xref: /linux/drivers/net/ethernet/netronome/nfp/bpf/jit.c (revision 44f57d78)
1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
2 /* Copyright (C) 2016-2018 Netronome Systems, Inc. */
3 
4 #define pr_fmt(fmt)	"NFP net bpf: " fmt
5 
6 #include <linux/bug.h>
7 #include <linux/bpf.h>
8 #include <linux/filter.h>
9 #include <linux/kernel.h>
10 #include <linux/pkt_cls.h>
11 #include <linux/reciprocal_div.h>
12 #include <linux/unistd.h>
13 
14 #include "main.h"
15 #include "../nfp_asm.h"
16 #include "../nfp_net_ctrl.h"
17 
18 /* --- NFP prog --- */
19 /* Foreach "multiple" entries macros provide pos and next<n> pointers.
20  * It's safe to modify the next pointers (but not pos).
21  */
22 #define nfp_for_each_insn_walk2(nfp_prog, pos, next)			\
23 	for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \
24 	     next = list_next_entry(pos, l);			\
25 	     &(nfp_prog)->insns != &pos->l &&			\
26 	     &(nfp_prog)->insns != &next->l;			\
27 	     pos = nfp_meta_next(pos),				\
28 	     next = nfp_meta_next(pos))
29 
30 #define nfp_for_each_insn_walk3(nfp_prog, pos, next, next2)		\
31 	for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \
32 	     next = list_next_entry(pos, l),			\
33 	     next2 = list_next_entry(next, l);			\
34 	     &(nfp_prog)->insns != &pos->l &&			\
35 	     &(nfp_prog)->insns != &next->l &&			\
36 	     &(nfp_prog)->insns != &next2->l;			\
37 	     pos = nfp_meta_next(pos),				\
38 	     next = nfp_meta_next(pos),				\
39 	     next2 = nfp_meta_next(next))
40 
41 static bool
42 nfp_meta_has_prev(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
43 {
44 	return meta->l.prev != &nfp_prog->insns;
45 }
46 
47 static void nfp_prog_push(struct nfp_prog *nfp_prog, u64 insn)
48 {
49 	if (nfp_prog->__prog_alloc_len / sizeof(u64) == nfp_prog->prog_len) {
50 		pr_warn("instruction limit reached (%u NFP instructions)\n",
51 			nfp_prog->prog_len);
52 		nfp_prog->error = -ENOSPC;
53 		return;
54 	}
55 
56 	nfp_prog->prog[nfp_prog->prog_len] = insn;
57 	nfp_prog->prog_len++;
58 }
59 
60 static unsigned int nfp_prog_current_offset(struct nfp_prog *nfp_prog)
61 {
62 	return nfp_prog->prog_len;
63 }
64 
65 static bool
66 nfp_prog_confirm_current_offset(struct nfp_prog *nfp_prog, unsigned int off)
67 {
68 	/* If there is a recorded error we may have dropped instructions;
69 	 * that doesn't have to be due to translator bug, and the translation
70 	 * will fail anyway, so just return OK.
71 	 */
72 	if (nfp_prog->error)
73 		return true;
74 	return !WARN_ON_ONCE(nfp_prog_current_offset(nfp_prog) != off);
75 }
76 
77 /* --- Emitters --- */
78 static void
79 __emit_cmd(struct nfp_prog *nfp_prog, enum cmd_tgt_map op,
80 	   u8 mode, u8 xfer, u8 areg, u8 breg, u8 size, enum cmd_ctx_swap ctx,
81 	   bool indir)
82 {
83 	u64 insn;
84 
85 	insn =	FIELD_PREP(OP_CMD_A_SRC, areg) |
86 		FIELD_PREP(OP_CMD_CTX, ctx) |
87 		FIELD_PREP(OP_CMD_B_SRC, breg) |
88 		FIELD_PREP(OP_CMD_TOKEN, cmd_tgt_act[op].token) |
89 		FIELD_PREP(OP_CMD_XFER, xfer) |
90 		FIELD_PREP(OP_CMD_CNT, size) |
91 		FIELD_PREP(OP_CMD_SIG, ctx != CMD_CTX_NO_SWAP) |
92 		FIELD_PREP(OP_CMD_TGT_CMD, cmd_tgt_act[op].tgt_cmd) |
93 		FIELD_PREP(OP_CMD_INDIR, indir) |
94 		FIELD_PREP(OP_CMD_MODE, mode);
95 
96 	nfp_prog_push(nfp_prog, insn);
97 }
98 
99 static void
100 emit_cmd_any(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
101 	     swreg lreg, swreg rreg, u8 size, enum cmd_ctx_swap ctx, bool indir)
102 {
103 	struct nfp_insn_re_regs reg;
104 	int err;
105 
106 	err = swreg_to_restricted(reg_none(), lreg, rreg, &reg, false);
107 	if (err) {
108 		nfp_prog->error = err;
109 		return;
110 	}
111 	if (reg.swap) {
112 		pr_err("cmd can't swap arguments\n");
113 		nfp_prog->error = -EFAULT;
114 		return;
115 	}
116 	if (reg.dst_lmextn || reg.src_lmextn) {
117 		pr_err("cmd can't use LMextn\n");
118 		nfp_prog->error = -EFAULT;
119 		return;
120 	}
121 
122 	__emit_cmd(nfp_prog, op, mode, xfer, reg.areg, reg.breg, size, ctx,
123 		   indir);
124 }
125 
126 static void
127 emit_cmd(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
128 	 swreg lreg, swreg rreg, u8 size, enum cmd_ctx_swap ctx)
129 {
130 	emit_cmd_any(nfp_prog, op, mode, xfer, lreg, rreg, size, ctx, false);
131 }
132 
133 static void
134 emit_cmd_indir(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
135 	       swreg lreg, swreg rreg, u8 size, enum cmd_ctx_swap ctx)
136 {
137 	emit_cmd_any(nfp_prog, op, mode, xfer, lreg, rreg, size, ctx, true);
138 }
139 
140 static void
141 __emit_br(struct nfp_prog *nfp_prog, enum br_mask mask, enum br_ev_pip ev_pip,
142 	  enum br_ctx_signal_state css, u16 addr, u8 defer)
143 {
144 	u16 addr_lo, addr_hi;
145 	u64 insn;
146 
147 	addr_lo = addr & (OP_BR_ADDR_LO >> __bf_shf(OP_BR_ADDR_LO));
148 	addr_hi = addr != addr_lo;
149 
150 	insn = OP_BR_BASE |
151 		FIELD_PREP(OP_BR_MASK, mask) |
152 		FIELD_PREP(OP_BR_EV_PIP, ev_pip) |
153 		FIELD_PREP(OP_BR_CSS, css) |
154 		FIELD_PREP(OP_BR_DEFBR, defer) |
155 		FIELD_PREP(OP_BR_ADDR_LO, addr_lo) |
156 		FIELD_PREP(OP_BR_ADDR_HI, addr_hi);
157 
158 	nfp_prog_push(nfp_prog, insn);
159 }
160 
161 static void
162 emit_br_relo(struct nfp_prog *nfp_prog, enum br_mask mask, u16 addr, u8 defer,
163 	     enum nfp_relo_type relo)
164 {
165 	if (mask == BR_UNC && defer > 2) {
166 		pr_err("BUG: branch defer out of bounds %d\n", defer);
167 		nfp_prog->error = -EFAULT;
168 		return;
169 	}
170 
171 	__emit_br(nfp_prog, mask,
172 		  mask != BR_UNC ? BR_EV_PIP_COND : BR_EV_PIP_UNCOND,
173 		  BR_CSS_NONE, addr, defer);
174 
175 	nfp_prog->prog[nfp_prog->prog_len - 1] |=
176 		FIELD_PREP(OP_RELO_TYPE, relo);
177 }
178 
179 static void
180 emit_br(struct nfp_prog *nfp_prog, enum br_mask mask, u16 addr, u8 defer)
181 {
182 	emit_br_relo(nfp_prog, mask, addr, defer, RELO_BR_REL);
183 }
184 
185 static void
186 __emit_br_bit(struct nfp_prog *nfp_prog, u16 areg, u16 breg, u16 addr, u8 defer,
187 	      bool set, bool src_lmextn)
188 {
189 	u16 addr_lo, addr_hi;
190 	u64 insn;
191 
192 	addr_lo = addr & (OP_BR_BIT_ADDR_LO >> __bf_shf(OP_BR_BIT_ADDR_LO));
193 	addr_hi = addr != addr_lo;
194 
195 	insn = OP_BR_BIT_BASE |
196 		FIELD_PREP(OP_BR_BIT_A_SRC, areg) |
197 		FIELD_PREP(OP_BR_BIT_B_SRC, breg) |
198 		FIELD_PREP(OP_BR_BIT_BV, set) |
199 		FIELD_PREP(OP_BR_BIT_DEFBR, defer) |
200 		FIELD_PREP(OP_BR_BIT_ADDR_LO, addr_lo) |
201 		FIELD_PREP(OP_BR_BIT_ADDR_HI, addr_hi) |
202 		FIELD_PREP(OP_BR_BIT_SRC_LMEXTN, src_lmextn);
203 
204 	nfp_prog_push(nfp_prog, insn);
205 }
206 
207 static void
208 emit_br_bit_relo(struct nfp_prog *nfp_prog, swreg src, u8 bit, u16 addr,
209 		 u8 defer, bool set, enum nfp_relo_type relo)
210 {
211 	struct nfp_insn_re_regs reg;
212 	int err;
213 
214 	/* NOTE: The bit to test is specified as an rotation amount, such that
215 	 *	 the bit to test will be placed on the MSB of the result when
216 	 *	 doing a rotate right. For bit X, we need right rotate X + 1.
217 	 */
218 	bit += 1;
219 
220 	err = swreg_to_restricted(reg_none(), src, reg_imm(bit), &reg, false);
221 	if (err) {
222 		nfp_prog->error = err;
223 		return;
224 	}
225 
226 	__emit_br_bit(nfp_prog, reg.areg, reg.breg, addr, defer, set,
227 		      reg.src_lmextn);
228 
229 	nfp_prog->prog[nfp_prog->prog_len - 1] |=
230 		FIELD_PREP(OP_RELO_TYPE, relo);
231 }
232 
233 static void
234 emit_br_bset(struct nfp_prog *nfp_prog, swreg src, u8 bit, u16 addr, u8 defer)
235 {
236 	emit_br_bit_relo(nfp_prog, src, bit, addr, defer, true, RELO_BR_REL);
237 }
238 
239 static void
240 __emit_br_alu(struct nfp_prog *nfp_prog, u16 areg, u16 breg, u16 imm_hi,
241 	      u8 defer, bool dst_lmextn, bool src_lmextn)
242 {
243 	u64 insn;
244 
245 	insn = OP_BR_ALU_BASE |
246 		FIELD_PREP(OP_BR_ALU_A_SRC, areg) |
247 		FIELD_PREP(OP_BR_ALU_B_SRC, breg) |
248 		FIELD_PREP(OP_BR_ALU_DEFBR, defer) |
249 		FIELD_PREP(OP_BR_ALU_IMM_HI, imm_hi) |
250 		FIELD_PREP(OP_BR_ALU_SRC_LMEXTN, src_lmextn) |
251 		FIELD_PREP(OP_BR_ALU_DST_LMEXTN, dst_lmextn);
252 
253 	nfp_prog_push(nfp_prog, insn);
254 }
255 
256 static void emit_rtn(struct nfp_prog *nfp_prog, swreg base, u8 defer)
257 {
258 	struct nfp_insn_ur_regs reg;
259 	int err;
260 
261 	err = swreg_to_unrestricted(reg_none(), base, reg_imm(0), &reg);
262 	if (err) {
263 		nfp_prog->error = err;
264 		return;
265 	}
266 
267 	__emit_br_alu(nfp_prog, reg.areg, reg.breg, 0, defer, reg.dst_lmextn,
268 		      reg.src_lmextn);
269 }
270 
271 static void
272 __emit_immed(struct nfp_prog *nfp_prog, u16 areg, u16 breg, u16 imm_hi,
273 	     enum immed_width width, bool invert,
274 	     enum immed_shift shift, bool wr_both,
275 	     bool dst_lmextn, bool src_lmextn)
276 {
277 	u64 insn;
278 
279 	insn = OP_IMMED_BASE |
280 		FIELD_PREP(OP_IMMED_A_SRC, areg) |
281 		FIELD_PREP(OP_IMMED_B_SRC, breg) |
282 		FIELD_PREP(OP_IMMED_IMM, imm_hi) |
283 		FIELD_PREP(OP_IMMED_WIDTH, width) |
284 		FIELD_PREP(OP_IMMED_INV, invert) |
285 		FIELD_PREP(OP_IMMED_SHIFT, shift) |
286 		FIELD_PREP(OP_IMMED_WR_AB, wr_both) |
287 		FIELD_PREP(OP_IMMED_SRC_LMEXTN, src_lmextn) |
288 		FIELD_PREP(OP_IMMED_DST_LMEXTN, dst_lmextn);
289 
290 	nfp_prog_push(nfp_prog, insn);
291 }
292 
293 static void
294 emit_immed(struct nfp_prog *nfp_prog, swreg dst, u16 imm,
295 	   enum immed_width width, bool invert, enum immed_shift shift)
296 {
297 	struct nfp_insn_ur_regs reg;
298 	int err;
299 
300 	if (swreg_type(dst) == NN_REG_IMM) {
301 		nfp_prog->error = -EFAULT;
302 		return;
303 	}
304 
305 	err = swreg_to_unrestricted(dst, dst, reg_imm(imm & 0xff), &reg);
306 	if (err) {
307 		nfp_prog->error = err;
308 		return;
309 	}
310 
311 	/* Use reg.dst when destination is No-Dest. */
312 	__emit_immed(nfp_prog,
313 		     swreg_type(dst) == NN_REG_NONE ? reg.dst : reg.areg,
314 		     reg.breg, imm >> 8, width, invert, shift,
315 		     reg.wr_both, reg.dst_lmextn, reg.src_lmextn);
316 }
317 
318 static void
319 __emit_shf(struct nfp_prog *nfp_prog, u16 dst, enum alu_dst_ab dst_ab,
320 	   enum shf_sc sc, u8 shift,
321 	   u16 areg, enum shf_op op, u16 breg, bool i8, bool sw, bool wr_both,
322 	   bool dst_lmextn, bool src_lmextn)
323 {
324 	u64 insn;
325 
326 	if (!FIELD_FIT(OP_SHF_SHIFT, shift)) {
327 		nfp_prog->error = -EFAULT;
328 		return;
329 	}
330 
331 	/* NFP shift instruction has something special. If shift direction is
332 	 * left then shift amount of 1 to 31 is specified as 32 minus the amount
333 	 * to shift.
334 	 *
335 	 * But no need to do this for indirect shift which has shift amount be
336 	 * 0. Even after we do this subtraction, shift amount 0 will be turned
337 	 * into 32 which will eventually be encoded the same as 0 because only
338 	 * low 5 bits are encoded, but shift amount be 32 will fail the
339 	 * FIELD_PREP check done later on shift mask (0x1f), due to 32 is out of
340 	 * mask range.
341 	 */
342 	if (sc == SHF_SC_L_SHF && shift)
343 		shift = 32 - shift;
344 
345 	insn = OP_SHF_BASE |
346 		FIELD_PREP(OP_SHF_A_SRC, areg) |
347 		FIELD_PREP(OP_SHF_SC, sc) |
348 		FIELD_PREP(OP_SHF_B_SRC, breg) |
349 		FIELD_PREP(OP_SHF_I8, i8) |
350 		FIELD_PREP(OP_SHF_SW, sw) |
351 		FIELD_PREP(OP_SHF_DST, dst) |
352 		FIELD_PREP(OP_SHF_SHIFT, shift) |
353 		FIELD_PREP(OP_SHF_OP, op) |
354 		FIELD_PREP(OP_SHF_DST_AB, dst_ab) |
355 		FIELD_PREP(OP_SHF_WR_AB, wr_both) |
356 		FIELD_PREP(OP_SHF_SRC_LMEXTN, src_lmextn) |
357 		FIELD_PREP(OP_SHF_DST_LMEXTN, dst_lmextn);
358 
359 	nfp_prog_push(nfp_prog, insn);
360 }
361 
362 static void
363 emit_shf(struct nfp_prog *nfp_prog, swreg dst,
364 	 swreg lreg, enum shf_op op, swreg rreg, enum shf_sc sc, u8 shift)
365 {
366 	struct nfp_insn_re_regs reg;
367 	int err;
368 
369 	err = swreg_to_restricted(dst, lreg, rreg, &reg, true);
370 	if (err) {
371 		nfp_prog->error = err;
372 		return;
373 	}
374 
375 	__emit_shf(nfp_prog, reg.dst, reg.dst_ab, sc, shift,
376 		   reg.areg, op, reg.breg, reg.i8, reg.swap, reg.wr_both,
377 		   reg.dst_lmextn, reg.src_lmextn);
378 }
379 
380 static void
381 emit_shf_indir(struct nfp_prog *nfp_prog, swreg dst,
382 	       swreg lreg, enum shf_op op, swreg rreg, enum shf_sc sc)
383 {
384 	if (sc == SHF_SC_R_ROT) {
385 		pr_err("indirect shift is not allowed on rotation\n");
386 		nfp_prog->error = -EFAULT;
387 		return;
388 	}
389 
390 	emit_shf(nfp_prog, dst, lreg, op, rreg, sc, 0);
391 }
392 
393 static void
394 __emit_alu(struct nfp_prog *nfp_prog, u16 dst, enum alu_dst_ab dst_ab,
395 	   u16 areg, enum alu_op op, u16 breg, bool swap, bool wr_both,
396 	   bool dst_lmextn, bool src_lmextn)
397 {
398 	u64 insn;
399 
400 	insn = OP_ALU_BASE |
401 		FIELD_PREP(OP_ALU_A_SRC, areg) |
402 		FIELD_PREP(OP_ALU_B_SRC, breg) |
403 		FIELD_PREP(OP_ALU_DST, dst) |
404 		FIELD_PREP(OP_ALU_SW, swap) |
405 		FIELD_PREP(OP_ALU_OP, op) |
406 		FIELD_PREP(OP_ALU_DST_AB, dst_ab) |
407 		FIELD_PREP(OP_ALU_WR_AB, wr_both) |
408 		FIELD_PREP(OP_ALU_SRC_LMEXTN, src_lmextn) |
409 		FIELD_PREP(OP_ALU_DST_LMEXTN, dst_lmextn);
410 
411 	nfp_prog_push(nfp_prog, insn);
412 }
413 
414 static void
415 emit_alu(struct nfp_prog *nfp_prog, swreg dst,
416 	 swreg lreg, enum alu_op op, swreg rreg)
417 {
418 	struct nfp_insn_ur_regs reg;
419 	int err;
420 
421 	err = swreg_to_unrestricted(dst, lreg, rreg, &reg);
422 	if (err) {
423 		nfp_prog->error = err;
424 		return;
425 	}
426 
427 	__emit_alu(nfp_prog, reg.dst, reg.dst_ab,
428 		   reg.areg, op, reg.breg, reg.swap, reg.wr_both,
429 		   reg.dst_lmextn, reg.src_lmextn);
430 }
431 
432 static void
433 __emit_mul(struct nfp_prog *nfp_prog, enum alu_dst_ab dst_ab, u16 areg,
434 	   enum mul_type type, enum mul_step step, u16 breg, bool swap,
435 	   bool wr_both, bool dst_lmextn, bool src_lmextn)
436 {
437 	u64 insn;
438 
439 	insn = OP_MUL_BASE |
440 		FIELD_PREP(OP_MUL_A_SRC, areg) |
441 		FIELD_PREP(OP_MUL_B_SRC, breg) |
442 		FIELD_PREP(OP_MUL_STEP, step) |
443 		FIELD_PREP(OP_MUL_DST_AB, dst_ab) |
444 		FIELD_PREP(OP_MUL_SW, swap) |
445 		FIELD_PREP(OP_MUL_TYPE, type) |
446 		FIELD_PREP(OP_MUL_WR_AB, wr_both) |
447 		FIELD_PREP(OP_MUL_SRC_LMEXTN, src_lmextn) |
448 		FIELD_PREP(OP_MUL_DST_LMEXTN, dst_lmextn);
449 
450 	nfp_prog_push(nfp_prog, insn);
451 }
452 
453 static void
454 emit_mul(struct nfp_prog *nfp_prog, swreg lreg, enum mul_type type,
455 	 enum mul_step step, swreg rreg)
456 {
457 	struct nfp_insn_ur_regs reg;
458 	u16 areg;
459 	int err;
460 
461 	if (type == MUL_TYPE_START && step != MUL_STEP_NONE) {
462 		nfp_prog->error = -EINVAL;
463 		return;
464 	}
465 
466 	if (step == MUL_LAST || step == MUL_LAST_2) {
467 		/* When type is step and step Number is LAST or LAST2, left
468 		 * source is used as destination.
469 		 */
470 		err = swreg_to_unrestricted(lreg, reg_none(), rreg, &reg);
471 		areg = reg.dst;
472 	} else {
473 		err = swreg_to_unrestricted(reg_none(), lreg, rreg, &reg);
474 		areg = reg.areg;
475 	}
476 
477 	if (err) {
478 		nfp_prog->error = err;
479 		return;
480 	}
481 
482 	__emit_mul(nfp_prog, reg.dst_ab, areg, type, step, reg.breg, reg.swap,
483 		   reg.wr_both, reg.dst_lmextn, reg.src_lmextn);
484 }
485 
486 static void
487 __emit_ld_field(struct nfp_prog *nfp_prog, enum shf_sc sc,
488 		u8 areg, u8 bmask, u8 breg, u8 shift, bool imm8,
489 		bool zero, bool swap, bool wr_both,
490 		bool dst_lmextn, bool src_lmextn)
491 {
492 	u64 insn;
493 
494 	insn = OP_LDF_BASE |
495 		FIELD_PREP(OP_LDF_A_SRC, areg) |
496 		FIELD_PREP(OP_LDF_SC, sc) |
497 		FIELD_PREP(OP_LDF_B_SRC, breg) |
498 		FIELD_PREP(OP_LDF_I8, imm8) |
499 		FIELD_PREP(OP_LDF_SW, swap) |
500 		FIELD_PREP(OP_LDF_ZF, zero) |
501 		FIELD_PREP(OP_LDF_BMASK, bmask) |
502 		FIELD_PREP(OP_LDF_SHF, shift) |
503 		FIELD_PREP(OP_LDF_WR_AB, wr_both) |
504 		FIELD_PREP(OP_LDF_SRC_LMEXTN, src_lmextn) |
505 		FIELD_PREP(OP_LDF_DST_LMEXTN, dst_lmextn);
506 
507 	nfp_prog_push(nfp_prog, insn);
508 }
509 
510 static void
511 emit_ld_field_any(struct nfp_prog *nfp_prog, swreg dst, u8 bmask, swreg src,
512 		  enum shf_sc sc, u8 shift, bool zero)
513 {
514 	struct nfp_insn_re_regs reg;
515 	int err;
516 
517 	/* Note: ld_field is special as it uses one of the src regs as dst */
518 	err = swreg_to_restricted(dst, dst, src, &reg, true);
519 	if (err) {
520 		nfp_prog->error = err;
521 		return;
522 	}
523 
524 	__emit_ld_field(nfp_prog, sc, reg.areg, bmask, reg.breg, shift,
525 			reg.i8, zero, reg.swap, reg.wr_both,
526 			reg.dst_lmextn, reg.src_lmextn);
527 }
528 
529 static void
530 emit_ld_field(struct nfp_prog *nfp_prog, swreg dst, u8 bmask, swreg src,
531 	      enum shf_sc sc, u8 shift)
532 {
533 	emit_ld_field_any(nfp_prog, dst, bmask, src, sc, shift, false);
534 }
535 
536 static void
537 __emit_lcsr(struct nfp_prog *nfp_prog, u16 areg, u16 breg, bool wr, u16 addr,
538 	    bool dst_lmextn, bool src_lmextn)
539 {
540 	u64 insn;
541 
542 	insn = OP_LCSR_BASE |
543 		FIELD_PREP(OP_LCSR_A_SRC, areg) |
544 		FIELD_PREP(OP_LCSR_B_SRC, breg) |
545 		FIELD_PREP(OP_LCSR_WRITE, wr) |
546 		FIELD_PREP(OP_LCSR_ADDR, addr / 4) |
547 		FIELD_PREP(OP_LCSR_SRC_LMEXTN, src_lmextn) |
548 		FIELD_PREP(OP_LCSR_DST_LMEXTN, dst_lmextn);
549 
550 	nfp_prog_push(nfp_prog, insn);
551 }
552 
553 static void emit_csr_wr(struct nfp_prog *nfp_prog, swreg src, u16 addr)
554 {
555 	struct nfp_insn_ur_regs reg;
556 	int err;
557 
558 	/* This instruction takes immeds instead of reg_none() for the ignored
559 	 * operand, but we can't encode 2 immeds in one instr with our normal
560 	 * swreg infra so if param is an immed, we encode as reg_none() and
561 	 * copy the immed to both operands.
562 	 */
563 	if (swreg_type(src) == NN_REG_IMM) {
564 		err = swreg_to_unrestricted(reg_none(), src, reg_none(), &reg);
565 		reg.breg = reg.areg;
566 	} else {
567 		err = swreg_to_unrestricted(reg_none(), src, reg_imm(0), &reg);
568 	}
569 	if (err) {
570 		nfp_prog->error = err;
571 		return;
572 	}
573 
574 	__emit_lcsr(nfp_prog, reg.areg, reg.breg, true, addr,
575 		    false, reg.src_lmextn);
576 }
577 
578 /* CSR value is read in following immed[gpr, 0] */
579 static void __emit_csr_rd(struct nfp_prog *nfp_prog, u16 addr)
580 {
581 	__emit_lcsr(nfp_prog, 0, 0, false, addr, false, false);
582 }
583 
584 static void emit_nop(struct nfp_prog *nfp_prog)
585 {
586 	__emit_immed(nfp_prog, UR_REG_IMM, UR_REG_IMM, 0, 0, 0, 0, 0, 0, 0);
587 }
588 
589 /* --- Wrappers --- */
590 static bool pack_immed(u32 imm, u16 *val, enum immed_shift *shift)
591 {
592 	if (!(imm & 0xffff0000)) {
593 		*val = imm;
594 		*shift = IMMED_SHIFT_0B;
595 	} else if (!(imm & 0xff0000ff)) {
596 		*val = imm >> 8;
597 		*shift = IMMED_SHIFT_1B;
598 	} else if (!(imm & 0x0000ffff)) {
599 		*val = imm >> 16;
600 		*shift = IMMED_SHIFT_2B;
601 	} else {
602 		return false;
603 	}
604 
605 	return true;
606 }
607 
608 static void wrp_immed(struct nfp_prog *nfp_prog, swreg dst, u32 imm)
609 {
610 	enum immed_shift shift;
611 	u16 val;
612 
613 	if (pack_immed(imm, &val, &shift)) {
614 		emit_immed(nfp_prog, dst, val, IMMED_WIDTH_ALL, false, shift);
615 	} else if (pack_immed(~imm, &val, &shift)) {
616 		emit_immed(nfp_prog, dst, val, IMMED_WIDTH_ALL, true, shift);
617 	} else {
618 		emit_immed(nfp_prog, dst, imm & 0xffff, IMMED_WIDTH_ALL,
619 			   false, IMMED_SHIFT_0B);
620 		emit_immed(nfp_prog, dst, imm >> 16, IMMED_WIDTH_WORD,
621 			   false, IMMED_SHIFT_2B);
622 	}
623 }
624 
625 static void
626 wrp_immed_relo(struct nfp_prog *nfp_prog, swreg dst, u32 imm,
627 	       enum nfp_relo_type relo)
628 {
629 	if (imm > 0xffff) {
630 		pr_err("relocation of a large immediate!\n");
631 		nfp_prog->error = -EFAULT;
632 		return;
633 	}
634 	emit_immed(nfp_prog, dst, imm, IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B);
635 
636 	nfp_prog->prog[nfp_prog->prog_len - 1] |=
637 		FIELD_PREP(OP_RELO_TYPE, relo);
638 }
639 
640 /* ur_load_imm_any() - encode immediate or use tmp register (unrestricted)
641  * If the @imm is small enough encode it directly in operand and return
642  * otherwise load @imm to a spare register and return its encoding.
643  */
644 static swreg ur_load_imm_any(struct nfp_prog *nfp_prog, u32 imm, swreg tmp_reg)
645 {
646 	if (FIELD_FIT(UR_REG_IMM_MAX, imm))
647 		return reg_imm(imm);
648 
649 	wrp_immed(nfp_prog, tmp_reg, imm);
650 	return tmp_reg;
651 }
652 
653 /* re_load_imm_any() - encode immediate or use tmp register (restricted)
654  * If the @imm is small enough encode it directly in operand and return
655  * otherwise load @imm to a spare register and return its encoding.
656  */
657 static swreg re_load_imm_any(struct nfp_prog *nfp_prog, u32 imm, swreg tmp_reg)
658 {
659 	if (FIELD_FIT(RE_REG_IMM_MAX, imm))
660 		return reg_imm(imm);
661 
662 	wrp_immed(nfp_prog, tmp_reg, imm);
663 	return tmp_reg;
664 }
665 
666 static void wrp_nops(struct nfp_prog *nfp_prog, unsigned int count)
667 {
668 	while (count--)
669 		emit_nop(nfp_prog);
670 }
671 
672 static void wrp_mov(struct nfp_prog *nfp_prog, swreg dst, swreg src)
673 {
674 	emit_alu(nfp_prog, dst, reg_none(), ALU_OP_NONE, src);
675 }
676 
677 static void wrp_reg_mov(struct nfp_prog *nfp_prog, u16 dst, u16 src)
678 {
679 	wrp_mov(nfp_prog, reg_both(dst), reg_b(src));
680 }
681 
682 /* wrp_reg_subpart() - load @field_len bytes from @offset of @src, write the
683  * result to @dst from low end.
684  */
685 static void
686 wrp_reg_subpart(struct nfp_prog *nfp_prog, swreg dst, swreg src, u8 field_len,
687 		u8 offset)
688 {
689 	enum shf_sc sc = offset ? SHF_SC_R_SHF : SHF_SC_NONE;
690 	u8 mask = (1 << field_len) - 1;
691 
692 	emit_ld_field_any(nfp_prog, dst, mask, src, sc, offset * 8, true);
693 }
694 
695 /* wrp_reg_or_subpart() - load @field_len bytes from low end of @src, or the
696  * result to @dst from offset, there is no change on the other bits of @dst.
697  */
698 static void
699 wrp_reg_or_subpart(struct nfp_prog *nfp_prog, swreg dst, swreg src,
700 		   u8 field_len, u8 offset)
701 {
702 	enum shf_sc sc = offset ? SHF_SC_L_SHF : SHF_SC_NONE;
703 	u8 mask = ((1 << field_len) - 1) << offset;
704 
705 	emit_ld_field(nfp_prog, dst, mask, src, sc, 32 - offset * 8);
706 }
707 
708 static void
709 addr40_offset(struct nfp_prog *nfp_prog, u8 src_gpr, swreg offset,
710 	      swreg *rega, swreg *regb)
711 {
712 	if (offset == reg_imm(0)) {
713 		*rega = reg_a(src_gpr);
714 		*regb = reg_b(src_gpr + 1);
715 		return;
716 	}
717 
718 	emit_alu(nfp_prog, imm_a(nfp_prog), reg_a(src_gpr), ALU_OP_ADD, offset);
719 	emit_alu(nfp_prog, imm_b(nfp_prog), reg_b(src_gpr + 1), ALU_OP_ADD_C,
720 		 reg_imm(0));
721 	*rega = imm_a(nfp_prog);
722 	*regb = imm_b(nfp_prog);
723 }
724 
725 /* NFP has Command Push Pull bus which supports bluk memory operations. */
726 static int nfp_cpp_memcpy(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
727 {
728 	bool descending_seq = meta->ldst_gather_len < 0;
729 	s16 len = abs(meta->ldst_gather_len);
730 	swreg src_base, off;
731 	bool src_40bit_addr;
732 	unsigned int i;
733 	u8 xfer_num;
734 
735 	off = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
736 	src_40bit_addr = meta->ptr.type == PTR_TO_MAP_VALUE;
737 	src_base = reg_a(meta->insn.src_reg * 2);
738 	xfer_num = round_up(len, 4) / 4;
739 
740 	if (src_40bit_addr)
741 		addr40_offset(nfp_prog, meta->insn.src_reg * 2, off, &src_base,
742 			      &off);
743 
744 	/* Setup PREV_ALU fields to override memory read length. */
745 	if (len > 32)
746 		wrp_immed(nfp_prog, reg_none(),
747 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
748 
749 	/* Memory read from source addr into transfer-in registers. */
750 	emit_cmd_any(nfp_prog, CMD_TGT_READ32_SWAP,
751 		     src_40bit_addr ? CMD_MODE_40b_BA : CMD_MODE_32b, 0,
752 		     src_base, off, xfer_num - 1, CMD_CTX_SWAP, len > 32);
753 
754 	/* Move from transfer-in to transfer-out. */
755 	for (i = 0; i < xfer_num; i++)
756 		wrp_mov(nfp_prog, reg_xfer(i), reg_xfer(i));
757 
758 	off = re_load_imm_any(nfp_prog, meta->paired_st->off, imm_b(nfp_prog));
759 
760 	if (len <= 8) {
761 		/* Use single direct_ref write8. */
762 		emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
763 			 reg_a(meta->paired_st->dst_reg * 2), off, len - 1,
764 			 CMD_CTX_SWAP);
765 	} else if (len <= 32 && IS_ALIGNED(len, 4)) {
766 		/* Use single direct_ref write32. */
767 		emit_cmd(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
768 			 reg_a(meta->paired_st->dst_reg * 2), off, xfer_num - 1,
769 			 CMD_CTX_SWAP);
770 	} else if (len <= 32) {
771 		/* Use single indirect_ref write8. */
772 		wrp_immed(nfp_prog, reg_none(),
773 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, len - 1));
774 		emit_cmd_indir(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
775 			       reg_a(meta->paired_st->dst_reg * 2), off,
776 			       len - 1, CMD_CTX_SWAP);
777 	} else if (IS_ALIGNED(len, 4)) {
778 		/* Use single indirect_ref write32. */
779 		wrp_immed(nfp_prog, reg_none(),
780 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
781 		emit_cmd_indir(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
782 			       reg_a(meta->paired_st->dst_reg * 2), off,
783 			       xfer_num - 1, CMD_CTX_SWAP);
784 	} else if (len <= 40) {
785 		/* Use one direct_ref write32 to write the first 32-bytes, then
786 		 * another direct_ref write8 to write the remaining bytes.
787 		 */
788 		emit_cmd(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
789 			 reg_a(meta->paired_st->dst_reg * 2), off, 7,
790 			 CMD_CTX_SWAP);
791 
792 		off = re_load_imm_any(nfp_prog, meta->paired_st->off + 32,
793 				      imm_b(nfp_prog));
794 		emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 8,
795 			 reg_a(meta->paired_st->dst_reg * 2), off, len - 33,
796 			 CMD_CTX_SWAP);
797 	} else {
798 		/* Use one indirect_ref write32 to write 4-bytes aligned length,
799 		 * then another direct_ref write8 to write the remaining bytes.
800 		 */
801 		u8 new_off;
802 
803 		wrp_immed(nfp_prog, reg_none(),
804 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 2));
805 		emit_cmd_indir(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
806 			       reg_a(meta->paired_st->dst_reg * 2), off,
807 			       xfer_num - 2, CMD_CTX_SWAP);
808 		new_off = meta->paired_st->off + (xfer_num - 1) * 4;
809 		off = re_load_imm_any(nfp_prog, new_off, imm_b(nfp_prog));
810 		emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b,
811 			 xfer_num - 1, reg_a(meta->paired_st->dst_reg * 2), off,
812 			 (len & 0x3) - 1, CMD_CTX_SWAP);
813 	}
814 
815 	/* TODO: The following extra load is to make sure data flow be identical
816 	 *  before and after we do memory copy optimization.
817 	 *
818 	 *  The load destination register is not guaranteed to be dead, so we
819 	 *  need to make sure it is loaded with the value the same as before
820 	 *  this transformation.
821 	 *
822 	 *  These extra loads could be removed once we have accurate register
823 	 *  usage information.
824 	 */
825 	if (descending_seq)
826 		xfer_num = 0;
827 	else if (BPF_SIZE(meta->insn.code) != BPF_DW)
828 		xfer_num = xfer_num - 1;
829 	else
830 		xfer_num = xfer_num - 2;
831 
832 	switch (BPF_SIZE(meta->insn.code)) {
833 	case BPF_B:
834 		wrp_reg_subpart(nfp_prog, reg_both(meta->insn.dst_reg * 2),
835 				reg_xfer(xfer_num), 1,
836 				IS_ALIGNED(len, 4) ? 3 : (len & 3) - 1);
837 		break;
838 	case BPF_H:
839 		wrp_reg_subpart(nfp_prog, reg_both(meta->insn.dst_reg * 2),
840 				reg_xfer(xfer_num), 2, (len & 3) ^ 2);
841 		break;
842 	case BPF_W:
843 		wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2),
844 			reg_xfer(0));
845 		break;
846 	case BPF_DW:
847 		wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2),
848 			reg_xfer(xfer_num));
849 		wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1),
850 			reg_xfer(xfer_num + 1));
851 		break;
852 	}
853 
854 	if (BPF_SIZE(meta->insn.code) != BPF_DW)
855 		wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
856 
857 	return 0;
858 }
859 
860 static int
861 data_ld(struct nfp_prog *nfp_prog, swreg offset, u8 dst_gpr, int size)
862 {
863 	unsigned int i;
864 	u16 shift, sz;
865 
866 	/* We load the value from the address indicated in @offset and then
867 	 * shift out the data we don't need.  Note: this is big endian!
868 	 */
869 	sz = max(size, 4);
870 	shift = size < 4 ? 4 - size : 0;
871 
872 	emit_cmd(nfp_prog, CMD_TGT_READ8, CMD_MODE_32b, 0,
873 		 pptr_reg(nfp_prog), offset, sz - 1, CMD_CTX_SWAP);
874 
875 	i = 0;
876 	if (shift)
877 		emit_shf(nfp_prog, reg_both(dst_gpr), reg_none(), SHF_OP_NONE,
878 			 reg_xfer(0), SHF_SC_R_SHF, shift * 8);
879 	else
880 		for (; i * 4 < size; i++)
881 			wrp_mov(nfp_prog, reg_both(dst_gpr + i), reg_xfer(i));
882 
883 	if (i < 2)
884 		wrp_immed(nfp_prog, reg_both(dst_gpr + 1), 0);
885 
886 	return 0;
887 }
888 
889 static int
890 data_ld_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr,
891 		   swreg lreg, swreg rreg, int size, enum cmd_mode mode)
892 {
893 	unsigned int i;
894 	u8 mask, sz;
895 
896 	/* We load the value from the address indicated in rreg + lreg and then
897 	 * mask out the data we don't need.  Note: this is little endian!
898 	 */
899 	sz = max(size, 4);
900 	mask = size < 4 ? GENMASK(size - 1, 0) : 0;
901 
902 	emit_cmd(nfp_prog, CMD_TGT_READ32_SWAP, mode, 0,
903 		 lreg, rreg, sz / 4 - 1, CMD_CTX_SWAP);
904 
905 	i = 0;
906 	if (mask)
907 		emit_ld_field_any(nfp_prog, reg_both(dst_gpr), mask,
908 				  reg_xfer(0), SHF_SC_NONE, 0, true);
909 	else
910 		for (; i * 4 < size; i++)
911 			wrp_mov(nfp_prog, reg_both(dst_gpr + i), reg_xfer(i));
912 
913 	if (i < 2)
914 		wrp_immed(nfp_prog, reg_both(dst_gpr + 1), 0);
915 
916 	return 0;
917 }
918 
919 static int
920 data_ld_host_order_addr32(struct nfp_prog *nfp_prog, u8 src_gpr, swreg offset,
921 			  u8 dst_gpr, u8 size)
922 {
923 	return data_ld_host_order(nfp_prog, dst_gpr, reg_a(src_gpr), offset,
924 				  size, CMD_MODE_32b);
925 }
926 
927 static int
928 data_ld_host_order_addr40(struct nfp_prog *nfp_prog, u8 src_gpr, swreg offset,
929 			  u8 dst_gpr, u8 size)
930 {
931 	swreg rega, regb;
932 
933 	addr40_offset(nfp_prog, src_gpr, offset, &rega, &regb);
934 
935 	return data_ld_host_order(nfp_prog, dst_gpr, rega, regb,
936 				  size, CMD_MODE_40b_BA);
937 }
938 
939 static int
940 construct_data_ind_ld(struct nfp_prog *nfp_prog, u16 offset, u16 src, u8 size)
941 {
942 	swreg tmp_reg;
943 
944 	/* Calculate the true offset (src_reg + imm) */
945 	tmp_reg = ur_load_imm_any(nfp_prog, offset, imm_b(nfp_prog));
946 	emit_alu(nfp_prog, imm_both(nfp_prog), reg_a(src), ALU_OP_ADD, tmp_reg);
947 
948 	/* Check packet length (size guaranteed to fit b/c it's u8) */
949 	emit_alu(nfp_prog, imm_a(nfp_prog),
950 		 imm_a(nfp_prog), ALU_OP_ADD, reg_imm(size));
951 	emit_alu(nfp_prog, reg_none(),
952 		 plen_reg(nfp_prog), ALU_OP_SUB, imm_a(nfp_prog));
953 	emit_br_relo(nfp_prog, BR_BLO, BR_OFF_RELO, 0, RELO_BR_GO_ABORT);
954 
955 	/* Load data */
956 	return data_ld(nfp_prog, imm_b(nfp_prog), 0, size);
957 }
958 
959 static int construct_data_ld(struct nfp_prog *nfp_prog, u16 offset, u8 size)
960 {
961 	swreg tmp_reg;
962 
963 	/* Check packet length */
964 	tmp_reg = ur_load_imm_any(nfp_prog, offset + size, imm_a(nfp_prog));
965 	emit_alu(nfp_prog, reg_none(), plen_reg(nfp_prog), ALU_OP_SUB, tmp_reg);
966 	emit_br_relo(nfp_prog, BR_BLO, BR_OFF_RELO, 0, RELO_BR_GO_ABORT);
967 
968 	/* Load data */
969 	tmp_reg = re_load_imm_any(nfp_prog, offset, imm_b(nfp_prog));
970 	return data_ld(nfp_prog, tmp_reg, 0, size);
971 }
972 
973 static int
974 data_stx_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr, swreg offset,
975 		    u8 src_gpr, u8 size)
976 {
977 	unsigned int i;
978 
979 	for (i = 0; i * 4 < size; i++)
980 		wrp_mov(nfp_prog, reg_xfer(i), reg_a(src_gpr + i));
981 
982 	emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
983 		 reg_a(dst_gpr), offset, size - 1, CMD_CTX_SWAP);
984 
985 	return 0;
986 }
987 
988 static int
989 data_st_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr, swreg offset,
990 		   u64 imm, u8 size)
991 {
992 	wrp_immed(nfp_prog, reg_xfer(0), imm);
993 	if (size == 8)
994 		wrp_immed(nfp_prog, reg_xfer(1), imm >> 32);
995 
996 	emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
997 		 reg_a(dst_gpr), offset, size - 1, CMD_CTX_SWAP);
998 
999 	return 0;
1000 }
1001 
1002 typedef int
1003 (*lmem_step)(struct nfp_prog *nfp_prog, u8 gpr, u8 gpr_byte, s32 off,
1004 	     unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
1005 	     bool needs_inc);
1006 
1007 static int
1008 wrp_lmem_load(struct nfp_prog *nfp_prog, u8 dst, u8 dst_byte, s32 off,
1009 	      unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
1010 	      bool needs_inc)
1011 {
1012 	bool should_inc = needs_inc && new_gpr && !last;
1013 	u32 idx, src_byte;
1014 	enum shf_sc sc;
1015 	swreg reg;
1016 	int shf;
1017 	u8 mask;
1018 
1019 	if (WARN_ON_ONCE(dst_byte + size > 4 || off % 4 + size > 4))
1020 		return -EOPNOTSUPP;
1021 
1022 	idx = off / 4;
1023 
1024 	/* Move the entire word */
1025 	if (size == 4) {
1026 		wrp_mov(nfp_prog, reg_both(dst),
1027 			should_inc ? reg_lm_inc(3) : reg_lm(lm3 ? 3 : 0, idx));
1028 		return 0;
1029 	}
1030 
1031 	if (WARN_ON_ONCE(lm3 && idx > RE_REG_LM_IDX_MAX))
1032 		return -EOPNOTSUPP;
1033 
1034 	src_byte = off % 4;
1035 
1036 	mask = (1 << size) - 1;
1037 	mask <<= dst_byte;
1038 
1039 	if (WARN_ON_ONCE(mask > 0xf))
1040 		return -EOPNOTSUPP;
1041 
1042 	shf = abs(src_byte - dst_byte) * 8;
1043 	if (src_byte == dst_byte) {
1044 		sc = SHF_SC_NONE;
1045 	} else if (src_byte < dst_byte) {
1046 		shf = 32 - shf;
1047 		sc = SHF_SC_L_SHF;
1048 	} else {
1049 		sc = SHF_SC_R_SHF;
1050 	}
1051 
1052 	/* ld_field can address fewer indexes, if offset too large do RMW.
1053 	 * Because we RMV twice we waste 2 cycles on unaligned 8 byte writes.
1054 	 */
1055 	if (idx <= RE_REG_LM_IDX_MAX) {
1056 		reg = reg_lm(lm3 ? 3 : 0, idx);
1057 	} else {
1058 		reg = imm_a(nfp_prog);
1059 		/* If it's not the first part of the load and we start a new GPR
1060 		 * that means we are loading a second part of the LMEM word into
1061 		 * a new GPR.  IOW we've already looked that LMEM word and
1062 		 * therefore it has been loaded into imm_a().
1063 		 */
1064 		if (first || !new_gpr)
1065 			wrp_mov(nfp_prog, reg, reg_lm(0, idx));
1066 	}
1067 
1068 	emit_ld_field_any(nfp_prog, reg_both(dst), mask, reg, sc, shf, new_gpr);
1069 
1070 	if (should_inc)
1071 		wrp_mov(nfp_prog, reg_none(), reg_lm_inc(3));
1072 
1073 	return 0;
1074 }
1075 
1076 static int
1077 wrp_lmem_store(struct nfp_prog *nfp_prog, u8 src, u8 src_byte, s32 off,
1078 	       unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
1079 	       bool needs_inc)
1080 {
1081 	bool should_inc = needs_inc && new_gpr && !last;
1082 	u32 idx, dst_byte;
1083 	enum shf_sc sc;
1084 	swreg reg;
1085 	int shf;
1086 	u8 mask;
1087 
1088 	if (WARN_ON_ONCE(src_byte + size > 4 || off % 4 + size > 4))
1089 		return -EOPNOTSUPP;
1090 
1091 	idx = off / 4;
1092 
1093 	/* Move the entire word */
1094 	if (size == 4) {
1095 		wrp_mov(nfp_prog,
1096 			should_inc ? reg_lm_inc(3) : reg_lm(lm3 ? 3 : 0, idx),
1097 			reg_b(src));
1098 		return 0;
1099 	}
1100 
1101 	if (WARN_ON_ONCE(lm3 && idx > RE_REG_LM_IDX_MAX))
1102 		return -EOPNOTSUPP;
1103 
1104 	dst_byte = off % 4;
1105 
1106 	mask = (1 << size) - 1;
1107 	mask <<= dst_byte;
1108 
1109 	if (WARN_ON_ONCE(mask > 0xf))
1110 		return -EOPNOTSUPP;
1111 
1112 	shf = abs(src_byte - dst_byte) * 8;
1113 	if (src_byte == dst_byte) {
1114 		sc = SHF_SC_NONE;
1115 	} else if (src_byte < dst_byte) {
1116 		shf = 32 - shf;
1117 		sc = SHF_SC_L_SHF;
1118 	} else {
1119 		sc = SHF_SC_R_SHF;
1120 	}
1121 
1122 	/* ld_field can address fewer indexes, if offset too large do RMW.
1123 	 * Because we RMV twice we waste 2 cycles on unaligned 8 byte writes.
1124 	 */
1125 	if (idx <= RE_REG_LM_IDX_MAX) {
1126 		reg = reg_lm(lm3 ? 3 : 0, idx);
1127 	} else {
1128 		reg = imm_a(nfp_prog);
1129 		/* Only first and last LMEM locations are going to need RMW,
1130 		 * the middle location will be overwritten fully.
1131 		 */
1132 		if (first || last)
1133 			wrp_mov(nfp_prog, reg, reg_lm(0, idx));
1134 	}
1135 
1136 	emit_ld_field(nfp_prog, reg, mask, reg_b(src), sc, shf);
1137 
1138 	if (new_gpr || last) {
1139 		if (idx > RE_REG_LM_IDX_MAX)
1140 			wrp_mov(nfp_prog, reg_lm(0, idx), reg);
1141 		if (should_inc)
1142 			wrp_mov(nfp_prog, reg_none(), reg_lm_inc(3));
1143 	}
1144 
1145 	return 0;
1146 }
1147 
1148 static int
1149 mem_op_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1150 	     unsigned int size, unsigned int ptr_off, u8 gpr, u8 ptr_gpr,
1151 	     bool clr_gpr, lmem_step step)
1152 {
1153 	s32 off = nfp_prog->stack_frame_depth + meta->insn.off + ptr_off;
1154 	bool first = true, last;
1155 	bool needs_inc = false;
1156 	swreg stack_off_reg;
1157 	u8 prev_gpr = 255;
1158 	u32 gpr_byte = 0;
1159 	bool lm3 = true;
1160 	int ret;
1161 
1162 	if (meta->ptr_not_const ||
1163 	    meta->flags & FLAG_INSN_PTR_CALLER_STACK_FRAME) {
1164 		/* Use of the last encountered ptr_off is OK, they all have
1165 		 * the same alignment.  Depend on low bits of value being
1166 		 * discarded when written to LMaddr register.
1167 		 */
1168 		stack_off_reg = ur_load_imm_any(nfp_prog, meta->insn.off,
1169 						stack_imm(nfp_prog));
1170 
1171 		emit_alu(nfp_prog, imm_b(nfp_prog),
1172 			 reg_a(ptr_gpr), ALU_OP_ADD, stack_off_reg);
1173 
1174 		needs_inc = true;
1175 	} else if (off + size <= 64) {
1176 		/* We can reach bottom 64B with LMaddr0 */
1177 		lm3 = false;
1178 	} else if (round_down(off, 32) == round_down(off + size - 1, 32)) {
1179 		/* We have to set up a new pointer.  If we know the offset
1180 		 * and the entire access falls into a single 32 byte aligned
1181 		 * window we won't have to increment the LM pointer.
1182 		 * The 32 byte alignment is imporant because offset is ORed in
1183 		 * not added when doing *l$indexN[off].
1184 		 */
1185 		stack_off_reg = ur_load_imm_any(nfp_prog, round_down(off, 32),
1186 						stack_imm(nfp_prog));
1187 		emit_alu(nfp_prog, imm_b(nfp_prog),
1188 			 stack_reg(nfp_prog), ALU_OP_ADD, stack_off_reg);
1189 
1190 		off %= 32;
1191 	} else {
1192 		stack_off_reg = ur_load_imm_any(nfp_prog, round_down(off, 4),
1193 						stack_imm(nfp_prog));
1194 
1195 		emit_alu(nfp_prog, imm_b(nfp_prog),
1196 			 stack_reg(nfp_prog), ALU_OP_ADD, stack_off_reg);
1197 
1198 		needs_inc = true;
1199 	}
1200 	if (lm3) {
1201 		emit_csr_wr(nfp_prog, imm_b(nfp_prog), NFP_CSR_ACT_LM_ADDR3);
1202 		/* For size < 4 one slot will be filled by zeroing of upper. */
1203 		wrp_nops(nfp_prog, clr_gpr && size < 8 ? 2 : 3);
1204 	}
1205 
1206 	if (clr_gpr && size < 8)
1207 		wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
1208 
1209 	while (size) {
1210 		u32 slice_end;
1211 		u8 slice_size;
1212 
1213 		slice_size = min(size, 4 - gpr_byte);
1214 		slice_end = min(off + slice_size, round_up(off + 1, 4));
1215 		slice_size = slice_end - off;
1216 
1217 		last = slice_size == size;
1218 
1219 		if (needs_inc)
1220 			off %= 4;
1221 
1222 		ret = step(nfp_prog, gpr, gpr_byte, off, slice_size,
1223 			   first, gpr != prev_gpr, last, lm3, needs_inc);
1224 		if (ret)
1225 			return ret;
1226 
1227 		prev_gpr = gpr;
1228 		first = false;
1229 
1230 		gpr_byte += slice_size;
1231 		if (gpr_byte >= 4) {
1232 			gpr_byte -= 4;
1233 			gpr++;
1234 		}
1235 
1236 		size -= slice_size;
1237 		off += slice_size;
1238 	}
1239 
1240 	return 0;
1241 }
1242 
1243 static void
1244 wrp_alu_imm(struct nfp_prog *nfp_prog, u8 dst, enum alu_op alu_op, u32 imm)
1245 {
1246 	swreg tmp_reg;
1247 
1248 	if (alu_op == ALU_OP_AND) {
1249 		if (!imm)
1250 			wrp_immed(nfp_prog, reg_both(dst), 0);
1251 		if (!imm || !~imm)
1252 			return;
1253 	}
1254 	if (alu_op == ALU_OP_OR) {
1255 		if (!~imm)
1256 			wrp_immed(nfp_prog, reg_both(dst), ~0U);
1257 		if (!imm || !~imm)
1258 			return;
1259 	}
1260 	if (alu_op == ALU_OP_XOR) {
1261 		if (!~imm)
1262 			emit_alu(nfp_prog, reg_both(dst), reg_none(),
1263 				 ALU_OP_NOT, reg_b(dst));
1264 		if (!imm || !~imm)
1265 			return;
1266 	}
1267 
1268 	tmp_reg = ur_load_imm_any(nfp_prog, imm, imm_b(nfp_prog));
1269 	emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, tmp_reg);
1270 }
1271 
1272 static int
1273 wrp_alu64_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1274 	      enum alu_op alu_op, bool skip)
1275 {
1276 	const struct bpf_insn *insn = &meta->insn;
1277 	u64 imm = insn->imm; /* sign extend */
1278 
1279 	if (skip) {
1280 		meta->flags |= FLAG_INSN_SKIP_NOOP;
1281 		return 0;
1282 	}
1283 
1284 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, alu_op, imm & ~0U);
1285 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, alu_op, imm >> 32);
1286 
1287 	return 0;
1288 }
1289 
1290 static int
1291 wrp_alu64_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1292 	      enum alu_op alu_op)
1293 {
1294 	u8 dst = meta->insn.dst_reg * 2, src = meta->insn.src_reg * 2;
1295 
1296 	emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, reg_b(src));
1297 	emit_alu(nfp_prog, reg_both(dst + 1),
1298 		 reg_a(dst + 1), alu_op, reg_b(src + 1));
1299 
1300 	return 0;
1301 }
1302 
1303 static int
1304 wrp_alu32_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1305 	      enum alu_op alu_op)
1306 {
1307 	const struct bpf_insn *insn = &meta->insn;
1308 
1309 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, alu_op, insn->imm);
1310 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
1311 
1312 	return 0;
1313 }
1314 
1315 static int
1316 wrp_alu32_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1317 	      enum alu_op alu_op)
1318 {
1319 	u8 dst = meta->insn.dst_reg * 2, src = meta->insn.src_reg * 2;
1320 
1321 	emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, reg_b(src));
1322 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
1323 
1324 	return 0;
1325 }
1326 
1327 static void
1328 wrp_test_reg_one(struct nfp_prog *nfp_prog, u8 dst, enum alu_op alu_op, u8 src,
1329 		 enum br_mask br_mask, u16 off)
1330 {
1331 	emit_alu(nfp_prog, reg_none(), reg_a(dst), alu_op, reg_b(src));
1332 	emit_br(nfp_prog, br_mask, off, 0);
1333 }
1334 
1335 static int
1336 wrp_test_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1337 	     enum alu_op alu_op, enum br_mask br_mask)
1338 {
1339 	const struct bpf_insn *insn = &meta->insn;
1340 
1341 	wrp_test_reg_one(nfp_prog, insn->dst_reg * 2, alu_op,
1342 			 insn->src_reg * 2, br_mask, insn->off);
1343 	if (is_mbpf_jmp64(meta))
1344 		wrp_test_reg_one(nfp_prog, insn->dst_reg * 2 + 1, alu_op,
1345 				 insn->src_reg * 2 + 1, br_mask, insn->off);
1346 
1347 	return 0;
1348 }
1349 
1350 static const struct jmp_code_map {
1351 	enum br_mask br_mask;
1352 	bool swap;
1353 } jmp_code_map[] = {
1354 	[BPF_JGT >> 4]	= { BR_BLO, true },
1355 	[BPF_JGE >> 4]	= { BR_BHS, false },
1356 	[BPF_JLT >> 4]	= { BR_BLO, false },
1357 	[BPF_JLE >> 4]	= { BR_BHS, true },
1358 	[BPF_JSGT >> 4]	= { BR_BLT, true },
1359 	[BPF_JSGE >> 4]	= { BR_BGE, false },
1360 	[BPF_JSLT >> 4]	= { BR_BLT, false },
1361 	[BPF_JSLE >> 4]	= { BR_BGE, true },
1362 };
1363 
1364 static const struct jmp_code_map *nfp_jmp_code_get(struct nfp_insn_meta *meta)
1365 {
1366 	unsigned int op;
1367 
1368 	op = BPF_OP(meta->insn.code) >> 4;
1369 	/* br_mask of 0 is BR_BEQ which we don't use in jump code table */
1370 	if (WARN_ONCE(op >= ARRAY_SIZE(jmp_code_map) ||
1371 		      !jmp_code_map[op].br_mask,
1372 		      "no code found for jump instruction"))
1373 		return NULL;
1374 
1375 	return &jmp_code_map[op];
1376 }
1377 
1378 static int cmp_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1379 {
1380 	const struct bpf_insn *insn = &meta->insn;
1381 	u64 imm = insn->imm; /* sign extend */
1382 	const struct jmp_code_map *code;
1383 	enum alu_op alu_op, carry_op;
1384 	u8 reg = insn->dst_reg * 2;
1385 	swreg tmp_reg;
1386 
1387 	code = nfp_jmp_code_get(meta);
1388 	if (!code)
1389 		return -EINVAL;
1390 
1391 	alu_op = meta->jump_neg_op ? ALU_OP_ADD : ALU_OP_SUB;
1392 	carry_op = meta->jump_neg_op ? ALU_OP_ADD_C : ALU_OP_SUB_C;
1393 
1394 	tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
1395 	if (!code->swap)
1396 		emit_alu(nfp_prog, reg_none(), reg_a(reg), alu_op, tmp_reg);
1397 	else
1398 		emit_alu(nfp_prog, reg_none(), tmp_reg, alu_op, reg_a(reg));
1399 
1400 	if (is_mbpf_jmp64(meta)) {
1401 		tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
1402 		if (!code->swap)
1403 			emit_alu(nfp_prog, reg_none(),
1404 				 reg_a(reg + 1), carry_op, tmp_reg);
1405 		else
1406 			emit_alu(nfp_prog, reg_none(),
1407 				 tmp_reg, carry_op, reg_a(reg + 1));
1408 	}
1409 
1410 	emit_br(nfp_prog, code->br_mask, insn->off, 0);
1411 
1412 	return 0;
1413 }
1414 
1415 static int cmp_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1416 {
1417 	const struct bpf_insn *insn = &meta->insn;
1418 	const struct jmp_code_map *code;
1419 	u8 areg, breg;
1420 
1421 	code = nfp_jmp_code_get(meta);
1422 	if (!code)
1423 		return -EINVAL;
1424 
1425 	areg = insn->dst_reg * 2;
1426 	breg = insn->src_reg * 2;
1427 
1428 	if (code->swap) {
1429 		areg ^= breg;
1430 		breg ^= areg;
1431 		areg ^= breg;
1432 	}
1433 
1434 	emit_alu(nfp_prog, reg_none(), reg_a(areg), ALU_OP_SUB, reg_b(breg));
1435 	if (is_mbpf_jmp64(meta))
1436 		emit_alu(nfp_prog, reg_none(),
1437 			 reg_a(areg + 1), ALU_OP_SUB_C, reg_b(breg + 1));
1438 	emit_br(nfp_prog, code->br_mask, insn->off, 0);
1439 
1440 	return 0;
1441 }
1442 
1443 static void wrp_end32(struct nfp_prog *nfp_prog, swreg reg_in, u8 gpr_out)
1444 {
1445 	emit_ld_field(nfp_prog, reg_both(gpr_out), 0xf, reg_in,
1446 		      SHF_SC_R_ROT, 8);
1447 	emit_ld_field(nfp_prog, reg_both(gpr_out), 0x5, reg_a(gpr_out),
1448 		      SHF_SC_R_ROT, 16);
1449 }
1450 
1451 static void
1452 wrp_mul_u32(struct nfp_prog *nfp_prog, swreg dst_hi, swreg dst_lo, swreg lreg,
1453 	    swreg rreg, bool gen_high_half)
1454 {
1455 	emit_mul(nfp_prog, lreg, MUL_TYPE_START, MUL_STEP_NONE, rreg);
1456 	emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_32x32, MUL_STEP_1, rreg);
1457 	emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_32x32, MUL_STEP_2, rreg);
1458 	emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_32x32, MUL_STEP_3, rreg);
1459 	emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_32x32, MUL_STEP_4, rreg);
1460 	emit_mul(nfp_prog, dst_lo, MUL_TYPE_STEP_32x32, MUL_LAST, reg_none());
1461 	if (gen_high_half)
1462 		emit_mul(nfp_prog, dst_hi, MUL_TYPE_STEP_32x32, MUL_LAST_2,
1463 			 reg_none());
1464 	else
1465 		wrp_immed(nfp_prog, dst_hi, 0);
1466 }
1467 
1468 static void
1469 wrp_mul_u16(struct nfp_prog *nfp_prog, swreg dst_hi, swreg dst_lo, swreg lreg,
1470 	    swreg rreg)
1471 {
1472 	emit_mul(nfp_prog, lreg, MUL_TYPE_START, MUL_STEP_NONE, rreg);
1473 	emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_16x16, MUL_STEP_1, rreg);
1474 	emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_16x16, MUL_STEP_2, rreg);
1475 	emit_mul(nfp_prog, dst_lo, MUL_TYPE_STEP_16x16, MUL_LAST, reg_none());
1476 }
1477 
1478 static int
1479 wrp_mul(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1480 	bool gen_high_half, bool ropnd_from_reg)
1481 {
1482 	swreg multiplier, multiplicand, dst_hi, dst_lo;
1483 	const struct bpf_insn *insn = &meta->insn;
1484 	u32 lopnd_max, ropnd_max;
1485 	u8 dst_reg;
1486 
1487 	dst_reg = insn->dst_reg;
1488 	multiplicand = reg_a(dst_reg * 2);
1489 	dst_hi = reg_both(dst_reg * 2 + 1);
1490 	dst_lo = reg_both(dst_reg * 2);
1491 	lopnd_max = meta->umax_dst;
1492 	if (ropnd_from_reg) {
1493 		multiplier = reg_b(insn->src_reg * 2);
1494 		ropnd_max = meta->umax_src;
1495 	} else {
1496 		u32 imm = insn->imm;
1497 
1498 		multiplier = ur_load_imm_any(nfp_prog, imm, imm_b(nfp_prog));
1499 		ropnd_max = imm;
1500 	}
1501 	if (lopnd_max > U16_MAX || ropnd_max > U16_MAX)
1502 		wrp_mul_u32(nfp_prog, dst_hi, dst_lo, multiplicand, multiplier,
1503 			    gen_high_half);
1504 	else
1505 		wrp_mul_u16(nfp_prog, dst_hi, dst_lo, multiplicand, multiplier);
1506 
1507 	return 0;
1508 }
1509 
1510 static int wrp_div_imm(struct nfp_prog *nfp_prog, u8 dst, u64 imm)
1511 {
1512 	swreg dst_both = reg_both(dst), dst_a = reg_a(dst), dst_b = reg_a(dst);
1513 	struct reciprocal_value_adv rvalue;
1514 	u8 pre_shift, exp;
1515 	swreg magic;
1516 
1517 	if (imm > U32_MAX) {
1518 		wrp_immed(nfp_prog, dst_both, 0);
1519 		return 0;
1520 	}
1521 
1522 	/* NOTE: because we are using "reciprocal_value_adv" which doesn't
1523 	 * support "divisor > (1u << 31)", we need to JIT separate NFP sequence
1524 	 * to handle such case which actually equals to the result of unsigned
1525 	 * comparison "dst >= imm" which could be calculated using the following
1526 	 * NFP sequence:
1527 	 *
1528 	 *  alu[--, dst, -, imm]
1529 	 *  immed[imm, 0]
1530 	 *  alu[dst, imm, +carry, 0]
1531 	 *
1532 	 */
1533 	if (imm > 1U << 31) {
1534 		swreg tmp_b = ur_load_imm_any(nfp_prog, imm, imm_b(nfp_prog));
1535 
1536 		emit_alu(nfp_prog, reg_none(), dst_a, ALU_OP_SUB, tmp_b);
1537 		wrp_immed(nfp_prog, imm_a(nfp_prog), 0);
1538 		emit_alu(nfp_prog, dst_both, imm_a(nfp_prog), ALU_OP_ADD_C,
1539 			 reg_imm(0));
1540 		return 0;
1541 	}
1542 
1543 	rvalue = reciprocal_value_adv(imm, 32);
1544 	exp = rvalue.exp;
1545 	if (rvalue.is_wide_m && !(imm & 1)) {
1546 		pre_shift = fls(imm & -imm) - 1;
1547 		rvalue = reciprocal_value_adv(imm >> pre_shift, 32 - pre_shift);
1548 	} else {
1549 		pre_shift = 0;
1550 	}
1551 	magic = ur_load_imm_any(nfp_prog, rvalue.m, imm_b(nfp_prog));
1552 	if (imm == 1U << exp) {
1553 		emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE, dst_b,
1554 			 SHF_SC_R_SHF, exp);
1555 	} else if (rvalue.is_wide_m) {
1556 		wrp_mul_u32(nfp_prog, imm_both(nfp_prog), reg_none(), dst_a,
1557 			    magic, true);
1558 		emit_alu(nfp_prog, dst_both, dst_a, ALU_OP_SUB,
1559 			 imm_b(nfp_prog));
1560 		emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE, dst_b,
1561 			 SHF_SC_R_SHF, 1);
1562 		emit_alu(nfp_prog, dst_both, dst_a, ALU_OP_ADD,
1563 			 imm_b(nfp_prog));
1564 		emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE, dst_b,
1565 			 SHF_SC_R_SHF, rvalue.sh - 1);
1566 	} else {
1567 		if (pre_shift)
1568 			emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE,
1569 				 dst_b, SHF_SC_R_SHF, pre_shift);
1570 		wrp_mul_u32(nfp_prog, dst_both, reg_none(), dst_a, magic, true);
1571 		emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE,
1572 			 dst_b, SHF_SC_R_SHF, rvalue.sh);
1573 	}
1574 
1575 	return 0;
1576 }
1577 
1578 static int adjust_head(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1579 {
1580 	swreg tmp = imm_a(nfp_prog), tmp_len = imm_b(nfp_prog);
1581 	struct nfp_bpf_cap_adjust_head *adjust_head;
1582 	u32 ret_einval, end;
1583 
1584 	adjust_head = &nfp_prog->bpf->adjust_head;
1585 
1586 	/* Optimized version - 5 vs 14 cycles */
1587 	if (nfp_prog->adjust_head_location != UINT_MAX) {
1588 		if (WARN_ON_ONCE(nfp_prog->adjust_head_location != meta->n))
1589 			return -EINVAL;
1590 
1591 		emit_alu(nfp_prog, pptr_reg(nfp_prog),
1592 			 reg_a(2 * 2), ALU_OP_ADD, pptr_reg(nfp_prog));
1593 		emit_alu(nfp_prog, plen_reg(nfp_prog),
1594 			 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1595 		emit_alu(nfp_prog, pv_len(nfp_prog),
1596 			 pv_len(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1597 
1598 		wrp_immed(nfp_prog, reg_both(0), 0);
1599 		wrp_immed(nfp_prog, reg_both(1), 0);
1600 
1601 		/* TODO: when adjust head is guaranteed to succeed we can
1602 		 * also eliminate the following if (r0 == 0) branch.
1603 		 */
1604 
1605 		return 0;
1606 	}
1607 
1608 	ret_einval = nfp_prog_current_offset(nfp_prog) + 14;
1609 	end = ret_einval + 2;
1610 
1611 	/* We need to use a temp because offset is just a part of the pkt ptr */
1612 	emit_alu(nfp_prog, tmp,
1613 		 reg_a(2 * 2), ALU_OP_ADD_2B, pptr_reg(nfp_prog));
1614 
1615 	/* Validate result will fit within FW datapath constraints */
1616 	emit_alu(nfp_prog, reg_none(),
1617 		 tmp, ALU_OP_SUB, reg_imm(adjust_head->off_min));
1618 	emit_br(nfp_prog, BR_BLO, ret_einval, 0);
1619 	emit_alu(nfp_prog, reg_none(),
1620 		 reg_imm(adjust_head->off_max), ALU_OP_SUB, tmp);
1621 	emit_br(nfp_prog, BR_BLO, ret_einval, 0);
1622 
1623 	/* Validate the length is at least ETH_HLEN */
1624 	emit_alu(nfp_prog, tmp_len,
1625 		 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1626 	emit_alu(nfp_prog, reg_none(),
1627 		 tmp_len, ALU_OP_SUB, reg_imm(ETH_HLEN));
1628 	emit_br(nfp_prog, BR_BMI, ret_einval, 0);
1629 
1630 	/* Load the ret code */
1631 	wrp_immed(nfp_prog, reg_both(0), 0);
1632 	wrp_immed(nfp_prog, reg_both(1), 0);
1633 
1634 	/* Modify the packet metadata */
1635 	emit_ld_field(nfp_prog, pptr_reg(nfp_prog), 0x3, tmp, SHF_SC_NONE, 0);
1636 
1637 	/* Skip over the -EINVAL ret code (defer 2) */
1638 	emit_br(nfp_prog, BR_UNC, end, 2);
1639 
1640 	emit_alu(nfp_prog, plen_reg(nfp_prog),
1641 		 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1642 	emit_alu(nfp_prog, pv_len(nfp_prog),
1643 		 pv_len(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1644 
1645 	/* return -EINVAL target */
1646 	if (!nfp_prog_confirm_current_offset(nfp_prog, ret_einval))
1647 		return -EINVAL;
1648 
1649 	wrp_immed(nfp_prog, reg_both(0), -22);
1650 	wrp_immed(nfp_prog, reg_both(1), ~0);
1651 
1652 	if (!nfp_prog_confirm_current_offset(nfp_prog, end))
1653 		return -EINVAL;
1654 
1655 	return 0;
1656 }
1657 
1658 static int adjust_tail(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1659 {
1660 	u32 ret_einval, end;
1661 	swreg plen, delta;
1662 
1663 	BUILD_BUG_ON(plen_reg(nfp_prog) != reg_b(STATIC_REG_PKT_LEN));
1664 
1665 	plen = imm_a(nfp_prog);
1666 	delta = reg_a(2 * 2);
1667 
1668 	ret_einval = nfp_prog_current_offset(nfp_prog) + 9;
1669 	end = nfp_prog_current_offset(nfp_prog) + 11;
1670 
1671 	/* Calculate resulting length */
1672 	emit_alu(nfp_prog, plen, plen_reg(nfp_prog), ALU_OP_ADD, delta);
1673 	/* delta == 0 is not allowed by the kernel, add must overflow to make
1674 	 * length smaller.
1675 	 */
1676 	emit_br(nfp_prog, BR_BCC, ret_einval, 0);
1677 
1678 	/* if (new_len < 14) then -EINVAL */
1679 	emit_alu(nfp_prog, reg_none(), plen, ALU_OP_SUB, reg_imm(ETH_HLEN));
1680 	emit_br(nfp_prog, BR_BMI, ret_einval, 0);
1681 
1682 	emit_alu(nfp_prog, plen_reg(nfp_prog),
1683 		 plen_reg(nfp_prog), ALU_OP_ADD, delta);
1684 	emit_alu(nfp_prog, pv_len(nfp_prog),
1685 		 pv_len(nfp_prog), ALU_OP_ADD, delta);
1686 
1687 	emit_br(nfp_prog, BR_UNC, end, 2);
1688 	wrp_immed(nfp_prog, reg_both(0), 0);
1689 	wrp_immed(nfp_prog, reg_both(1), 0);
1690 
1691 	if (!nfp_prog_confirm_current_offset(nfp_prog, ret_einval))
1692 		return -EINVAL;
1693 
1694 	wrp_immed(nfp_prog, reg_both(0), -22);
1695 	wrp_immed(nfp_prog, reg_both(1), ~0);
1696 
1697 	if (!nfp_prog_confirm_current_offset(nfp_prog, end))
1698 		return -EINVAL;
1699 
1700 	return 0;
1701 }
1702 
1703 static int
1704 map_call_stack_common(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1705 {
1706 	bool load_lm_ptr;
1707 	u32 ret_tgt;
1708 	s64 lm_off;
1709 
1710 	/* We only have to reload LM0 if the key is not at start of stack */
1711 	lm_off = nfp_prog->stack_frame_depth;
1712 	lm_off += meta->arg2.reg.var_off.value + meta->arg2.reg.off;
1713 	load_lm_ptr = meta->arg2.var_off || lm_off;
1714 
1715 	/* Set LM0 to start of key */
1716 	if (load_lm_ptr)
1717 		emit_csr_wr(nfp_prog, reg_b(2 * 2), NFP_CSR_ACT_LM_ADDR0);
1718 	if (meta->func_id == BPF_FUNC_map_update_elem)
1719 		emit_csr_wr(nfp_prog, reg_b(3 * 2), NFP_CSR_ACT_LM_ADDR2);
1720 
1721 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO + meta->func_id,
1722 		     2, RELO_BR_HELPER);
1723 	ret_tgt = nfp_prog_current_offset(nfp_prog) + 2;
1724 
1725 	/* Load map ID into A0 */
1726 	wrp_mov(nfp_prog, reg_a(0), reg_a(2));
1727 
1728 	/* Load the return address into B0 */
1729 	wrp_immed_relo(nfp_prog, reg_b(0), ret_tgt, RELO_IMMED_REL);
1730 
1731 	if (!nfp_prog_confirm_current_offset(nfp_prog, ret_tgt))
1732 		return -EINVAL;
1733 
1734 	/* Reset the LM0 pointer */
1735 	if (!load_lm_ptr)
1736 		return 0;
1737 
1738 	emit_csr_wr(nfp_prog, stack_reg(nfp_prog), NFP_CSR_ACT_LM_ADDR0);
1739 	wrp_nops(nfp_prog, 3);
1740 
1741 	return 0;
1742 }
1743 
1744 static int
1745 nfp_get_prandom_u32(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1746 {
1747 	__emit_csr_rd(nfp_prog, NFP_CSR_PSEUDO_RND_NUM);
1748 	/* CSR value is read in following immed[gpr, 0] */
1749 	emit_immed(nfp_prog, reg_both(0), 0,
1750 		   IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B);
1751 	emit_immed(nfp_prog, reg_both(1), 0,
1752 		   IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B);
1753 	return 0;
1754 }
1755 
1756 static int
1757 nfp_perf_event_output(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1758 {
1759 	swreg ptr_type;
1760 	u32 ret_tgt;
1761 
1762 	ptr_type = ur_load_imm_any(nfp_prog, meta->arg1.type, imm_a(nfp_prog));
1763 
1764 	ret_tgt = nfp_prog_current_offset(nfp_prog) + 3;
1765 
1766 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO + meta->func_id,
1767 		     2, RELO_BR_HELPER);
1768 
1769 	/* Load ptr type into A1 */
1770 	wrp_mov(nfp_prog, reg_a(1), ptr_type);
1771 
1772 	/* Load the return address into B0 */
1773 	wrp_immed_relo(nfp_prog, reg_b(0), ret_tgt, RELO_IMMED_REL);
1774 
1775 	if (!nfp_prog_confirm_current_offset(nfp_prog, ret_tgt))
1776 		return -EINVAL;
1777 
1778 	return 0;
1779 }
1780 
1781 static int
1782 nfp_queue_select(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1783 {
1784 	u32 jmp_tgt;
1785 
1786 	jmp_tgt = nfp_prog_current_offset(nfp_prog) + 5;
1787 
1788 	/* Make sure the queue id fits into FW field */
1789 	emit_alu(nfp_prog, reg_none(), reg_a(meta->insn.src_reg * 2),
1790 		 ALU_OP_AND_NOT_B, reg_imm(0xff));
1791 	emit_br(nfp_prog, BR_BEQ, jmp_tgt, 2);
1792 
1793 	/* Set the 'queue selected' bit and the queue value */
1794 	emit_shf(nfp_prog, pv_qsel_set(nfp_prog),
1795 		 pv_qsel_set(nfp_prog), SHF_OP_OR, reg_imm(1),
1796 		 SHF_SC_L_SHF, PKT_VEL_QSEL_SET_BIT);
1797 	emit_ld_field(nfp_prog,
1798 		      pv_qsel_val(nfp_prog), 0x1, reg_b(meta->insn.src_reg * 2),
1799 		      SHF_SC_NONE, 0);
1800 	/* Delay slots end here, we will jump over next instruction if queue
1801 	 * value fits into the field.
1802 	 */
1803 	emit_ld_field(nfp_prog,
1804 		      pv_qsel_val(nfp_prog), 0x1, reg_imm(NFP_NET_RXR_MAX),
1805 		      SHF_SC_NONE, 0);
1806 
1807 	if (!nfp_prog_confirm_current_offset(nfp_prog, jmp_tgt))
1808 		return -EINVAL;
1809 
1810 	return 0;
1811 }
1812 
1813 /* --- Callbacks --- */
1814 static int mov_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1815 {
1816 	const struct bpf_insn *insn = &meta->insn;
1817 	u8 dst = insn->dst_reg * 2;
1818 	u8 src = insn->src_reg * 2;
1819 
1820 	if (insn->src_reg == BPF_REG_10) {
1821 		swreg stack_depth_reg;
1822 
1823 		stack_depth_reg = ur_load_imm_any(nfp_prog,
1824 						  nfp_prog->stack_frame_depth,
1825 						  stack_imm(nfp_prog));
1826 		emit_alu(nfp_prog, reg_both(dst), stack_reg(nfp_prog),
1827 			 ALU_OP_ADD, stack_depth_reg);
1828 		wrp_immed(nfp_prog, reg_both(dst + 1), 0);
1829 	} else {
1830 		wrp_reg_mov(nfp_prog, dst, src);
1831 		wrp_reg_mov(nfp_prog, dst + 1, src + 1);
1832 	}
1833 
1834 	return 0;
1835 }
1836 
1837 static int mov_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1838 {
1839 	u64 imm = meta->insn.imm; /* sign extend */
1840 
1841 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2), imm & ~0U);
1842 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), imm >> 32);
1843 
1844 	return 0;
1845 }
1846 
1847 static int xor_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1848 {
1849 	return wrp_alu64_reg(nfp_prog, meta, ALU_OP_XOR);
1850 }
1851 
1852 static int xor_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1853 {
1854 	return wrp_alu64_imm(nfp_prog, meta, ALU_OP_XOR, !meta->insn.imm);
1855 }
1856 
1857 static int and_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1858 {
1859 	return wrp_alu64_reg(nfp_prog, meta, ALU_OP_AND);
1860 }
1861 
1862 static int and_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1863 {
1864 	return wrp_alu64_imm(nfp_prog, meta, ALU_OP_AND, !~meta->insn.imm);
1865 }
1866 
1867 static int or_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1868 {
1869 	return wrp_alu64_reg(nfp_prog, meta, ALU_OP_OR);
1870 }
1871 
1872 static int or_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1873 {
1874 	return wrp_alu64_imm(nfp_prog, meta, ALU_OP_OR, !meta->insn.imm);
1875 }
1876 
1877 static int add_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1878 {
1879 	const struct bpf_insn *insn = &meta->insn;
1880 
1881 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2),
1882 		 reg_a(insn->dst_reg * 2), ALU_OP_ADD,
1883 		 reg_b(insn->src_reg * 2));
1884 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1),
1885 		 reg_a(insn->dst_reg * 2 + 1), ALU_OP_ADD_C,
1886 		 reg_b(insn->src_reg * 2 + 1));
1887 
1888 	return 0;
1889 }
1890 
1891 static int add_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1892 {
1893 	const struct bpf_insn *insn = &meta->insn;
1894 	u64 imm = insn->imm; /* sign extend */
1895 
1896 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, ALU_OP_ADD, imm & ~0U);
1897 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, ALU_OP_ADD_C, imm >> 32);
1898 
1899 	return 0;
1900 }
1901 
1902 static int sub_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1903 {
1904 	const struct bpf_insn *insn = &meta->insn;
1905 
1906 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2),
1907 		 reg_a(insn->dst_reg * 2), ALU_OP_SUB,
1908 		 reg_b(insn->src_reg * 2));
1909 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1),
1910 		 reg_a(insn->dst_reg * 2 + 1), ALU_OP_SUB_C,
1911 		 reg_b(insn->src_reg * 2 + 1));
1912 
1913 	return 0;
1914 }
1915 
1916 static int sub_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1917 {
1918 	const struct bpf_insn *insn = &meta->insn;
1919 	u64 imm = insn->imm; /* sign extend */
1920 
1921 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, ALU_OP_SUB, imm & ~0U);
1922 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, ALU_OP_SUB_C, imm >> 32);
1923 
1924 	return 0;
1925 }
1926 
1927 static int mul_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1928 {
1929 	return wrp_mul(nfp_prog, meta, true, true);
1930 }
1931 
1932 static int mul_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1933 {
1934 	return wrp_mul(nfp_prog, meta, true, false);
1935 }
1936 
1937 static int div_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1938 {
1939 	const struct bpf_insn *insn = &meta->insn;
1940 
1941 	return wrp_div_imm(nfp_prog, insn->dst_reg * 2, insn->imm);
1942 }
1943 
1944 static int div_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1945 {
1946 	/* NOTE: verifier hook has rejected cases for which verifier doesn't
1947 	 * know whether the source operand is constant or not.
1948 	 */
1949 	return wrp_div_imm(nfp_prog, meta->insn.dst_reg * 2, meta->umin_src);
1950 }
1951 
1952 static int neg_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1953 {
1954 	const struct bpf_insn *insn = &meta->insn;
1955 
1956 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2), reg_imm(0),
1957 		 ALU_OP_SUB, reg_b(insn->dst_reg * 2));
1958 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1), reg_imm(0),
1959 		 ALU_OP_SUB_C, reg_b(insn->dst_reg * 2 + 1));
1960 
1961 	return 0;
1962 }
1963 
1964 /* Pseudo code:
1965  *   if shift_amt >= 32
1966  *     dst_high = dst_low << shift_amt[4:0]
1967  *     dst_low = 0;
1968  *   else
1969  *     dst_high = (dst_high, dst_low) >> (32 - shift_amt)
1970  *     dst_low = dst_low << shift_amt
1971  *
1972  * The indirect shift will use the same logic at runtime.
1973  */
1974 static int __shl_imm64(struct nfp_prog *nfp_prog, u8 dst, u8 shift_amt)
1975 {
1976 	if (!shift_amt)
1977 		return 0;
1978 
1979 	if (shift_amt < 32) {
1980 		emit_shf(nfp_prog, reg_both(dst + 1), reg_a(dst + 1),
1981 			 SHF_OP_NONE, reg_b(dst), SHF_SC_R_DSHF,
1982 			 32 - shift_amt);
1983 		emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
1984 			 reg_b(dst), SHF_SC_L_SHF, shift_amt);
1985 	} else if (shift_amt == 32) {
1986 		wrp_reg_mov(nfp_prog, dst + 1, dst);
1987 		wrp_immed(nfp_prog, reg_both(dst), 0);
1988 	} else if (shift_amt > 32) {
1989 		emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE,
1990 			 reg_b(dst), SHF_SC_L_SHF, shift_amt - 32);
1991 		wrp_immed(nfp_prog, reg_both(dst), 0);
1992 	}
1993 
1994 	return 0;
1995 }
1996 
1997 static int shl_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1998 {
1999 	const struct bpf_insn *insn = &meta->insn;
2000 	u8 dst = insn->dst_reg * 2;
2001 
2002 	return __shl_imm64(nfp_prog, dst, insn->imm);
2003 }
2004 
2005 static void shl_reg64_lt32_high(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2006 {
2007 	emit_alu(nfp_prog, imm_both(nfp_prog), reg_imm(32), ALU_OP_SUB,
2008 		 reg_b(src));
2009 	emit_alu(nfp_prog, reg_none(), imm_a(nfp_prog), ALU_OP_OR, reg_imm(0));
2010 	emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_a(dst + 1), SHF_OP_NONE,
2011 		       reg_b(dst), SHF_SC_R_DSHF);
2012 }
2013 
2014 /* NOTE: for indirect left shift, HIGH part should be calculated first. */
2015 static void shl_reg64_lt32_low(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2016 {
2017 	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
2018 	emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
2019 		       reg_b(dst), SHF_SC_L_SHF);
2020 }
2021 
2022 static void shl_reg64_lt32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2023 {
2024 	shl_reg64_lt32_high(nfp_prog, dst, src);
2025 	shl_reg64_lt32_low(nfp_prog, dst, src);
2026 }
2027 
2028 static void shl_reg64_ge32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2029 {
2030 	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
2031 	emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE,
2032 		       reg_b(dst), SHF_SC_L_SHF);
2033 	wrp_immed(nfp_prog, reg_both(dst), 0);
2034 }
2035 
2036 static int shl_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2037 {
2038 	const struct bpf_insn *insn = &meta->insn;
2039 	u64 umin, umax;
2040 	u8 dst, src;
2041 
2042 	dst = insn->dst_reg * 2;
2043 	umin = meta->umin_src;
2044 	umax = meta->umax_src;
2045 	if (umin == umax)
2046 		return __shl_imm64(nfp_prog, dst, umin);
2047 
2048 	src = insn->src_reg * 2;
2049 	if (umax < 32) {
2050 		shl_reg64_lt32(nfp_prog, dst, src);
2051 	} else if (umin >= 32) {
2052 		shl_reg64_ge32(nfp_prog, dst, src);
2053 	} else {
2054 		/* Generate different instruction sequences depending on runtime
2055 		 * value of shift amount.
2056 		 */
2057 		u16 label_ge32, label_end;
2058 
2059 		label_ge32 = nfp_prog_current_offset(nfp_prog) + 7;
2060 		emit_br_bset(nfp_prog, reg_a(src), 5, label_ge32, 0);
2061 
2062 		shl_reg64_lt32_high(nfp_prog, dst, src);
2063 		label_end = nfp_prog_current_offset(nfp_prog) + 6;
2064 		emit_br(nfp_prog, BR_UNC, label_end, 2);
2065 		/* shl_reg64_lt32_low packed in delay slot. */
2066 		shl_reg64_lt32_low(nfp_prog, dst, src);
2067 
2068 		if (!nfp_prog_confirm_current_offset(nfp_prog, label_ge32))
2069 			return -EINVAL;
2070 		shl_reg64_ge32(nfp_prog, dst, src);
2071 
2072 		if (!nfp_prog_confirm_current_offset(nfp_prog, label_end))
2073 			return -EINVAL;
2074 	}
2075 
2076 	return 0;
2077 }
2078 
2079 /* Pseudo code:
2080  *   if shift_amt >= 32
2081  *     dst_high = 0;
2082  *     dst_low = dst_high >> shift_amt[4:0]
2083  *   else
2084  *     dst_high = dst_high >> shift_amt
2085  *     dst_low = (dst_high, dst_low) >> shift_amt
2086  *
2087  * The indirect shift will use the same logic at runtime.
2088  */
2089 static int __shr_imm64(struct nfp_prog *nfp_prog, u8 dst, u8 shift_amt)
2090 {
2091 	if (!shift_amt)
2092 		return 0;
2093 
2094 	if (shift_amt < 32) {
2095 		emit_shf(nfp_prog, reg_both(dst), reg_a(dst + 1), SHF_OP_NONE,
2096 			 reg_b(dst), SHF_SC_R_DSHF, shift_amt);
2097 		emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE,
2098 			 reg_b(dst + 1), SHF_SC_R_SHF, shift_amt);
2099 	} else if (shift_amt == 32) {
2100 		wrp_reg_mov(nfp_prog, dst, dst + 1);
2101 		wrp_immed(nfp_prog, reg_both(dst + 1), 0);
2102 	} else if (shift_amt > 32) {
2103 		emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
2104 			 reg_b(dst + 1), SHF_SC_R_SHF, shift_amt - 32);
2105 		wrp_immed(nfp_prog, reg_both(dst + 1), 0);
2106 	}
2107 
2108 	return 0;
2109 }
2110 
2111 static int shr_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2112 {
2113 	const struct bpf_insn *insn = &meta->insn;
2114 	u8 dst = insn->dst_reg * 2;
2115 
2116 	return __shr_imm64(nfp_prog, dst, insn->imm);
2117 }
2118 
2119 /* NOTE: for indirect right shift, LOW part should be calculated first. */
2120 static void shr_reg64_lt32_high(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2121 {
2122 	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
2123 	emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE,
2124 		       reg_b(dst + 1), SHF_SC_R_SHF);
2125 }
2126 
2127 static void shr_reg64_lt32_low(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2128 {
2129 	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
2130 	emit_shf_indir(nfp_prog, reg_both(dst), reg_a(dst + 1), SHF_OP_NONE,
2131 		       reg_b(dst), SHF_SC_R_DSHF);
2132 }
2133 
2134 static void shr_reg64_lt32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2135 {
2136 	shr_reg64_lt32_low(nfp_prog, dst, src);
2137 	shr_reg64_lt32_high(nfp_prog, dst, src);
2138 }
2139 
2140 static void shr_reg64_ge32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2141 {
2142 	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
2143 	emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
2144 		       reg_b(dst + 1), SHF_SC_R_SHF);
2145 	wrp_immed(nfp_prog, reg_both(dst + 1), 0);
2146 }
2147 
2148 static int shr_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2149 {
2150 	const struct bpf_insn *insn = &meta->insn;
2151 	u64 umin, umax;
2152 	u8 dst, src;
2153 
2154 	dst = insn->dst_reg * 2;
2155 	umin = meta->umin_src;
2156 	umax = meta->umax_src;
2157 	if (umin == umax)
2158 		return __shr_imm64(nfp_prog, dst, umin);
2159 
2160 	src = insn->src_reg * 2;
2161 	if (umax < 32) {
2162 		shr_reg64_lt32(nfp_prog, dst, src);
2163 	} else if (umin >= 32) {
2164 		shr_reg64_ge32(nfp_prog, dst, src);
2165 	} else {
2166 		/* Generate different instruction sequences depending on runtime
2167 		 * value of shift amount.
2168 		 */
2169 		u16 label_ge32, label_end;
2170 
2171 		label_ge32 = nfp_prog_current_offset(nfp_prog) + 6;
2172 		emit_br_bset(nfp_prog, reg_a(src), 5, label_ge32, 0);
2173 		shr_reg64_lt32_low(nfp_prog, dst, src);
2174 		label_end = nfp_prog_current_offset(nfp_prog) + 6;
2175 		emit_br(nfp_prog, BR_UNC, label_end, 2);
2176 		/* shr_reg64_lt32_high packed in delay slot. */
2177 		shr_reg64_lt32_high(nfp_prog, dst, src);
2178 
2179 		if (!nfp_prog_confirm_current_offset(nfp_prog, label_ge32))
2180 			return -EINVAL;
2181 		shr_reg64_ge32(nfp_prog, dst, src);
2182 
2183 		if (!nfp_prog_confirm_current_offset(nfp_prog, label_end))
2184 			return -EINVAL;
2185 	}
2186 
2187 	return 0;
2188 }
2189 
2190 /* Code logic is the same as __shr_imm64 except ashr requires signedness bit
2191  * told through PREV_ALU result.
2192  */
2193 static int __ashr_imm64(struct nfp_prog *nfp_prog, u8 dst, u8 shift_amt)
2194 {
2195 	if (!shift_amt)
2196 		return 0;
2197 
2198 	if (shift_amt < 32) {
2199 		emit_shf(nfp_prog, reg_both(dst), reg_a(dst + 1), SHF_OP_NONE,
2200 			 reg_b(dst), SHF_SC_R_DSHF, shift_amt);
2201 		/* Set signedness bit. */
2202 		emit_alu(nfp_prog, reg_none(), reg_a(dst + 1), ALU_OP_OR,
2203 			 reg_imm(0));
2204 		emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR,
2205 			 reg_b(dst + 1), SHF_SC_R_SHF, shift_amt);
2206 	} else if (shift_amt == 32) {
2207 		/* NOTE: this also helps setting signedness bit. */
2208 		wrp_reg_mov(nfp_prog, dst, dst + 1);
2209 		emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR,
2210 			 reg_b(dst + 1), SHF_SC_R_SHF, 31);
2211 	} else if (shift_amt > 32) {
2212 		emit_alu(nfp_prog, reg_none(), reg_a(dst + 1), ALU_OP_OR,
2213 			 reg_imm(0));
2214 		emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_ASHR,
2215 			 reg_b(dst + 1), SHF_SC_R_SHF, shift_amt - 32);
2216 		emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR,
2217 			 reg_b(dst + 1), SHF_SC_R_SHF, 31);
2218 	}
2219 
2220 	return 0;
2221 }
2222 
2223 static int ashr_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2224 {
2225 	const struct bpf_insn *insn = &meta->insn;
2226 	u8 dst = insn->dst_reg * 2;
2227 
2228 	return __ashr_imm64(nfp_prog, dst, insn->imm);
2229 }
2230 
2231 static void ashr_reg64_lt32_high(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2232 {
2233 	/* NOTE: the first insn will set both indirect shift amount (source A)
2234 	 * and signedness bit (MSB of result).
2235 	 */
2236 	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_b(dst + 1));
2237 	emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR,
2238 		       reg_b(dst + 1), SHF_SC_R_SHF);
2239 }
2240 
2241 static void ashr_reg64_lt32_low(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2242 {
2243 	/* NOTE: it is the same as logic shift because we don't need to shift in
2244 	 * signedness bit when the shift amount is less than 32.
2245 	 */
2246 	return shr_reg64_lt32_low(nfp_prog, dst, src);
2247 }
2248 
2249 static void ashr_reg64_lt32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2250 {
2251 	ashr_reg64_lt32_low(nfp_prog, dst, src);
2252 	ashr_reg64_lt32_high(nfp_prog, dst, src);
2253 }
2254 
2255 static void ashr_reg64_ge32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2256 {
2257 	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_b(dst + 1));
2258 	emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_ASHR,
2259 		       reg_b(dst + 1), SHF_SC_R_SHF);
2260 	emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR,
2261 		 reg_b(dst + 1), SHF_SC_R_SHF, 31);
2262 }
2263 
2264 /* Like ashr_imm64, but need to use indirect shift. */
2265 static int ashr_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2266 {
2267 	const struct bpf_insn *insn = &meta->insn;
2268 	u64 umin, umax;
2269 	u8 dst, src;
2270 
2271 	dst = insn->dst_reg * 2;
2272 	umin = meta->umin_src;
2273 	umax = meta->umax_src;
2274 	if (umin == umax)
2275 		return __ashr_imm64(nfp_prog, dst, umin);
2276 
2277 	src = insn->src_reg * 2;
2278 	if (umax < 32) {
2279 		ashr_reg64_lt32(nfp_prog, dst, src);
2280 	} else if (umin >= 32) {
2281 		ashr_reg64_ge32(nfp_prog, dst, src);
2282 	} else {
2283 		u16 label_ge32, label_end;
2284 
2285 		label_ge32 = nfp_prog_current_offset(nfp_prog) + 6;
2286 		emit_br_bset(nfp_prog, reg_a(src), 5, label_ge32, 0);
2287 		ashr_reg64_lt32_low(nfp_prog, dst, src);
2288 		label_end = nfp_prog_current_offset(nfp_prog) + 6;
2289 		emit_br(nfp_prog, BR_UNC, label_end, 2);
2290 		/* ashr_reg64_lt32_high packed in delay slot. */
2291 		ashr_reg64_lt32_high(nfp_prog, dst, src);
2292 
2293 		if (!nfp_prog_confirm_current_offset(nfp_prog, label_ge32))
2294 			return -EINVAL;
2295 		ashr_reg64_ge32(nfp_prog, dst, src);
2296 
2297 		if (!nfp_prog_confirm_current_offset(nfp_prog, label_end))
2298 			return -EINVAL;
2299 	}
2300 
2301 	return 0;
2302 }
2303 
2304 static int mov_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2305 {
2306 	const struct bpf_insn *insn = &meta->insn;
2307 
2308 	wrp_reg_mov(nfp_prog, insn->dst_reg * 2,  insn->src_reg * 2);
2309 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
2310 
2311 	return 0;
2312 }
2313 
2314 static int mov_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2315 {
2316 	const struct bpf_insn *insn = &meta->insn;
2317 
2318 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2), insn->imm);
2319 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
2320 
2321 	return 0;
2322 }
2323 
2324 static int xor_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2325 {
2326 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_XOR);
2327 }
2328 
2329 static int xor_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2330 {
2331 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_XOR);
2332 }
2333 
2334 static int and_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2335 {
2336 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_AND);
2337 }
2338 
2339 static int and_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2340 {
2341 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_AND);
2342 }
2343 
2344 static int or_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2345 {
2346 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_OR);
2347 }
2348 
2349 static int or_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2350 {
2351 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_OR);
2352 }
2353 
2354 static int add_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2355 {
2356 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_ADD);
2357 }
2358 
2359 static int add_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2360 {
2361 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_ADD);
2362 }
2363 
2364 static int sub_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2365 {
2366 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_SUB);
2367 }
2368 
2369 static int sub_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2370 {
2371 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_SUB);
2372 }
2373 
2374 static int mul_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2375 {
2376 	return wrp_mul(nfp_prog, meta, false, true);
2377 }
2378 
2379 static int mul_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2380 {
2381 	return wrp_mul(nfp_prog, meta, false, false);
2382 }
2383 
2384 static int div_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2385 {
2386 	return div_reg64(nfp_prog, meta);
2387 }
2388 
2389 static int div_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2390 {
2391 	return div_imm64(nfp_prog, meta);
2392 }
2393 
2394 static int neg_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2395 {
2396 	u8 dst = meta->insn.dst_reg * 2;
2397 
2398 	emit_alu(nfp_prog, reg_both(dst), reg_imm(0), ALU_OP_SUB, reg_b(dst));
2399 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
2400 
2401 	return 0;
2402 }
2403 
2404 static int __ashr_imm(struct nfp_prog *nfp_prog, u8 dst, u8 shift_amt)
2405 {
2406 	if (shift_amt) {
2407 		/* Set signedness bit (MSB of result). */
2408 		emit_alu(nfp_prog, reg_none(), reg_a(dst), ALU_OP_OR,
2409 			 reg_imm(0));
2410 		emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_ASHR,
2411 			 reg_b(dst), SHF_SC_R_SHF, shift_amt);
2412 	}
2413 	wrp_immed(nfp_prog, reg_both(dst + 1), 0);
2414 
2415 	return 0;
2416 }
2417 
2418 static int ashr_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2419 {
2420 	const struct bpf_insn *insn = &meta->insn;
2421 	u64 umin, umax;
2422 	u8 dst, src;
2423 
2424 	dst = insn->dst_reg * 2;
2425 	umin = meta->umin_src;
2426 	umax = meta->umax_src;
2427 	if (umin == umax)
2428 		return __ashr_imm(nfp_prog, dst, umin);
2429 
2430 	src = insn->src_reg * 2;
2431 	/* NOTE: the first insn will set both indirect shift amount (source A)
2432 	 * and signedness bit (MSB of result).
2433 	 */
2434 	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_b(dst));
2435 	emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_ASHR,
2436 		       reg_b(dst), SHF_SC_R_SHF);
2437 	wrp_immed(nfp_prog, reg_both(dst + 1), 0);
2438 
2439 	return 0;
2440 }
2441 
2442 static int ashr_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2443 {
2444 	const struct bpf_insn *insn = &meta->insn;
2445 	u8 dst = insn->dst_reg * 2;
2446 
2447 	return __ashr_imm(nfp_prog, dst, insn->imm);
2448 }
2449 
2450 static int __shr_imm(struct nfp_prog *nfp_prog, u8 dst, u8 shift_amt)
2451 {
2452 	if (shift_amt)
2453 		emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
2454 			 reg_b(dst), SHF_SC_R_SHF, shift_amt);
2455 	wrp_immed(nfp_prog, reg_both(dst + 1), 0);
2456 	return 0;
2457 }
2458 
2459 static int shr_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2460 {
2461 	const struct bpf_insn *insn = &meta->insn;
2462 	u8 dst = insn->dst_reg * 2;
2463 
2464 	return __shr_imm(nfp_prog, dst, insn->imm);
2465 }
2466 
2467 static int shr_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2468 {
2469 	const struct bpf_insn *insn = &meta->insn;
2470 	u64 umin, umax;
2471 	u8 dst, src;
2472 
2473 	dst = insn->dst_reg * 2;
2474 	umin = meta->umin_src;
2475 	umax = meta->umax_src;
2476 	if (umin == umax)
2477 		return __shr_imm(nfp_prog, dst, umin);
2478 
2479 	src = insn->src_reg * 2;
2480 	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
2481 	emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
2482 		       reg_b(dst), SHF_SC_R_SHF);
2483 	wrp_immed(nfp_prog, reg_both(dst + 1), 0);
2484 	return 0;
2485 }
2486 
2487 static int __shl_imm(struct nfp_prog *nfp_prog, u8 dst, u8 shift_amt)
2488 {
2489 	if (shift_amt)
2490 		emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
2491 			 reg_b(dst), SHF_SC_L_SHF, shift_amt);
2492 	wrp_immed(nfp_prog, reg_both(dst + 1), 0);
2493 	return 0;
2494 }
2495 
2496 static int shl_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2497 {
2498 	const struct bpf_insn *insn = &meta->insn;
2499 	u8 dst = insn->dst_reg * 2;
2500 
2501 	return __shl_imm(nfp_prog, dst, insn->imm);
2502 }
2503 
2504 static int shl_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2505 {
2506 	const struct bpf_insn *insn = &meta->insn;
2507 	u64 umin, umax;
2508 	u8 dst, src;
2509 
2510 	dst = insn->dst_reg * 2;
2511 	umin = meta->umin_src;
2512 	umax = meta->umax_src;
2513 	if (umin == umax)
2514 		return __shl_imm(nfp_prog, dst, umin);
2515 
2516 	src = insn->src_reg * 2;
2517 	shl_reg64_lt32_low(nfp_prog, dst, src);
2518 	wrp_immed(nfp_prog, reg_both(dst + 1), 0);
2519 	return 0;
2520 }
2521 
2522 static int end_reg32(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2523 {
2524 	const struct bpf_insn *insn = &meta->insn;
2525 	u8 gpr = insn->dst_reg * 2;
2526 
2527 	switch (insn->imm) {
2528 	case 16:
2529 		emit_ld_field(nfp_prog, reg_both(gpr), 0x9, reg_b(gpr),
2530 			      SHF_SC_R_ROT, 8);
2531 		emit_ld_field(nfp_prog, reg_both(gpr), 0xe, reg_a(gpr),
2532 			      SHF_SC_R_SHF, 16);
2533 
2534 		wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
2535 		break;
2536 	case 32:
2537 		wrp_end32(nfp_prog, reg_a(gpr), gpr);
2538 		wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
2539 		break;
2540 	case 64:
2541 		wrp_mov(nfp_prog, imm_a(nfp_prog), reg_b(gpr + 1));
2542 
2543 		wrp_end32(nfp_prog, reg_a(gpr), gpr + 1);
2544 		wrp_end32(nfp_prog, imm_a(nfp_prog), gpr);
2545 		break;
2546 	}
2547 
2548 	return 0;
2549 }
2550 
2551 static int imm_ld8_part2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2552 {
2553 	struct nfp_insn_meta *prev = nfp_meta_prev(meta);
2554 	u32 imm_lo, imm_hi;
2555 	u8 dst;
2556 
2557 	dst = prev->insn.dst_reg * 2;
2558 	imm_lo = prev->insn.imm;
2559 	imm_hi = meta->insn.imm;
2560 
2561 	wrp_immed(nfp_prog, reg_both(dst), imm_lo);
2562 
2563 	/* mov is always 1 insn, load imm may be two, so try to use mov */
2564 	if (imm_hi == imm_lo)
2565 		wrp_mov(nfp_prog, reg_both(dst + 1), reg_a(dst));
2566 	else
2567 		wrp_immed(nfp_prog, reg_both(dst + 1), imm_hi);
2568 
2569 	return 0;
2570 }
2571 
2572 static int imm_ld8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2573 {
2574 	meta->double_cb = imm_ld8_part2;
2575 	return 0;
2576 }
2577 
2578 static int data_ld1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2579 {
2580 	return construct_data_ld(nfp_prog, meta->insn.imm, 1);
2581 }
2582 
2583 static int data_ld2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2584 {
2585 	return construct_data_ld(nfp_prog, meta->insn.imm, 2);
2586 }
2587 
2588 static int data_ld4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2589 {
2590 	return construct_data_ld(nfp_prog, meta->insn.imm, 4);
2591 }
2592 
2593 static int data_ind_ld1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2594 {
2595 	return construct_data_ind_ld(nfp_prog, meta->insn.imm,
2596 				     meta->insn.src_reg * 2, 1);
2597 }
2598 
2599 static int data_ind_ld2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2600 {
2601 	return construct_data_ind_ld(nfp_prog, meta->insn.imm,
2602 				     meta->insn.src_reg * 2, 2);
2603 }
2604 
2605 static int data_ind_ld4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2606 {
2607 	return construct_data_ind_ld(nfp_prog, meta->insn.imm,
2608 				     meta->insn.src_reg * 2, 4);
2609 }
2610 
2611 static int
2612 mem_ldx_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2613 	      unsigned int size, unsigned int ptr_off)
2614 {
2615 	return mem_op_stack(nfp_prog, meta, size, ptr_off,
2616 			    meta->insn.dst_reg * 2, meta->insn.src_reg * 2,
2617 			    true, wrp_lmem_load);
2618 }
2619 
2620 static int mem_ldx_skb(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2621 		       u8 size)
2622 {
2623 	swreg dst = reg_both(meta->insn.dst_reg * 2);
2624 
2625 	switch (meta->insn.off) {
2626 	case offsetof(struct __sk_buff, len):
2627 		if (size != FIELD_SIZEOF(struct __sk_buff, len))
2628 			return -EOPNOTSUPP;
2629 		wrp_mov(nfp_prog, dst, plen_reg(nfp_prog));
2630 		break;
2631 	case offsetof(struct __sk_buff, data):
2632 		if (size != FIELD_SIZEOF(struct __sk_buff, data))
2633 			return -EOPNOTSUPP;
2634 		wrp_mov(nfp_prog, dst, pptr_reg(nfp_prog));
2635 		break;
2636 	case offsetof(struct __sk_buff, data_end):
2637 		if (size != FIELD_SIZEOF(struct __sk_buff, data_end))
2638 			return -EOPNOTSUPP;
2639 		emit_alu(nfp_prog, dst,
2640 			 plen_reg(nfp_prog), ALU_OP_ADD, pptr_reg(nfp_prog));
2641 		break;
2642 	default:
2643 		return -EOPNOTSUPP;
2644 	}
2645 
2646 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
2647 
2648 	return 0;
2649 }
2650 
2651 static int mem_ldx_xdp(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2652 		       u8 size)
2653 {
2654 	swreg dst = reg_both(meta->insn.dst_reg * 2);
2655 
2656 	switch (meta->insn.off) {
2657 	case offsetof(struct xdp_md, data):
2658 		if (size != FIELD_SIZEOF(struct xdp_md, data))
2659 			return -EOPNOTSUPP;
2660 		wrp_mov(nfp_prog, dst, pptr_reg(nfp_prog));
2661 		break;
2662 	case offsetof(struct xdp_md, data_end):
2663 		if (size != FIELD_SIZEOF(struct xdp_md, data_end))
2664 			return -EOPNOTSUPP;
2665 		emit_alu(nfp_prog, dst,
2666 			 plen_reg(nfp_prog), ALU_OP_ADD, pptr_reg(nfp_prog));
2667 		break;
2668 	default:
2669 		return -EOPNOTSUPP;
2670 	}
2671 
2672 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
2673 
2674 	return 0;
2675 }
2676 
2677 static int
2678 mem_ldx_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2679 	     unsigned int size)
2680 {
2681 	swreg tmp_reg;
2682 
2683 	tmp_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2684 
2685 	return data_ld_host_order_addr32(nfp_prog, meta->insn.src_reg * 2,
2686 					 tmp_reg, meta->insn.dst_reg * 2, size);
2687 }
2688 
2689 static int
2690 mem_ldx_emem(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2691 	     unsigned int size)
2692 {
2693 	swreg tmp_reg;
2694 
2695 	tmp_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2696 
2697 	return data_ld_host_order_addr40(nfp_prog, meta->insn.src_reg * 2,
2698 					 tmp_reg, meta->insn.dst_reg * 2, size);
2699 }
2700 
2701 static void
2702 mem_ldx_data_init_pktcache(struct nfp_prog *nfp_prog,
2703 			   struct nfp_insn_meta *meta)
2704 {
2705 	s16 range_start = meta->pkt_cache.range_start;
2706 	s16 range_end = meta->pkt_cache.range_end;
2707 	swreg src_base, off;
2708 	u8 xfer_num, len;
2709 	bool indir;
2710 
2711 	off = re_load_imm_any(nfp_prog, range_start, imm_b(nfp_prog));
2712 	src_base = reg_a(meta->insn.src_reg * 2);
2713 	len = range_end - range_start;
2714 	xfer_num = round_up(len, REG_WIDTH) / REG_WIDTH;
2715 
2716 	indir = len > 8 * REG_WIDTH;
2717 	/* Setup PREV_ALU for indirect mode. */
2718 	if (indir)
2719 		wrp_immed(nfp_prog, reg_none(),
2720 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
2721 
2722 	/* Cache memory into transfer-in registers. */
2723 	emit_cmd_any(nfp_prog, CMD_TGT_READ32_SWAP, CMD_MODE_32b, 0, src_base,
2724 		     off, xfer_num - 1, CMD_CTX_SWAP, indir);
2725 }
2726 
2727 static int
2728 mem_ldx_data_from_pktcache_unaligned(struct nfp_prog *nfp_prog,
2729 				     struct nfp_insn_meta *meta,
2730 				     unsigned int size)
2731 {
2732 	s16 range_start = meta->pkt_cache.range_start;
2733 	s16 insn_off = meta->insn.off - range_start;
2734 	swreg dst_lo, dst_hi, src_lo, src_mid;
2735 	u8 dst_gpr = meta->insn.dst_reg * 2;
2736 	u8 len_lo = size, len_mid = 0;
2737 	u8 idx = insn_off / REG_WIDTH;
2738 	u8 off = insn_off % REG_WIDTH;
2739 
2740 	dst_hi = reg_both(dst_gpr + 1);
2741 	dst_lo = reg_both(dst_gpr);
2742 	src_lo = reg_xfer(idx);
2743 
2744 	/* The read length could involve as many as three registers. */
2745 	if (size > REG_WIDTH - off) {
2746 		/* Calculate the part in the second register. */
2747 		len_lo = REG_WIDTH - off;
2748 		len_mid = size - len_lo;
2749 
2750 		/* Calculate the part in the third register. */
2751 		if (size > 2 * REG_WIDTH - off)
2752 			len_mid = REG_WIDTH;
2753 	}
2754 
2755 	wrp_reg_subpart(nfp_prog, dst_lo, src_lo, len_lo, off);
2756 
2757 	if (!len_mid) {
2758 		wrp_immed(nfp_prog, dst_hi, 0);
2759 		return 0;
2760 	}
2761 
2762 	src_mid = reg_xfer(idx + 1);
2763 
2764 	if (size <= REG_WIDTH) {
2765 		wrp_reg_or_subpart(nfp_prog, dst_lo, src_mid, len_mid, len_lo);
2766 		wrp_immed(nfp_prog, dst_hi, 0);
2767 	} else {
2768 		swreg src_hi = reg_xfer(idx + 2);
2769 
2770 		wrp_reg_or_subpart(nfp_prog, dst_lo, src_mid,
2771 				   REG_WIDTH - len_lo, len_lo);
2772 		wrp_reg_subpart(nfp_prog, dst_hi, src_mid, len_lo,
2773 				REG_WIDTH - len_lo);
2774 		wrp_reg_or_subpart(nfp_prog, dst_hi, src_hi, REG_WIDTH - len_lo,
2775 				   len_lo);
2776 	}
2777 
2778 	return 0;
2779 }
2780 
2781 static int
2782 mem_ldx_data_from_pktcache_aligned(struct nfp_prog *nfp_prog,
2783 				   struct nfp_insn_meta *meta,
2784 				   unsigned int size)
2785 {
2786 	swreg dst_lo, dst_hi, src_lo;
2787 	u8 dst_gpr, idx;
2788 
2789 	idx = (meta->insn.off - meta->pkt_cache.range_start) / REG_WIDTH;
2790 	dst_gpr = meta->insn.dst_reg * 2;
2791 	dst_hi = reg_both(dst_gpr + 1);
2792 	dst_lo = reg_both(dst_gpr);
2793 	src_lo = reg_xfer(idx);
2794 
2795 	if (size < REG_WIDTH) {
2796 		wrp_reg_subpart(nfp_prog, dst_lo, src_lo, size, 0);
2797 		wrp_immed(nfp_prog, dst_hi, 0);
2798 	} else if (size == REG_WIDTH) {
2799 		wrp_mov(nfp_prog, dst_lo, src_lo);
2800 		wrp_immed(nfp_prog, dst_hi, 0);
2801 	} else {
2802 		swreg src_hi = reg_xfer(idx + 1);
2803 
2804 		wrp_mov(nfp_prog, dst_lo, src_lo);
2805 		wrp_mov(nfp_prog, dst_hi, src_hi);
2806 	}
2807 
2808 	return 0;
2809 }
2810 
2811 static int
2812 mem_ldx_data_from_pktcache(struct nfp_prog *nfp_prog,
2813 			   struct nfp_insn_meta *meta, unsigned int size)
2814 {
2815 	u8 off = meta->insn.off - meta->pkt_cache.range_start;
2816 
2817 	if (IS_ALIGNED(off, REG_WIDTH))
2818 		return mem_ldx_data_from_pktcache_aligned(nfp_prog, meta, size);
2819 
2820 	return mem_ldx_data_from_pktcache_unaligned(nfp_prog, meta, size);
2821 }
2822 
2823 static int
2824 mem_ldx(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2825 	unsigned int size)
2826 {
2827 	if (meta->ldst_gather_len)
2828 		return nfp_cpp_memcpy(nfp_prog, meta);
2829 
2830 	if (meta->ptr.type == PTR_TO_CTX) {
2831 		if (nfp_prog->type == BPF_PROG_TYPE_XDP)
2832 			return mem_ldx_xdp(nfp_prog, meta, size);
2833 		else
2834 			return mem_ldx_skb(nfp_prog, meta, size);
2835 	}
2836 
2837 	if (meta->ptr.type == PTR_TO_PACKET) {
2838 		if (meta->pkt_cache.range_end) {
2839 			if (meta->pkt_cache.do_init)
2840 				mem_ldx_data_init_pktcache(nfp_prog, meta);
2841 
2842 			return mem_ldx_data_from_pktcache(nfp_prog, meta, size);
2843 		} else {
2844 			return mem_ldx_data(nfp_prog, meta, size);
2845 		}
2846 	}
2847 
2848 	if (meta->ptr.type == PTR_TO_STACK)
2849 		return mem_ldx_stack(nfp_prog, meta, size,
2850 				     meta->ptr.off + meta->ptr.var_off.value);
2851 
2852 	if (meta->ptr.type == PTR_TO_MAP_VALUE)
2853 		return mem_ldx_emem(nfp_prog, meta, size);
2854 
2855 	return -EOPNOTSUPP;
2856 }
2857 
2858 static int mem_ldx1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2859 {
2860 	return mem_ldx(nfp_prog, meta, 1);
2861 }
2862 
2863 static int mem_ldx2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2864 {
2865 	return mem_ldx(nfp_prog, meta, 2);
2866 }
2867 
2868 static int mem_ldx4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2869 {
2870 	return mem_ldx(nfp_prog, meta, 4);
2871 }
2872 
2873 static int mem_ldx8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2874 {
2875 	return mem_ldx(nfp_prog, meta, 8);
2876 }
2877 
2878 static int
2879 mem_st_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2880 	    unsigned int size)
2881 {
2882 	u64 imm = meta->insn.imm; /* sign extend */
2883 	swreg off_reg;
2884 
2885 	off_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2886 
2887 	return data_st_host_order(nfp_prog, meta->insn.dst_reg * 2, off_reg,
2888 				  imm, size);
2889 }
2890 
2891 static int mem_st(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2892 		  unsigned int size)
2893 {
2894 	if (meta->ptr.type == PTR_TO_PACKET)
2895 		return mem_st_data(nfp_prog, meta, size);
2896 
2897 	return -EOPNOTSUPP;
2898 }
2899 
2900 static int mem_st1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2901 {
2902 	return mem_st(nfp_prog, meta, 1);
2903 }
2904 
2905 static int mem_st2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2906 {
2907 	return mem_st(nfp_prog, meta, 2);
2908 }
2909 
2910 static int mem_st4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2911 {
2912 	return mem_st(nfp_prog, meta, 4);
2913 }
2914 
2915 static int mem_st8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2916 {
2917 	return mem_st(nfp_prog, meta, 8);
2918 }
2919 
2920 static int
2921 mem_stx_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2922 	     unsigned int size)
2923 {
2924 	swreg off_reg;
2925 
2926 	off_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2927 
2928 	return data_stx_host_order(nfp_prog, meta->insn.dst_reg * 2, off_reg,
2929 				   meta->insn.src_reg * 2, size);
2930 }
2931 
2932 static int
2933 mem_stx_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2934 	      unsigned int size, unsigned int ptr_off)
2935 {
2936 	return mem_op_stack(nfp_prog, meta, size, ptr_off,
2937 			    meta->insn.src_reg * 2, meta->insn.dst_reg * 2,
2938 			    false, wrp_lmem_store);
2939 }
2940 
2941 static int mem_stx_xdp(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2942 {
2943 	switch (meta->insn.off) {
2944 	case offsetof(struct xdp_md, rx_queue_index):
2945 		return nfp_queue_select(nfp_prog, meta);
2946 	}
2947 
2948 	WARN_ON_ONCE(1); /* verifier should have rejected bad accesses */
2949 	return -EOPNOTSUPP;
2950 }
2951 
2952 static int
2953 mem_stx(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2954 	unsigned int size)
2955 {
2956 	if (meta->ptr.type == PTR_TO_PACKET)
2957 		return mem_stx_data(nfp_prog, meta, size);
2958 
2959 	if (meta->ptr.type == PTR_TO_STACK)
2960 		return mem_stx_stack(nfp_prog, meta, size,
2961 				     meta->ptr.off + meta->ptr.var_off.value);
2962 
2963 	return -EOPNOTSUPP;
2964 }
2965 
2966 static int mem_stx1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2967 {
2968 	return mem_stx(nfp_prog, meta, 1);
2969 }
2970 
2971 static int mem_stx2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2972 {
2973 	return mem_stx(nfp_prog, meta, 2);
2974 }
2975 
2976 static int mem_stx4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2977 {
2978 	if (meta->ptr.type == PTR_TO_CTX)
2979 		if (nfp_prog->type == BPF_PROG_TYPE_XDP)
2980 			return mem_stx_xdp(nfp_prog, meta);
2981 	return mem_stx(nfp_prog, meta, 4);
2982 }
2983 
2984 static int mem_stx8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2985 {
2986 	return mem_stx(nfp_prog, meta, 8);
2987 }
2988 
2989 static int
2990 mem_xadd(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, bool is64)
2991 {
2992 	u8 dst_gpr = meta->insn.dst_reg * 2;
2993 	u8 src_gpr = meta->insn.src_reg * 2;
2994 	unsigned int full_add, out;
2995 	swreg addra, addrb, off;
2996 
2997 	off = ur_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2998 
2999 	/* We can fit 16 bits into command immediate, if we know the immediate
3000 	 * is guaranteed to either always or never fit into 16 bit we only
3001 	 * generate code to handle that particular case, otherwise generate
3002 	 * code for both.
3003 	 */
3004 	out = nfp_prog_current_offset(nfp_prog);
3005 	full_add = nfp_prog_current_offset(nfp_prog);
3006 
3007 	if (meta->insn.off) {
3008 		out += 2;
3009 		full_add += 2;
3010 	}
3011 	if (meta->xadd_maybe_16bit) {
3012 		out += 3;
3013 		full_add += 3;
3014 	}
3015 	if (meta->xadd_over_16bit)
3016 		out += 2 + is64;
3017 	if (meta->xadd_maybe_16bit && meta->xadd_over_16bit) {
3018 		out += 5;
3019 		full_add += 5;
3020 	}
3021 
3022 	/* Generate the branch for choosing add_imm vs add */
3023 	if (meta->xadd_maybe_16bit && meta->xadd_over_16bit) {
3024 		swreg max_imm = imm_a(nfp_prog);
3025 
3026 		wrp_immed(nfp_prog, max_imm, 0xffff);
3027 		emit_alu(nfp_prog, reg_none(),
3028 			 max_imm, ALU_OP_SUB, reg_b(src_gpr));
3029 		emit_alu(nfp_prog, reg_none(),
3030 			 reg_imm(0), ALU_OP_SUB_C, reg_b(src_gpr + 1));
3031 		emit_br(nfp_prog, BR_BLO, full_add, meta->insn.off ? 2 : 0);
3032 		/* defer for add */
3033 	}
3034 
3035 	/* If insn has an offset add to the address */
3036 	if (!meta->insn.off) {
3037 		addra = reg_a(dst_gpr);
3038 		addrb = reg_b(dst_gpr + 1);
3039 	} else {
3040 		emit_alu(nfp_prog, imma_a(nfp_prog),
3041 			 reg_a(dst_gpr), ALU_OP_ADD, off);
3042 		emit_alu(nfp_prog, imma_b(nfp_prog),
3043 			 reg_a(dst_gpr + 1), ALU_OP_ADD_C, reg_imm(0));
3044 		addra = imma_a(nfp_prog);
3045 		addrb = imma_b(nfp_prog);
3046 	}
3047 
3048 	/* Generate the add_imm if 16 bits are possible */
3049 	if (meta->xadd_maybe_16bit) {
3050 		swreg prev_alu = imm_a(nfp_prog);
3051 
3052 		wrp_immed(nfp_prog, prev_alu,
3053 			  FIELD_PREP(CMD_OVE_DATA, 2) |
3054 			  CMD_OVE_LEN |
3055 			  FIELD_PREP(CMD_OV_LEN, 0x8 | is64 << 2));
3056 		wrp_reg_or_subpart(nfp_prog, prev_alu, reg_b(src_gpr), 2, 2);
3057 		emit_cmd_indir(nfp_prog, CMD_TGT_ADD_IMM, CMD_MODE_40b_BA, 0,
3058 			       addra, addrb, 0, CMD_CTX_NO_SWAP);
3059 
3060 		if (meta->xadd_over_16bit)
3061 			emit_br(nfp_prog, BR_UNC, out, 0);
3062 	}
3063 
3064 	if (!nfp_prog_confirm_current_offset(nfp_prog, full_add))
3065 		return -EINVAL;
3066 
3067 	/* Generate the add if 16 bits are not guaranteed */
3068 	if (meta->xadd_over_16bit) {
3069 		emit_cmd(nfp_prog, CMD_TGT_ADD, CMD_MODE_40b_BA, 0,
3070 			 addra, addrb, is64 << 2,
3071 			 is64 ? CMD_CTX_SWAP_DEFER2 : CMD_CTX_SWAP_DEFER1);
3072 
3073 		wrp_mov(nfp_prog, reg_xfer(0), reg_a(src_gpr));
3074 		if (is64)
3075 			wrp_mov(nfp_prog, reg_xfer(1), reg_a(src_gpr + 1));
3076 	}
3077 
3078 	if (!nfp_prog_confirm_current_offset(nfp_prog, out))
3079 		return -EINVAL;
3080 
3081 	return 0;
3082 }
3083 
3084 static int mem_xadd4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3085 {
3086 	return mem_xadd(nfp_prog, meta, false);
3087 }
3088 
3089 static int mem_xadd8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3090 {
3091 	return mem_xadd(nfp_prog, meta, true);
3092 }
3093 
3094 static int jump(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3095 {
3096 	emit_br(nfp_prog, BR_UNC, meta->insn.off, 0);
3097 
3098 	return 0;
3099 }
3100 
3101 static int jeq_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3102 {
3103 	const struct bpf_insn *insn = &meta->insn;
3104 	u64 imm = insn->imm; /* sign extend */
3105 	swreg or1, or2, tmp_reg;
3106 
3107 	or1 = reg_a(insn->dst_reg * 2);
3108 	or2 = reg_b(insn->dst_reg * 2 + 1);
3109 
3110 	if (imm & ~0U) {
3111 		tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
3112 		emit_alu(nfp_prog, imm_a(nfp_prog),
3113 			 reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg);
3114 		or1 = imm_a(nfp_prog);
3115 	}
3116 
3117 	if (imm >> 32) {
3118 		tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
3119 		emit_alu(nfp_prog, imm_b(nfp_prog),
3120 			 reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR, tmp_reg);
3121 		or2 = imm_b(nfp_prog);
3122 	}
3123 
3124 	emit_alu(nfp_prog, reg_none(), or1, ALU_OP_OR, or2);
3125 	emit_br(nfp_prog, BR_BEQ, insn->off, 0);
3126 
3127 	return 0;
3128 }
3129 
3130 static int jeq32_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3131 {
3132 	const struct bpf_insn *insn = &meta->insn;
3133 	swreg tmp_reg;
3134 
3135 	tmp_reg = ur_load_imm_any(nfp_prog, insn->imm, imm_b(nfp_prog));
3136 	emit_alu(nfp_prog, reg_none(),
3137 		 reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg);
3138 	emit_br(nfp_prog, BR_BEQ, insn->off, 0);
3139 
3140 	return 0;
3141 }
3142 
3143 static int jset_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3144 {
3145 	const struct bpf_insn *insn = &meta->insn;
3146 	u64 imm = insn->imm; /* sign extend */
3147 	u8 dst_gpr = insn->dst_reg * 2;
3148 	swreg tmp_reg;
3149 
3150 	tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
3151 	emit_alu(nfp_prog, imm_b(nfp_prog),
3152 		 reg_a(dst_gpr), ALU_OP_AND, tmp_reg);
3153 	/* Upper word of the mask can only be 0 or ~0 from sign extension,
3154 	 * so either ignore it or OR the whole thing in.
3155 	 */
3156 	if (is_mbpf_jmp64(meta) && imm >> 32) {
3157 		emit_alu(nfp_prog, reg_none(),
3158 			 reg_a(dst_gpr + 1), ALU_OP_OR, imm_b(nfp_prog));
3159 	}
3160 	emit_br(nfp_prog, BR_BNE, insn->off, 0);
3161 
3162 	return 0;
3163 }
3164 
3165 static int jne_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3166 {
3167 	const struct bpf_insn *insn = &meta->insn;
3168 	u64 imm = insn->imm; /* sign extend */
3169 	bool is_jmp32 = is_mbpf_jmp32(meta);
3170 	swreg tmp_reg;
3171 
3172 	if (!imm) {
3173 		if (is_jmp32)
3174 			emit_alu(nfp_prog, reg_none(), reg_none(), ALU_OP_NONE,
3175 				 reg_b(insn->dst_reg * 2));
3176 		else
3177 			emit_alu(nfp_prog, reg_none(), reg_a(insn->dst_reg * 2),
3178 				 ALU_OP_OR, reg_b(insn->dst_reg * 2 + 1));
3179 		emit_br(nfp_prog, BR_BNE, insn->off, 0);
3180 		return 0;
3181 	}
3182 
3183 	tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
3184 	emit_alu(nfp_prog, reg_none(),
3185 		 reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg);
3186 	emit_br(nfp_prog, BR_BNE, insn->off, 0);
3187 
3188 	if (is_jmp32)
3189 		return 0;
3190 
3191 	tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
3192 	emit_alu(nfp_prog, reg_none(),
3193 		 reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR, tmp_reg);
3194 	emit_br(nfp_prog, BR_BNE, insn->off, 0);
3195 
3196 	return 0;
3197 }
3198 
3199 static int jeq_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3200 {
3201 	const struct bpf_insn *insn = &meta->insn;
3202 
3203 	emit_alu(nfp_prog, imm_a(nfp_prog), reg_a(insn->dst_reg * 2),
3204 		 ALU_OP_XOR, reg_b(insn->src_reg * 2));
3205 	if (is_mbpf_jmp64(meta)) {
3206 		emit_alu(nfp_prog, imm_b(nfp_prog),
3207 			 reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR,
3208 			 reg_b(insn->src_reg * 2 + 1));
3209 		emit_alu(nfp_prog, reg_none(), imm_a(nfp_prog), ALU_OP_OR,
3210 			 imm_b(nfp_prog));
3211 	}
3212 	emit_br(nfp_prog, BR_BEQ, insn->off, 0);
3213 
3214 	return 0;
3215 }
3216 
3217 static int jset_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3218 {
3219 	return wrp_test_reg(nfp_prog, meta, ALU_OP_AND, BR_BNE);
3220 }
3221 
3222 static int jne_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3223 {
3224 	return wrp_test_reg(nfp_prog, meta, ALU_OP_XOR, BR_BNE);
3225 }
3226 
3227 static int
3228 bpf_to_bpf_call(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3229 {
3230 	u32 ret_tgt, stack_depth, offset_br;
3231 	swreg tmp_reg;
3232 
3233 	stack_depth = round_up(nfp_prog->stack_frame_depth, STACK_FRAME_ALIGN);
3234 	/* Space for saving the return address is accounted for by the callee,
3235 	 * so stack_depth can be zero for the main function.
3236 	 */
3237 	if (stack_depth) {
3238 		tmp_reg = ur_load_imm_any(nfp_prog, stack_depth,
3239 					  stack_imm(nfp_prog));
3240 		emit_alu(nfp_prog, stack_reg(nfp_prog),
3241 			 stack_reg(nfp_prog), ALU_OP_ADD, tmp_reg);
3242 		emit_csr_wr(nfp_prog, stack_reg(nfp_prog),
3243 			    NFP_CSR_ACT_LM_ADDR0);
3244 	}
3245 
3246 	/* Two cases for jumping to the callee:
3247 	 *
3248 	 * - If callee uses and needs to save R6~R9 then:
3249 	 *     1. Put the start offset of the callee into imm_b(). This will
3250 	 *        require a fixup step, as we do not necessarily know this
3251 	 *        address yet.
3252 	 *     2. Put the return address from the callee to the caller into
3253 	 *        register ret_reg().
3254 	 *     3. (After defer slots are consumed) Jump to the subroutine that
3255 	 *        pushes the registers to the stack.
3256 	 *   The subroutine acts as a trampoline, and returns to the address in
3257 	 *   imm_b(), i.e. jumps to the callee.
3258 	 *
3259 	 * - If callee does not need to save R6~R9 then just load return
3260 	 *   address to the caller in ret_reg(), and jump to the callee
3261 	 *   directly.
3262 	 *
3263 	 * Using ret_reg() to pass the return address to the callee is set here
3264 	 * as a convention. The callee can then push this address onto its
3265 	 * stack frame in its prologue. The advantages of passing the return
3266 	 * address through ret_reg(), instead of pushing it to the stack right
3267 	 * here, are the following:
3268 	 * - It looks cleaner.
3269 	 * - If the called function is called multiple time, we get a lower
3270 	 *   program size.
3271 	 * - We save two no-op instructions that should be added just before
3272 	 *   the emit_br() when stack depth is not null otherwise.
3273 	 * - If we ever find a register to hold the return address during whole
3274 	 *   execution of the callee, we will not have to push the return
3275 	 *   address to the stack for leaf functions.
3276 	 */
3277 	if (!meta->jmp_dst) {
3278 		pr_err("BUG: BPF-to-BPF call has no destination recorded\n");
3279 		return -ELOOP;
3280 	}
3281 	if (nfp_prog->subprog[meta->jmp_dst->subprog_idx].needs_reg_push) {
3282 		ret_tgt = nfp_prog_current_offset(nfp_prog) + 3;
3283 		emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2,
3284 			     RELO_BR_GO_CALL_PUSH_REGS);
3285 		offset_br = nfp_prog_current_offset(nfp_prog);
3286 		wrp_immed_relo(nfp_prog, imm_b(nfp_prog), 0, RELO_IMMED_REL);
3287 	} else {
3288 		ret_tgt = nfp_prog_current_offset(nfp_prog) + 2;
3289 		emit_br(nfp_prog, BR_UNC, meta->insn.imm, 1);
3290 		offset_br = nfp_prog_current_offset(nfp_prog);
3291 	}
3292 	wrp_immed_relo(nfp_prog, ret_reg(nfp_prog), ret_tgt, RELO_IMMED_REL);
3293 
3294 	if (!nfp_prog_confirm_current_offset(nfp_prog, ret_tgt))
3295 		return -EINVAL;
3296 
3297 	if (stack_depth) {
3298 		tmp_reg = ur_load_imm_any(nfp_prog, stack_depth,
3299 					  stack_imm(nfp_prog));
3300 		emit_alu(nfp_prog, stack_reg(nfp_prog),
3301 			 stack_reg(nfp_prog), ALU_OP_SUB, tmp_reg);
3302 		emit_csr_wr(nfp_prog, stack_reg(nfp_prog),
3303 			    NFP_CSR_ACT_LM_ADDR0);
3304 		wrp_nops(nfp_prog, 3);
3305 	}
3306 
3307 	meta->num_insns_after_br = nfp_prog_current_offset(nfp_prog);
3308 	meta->num_insns_after_br -= offset_br;
3309 
3310 	return 0;
3311 }
3312 
3313 static int helper_call(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3314 {
3315 	switch (meta->insn.imm) {
3316 	case BPF_FUNC_xdp_adjust_head:
3317 		return adjust_head(nfp_prog, meta);
3318 	case BPF_FUNC_xdp_adjust_tail:
3319 		return adjust_tail(nfp_prog, meta);
3320 	case BPF_FUNC_map_lookup_elem:
3321 	case BPF_FUNC_map_update_elem:
3322 	case BPF_FUNC_map_delete_elem:
3323 		return map_call_stack_common(nfp_prog, meta);
3324 	case BPF_FUNC_get_prandom_u32:
3325 		return nfp_get_prandom_u32(nfp_prog, meta);
3326 	case BPF_FUNC_perf_event_output:
3327 		return nfp_perf_event_output(nfp_prog, meta);
3328 	default:
3329 		WARN_ONCE(1, "verifier allowed unsupported function\n");
3330 		return -EOPNOTSUPP;
3331 	}
3332 }
3333 
3334 static int call(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3335 {
3336 	if (is_mbpf_pseudo_call(meta))
3337 		return bpf_to_bpf_call(nfp_prog, meta);
3338 	else
3339 		return helper_call(nfp_prog, meta);
3340 }
3341 
3342 static bool nfp_is_main_function(struct nfp_insn_meta *meta)
3343 {
3344 	return meta->subprog_idx == 0;
3345 }
3346 
3347 static int goto_out(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3348 {
3349 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 0, RELO_BR_GO_OUT);
3350 
3351 	return 0;
3352 }
3353 
3354 static int
3355 nfp_subprog_epilogue(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3356 {
3357 	if (nfp_prog->subprog[meta->subprog_idx].needs_reg_push) {
3358 		/* Pop R6~R9 to the stack via related subroutine.
3359 		 * We loaded the return address to the caller into ret_reg().
3360 		 * This means that the subroutine does not come back here, we
3361 		 * make it jump back to the subprogram caller directly!
3362 		 */
3363 		emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 1,
3364 			     RELO_BR_GO_CALL_POP_REGS);
3365 		/* Pop return address from the stack. */
3366 		wrp_mov(nfp_prog, ret_reg(nfp_prog), reg_lm(0, 0));
3367 	} else {
3368 		/* Pop return address from the stack. */
3369 		wrp_mov(nfp_prog, ret_reg(nfp_prog), reg_lm(0, 0));
3370 		/* Jump back to caller if no callee-saved registers were used
3371 		 * by the subprogram.
3372 		 */
3373 		emit_rtn(nfp_prog, ret_reg(nfp_prog), 0);
3374 	}
3375 
3376 	return 0;
3377 }
3378 
3379 static int jmp_exit(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3380 {
3381 	if (nfp_is_main_function(meta))
3382 		return goto_out(nfp_prog, meta);
3383 	else
3384 		return nfp_subprog_epilogue(nfp_prog, meta);
3385 }
3386 
3387 static const instr_cb_t instr_cb[256] = {
3388 	[BPF_ALU64 | BPF_MOV | BPF_X] =	mov_reg64,
3389 	[BPF_ALU64 | BPF_MOV | BPF_K] =	mov_imm64,
3390 	[BPF_ALU64 | BPF_XOR | BPF_X] =	xor_reg64,
3391 	[BPF_ALU64 | BPF_XOR | BPF_K] =	xor_imm64,
3392 	[BPF_ALU64 | BPF_AND | BPF_X] =	and_reg64,
3393 	[BPF_ALU64 | BPF_AND | BPF_K] =	and_imm64,
3394 	[BPF_ALU64 | BPF_OR | BPF_X] =	or_reg64,
3395 	[BPF_ALU64 | BPF_OR | BPF_K] =	or_imm64,
3396 	[BPF_ALU64 | BPF_ADD | BPF_X] =	add_reg64,
3397 	[BPF_ALU64 | BPF_ADD | BPF_K] =	add_imm64,
3398 	[BPF_ALU64 | BPF_SUB | BPF_X] =	sub_reg64,
3399 	[BPF_ALU64 | BPF_SUB | BPF_K] =	sub_imm64,
3400 	[BPF_ALU64 | BPF_MUL | BPF_X] =	mul_reg64,
3401 	[BPF_ALU64 | BPF_MUL | BPF_K] =	mul_imm64,
3402 	[BPF_ALU64 | BPF_DIV | BPF_X] =	div_reg64,
3403 	[BPF_ALU64 | BPF_DIV | BPF_K] =	div_imm64,
3404 	[BPF_ALU64 | BPF_NEG] =		neg_reg64,
3405 	[BPF_ALU64 | BPF_LSH | BPF_X] =	shl_reg64,
3406 	[BPF_ALU64 | BPF_LSH | BPF_K] =	shl_imm64,
3407 	[BPF_ALU64 | BPF_RSH | BPF_X] =	shr_reg64,
3408 	[BPF_ALU64 | BPF_RSH | BPF_K] =	shr_imm64,
3409 	[BPF_ALU64 | BPF_ARSH | BPF_X] = ashr_reg64,
3410 	[BPF_ALU64 | BPF_ARSH | BPF_K] = ashr_imm64,
3411 	[BPF_ALU | BPF_MOV | BPF_X] =	mov_reg,
3412 	[BPF_ALU | BPF_MOV | BPF_K] =	mov_imm,
3413 	[BPF_ALU | BPF_XOR | BPF_X] =	xor_reg,
3414 	[BPF_ALU | BPF_XOR | BPF_K] =	xor_imm,
3415 	[BPF_ALU | BPF_AND | BPF_X] =	and_reg,
3416 	[BPF_ALU | BPF_AND | BPF_K] =	and_imm,
3417 	[BPF_ALU | BPF_OR | BPF_X] =	or_reg,
3418 	[BPF_ALU | BPF_OR | BPF_K] =	or_imm,
3419 	[BPF_ALU | BPF_ADD | BPF_X] =	add_reg,
3420 	[BPF_ALU | BPF_ADD | BPF_K] =	add_imm,
3421 	[BPF_ALU | BPF_SUB | BPF_X] =	sub_reg,
3422 	[BPF_ALU | BPF_SUB | BPF_K] =	sub_imm,
3423 	[BPF_ALU | BPF_MUL | BPF_X] =	mul_reg,
3424 	[BPF_ALU | BPF_MUL | BPF_K] =	mul_imm,
3425 	[BPF_ALU | BPF_DIV | BPF_X] =	div_reg,
3426 	[BPF_ALU | BPF_DIV | BPF_K] =	div_imm,
3427 	[BPF_ALU | BPF_NEG] =		neg_reg,
3428 	[BPF_ALU | BPF_LSH | BPF_X] =	shl_reg,
3429 	[BPF_ALU | BPF_LSH | BPF_K] =	shl_imm,
3430 	[BPF_ALU | BPF_RSH | BPF_X] =	shr_reg,
3431 	[BPF_ALU | BPF_RSH | BPF_K] =	shr_imm,
3432 	[BPF_ALU | BPF_ARSH | BPF_X] =	ashr_reg,
3433 	[BPF_ALU | BPF_ARSH | BPF_K] =	ashr_imm,
3434 	[BPF_ALU | BPF_END | BPF_X] =	end_reg32,
3435 	[BPF_LD | BPF_IMM | BPF_DW] =	imm_ld8,
3436 	[BPF_LD | BPF_ABS | BPF_B] =	data_ld1,
3437 	[BPF_LD | BPF_ABS | BPF_H] =	data_ld2,
3438 	[BPF_LD | BPF_ABS | BPF_W] =	data_ld4,
3439 	[BPF_LD | BPF_IND | BPF_B] =	data_ind_ld1,
3440 	[BPF_LD | BPF_IND | BPF_H] =	data_ind_ld2,
3441 	[BPF_LD | BPF_IND | BPF_W] =	data_ind_ld4,
3442 	[BPF_LDX | BPF_MEM | BPF_B] =	mem_ldx1,
3443 	[BPF_LDX | BPF_MEM | BPF_H] =	mem_ldx2,
3444 	[BPF_LDX | BPF_MEM | BPF_W] =	mem_ldx4,
3445 	[BPF_LDX | BPF_MEM | BPF_DW] =	mem_ldx8,
3446 	[BPF_STX | BPF_MEM | BPF_B] =	mem_stx1,
3447 	[BPF_STX | BPF_MEM | BPF_H] =	mem_stx2,
3448 	[BPF_STX | BPF_MEM | BPF_W] =	mem_stx4,
3449 	[BPF_STX | BPF_MEM | BPF_DW] =	mem_stx8,
3450 	[BPF_STX | BPF_XADD | BPF_W] =	mem_xadd4,
3451 	[BPF_STX | BPF_XADD | BPF_DW] =	mem_xadd8,
3452 	[BPF_ST | BPF_MEM | BPF_B] =	mem_st1,
3453 	[BPF_ST | BPF_MEM | BPF_H] =	mem_st2,
3454 	[BPF_ST | BPF_MEM | BPF_W] =	mem_st4,
3455 	[BPF_ST | BPF_MEM | BPF_DW] =	mem_st8,
3456 	[BPF_JMP | BPF_JA | BPF_K] =	jump,
3457 	[BPF_JMP | BPF_JEQ | BPF_K] =	jeq_imm,
3458 	[BPF_JMP | BPF_JGT | BPF_K] =	cmp_imm,
3459 	[BPF_JMP | BPF_JGE | BPF_K] =	cmp_imm,
3460 	[BPF_JMP | BPF_JLT | BPF_K] =	cmp_imm,
3461 	[BPF_JMP | BPF_JLE | BPF_K] =	cmp_imm,
3462 	[BPF_JMP | BPF_JSGT | BPF_K] =  cmp_imm,
3463 	[BPF_JMP | BPF_JSGE | BPF_K] =  cmp_imm,
3464 	[BPF_JMP | BPF_JSLT | BPF_K] =  cmp_imm,
3465 	[BPF_JMP | BPF_JSLE | BPF_K] =  cmp_imm,
3466 	[BPF_JMP | BPF_JSET | BPF_K] =	jset_imm,
3467 	[BPF_JMP | BPF_JNE | BPF_K] =	jne_imm,
3468 	[BPF_JMP | BPF_JEQ | BPF_X] =	jeq_reg,
3469 	[BPF_JMP | BPF_JGT | BPF_X] =	cmp_reg,
3470 	[BPF_JMP | BPF_JGE | BPF_X] =	cmp_reg,
3471 	[BPF_JMP | BPF_JLT | BPF_X] =	cmp_reg,
3472 	[BPF_JMP | BPF_JLE | BPF_X] =	cmp_reg,
3473 	[BPF_JMP | BPF_JSGT | BPF_X] =  cmp_reg,
3474 	[BPF_JMP | BPF_JSGE | BPF_X] =  cmp_reg,
3475 	[BPF_JMP | BPF_JSLT | BPF_X] =  cmp_reg,
3476 	[BPF_JMP | BPF_JSLE | BPF_X] =  cmp_reg,
3477 	[BPF_JMP | BPF_JSET | BPF_X] =	jset_reg,
3478 	[BPF_JMP | BPF_JNE | BPF_X] =	jne_reg,
3479 	[BPF_JMP32 | BPF_JEQ | BPF_K] =	jeq32_imm,
3480 	[BPF_JMP32 | BPF_JGT | BPF_K] =	cmp_imm,
3481 	[BPF_JMP32 | BPF_JGE | BPF_K] =	cmp_imm,
3482 	[BPF_JMP32 | BPF_JLT | BPF_K] =	cmp_imm,
3483 	[BPF_JMP32 | BPF_JLE | BPF_K] =	cmp_imm,
3484 	[BPF_JMP32 | BPF_JSGT | BPF_K] =cmp_imm,
3485 	[BPF_JMP32 | BPF_JSGE | BPF_K] =cmp_imm,
3486 	[BPF_JMP32 | BPF_JSLT | BPF_K] =cmp_imm,
3487 	[BPF_JMP32 | BPF_JSLE | BPF_K] =cmp_imm,
3488 	[BPF_JMP32 | BPF_JSET | BPF_K] =jset_imm,
3489 	[BPF_JMP32 | BPF_JNE | BPF_K] =	jne_imm,
3490 	[BPF_JMP32 | BPF_JEQ | BPF_X] =	jeq_reg,
3491 	[BPF_JMP32 | BPF_JGT | BPF_X] =	cmp_reg,
3492 	[BPF_JMP32 | BPF_JGE | BPF_X] =	cmp_reg,
3493 	[BPF_JMP32 | BPF_JLT | BPF_X] =	cmp_reg,
3494 	[BPF_JMP32 | BPF_JLE | BPF_X] =	cmp_reg,
3495 	[BPF_JMP32 | BPF_JSGT | BPF_X] =cmp_reg,
3496 	[BPF_JMP32 | BPF_JSGE | BPF_X] =cmp_reg,
3497 	[BPF_JMP32 | BPF_JSLT | BPF_X] =cmp_reg,
3498 	[BPF_JMP32 | BPF_JSLE | BPF_X] =cmp_reg,
3499 	[BPF_JMP32 | BPF_JSET | BPF_X] =jset_reg,
3500 	[BPF_JMP32 | BPF_JNE | BPF_X] =	jne_reg,
3501 	[BPF_JMP | BPF_CALL] =		call,
3502 	[BPF_JMP | BPF_EXIT] =		jmp_exit,
3503 };
3504 
3505 /* --- Assembler logic --- */
3506 static int
3507 nfp_fixup_immed_relo(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
3508 		     struct nfp_insn_meta *jmp_dst, u32 br_idx)
3509 {
3510 	if (immed_get_value(nfp_prog->prog[br_idx + 1])) {
3511 		pr_err("BUG: failed to fix up callee register saving\n");
3512 		return -EINVAL;
3513 	}
3514 
3515 	immed_set_value(&nfp_prog->prog[br_idx + 1], jmp_dst->off);
3516 
3517 	return 0;
3518 }
3519 
3520 static int nfp_fixup_branches(struct nfp_prog *nfp_prog)
3521 {
3522 	struct nfp_insn_meta *meta, *jmp_dst;
3523 	u32 idx, br_idx;
3524 	int err;
3525 
3526 	list_for_each_entry(meta, &nfp_prog->insns, l) {
3527 		if (meta->flags & FLAG_INSN_SKIP_MASK)
3528 			continue;
3529 		if (!is_mbpf_jmp(meta))
3530 			continue;
3531 		if (meta->insn.code == (BPF_JMP | BPF_EXIT) &&
3532 		    !nfp_is_main_function(meta))
3533 			continue;
3534 		if (is_mbpf_helper_call(meta))
3535 			continue;
3536 
3537 		if (list_is_last(&meta->l, &nfp_prog->insns))
3538 			br_idx = nfp_prog->last_bpf_off;
3539 		else
3540 			br_idx = list_next_entry(meta, l)->off - 1;
3541 
3542 		/* For BPF-to-BPF function call, a stack adjustment sequence is
3543 		 * generated after the return instruction. Therefore, we must
3544 		 * withdraw the length of this sequence to have br_idx pointing
3545 		 * to where the "branch" NFP instruction is expected to be.
3546 		 */
3547 		if (is_mbpf_pseudo_call(meta))
3548 			br_idx -= meta->num_insns_after_br;
3549 
3550 		if (!nfp_is_br(nfp_prog->prog[br_idx])) {
3551 			pr_err("Fixup found block not ending in branch %d %02x %016llx!!\n",
3552 			       br_idx, meta->insn.code, nfp_prog->prog[br_idx]);
3553 			return -ELOOP;
3554 		}
3555 
3556 		if (meta->insn.code == (BPF_JMP | BPF_EXIT))
3557 			continue;
3558 
3559 		/* Leave special branches for later */
3560 		if (FIELD_GET(OP_RELO_TYPE, nfp_prog->prog[br_idx]) !=
3561 		    RELO_BR_REL && !is_mbpf_pseudo_call(meta))
3562 			continue;
3563 
3564 		if (!meta->jmp_dst) {
3565 			pr_err("Non-exit jump doesn't have destination info recorded!!\n");
3566 			return -ELOOP;
3567 		}
3568 
3569 		jmp_dst = meta->jmp_dst;
3570 
3571 		if (jmp_dst->flags & FLAG_INSN_SKIP_PREC_DEPENDENT) {
3572 			pr_err("Branch landing on removed instruction!!\n");
3573 			return -ELOOP;
3574 		}
3575 
3576 		if (is_mbpf_pseudo_call(meta) &&
3577 		    nfp_prog->subprog[jmp_dst->subprog_idx].needs_reg_push) {
3578 			err = nfp_fixup_immed_relo(nfp_prog, meta,
3579 						   jmp_dst, br_idx);
3580 			if (err)
3581 				return err;
3582 		}
3583 
3584 		if (FIELD_GET(OP_RELO_TYPE, nfp_prog->prog[br_idx]) !=
3585 		    RELO_BR_REL)
3586 			continue;
3587 
3588 		for (idx = meta->off; idx <= br_idx; idx++) {
3589 			if (!nfp_is_br(nfp_prog->prog[idx]))
3590 				continue;
3591 			br_set_offset(&nfp_prog->prog[idx], jmp_dst->off);
3592 		}
3593 	}
3594 
3595 	return 0;
3596 }
3597 
3598 static void nfp_intro(struct nfp_prog *nfp_prog)
3599 {
3600 	wrp_immed(nfp_prog, plen_reg(nfp_prog), GENMASK(13, 0));
3601 	emit_alu(nfp_prog, plen_reg(nfp_prog),
3602 		 plen_reg(nfp_prog), ALU_OP_AND, pv_len(nfp_prog));
3603 }
3604 
3605 static void
3606 nfp_subprog_prologue(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3607 {
3608 	/* Save return address into the stack. */
3609 	wrp_mov(nfp_prog, reg_lm(0, 0), ret_reg(nfp_prog));
3610 }
3611 
3612 static void
3613 nfp_start_subprog(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3614 {
3615 	unsigned int depth = nfp_prog->subprog[meta->subprog_idx].stack_depth;
3616 
3617 	nfp_prog->stack_frame_depth = round_up(depth, 4);
3618 	nfp_subprog_prologue(nfp_prog, meta);
3619 }
3620 
3621 bool nfp_is_subprog_start(struct nfp_insn_meta *meta)
3622 {
3623 	return meta->flags & FLAG_INSN_IS_SUBPROG_START;
3624 }
3625 
3626 static void nfp_outro_tc_da(struct nfp_prog *nfp_prog)
3627 {
3628 	/* TC direct-action mode:
3629 	 *   0,1   ok        NOT SUPPORTED[1]
3630 	 *   2   drop  0x22 -> drop,  count as stat1
3631 	 *   4,5 nuke  0x02 -> drop
3632 	 *   7  redir  0x44 -> redir, count as stat2
3633 	 *   * unspec  0x11 -> pass,  count as stat0
3634 	 *
3635 	 * [1] We can't support OK and RECLASSIFY because we can't tell TC
3636 	 *     the exact decision made.  We are forced to support UNSPEC
3637 	 *     to handle aborts so that's the only one we handle for passing
3638 	 *     packets up the stack.
3639 	 */
3640 	/* Target for aborts */
3641 	nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog);
3642 
3643 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
3644 
3645 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
3646 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_imm(0x11), SHF_SC_L_SHF, 16);
3647 
3648 	/* Target for normal exits */
3649 	nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog);
3650 
3651 	/* if R0 > 7 jump to abort */
3652 	emit_alu(nfp_prog, reg_none(), reg_imm(7), ALU_OP_SUB, reg_b(0));
3653 	emit_br(nfp_prog, BR_BLO, nfp_prog->tgt_abort, 0);
3654 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
3655 
3656 	wrp_immed(nfp_prog, reg_b(2), 0x41221211);
3657 	wrp_immed(nfp_prog, reg_b(3), 0x41001211);
3658 
3659 	emit_shf(nfp_prog, reg_a(1),
3660 		 reg_none(), SHF_OP_NONE, reg_b(0), SHF_SC_L_SHF, 2);
3661 
3662 	emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
3663 	emit_shf(nfp_prog, reg_a(2),
3664 		 reg_imm(0xf), SHF_OP_AND, reg_b(2), SHF_SC_R_SHF, 0);
3665 
3666 	emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
3667 	emit_shf(nfp_prog, reg_b(2),
3668 		 reg_imm(0xf), SHF_OP_AND, reg_b(3), SHF_SC_R_SHF, 0);
3669 
3670 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
3671 
3672 	emit_shf(nfp_prog, reg_b(2),
3673 		 reg_a(2), SHF_OP_OR, reg_b(2), SHF_SC_L_SHF, 4);
3674 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_b(2), SHF_SC_L_SHF, 16);
3675 }
3676 
3677 static void nfp_outro_xdp(struct nfp_prog *nfp_prog)
3678 {
3679 	/* XDP return codes:
3680 	 *   0 aborted  0x82 -> drop,  count as stat3
3681 	 *   1    drop  0x22 -> drop,  count as stat1
3682 	 *   2    pass  0x11 -> pass,  count as stat0
3683 	 *   3      tx  0x44 -> redir, count as stat2
3684 	 *   * unknown  0x82 -> drop,  count as stat3
3685 	 */
3686 	/* Target for aborts */
3687 	nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog);
3688 
3689 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
3690 
3691 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
3692 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_imm(0x82), SHF_SC_L_SHF, 16);
3693 
3694 	/* Target for normal exits */
3695 	nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog);
3696 
3697 	/* if R0 > 3 jump to abort */
3698 	emit_alu(nfp_prog, reg_none(), reg_imm(3), ALU_OP_SUB, reg_b(0));
3699 	emit_br(nfp_prog, BR_BLO, nfp_prog->tgt_abort, 0);
3700 
3701 	wrp_immed(nfp_prog, reg_b(2), 0x44112282);
3702 
3703 	emit_shf(nfp_prog, reg_a(1),
3704 		 reg_none(), SHF_OP_NONE, reg_b(0), SHF_SC_L_SHF, 3);
3705 
3706 	emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
3707 	emit_shf(nfp_prog, reg_b(2),
3708 		 reg_imm(0xff), SHF_OP_AND, reg_b(2), SHF_SC_R_SHF, 0);
3709 
3710 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
3711 
3712 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
3713 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_b(2), SHF_SC_L_SHF, 16);
3714 }
3715 
3716 static bool nfp_prog_needs_callee_reg_save(struct nfp_prog *nfp_prog)
3717 {
3718 	unsigned int idx;
3719 
3720 	for (idx = 1; idx < nfp_prog->subprog_cnt; idx++)
3721 		if (nfp_prog->subprog[idx].needs_reg_push)
3722 			return true;
3723 
3724 	return false;
3725 }
3726 
3727 static void nfp_push_callee_registers(struct nfp_prog *nfp_prog)
3728 {
3729 	u8 reg;
3730 
3731 	/* Subroutine: Save all callee saved registers (R6 ~ R9).
3732 	 * imm_b() holds the return address.
3733 	 */
3734 	nfp_prog->tgt_call_push_regs = nfp_prog_current_offset(nfp_prog);
3735 	for (reg = BPF_REG_6; reg <= BPF_REG_9; reg++) {
3736 		u8 adj = (reg - BPF_REG_0) * 2;
3737 		u8 idx = (reg - BPF_REG_6) * 2;
3738 
3739 		/* The first slot in the stack frame is used to push the return
3740 		 * address in bpf_to_bpf_call(), start just after.
3741 		 */
3742 		wrp_mov(nfp_prog, reg_lm(0, 1 + idx), reg_b(adj));
3743 
3744 		if (reg == BPF_REG_8)
3745 			/* Prepare to jump back, last 3 insns use defer slots */
3746 			emit_rtn(nfp_prog, imm_b(nfp_prog), 3);
3747 
3748 		wrp_mov(nfp_prog, reg_lm(0, 1 + idx + 1), reg_b(adj + 1));
3749 	}
3750 }
3751 
3752 static void nfp_pop_callee_registers(struct nfp_prog *nfp_prog)
3753 {
3754 	u8 reg;
3755 
3756 	/* Subroutine: Restore all callee saved registers (R6 ~ R9).
3757 	 * ret_reg() holds the return address.
3758 	 */
3759 	nfp_prog->tgt_call_pop_regs = nfp_prog_current_offset(nfp_prog);
3760 	for (reg = BPF_REG_6; reg <= BPF_REG_9; reg++) {
3761 		u8 adj = (reg - BPF_REG_0) * 2;
3762 		u8 idx = (reg - BPF_REG_6) * 2;
3763 
3764 		/* The first slot in the stack frame holds the return address,
3765 		 * start popping just after that.
3766 		 */
3767 		wrp_mov(nfp_prog, reg_both(adj), reg_lm(0, 1 + idx));
3768 
3769 		if (reg == BPF_REG_8)
3770 			/* Prepare to jump back, last 3 insns use defer slots */
3771 			emit_rtn(nfp_prog, ret_reg(nfp_prog), 3);
3772 
3773 		wrp_mov(nfp_prog, reg_both(adj + 1), reg_lm(0, 1 + idx + 1));
3774 	}
3775 }
3776 
3777 static void nfp_outro(struct nfp_prog *nfp_prog)
3778 {
3779 	switch (nfp_prog->type) {
3780 	case BPF_PROG_TYPE_SCHED_CLS:
3781 		nfp_outro_tc_da(nfp_prog);
3782 		break;
3783 	case BPF_PROG_TYPE_XDP:
3784 		nfp_outro_xdp(nfp_prog);
3785 		break;
3786 	default:
3787 		WARN_ON(1);
3788 	}
3789 
3790 	if (!nfp_prog_needs_callee_reg_save(nfp_prog))
3791 		return;
3792 
3793 	nfp_push_callee_registers(nfp_prog);
3794 	nfp_pop_callee_registers(nfp_prog);
3795 }
3796 
3797 static int nfp_translate(struct nfp_prog *nfp_prog)
3798 {
3799 	struct nfp_insn_meta *meta;
3800 	unsigned int depth;
3801 	int err;
3802 
3803 	depth = nfp_prog->subprog[0].stack_depth;
3804 	nfp_prog->stack_frame_depth = round_up(depth, 4);
3805 
3806 	nfp_intro(nfp_prog);
3807 	if (nfp_prog->error)
3808 		return nfp_prog->error;
3809 
3810 	list_for_each_entry(meta, &nfp_prog->insns, l) {
3811 		instr_cb_t cb = instr_cb[meta->insn.code];
3812 
3813 		meta->off = nfp_prog_current_offset(nfp_prog);
3814 
3815 		if (nfp_is_subprog_start(meta)) {
3816 			nfp_start_subprog(nfp_prog, meta);
3817 			if (nfp_prog->error)
3818 				return nfp_prog->error;
3819 		}
3820 
3821 		if (meta->flags & FLAG_INSN_SKIP_MASK) {
3822 			nfp_prog->n_translated++;
3823 			continue;
3824 		}
3825 
3826 		if (nfp_meta_has_prev(nfp_prog, meta) &&
3827 		    nfp_meta_prev(meta)->double_cb)
3828 			cb = nfp_meta_prev(meta)->double_cb;
3829 		if (!cb)
3830 			return -ENOENT;
3831 		err = cb(nfp_prog, meta);
3832 		if (err)
3833 			return err;
3834 		if (nfp_prog->error)
3835 			return nfp_prog->error;
3836 
3837 		nfp_prog->n_translated++;
3838 	}
3839 
3840 	nfp_prog->last_bpf_off = nfp_prog_current_offset(nfp_prog) - 1;
3841 
3842 	nfp_outro(nfp_prog);
3843 	if (nfp_prog->error)
3844 		return nfp_prog->error;
3845 
3846 	wrp_nops(nfp_prog, NFP_USTORE_PREFETCH_WINDOW);
3847 	if (nfp_prog->error)
3848 		return nfp_prog->error;
3849 
3850 	return nfp_fixup_branches(nfp_prog);
3851 }
3852 
3853 /* --- Optimizations --- */
3854 static void nfp_bpf_opt_reg_init(struct nfp_prog *nfp_prog)
3855 {
3856 	struct nfp_insn_meta *meta;
3857 
3858 	list_for_each_entry(meta, &nfp_prog->insns, l) {
3859 		struct bpf_insn insn = meta->insn;
3860 
3861 		/* Programs converted from cBPF start with register xoring */
3862 		if (insn.code == (BPF_ALU64 | BPF_XOR | BPF_X) &&
3863 		    insn.src_reg == insn.dst_reg)
3864 			continue;
3865 
3866 		/* Programs start with R6 = R1 but we ignore the skb pointer */
3867 		if (insn.code == (BPF_ALU64 | BPF_MOV | BPF_X) &&
3868 		    insn.src_reg == 1 && insn.dst_reg == 6)
3869 			meta->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT;
3870 
3871 		/* Return as soon as something doesn't match */
3872 		if (!(meta->flags & FLAG_INSN_SKIP_MASK))
3873 			return;
3874 	}
3875 }
3876 
3877 /* abs(insn.imm) will fit better into unrestricted reg immediate -
3878  * convert add/sub of a negative number into a sub/add of a positive one.
3879  */
3880 static void nfp_bpf_opt_neg_add_sub(struct nfp_prog *nfp_prog)
3881 {
3882 	struct nfp_insn_meta *meta;
3883 
3884 	list_for_each_entry(meta, &nfp_prog->insns, l) {
3885 		struct bpf_insn insn = meta->insn;
3886 
3887 		if (meta->flags & FLAG_INSN_SKIP_MASK)
3888 			continue;
3889 
3890 		if (!is_mbpf_alu(meta) && !is_mbpf_jmp(meta))
3891 			continue;
3892 		if (BPF_SRC(insn.code) != BPF_K)
3893 			continue;
3894 		if (insn.imm >= 0)
3895 			continue;
3896 
3897 		if (is_mbpf_jmp(meta)) {
3898 			switch (BPF_OP(insn.code)) {
3899 			case BPF_JGE:
3900 			case BPF_JSGE:
3901 			case BPF_JLT:
3902 			case BPF_JSLT:
3903 				meta->jump_neg_op = true;
3904 				break;
3905 			default:
3906 				continue;
3907 			}
3908 		} else {
3909 			if (BPF_OP(insn.code) == BPF_ADD)
3910 				insn.code = BPF_CLASS(insn.code) | BPF_SUB;
3911 			else if (BPF_OP(insn.code) == BPF_SUB)
3912 				insn.code = BPF_CLASS(insn.code) | BPF_ADD;
3913 			else
3914 				continue;
3915 
3916 			meta->insn.code = insn.code | BPF_K;
3917 		}
3918 
3919 		meta->insn.imm = -insn.imm;
3920 	}
3921 }
3922 
3923 /* Remove masking after load since our load guarantees this is not needed */
3924 static void nfp_bpf_opt_ld_mask(struct nfp_prog *nfp_prog)
3925 {
3926 	struct nfp_insn_meta *meta1, *meta2;
3927 	const s32 exp_mask[] = {
3928 		[BPF_B] = 0x000000ffU,
3929 		[BPF_H] = 0x0000ffffU,
3930 		[BPF_W] = 0xffffffffU,
3931 	};
3932 
3933 	nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
3934 		struct bpf_insn insn, next;
3935 
3936 		insn = meta1->insn;
3937 		next = meta2->insn;
3938 
3939 		if (BPF_CLASS(insn.code) != BPF_LD)
3940 			continue;
3941 		if (BPF_MODE(insn.code) != BPF_ABS &&
3942 		    BPF_MODE(insn.code) != BPF_IND)
3943 			continue;
3944 
3945 		if (next.code != (BPF_ALU64 | BPF_AND | BPF_K))
3946 			continue;
3947 
3948 		if (!exp_mask[BPF_SIZE(insn.code)])
3949 			continue;
3950 		if (exp_mask[BPF_SIZE(insn.code)] != next.imm)
3951 			continue;
3952 
3953 		if (next.src_reg || next.dst_reg)
3954 			continue;
3955 
3956 		if (meta2->flags & FLAG_INSN_IS_JUMP_DST)
3957 			continue;
3958 
3959 		meta2->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT;
3960 	}
3961 }
3962 
3963 static void nfp_bpf_opt_ld_shift(struct nfp_prog *nfp_prog)
3964 {
3965 	struct nfp_insn_meta *meta1, *meta2, *meta3;
3966 
3967 	nfp_for_each_insn_walk3(nfp_prog, meta1, meta2, meta3) {
3968 		struct bpf_insn insn, next1, next2;
3969 
3970 		insn = meta1->insn;
3971 		next1 = meta2->insn;
3972 		next2 = meta3->insn;
3973 
3974 		if (BPF_CLASS(insn.code) != BPF_LD)
3975 			continue;
3976 		if (BPF_MODE(insn.code) != BPF_ABS &&
3977 		    BPF_MODE(insn.code) != BPF_IND)
3978 			continue;
3979 		if (BPF_SIZE(insn.code) != BPF_W)
3980 			continue;
3981 
3982 		if (!(next1.code == (BPF_LSH | BPF_K | BPF_ALU64) &&
3983 		      next2.code == (BPF_RSH | BPF_K | BPF_ALU64)) &&
3984 		    !(next1.code == (BPF_RSH | BPF_K | BPF_ALU64) &&
3985 		      next2.code == (BPF_LSH | BPF_K | BPF_ALU64)))
3986 			continue;
3987 
3988 		if (next1.src_reg || next1.dst_reg ||
3989 		    next2.src_reg || next2.dst_reg)
3990 			continue;
3991 
3992 		if (next1.imm != 0x20 || next2.imm != 0x20)
3993 			continue;
3994 
3995 		if (meta2->flags & FLAG_INSN_IS_JUMP_DST ||
3996 		    meta3->flags & FLAG_INSN_IS_JUMP_DST)
3997 			continue;
3998 
3999 		meta2->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT;
4000 		meta3->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT;
4001 	}
4002 }
4003 
4004 /* load/store pair that forms memory copy sould look like the following:
4005  *
4006  *   ld_width R, [addr_src + offset_src]
4007  *   st_width [addr_dest + offset_dest], R
4008  *
4009  * The destination register of load and source register of store should
4010  * be the same, load and store should also perform at the same width.
4011  * If either of addr_src or addr_dest is stack pointer, we don't do the
4012  * CPP optimization as stack is modelled by registers on NFP.
4013  */
4014 static bool
4015 curr_pair_is_memcpy(struct nfp_insn_meta *ld_meta,
4016 		    struct nfp_insn_meta *st_meta)
4017 {
4018 	struct bpf_insn *ld = &ld_meta->insn;
4019 	struct bpf_insn *st = &st_meta->insn;
4020 
4021 	if (!is_mbpf_load(ld_meta) || !is_mbpf_store(st_meta))
4022 		return false;
4023 
4024 	if (ld_meta->ptr.type != PTR_TO_PACKET &&
4025 	    ld_meta->ptr.type != PTR_TO_MAP_VALUE)
4026 		return false;
4027 
4028 	if (st_meta->ptr.type != PTR_TO_PACKET)
4029 		return false;
4030 
4031 	if (BPF_SIZE(ld->code) != BPF_SIZE(st->code))
4032 		return false;
4033 
4034 	if (ld->dst_reg != st->src_reg)
4035 		return false;
4036 
4037 	/* There is jump to the store insn in this pair. */
4038 	if (st_meta->flags & FLAG_INSN_IS_JUMP_DST)
4039 		return false;
4040 
4041 	return true;
4042 }
4043 
4044 /* Currently, we only support chaining load/store pairs if:
4045  *
4046  *  - Their address base registers are the same.
4047  *  - Their address offsets are in the same order.
4048  *  - They operate at the same memory width.
4049  *  - There is no jump into the middle of them.
4050  */
4051 static bool
4052 curr_pair_chain_with_previous(struct nfp_insn_meta *ld_meta,
4053 			      struct nfp_insn_meta *st_meta,
4054 			      struct bpf_insn *prev_ld,
4055 			      struct bpf_insn *prev_st)
4056 {
4057 	u8 prev_size, curr_size, prev_ld_base, prev_st_base, prev_ld_dst;
4058 	struct bpf_insn *ld = &ld_meta->insn;
4059 	struct bpf_insn *st = &st_meta->insn;
4060 	s16 prev_ld_off, prev_st_off;
4061 
4062 	/* This pair is the start pair. */
4063 	if (!prev_ld)
4064 		return true;
4065 
4066 	prev_size = BPF_LDST_BYTES(prev_ld);
4067 	curr_size = BPF_LDST_BYTES(ld);
4068 	prev_ld_base = prev_ld->src_reg;
4069 	prev_st_base = prev_st->dst_reg;
4070 	prev_ld_dst = prev_ld->dst_reg;
4071 	prev_ld_off = prev_ld->off;
4072 	prev_st_off = prev_st->off;
4073 
4074 	if (ld->dst_reg != prev_ld_dst)
4075 		return false;
4076 
4077 	if (ld->src_reg != prev_ld_base || st->dst_reg != prev_st_base)
4078 		return false;
4079 
4080 	if (curr_size != prev_size)
4081 		return false;
4082 
4083 	/* There is jump to the head of this pair. */
4084 	if (ld_meta->flags & FLAG_INSN_IS_JUMP_DST)
4085 		return false;
4086 
4087 	/* Both in ascending order. */
4088 	if (prev_ld_off + prev_size == ld->off &&
4089 	    prev_st_off + prev_size == st->off)
4090 		return true;
4091 
4092 	/* Both in descending order. */
4093 	if (ld->off + curr_size == prev_ld_off &&
4094 	    st->off + curr_size == prev_st_off)
4095 		return true;
4096 
4097 	return false;
4098 }
4099 
4100 /* Return TRUE if cross memory access happens. Cross memory access means
4101  * store area is overlapping with load area that a later load might load
4102  * the value from previous store, for this case we can't treat the sequence
4103  * as an memory copy.
4104  */
4105 static bool
4106 cross_mem_access(struct bpf_insn *ld, struct nfp_insn_meta *head_ld_meta,
4107 		 struct nfp_insn_meta *head_st_meta)
4108 {
4109 	s16 head_ld_off, head_st_off, ld_off;
4110 
4111 	/* Different pointer types does not overlap. */
4112 	if (head_ld_meta->ptr.type != head_st_meta->ptr.type)
4113 		return false;
4114 
4115 	/* load and store are both PTR_TO_PACKET, check ID info.  */
4116 	if (head_ld_meta->ptr.id != head_st_meta->ptr.id)
4117 		return true;
4118 
4119 	/* Canonicalize the offsets. Turn all of them against the original
4120 	 * base register.
4121 	 */
4122 	head_ld_off = head_ld_meta->insn.off + head_ld_meta->ptr.off;
4123 	head_st_off = head_st_meta->insn.off + head_st_meta->ptr.off;
4124 	ld_off = ld->off + head_ld_meta->ptr.off;
4125 
4126 	/* Ascending order cross. */
4127 	if (ld_off > head_ld_off &&
4128 	    head_ld_off < head_st_off && ld_off >= head_st_off)
4129 		return true;
4130 
4131 	/* Descending order cross. */
4132 	if (ld_off < head_ld_off &&
4133 	    head_ld_off > head_st_off && ld_off <= head_st_off)
4134 		return true;
4135 
4136 	return false;
4137 }
4138 
4139 /* This pass try to identify the following instructoin sequences.
4140  *
4141  *   load R, [regA + offA]
4142  *   store [regB + offB], R
4143  *   load R, [regA + offA + const_imm_A]
4144  *   store [regB + offB + const_imm_A], R
4145  *   load R, [regA + offA + 2 * const_imm_A]
4146  *   store [regB + offB + 2 * const_imm_A], R
4147  *   ...
4148  *
4149  * Above sequence is typically generated by compiler when lowering
4150  * memcpy. NFP prefer using CPP instructions to accelerate it.
4151  */
4152 static void nfp_bpf_opt_ldst_gather(struct nfp_prog *nfp_prog)
4153 {
4154 	struct nfp_insn_meta *head_ld_meta = NULL;
4155 	struct nfp_insn_meta *head_st_meta = NULL;
4156 	struct nfp_insn_meta *meta1, *meta2;
4157 	struct bpf_insn *prev_ld = NULL;
4158 	struct bpf_insn *prev_st = NULL;
4159 	u8 count = 0;
4160 
4161 	nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
4162 		struct bpf_insn *ld = &meta1->insn;
4163 		struct bpf_insn *st = &meta2->insn;
4164 
4165 		/* Reset record status if any of the following if true:
4166 		 *   - The current insn pair is not load/store.
4167 		 *   - The load/store pair doesn't chain with previous one.
4168 		 *   - The chained load/store pair crossed with previous pair.
4169 		 *   - The chained load/store pair has a total size of memory
4170 		 *     copy beyond 128 bytes which is the maximum length a
4171 		 *     single NFP CPP command can transfer.
4172 		 */
4173 		if (!curr_pair_is_memcpy(meta1, meta2) ||
4174 		    !curr_pair_chain_with_previous(meta1, meta2, prev_ld,
4175 						   prev_st) ||
4176 		    (head_ld_meta && (cross_mem_access(ld, head_ld_meta,
4177 						       head_st_meta) ||
4178 				      head_ld_meta->ldst_gather_len >= 128))) {
4179 			if (!count)
4180 				continue;
4181 
4182 			if (count > 1) {
4183 				s16 prev_ld_off = prev_ld->off;
4184 				s16 prev_st_off = prev_st->off;
4185 				s16 head_ld_off = head_ld_meta->insn.off;
4186 
4187 				if (prev_ld_off < head_ld_off) {
4188 					head_ld_meta->insn.off = prev_ld_off;
4189 					head_st_meta->insn.off = prev_st_off;
4190 					head_ld_meta->ldst_gather_len =
4191 						-head_ld_meta->ldst_gather_len;
4192 				}
4193 
4194 				head_ld_meta->paired_st = &head_st_meta->insn;
4195 				head_st_meta->flags |=
4196 					FLAG_INSN_SKIP_PREC_DEPENDENT;
4197 			} else {
4198 				head_ld_meta->ldst_gather_len = 0;
4199 			}
4200 
4201 			/* If the chain is ended by an load/store pair then this
4202 			 * could serve as the new head of the the next chain.
4203 			 */
4204 			if (curr_pair_is_memcpy(meta1, meta2)) {
4205 				head_ld_meta = meta1;
4206 				head_st_meta = meta2;
4207 				head_ld_meta->ldst_gather_len =
4208 					BPF_LDST_BYTES(ld);
4209 				meta1 = nfp_meta_next(meta1);
4210 				meta2 = nfp_meta_next(meta2);
4211 				prev_ld = ld;
4212 				prev_st = st;
4213 				count = 1;
4214 			} else {
4215 				head_ld_meta = NULL;
4216 				head_st_meta = NULL;
4217 				prev_ld = NULL;
4218 				prev_st = NULL;
4219 				count = 0;
4220 			}
4221 
4222 			continue;
4223 		}
4224 
4225 		if (!head_ld_meta) {
4226 			head_ld_meta = meta1;
4227 			head_st_meta = meta2;
4228 		} else {
4229 			meta1->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT;
4230 			meta2->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT;
4231 		}
4232 
4233 		head_ld_meta->ldst_gather_len += BPF_LDST_BYTES(ld);
4234 		meta1 = nfp_meta_next(meta1);
4235 		meta2 = nfp_meta_next(meta2);
4236 		prev_ld = ld;
4237 		prev_st = st;
4238 		count++;
4239 	}
4240 }
4241 
4242 static void nfp_bpf_opt_pkt_cache(struct nfp_prog *nfp_prog)
4243 {
4244 	struct nfp_insn_meta *meta, *range_node = NULL;
4245 	s16 range_start = 0, range_end = 0;
4246 	bool cache_avail = false;
4247 	struct bpf_insn *insn;
4248 	s32 range_ptr_off = 0;
4249 	u32 range_ptr_id = 0;
4250 
4251 	list_for_each_entry(meta, &nfp_prog->insns, l) {
4252 		if (meta->flags & FLAG_INSN_IS_JUMP_DST)
4253 			cache_avail = false;
4254 
4255 		if (meta->flags & FLAG_INSN_SKIP_MASK)
4256 			continue;
4257 
4258 		insn = &meta->insn;
4259 
4260 		if (is_mbpf_store_pkt(meta) ||
4261 		    insn->code == (BPF_JMP | BPF_CALL) ||
4262 		    is_mbpf_classic_store_pkt(meta) ||
4263 		    is_mbpf_classic_load(meta)) {
4264 			cache_avail = false;
4265 			continue;
4266 		}
4267 
4268 		if (!is_mbpf_load(meta))
4269 			continue;
4270 
4271 		if (meta->ptr.type != PTR_TO_PACKET || meta->ldst_gather_len) {
4272 			cache_avail = false;
4273 			continue;
4274 		}
4275 
4276 		if (!cache_avail) {
4277 			cache_avail = true;
4278 			if (range_node)
4279 				goto end_current_then_start_new;
4280 			goto start_new;
4281 		}
4282 
4283 		/* Check ID to make sure two reads share the same
4284 		 * variable offset against PTR_TO_PACKET, and check OFF
4285 		 * to make sure they also share the same constant
4286 		 * offset.
4287 		 *
4288 		 * OFFs don't really need to be the same, because they
4289 		 * are the constant offsets against PTR_TO_PACKET, so
4290 		 * for different OFFs, we could canonicalize them to
4291 		 * offsets against original packet pointer. We don't
4292 		 * support this.
4293 		 */
4294 		if (meta->ptr.id == range_ptr_id &&
4295 		    meta->ptr.off == range_ptr_off) {
4296 			s16 new_start = range_start;
4297 			s16 end, off = insn->off;
4298 			s16 new_end = range_end;
4299 			bool changed = false;
4300 
4301 			if (off < range_start) {
4302 				new_start = off;
4303 				changed = true;
4304 			}
4305 
4306 			end = off + BPF_LDST_BYTES(insn);
4307 			if (end > range_end) {
4308 				new_end = end;
4309 				changed = true;
4310 			}
4311 
4312 			if (!changed)
4313 				continue;
4314 
4315 			if (new_end - new_start <= 64) {
4316 				/* Install new range. */
4317 				range_start = new_start;
4318 				range_end = new_end;
4319 				continue;
4320 			}
4321 		}
4322 
4323 end_current_then_start_new:
4324 		range_node->pkt_cache.range_start = range_start;
4325 		range_node->pkt_cache.range_end = range_end;
4326 start_new:
4327 		range_node = meta;
4328 		range_node->pkt_cache.do_init = true;
4329 		range_ptr_id = range_node->ptr.id;
4330 		range_ptr_off = range_node->ptr.off;
4331 		range_start = insn->off;
4332 		range_end = insn->off + BPF_LDST_BYTES(insn);
4333 	}
4334 
4335 	if (range_node) {
4336 		range_node->pkt_cache.range_start = range_start;
4337 		range_node->pkt_cache.range_end = range_end;
4338 	}
4339 
4340 	list_for_each_entry(meta, &nfp_prog->insns, l) {
4341 		if (meta->flags & FLAG_INSN_SKIP_MASK)
4342 			continue;
4343 
4344 		if (is_mbpf_load_pkt(meta) && !meta->ldst_gather_len) {
4345 			if (meta->pkt_cache.do_init) {
4346 				range_start = meta->pkt_cache.range_start;
4347 				range_end = meta->pkt_cache.range_end;
4348 			} else {
4349 				meta->pkt_cache.range_start = range_start;
4350 				meta->pkt_cache.range_end = range_end;
4351 			}
4352 		}
4353 	}
4354 }
4355 
4356 static int nfp_bpf_optimize(struct nfp_prog *nfp_prog)
4357 {
4358 	nfp_bpf_opt_reg_init(nfp_prog);
4359 
4360 	nfp_bpf_opt_neg_add_sub(nfp_prog);
4361 	nfp_bpf_opt_ld_mask(nfp_prog);
4362 	nfp_bpf_opt_ld_shift(nfp_prog);
4363 	nfp_bpf_opt_ldst_gather(nfp_prog);
4364 	nfp_bpf_opt_pkt_cache(nfp_prog);
4365 
4366 	return 0;
4367 }
4368 
4369 static int nfp_bpf_replace_map_ptrs(struct nfp_prog *nfp_prog)
4370 {
4371 	struct nfp_insn_meta *meta1, *meta2;
4372 	struct nfp_bpf_map *nfp_map;
4373 	struct bpf_map *map;
4374 	u32 id;
4375 
4376 	nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
4377 		if (meta1->flags & FLAG_INSN_SKIP_MASK ||
4378 		    meta2->flags & FLAG_INSN_SKIP_MASK)
4379 			continue;
4380 
4381 		if (meta1->insn.code != (BPF_LD | BPF_IMM | BPF_DW) ||
4382 		    meta1->insn.src_reg != BPF_PSEUDO_MAP_FD)
4383 			continue;
4384 
4385 		map = (void *)(unsigned long)((u32)meta1->insn.imm |
4386 					      (u64)meta2->insn.imm << 32);
4387 		if (bpf_map_offload_neutral(map)) {
4388 			id = map->id;
4389 		} else {
4390 			nfp_map = map_to_offmap(map)->dev_priv;
4391 			id = nfp_map->tid;
4392 		}
4393 
4394 		meta1->insn.imm = id;
4395 		meta2->insn.imm = 0;
4396 	}
4397 
4398 	return 0;
4399 }
4400 
4401 static int nfp_bpf_ustore_calc(u64 *prog, unsigned int len)
4402 {
4403 	__le64 *ustore = (__force __le64 *)prog;
4404 	int i;
4405 
4406 	for (i = 0; i < len; i++) {
4407 		int err;
4408 
4409 		err = nfp_ustore_check_valid_no_ecc(prog[i]);
4410 		if (err)
4411 			return err;
4412 
4413 		ustore[i] = cpu_to_le64(nfp_ustore_calc_ecc_insn(prog[i]));
4414 	}
4415 
4416 	return 0;
4417 }
4418 
4419 static void nfp_bpf_prog_trim(struct nfp_prog *nfp_prog)
4420 {
4421 	void *prog;
4422 
4423 	prog = kvmalloc_array(nfp_prog->prog_len, sizeof(u64), GFP_KERNEL);
4424 	if (!prog)
4425 		return;
4426 
4427 	nfp_prog->__prog_alloc_len = nfp_prog->prog_len * sizeof(u64);
4428 	memcpy(prog, nfp_prog->prog, nfp_prog->__prog_alloc_len);
4429 	kvfree(nfp_prog->prog);
4430 	nfp_prog->prog = prog;
4431 }
4432 
4433 int nfp_bpf_jit(struct nfp_prog *nfp_prog)
4434 {
4435 	int ret;
4436 
4437 	ret = nfp_bpf_replace_map_ptrs(nfp_prog);
4438 	if (ret)
4439 		return ret;
4440 
4441 	ret = nfp_bpf_optimize(nfp_prog);
4442 	if (ret)
4443 		return ret;
4444 
4445 	ret = nfp_translate(nfp_prog);
4446 	if (ret) {
4447 		pr_err("Translation failed with error %d (translated: %u)\n",
4448 		       ret, nfp_prog->n_translated);
4449 		return -EINVAL;
4450 	}
4451 
4452 	nfp_bpf_prog_trim(nfp_prog);
4453 
4454 	return ret;
4455 }
4456 
4457 void nfp_bpf_jit_prepare(struct nfp_prog *nfp_prog)
4458 {
4459 	struct nfp_insn_meta *meta;
4460 
4461 	/* Another pass to record jump information. */
4462 	list_for_each_entry(meta, &nfp_prog->insns, l) {
4463 		struct nfp_insn_meta *dst_meta;
4464 		u64 code = meta->insn.code;
4465 		unsigned int dst_idx;
4466 		bool pseudo_call;
4467 
4468 		if (!is_mbpf_jmp(meta))
4469 			continue;
4470 		if (BPF_OP(code) == BPF_EXIT)
4471 			continue;
4472 		if (is_mbpf_helper_call(meta))
4473 			continue;
4474 
4475 		/* If opcode is BPF_CALL at this point, this can only be a
4476 		 * BPF-to-BPF call (a.k.a pseudo call).
4477 		 */
4478 		pseudo_call = BPF_OP(code) == BPF_CALL;
4479 
4480 		if (pseudo_call)
4481 			dst_idx = meta->n + 1 + meta->insn.imm;
4482 		else
4483 			dst_idx = meta->n + 1 + meta->insn.off;
4484 
4485 		dst_meta = nfp_bpf_goto_meta(nfp_prog, meta, dst_idx);
4486 
4487 		if (pseudo_call)
4488 			dst_meta->flags |= FLAG_INSN_IS_SUBPROG_START;
4489 
4490 		dst_meta->flags |= FLAG_INSN_IS_JUMP_DST;
4491 		meta->jmp_dst = dst_meta;
4492 	}
4493 }
4494 
4495 bool nfp_bpf_supported_opcode(u8 code)
4496 {
4497 	return !!instr_cb[code];
4498 }
4499 
4500 void *nfp_bpf_relo_for_vnic(struct nfp_prog *nfp_prog, struct nfp_bpf_vnic *bv)
4501 {
4502 	unsigned int i;
4503 	u64 *prog;
4504 	int err;
4505 
4506 	prog = kmemdup(nfp_prog->prog, nfp_prog->prog_len * sizeof(u64),
4507 		       GFP_KERNEL);
4508 	if (!prog)
4509 		return ERR_PTR(-ENOMEM);
4510 
4511 	for (i = 0; i < nfp_prog->prog_len; i++) {
4512 		enum nfp_relo_type special;
4513 		u32 val;
4514 		u16 off;
4515 
4516 		special = FIELD_GET(OP_RELO_TYPE, prog[i]);
4517 		switch (special) {
4518 		case RELO_NONE:
4519 			continue;
4520 		case RELO_BR_REL:
4521 			br_add_offset(&prog[i], bv->start_off);
4522 			break;
4523 		case RELO_BR_GO_OUT:
4524 			br_set_offset(&prog[i],
4525 				      nfp_prog->tgt_out + bv->start_off);
4526 			break;
4527 		case RELO_BR_GO_ABORT:
4528 			br_set_offset(&prog[i],
4529 				      nfp_prog->tgt_abort + bv->start_off);
4530 			break;
4531 		case RELO_BR_GO_CALL_PUSH_REGS:
4532 			if (!nfp_prog->tgt_call_push_regs) {
4533 				pr_err("BUG: failed to detect subprogram registers needs\n");
4534 				err = -EINVAL;
4535 				goto err_free_prog;
4536 			}
4537 			off = nfp_prog->tgt_call_push_regs + bv->start_off;
4538 			br_set_offset(&prog[i], off);
4539 			break;
4540 		case RELO_BR_GO_CALL_POP_REGS:
4541 			if (!nfp_prog->tgt_call_pop_regs) {
4542 				pr_err("BUG: failed to detect subprogram registers needs\n");
4543 				err = -EINVAL;
4544 				goto err_free_prog;
4545 			}
4546 			off = nfp_prog->tgt_call_pop_regs + bv->start_off;
4547 			br_set_offset(&prog[i], off);
4548 			break;
4549 		case RELO_BR_NEXT_PKT:
4550 			br_set_offset(&prog[i], bv->tgt_done);
4551 			break;
4552 		case RELO_BR_HELPER:
4553 			val = br_get_offset(prog[i]);
4554 			val -= BR_OFF_RELO;
4555 			switch (val) {
4556 			case BPF_FUNC_map_lookup_elem:
4557 				val = nfp_prog->bpf->helpers.map_lookup;
4558 				break;
4559 			case BPF_FUNC_map_update_elem:
4560 				val = nfp_prog->bpf->helpers.map_update;
4561 				break;
4562 			case BPF_FUNC_map_delete_elem:
4563 				val = nfp_prog->bpf->helpers.map_delete;
4564 				break;
4565 			case BPF_FUNC_perf_event_output:
4566 				val = nfp_prog->bpf->helpers.perf_event_output;
4567 				break;
4568 			default:
4569 				pr_err("relocation of unknown helper %d\n",
4570 				       val);
4571 				err = -EINVAL;
4572 				goto err_free_prog;
4573 			}
4574 			br_set_offset(&prog[i], val);
4575 			break;
4576 		case RELO_IMMED_REL:
4577 			immed_add_value(&prog[i], bv->start_off);
4578 			break;
4579 		}
4580 
4581 		prog[i] &= ~OP_RELO_TYPE;
4582 	}
4583 
4584 	err = nfp_bpf_ustore_calc(prog, nfp_prog->prog_len);
4585 	if (err)
4586 		goto err_free_prog;
4587 
4588 	return prog;
4589 
4590 err_free_prog:
4591 	kfree(prog);
4592 	return ERR_PTR(err);
4593 }
4594