed_frms_cnt;
6452 	tmp_stats[i++] = swstats->sending_both;
6453 	tmp_stats[i++] = swstats->outof_sequence_pkts;
6454 	tmp_stats[i++] = swstats->flush_max_pkts;
6455 	if (swstats->num_aggregations) {
6456 		u64 tmp = swstats->sum_avg_pkts_aggregated;
6457 		int count = 0;
6458 		/*
6459 		 * Since 64-bit divide does not work on all platforms,
6460 		 * do repeated subtraction.
6461 		 */
6462 		while (tmp >= swstats->num_aggregations) {
6463 			tmp -= swstats->num_aggregations;
6464 			count++;
6465 		}
6466 		tmp_stats[i++] = count;
6467 	} else
6468 		tmp_stats[i++] = 0;
6469 	tmp_stats[i++] = swstats->mem_alloc_fail_cnt;
6470 	tmp_stats[i++] = swstats->pci_map_fail_cnt;
6471 	tmp_stats[i++] = swstats->watchdog_timer_cnt;
6472 	tmp_stats[i++] = swstats->mem_allocated;
6473 	tmp_stats[i++] = swstats->mem_freed;
6474 	tmp_stats[i++] = swstats->link_up_cnt;
6475 	tmp_stats[i++] = swstats->link_down_cnt;
6476 	tmp_stats[i++] = swstats->link_up_time;
6477 	tmp_stats[i++] = swstats->link_down_time;
6478 
6479 	tmp_stats[i++] = swstats->tx_buf_abort_cnt;
6480 	tmp_stats[i++] = swstats->tx_desc_abort_cnt;
6481 	tmp_stats[i++] = swstats->tx_parity_err_cnt;
6482 	tmp_stats[i++] = swstats->tx_link_loss_cnt;
6483 	tmp_stats[i++] = swstats->tx_list_proc_err_cnt;
6484 
6485 	tmp_stats[i++] = swstats->rx_parity_err_cnt;
6486 	tmp_stats[i++] = swstats->rx_abort_cnt;
6487 	tmp_stats[i++] = swstats->rx_parity_abort_cnt;
6488 	tmp_stats[i++] = swstats->rx_rda_fail_cnt;
6489 	tmp_stats[i++] = swstats->rx_unkn_prot_cnt;
6490 	tmp_stats[i++] = swstats->rx_fcs_err_cnt;
6491 	tmp_stats[i++] = swstats->rx_buf_size_err_cnt;
6492 	tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt;
6493 	tmp_stats[i++] = swstats->rx_unkn_err_cnt;
6494 	tmp_stats[i++] = swstats->tda_err_cnt;
6495 	tmp_stats[i++] = swstats->pfc_err_cnt;
6496 	tmp_stats[i++] = swstats->pcc_err_cnt;
6497 	tmp_stats[i++] = swstats->tti_err_cnt;
6498 	tmp_stats[i++] = swstats->tpa_err_cnt;
6499 	tmp_stats[i++] = swstats->sm_err_cnt;
6500 	tmp_stats[i++] = swstats->lso_err_cnt;
6501 	tmp_stats[i++] = swstats->mac_tmac_err_cnt;
6502 	tmp_stats[i++] = swstats->mac_rmac_err_cnt;
6503 	tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt;
6504 	tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt;
6505 	tmp_stats[i++] = swstats->rc_err_cnt;
6506 	tmp_stats[i++] = swstats->prc_pcix_err_cnt;
6507 	tmp_stats[i++] = swstats->rpa_err_cnt;
6508 	tmp_stats[i++] = swstats->rda_err_cnt;
6509 	tmp_stats[i++] = swstats->rti_err_cnt;
6510 	tmp_stats[i++] = swstats->mc_err_cnt;
6511 }
6512 
6513 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6514 {
6515 	return XENA_REG_SPACE;
6516 }
6517 
6518 
6519 static int s2io_get_eeprom_len(struct net_device *dev)
6520 {
6521 	return XENA_EEPROM_SPACE;
6522 }
6523 
6524 static int s2io_get_sset_count(struct net_device *dev, int sset)
6525 {
6526 	struct s2io_nic *sp = netdev_priv(dev);
6527 
6528 	switch (sset) {
6529 	case ETH_SS_TEST:
6530 		return S2IO_TEST_LEN;
6531 	case ETH_SS_STATS:
6532 		switch (sp->device_type) {
6533 		case XFRAME_I_DEVICE:
6534 			return XFRAME_I_STAT_LEN;
6535 		case XFRAME_II_DEVICE:
6536 			return XFRAME_II_STAT_LEN;
6537 		default:
6538 			return 0;
6539 		}
6540 	default:
6541 		return -EOPNOTSUPP;
6542 	}
6543 }
6544 
6545 static void s2io_ethtool_get_strings(struct net_device *dev,
6546 				     u32 stringset, u8 *data)
6547 {
6548 	int stat_size = 0;
6549 	struct s2io_nic *sp = netdev_priv(dev);
6550 
6551 	switch (stringset) {
6552 	case ETH_SS_TEST:
6553 		memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6554 		break;
6555 	case ETH_SS_STATS:
6556 		stat_size = sizeof(ethtool_xena_stats_keys);
6557 		memcpy(data, &ethtool_xena_stats_keys, stat_size);
6558 		if (sp->device_type == XFRAME_II_DEVICE) {
6559 			memcpy(data + stat_size,
6560 			       &ethtool_enhanced_stats_keys,
6561 			       sizeof(ethtool_enhanced_stats_keys));
6562 			stat_size += sizeof(ethtool_enhanced_stats_keys);
6563 		}
6564 
6565 		memcpy(data + stat_size, &ethtool_driver_stats_keys,
6566 		       sizeof(ethtool_driver_stats_keys));
6567 	}
6568 }
6569 
6570 static int s2io_set_features(struct net_device *dev, netdev_features_t features)
6571 {
6572 	struct s2io_nic *sp = netdev_priv(dev);
6573 	netdev_features_t changed = (features ^ dev->features) & NETIF_F_LRO;
6574 
6575 	if (changed && netif_running(dev)) {
6576 		int rc;
6577 
6578 		s2io_stop_all_tx_queue(sp);
6579 		s2io_card_down(sp);
6580 		dev->features = features;
6581 		rc = s2io_card_up(sp);
6582 		if (rc)
6583 			s2io_reset(sp);
6584 		else
6585 			s2io_start_all_tx_queue(sp);
6586 
6587 		return rc ? rc : 1;
6588 	}
6589 
6590 	return 0;
6591 }
6592 
6593 static const struct ethtool_ops netdev_ethtool_ops = {
6594 	.get_drvinfo = s2io_ethtool_gdrvinfo,
6595 	.get_regs_len = s2io_ethtool_get_regs_len,
6596 	.get_regs = s2io_ethtool_gregs,
6597 	.get_link = ethtool_op_get_link,
6598 	.get_eeprom_len = s2io_get_eeprom_len,
6599 	.get_eeprom = s2io_ethtool_geeprom,
6600 	.set_eeprom = s2io_ethtool_seeprom,
6601 	.get_ringparam = s2io_ethtool_gringparam,
6602 	.get_pauseparam = s2io_ethtool_getpause_data,
6603 	.set_pauseparam = s2io_ethtool_setpause_data,
6604 	.self_test = s2io_ethtool_test,
6605 	.get_strings = s2io_ethtool_get_strings,
6606 	.set_phys_id = s2io_ethtool_set_led,
6607 	.get_ethtool_stats = s2io_get_ethtool_stats,
6608 	.get_sset_count = s2io_get_sset_count,
6609 	.get_link_ksettings = s2io_ethtool_get_link_ksettings,
6610 	.set_link_ksettings = s2io_ethtool_set_link_ksettings,
6611 };
6612 
6613 /**
6614  *  s2io_ioctl - Entry point for the Ioctl
6615  *  @dev :  Device pointer.
6616  *  @rq :  An IOCTL specefic structure, that can contain a pointer to
6617  *  a proprietary structure used to pass information to the driver.
6618  *  @cmd :  This is used to distinguish between the different commands that
6619  *  can be passed to the IOCTL functions.
6620  *  Description:
6621  *  Currently there are no special functionality supported in IOCTL, hence
6622  *  function always return EOPNOTSUPPORTED
6623  */
6624 
6625 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6626 {
6627 	return -EOPNOTSUPP;
6628 }
6629 
6630 /**
6631  *  s2io_change_mtu - entry point to change MTU size for the device.
6632  *   @dev : device pointer.
6633  *   @new_mtu : the new MTU size for the device.
6634  *   Description: A driver entry point to change MTU size for the device.
6635  *   Before changing the MTU the device must be stopped.
6636  *  Return value:
6637  *   0 on success and an appropriate (-)ve integer as defined in errno.h
6638  *   file on failure.
6639  */
6640 
6641 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6642 {
6643 	struct s2io_nic *sp = netdev_priv(dev);
6644 	int ret = 0;
6645 
6646 	dev->mtu = new_mtu;
6647 	if (netif_running(dev)) {
6648 		s2io_stop_all_tx_queue(sp);
6649 		s2io_card_down(sp);
6650 		ret = s2io_card_up(sp);
6651 		if (ret) {
6652 			DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6653 				  __func__);
6654 			return ret;
6655 		}
6656 		s2io_wake_all_tx_queue(sp);
6657 	} else { /* Device is down */
6658 		struct XENA_dev_config __iomem *bar0 = sp->bar0;
6659 		u64 val64 = new_mtu;
6660 
6661 		writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6662 	}
6663 
6664 	return ret;
6665 }
6666 
6667 /**
6668  * s2io_set_link - Set the LInk status
6669  * @work: work struct containing a pointer to device private structure
6670  * Description: Sets the link status for the adapter
6671  */
6672 
6673 static void s2io_set_link(struct work_struct *work)
6674 {
6675 	struct s2io_nic *nic = container_of(work, struct s2io_nic,
6676 					    set_link_task);
6677 	struct net_device *dev = nic->dev;
6678 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
6679 	register u64 val64;
6680 	u16 subid;
6681 
6682 	rtnl_lock();
6683 
6684 	if (!netif_running(dev))
6685 		goto out_unlock;
6686 
6687 	if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6688 		/* The card is being reset, no point doing anything */
6689 		goto out_unlock;
6690 	}
6691 
6692 	subid = nic->pdev->subsystem_device;
6693 	if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6694 		/*
6695 		 * Allow a small delay for the NICs self initiated
6696 		 * cleanup to complete.
6697 		 */
6698 		msleep(100);
6699 	}
6700 
6701 	val64 = readq(&bar0->adapter_status);
6702 	if (LINK_IS_UP(val64)) {
6703 		if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6704 			if (verify_xena_quiescence(nic)) {
6705 				val64 = readq(&bar0->adapter_control);
6706 				val64 |= ADAPTER_CNTL_EN;
6707 				writeq(val64, &bar0->adapter_control);
6708 				if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6709 					    nic->device_type, subid)) {
6710 					val64 = readq(&bar0->gpio_control);
6711 					val64 |= GPIO_CTRL_GPIO_0;
6712 					writeq(val64, &bar0->gpio_control);
6713 					val64 = readq(&bar0->gpio_control);
6714 				} else {
6715 					val64 |= ADAPTER_LED_ON;
6716 					writeq(val64, &bar0->adapter_control);
6717 				}
6718 				nic->device_enabled_once = true;
6719 			} else {
6720 				DBG_PRINT(ERR_DBG,
6721 					  "%s: Error: device is not Quiescent\n",
6722 					  dev->name);
6723 				s2io_stop_all_tx_queue(nic);
6724 			}
6725 		}
6726 		val64 = readq(&bar0->adapter_control);
6727 		val64 |= ADAPTER_LED_ON;
6728 		writeq(val64, &bar0->adapter_control);
6729 		s2io_link(nic, LINK_UP);
6730 	} else {
6731 		if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6732 						      subid)) {
6733 			val64 = readq(&bar0->gpio_control);
6734 			val64 &= ~GPIO_CTRL_GPIO_0;
6735 			writeq(val64, &bar0->gpio_control);
6736 			val64 = readq(&bar0->gpio_control);
6737 		}
6738 		/* turn off LED */
6739 		val64 = readq(&bar0->adapter_control);
6740 		val64 = val64 & (~ADAPTER_LED_ON);
6741 		writeq(val64, &bar0->adapter_control);
6742 		s2io_link(nic, LINK_DOWN);
6743 	}
6744 	clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6745 
6746 out_unlock:
6747 	rtnl_unlock();
6748 }
6749 
6750 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6751 				  struct buffAdd *ba,
6752 				  struct sk_buff **skb, u64 *temp0, u64 *temp1,
6753 				  u64 *temp2, int size)
6754 {
6755 	struct net_device *dev = sp->dev;
6756 	struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6757 
6758 	if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6759 		struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6760 		/* allocate skb */
6761 		if (*skb) {
6762 			DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6763 			/*
6764 			 * As Rx frame are not going to be processed,
6765 			 * using same mapped address for the Rxd
6766 			 * buffer pointer
6767 			 */
6768 			rxdp1->Buffer0_ptr = *temp0;
6769 		} else {
6770 			*skb = netdev_alloc_skb(dev, size);
6771 			if (!(*skb)) {
6772 				DBG_PRINT(INFO_DBG,
6773 					  "%s: Out of memory to allocate %s\n",
6774 					  dev->name, "1 buf mode SKBs");
6775 				stats->mem_alloc_fail_cnt++;
6776 				return -ENOMEM ;
6777 			}
6778 			stats->mem_allocated += (*skb)->truesize;
6779 			/* storing the mapped addr in a temp variable
6780 			 * such it will be used for next rxd whose
6781 			 * Host Control is NULL
6782 			 */
6783 			rxdp1->Buffer0_ptr = *temp0 =
6784 				dma_map_single(&sp->pdev->dev, (*skb)->data,
6785 					       size - NET_IP_ALIGN,
6786 					       DMA_FROM_DEVICE);
6787 			if (dma_mapping_error(&sp->pdev->dev, rxdp1->Buffer0_ptr))
6788 				goto memalloc_failed;
6789 			rxdp->Host_Control = (unsigned long) (*skb);
6790 		}
6791 	} else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6792 		struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6793 		/* Two buffer Mode */
6794 		if (*skb) {
6795 			rxdp3->Buffer2_ptr = *temp2;
6796 			rxdp3->Buffer0_ptr = *temp0;
6797 			rxdp3->Buffer1_ptr = *temp1;
6798 		} else {
6799 			*skb = netdev_alloc_skb(dev, size);
6800 			if (!(*skb)) {
6801 				DBG_PRINT(INFO_DBG,
6802 					  "%s: Out of memory to allocate %s\n",
6803 					  dev->name,
6804 					  "2 buf mode SKBs");
6805 				stats->mem_alloc_fail_cnt++;
6806 				return -ENOMEM;
6807 			}
6808 			stats->mem_allocated += (*skb)->truesize;
6809 			rxdp3->Buffer2_ptr = *temp2 =
6810 				dma_map_single(&sp->pdev->dev, (*skb)->data,
6811 					       dev->mtu + 4, DMA_FROM_DEVICE);
6812 			if (dma_mapping_error(&sp->pdev->dev, rxdp3->Buffer2_ptr))
6813 				goto memalloc_failed;
6814 			rxdp3->Buffer0_ptr = *temp0 =
6815 				dma_map_single(&sp->pdev->dev, ba->ba_0,
6816 					       BUF0_LEN, DMA_FROM_DEVICE);
6817 			if (dma_mapping_error(&sp->pdev->dev, rxdp3->Buffer0_ptr)) {
6818 				dma_unmap_single(&sp->pdev->dev,
6819 						 (dma_addr_t)rxdp3->Buffer2_ptr,
6820 						 dev->mtu + 4,
6821 						 DMA_FROM_DEVICE);
6822 				goto memalloc_failed;
6823 			}
6824 			rxdp->Host_Control = (unsigned long) (*skb);
6825 
6826 			/* Buffer-1 will be dummy buffer not used */
6827 			rxdp3->Buffer1_ptr = *temp1 =
6828 				dma_map_single(&sp->pdev->dev, ba->ba_1,
6829 					       BUF1_LEN, DMA_FROM_DEVICE);
6830 			if (dma_mapping_error(&sp->pdev->dev, rxdp3->Buffer1_ptr)) {
6831 				dma_unmap_single(&sp->pdev->dev,
6832 						 (dma_addr_t)rxdp3->Buffer0_ptr,
6833 						 BUF0_LEN, DMA_FROM_DEVICE);
6834 				dma_unmap_single(&sp->pdev->dev,
6835 						 (dma_addr_t)rxdp3->Buffer2_ptr,
6836 						 dev->mtu + 4,
6837 						 DMA_FROM_DEVICE);
6838 				goto memalloc_failed;
6839 			}
6840 		}
6841 	}
6842 	return 0;
6843 
6844 memalloc_failed:
6845 	stats->pci_map_fail_cnt++;
6846 	stats->mem_freed += (*skb)->truesize;
6847 	dev_kfree_skb(*skb);
6848 	return -ENOMEM;
6849 }
6850 
6851 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6852 				int size)
6853 {
6854 	struct net_device *dev = sp->dev;
6855 	if (sp->rxd_mode == RXD_MODE_1) {
6856 		rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
6857 	} else if (sp->rxd_mode == RXD_MODE_3B) {
6858 		rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6859 		rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6860 		rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4);
6861 	}
6862 }
6863 
6864 static  int rxd_owner_bit_reset(struct s2io_nic *sp)
6865 {
6866 	int i, j, k, blk_cnt = 0, size;
6867 	struct config_param *config = &sp->config;
6868 	struct mac_info *mac_control = &sp->mac_control;
6869 	struct net_device *dev = sp->dev;
6870 	struct RxD_t *rxdp = NULL;
6871 	struct sk_buff *skb = NULL;
6872 	struct buffAdd *ba = NULL;
6873 	u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6874 
6875 	/* Calculate the size based on ring mode */
6876 	size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6877 		HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6878 	if (sp->rxd_mode == RXD_MODE_1)
6879 		size += NET_IP_ALIGN;
6880 	else if (sp->rxd_mode == RXD_MODE_3B)
6881 		size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6882 
6883 	for (i = 0; i < config->rx_ring_num; i++) {
6884 		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
6885 		struct ring_info *ring = &mac_control->rings[i];
6886 
6887 		blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1);
6888 
6889 		for (j = 0; j < blk_cnt; j++) {
6890 			for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6891 				rxdp = ring->rx_blocks[j].rxds[k].virt_addr;
6892 				if (sp->rxd_mode == RXD_MODE_3B)
6893 					ba = &ring->ba[j][k];
6894 				if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb,
6895 							   &temp0_64,
6896 							   &temp1_64,
6897 							   &temp2_64,
6898 							   size) == -ENOMEM) {
6899 					return 0;
6900 				}
6901 
6902 				set_rxd_buffer_size(sp, rxdp, size);
6903 				dma_wmb();
6904 				/* flip the Ownership bit to Hardware */
6905 				rxdp->Control_1 |= RXD_OWN_XENA;
6906 			}
6907 		}
6908 	}
6909 	return 0;
6910 
6911 }
6912 
6913 static int s2io_add_isr(struct s2io_nic *sp)
6914 {
6915 	int ret = 0;
6916 	struct net_device *dev = sp->dev;
6917 	int err = 0;
6918 
6919 	if (sp->config.intr_type == MSI_X)
6920 		ret = s2io_enable_msi_x(sp);
6921 	if (ret) {
6922 		DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6923 		sp->config.intr_type = INTA;
6924 	}
6925 
6926 	/*
6927 	 * Store the values of the MSIX table in
6928 	 * the struct s2io_nic structure
6929 	 */
6930 	store_xmsi_data(sp);
6931 
6932 	/* After proper initialization of H/W, register ISR */
6933 	if (sp->config.intr_type == MSI_X) {
6934 		int i, msix_rx_cnt = 0;
6935 
6936 		for (i = 0; i < sp->num_entries; i++) {
6937 			if (sp->s2io_entries[i].in_use == MSIX_FLG) {
6938 				if (sp->s2io_entries[i].type ==
6939 				    MSIX_RING_TYPE) {
6940 					snprintf(sp->desc[i],
6941 						sizeof(sp->desc[i]),
6942 						"%s:MSI-X-%d-RX",
6943 						dev->name, i);
6944 					err = request_irq(sp->entries[i].vector,
6945 							  s2io_msix_ring_handle,
6946 							  0,
6947 							  sp->desc[i],
6948 							  sp->s2io_entries[i].arg);
6949 				} else if (sp->s2io_entries[i].type ==
6950 					   MSIX_ALARM_TYPE) {
6951 					snprintf(sp->desc[i],
6952 						sizeof(sp->desc[i]),
6953 						"%s:MSI-X-%d-TX",
6954 						dev->name, i);
6955 					err = request_irq(sp->entries[i].vector,
6956 							  s2io_msix_fifo_handle,
6957 							  0,
6958 							  sp->desc[i],
6959 							  sp->s2io_entries[i].arg);
6960 
6961 				}
6962 				/* if either data or addr is zero print it. */
6963 				if (!(sp->msix_info[i].addr &&
6964 				      sp->msix_info[i].data)) {
6965 					DBG_PRINT(ERR_DBG,
6966 						  "%s @Addr:0x%llx Data:0x%llx\n",
6967 						  sp->desc[i],
6968 						  (unsigned long long)
6969 						  sp->msix_info[i].addr,
6970 						  (unsigned long long)
6971 						  ntohl(sp->msix_info[i].data));
6972 				} else
6973 					msix_rx_cnt++;
6974 				if (err) {
6975 					remove_msix_isr(sp);
6976 
6977 					DBG_PRINT(ERR_DBG,
6978 						  "%s:MSI-X-%d registration "
6979 						  "failed\n", dev->name, i);
6980 
6981 					DBG_PRINT(ERR_DBG,
6982 						  "%s: Defaulting to INTA\n",
6983 						  dev->name);
6984 					sp->config.intr_type = INTA;
6985 					break;
6986 				}
6987 				sp->s2io_entries[i].in_use =
6988 					MSIX_REGISTERED_SUCCESS;
6989 			}
6990 		}
6991 		if (!err) {
6992 			pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt);
6993 			DBG_PRINT(INFO_DBG,
6994 				  "MSI-X-TX entries enabled through alarm vector\n");
6995 		}
6996 	}
6997 	if (sp->config.intr_type == INTA) {
6998 		err = request_irq(sp->pdev->irq, s2io_isr, IRQF_SHARED,
6999 				  sp->name, dev);
7000 		if (err) {
7001 			DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7002 				  dev->name);
7003 			return -1;
7004 		}
7005 	}
7006 	return 0;
7007 }
7008 
7009 static void s2io_rem_isr(struct s2io_nic *sp)
7010 {
7011 	if (sp->config.intr_type == MSI_X)
7012 		remove_msix_isr(sp);
7013 	else
7014 		remove_inta_isr(sp);
7015 }
7016 
7017 static void do_s2io_card_down(struct s2io_nic *sp, int do_io)
7018 {
7019 	int cnt = 0;
7020 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
7021 	register u64 val64 = 0;
7022 	struct config_param *config;
7023 	config = &sp->config;
7024 
7025 	if (!is_s2io_card_up(sp))
7026 		return;
7027 
7028 	del_timer_sync(&sp->alarm_timer);
7029 	/* If s2io_set_link task is executing, wait till it completes. */
7030 	while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state)))
7031 		msleep(50);
7032 	clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7033 
7034 	/* Disable napi */
7035 	if (sp->config.napi) {
7036 		int off = 0;
7037 		if (config->intr_type ==  MSI_X) {
7038 			for (; off < sp->config.rx_ring_num; off++)
7039 				napi_disable(&sp->mac_control.rings[off].napi);
7040 		}
7041 		else
7042 			napi_disable(&sp->napi);
7043 	}
7044 
7045 	/* disable Tx and Rx traffic on the NIC */
7046 	if (do_io)
7047 		stop_nic(sp);
7048 
7049 	s2io_rem_isr(sp);
7050 
7051 	/* stop the tx queue, indicate link down */
7052 	s2io_link(sp, LINK_DOWN);
7053 
7054 	/* Check if the device is Quiescent and then Reset the NIC */
7055 	while (do_io) {
7056 		/* As per the HW requirement we need to replenish the
7057 		 * receive buffer to avoid the ring bump. Since there is
7058 		 * no intention of processing the Rx frame at this pointwe are
7059 		 * just setting the ownership bit of rxd in Each Rx
7060 		 * ring to HW and set the appropriate buffer size
7061 		 * based on the ring mode
7062 		 */
7063 		rxd_owner_bit_reset(sp);
7064 
7065 		val64 = readq(&bar0->adapter_status);
7066 		if (verify_xena_quiescence(sp)) {
7067 			if (verify_pcc_quiescent(sp, sp->device_enabled_once))
7068 				break;
7069 		}
7070 
7071 		msleep(50);
7072 		cnt++;
7073 		if (cnt == 10) {
7074 			DBG_PRINT(ERR_DBG, "Device not Quiescent - "
7075 				  "adapter status reads 0x%llx\n",
7076 				  (unsigned long long)val64);
7077 			break;
7078 		}
7079 	}
7080 	if (do_io)
7081 		s2io_reset(sp);
7082 
7083 	/* Free all Tx buffers */
7084 	free_tx_buffers(sp);
7085 
7086 	/* Free all Rx buffers */
7087 	free_rx_buffers(sp);
7088 
7089 	clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7090 }
7091 
7092 static void s2io_card_down(struct s2io_nic *sp)
7093 {
7094 	do_s2io_card_down(sp, 1);
7095 }
7096 
7097 static int s2io_card_up(struct s2io_nic *sp)
7098 {
7099 	int i, ret = 0;
7100 	struct config_param *config;
7101 	struct mac_info *mac_control;
7102 	struct net_device *dev = sp->dev;
7103 	u16 interruptible;
7104 
7105 	/* Initialize the H/W I/O registers */
7106 	ret = init_nic(sp);
7107 	if (ret != 0) {
7108 		DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7109 			  dev->name);
7110 		if (ret != -EIO)
7111 			s2io_reset(sp);
7112 		return ret;
7113 	}
7114 
7115 	/*
7116 	 * Initializing the Rx buffers. For now we are considering only 1
7117 	 * Rx ring and initializing buffers into 30 Rx blocks
7118 	 */
7119 	config = &sp->config;
7120 	mac_control = &sp->mac_control;
7121 
7122 	for (i = 0; i < config->rx_ring_num; i++) {
7123 		struct ring_info *ring = &mac_control->rings[i];
7124 
7125 		ring->mtu = dev->mtu;
7126 		ring->lro = !!(dev->features & NETIF_F_LRO);
7127 		ret = fill_rx_buffers(sp, ring, 1);
7128 		if (ret) {
7129 			DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7130 				  dev->name);
7131 			ret = -ENOMEM;
7132 			goto err_fill_buff;
7133 		}
7134 		DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7135 			  ring->rx_bufs_left);
7136 	}
7137 
7138 	/* Initialise napi */
7139 	if (config->napi) {
7140 		if (config->intr_type ==  MSI_X) {
7141 			for (i = 0; i < sp->config.rx_ring_num; i++)
7142 				napi_enable(&sp->mac_control.rings[i].napi);
7143 		} else {
7144 			napi_enable(&sp->napi);
7145 		}
7146 	}
7147 
7148 	/* Maintain the state prior to the open */
7149 	if (sp->promisc_flg)
7150 		sp->promisc_flg = 0;
7151 	if (sp->m_cast_flg) {
7152 		sp->m_cast_flg = 0;
7153 		sp->all_multi_pos = 0;
7154 	}
7155 
7156 	/* Setting its receive mode */
7157 	s2io_set_multicast(dev, true);
7158 
7159 	if (dev->features & NETIF_F_LRO) {
7160 		/* Initialize max aggregatable pkts per session based on MTU */
7161 		sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7162 		/* Check if we can use (if specified) user provided value */
7163 		if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7164 			sp->lro_max_aggr_per_sess = lro_max_pkts;
7165 	}
7166 
7167 	/* Enable Rx Traffic and interrupts on the NIC */
7168 	if (start_nic(sp)) {
7169 		DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7170 		ret = -ENODEV;
7171 		goto err_out;
7172 	}
7173 
7174 	/* Add interrupt service routine */
7175 	if (s2io_add_isr(sp) != 0) {
7176 		if (sp->config.intr_type == MSI_X)
7177 			s2io_rem_isr(sp);
7178 		ret = -ENODEV;
7179 		goto err_out;
7180 	}
7181 
7182 	timer_setup(&sp->alarm_timer, s2io_alarm_handle, 0);
7183 	mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
7184 
7185 	set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7186 
7187 	/*  Enable select interrupts */
7188 	en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7189 	if (sp->config.intr_type != INTA) {
7190 		interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7191 		en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7192 	} else {
7193 		interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7194 		interruptible |= TX_PIC_INTR;
7195 		en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7196 	}
7197 
7198 	return 0;
7199 
7200 err_out:
7201 	if (config->napi) {
7202 		if (config->intr_type == MSI_X) {
7203 			for (i = 0; i < sp->config.rx_ring_num; i++)
7204 				napi_disable(&sp->mac_control.rings[i].napi);
7205 		} else {
7206 			napi_disable(&sp->napi);
7207 		}
7208 	}
7209 err_fill_buff:
7210 	s2io_reset(sp);
7211 	free_rx_buffers(sp);
7212 	return ret;
7213 }
7214 
7215 /**
7216  * s2io_restart_nic - Resets the NIC.
7217  * @work : work struct containing a pointer to the device private structure
7218  * Description:
7219  * This function is scheduled to be run by the s2io_tx_watchdog
7220  * function after 0.5 secs to reset the NIC. The idea is to reduce
7221  * the run time of the watch dog routine which is run holding a
7222  * spin lock.
7223  */
7224 
7225 static void s2io_restart_nic(struct work_struct *work)
7226 {
7227 	struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7228 	struct net_device *dev = sp->dev;
7229 
7230 	rtnl_lock();
7231 
7232 	if (!netif_running(dev))
7233 		goto out_unlock;
7234 
7235 	s2io_card_down(sp);
7236 	if (s2io_card_up(sp)) {
7237 		DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name);
7238 	}
7239 	s2io_wake_all_tx_queue(sp);
7240 	DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name);
7241 out_unlock:
7242 	rtnl_unlock();
7243 }
7244 
7245 /**
7246  *  s2io_tx_watchdog - Watchdog for transmit side.
7247  *  @dev : Pointer to net device structure
7248  *  @txqueue: index of the hanging queue
7249  *  Description:
7250  *  This function is triggered if the Tx Queue is stopped
7251  *  for a pre-defined amount of time when the Interface is still up.
7252  *  If the Interface is jammed in such a situation, the hardware is
7253  *  reset (by s2io_close) and restarted again (by s2io_open) to
7254  *  overcome any problem that might have been caused in the hardware.
7255  *  Return value:
7256  *  void
7257  */
7258 
7259 static void s2io_tx_watchdog(struct net_device *dev, unsigned int txqueue)
7260 {
7261 	struct s2io_nic *sp = netdev_priv(dev);
7262 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7263 
7264 	if (netif_carrier_ok(dev)) {
7265 		swstats->watchdog_timer_cnt++;
7266 		schedule_work(&sp->rst_timer_task);
7267 		swstats->soft_reset_cnt++;
7268 	}
7269 }
7270 
7271 /**
7272  *   rx_osm_handler - To perform some OS related operations on SKB.
7273  *   @ring_data : the ring from which this RxD was extracted.
7274  *   @rxdp: descriptor
7275  *   Description:
7276  *   This function is called by the Rx interrupt serivce routine to perform
7277  *   some OS related operations on the SKB before passing it to the upper
7278  *   layers. It mainly checks if the checksum is OK, if so adds it to the
7279  *   SKBs cksum variable, increments the Rx packet count and passes the SKB
7280  *   to the upper layer. If the checksum is wrong, it increments the Rx
7281  *   packet error count, frees the SKB and returns error.
7282  *   Return value:
7283  *   SUCCESS on success and -1 on failure.
7284  */
7285 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7286 {
7287 	struct s2io_nic *sp = ring_data->nic;
7288 	struct net_device *dev = ring_data->dev;
7289 	struct sk_buff *skb = (struct sk_buff *)
7290 		((unsigned long)rxdp->Host_Control);
7291 	int ring_no = ring_data->ring_no;
7292 	u16 l3_csum, l4_csum;
7293 	unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7294 	struct lro *lro;
7295 	u8 err_mask;
7296 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7297 
7298 	skb->dev = dev;
7299 
7300 	if (err) {
7301 		/* Check for parity error */
7302 		if (err & 0x1)
7303 			swstats->parity_err_cnt++;
7304 
7305 		err_mask = err >> 48;
7306 		switch (err_mask) {
7307 		case 1:
7308 			swstats->rx_parity_err_cnt++;
7309 			break;
7310 
7311 		case 2:
7312 			swstats->rx_abort_cnt++;
7313 			break;
7314 
7315 		case 3:
7316 			swstats->rx_parity_abort_cnt++;
7317 			break;
7318 
7319 		case 4:
7320 			swstats->rx_rda_fail_cnt++;
7321 			break;
7322 
7323 		case 5:
7324 			swstats->rx_unkn_prot_cnt++;
7325 			break;
7326 
7327 		case 6:
7328 			swstats->rx_fcs_err_cnt++;
7329 			break;
7330 
7331 		case 7:
7332 			swstats->rx_buf_size_err_cnt++;
7333 			break;
7334 
7335 		case 8:
7336 			swstats->rx_rxd_corrupt_cnt++;
7337 			break;
7338 
7339 		case 15:
7340 			swstats->rx_unkn_err_cnt++;
7341 			break;
7342 		}
7343 		/*
7344 		 * Drop the packet if bad transfer code. Exception being
7345 		 * 0x5, which could be due to unsupported IPv6 extension header.
7346 		 * In this case, we let stack handle the packet.
7347 		 * Note that in this case, since checksum will be incorrect,
7348 		 * stack will validate the same.
7349 		 */
7350 		if (err_mask != 0x5) {
7351 			DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7352 				  dev->name, err_mask);
7353 			dev->stats.rx_crc_errors++;
7354 			swstats->mem_freed
7355 				+= skb->truesize;
7356 			dev_kfree_skb(skb);
7357 			ring_data->rx_bufs_left -= 1;
7358 			rxdp->Host_Control = 0;
7359 			return 0;
7360 		}
7361 	}
7362 
7363 	rxdp->Host_Control = 0;
7364 	if (sp->rxd_mode == RXD_MODE_1) {
7365 		int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7366 
7367 		skb_put(skb, len);
7368 	} else if (sp->rxd_mode == RXD_MODE_3B) {
7369 		int get_block = ring_data->rx_curr_get_info.block_index;
7370 		int get_off = ring_data->rx_curr_get_info.offset;
7371 		int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7372 		int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7373 
7374 		struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7375 		skb_put_data(skb, ba->ba_0, buf0_len);
7376 		skb_put(skb, buf2_len);
7377 	}
7378 
7379 	if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
7380 	    ((!ring_data->lro) ||
7381 	     (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG))) &&
7382 	    (dev->features & NETIF_F_RXCSUM)) {
7383 		l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7384 		l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7385 		if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7386 			/*
7387 			 * NIC verifies if the Checksum of the received
7388 			 * frame is Ok or not and accordingly returns
7389 			 * a flag in the RxD.
7390 			 */
7391 			skb->ip_summed = CHECKSUM_UNNECESSARY;
7392 			if (ring_data->lro) {
7393 				u32 tcp_len = 0;
7394 				u8 *tcp;
7395 				int ret = 0;
7396 
7397 				ret = s2io_club_tcp_session(ring_data,
7398 							    skb->data, &tcp,
7399 							    &tcp_len, &lro,
7400 							    rxdp, sp);
7401 				switch (ret) {
7402 				case 3: /* Begin anew */
7403 					lro->parent = skb;
7404 					goto aggregate;
7405 				case 1: /* Aggregate */
7406 					lro_append_pkt(sp, lro, skb, tcp_len);
7407 					goto aggregate;
7408 				case 4: /* Flush session */
7409 					lro_append_pkt(sp, lro, skb, tcp_len);
7410 					queue_rx_frame(lro->parent,
7411 						       lro->vlan_tag);
7412 					clear_lro_session(lro);
7413 					swstats->flush_max_pkts++;
7414 					goto aggregate;
7415 				case 2: /* Flush both */
7416 					lro->parent->data_len = lro->frags_len;
7417 					swstats->sending_both++;
7418 					queue_rx_frame(lro->parent,
7419 						       lro->vlan_tag);
7420 					clear_lro_session(lro);
7421 					goto send_up;
7422 				case 0: /* sessions exceeded */
7423 				case -1: /* non-TCP or not L2 aggregatable */
7424 				case 5: /*
7425 					 * First pkt in session not
7426 					 * L3/L4 aggregatable
7427 					 */
7428 					break;
7429 				default:
7430 					DBG_PRINT(ERR_DBG,
7431 						  "%s: Samadhana!!\n",
7432 						  __func__);
7433 					BUG();
7434 				}
7435 			}
7436 		} else {
7437 			/*
7438 			 * Packet with erroneous checksum, let the
7439 			 * upper layers deal with it.
7440 			 */
7441 			skb_checksum_none_assert(skb);
7442 		}
7443 	} else
7444 		skb_checksum_none_assert(skb);
7445 
7446 	swstats->mem_freed += skb->truesize;
7447 send_up:
7448 	skb_record_rx_queue(skb, ring_no);
7449 	queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7450 aggregate:
7451 	sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
7452 	return SUCCESS;
7453 }
7454 
7455 /**
7456  *  s2io_link - stops/starts the Tx queue.
7457  *  @sp : private member of the device structure, which is a pointer to the
7458  *  s2io_nic structure.
7459  *  @link : inidicates whether link is UP/DOWN.
7460  *  Description:
7461  *  This function stops/starts the Tx queue depending on whether the link
7462  *  status of the NIC is down or up. This is called by the Alarm
7463  *  interrupt handler whenever a link change interrupt comes up.
7464  *  Return value:
7465  *  void.
7466  */
7467 
7468 static void s2io_link(struct s2io_nic *sp, int link)
7469 {
7470 	struct net_device *dev = sp->dev;
7471 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7472 
7473 	if (link != sp->last_link_state) {
7474 		init_tti(sp, link, false);
7475 		if (link == LINK_DOWN) {
7476 			DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7477 			s2io_stop_all_tx_queue(sp);
7478 			netif_carrier_off(dev);
7479 			if (swstats->link_up_cnt)
7480 				swstats->link_up_time =
7481 					jiffies - sp->start_time;
7482 			swstats->link_down_cnt++;
7483 		} else {
7484 			DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7485 			if (swstats->link_down_cnt)
7486 				swstats->link_down_time =
7487 					jiffies - sp->start_time;
7488 			swstats->link_up_cnt++;
7489 			netif_carrier_on(dev);
7490 			s2io_wake_all_tx_queue(sp);
7491 		}
7492 	}
7493 	sp->last_link_state = link;
7494 	sp->start_time = jiffies;
7495 }
7496 
7497 /**
7498  *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7499  *  @sp : private member of the device structure, which is a pointer to the
7500  *  s2io_nic structure.
7501  *  Description:
7502  *  This function initializes a few of the PCI and PCI-X configuration registers
7503  *  with recommended values.
7504  *  Return value:
7505  *  void
7506  */
7507 
7508 static void s2io_init_pci(struct s2io_nic *sp)
7509 {
7510 	u16 pci_cmd = 0, pcix_cmd = 0;
7511 
7512 	/* Enable Data Parity Error Recovery in PCI-X command register. */
7513 	pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7514 			     &(pcix_cmd));
7515 	pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7516 			      (pcix_cmd | 1));
7517 	pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7518 			     &(pcix_cmd));
7519 
7520 	/* Set the PErr Response bit in PCI command register. */
7521 	pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7522 	pci_write_config_word(sp->pdev, PCI_COMMAND,
7523 			      (pci_cmd | PCI_COMMAND_PARITY));
7524 	pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7525 }
7526 
7527 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7528 			    u8 *dev_multiq)
7529 {
7530 	int i;
7531 
7532 	if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) {
7533 		DBG_PRINT(ERR_DBG, "Requested number of tx fifos "
7534 			  "(%d) not supported\n", tx_fifo_num);
7535 
7536 		if (tx_fifo_num < 1)
7537 			tx_fifo_num = 1;
7538 		else
7539 			tx_fifo_num = MAX_TX_FIFOS;
7540 
7541 		DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num);
7542 	}
7543 
7544 	if (multiq)
7545 		*dev_multiq = multiq;
7546 
7547 	if (tx_steering_type && (1 == tx_fifo_num)) {
7548 		if (tx_steering_type != TX_DEFAULT_STEERING)
7549 			DBG_PRINT(ERR_DBG,
7550 				  "Tx steering is not supported with "
7551 				  "one fifo. Disabling Tx steering.\n");
7552 		tx_steering_type = NO_STEERING;
7553 	}
7554 
7555 	if ((tx_steering_type < NO_STEERING) ||
7556 	    (tx_steering_type > TX_DEFAULT_STEERING)) {
7557 		DBG_PRINT(ERR_DBG,
7558 			  "Requested transmit steering not supported\n");
7559 		DBG_PRINT(ERR_DBG, "Disabling transmit steering\n");
7560 		tx_steering_type = NO_STEERING;
7561 	}
7562 
7563 	if (rx_ring_num > MAX_RX_RINGS) {
7564 		DBG_PRINT(ERR_DBG,
7565 			  "Requested number of rx rings not supported\n");
7566 		DBG_PRINT(ERR_DBG, "Default to %d rx rings\n",
7567 			  MAX_RX_RINGS);
7568 		rx_ring_num = MAX_RX_RINGS;
7569 	}
7570 
7571 	if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7572 		DBG_PRINT(ERR_DBG, "Wrong intr_type requested. "
7573 			  "Defaulting to INTA\n");
7574 		*dev_intr_type = INTA;
7575 	}
7576 
7577 	if ((*dev_intr_type == MSI_X) &&
7578 	    ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7579 	     (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7580 		DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. "
7581 			  "Defaulting to INTA\n");
7582 		*dev_intr_type = INTA;
7583 	}
7584 
7585 	if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7586 		DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n");
7587 		DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n");
7588 		rx_ring_mode = 1;
7589 	}
7590 
7591 	for (i = 0; i < MAX_RX_RINGS; i++)
7592 		if (rx_ring_sz[i] > MAX_RX_BLOCKS_PER_RING) {
7593 			DBG_PRINT(ERR_DBG, "Requested rx ring size not "
7594 				  "supported\nDefaulting to %d\n",
7595 				  MAX_RX_BLOCKS_PER_RING);
7596 			rx_ring_sz[i] = MAX_RX_BLOCKS_PER_RING;
7597 		}
7598 
7599 	return SUCCESS;
7600 }
7601 
7602 /**
7603  * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS or Traffic class respectively.
7604  * @nic: device private variable
7605  * @ds_codepoint: data
7606  * @ring: ring index
7607  * Description: The function configures the receive steering to
7608  * desired receive ring.
7609  * Return Value:  SUCCESS on success and
7610  * '-1' on failure (endian settings incorrect).
7611  */
7612 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7613 {
7614 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
7615 	register u64 val64 = 0;
7616 
7617 	if (ds_codepoint > 63)
7618 		return FAILURE;
7619 
7620 	val64 = RTS_DS_MEM_DATA(ring);
7621 	writeq(val64, &bar0->rts_ds_mem_data);
7622 
7623 	val64 = RTS_DS_MEM_CTRL_WE |
7624 		RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7625 		RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7626 
7627 	writeq(val64, &bar0->rts_ds_mem_ctrl);
7628 
7629 	return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7630 				     RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7631 				     S2IO_BIT_RESET, true);
7632 }
7633 
7634 static const struct net_device_ops s2io_netdev_ops = {
7635 	.ndo_open	        = s2io_open,
7636 	.ndo_stop	        = s2io_close,
7637 	.ndo_get_stats	        = s2io_get_stats,
7638 	.ndo_start_xmit    	= s2io_xmit,
7639 	.ndo_validate_addr	= eth_validate_addr,
7640 	.ndo_set_rx_mode	= s2io_ndo_set_multicast,
7641 	.ndo_eth_ioctl		= s2io_ioctl,
7642 	.ndo_set_mac_address    = s2io_set_mac_addr,
7643 	.ndo_change_mtu	   	= s2io_change_mtu,
7644 	.ndo_set_features	= s2io_set_features,
7645 	.ndo_tx_timeout	   	= s2io_tx_watchdog,
7646 #ifdef CONFIG_NET_POLL_CONTROLLER
7647 	.ndo_poll_controller    = s2io_netpoll,
7648 #endif
7649 };
7650 
7651 /**
7652  *  s2io_init_nic - Initialization of the adapter .
7653  *  @pdev : structure containing the PCI related information of the device.
7654  *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7655  *  Description:
7656  *  The function initializes an adapter identified by the pci_dec structure.
7657  *  All OS related initialization including memory and device structure and
7658  *  initlaization of the device private variable is done. Also the swapper
7659  *  control register is initialized to enable read and write into the I/O
7660  *  registers of the device.
7661  *  Return value:
7662  *  returns 0 on success and negative on failure.
7663  */
7664 
7665 static int
7666 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7667 {
7668 	struct s2io_nic *sp;
7669 	struct net_device *dev;
7670 	int i, j, ret;
7671 	u32 mac_up, mac_down;
7672 	u64 val64 = 0, tmp64 = 0;
7673 	struct XENA_dev_config __iomem *bar0 = NULL;
7674 	u16 subid;
7675 	struct config_param *config;
7676 	struct mac_info *mac_control;
7677 	int mode;
7678 	u8 dev_intr_type = intr_type;
7679 	u8 dev_multiq = 0;
7680 
7681 	ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7682 	if (ret)
7683 		return ret;
7684 
7685 	ret = pci_enable_device(pdev);
7686 	if (ret) {
7687 		DBG_PRINT(ERR_DBG,
7688 			  "%s: pci_enable_device failed\n", __func__);
7689 		return ret;
7690 	}
7691 
7692 	if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
7693 		DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__);
7694 	} else {
7695 		pci_disable_device(pdev);
7696 		return -ENOMEM;
7697 	}
7698 	ret = pci_request_regions(pdev, s2io_driver_name);
7699 	if (ret) {
7700 		DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n",
7701 			  __func__, ret);
7702 		pci_disable_device(pdev);
7703 		return -ENODEV;
7704 	}
7705 	if (dev_multiq)
7706 		dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7707 	else
7708 		dev = alloc_etherdev(sizeof(struct s2io_nic));
7709 	if (dev == NULL) {
7710 		pci_disable_device(pdev);
7711 		pci_release_regions(pdev);
7712 		return -ENODEV;
7713 	}
7714 
7715 	pci_set_master(pdev);
7716 	pci_set_drvdata(pdev, dev);
7717 	SET_NETDEV_DEV(dev, &pdev->dev);
7718 
7719 	/*  Private member variable initialized to s2io NIC structure */
7720 	sp = netdev_priv(dev);
7721 	sp->dev = dev;
7722 	sp->pdev = pdev;
7723 	sp->device_enabled_once = false;
7724 	if (rx_ring_mode == 1)
7725 		sp->rxd_mode = RXD_MODE_1;
7726 	if (rx_ring_mode == 2)
7727 		sp->rxd_mode = RXD_MODE_3B;
7728 
7729 	sp->config.intr_type = dev_intr_type;
7730 
7731 	if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7732 	    (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7733 		sp->device_type = XFRAME_II_DEVICE;
7734 	else
7735 		sp->device_type = XFRAME_I_DEVICE;
7736 
7737 
7738 	/* Initialize some PCI/PCI-X fields of the NIC. */
7739 	s2io_init_pci(sp);
7740 
7741 	/*
7742 	 * Setting the device configuration parameters.
7743 	 * Most of these parameters can be specified by the user during
7744 	 * module insertion as they are module loadable parameters. If
7745 	 * these parameters are not specified during load time, they
7746 	 * are initialized with default values.
7747 	 */
7748 	config = &sp->config;
7749 	mac_control = &sp->mac_control;
7750 
7751 	config->napi = napi;
7752 	config->tx_steering_type = tx_steering_type;
7753 
7754 	/* Tx side parameters. */
7755 	if (config->tx_steering_type == TX_PRIORITY_STEERING)
7756 		config->tx_fifo_num = MAX_TX_FIFOS;
7757 	else
7758 		config->tx_fifo_num = tx_fifo_num;
7759 
7760 	/* Initialize the fifos used for tx steering */
7761 	if (config->tx_fifo_num < 5) {
7762 		if (config->tx_fifo_num  == 1)
7763 			sp->total_tcp_fifos = 1;
7764 		else
7765 			sp->total_tcp_fifos = config->tx_fifo_num - 1;
7766 		sp->udp_fifo_idx = config->tx_fifo_num - 1;
7767 		sp->total_udp_fifos = 1;
7768 		sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7769 	} else {
7770 		sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7771 				       FIFO_OTHER_MAX_NUM);
7772 		sp->udp_fifo_idx = sp->total_tcp_fifos;
7773 		sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7774 		sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7775 	}
7776 
7777 	config->multiq = dev_multiq;
7778 	for (i = 0; i < config->tx_fifo_num; i++) {
7779 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7780 
7781 		tx_cfg->fifo_len = tx_fifo_len[i];
7782 		tx_cfg->fifo_priority = i;
7783 	}
7784 
7785 	/* mapping the QoS priority to the configured fifos */
7786 	for (i = 0; i < MAX_TX_FIFOS; i++)
7787 		config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7788 
7789 	/* map the hashing selector table to the configured fifos */
7790 	for (i = 0; i < config->tx_fifo_num; i++)
7791 		sp->fifo_selector[i] = fifo_selector[i];
7792 
7793 
7794 	config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7795 	for (i = 0; i < config->tx_fifo_num; i++) {
7796 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7797 
7798 		tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7799 		if (tx_cfg->fifo_len < 65) {
7800 			config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7801 			break;
7802 		}
7803 	}
7804 	/* + 2 because one Txd for skb->data and one Txd for UFO */
7805 	config->max_txds = MAX_SKB_FRAGS + 2;
7806 
7807 	/* Rx side parameters. */
7808 	config->rx_ring_num = rx_ring_num;
7809 	for (i = 0; i < config->rx_ring_num; i++) {
7810 		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7811 		struct ring_info *ring = &mac_control->rings[i];
7812 
7813 		rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1);
7814 		rx_cfg->ring_priority = i;
7815 		ring->rx_bufs_left = 0;
7816 		ring->rxd_mode = sp->rxd_mode;
7817 		ring->rxd_count = rxd_count[sp->rxd_mode];
7818 		ring->pdev = sp->pdev;
7819 		ring->dev = sp->dev;
7820 	}
7821 
7822 	for (i = 0; i < rx_ring_num; i++) {
7823 		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7824 
7825 		rx_cfg->ring_org = RING_ORG_BUFF1;
7826 		rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7827 	}
7828 
7829 	/*  Setting Mac Control parameters */
7830 	mac_control->rmac_pause_time = rmac_pause_time;
7831 	mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7832 	mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7833 
7834 
7835 	/*  initialize the shared memory used by the NIC and the host */
7836 	if (init_shared_mem(sp)) {
7837 		DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name);
7838 		ret = -ENOMEM;
7839 		goto mem_alloc_failed;
7840 	}
7841 
7842 	sp->bar0 = pci_ioremap_bar(pdev, 0);
7843 	if (!sp->bar0) {
7844 		DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7845 			  dev->name);
7846 		ret = -ENOMEM;
7847 		goto bar0_remap_failed;
7848 	}
7849 
7850 	sp->bar1 = pci_ioremap_bar(pdev, 2);
7851 	if (!sp->bar1) {
7852 		DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7853 			  dev->name);
7854 		ret = -ENOMEM;
7855 		goto bar1_remap_failed;
7856 	}
7857 
7858 	/* Initializing the BAR1 address as the start of the FIFO pointer. */
7859 	for (j = 0; j < MAX_TX_FIFOS; j++) {
7860 		mac_control->tx_FIFO_start[j] = sp->bar1 + (j * 0x00020000);
7861 	}
7862 
7863 	/*  Driver entry points */
7864 	dev->netdev_ops = &s2io_netdev_ops;
7865 	dev->ethtool_ops = &netdev_ethtool_ops;
7866 	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
7867 		NETIF_F_TSO | NETIF_F_TSO6 |
7868 		NETIF_F_RXCSUM | NETIF_F_LRO;
7869 	dev->features |= dev->hw_features |
7870 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
7871 		NETIF_F_HIGHDMA;
7872 	dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7873 	INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7874 	INIT_WORK(&sp->set_link_task, s2io_set_link);
7875 
7876 	pci_save_state(sp->pdev);
7877 
7878 	/* Setting swapper control on the NIC, for proper reset operation */
7879 	if (s2io_set_swapper(sp)) {
7880 		DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n",
7881 			  dev->name);
7882 		ret = -EAGAIN;
7883 		goto set_swap_failed;
7884 	}
7885 
7886 	/* Verify if the Herc works on the slot its placed into */
7887 	if (sp->device_type & XFRAME_II_DEVICE) {
7888 		mode = s2io_verify_pci_mode(sp);
7889 		if (mode < 0) {
7890 			DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n",
7891 				  __func__);
7892 			ret = -EBADSLT;
7893 			goto set_swap_failed;
7894 		}
7895 	}
7896 
7897 	if (sp->config.intr_type == MSI_X) {
7898 		sp->num_entries = config->rx_ring_num + 1;
7899 		ret = s2io_enable_msi_x(sp);
7900 
7901 		if (!ret) {
7902 			ret = s2io_test_msi(sp);
7903 			/* rollback MSI-X, will re-enable during add_isr() */
7904 			remove_msix_isr(sp);
7905 		}
7906 		if (ret) {
7907 
7908 			DBG_PRINT(ERR_DBG,
7909 				  "MSI-X requested but failed to enable\n");
7910 			sp->config.intr_type = INTA;
7911 		}
7912 	}
7913 
7914 	if (config->intr_type ==  MSI_X) {
7915 		for (i = 0; i < config->rx_ring_num ; i++) {
7916 			struct ring_info *ring = &mac_control->rings[i];
7917 
7918 			netif_napi_add(dev, &ring->napi, s2io_poll_msix);
7919 		}
7920 	} else {
7921 		netif_napi_add(dev, &sp->napi, s2io_poll_inta);
7922 	}
7923 
7924 	/* Not needed for Herc */
7925 	if (sp->device_type & XFRAME_I_DEVICE) {
7926 		/*
7927 		 * Fix for all "FFs" MAC address problems observed on
7928 		 * Alpha platforms
7929 		 */
7930 		fix_mac_address(sp);
7931 		s2io_reset(sp);
7932 	}
7933 
7934 	/*
7935 	 * MAC address initialization.
7936 	 * For now only one mac address will be read and used.
7937 	 */
7938 	bar0 = sp->bar0;
7939 	val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7940 		RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
7941 	writeq(val64, &bar0->rmac_addr_cmd_mem);
7942 	wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
7943 			      RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
7944 			      S2IO_BIT_RESET, true);
7945 	tmp64 = readq(&bar0->rmac_addr_data0_mem);
7946 	mac_down = (u32)tmp64;
7947 	mac_up = (u32) (tmp64 >> 32);
7948 
7949 	sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7950 	sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7951 	sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7952 	sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7953 	sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7954 	sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7955 
7956 	/*  Set the factory defined MAC address initially   */
7957 	dev->addr_len = ETH_ALEN;
7958 	eth_hw_addr_set(dev, sp->def_mac_addr[0].mac_addr);
7959 
7960 	/* initialize number of multicast & unicast MAC entries variables */
7961 	if (sp->device_type == XFRAME_I_DEVICE) {
7962 		config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
7963 		config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
7964 		config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
7965 	} else if (sp->device_type == XFRAME_II_DEVICE) {
7966 		config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
7967 		config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
7968 		config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
7969 	}
7970 
7971 	/* MTU range: 46 - 9600 */
7972 	dev->min_mtu = MIN_MTU;
7973 	dev->max_mtu = S2IO_JUMBO_SIZE;
7974 
7975 	/* store mac addresses from CAM to s2io_nic structure */
7976 	do_s2io_store_unicast_mc(sp);
7977 
7978 	/* Configure MSIX vector for number of rings configured plus one */
7979 	if ((sp->device_type == XFRAME_II_DEVICE) &&
7980 	    (config->intr_type == MSI_X))
7981 		sp->num_entries = config->rx_ring_num + 1;
7982 
7983 	/* Store the values of the MSIX table in the s2io_nic structure */
7984 	store_xmsi_data(sp);
7985 	/* reset Nic and bring it to known state */
7986 	s2io_reset(sp);
7987 
7988 	/*
7989 	 * Initialize link state flags
7990 	 * and the card state parameter
7991 	 */
7992 	sp->state = 0;
7993 
7994 	/* Initialize spinlocks */
7995 	for (i = 0; i < sp->config.tx_fifo_num; i++) {
7996 		struct fifo_info *fifo = &mac_control->fifos[i];
7997 
7998 		spin_lock_init(&fifo->tx_lock);
7999 	}
8000 
8001 	/*
8002 	 * SXE-002: Configure link and activity LED to init state
8003 	 * on driver load.
8004 	 */
8005 	subid = sp->pdev->subsystem_device;
8006 	if ((subid & 0xFF) >= 0x07) {
8007 		val64 = readq(&bar0->gpio_control);
8008 		val64 |= 0x0000800000000000ULL;
8009 		writeq(val64, &bar0->gpio_control);
8010 		val64 = 0x0411040400000000ULL;
8011 		writeq(val64, (void __iomem *)bar0 + 0x2700);
8012 		val64 = readq(&bar0->gpio_control);
8013 	}
8014 
8015 	sp->rx_csum = 1;	/* Rx chksum verify enabled by default */
8016 
8017 	if (register_netdev(dev)) {
8018 		DBG_PRINT(ERR_DBG, "Device registration failed\n");
8019 		ret = -ENODEV;
8020 		goto register_failed;
8021 	}
8022 	s2io_vpd_read(sp);
8023 	DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2010 Exar Corp.\n");
8024 	DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name,
8025 		  sp->product_name, pdev->revision);
8026 	DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8027 		  s2io_driver_version);
8028 	DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr);
8029 	DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num);
8030 	if (sp->device_type & XFRAME_II_DEVICE) {
8031 		mode = s2io_print_pci_mode(sp);
8032 		if (mode < 0) {
8033 			ret = -EBADSLT;
8034 			unregister_netdev(dev);
8035 			goto set_swap_failed;
8036 		}
8037 	}
8038 	switch (sp->rxd_mode) {
8039 	case RXD_MODE_1:
8040 		DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8041 			  dev->name);
8042 		break;
8043 	case RXD_MODE_3B:
8044 		DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8045 			  dev->name);
8046 		break;
8047 	}
8048 
8049 	switch (sp->config.napi) {
8050 	case 0:
8051 		DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8052 		break;
8053 	case 1:
8054 		DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8055 		break;
8056 	}
8057 
8058 	DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8059 		  sp->config.tx_fifo_num);
8060 
8061 	DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8062 		  sp->config.rx_ring_num);
8063 
8064 	switch (sp->config.intr_type) {
8065 	case INTA:
8066 		DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8067 		break;
8068 	case MSI_X:
8069 		DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8070 		break;
8071 	}
8072 	if (sp->config.multiq) {
8073 		for (i = 0; i < sp->config.tx_fifo_num; i++) {
8074 			struct fifo_info *fifo = &mac_control->fifos[i];
8075 
8076 			fifo->multiq = config->multiq;
8077 		}
8078 		DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8079 			  dev->name);
8080 	} else
8081 		DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8082 			  dev->name);
8083 
8084 	switch (sp->config.tx_steering_type) {
8085 	case NO_STEERING:
8086 		DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n",
8087 			  dev->name);
8088 		break;
8089 	case TX_PRIORITY_STEERING:
8090 		DBG_PRINT(ERR_DBG,
8091 			  "%s: Priority steering enabled for transmit\n",
8092 			  dev->name);
8093 		break;
8094 	case TX_DEFAULT_STEERING:
8095 		DBG_PRINT(ERR_DBG,
8096 			  "%s: Default steering enabled for transmit\n",
8097 			  dev->name);
8098 	}
8099 
8100 	DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8101 		  dev->name);
8102 	/* Initialize device name */
8103 	snprintf(sp->name, sizeof(sp->name), "%s Neterion %s", dev->name,
8104 		 sp->product_name);
8105 
8106 	if (vlan_tag_strip)
8107 		sp->vlan_strip_flag = 1;
8108 	else
8109 		sp->vlan_strip_flag = 0;
8110 
8111 	/*
8112 	 * Make Link state as off at this point, when the Link change
8113 	 * interrupt comes the state will be automatically changed to
8114 	 * the right state.
8115 	 */
8116 	netif_carrier_off(dev);
8117 
8118 	return 0;
8119 
8120 register_failed:
8121 set_swap_failed:
8122 	iounmap(sp->bar1);
8123 bar1_remap_failed:
8124 	iounmap(sp->bar0);
8125 bar0_remap_failed:
8126 mem_alloc_failed:
8127 	free_shared_mem(sp);
8128 	pci_disable_device(pdev);
8129 	pci_release_regions(pdev);
8130 	free_netdev(dev);
8131 
8132 	return ret;
8133 }
8134 
8135 /**
8136  * s2io_rem_nic - Free the PCI device
8137  * @pdev: structure containing the PCI related information of the device.
8138  * Description: This function is called by the Pci subsystem to release a
8139  * PCI device and free up all resource held up by the device. This could
8140  * be in response to a Hot plug event or when the driver is to be removed
8141  * from memory.
8142  */
8143 
8144 static void s2io_rem_nic(struct pci_dev *pdev)
8145 {
8146 	struct net_device *dev = pci_get_drvdata(pdev);
8147 	struct s2io_nic *sp;
8148 
8149 	if (dev == NULL) {
8150 		DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8151 		return;
8152 	}
8153 
8154 	sp = netdev_priv(dev);
8155 
8156 	cancel_work_sync(&sp->rst_timer_task);
8157 	cancel_work_sync(&sp->set_link_task);
8158 
8159 	unregister_netdev(dev);
8160 
8161 	free_shared_mem(sp);
8162 	iounmap(sp->bar0);
8163 	iounmap(sp->bar1);
8164 	pci_release_regions(pdev);
8165 	free_netdev(dev);
8166 	pci_disable_device(pdev);
8167 }
8168 
8169 module_pci_driver(s2io_driver);
8170 
8171 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8172 				struct tcphdr **tcp, struct RxD_t *rxdp,
8173 				struct s2io_nic *sp)
8174 {
8175 	int ip_off;
8176 	u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8177 
8178 	if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8179 		DBG_PRINT(INIT_DBG,
8180 			  "%s: Non-TCP frames not supported for LRO\n",
8181 			  __func__);
8182 		return -1;
8183 	}
8184 
8185 	/* Checking for DIX type or DIX type with VLAN */
8186 	if ((l2_type == 0) || (l2_type == 4)) {
8187 		ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8188 		/*
8189 		 * If vlan stripping is disabled and the frame is VLAN tagged,
8190 		 * shift the offset by the VLAN header size bytes.
8191 		 */
8192 		if ((!sp->vlan_strip_flag) &&
8193 		    (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8194 			ip_off += HEADER_VLAN_SIZE;
8195 	} else {
8196 		/* LLC, SNAP etc are considered non-mergeable */
8197 		return -1;
8198 	}
8199 
8200 	*ip = (struct iphdr *)(buffer + ip_off);
8201 	ip_len = (u8)((*ip)->ihl);
8202 	ip_len <<= 2;
8203 	*tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8204 
8205 	return 0;
8206 }
8207 
8208 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8209 				  struct tcphdr *tcp)
8210 {
8211 	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8212 	if ((lro->iph->saddr != ip->saddr) ||
8213 	    (lro->iph->daddr != ip->daddr) ||
8214 	    (lro->tcph->source != tcp->source) ||
8215 	    (lro->tcph->dest != tcp->dest))
8216 		return -1;
8217 	return 0;
8218 }
8219 
8220 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8221 {
8222 	return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2);
8223 }
8224 
8225 static void initiate_new_session(struct lro *lro, u8 *l2h,
8226 				 struct iphdr *ip, struct tcphdr *tcp,
8227 				 u32 tcp_pyld_len, u16 vlan_tag)
8228 {
8229 	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8230 	lro->l2h = l2h;
8231 	lro->iph = ip;
8232 	lro->tcph = tcp;
8233 	lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8234 	lro->tcp_ack = tcp->ack_seq;
8235 	lro->sg_num = 1;
8236 	lro->total_len = ntohs(ip->tot_len);
8237 	lro->frags_len = 0;
8238 	lro->vlan_tag = vlan_tag;
8239 	/*
8240 	 * Check if we saw TCP timestamp.
8241 	 * Other consistency checks have already been done.
8242 	 */
8243 	if (tcp->doff == 8) {
8244 		__be32 *ptr;
8245 		ptr = (__be32 *)(tcp+1);
8246 		lro->saw_ts = 1;
8247 		lro->cur_tsval = ntohl(*(ptr+1));
8248 		lro->cur_tsecr = *(ptr+2);
8249 	}
8250 	lro->in_use = 1;
8251 }
8252 
8253 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8254 {
8255 	struct iphdr *ip = lro->iph;
8256 	struct tcphdr *tcp = lro->tcph;
8257 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8258 
8259 	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8260 
8261 	/* Update L3 header */
8262 	csum_replace2(&ip->check, ip->tot_len, htons(lro->total_len));
8263 	ip->tot_len = htons(lro->total_len);
8264 
8265 	/* Update L4 header */
8266 	tcp->ack_seq = lro->tcp_ack;
8267 	tcp->window = lro->window;
8268 
8269 	/* Update tsecr field if this session has timestamps enabled */
8270 	if (lro->saw_ts) {
8271 		__be32 *ptr = (__be32 *)(tcp + 1);
8272 		*(ptr+2) = lro->cur_tsecr;
8273 	}
8274 
8275 	/* Update counters required for calculation of
8276 	 * average no. of packets aggregated.
8277 	 */
8278 	swstats->sum_avg_pkts_aggregated += lro->sg_num;
8279 	swstats->num_aggregations++;
8280 }
8281 
8282 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8283 			     struct tcphdr *tcp, u32 l4_pyld)
8284 {
8285 	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8286 	lro->total_len += l4_pyld;
8287 	lro->frags_len += l4_pyld;
8288 	lro->tcp_next_seq += l4_pyld;
8289 	lro->sg_num++;
8290 
8291 	/* Update ack seq no. and window ad(from this pkt) in LRO object */
8292 	lro->tcp_ack = tcp->ack_seq;
8293 	lro->window = tcp->window;
8294 
8295 	if (lro->saw_ts) {
8296 		__be32 *ptr;
8297 		/* Update tsecr and tsval from this packet */
8298 		ptr = (__be32 *)(tcp+1);
8299 		lro->cur_tsval = ntohl(*(ptr+1));
8300 		lro->cur_tsecr = *(ptr + 2);
8301 	}
8302 }
8303 
8304 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8305 				    struct tcphdr *tcp, u32 tcp_pyld_len)
8306 {
8307 	u8 *ptr;
8308 
8309 	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8310 
8311 	if (!tcp_pyld_len) {
8312 		/* Runt frame or a pure ack */
8313 		return -1;
8314 	}
8315 
8316 	if (ip->ihl != 5) /* IP has options */
8317 		return -1;
8318 
8319 	/* If we see CE codepoint in IP header, packet is not mergeable */
8320 	if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8321 		return -1;
8322 
8323 	/* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8324 	if (tcp->urg || tcp->psh || tcp->rst ||
8325 	    tcp->syn || tcp->fin ||
8326 	    tcp->ece || tcp->cwr || !tcp->ack) {
8327 		/*
8328 		 * Currently recognize only the ack control word and
8329 		 * any other control field being set would result in
8330 		 * flushing the LRO session
8331 		 */
8332 		return -1;
8333 	}
8334 
8335 	/*
8336 	 * Allow only one TCP timestamp option. Don't aggregate if
8337 	 * any other options are detected.
8338 	 */
8339 	if (tcp->doff != 5 && tcp->doff != 8)
8340 		return -1;
8341 
8342 	if (tcp->doff == 8) {
8343 		ptr = (u8 *)(tcp + 1);
8344 		while (*ptr == TCPOPT_NOP)
8345 			ptr++;
8346 		if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8347 			return -1;
8348 
8349 		/* Ensure timestamp value increases monotonically */
8350 		if (l_lro)
8351 			if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8352 				return -1;
8353 
8354 		/* timestamp echo reply should be non-zero */
8355 		if (*((__be32 *)(ptr+6)) == 0)
8356 			return -1;
8357 	}
8358 
8359 	return 0;
8360 }
8361 
8362 static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer,
8363 				 u8 **tcp, u32 *tcp_len, struct lro **lro,
8364 				 struct RxD_t *rxdp, struct s2io_nic *sp)
8365 {
8366 	struct iphdr *ip;
8367 	struct tcphdr *tcph;
8368 	int ret = 0, i;
8369 	u16 vlan_tag = 0;
8370 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8371 
8372 	ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8373 				   rxdp, sp);
8374 	if (ret)
8375 		return ret;
8376 
8377 	DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr);
8378 
8379 	vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8380 	tcph = (struct tcphdr *)*tcp;
8381 	*tcp_len = get_l4_pyld_length(ip, tcph);
8382 	for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8383 		struct lro *l_lro = &ring_data->lro0_n[i];
8384 		if (l_lro->in_use) {
8385 			if (check_for_socket_match(l_lro, ip, tcph))
8386 				continue;
8387 			/* Sock pair matched */
8388 			*lro = l_lro;
8389 
8390 			if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8391 				DBG_PRINT(INFO_DBG, "%s: Out of sequence. "
8392 					  "expected 0x%x, actual 0x%x\n",
8393 					  __func__,
8394 					  (*lro)->tcp_next_seq,
8395 					  ntohl(tcph->seq));
8396 
8397 				swstats->outof_sequence_pkts++;
8398 				ret = 2;
8399 				break;
8400 			}
8401 
8402 			if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,
8403 						      *tcp_len))
8404 				ret = 1; /* Aggregate */
8405 			else
8406 				ret = 2; /* Flush both */
8407 			break;
8408 		}
8409 	}
8410 
8411 	if (ret == 0) {
8412 		/* Before searching for available LRO objects,
8413 		 * check if the pkt is L3/L4 aggregatable. If not
8414 		 * don't create new LRO session. Just send this
8415 		 * packet up.
8416 		 */
8417 		if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len))
8418 			return 5;
8419 
8420 		for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8421 			struct lro *l_lro = &ring_data->lro0_n[i];
8422 			if (!(l_lro->in_use)) {
8423 				*lro = l_lro;
8424 				ret = 3; /* Begin anew */
8425 				break;
8426 			}
8427 		}
8428 	}
8429 
8430 	if (ret == 0) { /* sessions exceeded */
8431 		DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n",
8432 			  __func__);
8433 		*lro = NULL;
8434 		return ret;
8435 	}
8436 
8437 	switch (ret) {
8438 	case 3:
8439 		initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8440 				     vlan_tag);
8441 		break;
8442 	case 2:
8443 		update_L3L4_header(sp, *lro);
8444 		break;
8445 	case 1:
8446 		aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8447 		if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8448 			update_L3L4_header(sp, *lro);
8449 			ret = 4; /* Flush the LRO */
8450 		}
8451 		break;
8452 	default:
8453 		DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__);
8454 		break;
8455 	}
8456 
8457 	return ret;
8458 }
8459 
8460 static void clear_lro_session(struct lro *lro)
8461 {
8462 	static u16 lro_struct_size = sizeof(struct lro);
8463 
8464 	memset(lro, 0, lro_struct_size);
8465 }
8466 
8467 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8468 {
8469 	struct net_device *dev = skb->dev;
8470 	struct s2io_nic *sp = netdev_priv(dev);
8471 
8472 	skb->protocol = eth_type_trans(skb, dev);
8473 	if (vlan_tag && sp->vlan_strip_flag)
8474 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
8475 	if (sp->config.napi)
8476 		netif_receive_skb(skb);
8477 	else
8478 		netif_rx(skb);
8479 }
8480 
8481 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8482 			   struct sk_buff *skb, u32 tcp_len)
8483 {
8484 	struct sk_buff *first = lro->parent;
8485 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8486 
8487 	first->len += tcp_len;
8488 	first->data_len = lro->frags_len;
8489 	skb_pull(skb, (skb->len - tcp_len));
8490 	if (skb_shinfo(first)->frag_list)
8491 		lro->last_frag->next = skb;
8492 	else
8493 		skb_shinfo(first)->frag_list = skb;
8494 	first->truesize += skb->truesize;
8495 	lro->last_frag = skb;
8496 	swstats->clubbed_frms_cnt++;
8497 }
8498 
8499 /**
8500  * s2io_io_error_detected - called when PCI error is detected
8501  * @pdev: Pointer to PCI device
8502  * @state: The current pci connection state
8503  *
8504  * This function is called after a PCI bus error affecting
8505  * this device has been detected.
8506  */
8507 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8508 					       pci_channel_state_t state)
8509 {
8510 	struct net_device *netdev = pci_get_drvdata(pdev);
8511 	struct s2io_nic *sp = netdev_priv(netdev);
8512 
8513 	netif_device_detach(netdev);
8514 
8515 	if (state == pci_channel_io_perm_failure)
8516 		return PCI_ERS_RESULT_DISCONNECT;
8517 
8518 	if (netif_running(netdev)) {
8519 		/* Bring down the card, while avoiding PCI I/O */
8520 		do_s2io_card_down(sp, 0);
8521 	}
8522 	pci_disable_device(pdev);
8523 
8524 	return PCI_ERS_RESULT_NEED_RESET;
8525 }
8526 
8527 /**
8528  * s2io_io_slot_reset - called after the pci bus has been reset.
8529  * @pdev: Pointer to PCI device
8530  *
8531  * Restart the card from scratch, as if from a cold-boot.
8532  * At this point, the card has exprienced a hard reset,
8533  * followed by fixups by BIOS, and has its config space
8534  * set up identically to what it was at cold boot.
8535  */
8536 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8537 {
8538 	struct net_device *netdev = pci_get_drvdata(pdev);
8539 	struct s2io_nic *sp = netdev_priv(netdev);
8540 
8541 	if (pci_enable_device(pdev)) {
8542 		pr_err("Cannot re-enable PCI device after reset.\n");
8543 		return PCI_ERS_RESULT_DISCONNECT;
8544 	}
8545 
8546 	pci_set_master(pdev);
8547 	s2io_reset(sp);
8548 
8549 	return PCI_ERS_RESULT_RECOVERED;
8550 }
8551 
8552 /**
8553  * s2io_io_resume - called when traffic can start flowing again.
8554  * @pdev: Pointer to PCI device
8555  *
8556  * This callback is called when the error recovery driver tells
8557  * us that its OK to resume normal operation.
8558  */
8559 static void s2io_io_resume(struct pci_dev *pdev)
8560 {
8561 	struct net_device *netdev = pci_get_drvdata(pdev);
8562 	struct s2io_nic *sp = netdev_priv(netdev);
8563 
8564 	if (netif_running(netdev)) {
8565 		if (s2io_card_up(sp)) {
8566 			pr_err("Can't bring device back up after reset.\n");
8567 			return;
8568 		}
8569 
8570 		if (do_s2io_prog_unicast(netdev, netdev->dev_addr) == FAILURE) {
8571 			s2io_card_down(sp);
8572 			pr_err("Can't restore mac addr after reset.\n");
8573 			return;
8574 		}
8575 	}
8576 
8577 	netif_device_attach(netdev);
8578 	netif_tx_wake_all_queues(netdev);
8579 }
8580