xref: /linux/drivers/net/ethernet/qlogic/qed/qed_cxt.c (revision f86fd32d)
1 /* QLogic qed NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <linux/types.h>
34 #include <linux/bitops.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/errno.h>
37 #include <linux/kernel.h>
38 #include <linux/list.h>
39 #include <linux/log2.h>
40 #include <linux/pci.h>
41 #include <linux/slab.h>
42 #include <linux/string.h>
43 #include "qed.h"
44 #include "qed_cxt.h"
45 #include "qed_dev_api.h"
46 #include "qed_hsi.h"
47 #include "qed_hw.h"
48 #include "qed_init_ops.h"
49 #include "qed_rdma.h"
50 #include "qed_reg_addr.h"
51 #include "qed_sriov.h"
52 
53 /* QM constants */
54 #define QM_PQ_ELEMENT_SIZE	4 /* in bytes */
55 
56 /* Doorbell-Queue constants */
57 #define DQ_RANGE_SHIFT		4
58 #define DQ_RANGE_ALIGN		BIT(DQ_RANGE_SHIFT)
59 
60 /* Searcher constants */
61 #define SRC_MIN_NUM_ELEMS 256
62 
63 /* Timers constants */
64 #define TM_SHIFT        7
65 #define TM_ALIGN        BIT(TM_SHIFT)
66 #define TM_ELEM_SIZE    4
67 
68 #define ILT_DEFAULT_HW_P_SIZE	4
69 
70 #define ILT_PAGE_IN_BYTES(hw_p_size)	(1U << ((hw_p_size) + 12))
71 #define ILT_CFG_REG(cli, reg)	PSWRQ2_REG_ ## cli ## _ ## reg ## _RT_OFFSET
72 
73 /* ILT entry structure */
74 #define ILT_ENTRY_PHY_ADDR_MASK		(~0ULL >> 12)
75 #define ILT_ENTRY_PHY_ADDR_SHIFT	0
76 #define ILT_ENTRY_VALID_MASK		0x1ULL
77 #define ILT_ENTRY_VALID_SHIFT		52
78 #define ILT_ENTRY_IN_REGS		2
79 #define ILT_REG_SIZE_IN_BYTES		4
80 
81 /* connection context union */
82 union conn_context {
83 	struct e4_core_conn_context core_ctx;
84 	struct e4_eth_conn_context eth_ctx;
85 	struct e4_iscsi_conn_context iscsi_ctx;
86 	struct e4_fcoe_conn_context fcoe_ctx;
87 	struct e4_roce_conn_context roce_ctx;
88 };
89 
90 /* TYPE-0 task context - iSCSI, FCOE */
91 union type0_task_context {
92 	struct e4_iscsi_task_context iscsi_ctx;
93 	struct e4_fcoe_task_context fcoe_ctx;
94 };
95 
96 /* TYPE-1 task context - ROCE */
97 union type1_task_context {
98 	struct e4_rdma_task_context roce_ctx;
99 };
100 
101 struct src_ent {
102 	u8 opaque[56];
103 	u64 next;
104 };
105 
106 #define CDUT_SEG_ALIGNMET		3 /* in 4k chunks */
107 #define CDUT_SEG_ALIGNMET_IN_BYTES	BIT(CDUT_SEG_ALIGNMET + 12)
108 
109 #define CONN_CXT_SIZE(p_hwfn) \
110 	ALIGNED_TYPE_SIZE(union conn_context, p_hwfn)
111 
112 #define SRQ_CXT_SIZE (sizeof(struct rdma_srq_context))
113 
114 #define TYPE0_TASK_CXT_SIZE(p_hwfn) \
115 	ALIGNED_TYPE_SIZE(union type0_task_context, p_hwfn)
116 
117 /* Alignment is inherent to the type1_task_context structure */
118 #define TYPE1_TASK_CXT_SIZE(p_hwfn) sizeof(union type1_task_context)
119 
120 static bool src_proto(enum protocol_type type)
121 {
122 	return type == PROTOCOLID_ISCSI ||
123 	       type == PROTOCOLID_FCOE ||
124 	       type == PROTOCOLID_IWARP;
125 }
126 
127 static bool tm_cid_proto(enum protocol_type type)
128 {
129 	return type == PROTOCOLID_ISCSI ||
130 	       type == PROTOCOLID_FCOE ||
131 	       type == PROTOCOLID_ROCE ||
132 	       type == PROTOCOLID_IWARP;
133 }
134 
135 static bool tm_tid_proto(enum protocol_type type)
136 {
137 	return type == PROTOCOLID_FCOE;
138 }
139 
140 /* counts the iids for the CDU/CDUC ILT client configuration */
141 struct qed_cdu_iids {
142 	u32 pf_cids;
143 	u32 per_vf_cids;
144 };
145 
146 static void qed_cxt_cdu_iids(struct qed_cxt_mngr *p_mngr,
147 			     struct qed_cdu_iids *iids)
148 {
149 	u32 type;
150 
151 	for (type = 0; type < MAX_CONN_TYPES; type++) {
152 		iids->pf_cids += p_mngr->conn_cfg[type].cid_count;
153 		iids->per_vf_cids += p_mngr->conn_cfg[type].cids_per_vf;
154 	}
155 }
156 
157 /* counts the iids for the Searcher block configuration */
158 struct qed_src_iids {
159 	u32 pf_cids;
160 	u32 per_vf_cids;
161 };
162 
163 static void qed_cxt_src_iids(struct qed_cxt_mngr *p_mngr,
164 			     struct qed_src_iids *iids)
165 {
166 	u32 i;
167 
168 	for (i = 0; i < MAX_CONN_TYPES; i++) {
169 		if (!src_proto(i))
170 			continue;
171 
172 		iids->pf_cids += p_mngr->conn_cfg[i].cid_count;
173 		iids->per_vf_cids += p_mngr->conn_cfg[i].cids_per_vf;
174 	}
175 
176 	/* Add L2 filtering filters in addition */
177 	iids->pf_cids += p_mngr->arfs_count;
178 }
179 
180 /* counts the iids for the Timers block configuration */
181 struct qed_tm_iids {
182 	u32 pf_cids;
183 	u32 pf_tids[NUM_TASK_PF_SEGMENTS];	/* per segment */
184 	u32 pf_tids_total;
185 	u32 per_vf_cids;
186 	u32 per_vf_tids;
187 };
188 
189 static void qed_cxt_tm_iids(struct qed_hwfn *p_hwfn,
190 			    struct qed_cxt_mngr *p_mngr,
191 			    struct qed_tm_iids *iids)
192 {
193 	bool tm_vf_required = false;
194 	bool tm_required = false;
195 	int i, j;
196 
197 	/* Timers is a special case -> we don't count how many cids require
198 	 * timers but what's the max cid that will be used by the timer block.
199 	 * therefore we traverse in reverse order, and once we hit a protocol
200 	 * that requires the timers memory, we'll sum all the protocols up
201 	 * to that one.
202 	 */
203 	for (i = MAX_CONN_TYPES - 1; i >= 0; i--) {
204 		struct qed_conn_type_cfg *p_cfg = &p_mngr->conn_cfg[i];
205 
206 		if (tm_cid_proto(i) || tm_required) {
207 			if (p_cfg->cid_count)
208 				tm_required = true;
209 
210 			iids->pf_cids += p_cfg->cid_count;
211 		}
212 
213 		if (tm_cid_proto(i) || tm_vf_required) {
214 			if (p_cfg->cids_per_vf)
215 				tm_vf_required = true;
216 
217 			iids->per_vf_cids += p_cfg->cids_per_vf;
218 		}
219 
220 		if (tm_tid_proto(i)) {
221 			struct qed_tid_seg *segs = p_cfg->tid_seg;
222 
223 			/* for each segment there is at most one
224 			 * protocol for which count is not 0.
225 			 */
226 			for (j = 0; j < NUM_TASK_PF_SEGMENTS; j++)
227 				iids->pf_tids[j] += segs[j].count;
228 
229 			/* The last array elelment is for the VFs. As for PF
230 			 * segments there can be only one protocol for
231 			 * which this value is not 0.
232 			 */
233 			iids->per_vf_tids += segs[NUM_TASK_PF_SEGMENTS].count;
234 		}
235 	}
236 
237 	iids->pf_cids = roundup(iids->pf_cids, TM_ALIGN);
238 	iids->per_vf_cids = roundup(iids->per_vf_cids, TM_ALIGN);
239 	iids->per_vf_tids = roundup(iids->per_vf_tids, TM_ALIGN);
240 
241 	for (iids->pf_tids_total = 0, j = 0; j < NUM_TASK_PF_SEGMENTS; j++) {
242 		iids->pf_tids[j] = roundup(iids->pf_tids[j], TM_ALIGN);
243 		iids->pf_tids_total += iids->pf_tids[j];
244 	}
245 }
246 
247 static void qed_cxt_qm_iids(struct qed_hwfn *p_hwfn,
248 			    struct qed_qm_iids *iids)
249 {
250 	struct qed_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
251 	struct qed_tid_seg *segs;
252 	u32 vf_cids = 0, type, j;
253 	u32 vf_tids = 0;
254 
255 	for (type = 0; type < MAX_CONN_TYPES; type++) {
256 		iids->cids += p_mngr->conn_cfg[type].cid_count;
257 		vf_cids += p_mngr->conn_cfg[type].cids_per_vf;
258 
259 		segs = p_mngr->conn_cfg[type].tid_seg;
260 		/* for each segment there is at most one
261 		 * protocol for which count is not 0.
262 		 */
263 		for (j = 0; j < NUM_TASK_PF_SEGMENTS; j++)
264 			iids->tids += segs[j].count;
265 
266 		/* The last array elelment is for the VFs. As for PF
267 		 * segments there can be only one protocol for
268 		 * which this value is not 0.
269 		 */
270 		vf_tids += segs[NUM_TASK_PF_SEGMENTS].count;
271 	}
272 
273 	iids->vf_cids += vf_cids * p_mngr->vf_count;
274 	iids->tids += vf_tids * p_mngr->vf_count;
275 
276 	DP_VERBOSE(p_hwfn, QED_MSG_ILT,
277 		   "iids: CIDS %08x vf_cids %08x tids %08x vf_tids %08x\n",
278 		   iids->cids, iids->vf_cids, iids->tids, vf_tids);
279 }
280 
281 static struct qed_tid_seg *qed_cxt_tid_seg_info(struct qed_hwfn *p_hwfn,
282 						u32 seg)
283 {
284 	struct qed_cxt_mngr *p_cfg = p_hwfn->p_cxt_mngr;
285 	u32 i;
286 
287 	/* Find the protocol with tid count > 0 for this segment.
288 	 * Note: there can only be one and this is already validated.
289 	 */
290 	for (i = 0; i < MAX_CONN_TYPES; i++)
291 		if (p_cfg->conn_cfg[i].tid_seg[seg].count)
292 			return &p_cfg->conn_cfg[i].tid_seg[seg];
293 	return NULL;
294 }
295 
296 static void qed_cxt_set_srq_count(struct qed_hwfn *p_hwfn, u32 num_srqs)
297 {
298 	struct qed_cxt_mngr *p_mgr = p_hwfn->p_cxt_mngr;
299 
300 	p_mgr->srq_count = num_srqs;
301 }
302 
303 u32 qed_cxt_get_srq_count(struct qed_hwfn *p_hwfn)
304 {
305 	struct qed_cxt_mngr *p_mgr = p_hwfn->p_cxt_mngr;
306 
307 	return p_mgr->srq_count;
308 }
309 
310 /* set the iids count per protocol */
311 static void qed_cxt_set_proto_cid_count(struct qed_hwfn *p_hwfn,
312 					enum protocol_type type,
313 					u32 cid_count, u32 vf_cid_cnt)
314 {
315 	struct qed_cxt_mngr *p_mgr = p_hwfn->p_cxt_mngr;
316 	struct qed_conn_type_cfg *p_conn = &p_mgr->conn_cfg[type];
317 
318 	p_conn->cid_count = roundup(cid_count, DQ_RANGE_ALIGN);
319 	p_conn->cids_per_vf = roundup(vf_cid_cnt, DQ_RANGE_ALIGN);
320 
321 	if (type == PROTOCOLID_ROCE) {
322 		u32 page_sz = p_mgr->clients[ILT_CLI_CDUC].p_size.val;
323 		u32 cxt_size = CONN_CXT_SIZE(p_hwfn);
324 		u32 elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size;
325 		u32 align = elems_per_page * DQ_RANGE_ALIGN;
326 
327 		p_conn->cid_count = roundup(p_conn->cid_count, align);
328 	}
329 }
330 
331 u32 qed_cxt_get_proto_cid_count(struct qed_hwfn *p_hwfn,
332 				enum protocol_type type, u32 *vf_cid)
333 {
334 	if (vf_cid)
335 		*vf_cid = p_hwfn->p_cxt_mngr->conn_cfg[type].cids_per_vf;
336 
337 	return p_hwfn->p_cxt_mngr->conn_cfg[type].cid_count;
338 }
339 
340 u32 qed_cxt_get_proto_cid_start(struct qed_hwfn *p_hwfn,
341 				enum protocol_type type)
342 {
343 	return p_hwfn->p_cxt_mngr->acquired[type].start_cid;
344 }
345 
346 u32 qed_cxt_get_proto_tid_count(struct qed_hwfn *p_hwfn,
347 				enum protocol_type type)
348 {
349 	u32 cnt = 0;
350 	int i;
351 
352 	for (i = 0; i < TASK_SEGMENTS; i++)
353 		cnt += p_hwfn->p_cxt_mngr->conn_cfg[type].tid_seg[i].count;
354 
355 	return cnt;
356 }
357 
358 static void qed_cxt_set_proto_tid_count(struct qed_hwfn *p_hwfn,
359 					enum protocol_type proto,
360 					u8 seg,
361 					u8 seg_type, u32 count, bool has_fl)
362 {
363 	struct qed_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
364 	struct qed_tid_seg *p_seg = &p_mngr->conn_cfg[proto].tid_seg[seg];
365 
366 	p_seg->count = count;
367 	p_seg->has_fl_mem = has_fl;
368 	p_seg->type = seg_type;
369 }
370 
371 static void qed_ilt_cli_blk_fill(struct qed_ilt_client_cfg *p_cli,
372 				 struct qed_ilt_cli_blk *p_blk,
373 				 u32 start_line, u32 total_size, u32 elem_size)
374 {
375 	u32 ilt_size = ILT_PAGE_IN_BYTES(p_cli->p_size.val);
376 
377 	/* verify thatits called only once for each block */
378 	if (p_blk->total_size)
379 		return;
380 
381 	p_blk->total_size = total_size;
382 	p_blk->real_size_in_page = 0;
383 	if (elem_size)
384 		p_blk->real_size_in_page = (ilt_size / elem_size) * elem_size;
385 	p_blk->start_line = start_line;
386 }
387 
388 static void qed_ilt_cli_adv_line(struct qed_hwfn *p_hwfn,
389 				 struct qed_ilt_client_cfg *p_cli,
390 				 struct qed_ilt_cli_blk *p_blk,
391 				 u32 *p_line, enum ilt_clients client_id)
392 {
393 	if (!p_blk->total_size)
394 		return;
395 
396 	if (!p_cli->active)
397 		p_cli->first.val = *p_line;
398 
399 	p_cli->active = true;
400 	*p_line += DIV_ROUND_UP(p_blk->total_size, p_blk->real_size_in_page);
401 	p_cli->last.val = *p_line - 1;
402 
403 	DP_VERBOSE(p_hwfn, QED_MSG_ILT,
404 		   "ILT[Client %d] - Lines: [%08x - %08x]. Block - Size %08x [Real %08x] Start line %d\n",
405 		   client_id, p_cli->first.val,
406 		   p_cli->last.val, p_blk->total_size,
407 		   p_blk->real_size_in_page, p_blk->start_line);
408 }
409 
410 static u32 qed_ilt_get_dynamic_line_cnt(struct qed_hwfn *p_hwfn,
411 					enum ilt_clients ilt_client)
412 {
413 	u32 cid_count = p_hwfn->p_cxt_mngr->conn_cfg[PROTOCOLID_ROCE].cid_count;
414 	struct qed_ilt_client_cfg *p_cli;
415 	u32 lines_to_skip = 0;
416 	u32 cxts_per_p;
417 
418 	if (ilt_client == ILT_CLI_CDUC) {
419 		p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC];
420 
421 		cxts_per_p = ILT_PAGE_IN_BYTES(p_cli->p_size.val) /
422 		    (u32) CONN_CXT_SIZE(p_hwfn);
423 
424 		lines_to_skip = cid_count / cxts_per_p;
425 	}
426 
427 	return lines_to_skip;
428 }
429 
430 static struct qed_ilt_client_cfg *qed_cxt_set_cli(struct qed_ilt_client_cfg
431 						  *p_cli)
432 {
433 	p_cli->active = false;
434 	p_cli->first.val = 0;
435 	p_cli->last.val = 0;
436 	return p_cli;
437 }
438 
439 static struct qed_ilt_cli_blk *qed_cxt_set_blk(struct qed_ilt_cli_blk *p_blk)
440 {
441 	p_blk->total_size = 0;
442 	return p_blk;
443 }
444 
445 int qed_cxt_cfg_ilt_compute(struct qed_hwfn *p_hwfn, u32 *line_count)
446 {
447 	struct qed_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
448 	u32 curr_line, total, i, task_size, line;
449 	struct qed_ilt_client_cfg *p_cli;
450 	struct qed_ilt_cli_blk *p_blk;
451 	struct qed_cdu_iids cdu_iids;
452 	struct qed_src_iids src_iids;
453 	struct qed_qm_iids qm_iids;
454 	struct qed_tm_iids tm_iids;
455 	struct qed_tid_seg *p_seg;
456 
457 	memset(&qm_iids, 0, sizeof(qm_iids));
458 	memset(&cdu_iids, 0, sizeof(cdu_iids));
459 	memset(&src_iids, 0, sizeof(src_iids));
460 	memset(&tm_iids, 0, sizeof(tm_iids));
461 
462 	p_mngr->pf_start_line = RESC_START(p_hwfn, QED_ILT);
463 
464 	DP_VERBOSE(p_hwfn, QED_MSG_ILT,
465 		   "hwfn [%d] - Set context manager starting line to be 0x%08x\n",
466 		   p_hwfn->my_id, p_hwfn->p_cxt_mngr->pf_start_line);
467 
468 	/* CDUC */
469 	p_cli = qed_cxt_set_cli(&p_mngr->clients[ILT_CLI_CDUC]);
470 
471 	curr_line = p_mngr->pf_start_line;
472 
473 	/* CDUC PF */
474 	p_cli->pf_total_lines = 0;
475 
476 	/* get the counters for the CDUC and QM clients  */
477 	qed_cxt_cdu_iids(p_mngr, &cdu_iids);
478 
479 	p_blk = qed_cxt_set_blk(&p_cli->pf_blks[CDUC_BLK]);
480 
481 	total = cdu_iids.pf_cids * CONN_CXT_SIZE(p_hwfn);
482 
483 	qed_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
484 			     total, CONN_CXT_SIZE(p_hwfn));
485 
486 	qed_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_CDUC);
487 	p_cli->pf_total_lines = curr_line - p_blk->start_line;
488 
489 	p_blk->dynamic_line_cnt = qed_ilt_get_dynamic_line_cnt(p_hwfn,
490 							       ILT_CLI_CDUC);
491 
492 	/* CDUC VF */
493 	p_blk = qed_cxt_set_blk(&p_cli->vf_blks[CDUC_BLK]);
494 	total = cdu_iids.per_vf_cids * CONN_CXT_SIZE(p_hwfn);
495 
496 	qed_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
497 			     total, CONN_CXT_SIZE(p_hwfn));
498 
499 	qed_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_CDUC);
500 	p_cli->vf_total_lines = curr_line - p_blk->start_line;
501 
502 	for (i = 1; i < p_mngr->vf_count; i++)
503 		qed_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
504 				     ILT_CLI_CDUC);
505 
506 	/* CDUT PF */
507 	p_cli = qed_cxt_set_cli(&p_mngr->clients[ILT_CLI_CDUT]);
508 	p_cli->first.val = curr_line;
509 
510 	/* first the 'working' task memory */
511 	for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
512 		p_seg = qed_cxt_tid_seg_info(p_hwfn, i);
513 		if (!p_seg || p_seg->count == 0)
514 			continue;
515 
516 		p_blk = qed_cxt_set_blk(&p_cli->pf_blks[CDUT_SEG_BLK(i)]);
517 		total = p_seg->count * p_mngr->task_type_size[p_seg->type];
518 		qed_ilt_cli_blk_fill(p_cli, p_blk, curr_line, total,
519 				     p_mngr->task_type_size[p_seg->type]);
520 
521 		qed_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
522 				     ILT_CLI_CDUT);
523 	}
524 
525 	/* next the 'init' task memory (forced load memory) */
526 	for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
527 		p_seg = qed_cxt_tid_seg_info(p_hwfn, i);
528 		if (!p_seg || p_seg->count == 0)
529 			continue;
530 
531 		p_blk =
532 		    qed_cxt_set_blk(&p_cli->pf_blks[CDUT_FL_SEG_BLK(i, PF)]);
533 
534 		if (!p_seg->has_fl_mem) {
535 			/* The segment is active (total size pf 'working'
536 			 * memory is > 0) but has no FL (forced-load, Init)
537 			 * memory. Thus:
538 			 *
539 			 * 1.   The total-size in the corrsponding FL block of
540 			 *      the ILT client is set to 0 - No ILT line are
541 			 *      provisioned and no ILT memory allocated.
542 			 *
543 			 * 2.   The start-line of said block is set to the
544 			 *      start line of the matching working memory
545 			 *      block in the ILT client. This is later used to
546 			 *      configure the CDU segment offset registers and
547 			 *      results in an FL command for TIDs of this
548 			 *      segement behaves as regular load commands
549 			 *      (loading TIDs from the working memory).
550 			 */
551 			line = p_cli->pf_blks[CDUT_SEG_BLK(i)].start_line;
552 
553 			qed_ilt_cli_blk_fill(p_cli, p_blk, line, 0, 0);
554 			continue;
555 		}
556 		total = p_seg->count * p_mngr->task_type_size[p_seg->type];
557 
558 		qed_ilt_cli_blk_fill(p_cli, p_blk,
559 				     curr_line, total,
560 				     p_mngr->task_type_size[p_seg->type]);
561 
562 		qed_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
563 				     ILT_CLI_CDUT);
564 	}
565 	p_cli->pf_total_lines = curr_line - p_cli->pf_blks[0].start_line;
566 
567 	/* CDUT VF */
568 	p_seg = qed_cxt_tid_seg_info(p_hwfn, TASK_SEGMENT_VF);
569 	if (p_seg && p_seg->count) {
570 		/* Stricly speaking we need to iterate over all VF
571 		 * task segment types, but a VF has only 1 segment
572 		 */
573 
574 		/* 'working' memory */
575 		total = p_seg->count * p_mngr->task_type_size[p_seg->type];
576 
577 		p_blk = qed_cxt_set_blk(&p_cli->vf_blks[CDUT_SEG_BLK(0)]);
578 		qed_ilt_cli_blk_fill(p_cli, p_blk,
579 				     curr_line, total,
580 				     p_mngr->task_type_size[p_seg->type]);
581 
582 		qed_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
583 				     ILT_CLI_CDUT);
584 
585 		/* 'init' memory */
586 		p_blk =
587 		    qed_cxt_set_blk(&p_cli->vf_blks[CDUT_FL_SEG_BLK(0, VF)]);
588 		if (!p_seg->has_fl_mem) {
589 			/* see comment above */
590 			line = p_cli->vf_blks[CDUT_SEG_BLK(0)].start_line;
591 			qed_ilt_cli_blk_fill(p_cli, p_blk, line, 0, 0);
592 		} else {
593 			task_size = p_mngr->task_type_size[p_seg->type];
594 			qed_ilt_cli_blk_fill(p_cli, p_blk,
595 					     curr_line, total, task_size);
596 			qed_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
597 					     ILT_CLI_CDUT);
598 		}
599 		p_cli->vf_total_lines = curr_line -
600 		    p_cli->vf_blks[0].start_line;
601 
602 		/* Now for the rest of the VFs */
603 		for (i = 1; i < p_mngr->vf_count; i++) {
604 			p_blk = &p_cli->vf_blks[CDUT_SEG_BLK(0)];
605 			qed_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
606 					     ILT_CLI_CDUT);
607 
608 			p_blk = &p_cli->vf_blks[CDUT_FL_SEG_BLK(0, VF)];
609 			qed_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
610 					     ILT_CLI_CDUT);
611 		}
612 	}
613 
614 	/* QM */
615 	p_cli = qed_cxt_set_cli(&p_mngr->clients[ILT_CLI_QM]);
616 	p_blk = qed_cxt_set_blk(&p_cli->pf_blks[0]);
617 
618 	qed_cxt_qm_iids(p_hwfn, &qm_iids);
619 	total = qed_qm_pf_mem_size(qm_iids.cids,
620 				   qm_iids.vf_cids, qm_iids.tids,
621 				   p_hwfn->qm_info.num_pqs,
622 				   p_hwfn->qm_info.num_vf_pqs);
623 
624 	DP_VERBOSE(p_hwfn,
625 		   QED_MSG_ILT,
626 		   "QM ILT Info, (cids=%d, vf_cids=%d, tids=%d, num_pqs=%d, num_vf_pqs=%d, memory_size=%d)\n",
627 		   qm_iids.cids,
628 		   qm_iids.vf_cids,
629 		   qm_iids.tids,
630 		   p_hwfn->qm_info.num_pqs, p_hwfn->qm_info.num_vf_pqs, total);
631 
632 	qed_ilt_cli_blk_fill(p_cli, p_blk,
633 			     curr_line, total * 0x1000,
634 			     QM_PQ_ELEMENT_SIZE);
635 
636 	qed_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_QM);
637 	p_cli->pf_total_lines = curr_line - p_blk->start_line;
638 
639 	/* SRC */
640 	p_cli = qed_cxt_set_cli(&p_mngr->clients[ILT_CLI_SRC]);
641 	qed_cxt_src_iids(p_mngr, &src_iids);
642 
643 	/* Both the PF and VFs searcher connections are stored in the per PF
644 	 * database. Thus sum the PF searcher cids and all the VFs searcher
645 	 * cids.
646 	 */
647 	total = src_iids.pf_cids + src_iids.per_vf_cids * p_mngr->vf_count;
648 	if (total) {
649 		u32 local_max = max_t(u32, total,
650 				      SRC_MIN_NUM_ELEMS);
651 
652 		total = roundup_pow_of_two(local_max);
653 
654 		p_blk = qed_cxt_set_blk(&p_cli->pf_blks[0]);
655 		qed_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
656 				     total * sizeof(struct src_ent),
657 				     sizeof(struct src_ent));
658 
659 		qed_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
660 				     ILT_CLI_SRC);
661 		p_cli->pf_total_lines = curr_line - p_blk->start_line;
662 	}
663 
664 	/* TM PF */
665 	p_cli = qed_cxt_set_cli(&p_mngr->clients[ILT_CLI_TM]);
666 	qed_cxt_tm_iids(p_hwfn, p_mngr, &tm_iids);
667 	total = tm_iids.pf_cids + tm_iids.pf_tids_total;
668 	if (total) {
669 		p_blk = qed_cxt_set_blk(&p_cli->pf_blks[0]);
670 		qed_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
671 				     total * TM_ELEM_SIZE, TM_ELEM_SIZE);
672 
673 		qed_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
674 				     ILT_CLI_TM);
675 		p_cli->pf_total_lines = curr_line - p_blk->start_line;
676 	}
677 
678 	/* TM VF */
679 	total = tm_iids.per_vf_cids + tm_iids.per_vf_tids;
680 	if (total) {
681 		p_blk = qed_cxt_set_blk(&p_cli->vf_blks[0]);
682 		qed_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
683 				     total * TM_ELEM_SIZE, TM_ELEM_SIZE);
684 
685 		qed_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
686 				     ILT_CLI_TM);
687 
688 		p_cli->vf_total_lines = curr_line - p_blk->start_line;
689 		for (i = 1; i < p_mngr->vf_count; i++)
690 			qed_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
691 					     ILT_CLI_TM);
692 	}
693 
694 	/* TSDM (SRQ CONTEXT) */
695 	total = qed_cxt_get_srq_count(p_hwfn);
696 
697 	if (total) {
698 		p_cli = qed_cxt_set_cli(&p_mngr->clients[ILT_CLI_TSDM]);
699 		p_blk = qed_cxt_set_blk(&p_cli->pf_blks[SRQ_BLK]);
700 		qed_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
701 				     total * SRQ_CXT_SIZE, SRQ_CXT_SIZE);
702 
703 		qed_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
704 				     ILT_CLI_TSDM);
705 		p_cli->pf_total_lines = curr_line - p_blk->start_line;
706 	}
707 
708 	*line_count = curr_line - p_hwfn->p_cxt_mngr->pf_start_line;
709 
710 	if (curr_line - p_hwfn->p_cxt_mngr->pf_start_line >
711 	    RESC_NUM(p_hwfn, QED_ILT))
712 		return -EINVAL;
713 
714 	return 0;
715 }
716 
717 u32 qed_cxt_cfg_ilt_compute_excess(struct qed_hwfn *p_hwfn, u32 used_lines)
718 {
719 	struct qed_ilt_client_cfg *p_cli;
720 	u32 excess_lines, available_lines;
721 	struct qed_cxt_mngr *p_mngr;
722 	u32 ilt_page_size, elem_size;
723 	struct qed_tid_seg *p_seg;
724 	int i;
725 
726 	available_lines = RESC_NUM(p_hwfn, QED_ILT);
727 	excess_lines = used_lines - available_lines;
728 
729 	if (!excess_lines)
730 		return 0;
731 
732 	if (!QED_IS_RDMA_PERSONALITY(p_hwfn))
733 		return 0;
734 
735 	p_mngr = p_hwfn->p_cxt_mngr;
736 	p_cli = &p_mngr->clients[ILT_CLI_CDUT];
737 	ilt_page_size = ILT_PAGE_IN_BYTES(p_cli->p_size.val);
738 
739 	for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
740 		p_seg = qed_cxt_tid_seg_info(p_hwfn, i);
741 		if (!p_seg || p_seg->count == 0)
742 			continue;
743 
744 		elem_size = p_mngr->task_type_size[p_seg->type];
745 		if (!elem_size)
746 			continue;
747 
748 		return (ilt_page_size / elem_size) * excess_lines;
749 	}
750 
751 	DP_NOTICE(p_hwfn, "failed computing excess ILT lines\n");
752 	return 0;
753 }
754 
755 static void qed_cxt_src_t2_free(struct qed_hwfn *p_hwfn)
756 {
757 	struct qed_src_t2 *p_t2 = &p_hwfn->p_cxt_mngr->src_t2;
758 	u32 i;
759 
760 	if (!p_t2 || !p_t2->dma_mem)
761 		return;
762 
763 	for (i = 0; i < p_t2->num_pages; i++)
764 		if (p_t2->dma_mem[i].virt_addr)
765 			dma_free_coherent(&p_hwfn->cdev->pdev->dev,
766 					  p_t2->dma_mem[i].size,
767 					  p_t2->dma_mem[i].virt_addr,
768 					  p_t2->dma_mem[i].phys_addr);
769 
770 	kfree(p_t2->dma_mem);
771 	p_t2->dma_mem = NULL;
772 }
773 
774 static int
775 qed_cxt_t2_alloc_pages(struct qed_hwfn *p_hwfn,
776 		       struct qed_src_t2 *p_t2, u32 total_size, u32 page_size)
777 {
778 	void **p_virt;
779 	u32 size, i;
780 
781 	if (!p_t2 || !p_t2->dma_mem)
782 		return -EINVAL;
783 
784 	for (i = 0; i < p_t2->num_pages; i++) {
785 		size = min_t(u32, total_size, page_size);
786 		p_virt = &p_t2->dma_mem[i].virt_addr;
787 
788 		*p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
789 					     size,
790 					     &p_t2->dma_mem[i].phys_addr,
791 					     GFP_KERNEL);
792 		if (!p_t2->dma_mem[i].virt_addr)
793 			return -ENOMEM;
794 
795 		memset(*p_virt, 0, size);
796 		p_t2->dma_mem[i].size = size;
797 		total_size -= size;
798 	}
799 
800 	return 0;
801 }
802 
803 static int qed_cxt_src_t2_alloc(struct qed_hwfn *p_hwfn)
804 {
805 	struct qed_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
806 	u32 conn_num, total_size, ent_per_page, psz, i;
807 	struct phys_mem_desc *p_t2_last_page;
808 	struct qed_ilt_client_cfg *p_src;
809 	struct qed_src_iids src_iids;
810 	struct qed_src_t2 *p_t2;
811 	int rc;
812 
813 	memset(&src_iids, 0, sizeof(src_iids));
814 
815 	/* if the SRC ILT client is inactive - there are no connection
816 	 * requiring the searcer, leave.
817 	 */
818 	p_src = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_SRC];
819 	if (!p_src->active)
820 		return 0;
821 
822 	qed_cxt_src_iids(p_mngr, &src_iids);
823 	conn_num = src_iids.pf_cids + src_iids.per_vf_cids * p_mngr->vf_count;
824 	total_size = conn_num * sizeof(struct src_ent);
825 
826 	/* use the same page size as the SRC ILT client */
827 	psz = ILT_PAGE_IN_BYTES(p_src->p_size.val);
828 	p_t2 = &p_mngr->src_t2;
829 	p_t2->num_pages = DIV_ROUND_UP(total_size, psz);
830 
831 	/* allocate t2 */
832 	p_t2->dma_mem = kcalloc(p_t2->num_pages, sizeof(struct phys_mem_desc),
833 				GFP_KERNEL);
834 	if (!p_t2->dma_mem) {
835 		DP_NOTICE(p_hwfn, "Failed to allocate t2 table\n");
836 		rc = -ENOMEM;
837 		goto t2_fail;
838 	}
839 
840 	rc = qed_cxt_t2_alloc_pages(p_hwfn, p_t2, total_size, psz);
841 	if (rc)
842 		goto t2_fail;
843 
844 	/* Set the t2 pointers */
845 
846 	/* entries per page - must be a power of two */
847 	ent_per_page = psz / sizeof(struct src_ent);
848 
849 	p_t2->first_free = (u64)p_t2->dma_mem[0].phys_addr;
850 
851 	p_t2_last_page = &p_t2->dma_mem[(conn_num - 1) / ent_per_page];
852 	p_t2->last_free = (u64)p_t2_last_page->phys_addr +
853 	    ((conn_num - 1) & (ent_per_page - 1)) * sizeof(struct src_ent);
854 
855 	for (i = 0; i < p_t2->num_pages; i++) {
856 		u32 ent_num = min_t(u32,
857 				    ent_per_page,
858 				    conn_num);
859 		struct src_ent *entries = p_t2->dma_mem[i].virt_addr;
860 		u64 p_ent_phys = (u64)p_t2->dma_mem[i].phys_addr, val;
861 		u32 j;
862 
863 		for (j = 0; j < ent_num - 1; j++) {
864 			val = p_ent_phys + (j + 1) * sizeof(struct src_ent);
865 			entries[j].next = cpu_to_be64(val);
866 		}
867 
868 		if (i < p_t2->num_pages - 1)
869 			val = (u64)p_t2->dma_mem[i + 1].phys_addr;
870 		else
871 			val = 0;
872 		entries[j].next = cpu_to_be64(val);
873 
874 		conn_num -= ent_num;
875 	}
876 
877 	return 0;
878 
879 t2_fail:
880 	qed_cxt_src_t2_free(p_hwfn);
881 	return rc;
882 }
883 
884 #define for_each_ilt_valid_client(pos, clients)	\
885 	for (pos = 0; pos < MAX_ILT_CLIENTS; pos++)	\
886 		if (!clients[pos].active) {	\
887 			continue;		\
888 		} else				\
889 
890 /* Total number of ILT lines used by this PF */
891 static u32 qed_cxt_ilt_shadow_size(struct qed_ilt_client_cfg *ilt_clients)
892 {
893 	u32 size = 0;
894 	u32 i;
895 
896 	for_each_ilt_valid_client(i, ilt_clients)
897 	    size += (ilt_clients[i].last.val - ilt_clients[i].first.val + 1);
898 
899 	return size;
900 }
901 
902 static void qed_ilt_shadow_free(struct qed_hwfn *p_hwfn)
903 {
904 	struct qed_ilt_client_cfg *p_cli = p_hwfn->p_cxt_mngr->clients;
905 	struct qed_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
906 	u32 ilt_size, i;
907 
908 	ilt_size = qed_cxt_ilt_shadow_size(p_cli);
909 
910 	for (i = 0; p_mngr->ilt_shadow && i < ilt_size; i++) {
911 		struct phys_mem_desc *p_dma = &p_mngr->ilt_shadow[i];
912 
913 		if (p_dma->virt_addr)
914 			dma_free_coherent(&p_hwfn->cdev->pdev->dev,
915 					  p_dma->size, p_dma->virt_addr,
916 					  p_dma->phys_addr);
917 		p_dma->virt_addr = NULL;
918 	}
919 	kfree(p_mngr->ilt_shadow);
920 }
921 
922 static int qed_ilt_blk_alloc(struct qed_hwfn *p_hwfn,
923 			     struct qed_ilt_cli_blk *p_blk,
924 			     enum ilt_clients ilt_client,
925 			     u32 start_line_offset)
926 {
927 	struct phys_mem_desc *ilt_shadow = p_hwfn->p_cxt_mngr->ilt_shadow;
928 	u32 lines, line, sz_left, lines_to_skip = 0;
929 
930 	/* Special handling for RoCE that supports dynamic allocation */
931 	if (QED_IS_RDMA_PERSONALITY(p_hwfn) &&
932 	    ((ilt_client == ILT_CLI_CDUT) || ilt_client == ILT_CLI_TSDM))
933 		return 0;
934 
935 	lines_to_skip = p_blk->dynamic_line_cnt;
936 
937 	if (!p_blk->total_size)
938 		return 0;
939 
940 	sz_left = p_blk->total_size;
941 	lines = DIV_ROUND_UP(sz_left, p_blk->real_size_in_page) - lines_to_skip;
942 	line = p_blk->start_line + start_line_offset -
943 	    p_hwfn->p_cxt_mngr->pf_start_line + lines_to_skip;
944 
945 	for (; lines; lines--) {
946 		dma_addr_t p_phys;
947 		void *p_virt;
948 		u32 size;
949 
950 		size = min_t(u32, sz_left, p_blk->real_size_in_page);
951 		p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, size,
952 					    &p_phys, GFP_KERNEL);
953 		if (!p_virt)
954 			return -ENOMEM;
955 
956 		ilt_shadow[line].phys_addr = p_phys;
957 		ilt_shadow[line].virt_addr = p_virt;
958 		ilt_shadow[line].size = size;
959 
960 		DP_VERBOSE(p_hwfn, QED_MSG_ILT,
961 			   "ILT shadow: Line [%d] Physical 0x%llx Virtual %p Size %d\n",
962 			    line, (u64)p_phys, p_virt, size);
963 
964 		sz_left -= size;
965 		line++;
966 	}
967 
968 	return 0;
969 }
970 
971 static int qed_ilt_shadow_alloc(struct qed_hwfn *p_hwfn)
972 {
973 	struct qed_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
974 	struct qed_ilt_client_cfg *clients = p_mngr->clients;
975 	struct qed_ilt_cli_blk *p_blk;
976 	u32 size, i, j, k;
977 	int rc;
978 
979 	size = qed_cxt_ilt_shadow_size(clients);
980 	p_mngr->ilt_shadow = kcalloc(size, sizeof(struct phys_mem_desc),
981 				     GFP_KERNEL);
982 	if (!p_mngr->ilt_shadow) {
983 		rc = -ENOMEM;
984 		goto ilt_shadow_fail;
985 	}
986 
987 	DP_VERBOSE(p_hwfn, QED_MSG_ILT,
988 		   "Allocated 0x%x bytes for ilt shadow\n",
989 		   (u32)(size * sizeof(struct phys_mem_desc)));
990 
991 	for_each_ilt_valid_client(i, clients) {
992 		for (j = 0; j < ILT_CLI_PF_BLOCKS; j++) {
993 			p_blk = &clients[i].pf_blks[j];
994 			rc = qed_ilt_blk_alloc(p_hwfn, p_blk, i, 0);
995 			if (rc)
996 				goto ilt_shadow_fail;
997 		}
998 		for (k = 0; k < p_mngr->vf_count; k++) {
999 			for (j = 0; j < ILT_CLI_VF_BLOCKS; j++) {
1000 				u32 lines = clients[i].vf_total_lines * k;
1001 
1002 				p_blk = &clients[i].vf_blks[j];
1003 				rc = qed_ilt_blk_alloc(p_hwfn, p_blk, i, lines);
1004 				if (rc)
1005 					goto ilt_shadow_fail;
1006 			}
1007 		}
1008 	}
1009 
1010 	return 0;
1011 
1012 ilt_shadow_fail:
1013 	qed_ilt_shadow_free(p_hwfn);
1014 	return rc;
1015 }
1016 
1017 static void qed_cid_map_free(struct qed_hwfn *p_hwfn)
1018 {
1019 	struct qed_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1020 	u32 type, vf;
1021 
1022 	for (type = 0; type < MAX_CONN_TYPES; type++) {
1023 		kfree(p_mngr->acquired[type].cid_map);
1024 		p_mngr->acquired[type].max_count = 0;
1025 		p_mngr->acquired[type].start_cid = 0;
1026 
1027 		for (vf = 0; vf < MAX_NUM_VFS; vf++) {
1028 			kfree(p_mngr->acquired_vf[type][vf].cid_map);
1029 			p_mngr->acquired_vf[type][vf].max_count = 0;
1030 			p_mngr->acquired_vf[type][vf].start_cid = 0;
1031 		}
1032 	}
1033 }
1034 
1035 static int
1036 qed_cid_map_alloc_single(struct qed_hwfn *p_hwfn,
1037 			 u32 type,
1038 			 u32 cid_start,
1039 			 u32 cid_count, struct qed_cid_acquired_map *p_map)
1040 {
1041 	u32 size;
1042 
1043 	if (!cid_count)
1044 		return 0;
1045 
1046 	size = DIV_ROUND_UP(cid_count,
1047 			    sizeof(unsigned long) * BITS_PER_BYTE) *
1048 	       sizeof(unsigned long);
1049 	p_map->cid_map = kzalloc(size, GFP_KERNEL);
1050 	if (!p_map->cid_map)
1051 		return -ENOMEM;
1052 
1053 	p_map->max_count = cid_count;
1054 	p_map->start_cid = cid_start;
1055 
1056 	DP_VERBOSE(p_hwfn, QED_MSG_CXT,
1057 		   "Type %08x start: %08x count %08x\n",
1058 		   type, p_map->start_cid, p_map->max_count);
1059 
1060 	return 0;
1061 }
1062 
1063 static int qed_cid_map_alloc(struct qed_hwfn *p_hwfn)
1064 {
1065 	struct qed_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1066 	u32 start_cid = 0, vf_start_cid = 0;
1067 	u32 type, vf;
1068 
1069 	for (type = 0; type < MAX_CONN_TYPES; type++) {
1070 		struct qed_conn_type_cfg *p_cfg = &p_mngr->conn_cfg[type];
1071 		struct qed_cid_acquired_map *p_map;
1072 
1073 		/* Handle PF maps */
1074 		p_map = &p_mngr->acquired[type];
1075 		if (qed_cid_map_alloc_single(p_hwfn, type, start_cid,
1076 					     p_cfg->cid_count, p_map))
1077 			goto cid_map_fail;
1078 
1079 		/* Handle VF maps */
1080 		for (vf = 0; vf < MAX_NUM_VFS; vf++) {
1081 			p_map = &p_mngr->acquired_vf[type][vf];
1082 			if (qed_cid_map_alloc_single(p_hwfn, type,
1083 						     vf_start_cid,
1084 						     p_cfg->cids_per_vf, p_map))
1085 				goto cid_map_fail;
1086 		}
1087 
1088 		start_cid += p_cfg->cid_count;
1089 		vf_start_cid += p_cfg->cids_per_vf;
1090 	}
1091 
1092 	return 0;
1093 
1094 cid_map_fail:
1095 	qed_cid_map_free(p_hwfn);
1096 	return -ENOMEM;
1097 }
1098 
1099 int qed_cxt_mngr_alloc(struct qed_hwfn *p_hwfn)
1100 {
1101 	struct qed_ilt_client_cfg *clients;
1102 	struct qed_cxt_mngr *p_mngr;
1103 	u32 i;
1104 
1105 	p_mngr = kzalloc(sizeof(*p_mngr), GFP_KERNEL);
1106 	if (!p_mngr)
1107 		return -ENOMEM;
1108 
1109 	/* Initialize ILT client registers */
1110 	clients = p_mngr->clients;
1111 	clients[ILT_CLI_CDUC].first.reg = ILT_CFG_REG(CDUC, FIRST_ILT);
1112 	clients[ILT_CLI_CDUC].last.reg = ILT_CFG_REG(CDUC, LAST_ILT);
1113 	clients[ILT_CLI_CDUC].p_size.reg = ILT_CFG_REG(CDUC, P_SIZE);
1114 
1115 	clients[ILT_CLI_QM].first.reg = ILT_CFG_REG(QM, FIRST_ILT);
1116 	clients[ILT_CLI_QM].last.reg = ILT_CFG_REG(QM, LAST_ILT);
1117 	clients[ILT_CLI_QM].p_size.reg = ILT_CFG_REG(QM, P_SIZE);
1118 
1119 	clients[ILT_CLI_TM].first.reg = ILT_CFG_REG(TM, FIRST_ILT);
1120 	clients[ILT_CLI_TM].last.reg = ILT_CFG_REG(TM, LAST_ILT);
1121 	clients[ILT_CLI_TM].p_size.reg = ILT_CFG_REG(TM, P_SIZE);
1122 
1123 	clients[ILT_CLI_SRC].first.reg = ILT_CFG_REG(SRC, FIRST_ILT);
1124 	clients[ILT_CLI_SRC].last.reg = ILT_CFG_REG(SRC, LAST_ILT);
1125 	clients[ILT_CLI_SRC].p_size.reg = ILT_CFG_REG(SRC, P_SIZE);
1126 
1127 	clients[ILT_CLI_CDUT].first.reg = ILT_CFG_REG(CDUT, FIRST_ILT);
1128 	clients[ILT_CLI_CDUT].last.reg = ILT_CFG_REG(CDUT, LAST_ILT);
1129 	clients[ILT_CLI_CDUT].p_size.reg = ILT_CFG_REG(CDUT, P_SIZE);
1130 
1131 	clients[ILT_CLI_TSDM].first.reg = ILT_CFG_REG(TSDM, FIRST_ILT);
1132 	clients[ILT_CLI_TSDM].last.reg = ILT_CFG_REG(TSDM, LAST_ILT);
1133 	clients[ILT_CLI_TSDM].p_size.reg = ILT_CFG_REG(TSDM, P_SIZE);
1134 	/* default ILT page size for all clients is 64K */
1135 	for (i = 0; i < MAX_ILT_CLIENTS; i++)
1136 		p_mngr->clients[i].p_size.val = ILT_DEFAULT_HW_P_SIZE;
1137 
1138 	p_mngr->conn_ctx_size = CONN_CXT_SIZE(p_hwfn);
1139 
1140 	/* Initialize task sizes */
1141 	p_mngr->task_type_size[0] = TYPE0_TASK_CXT_SIZE(p_hwfn);
1142 	p_mngr->task_type_size[1] = TYPE1_TASK_CXT_SIZE(p_hwfn);
1143 
1144 	if (p_hwfn->cdev->p_iov_info) {
1145 		p_mngr->vf_count = p_hwfn->cdev->p_iov_info->total_vfs;
1146 		p_mngr->first_vf_in_pf =
1147 			p_hwfn->cdev->p_iov_info->first_vf_in_pf;
1148 	}
1149 	/* Initialize the dynamic ILT allocation mutex */
1150 	mutex_init(&p_mngr->mutex);
1151 
1152 	/* Set the cxt mangr pointer priori to further allocations */
1153 	p_hwfn->p_cxt_mngr = p_mngr;
1154 
1155 	return 0;
1156 }
1157 
1158 int qed_cxt_tables_alloc(struct qed_hwfn *p_hwfn)
1159 {
1160 	int rc;
1161 
1162 	/* Allocate the ILT shadow table */
1163 	rc = qed_ilt_shadow_alloc(p_hwfn);
1164 	if (rc)
1165 		goto tables_alloc_fail;
1166 
1167 	/* Allocate the T2  table */
1168 	rc = qed_cxt_src_t2_alloc(p_hwfn);
1169 	if (rc)
1170 		goto tables_alloc_fail;
1171 
1172 	/* Allocate and initialize the acquired cids bitmaps */
1173 	rc = qed_cid_map_alloc(p_hwfn);
1174 	if (rc)
1175 		goto tables_alloc_fail;
1176 
1177 	return 0;
1178 
1179 tables_alloc_fail:
1180 	qed_cxt_mngr_free(p_hwfn);
1181 	return rc;
1182 }
1183 
1184 void qed_cxt_mngr_free(struct qed_hwfn *p_hwfn)
1185 {
1186 	if (!p_hwfn->p_cxt_mngr)
1187 		return;
1188 
1189 	qed_cid_map_free(p_hwfn);
1190 	qed_cxt_src_t2_free(p_hwfn);
1191 	qed_ilt_shadow_free(p_hwfn);
1192 	kfree(p_hwfn->p_cxt_mngr);
1193 
1194 	p_hwfn->p_cxt_mngr = NULL;
1195 }
1196 
1197 void qed_cxt_mngr_setup(struct qed_hwfn *p_hwfn)
1198 {
1199 	struct qed_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1200 	struct qed_cid_acquired_map *p_map;
1201 	struct qed_conn_type_cfg *p_cfg;
1202 	int type;
1203 	u32 len;
1204 
1205 	/* Reset acquired cids */
1206 	for (type = 0; type < MAX_CONN_TYPES; type++) {
1207 		u32 vf;
1208 
1209 		p_cfg = &p_mngr->conn_cfg[type];
1210 		if (p_cfg->cid_count) {
1211 			p_map = &p_mngr->acquired[type];
1212 			len = DIV_ROUND_UP(p_map->max_count,
1213 					   sizeof(unsigned long) *
1214 					   BITS_PER_BYTE) *
1215 			      sizeof(unsigned long);
1216 			memset(p_map->cid_map, 0, len);
1217 		}
1218 
1219 		if (!p_cfg->cids_per_vf)
1220 			continue;
1221 
1222 		for (vf = 0; vf < MAX_NUM_VFS; vf++) {
1223 			p_map = &p_mngr->acquired_vf[type][vf];
1224 			len = DIV_ROUND_UP(p_map->max_count,
1225 					   sizeof(unsigned long) *
1226 					   BITS_PER_BYTE) *
1227 			      sizeof(unsigned long);
1228 			memset(p_map->cid_map, 0, len);
1229 		}
1230 	}
1231 }
1232 
1233 /* CDU Common */
1234 #define CDUC_CXT_SIZE_SHIFT \
1235 	CDU_REG_CID_ADDR_PARAMS_CONTEXT_SIZE_SHIFT
1236 
1237 #define CDUC_CXT_SIZE_MASK \
1238 	(CDU_REG_CID_ADDR_PARAMS_CONTEXT_SIZE >> CDUC_CXT_SIZE_SHIFT)
1239 
1240 #define CDUC_BLOCK_WASTE_SHIFT \
1241 	CDU_REG_CID_ADDR_PARAMS_BLOCK_WASTE_SHIFT
1242 
1243 #define CDUC_BLOCK_WASTE_MASK \
1244 	(CDU_REG_CID_ADDR_PARAMS_BLOCK_WASTE >> CDUC_BLOCK_WASTE_SHIFT)
1245 
1246 #define CDUC_NCIB_SHIFT	\
1247 	CDU_REG_CID_ADDR_PARAMS_NCIB_SHIFT
1248 
1249 #define CDUC_NCIB_MASK \
1250 	(CDU_REG_CID_ADDR_PARAMS_NCIB >> CDUC_NCIB_SHIFT)
1251 
1252 #define CDUT_TYPE0_CXT_SIZE_SHIFT \
1253 	CDU_REG_SEGMENT0_PARAMS_T0_TID_SIZE_SHIFT
1254 
1255 #define CDUT_TYPE0_CXT_SIZE_MASK		\
1256 	(CDU_REG_SEGMENT0_PARAMS_T0_TID_SIZE >>	\
1257 	 CDUT_TYPE0_CXT_SIZE_SHIFT)
1258 
1259 #define CDUT_TYPE0_BLOCK_WASTE_SHIFT \
1260 	CDU_REG_SEGMENT0_PARAMS_T0_TID_BLOCK_WASTE_SHIFT
1261 
1262 #define CDUT_TYPE0_BLOCK_WASTE_MASK		       \
1263 	(CDU_REG_SEGMENT0_PARAMS_T0_TID_BLOCK_WASTE >> \
1264 	 CDUT_TYPE0_BLOCK_WASTE_SHIFT)
1265 
1266 #define CDUT_TYPE0_NCIB_SHIFT \
1267 	CDU_REG_SEGMENT0_PARAMS_T0_NUM_TIDS_IN_BLOCK_SHIFT
1268 
1269 #define CDUT_TYPE0_NCIB_MASK				 \
1270 	(CDU_REG_SEGMENT0_PARAMS_T0_NUM_TIDS_IN_BLOCK >> \
1271 	 CDUT_TYPE0_NCIB_SHIFT)
1272 
1273 #define CDUT_TYPE1_CXT_SIZE_SHIFT \
1274 	CDU_REG_SEGMENT1_PARAMS_T1_TID_SIZE_SHIFT
1275 
1276 #define CDUT_TYPE1_CXT_SIZE_MASK		\
1277 	(CDU_REG_SEGMENT1_PARAMS_T1_TID_SIZE >>	\
1278 	 CDUT_TYPE1_CXT_SIZE_SHIFT)
1279 
1280 #define CDUT_TYPE1_BLOCK_WASTE_SHIFT \
1281 	CDU_REG_SEGMENT1_PARAMS_T1_TID_BLOCK_WASTE_SHIFT
1282 
1283 #define CDUT_TYPE1_BLOCK_WASTE_MASK		       \
1284 	(CDU_REG_SEGMENT1_PARAMS_T1_TID_BLOCK_WASTE >> \
1285 	 CDUT_TYPE1_BLOCK_WASTE_SHIFT)
1286 
1287 #define CDUT_TYPE1_NCIB_SHIFT \
1288 	CDU_REG_SEGMENT1_PARAMS_T1_NUM_TIDS_IN_BLOCK_SHIFT
1289 
1290 #define CDUT_TYPE1_NCIB_MASK				 \
1291 	(CDU_REG_SEGMENT1_PARAMS_T1_NUM_TIDS_IN_BLOCK >> \
1292 	 CDUT_TYPE1_NCIB_SHIFT)
1293 
1294 static void qed_cdu_init_common(struct qed_hwfn *p_hwfn)
1295 {
1296 	u32 page_sz, elems_per_page, block_waste, cxt_size, cdu_params = 0;
1297 
1298 	/* CDUC - connection configuration */
1299 	page_sz = p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC].p_size.val;
1300 	cxt_size = CONN_CXT_SIZE(p_hwfn);
1301 	elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size;
1302 	block_waste = ILT_PAGE_IN_BYTES(page_sz) - elems_per_page * cxt_size;
1303 
1304 	SET_FIELD(cdu_params, CDUC_CXT_SIZE, cxt_size);
1305 	SET_FIELD(cdu_params, CDUC_BLOCK_WASTE, block_waste);
1306 	SET_FIELD(cdu_params, CDUC_NCIB, elems_per_page);
1307 	STORE_RT_REG(p_hwfn, CDU_REG_CID_ADDR_PARAMS_RT_OFFSET, cdu_params);
1308 
1309 	/* CDUT - type-0 tasks configuration */
1310 	page_sz = p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT].p_size.val;
1311 	cxt_size = p_hwfn->p_cxt_mngr->task_type_size[0];
1312 	elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size;
1313 	block_waste = ILT_PAGE_IN_BYTES(page_sz) - elems_per_page * cxt_size;
1314 
1315 	/* cxt size and block-waste are multipes of 8 */
1316 	cdu_params = 0;
1317 	SET_FIELD(cdu_params, CDUT_TYPE0_CXT_SIZE, (cxt_size >> 3));
1318 	SET_FIELD(cdu_params, CDUT_TYPE0_BLOCK_WASTE, (block_waste >> 3));
1319 	SET_FIELD(cdu_params, CDUT_TYPE0_NCIB, elems_per_page);
1320 	STORE_RT_REG(p_hwfn, CDU_REG_SEGMENT0_PARAMS_RT_OFFSET, cdu_params);
1321 
1322 	/* CDUT - type-1 tasks configuration */
1323 	cxt_size = p_hwfn->p_cxt_mngr->task_type_size[1];
1324 	elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size;
1325 	block_waste = ILT_PAGE_IN_BYTES(page_sz) - elems_per_page * cxt_size;
1326 
1327 	/* cxt size and block-waste are multipes of 8 */
1328 	cdu_params = 0;
1329 	SET_FIELD(cdu_params, CDUT_TYPE1_CXT_SIZE, (cxt_size >> 3));
1330 	SET_FIELD(cdu_params, CDUT_TYPE1_BLOCK_WASTE, (block_waste >> 3));
1331 	SET_FIELD(cdu_params, CDUT_TYPE1_NCIB, elems_per_page);
1332 	STORE_RT_REG(p_hwfn, CDU_REG_SEGMENT1_PARAMS_RT_OFFSET, cdu_params);
1333 }
1334 
1335 /* CDU PF */
1336 #define CDU_SEG_REG_TYPE_SHIFT          CDU_SEG_TYPE_OFFSET_REG_TYPE_SHIFT
1337 #define CDU_SEG_REG_TYPE_MASK           0x1
1338 #define CDU_SEG_REG_OFFSET_SHIFT        0
1339 #define CDU_SEG_REG_OFFSET_MASK         CDU_SEG_TYPE_OFFSET_REG_OFFSET_MASK
1340 
1341 static void qed_cdu_init_pf(struct qed_hwfn *p_hwfn)
1342 {
1343 	struct qed_ilt_client_cfg *p_cli;
1344 	struct qed_tid_seg *p_seg;
1345 	u32 cdu_seg_params, offset;
1346 	int i;
1347 
1348 	static const u32 rt_type_offset_arr[] = {
1349 		CDU_REG_PF_SEG0_TYPE_OFFSET_RT_OFFSET,
1350 		CDU_REG_PF_SEG1_TYPE_OFFSET_RT_OFFSET,
1351 		CDU_REG_PF_SEG2_TYPE_OFFSET_RT_OFFSET,
1352 		CDU_REG_PF_SEG3_TYPE_OFFSET_RT_OFFSET
1353 	};
1354 
1355 	static const u32 rt_type_offset_fl_arr[] = {
1356 		CDU_REG_PF_FL_SEG0_TYPE_OFFSET_RT_OFFSET,
1357 		CDU_REG_PF_FL_SEG1_TYPE_OFFSET_RT_OFFSET,
1358 		CDU_REG_PF_FL_SEG2_TYPE_OFFSET_RT_OFFSET,
1359 		CDU_REG_PF_FL_SEG3_TYPE_OFFSET_RT_OFFSET
1360 	};
1361 
1362 	p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT];
1363 
1364 	/* There are initializations only for CDUT during pf Phase */
1365 	for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
1366 		/* Segment 0 */
1367 		p_seg = qed_cxt_tid_seg_info(p_hwfn, i);
1368 		if (!p_seg)
1369 			continue;
1370 
1371 		/* Note: start_line is already adjusted for the CDU
1372 		 * segment register granularity, so we just need to
1373 		 * divide. Adjustment is implicit as we assume ILT
1374 		 * Page size is larger than 32K!
1375 		 */
1376 		offset = (ILT_PAGE_IN_BYTES(p_cli->p_size.val) *
1377 			  (p_cli->pf_blks[CDUT_SEG_BLK(i)].start_line -
1378 			   p_cli->first.val)) / CDUT_SEG_ALIGNMET_IN_BYTES;
1379 
1380 		cdu_seg_params = 0;
1381 		SET_FIELD(cdu_seg_params, CDU_SEG_REG_TYPE, p_seg->type);
1382 		SET_FIELD(cdu_seg_params, CDU_SEG_REG_OFFSET, offset);
1383 		STORE_RT_REG(p_hwfn, rt_type_offset_arr[i], cdu_seg_params);
1384 
1385 		offset = (ILT_PAGE_IN_BYTES(p_cli->p_size.val) *
1386 			  (p_cli->pf_blks[CDUT_FL_SEG_BLK(i, PF)].start_line -
1387 			   p_cli->first.val)) / CDUT_SEG_ALIGNMET_IN_BYTES;
1388 
1389 		cdu_seg_params = 0;
1390 		SET_FIELD(cdu_seg_params, CDU_SEG_REG_TYPE, p_seg->type);
1391 		SET_FIELD(cdu_seg_params, CDU_SEG_REG_OFFSET, offset);
1392 		STORE_RT_REG(p_hwfn, rt_type_offset_fl_arr[i], cdu_seg_params);
1393 	}
1394 }
1395 
1396 void qed_qm_init_pf(struct qed_hwfn *p_hwfn,
1397 		    struct qed_ptt *p_ptt, bool is_pf_loading)
1398 {
1399 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1400 	struct qed_qm_pf_rt_init_params params;
1401 	struct qed_qm_iids iids;
1402 
1403 	memset(&iids, 0, sizeof(iids));
1404 	qed_cxt_qm_iids(p_hwfn, &iids);
1405 
1406 	memset(&params, 0, sizeof(params));
1407 	params.port_id = p_hwfn->port_id;
1408 	params.pf_id = p_hwfn->rel_pf_id;
1409 	params.max_phys_tcs_per_port = qm_info->max_phys_tcs_per_port;
1410 	params.is_pf_loading = is_pf_loading;
1411 	params.num_pf_cids = iids.cids;
1412 	params.num_vf_cids = iids.vf_cids;
1413 	params.num_tids = iids.tids;
1414 	params.start_pq = qm_info->start_pq;
1415 	params.num_pf_pqs = qm_info->num_pqs - qm_info->num_vf_pqs;
1416 	params.num_vf_pqs = qm_info->num_vf_pqs;
1417 	params.start_vport = qm_info->start_vport;
1418 	params.num_vports = qm_info->num_vports;
1419 	params.pf_wfq = qm_info->pf_wfq;
1420 	params.pf_rl = qm_info->pf_rl;
1421 	params.pq_params = qm_info->qm_pq_params;
1422 	params.vport_params = qm_info->qm_vport_params;
1423 
1424 	qed_qm_pf_rt_init(p_hwfn, p_ptt, &params);
1425 }
1426 
1427 /* CM PF */
1428 static void qed_cm_init_pf(struct qed_hwfn *p_hwfn)
1429 {
1430 	/* XCM pure-LB queue */
1431 	STORE_RT_REG(p_hwfn, XCM_REG_CON_PHY_Q3_RT_OFFSET,
1432 		     qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_LB));
1433 }
1434 
1435 /* DQ PF */
1436 static void qed_dq_init_pf(struct qed_hwfn *p_hwfn)
1437 {
1438 	struct qed_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1439 	u32 dq_pf_max_cid = 0, dq_vf_max_cid = 0;
1440 
1441 	dq_pf_max_cid += (p_mngr->conn_cfg[0].cid_count >> DQ_RANGE_SHIFT);
1442 	STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_0_RT_OFFSET, dq_pf_max_cid);
1443 
1444 	dq_vf_max_cid += (p_mngr->conn_cfg[0].cids_per_vf >> DQ_RANGE_SHIFT);
1445 	STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_0_RT_OFFSET, dq_vf_max_cid);
1446 
1447 	dq_pf_max_cid += (p_mngr->conn_cfg[1].cid_count >> DQ_RANGE_SHIFT);
1448 	STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_1_RT_OFFSET, dq_pf_max_cid);
1449 
1450 	dq_vf_max_cid += (p_mngr->conn_cfg[1].cids_per_vf >> DQ_RANGE_SHIFT);
1451 	STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_1_RT_OFFSET, dq_vf_max_cid);
1452 
1453 	dq_pf_max_cid += (p_mngr->conn_cfg[2].cid_count >> DQ_RANGE_SHIFT);
1454 	STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_2_RT_OFFSET, dq_pf_max_cid);
1455 
1456 	dq_vf_max_cid += (p_mngr->conn_cfg[2].cids_per_vf >> DQ_RANGE_SHIFT);
1457 	STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_2_RT_OFFSET, dq_vf_max_cid);
1458 
1459 	dq_pf_max_cid += (p_mngr->conn_cfg[3].cid_count >> DQ_RANGE_SHIFT);
1460 	STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_3_RT_OFFSET, dq_pf_max_cid);
1461 
1462 	dq_vf_max_cid += (p_mngr->conn_cfg[3].cids_per_vf >> DQ_RANGE_SHIFT);
1463 	STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_3_RT_OFFSET, dq_vf_max_cid);
1464 
1465 	dq_pf_max_cid += (p_mngr->conn_cfg[4].cid_count >> DQ_RANGE_SHIFT);
1466 	STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_4_RT_OFFSET, dq_pf_max_cid);
1467 
1468 	dq_vf_max_cid += (p_mngr->conn_cfg[4].cids_per_vf >> DQ_RANGE_SHIFT);
1469 	STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_4_RT_OFFSET, dq_vf_max_cid);
1470 
1471 	dq_pf_max_cid += (p_mngr->conn_cfg[5].cid_count >> DQ_RANGE_SHIFT);
1472 	STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_5_RT_OFFSET, dq_pf_max_cid);
1473 
1474 	dq_vf_max_cid += (p_mngr->conn_cfg[5].cids_per_vf >> DQ_RANGE_SHIFT);
1475 	STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_5_RT_OFFSET, dq_vf_max_cid);
1476 
1477 	/* Connection types 6 & 7 are not in use, yet they must be configured
1478 	 * as the highest possible connection. Not configuring them means the
1479 	 * defaults will be  used, and with a large number of cids a bug may
1480 	 * occur, if the defaults will be smaller than dq_pf_max_cid /
1481 	 * dq_vf_max_cid.
1482 	 */
1483 	STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_6_RT_OFFSET, dq_pf_max_cid);
1484 	STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_6_RT_OFFSET, dq_vf_max_cid);
1485 
1486 	STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_7_RT_OFFSET, dq_pf_max_cid);
1487 	STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_7_RT_OFFSET, dq_vf_max_cid);
1488 }
1489 
1490 static void qed_ilt_bounds_init(struct qed_hwfn *p_hwfn)
1491 {
1492 	struct qed_ilt_client_cfg *ilt_clients;
1493 	int i;
1494 
1495 	ilt_clients = p_hwfn->p_cxt_mngr->clients;
1496 	for_each_ilt_valid_client(i, ilt_clients) {
1497 		STORE_RT_REG(p_hwfn,
1498 			     ilt_clients[i].first.reg,
1499 			     ilt_clients[i].first.val);
1500 		STORE_RT_REG(p_hwfn,
1501 			     ilt_clients[i].last.reg, ilt_clients[i].last.val);
1502 		STORE_RT_REG(p_hwfn,
1503 			     ilt_clients[i].p_size.reg,
1504 			     ilt_clients[i].p_size.val);
1505 	}
1506 }
1507 
1508 static void qed_ilt_vf_bounds_init(struct qed_hwfn *p_hwfn)
1509 {
1510 	struct qed_ilt_client_cfg *p_cli;
1511 	u32 blk_factor;
1512 
1513 	/* For simplicty  we set the 'block' to be an ILT page */
1514 	if (p_hwfn->cdev->p_iov_info) {
1515 		struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
1516 
1517 		STORE_RT_REG(p_hwfn,
1518 			     PSWRQ2_REG_VF_BASE_RT_OFFSET,
1519 			     p_iov->first_vf_in_pf);
1520 		STORE_RT_REG(p_hwfn,
1521 			     PSWRQ2_REG_VF_LAST_ILT_RT_OFFSET,
1522 			     p_iov->first_vf_in_pf + p_iov->total_vfs);
1523 	}
1524 
1525 	p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC];
1526 	blk_factor = ilog2(ILT_PAGE_IN_BYTES(p_cli->p_size.val) >> 10);
1527 	if (p_cli->active) {
1528 		STORE_RT_REG(p_hwfn,
1529 			     PSWRQ2_REG_CDUC_BLOCKS_FACTOR_RT_OFFSET,
1530 			     blk_factor);
1531 		STORE_RT_REG(p_hwfn,
1532 			     PSWRQ2_REG_CDUC_NUMBER_OF_PF_BLOCKS_RT_OFFSET,
1533 			     p_cli->pf_total_lines);
1534 		STORE_RT_REG(p_hwfn,
1535 			     PSWRQ2_REG_CDUC_VF_BLOCKS_RT_OFFSET,
1536 			     p_cli->vf_total_lines);
1537 	}
1538 
1539 	p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT];
1540 	blk_factor = ilog2(ILT_PAGE_IN_BYTES(p_cli->p_size.val) >> 10);
1541 	if (p_cli->active) {
1542 		STORE_RT_REG(p_hwfn,
1543 			     PSWRQ2_REG_CDUT_BLOCKS_FACTOR_RT_OFFSET,
1544 			     blk_factor);
1545 		STORE_RT_REG(p_hwfn,
1546 			     PSWRQ2_REG_CDUT_NUMBER_OF_PF_BLOCKS_RT_OFFSET,
1547 			     p_cli->pf_total_lines);
1548 		STORE_RT_REG(p_hwfn,
1549 			     PSWRQ2_REG_CDUT_VF_BLOCKS_RT_OFFSET,
1550 			     p_cli->vf_total_lines);
1551 	}
1552 
1553 	p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_TM];
1554 	blk_factor = ilog2(ILT_PAGE_IN_BYTES(p_cli->p_size.val) >> 10);
1555 	if (p_cli->active) {
1556 		STORE_RT_REG(p_hwfn,
1557 			     PSWRQ2_REG_TM_BLOCKS_FACTOR_RT_OFFSET, blk_factor);
1558 		STORE_RT_REG(p_hwfn,
1559 			     PSWRQ2_REG_TM_NUMBER_OF_PF_BLOCKS_RT_OFFSET,
1560 			     p_cli->pf_total_lines);
1561 		STORE_RT_REG(p_hwfn,
1562 			     PSWRQ2_REG_TM_VF_BLOCKS_RT_OFFSET,
1563 			     p_cli->vf_total_lines);
1564 	}
1565 }
1566 
1567 /* ILT (PSWRQ2) PF */
1568 static void qed_ilt_init_pf(struct qed_hwfn *p_hwfn)
1569 {
1570 	struct qed_ilt_client_cfg *clients;
1571 	struct qed_cxt_mngr *p_mngr;
1572 	struct phys_mem_desc *p_shdw;
1573 	u32 line, rt_offst, i;
1574 
1575 	qed_ilt_bounds_init(p_hwfn);
1576 	qed_ilt_vf_bounds_init(p_hwfn);
1577 
1578 	p_mngr = p_hwfn->p_cxt_mngr;
1579 	p_shdw = p_mngr->ilt_shadow;
1580 	clients = p_hwfn->p_cxt_mngr->clients;
1581 
1582 	for_each_ilt_valid_client(i, clients) {
1583 		/** Client's 1st val and RT array are absolute, ILT shadows'
1584 		 *  lines are relative.
1585 		 */
1586 		line = clients[i].first.val - p_mngr->pf_start_line;
1587 		rt_offst = PSWRQ2_REG_ILT_MEMORY_RT_OFFSET +
1588 			   clients[i].first.val * ILT_ENTRY_IN_REGS;
1589 
1590 		for (; line <= clients[i].last.val - p_mngr->pf_start_line;
1591 		     line++, rt_offst += ILT_ENTRY_IN_REGS) {
1592 			u64 ilt_hw_entry = 0;
1593 
1594 			/** p_virt could be NULL incase of dynamic
1595 			 *  allocation
1596 			 */
1597 			if (p_shdw[line].virt_addr) {
1598 				SET_FIELD(ilt_hw_entry, ILT_ENTRY_VALID, 1ULL);
1599 				SET_FIELD(ilt_hw_entry, ILT_ENTRY_PHY_ADDR,
1600 					  (p_shdw[line].phys_addr >> 12));
1601 
1602 				DP_VERBOSE(p_hwfn, QED_MSG_ILT,
1603 					   "Setting RT[0x%08x] from ILT[0x%08x] [Client is %d] to Physical addr: 0x%llx\n",
1604 					   rt_offst, line, i,
1605 					   (u64)(p_shdw[line].phys_addr >> 12));
1606 			}
1607 
1608 			STORE_RT_REG_AGG(p_hwfn, rt_offst, ilt_hw_entry);
1609 		}
1610 	}
1611 }
1612 
1613 /* SRC (Searcher) PF */
1614 static void qed_src_init_pf(struct qed_hwfn *p_hwfn)
1615 {
1616 	struct qed_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1617 	u32 rounded_conn_num, conn_num, conn_max;
1618 	struct qed_src_iids src_iids;
1619 
1620 	memset(&src_iids, 0, sizeof(src_iids));
1621 	qed_cxt_src_iids(p_mngr, &src_iids);
1622 	conn_num = src_iids.pf_cids + src_iids.per_vf_cids * p_mngr->vf_count;
1623 	if (!conn_num)
1624 		return;
1625 
1626 	conn_max = max_t(u32, conn_num, SRC_MIN_NUM_ELEMS);
1627 	rounded_conn_num = roundup_pow_of_two(conn_max);
1628 
1629 	STORE_RT_REG(p_hwfn, SRC_REG_COUNTFREE_RT_OFFSET, conn_num);
1630 	STORE_RT_REG(p_hwfn, SRC_REG_NUMBER_HASH_BITS_RT_OFFSET,
1631 		     ilog2(rounded_conn_num));
1632 
1633 	STORE_RT_REG_AGG(p_hwfn, SRC_REG_FIRSTFREE_RT_OFFSET,
1634 			 p_hwfn->p_cxt_mngr->first_free);
1635 	STORE_RT_REG_AGG(p_hwfn, SRC_REG_LASTFREE_RT_OFFSET,
1636 			 p_hwfn->p_cxt_mngr->last_free);
1637 }
1638 
1639 /* Timers PF */
1640 #define TM_CFG_NUM_IDS_SHIFT            0
1641 #define TM_CFG_NUM_IDS_MASK             0xFFFFULL
1642 #define TM_CFG_PRE_SCAN_OFFSET_SHIFT    16
1643 #define TM_CFG_PRE_SCAN_OFFSET_MASK     0x1FFULL
1644 #define TM_CFG_PARENT_PF_SHIFT          25
1645 #define TM_CFG_PARENT_PF_MASK           0x7ULL
1646 
1647 #define TM_CFG_CID_PRE_SCAN_ROWS_SHIFT  30
1648 #define TM_CFG_CID_PRE_SCAN_ROWS_MASK   0x1FFULL
1649 
1650 #define TM_CFG_TID_OFFSET_SHIFT         30
1651 #define TM_CFG_TID_OFFSET_MASK          0x7FFFFULL
1652 #define TM_CFG_TID_PRE_SCAN_ROWS_SHIFT  49
1653 #define TM_CFG_TID_PRE_SCAN_ROWS_MASK   0x1FFULL
1654 
1655 static void qed_tm_init_pf(struct qed_hwfn *p_hwfn)
1656 {
1657 	struct qed_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1658 	u32 active_seg_mask = 0, tm_offset, rt_reg;
1659 	struct qed_tm_iids tm_iids;
1660 	u64 cfg_word;
1661 	u8 i;
1662 
1663 	memset(&tm_iids, 0, sizeof(tm_iids));
1664 	qed_cxt_tm_iids(p_hwfn, p_mngr, &tm_iids);
1665 
1666 	/* @@@TBD No pre-scan for now */
1667 
1668 	/* Note: We assume consecutive VFs for a PF */
1669 	for (i = 0; i < p_mngr->vf_count; i++) {
1670 		cfg_word = 0;
1671 		SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.per_vf_cids);
1672 		SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0);
1673 		SET_FIELD(cfg_word, TM_CFG_PARENT_PF, p_hwfn->rel_pf_id);
1674 		SET_FIELD(cfg_word, TM_CFG_CID_PRE_SCAN_ROWS, 0);
1675 		rt_reg = TM_REG_CONFIG_CONN_MEM_RT_OFFSET +
1676 		    (sizeof(cfg_word) / sizeof(u32)) *
1677 		    (p_hwfn->cdev->p_iov_info->first_vf_in_pf + i);
1678 		STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word);
1679 	}
1680 
1681 	cfg_word = 0;
1682 	SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.pf_cids);
1683 	SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0);
1684 	SET_FIELD(cfg_word, TM_CFG_PARENT_PF, 0);	/* n/a for PF */
1685 	SET_FIELD(cfg_word, TM_CFG_CID_PRE_SCAN_ROWS, 0);	/* scan all   */
1686 
1687 	rt_reg = TM_REG_CONFIG_CONN_MEM_RT_OFFSET +
1688 	    (sizeof(cfg_word) / sizeof(u32)) *
1689 	    (NUM_OF_VFS(p_hwfn->cdev) + p_hwfn->rel_pf_id);
1690 	STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word);
1691 
1692 	/* enale scan */
1693 	STORE_RT_REG(p_hwfn, TM_REG_PF_ENABLE_CONN_RT_OFFSET,
1694 		     tm_iids.pf_cids ? 0x1 : 0x0);
1695 
1696 	/* @@@TBD how to enable the scan for the VFs */
1697 
1698 	tm_offset = tm_iids.per_vf_cids;
1699 
1700 	/* Note: We assume consecutive VFs for a PF */
1701 	for (i = 0; i < p_mngr->vf_count; i++) {
1702 		cfg_word = 0;
1703 		SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.per_vf_tids);
1704 		SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0);
1705 		SET_FIELD(cfg_word, TM_CFG_PARENT_PF, p_hwfn->rel_pf_id);
1706 		SET_FIELD(cfg_word, TM_CFG_TID_OFFSET, tm_offset);
1707 		SET_FIELD(cfg_word, TM_CFG_TID_PRE_SCAN_ROWS, (u64) 0);
1708 
1709 		rt_reg = TM_REG_CONFIG_TASK_MEM_RT_OFFSET +
1710 		    (sizeof(cfg_word) / sizeof(u32)) *
1711 		    (p_hwfn->cdev->p_iov_info->first_vf_in_pf + i);
1712 
1713 		STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word);
1714 	}
1715 
1716 	tm_offset = tm_iids.pf_cids;
1717 	for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
1718 		cfg_word = 0;
1719 		SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.pf_tids[i]);
1720 		SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0);
1721 		SET_FIELD(cfg_word, TM_CFG_PARENT_PF, 0);
1722 		SET_FIELD(cfg_word, TM_CFG_TID_OFFSET, tm_offset);
1723 		SET_FIELD(cfg_word, TM_CFG_TID_PRE_SCAN_ROWS, (u64) 0);
1724 
1725 		rt_reg = TM_REG_CONFIG_TASK_MEM_RT_OFFSET +
1726 		    (sizeof(cfg_word) / sizeof(u32)) *
1727 		    (NUM_OF_VFS(p_hwfn->cdev) +
1728 		     p_hwfn->rel_pf_id * NUM_TASK_PF_SEGMENTS + i);
1729 
1730 		STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word);
1731 		active_seg_mask |= (tm_iids.pf_tids[i] ? BIT(i) : 0);
1732 
1733 		tm_offset += tm_iids.pf_tids[i];
1734 	}
1735 
1736 	if (QED_IS_RDMA_PERSONALITY(p_hwfn))
1737 		active_seg_mask = 0;
1738 
1739 	STORE_RT_REG(p_hwfn, TM_REG_PF_ENABLE_TASK_RT_OFFSET, active_seg_mask);
1740 
1741 	/* @@@TBD how to enable the scan for the VFs */
1742 }
1743 
1744 static void qed_prs_init_common(struct qed_hwfn *p_hwfn)
1745 {
1746 	if ((p_hwfn->hw_info.personality == QED_PCI_FCOE) &&
1747 	    p_hwfn->pf_params.fcoe_pf_params.is_target)
1748 		STORE_RT_REG(p_hwfn,
1749 			     PRS_REG_SEARCH_RESP_INITIATOR_TYPE_RT_OFFSET, 0);
1750 }
1751 
1752 static void qed_prs_init_pf(struct qed_hwfn *p_hwfn)
1753 {
1754 	struct qed_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1755 	struct qed_conn_type_cfg *p_fcoe;
1756 	struct qed_tid_seg *p_tid;
1757 
1758 	p_fcoe = &p_mngr->conn_cfg[PROTOCOLID_FCOE];
1759 
1760 	/* If FCoE is active set the MAX OX_ID (tid) in the Parser */
1761 	if (!p_fcoe->cid_count)
1762 		return;
1763 
1764 	p_tid = &p_fcoe->tid_seg[QED_CXT_FCOE_TID_SEG];
1765 	if (p_hwfn->pf_params.fcoe_pf_params.is_target) {
1766 		STORE_RT_REG_AGG(p_hwfn,
1767 				 PRS_REG_TASK_ID_MAX_TARGET_PF_RT_OFFSET,
1768 				 p_tid->count);
1769 	} else {
1770 		STORE_RT_REG_AGG(p_hwfn,
1771 				 PRS_REG_TASK_ID_MAX_INITIATOR_PF_RT_OFFSET,
1772 				 p_tid->count);
1773 	}
1774 }
1775 
1776 void qed_cxt_hw_init_common(struct qed_hwfn *p_hwfn)
1777 {
1778 	qed_cdu_init_common(p_hwfn);
1779 	qed_prs_init_common(p_hwfn);
1780 }
1781 
1782 void qed_cxt_hw_init_pf(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1783 {
1784 	qed_qm_init_pf(p_hwfn, p_ptt, true);
1785 	qed_cm_init_pf(p_hwfn);
1786 	qed_dq_init_pf(p_hwfn);
1787 	qed_cdu_init_pf(p_hwfn);
1788 	qed_ilt_init_pf(p_hwfn);
1789 	qed_src_init_pf(p_hwfn);
1790 	qed_tm_init_pf(p_hwfn);
1791 	qed_prs_init_pf(p_hwfn);
1792 }
1793 
1794 int _qed_cxt_acquire_cid(struct qed_hwfn *p_hwfn,
1795 			 enum protocol_type type, u32 *p_cid, u8 vfid)
1796 {
1797 	struct qed_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1798 	struct qed_cid_acquired_map *p_map;
1799 	u32 rel_cid;
1800 
1801 	if (type >= MAX_CONN_TYPES) {
1802 		DP_NOTICE(p_hwfn, "Invalid protocol type %d", type);
1803 		return -EINVAL;
1804 	}
1805 
1806 	if (vfid >= MAX_NUM_VFS && vfid != QED_CXT_PF_CID) {
1807 		DP_NOTICE(p_hwfn, "VF [%02x] is out of range\n", vfid);
1808 		return -EINVAL;
1809 	}
1810 
1811 	/* Determine the right map to take this CID from */
1812 	if (vfid == QED_CXT_PF_CID)
1813 		p_map = &p_mngr->acquired[type];
1814 	else
1815 		p_map = &p_mngr->acquired_vf[type][vfid];
1816 
1817 	if (!p_map->cid_map) {
1818 		DP_NOTICE(p_hwfn, "Invalid protocol type %d", type);
1819 		return -EINVAL;
1820 	}
1821 
1822 	rel_cid = find_first_zero_bit(p_map->cid_map, p_map->max_count);
1823 
1824 	if (rel_cid >= p_map->max_count) {
1825 		DP_NOTICE(p_hwfn, "no CID available for protocol %d\n", type);
1826 		return -EINVAL;
1827 	}
1828 
1829 	__set_bit(rel_cid, p_map->cid_map);
1830 
1831 	*p_cid = rel_cid + p_map->start_cid;
1832 
1833 	DP_VERBOSE(p_hwfn, QED_MSG_CXT,
1834 		   "Acquired cid 0x%08x [rel. %08x] vfid %02x type %d\n",
1835 		   *p_cid, rel_cid, vfid, type);
1836 
1837 	return 0;
1838 }
1839 
1840 int qed_cxt_acquire_cid(struct qed_hwfn *p_hwfn,
1841 			enum protocol_type type, u32 *p_cid)
1842 {
1843 	return _qed_cxt_acquire_cid(p_hwfn, type, p_cid, QED_CXT_PF_CID);
1844 }
1845 
1846 static bool qed_cxt_test_cid_acquired(struct qed_hwfn *p_hwfn,
1847 				      u32 cid,
1848 				      u8 vfid,
1849 				      enum protocol_type *p_type,
1850 				      struct qed_cid_acquired_map **pp_map)
1851 {
1852 	struct qed_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1853 	u32 rel_cid;
1854 
1855 	/* Iterate over protocols and find matching cid range */
1856 	for (*p_type = 0; *p_type < MAX_CONN_TYPES; (*p_type)++) {
1857 		if (vfid == QED_CXT_PF_CID)
1858 			*pp_map = &p_mngr->acquired[*p_type];
1859 		else
1860 			*pp_map = &p_mngr->acquired_vf[*p_type][vfid];
1861 
1862 		if (!((*pp_map)->cid_map))
1863 			continue;
1864 		if (cid >= (*pp_map)->start_cid &&
1865 		    cid < (*pp_map)->start_cid + (*pp_map)->max_count)
1866 			break;
1867 	}
1868 
1869 	if (*p_type == MAX_CONN_TYPES) {
1870 		DP_NOTICE(p_hwfn, "Invalid CID %d vfid %02x", cid, vfid);
1871 		goto fail;
1872 	}
1873 
1874 	rel_cid = cid - (*pp_map)->start_cid;
1875 	if (!test_bit(rel_cid, (*pp_map)->cid_map)) {
1876 		DP_NOTICE(p_hwfn, "CID %d [vifd %02x] not acquired",
1877 			  cid, vfid);
1878 		goto fail;
1879 	}
1880 
1881 	return true;
1882 fail:
1883 	*p_type = MAX_CONN_TYPES;
1884 	*pp_map = NULL;
1885 	return false;
1886 }
1887 
1888 void _qed_cxt_release_cid(struct qed_hwfn *p_hwfn, u32 cid, u8 vfid)
1889 {
1890 	struct qed_cid_acquired_map *p_map = NULL;
1891 	enum protocol_type type;
1892 	bool b_acquired;
1893 	u32 rel_cid;
1894 
1895 	if (vfid != QED_CXT_PF_CID && vfid > MAX_NUM_VFS) {
1896 		DP_NOTICE(p_hwfn,
1897 			  "Trying to return incorrect CID belonging to VF %02x\n",
1898 			  vfid);
1899 		return;
1900 	}
1901 
1902 	/* Test acquired and find matching per-protocol map */
1903 	b_acquired = qed_cxt_test_cid_acquired(p_hwfn, cid, vfid,
1904 					       &type, &p_map);
1905 
1906 	if (!b_acquired)
1907 		return;
1908 
1909 	rel_cid = cid - p_map->start_cid;
1910 	clear_bit(rel_cid, p_map->cid_map);
1911 
1912 	DP_VERBOSE(p_hwfn, QED_MSG_CXT,
1913 		   "Released CID 0x%08x [rel. %08x] vfid %02x type %d\n",
1914 		   cid, rel_cid, vfid, type);
1915 }
1916 
1917 void qed_cxt_release_cid(struct qed_hwfn *p_hwfn, u32 cid)
1918 {
1919 	_qed_cxt_release_cid(p_hwfn, cid, QED_CXT_PF_CID);
1920 }
1921 
1922 int qed_cxt_get_cid_info(struct qed_hwfn *p_hwfn, struct qed_cxt_info *p_info)
1923 {
1924 	struct qed_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1925 	struct qed_cid_acquired_map *p_map = NULL;
1926 	u32 conn_cxt_size, hw_p_size, cxts_per_p, line;
1927 	enum protocol_type type;
1928 	bool b_acquired;
1929 
1930 	/* Test acquired and find matching per-protocol map */
1931 	b_acquired = qed_cxt_test_cid_acquired(p_hwfn, p_info->iid,
1932 					       QED_CXT_PF_CID, &type, &p_map);
1933 
1934 	if (!b_acquired)
1935 		return -EINVAL;
1936 
1937 	/* set the protocl type */
1938 	p_info->type = type;
1939 
1940 	/* compute context virtual pointer */
1941 	hw_p_size = p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC].p_size.val;
1942 
1943 	conn_cxt_size = CONN_CXT_SIZE(p_hwfn);
1944 	cxts_per_p = ILT_PAGE_IN_BYTES(hw_p_size) / conn_cxt_size;
1945 	line = p_info->iid / cxts_per_p;
1946 
1947 	/* Make sure context is allocated (dynamic allocation) */
1948 	if (!p_mngr->ilt_shadow[line].virt_addr)
1949 		return -EINVAL;
1950 
1951 	p_info->p_cxt = p_mngr->ilt_shadow[line].virt_addr +
1952 			p_info->iid % cxts_per_p * conn_cxt_size;
1953 
1954 	DP_VERBOSE(p_hwfn, (QED_MSG_ILT | QED_MSG_CXT),
1955 		   "Accessing ILT shadow[%d]: CXT pointer is at %p (for iid %d)\n",
1956 		   p_info->iid / cxts_per_p, p_info->p_cxt, p_info->iid);
1957 
1958 	return 0;
1959 }
1960 
1961 static void qed_rdma_set_pf_params(struct qed_hwfn *p_hwfn,
1962 				   struct qed_rdma_pf_params *p_params,
1963 				   u32 num_tasks)
1964 {
1965 	u32 num_cons, num_qps, num_srqs;
1966 	enum protocol_type proto;
1967 
1968 	num_srqs = min_t(u32, QED_RDMA_MAX_SRQS, p_params->num_srqs);
1969 
1970 	if (p_hwfn->mcp_info->func_info.protocol == QED_PCI_ETH_RDMA) {
1971 		DP_NOTICE(p_hwfn,
1972 			  "Current day drivers don't support RoCE & iWARP simultaneously on the same PF. Default to RoCE-only\n");
1973 		p_hwfn->hw_info.personality = QED_PCI_ETH_ROCE;
1974 	}
1975 
1976 	switch (p_hwfn->hw_info.personality) {
1977 	case QED_PCI_ETH_IWARP:
1978 		/* Each QP requires one connection */
1979 		num_cons = min_t(u32, IWARP_MAX_QPS, p_params->num_qps);
1980 		proto = PROTOCOLID_IWARP;
1981 		break;
1982 	case QED_PCI_ETH_ROCE:
1983 		num_qps = min_t(u32, ROCE_MAX_QPS, p_params->num_qps);
1984 		num_cons = num_qps * 2;	/* each QP requires two connections */
1985 		proto = PROTOCOLID_ROCE;
1986 		break;
1987 	default:
1988 		return;
1989 	}
1990 
1991 	if (num_cons && num_tasks) {
1992 		qed_cxt_set_proto_cid_count(p_hwfn, proto, num_cons, 0);
1993 
1994 		/* Deliberatly passing ROCE for tasks id. This is because
1995 		 * iWARP / RoCE share the task id.
1996 		 */
1997 		qed_cxt_set_proto_tid_count(p_hwfn, PROTOCOLID_ROCE,
1998 					    QED_CXT_ROCE_TID_SEG, 1,
1999 					    num_tasks, false);
2000 		qed_cxt_set_srq_count(p_hwfn, num_srqs);
2001 	} else {
2002 		DP_INFO(p_hwfn->cdev,
2003 			"RDMA personality used without setting params!\n");
2004 	}
2005 }
2006 
2007 int qed_cxt_set_pf_params(struct qed_hwfn *p_hwfn, u32 rdma_tasks)
2008 {
2009 	/* Set the number of required CORE connections */
2010 	u32 core_cids = 1; /* SPQ */
2011 
2012 	if (p_hwfn->using_ll2)
2013 		core_cids += 4;
2014 	qed_cxt_set_proto_cid_count(p_hwfn, PROTOCOLID_CORE, core_cids, 0);
2015 
2016 	switch (p_hwfn->hw_info.personality) {
2017 	case QED_PCI_ETH_RDMA:
2018 	case QED_PCI_ETH_IWARP:
2019 	case QED_PCI_ETH_ROCE:
2020 	{
2021 			qed_rdma_set_pf_params(p_hwfn,
2022 					       &p_hwfn->
2023 					       pf_params.rdma_pf_params,
2024 					       rdma_tasks);
2025 		/* no need for break since RoCE coexist with Ethernet */
2026 	}
2027 	/* fall through */
2028 	case QED_PCI_ETH:
2029 	{
2030 		struct qed_eth_pf_params *p_params =
2031 		    &p_hwfn->pf_params.eth_pf_params;
2032 
2033 		if (!p_params->num_vf_cons)
2034 			p_params->num_vf_cons =
2035 			    ETH_PF_PARAMS_VF_CONS_DEFAULT;
2036 		qed_cxt_set_proto_cid_count(p_hwfn, PROTOCOLID_ETH,
2037 					    p_params->num_cons,
2038 					    p_params->num_vf_cons);
2039 		p_hwfn->p_cxt_mngr->arfs_count = p_params->num_arfs_filters;
2040 		break;
2041 	}
2042 	case QED_PCI_FCOE:
2043 	{
2044 		struct qed_fcoe_pf_params *p_params;
2045 
2046 		p_params = &p_hwfn->pf_params.fcoe_pf_params;
2047 
2048 		if (p_params->num_cons && p_params->num_tasks) {
2049 			qed_cxt_set_proto_cid_count(p_hwfn,
2050 						    PROTOCOLID_FCOE,
2051 						    p_params->num_cons,
2052 						    0);
2053 
2054 			qed_cxt_set_proto_tid_count(p_hwfn, PROTOCOLID_FCOE,
2055 						    QED_CXT_FCOE_TID_SEG, 0,
2056 						    p_params->num_tasks, true);
2057 		} else {
2058 			DP_INFO(p_hwfn->cdev,
2059 				"Fcoe personality used without setting params!\n");
2060 		}
2061 		break;
2062 	}
2063 	case QED_PCI_ISCSI:
2064 	{
2065 		struct qed_iscsi_pf_params *p_params;
2066 
2067 		p_params = &p_hwfn->pf_params.iscsi_pf_params;
2068 
2069 		if (p_params->num_cons && p_params->num_tasks) {
2070 			qed_cxt_set_proto_cid_count(p_hwfn,
2071 						    PROTOCOLID_ISCSI,
2072 						    p_params->num_cons,
2073 						    0);
2074 
2075 			qed_cxt_set_proto_tid_count(p_hwfn,
2076 						    PROTOCOLID_ISCSI,
2077 						    QED_CXT_ISCSI_TID_SEG,
2078 						    0,
2079 						    p_params->num_tasks,
2080 						    true);
2081 		} else {
2082 			DP_INFO(p_hwfn->cdev,
2083 				"Iscsi personality used without setting params!\n");
2084 		}
2085 		break;
2086 	}
2087 	default:
2088 		return -EINVAL;
2089 	}
2090 
2091 	return 0;
2092 }
2093 
2094 int qed_cxt_get_tid_mem_info(struct qed_hwfn *p_hwfn,
2095 			     struct qed_tid_mem *p_info)
2096 {
2097 	struct qed_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
2098 	u32 proto, seg, total_lines, i, shadow_line;
2099 	struct qed_ilt_client_cfg *p_cli;
2100 	struct qed_ilt_cli_blk *p_fl_seg;
2101 	struct qed_tid_seg *p_seg_info;
2102 
2103 	/* Verify the personality */
2104 	switch (p_hwfn->hw_info.personality) {
2105 	case QED_PCI_FCOE:
2106 		proto = PROTOCOLID_FCOE;
2107 		seg = QED_CXT_FCOE_TID_SEG;
2108 		break;
2109 	case QED_PCI_ISCSI:
2110 		proto = PROTOCOLID_ISCSI;
2111 		seg = QED_CXT_ISCSI_TID_SEG;
2112 		break;
2113 	default:
2114 		return -EINVAL;
2115 	}
2116 
2117 	p_cli = &p_mngr->clients[ILT_CLI_CDUT];
2118 	if (!p_cli->active)
2119 		return -EINVAL;
2120 
2121 	p_seg_info = &p_mngr->conn_cfg[proto].tid_seg[seg];
2122 	if (!p_seg_info->has_fl_mem)
2123 		return -EINVAL;
2124 
2125 	p_fl_seg = &p_cli->pf_blks[CDUT_FL_SEG_BLK(seg, PF)];
2126 	total_lines = DIV_ROUND_UP(p_fl_seg->total_size,
2127 				   p_fl_seg->real_size_in_page);
2128 
2129 	for (i = 0; i < total_lines; i++) {
2130 		shadow_line = i + p_fl_seg->start_line -
2131 		    p_hwfn->p_cxt_mngr->pf_start_line;
2132 		p_info->blocks[i] = p_mngr->ilt_shadow[shadow_line].virt_addr;
2133 	}
2134 	p_info->waste = ILT_PAGE_IN_BYTES(p_cli->p_size.val) -
2135 	    p_fl_seg->real_size_in_page;
2136 	p_info->tid_size = p_mngr->task_type_size[p_seg_info->type];
2137 	p_info->num_tids_per_block = p_fl_seg->real_size_in_page /
2138 	    p_info->tid_size;
2139 
2140 	return 0;
2141 }
2142 
2143 /* This function is very RoCE oriented, if another protocol in the future
2144  * will want this feature we'll need to modify the function to be more generic
2145  */
2146 int
2147 qed_cxt_dynamic_ilt_alloc(struct qed_hwfn *p_hwfn,
2148 			  enum qed_cxt_elem_type elem_type, u32 iid)
2149 {
2150 	u32 reg_offset, shadow_line, elem_size, hw_p_size, elems_per_p, line;
2151 	struct qed_ilt_client_cfg *p_cli;
2152 	struct qed_ilt_cli_blk *p_blk;
2153 	struct qed_ptt *p_ptt;
2154 	dma_addr_t p_phys;
2155 	u64 ilt_hw_entry;
2156 	void *p_virt;
2157 	int rc = 0;
2158 
2159 	switch (elem_type) {
2160 	case QED_ELEM_CXT:
2161 		p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC];
2162 		elem_size = CONN_CXT_SIZE(p_hwfn);
2163 		p_blk = &p_cli->pf_blks[CDUC_BLK];
2164 		break;
2165 	case QED_ELEM_SRQ:
2166 		p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_TSDM];
2167 		elem_size = SRQ_CXT_SIZE;
2168 		p_blk = &p_cli->pf_blks[SRQ_BLK];
2169 		break;
2170 	case QED_ELEM_TASK:
2171 		p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT];
2172 		elem_size = TYPE1_TASK_CXT_SIZE(p_hwfn);
2173 		p_blk = &p_cli->pf_blks[CDUT_SEG_BLK(QED_CXT_ROCE_TID_SEG)];
2174 		break;
2175 	default:
2176 		DP_NOTICE(p_hwfn, "-EINVALID elem type = %d", elem_type);
2177 		return -EINVAL;
2178 	}
2179 
2180 	/* Calculate line in ilt */
2181 	hw_p_size = p_cli->p_size.val;
2182 	elems_per_p = ILT_PAGE_IN_BYTES(hw_p_size) / elem_size;
2183 	line = p_blk->start_line + (iid / elems_per_p);
2184 	shadow_line = line - p_hwfn->p_cxt_mngr->pf_start_line;
2185 
2186 	/* If line is already allocated, do nothing, otherwise allocate it and
2187 	 * write it to the PSWRQ2 registers.
2188 	 * This section can be run in parallel from different contexts and thus
2189 	 * a mutex protection is needed.
2190 	 */
2191 
2192 	mutex_lock(&p_hwfn->p_cxt_mngr->mutex);
2193 
2194 	if (p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].virt_addr)
2195 		goto out0;
2196 
2197 	p_ptt = qed_ptt_acquire(p_hwfn);
2198 	if (!p_ptt) {
2199 		DP_NOTICE(p_hwfn,
2200 			  "QED_TIME_OUT on ptt acquire - dynamic allocation");
2201 		rc = -EBUSY;
2202 		goto out0;
2203 	}
2204 
2205 	p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
2206 				    p_blk->real_size_in_page, &p_phys,
2207 				    GFP_KERNEL);
2208 	if (!p_virt) {
2209 		rc = -ENOMEM;
2210 		goto out1;
2211 	}
2212 
2213 	/* configuration of refTagMask to 0xF is required for RoCE DIF MR only,
2214 	 * to compensate for a HW bug, but it is configured even if DIF is not
2215 	 * enabled. This is harmless and allows us to avoid a dedicated API. We
2216 	 * configure the field for all of the contexts on the newly allocated
2217 	 * page.
2218 	 */
2219 	if (elem_type == QED_ELEM_TASK) {
2220 		u32 elem_i;
2221 		u8 *elem_start = (u8 *)p_virt;
2222 		union type1_task_context *elem;
2223 
2224 		for (elem_i = 0; elem_i < elems_per_p; elem_i++) {
2225 			elem = (union type1_task_context *)elem_start;
2226 			SET_FIELD(elem->roce_ctx.tdif_context.flags1,
2227 				  TDIF_TASK_CONTEXT_REF_TAG_MASK, 0xf);
2228 			elem_start += TYPE1_TASK_CXT_SIZE(p_hwfn);
2229 		}
2230 	}
2231 
2232 	p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].virt_addr = p_virt;
2233 	p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].phys_addr = p_phys;
2234 	p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].size =
2235 	    p_blk->real_size_in_page;
2236 
2237 	/* compute absolute offset */
2238 	reg_offset = PSWRQ2_REG_ILT_MEMORY +
2239 	    (line * ILT_REG_SIZE_IN_BYTES * ILT_ENTRY_IN_REGS);
2240 
2241 	ilt_hw_entry = 0;
2242 	SET_FIELD(ilt_hw_entry, ILT_ENTRY_VALID, 1ULL);
2243 	SET_FIELD(ilt_hw_entry, ILT_ENTRY_PHY_ADDR,
2244 		  (p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].phys_addr
2245 		   >> 12));
2246 
2247 	/* Write via DMAE since the PSWRQ2_REG_ILT_MEMORY line is a wide-bus */
2248 	qed_dmae_host2grc(p_hwfn, p_ptt, (u64) (uintptr_t)&ilt_hw_entry,
2249 			  reg_offset, sizeof(ilt_hw_entry) / sizeof(u32),
2250 			  NULL);
2251 
2252 	if (elem_type == QED_ELEM_CXT) {
2253 		u32 last_cid_allocated = (1 + (iid / elems_per_p)) *
2254 		    elems_per_p;
2255 
2256 		/* Update the relevant register in the parser */
2257 		qed_wr(p_hwfn, p_ptt, PRS_REG_ROCE_DEST_QP_MAX_PF,
2258 		       last_cid_allocated - 1);
2259 
2260 		if (!p_hwfn->b_rdma_enabled_in_prs) {
2261 			/* Enable RDMA search */
2262 			qed_wr(p_hwfn, p_ptt, p_hwfn->rdma_prs_search_reg, 1);
2263 			p_hwfn->b_rdma_enabled_in_prs = true;
2264 		}
2265 	}
2266 
2267 out1:
2268 	qed_ptt_release(p_hwfn, p_ptt);
2269 out0:
2270 	mutex_unlock(&p_hwfn->p_cxt_mngr->mutex);
2271 
2272 	return rc;
2273 }
2274 
2275 /* This function is very RoCE oriented, if another protocol in the future
2276  * will want this feature we'll need to modify the function to be more generic
2277  */
2278 static int
2279 qed_cxt_free_ilt_range(struct qed_hwfn *p_hwfn,
2280 		       enum qed_cxt_elem_type elem_type,
2281 		       u32 start_iid, u32 count)
2282 {
2283 	u32 start_line, end_line, shadow_start_line, shadow_end_line;
2284 	u32 reg_offset, elem_size, hw_p_size, elems_per_p;
2285 	struct qed_ilt_client_cfg *p_cli;
2286 	struct qed_ilt_cli_blk *p_blk;
2287 	u32 end_iid = start_iid + count;
2288 	struct qed_ptt *p_ptt;
2289 	u64 ilt_hw_entry = 0;
2290 	u32 i;
2291 
2292 	switch (elem_type) {
2293 	case QED_ELEM_CXT:
2294 		p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC];
2295 		elem_size = CONN_CXT_SIZE(p_hwfn);
2296 		p_blk = &p_cli->pf_blks[CDUC_BLK];
2297 		break;
2298 	case QED_ELEM_SRQ:
2299 		p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_TSDM];
2300 		elem_size = SRQ_CXT_SIZE;
2301 		p_blk = &p_cli->pf_blks[SRQ_BLK];
2302 		break;
2303 	case QED_ELEM_TASK:
2304 		p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT];
2305 		elem_size = TYPE1_TASK_CXT_SIZE(p_hwfn);
2306 		p_blk = &p_cli->pf_blks[CDUT_SEG_BLK(QED_CXT_ROCE_TID_SEG)];
2307 		break;
2308 	default:
2309 		DP_NOTICE(p_hwfn, "-EINVALID elem type = %d", elem_type);
2310 		return -EINVAL;
2311 	}
2312 
2313 	/* Calculate line in ilt */
2314 	hw_p_size = p_cli->p_size.val;
2315 	elems_per_p = ILT_PAGE_IN_BYTES(hw_p_size) / elem_size;
2316 	start_line = p_blk->start_line + (start_iid / elems_per_p);
2317 	end_line = p_blk->start_line + (end_iid / elems_per_p);
2318 	if (((end_iid + 1) / elems_per_p) != (end_iid / elems_per_p))
2319 		end_line--;
2320 
2321 	shadow_start_line = start_line - p_hwfn->p_cxt_mngr->pf_start_line;
2322 	shadow_end_line = end_line - p_hwfn->p_cxt_mngr->pf_start_line;
2323 
2324 	p_ptt = qed_ptt_acquire(p_hwfn);
2325 	if (!p_ptt) {
2326 		DP_NOTICE(p_hwfn,
2327 			  "QED_TIME_OUT on ptt acquire - dynamic allocation");
2328 		return -EBUSY;
2329 	}
2330 
2331 	for (i = shadow_start_line; i < shadow_end_line; i++) {
2332 		if (!p_hwfn->p_cxt_mngr->ilt_shadow[i].virt_addr)
2333 			continue;
2334 
2335 		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
2336 				  p_hwfn->p_cxt_mngr->ilt_shadow[i].size,
2337 				  p_hwfn->p_cxt_mngr->ilt_shadow[i].virt_addr,
2338 				  p_hwfn->p_cxt_mngr->ilt_shadow[i].phys_addr);
2339 
2340 		p_hwfn->p_cxt_mngr->ilt_shadow[i].virt_addr = NULL;
2341 		p_hwfn->p_cxt_mngr->ilt_shadow[i].phys_addr = 0;
2342 		p_hwfn->p_cxt_mngr->ilt_shadow[i].size = 0;
2343 
2344 		/* compute absolute offset */
2345 		reg_offset = PSWRQ2_REG_ILT_MEMORY +
2346 		    ((start_line++) * ILT_REG_SIZE_IN_BYTES *
2347 		     ILT_ENTRY_IN_REGS);
2348 
2349 		/* Write via DMAE since the PSWRQ2_REG_ILT_MEMORY line is a
2350 		 * wide-bus.
2351 		 */
2352 		qed_dmae_host2grc(p_hwfn, p_ptt,
2353 				  (u64) (uintptr_t) &ilt_hw_entry,
2354 				  reg_offset,
2355 				  sizeof(ilt_hw_entry) / sizeof(u32),
2356 				  NULL);
2357 	}
2358 
2359 	qed_ptt_release(p_hwfn, p_ptt);
2360 
2361 	return 0;
2362 }
2363 
2364 int qed_cxt_free_proto_ilt(struct qed_hwfn *p_hwfn, enum protocol_type proto)
2365 {
2366 	int rc;
2367 	u32 cid;
2368 
2369 	/* Free Connection CXT */
2370 	rc = qed_cxt_free_ilt_range(p_hwfn, QED_ELEM_CXT,
2371 				    qed_cxt_get_proto_cid_start(p_hwfn,
2372 								proto),
2373 				    qed_cxt_get_proto_cid_count(p_hwfn,
2374 								proto, &cid));
2375 
2376 	if (rc)
2377 		return rc;
2378 
2379 	/* Free Task CXT ( Intentionally RoCE as task-id is shared between
2380 	 * RoCE and iWARP )
2381 	 */
2382 	proto = PROTOCOLID_ROCE;
2383 	rc = qed_cxt_free_ilt_range(p_hwfn, QED_ELEM_TASK, 0,
2384 				    qed_cxt_get_proto_tid_count(p_hwfn, proto));
2385 	if (rc)
2386 		return rc;
2387 
2388 	/* Free TSDM CXT */
2389 	rc = qed_cxt_free_ilt_range(p_hwfn, QED_ELEM_SRQ, 0,
2390 				    qed_cxt_get_srq_count(p_hwfn));
2391 
2392 	return rc;
2393 }
2394 
2395 int qed_cxt_get_task_ctx(struct qed_hwfn *p_hwfn,
2396 			 u32 tid, u8 ctx_type, void **pp_task_ctx)
2397 {
2398 	struct qed_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
2399 	struct qed_ilt_client_cfg *p_cli;
2400 	struct qed_tid_seg *p_seg_info;
2401 	struct qed_ilt_cli_blk *p_seg;
2402 	u32 num_tids_per_block;
2403 	u32 tid_size, ilt_idx;
2404 	u32 total_lines;
2405 	u32 proto, seg;
2406 
2407 	/* Verify the personality */
2408 	switch (p_hwfn->hw_info.personality) {
2409 	case QED_PCI_FCOE:
2410 		proto = PROTOCOLID_FCOE;
2411 		seg = QED_CXT_FCOE_TID_SEG;
2412 		break;
2413 	case QED_PCI_ISCSI:
2414 		proto = PROTOCOLID_ISCSI;
2415 		seg = QED_CXT_ISCSI_TID_SEG;
2416 		break;
2417 	default:
2418 		return -EINVAL;
2419 	}
2420 
2421 	p_cli = &p_mngr->clients[ILT_CLI_CDUT];
2422 	if (!p_cli->active)
2423 		return -EINVAL;
2424 
2425 	p_seg_info = &p_mngr->conn_cfg[proto].tid_seg[seg];
2426 
2427 	if (ctx_type == QED_CTX_WORKING_MEM) {
2428 		p_seg = &p_cli->pf_blks[CDUT_SEG_BLK(seg)];
2429 	} else if (ctx_type == QED_CTX_FL_MEM) {
2430 		if (!p_seg_info->has_fl_mem)
2431 			return -EINVAL;
2432 		p_seg = &p_cli->pf_blks[CDUT_FL_SEG_BLK(seg, PF)];
2433 	} else {
2434 		return -EINVAL;
2435 	}
2436 	total_lines = DIV_ROUND_UP(p_seg->total_size, p_seg->real_size_in_page);
2437 	tid_size = p_mngr->task_type_size[p_seg_info->type];
2438 	num_tids_per_block = p_seg->real_size_in_page / tid_size;
2439 
2440 	if (total_lines < tid / num_tids_per_block)
2441 		return -EINVAL;
2442 
2443 	ilt_idx = tid / num_tids_per_block + p_seg->start_line -
2444 		  p_mngr->pf_start_line;
2445 	*pp_task_ctx = (u8 *)p_mngr->ilt_shadow[ilt_idx].virt_addr +
2446 		       (tid % num_tids_per_block) * tid_size;
2447 
2448 	return 0;
2449 }
2450 
2451 static u16 qed_blk_calculate_pages(struct qed_ilt_cli_blk *p_blk)
2452 {
2453 	if (p_blk->real_size_in_page == 0)
2454 		return 0;
2455 
2456 	return DIV_ROUND_UP(p_blk->total_size, p_blk->real_size_in_page);
2457 }
2458 
2459 u16 qed_get_cdut_num_pf_init_pages(struct qed_hwfn *p_hwfn)
2460 {
2461 	struct qed_ilt_client_cfg *p_cli;
2462 	struct qed_ilt_cli_blk *p_blk;
2463 	u16 i, pages = 0;
2464 
2465 	p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT];
2466 	for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
2467 		p_blk = &p_cli->pf_blks[CDUT_FL_SEG_BLK(i, PF)];
2468 		pages += qed_blk_calculate_pages(p_blk);
2469 	}
2470 
2471 	return pages;
2472 }
2473 
2474 u16 qed_get_cdut_num_vf_init_pages(struct qed_hwfn *p_hwfn)
2475 {
2476 	struct qed_ilt_client_cfg *p_cli;
2477 	struct qed_ilt_cli_blk *p_blk;
2478 	u16 i, pages = 0;
2479 
2480 	p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT];
2481 	for (i = 0; i < NUM_TASK_VF_SEGMENTS; i++) {
2482 		p_blk = &p_cli->vf_blks[CDUT_FL_SEG_BLK(i, VF)];
2483 		pages += qed_blk_calculate_pages(p_blk);
2484 	}
2485 
2486 	return pages;
2487 }
2488 
2489 u16 qed_get_cdut_num_pf_work_pages(struct qed_hwfn *p_hwfn)
2490 {
2491 	struct qed_ilt_client_cfg *p_cli;
2492 	struct qed_ilt_cli_blk *p_blk;
2493 	u16 i, pages = 0;
2494 
2495 	p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT];
2496 	for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
2497 		p_blk = &p_cli->pf_blks[CDUT_SEG_BLK(i)];
2498 		pages += qed_blk_calculate_pages(p_blk);
2499 	}
2500 
2501 	return pages;
2502 }
2503 
2504 u16 qed_get_cdut_num_vf_work_pages(struct qed_hwfn *p_hwfn)
2505 {
2506 	struct qed_ilt_client_cfg *p_cli;
2507 	struct qed_ilt_cli_blk *p_blk;
2508 	u16 pages = 0, i;
2509 
2510 	p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT];
2511 	for (i = 0; i < NUM_TASK_VF_SEGMENTS; i++) {
2512 		p_blk = &p_cli->vf_blks[CDUT_SEG_BLK(i)];
2513 		pages += qed_blk_calculate_pages(p_blk);
2514 	}
2515 
2516 	return pages;
2517 }
2518