xref: /linux/drivers/net/ethernet/qlogic/qed/qed_hw.c (revision 44f57d78)
1 /* QLogic qed NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <linux/types.h>
34 #include <linux/io.h>
35 #include <linux/delay.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/errno.h>
38 #include <linux/kernel.h>
39 #include <linux/list.h>
40 #include <linux/mutex.h>
41 #include <linux/pci.h>
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/string.h>
45 #include <linux/qed/qed_chain.h>
46 #include "qed.h"
47 #include "qed_hsi.h"
48 #include "qed_hw.h"
49 #include "qed_reg_addr.h"
50 #include "qed_sriov.h"
51 
52 #define QED_BAR_ACQUIRE_TIMEOUT 1000
53 
54 /* Invalid values */
55 #define QED_BAR_INVALID_OFFSET          (cpu_to_le32(-1))
56 
57 struct qed_ptt {
58 	struct list_head	list_entry;
59 	unsigned int		idx;
60 	struct pxp_ptt_entry	pxp;
61 	u8			hwfn_id;
62 };
63 
64 struct qed_ptt_pool {
65 	struct list_head	free_list;
66 	spinlock_t		lock; /* ptt synchronized access */
67 	struct qed_ptt		ptts[PXP_EXTERNAL_BAR_PF_WINDOW_NUM];
68 };
69 
70 int qed_ptt_pool_alloc(struct qed_hwfn *p_hwfn)
71 {
72 	struct qed_ptt_pool *p_pool = kmalloc(sizeof(*p_pool), GFP_KERNEL);
73 	int i;
74 
75 	if (!p_pool)
76 		return -ENOMEM;
77 
78 	INIT_LIST_HEAD(&p_pool->free_list);
79 	for (i = 0; i < PXP_EXTERNAL_BAR_PF_WINDOW_NUM; i++) {
80 		p_pool->ptts[i].idx = i;
81 		p_pool->ptts[i].pxp.offset = QED_BAR_INVALID_OFFSET;
82 		p_pool->ptts[i].pxp.pretend.control = 0;
83 		p_pool->ptts[i].hwfn_id = p_hwfn->my_id;
84 		if (i >= RESERVED_PTT_MAX)
85 			list_add(&p_pool->ptts[i].list_entry,
86 				 &p_pool->free_list);
87 	}
88 
89 	p_hwfn->p_ptt_pool = p_pool;
90 	spin_lock_init(&p_pool->lock);
91 
92 	return 0;
93 }
94 
95 void qed_ptt_invalidate(struct qed_hwfn *p_hwfn)
96 {
97 	struct qed_ptt *p_ptt;
98 	int i;
99 
100 	for (i = 0; i < PXP_EXTERNAL_BAR_PF_WINDOW_NUM; i++) {
101 		p_ptt = &p_hwfn->p_ptt_pool->ptts[i];
102 		p_ptt->pxp.offset = QED_BAR_INVALID_OFFSET;
103 	}
104 }
105 
106 void qed_ptt_pool_free(struct qed_hwfn *p_hwfn)
107 {
108 	kfree(p_hwfn->p_ptt_pool);
109 	p_hwfn->p_ptt_pool = NULL;
110 }
111 
112 struct qed_ptt *qed_ptt_acquire(struct qed_hwfn *p_hwfn)
113 {
114 	struct qed_ptt *p_ptt;
115 	unsigned int i;
116 
117 	/* Take the free PTT from the list */
118 	for (i = 0; i < QED_BAR_ACQUIRE_TIMEOUT; i++) {
119 		spin_lock_bh(&p_hwfn->p_ptt_pool->lock);
120 
121 		if (!list_empty(&p_hwfn->p_ptt_pool->free_list)) {
122 			p_ptt = list_first_entry(&p_hwfn->p_ptt_pool->free_list,
123 						 struct qed_ptt, list_entry);
124 			list_del(&p_ptt->list_entry);
125 
126 			spin_unlock_bh(&p_hwfn->p_ptt_pool->lock);
127 
128 			DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
129 				   "allocated ptt %d\n", p_ptt->idx);
130 			return p_ptt;
131 		}
132 
133 		spin_unlock_bh(&p_hwfn->p_ptt_pool->lock);
134 		usleep_range(1000, 2000);
135 	}
136 
137 	DP_NOTICE(p_hwfn, "PTT acquire timeout - failed to allocate PTT\n");
138 	return NULL;
139 }
140 
141 void qed_ptt_release(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
142 {
143 	spin_lock_bh(&p_hwfn->p_ptt_pool->lock);
144 	list_add(&p_ptt->list_entry, &p_hwfn->p_ptt_pool->free_list);
145 	spin_unlock_bh(&p_hwfn->p_ptt_pool->lock);
146 }
147 
148 u32 qed_ptt_get_hw_addr(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
149 {
150 	/* The HW is using DWORDS and we need to translate it to Bytes */
151 	return le32_to_cpu(p_ptt->pxp.offset) << 2;
152 }
153 
154 static u32 qed_ptt_config_addr(struct qed_ptt *p_ptt)
155 {
156 	return PXP_PF_WINDOW_ADMIN_PER_PF_START +
157 	       p_ptt->idx * sizeof(struct pxp_ptt_entry);
158 }
159 
160 u32 qed_ptt_get_bar_addr(struct qed_ptt *p_ptt)
161 {
162 	return PXP_EXTERNAL_BAR_PF_WINDOW_START +
163 	       p_ptt->idx * PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE;
164 }
165 
166 void qed_ptt_set_win(struct qed_hwfn *p_hwfn,
167 		     struct qed_ptt *p_ptt, u32 new_hw_addr)
168 {
169 	u32 prev_hw_addr;
170 
171 	prev_hw_addr = qed_ptt_get_hw_addr(p_hwfn, p_ptt);
172 
173 	if (new_hw_addr == prev_hw_addr)
174 		return;
175 
176 	/* Update PTT entery in admin window */
177 	DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
178 		   "Updating PTT entry %d to offset 0x%x\n",
179 		   p_ptt->idx, new_hw_addr);
180 
181 	/* The HW is using DWORDS and the address is in Bytes */
182 	p_ptt->pxp.offset = cpu_to_le32(new_hw_addr >> 2);
183 
184 	REG_WR(p_hwfn,
185 	       qed_ptt_config_addr(p_ptt) +
186 	       offsetof(struct pxp_ptt_entry, offset),
187 	       le32_to_cpu(p_ptt->pxp.offset));
188 }
189 
190 static u32 qed_set_ptt(struct qed_hwfn *p_hwfn,
191 		       struct qed_ptt *p_ptt, u32 hw_addr)
192 {
193 	u32 win_hw_addr = qed_ptt_get_hw_addr(p_hwfn, p_ptt);
194 	u32 offset;
195 
196 	offset = hw_addr - win_hw_addr;
197 
198 	if (p_ptt->hwfn_id != p_hwfn->my_id)
199 		DP_NOTICE(p_hwfn,
200 			  "ptt[%d] of hwfn[%02x] is used by hwfn[%02x]!\n",
201 			  p_ptt->idx, p_ptt->hwfn_id, p_hwfn->my_id);
202 
203 	/* Verify the address is within the window */
204 	if (hw_addr < win_hw_addr ||
205 	    offset >= PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE) {
206 		qed_ptt_set_win(p_hwfn, p_ptt, hw_addr);
207 		offset = 0;
208 	}
209 
210 	return qed_ptt_get_bar_addr(p_ptt) + offset;
211 }
212 
213 struct qed_ptt *qed_get_reserved_ptt(struct qed_hwfn *p_hwfn,
214 				     enum reserved_ptts ptt_idx)
215 {
216 	if (ptt_idx >= RESERVED_PTT_MAX) {
217 		DP_NOTICE(p_hwfn,
218 			  "Requested PTT %d is out of range\n", ptt_idx);
219 		return NULL;
220 	}
221 
222 	return &p_hwfn->p_ptt_pool->ptts[ptt_idx];
223 }
224 
225 void qed_wr(struct qed_hwfn *p_hwfn,
226 	    struct qed_ptt *p_ptt,
227 	    u32 hw_addr, u32 val)
228 {
229 	u32 bar_addr = qed_set_ptt(p_hwfn, p_ptt, hw_addr);
230 
231 	REG_WR(p_hwfn, bar_addr, val);
232 	DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
233 		   "bar_addr 0x%x, hw_addr 0x%x, val 0x%x\n",
234 		   bar_addr, hw_addr, val);
235 }
236 
237 u32 qed_rd(struct qed_hwfn *p_hwfn,
238 	   struct qed_ptt *p_ptt,
239 	   u32 hw_addr)
240 {
241 	u32 bar_addr = qed_set_ptt(p_hwfn, p_ptt, hw_addr);
242 	u32 val = REG_RD(p_hwfn, bar_addr);
243 
244 	DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
245 		   "bar_addr 0x%x, hw_addr 0x%x, val 0x%x\n",
246 		   bar_addr, hw_addr, val);
247 
248 	return val;
249 }
250 
251 static void qed_memcpy_hw(struct qed_hwfn *p_hwfn,
252 			  struct qed_ptt *p_ptt,
253 			  void *addr, u32 hw_addr, size_t n, bool to_device)
254 {
255 	u32 dw_count, *host_addr, hw_offset;
256 	size_t quota, done = 0;
257 	u32 __iomem *reg_addr;
258 
259 	while (done < n) {
260 		quota = min_t(size_t, n - done,
261 			      PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE);
262 
263 		if (IS_PF(p_hwfn->cdev)) {
264 			qed_ptt_set_win(p_hwfn, p_ptt, hw_addr + done);
265 			hw_offset = qed_ptt_get_bar_addr(p_ptt);
266 		} else {
267 			hw_offset = hw_addr + done;
268 		}
269 
270 		dw_count = quota / 4;
271 		host_addr = (u32 *)((u8 *)addr + done);
272 		reg_addr = (u32 __iomem *)REG_ADDR(p_hwfn, hw_offset);
273 		if (to_device)
274 			while (dw_count--)
275 				DIRECT_REG_WR(reg_addr++, *host_addr++);
276 		else
277 			while (dw_count--)
278 				*host_addr++ = DIRECT_REG_RD(reg_addr++);
279 
280 		done += quota;
281 	}
282 }
283 
284 void qed_memcpy_from(struct qed_hwfn *p_hwfn,
285 		     struct qed_ptt *p_ptt, void *dest, u32 hw_addr, size_t n)
286 {
287 	DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
288 		   "hw_addr 0x%x, dest %p hw_addr 0x%x, size %lu\n",
289 		   hw_addr, dest, hw_addr, (unsigned long)n);
290 
291 	qed_memcpy_hw(p_hwfn, p_ptt, dest, hw_addr, n, false);
292 }
293 
294 void qed_memcpy_to(struct qed_hwfn *p_hwfn,
295 		   struct qed_ptt *p_ptt, u32 hw_addr, void *src, size_t n)
296 {
297 	DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
298 		   "hw_addr 0x%x, hw_addr 0x%x, src %p size %lu\n",
299 		   hw_addr, hw_addr, src, (unsigned long)n);
300 
301 	qed_memcpy_hw(p_hwfn, p_ptt, src, hw_addr, n, true);
302 }
303 
304 void qed_fid_pretend(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 fid)
305 {
306 	u16 control = 0;
307 
308 	SET_FIELD(control, PXP_PRETEND_CMD_IS_CONCRETE, 1);
309 	SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_FUNCTION, 1);
310 
311 	/* Every pretend undos previous pretends, including
312 	 * previous port pretend.
313 	 */
314 	SET_FIELD(control, PXP_PRETEND_CMD_PORT, 0);
315 	SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 0);
316 	SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
317 
318 	if (!GET_FIELD(fid, PXP_CONCRETE_FID_VFVALID))
319 		fid = GET_FIELD(fid, PXP_CONCRETE_FID_PFID);
320 
321 	p_ptt->pxp.pretend.control = cpu_to_le16(control);
322 	p_ptt->pxp.pretend.fid.concrete_fid.fid = cpu_to_le16(fid);
323 
324 	REG_WR(p_hwfn,
325 	       qed_ptt_config_addr(p_ptt) +
326 	       offsetof(struct pxp_ptt_entry, pretend),
327 	       *(u32 *)&p_ptt->pxp.pretend);
328 }
329 
330 void qed_port_pretend(struct qed_hwfn *p_hwfn,
331 		      struct qed_ptt *p_ptt, u8 port_id)
332 {
333 	u16 control = 0;
334 
335 	SET_FIELD(control, PXP_PRETEND_CMD_PORT, port_id);
336 	SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 1);
337 	SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
338 
339 	p_ptt->pxp.pretend.control = cpu_to_le16(control);
340 
341 	REG_WR(p_hwfn,
342 	       qed_ptt_config_addr(p_ptt) +
343 	       offsetof(struct pxp_ptt_entry, pretend),
344 	       *(u32 *)&p_ptt->pxp.pretend);
345 }
346 
347 void qed_port_unpretend(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
348 {
349 	u16 control = 0;
350 
351 	SET_FIELD(control, PXP_PRETEND_CMD_PORT, 0);
352 	SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 0);
353 	SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
354 
355 	p_ptt->pxp.pretend.control = cpu_to_le16(control);
356 
357 	REG_WR(p_hwfn,
358 	       qed_ptt_config_addr(p_ptt) +
359 	       offsetof(struct pxp_ptt_entry, pretend),
360 	       *(u32 *)&p_ptt->pxp.pretend);
361 }
362 
363 void qed_port_fid_pretend(struct qed_hwfn *p_hwfn,
364 			  struct qed_ptt *p_ptt, u8 port_id, u16 fid)
365 {
366 	u16 control = 0;
367 
368 	SET_FIELD(control, PXP_PRETEND_CMD_PORT, port_id);
369 	SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 1);
370 	SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
371 	SET_FIELD(control, PXP_PRETEND_CMD_IS_CONCRETE, 1);
372 	SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_FUNCTION, 1);
373 	if (!GET_FIELD(fid, PXP_CONCRETE_FID_VFVALID))
374 		fid = GET_FIELD(fid, PXP_CONCRETE_FID_PFID);
375 	p_ptt->pxp.pretend.control = cpu_to_le16(control);
376 	p_ptt->pxp.pretend.fid.concrete_fid.fid = cpu_to_le16(fid);
377 	REG_WR(p_hwfn,
378 	       qed_ptt_config_addr(p_ptt) +
379 	       offsetof(struct pxp_ptt_entry, pretend),
380 	       *(u32 *)&p_ptt->pxp.pretend);
381 }
382 
383 u32 qed_vfid_to_concrete(struct qed_hwfn *p_hwfn, u8 vfid)
384 {
385 	u32 concrete_fid = 0;
386 
387 	SET_FIELD(concrete_fid, PXP_CONCRETE_FID_PFID, p_hwfn->rel_pf_id);
388 	SET_FIELD(concrete_fid, PXP_CONCRETE_FID_VFID, vfid);
389 	SET_FIELD(concrete_fid, PXP_CONCRETE_FID_VFVALID, 1);
390 
391 	return concrete_fid;
392 }
393 
394 /* DMAE */
395 static void qed_dmae_opcode(struct qed_hwfn *p_hwfn,
396 			    const u8 is_src_type_grc,
397 			    const u8 is_dst_type_grc,
398 			    struct qed_dmae_params *p_params)
399 {
400 	u16 opcode_b = 0;
401 	u32 opcode = 0;
402 
403 	/* Whether the source is the PCIe or the GRC.
404 	 * 0- The source is the PCIe
405 	 * 1- The source is the GRC.
406 	 */
407 	opcode |= (is_src_type_grc ? DMAE_CMD_SRC_MASK_GRC
408 				   : DMAE_CMD_SRC_MASK_PCIE) <<
409 		   DMAE_CMD_SRC_SHIFT;
410 	opcode |= ((p_hwfn->rel_pf_id & DMAE_CMD_SRC_PF_ID_MASK) <<
411 		   DMAE_CMD_SRC_PF_ID_SHIFT);
412 
413 	/* The destination of the DMA can be: 0-None 1-PCIe 2-GRC 3-None */
414 	opcode |= (is_dst_type_grc ? DMAE_CMD_DST_MASK_GRC
415 				   : DMAE_CMD_DST_MASK_PCIE) <<
416 		   DMAE_CMD_DST_SHIFT;
417 	opcode |= ((p_hwfn->rel_pf_id & DMAE_CMD_DST_PF_ID_MASK) <<
418 		   DMAE_CMD_DST_PF_ID_SHIFT);
419 
420 	/* Whether to write a completion word to the completion destination:
421 	 * 0-Do not write a completion word
422 	 * 1-Write the completion word
423 	 */
424 	opcode |= (DMAE_CMD_COMP_WORD_EN_MASK << DMAE_CMD_COMP_WORD_EN_SHIFT);
425 	opcode |= (DMAE_CMD_SRC_ADDR_RESET_MASK <<
426 		   DMAE_CMD_SRC_ADDR_RESET_SHIFT);
427 
428 	if (p_params->flags & QED_DMAE_FLAG_COMPLETION_DST)
429 		opcode |= (1 << DMAE_CMD_COMP_FUNC_SHIFT);
430 
431 	opcode |= (DMAE_CMD_ENDIANITY << DMAE_CMD_ENDIANITY_MODE_SHIFT);
432 
433 	opcode |= ((p_hwfn->port_id) << DMAE_CMD_PORT_ID_SHIFT);
434 
435 	/* reset source address in next go */
436 	opcode |= (DMAE_CMD_SRC_ADDR_RESET_MASK <<
437 		   DMAE_CMD_SRC_ADDR_RESET_SHIFT);
438 
439 	/* reset dest address in next go */
440 	opcode |= (DMAE_CMD_DST_ADDR_RESET_MASK <<
441 		   DMAE_CMD_DST_ADDR_RESET_SHIFT);
442 
443 	/* SRC/DST VFID: all 1's - pf, otherwise VF id */
444 	if (p_params->flags & QED_DMAE_FLAG_VF_SRC) {
445 		opcode |= 1 << DMAE_CMD_SRC_VF_ID_VALID_SHIFT;
446 		opcode_b |= p_params->src_vfid << DMAE_CMD_SRC_VF_ID_SHIFT;
447 	} else {
448 		opcode_b |= DMAE_CMD_SRC_VF_ID_MASK <<
449 			    DMAE_CMD_SRC_VF_ID_SHIFT;
450 	}
451 
452 	if (p_params->flags & QED_DMAE_FLAG_VF_DST) {
453 		opcode |= 1 << DMAE_CMD_DST_VF_ID_VALID_SHIFT;
454 		opcode_b |= p_params->dst_vfid << DMAE_CMD_DST_VF_ID_SHIFT;
455 	} else {
456 		opcode_b |= DMAE_CMD_DST_VF_ID_MASK << DMAE_CMD_DST_VF_ID_SHIFT;
457 	}
458 
459 	p_hwfn->dmae_info.p_dmae_cmd->opcode = cpu_to_le32(opcode);
460 	p_hwfn->dmae_info.p_dmae_cmd->opcode_b = cpu_to_le16(opcode_b);
461 }
462 
463 u32 qed_dmae_idx_to_go_cmd(u8 idx)
464 {
465 	/* All the DMAE 'go' registers form an array in internal memory */
466 	return DMAE_REG_GO_C0 + (idx << 2);
467 }
468 
469 static int qed_dmae_post_command(struct qed_hwfn *p_hwfn,
470 				 struct qed_ptt *p_ptt)
471 {
472 	struct dmae_cmd *p_command = p_hwfn->dmae_info.p_dmae_cmd;
473 	u8 idx_cmd = p_hwfn->dmae_info.channel, i;
474 	int qed_status = 0;
475 
476 	/* verify address is not NULL */
477 	if ((((!p_command->dst_addr_lo) && (!p_command->dst_addr_hi)) ||
478 	     ((!p_command->src_addr_lo) && (!p_command->src_addr_hi)))) {
479 		DP_NOTICE(p_hwfn,
480 			  "source or destination address 0 idx_cmd=%d\n"
481 			  "opcode = [0x%08x,0x%04x] len=0x%x src=0x%x:%x dst=0x%x:%x\n",
482 			  idx_cmd,
483 			  le32_to_cpu(p_command->opcode),
484 			  le16_to_cpu(p_command->opcode_b),
485 			  le16_to_cpu(p_command->length_dw),
486 			  le32_to_cpu(p_command->src_addr_hi),
487 			  le32_to_cpu(p_command->src_addr_lo),
488 			  le32_to_cpu(p_command->dst_addr_hi),
489 			  le32_to_cpu(p_command->dst_addr_lo));
490 
491 		return -EINVAL;
492 	}
493 
494 	DP_VERBOSE(p_hwfn,
495 		   NETIF_MSG_HW,
496 		   "Posting DMAE command [idx %d]: opcode = [0x%08x,0x%04x] len=0x%x src=0x%x:%x dst=0x%x:%x\n",
497 		   idx_cmd,
498 		   le32_to_cpu(p_command->opcode),
499 		   le16_to_cpu(p_command->opcode_b),
500 		   le16_to_cpu(p_command->length_dw),
501 		   le32_to_cpu(p_command->src_addr_hi),
502 		   le32_to_cpu(p_command->src_addr_lo),
503 		   le32_to_cpu(p_command->dst_addr_hi),
504 		   le32_to_cpu(p_command->dst_addr_lo));
505 
506 	/* Copy the command to DMAE - need to do it before every call
507 	 * for source/dest address no reset.
508 	 * The first 9 DWs are the command registers, the 10 DW is the
509 	 * GO register, and the rest are result registers
510 	 * (which are read only by the client).
511 	 */
512 	for (i = 0; i < DMAE_CMD_SIZE; i++) {
513 		u32 data = (i < DMAE_CMD_SIZE_TO_FILL) ?
514 			   *(((u32 *)p_command) + i) : 0;
515 
516 		qed_wr(p_hwfn, p_ptt,
517 		       DMAE_REG_CMD_MEM +
518 		       (idx_cmd * DMAE_CMD_SIZE * sizeof(u32)) +
519 		       (i * sizeof(u32)), data);
520 	}
521 
522 	qed_wr(p_hwfn, p_ptt, qed_dmae_idx_to_go_cmd(idx_cmd), DMAE_GO_VALUE);
523 
524 	return qed_status;
525 }
526 
527 int qed_dmae_info_alloc(struct qed_hwfn *p_hwfn)
528 {
529 	dma_addr_t *p_addr = &p_hwfn->dmae_info.completion_word_phys_addr;
530 	struct dmae_cmd **p_cmd = &p_hwfn->dmae_info.p_dmae_cmd;
531 	u32 **p_buff = &p_hwfn->dmae_info.p_intermediate_buffer;
532 	u32 **p_comp = &p_hwfn->dmae_info.p_completion_word;
533 
534 	*p_comp = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
535 				     sizeof(u32), p_addr, GFP_KERNEL);
536 	if (!*p_comp)
537 		goto err;
538 
539 	p_addr = &p_hwfn->dmae_info.dmae_cmd_phys_addr;
540 	*p_cmd = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
541 				    sizeof(struct dmae_cmd),
542 				    p_addr, GFP_KERNEL);
543 	if (!*p_cmd)
544 		goto err;
545 
546 	p_addr = &p_hwfn->dmae_info.intermediate_buffer_phys_addr;
547 	*p_buff = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
548 				     sizeof(u32) * DMAE_MAX_RW_SIZE,
549 				     p_addr, GFP_KERNEL);
550 	if (!*p_buff)
551 		goto err;
552 
553 	p_hwfn->dmae_info.channel = p_hwfn->rel_pf_id;
554 
555 	return 0;
556 err:
557 	qed_dmae_info_free(p_hwfn);
558 	return -ENOMEM;
559 }
560 
561 void qed_dmae_info_free(struct qed_hwfn *p_hwfn)
562 {
563 	dma_addr_t p_phys;
564 
565 	/* Just make sure no one is in the middle */
566 	mutex_lock(&p_hwfn->dmae_info.mutex);
567 
568 	if (p_hwfn->dmae_info.p_completion_word) {
569 		p_phys = p_hwfn->dmae_info.completion_word_phys_addr;
570 		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
571 				  sizeof(u32),
572 				  p_hwfn->dmae_info.p_completion_word, p_phys);
573 		p_hwfn->dmae_info.p_completion_word = NULL;
574 	}
575 
576 	if (p_hwfn->dmae_info.p_dmae_cmd) {
577 		p_phys = p_hwfn->dmae_info.dmae_cmd_phys_addr;
578 		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
579 				  sizeof(struct dmae_cmd),
580 				  p_hwfn->dmae_info.p_dmae_cmd, p_phys);
581 		p_hwfn->dmae_info.p_dmae_cmd = NULL;
582 	}
583 
584 	if (p_hwfn->dmae_info.p_intermediate_buffer) {
585 		p_phys = p_hwfn->dmae_info.intermediate_buffer_phys_addr;
586 		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
587 				  sizeof(u32) * DMAE_MAX_RW_SIZE,
588 				  p_hwfn->dmae_info.p_intermediate_buffer,
589 				  p_phys);
590 		p_hwfn->dmae_info.p_intermediate_buffer = NULL;
591 	}
592 
593 	mutex_unlock(&p_hwfn->dmae_info.mutex);
594 }
595 
596 static int qed_dmae_operation_wait(struct qed_hwfn *p_hwfn)
597 {
598 	u32 wait_cnt_limit = 10000, wait_cnt = 0;
599 	int qed_status = 0;
600 
601 	barrier();
602 	while (*p_hwfn->dmae_info.p_completion_word != DMAE_COMPLETION_VAL) {
603 		udelay(DMAE_MIN_WAIT_TIME);
604 		if (++wait_cnt > wait_cnt_limit) {
605 			DP_NOTICE(p_hwfn->cdev,
606 				  "Timed-out waiting for operation to complete. Completion word is 0x%08x expected 0x%08x.\n",
607 				  *p_hwfn->dmae_info.p_completion_word,
608 				 DMAE_COMPLETION_VAL);
609 			qed_status = -EBUSY;
610 			break;
611 		}
612 
613 		/* to sync the completion_word since we are not
614 		 * using the volatile keyword for p_completion_word
615 		 */
616 		barrier();
617 	}
618 
619 	if (qed_status == 0)
620 		*p_hwfn->dmae_info.p_completion_word = 0;
621 
622 	return qed_status;
623 }
624 
625 static int qed_dmae_execute_sub_operation(struct qed_hwfn *p_hwfn,
626 					  struct qed_ptt *p_ptt,
627 					  u64 src_addr,
628 					  u64 dst_addr,
629 					  u8 src_type,
630 					  u8 dst_type,
631 					  u32 length_dw)
632 {
633 	dma_addr_t phys = p_hwfn->dmae_info.intermediate_buffer_phys_addr;
634 	struct dmae_cmd *cmd = p_hwfn->dmae_info.p_dmae_cmd;
635 	int qed_status = 0;
636 
637 	switch (src_type) {
638 	case QED_DMAE_ADDRESS_GRC:
639 	case QED_DMAE_ADDRESS_HOST_PHYS:
640 		cmd->src_addr_hi = cpu_to_le32(upper_32_bits(src_addr));
641 		cmd->src_addr_lo = cpu_to_le32(lower_32_bits(src_addr));
642 		break;
643 	/* for virtual source addresses we use the intermediate buffer. */
644 	case QED_DMAE_ADDRESS_HOST_VIRT:
645 		cmd->src_addr_hi = cpu_to_le32(upper_32_bits(phys));
646 		cmd->src_addr_lo = cpu_to_le32(lower_32_bits(phys));
647 		memcpy(&p_hwfn->dmae_info.p_intermediate_buffer[0],
648 		       (void *)(uintptr_t)src_addr,
649 		       length_dw * sizeof(u32));
650 		break;
651 	default:
652 		return -EINVAL;
653 	}
654 
655 	switch (dst_type) {
656 	case QED_DMAE_ADDRESS_GRC:
657 	case QED_DMAE_ADDRESS_HOST_PHYS:
658 		cmd->dst_addr_hi = cpu_to_le32(upper_32_bits(dst_addr));
659 		cmd->dst_addr_lo = cpu_to_le32(lower_32_bits(dst_addr));
660 		break;
661 	/* for virtual source addresses we use the intermediate buffer. */
662 	case QED_DMAE_ADDRESS_HOST_VIRT:
663 		cmd->dst_addr_hi = cpu_to_le32(upper_32_bits(phys));
664 		cmd->dst_addr_lo = cpu_to_le32(lower_32_bits(phys));
665 		break;
666 	default:
667 		return -EINVAL;
668 	}
669 
670 	cmd->length_dw = cpu_to_le16((u16)length_dw);
671 
672 	qed_dmae_post_command(p_hwfn, p_ptt);
673 
674 	qed_status = qed_dmae_operation_wait(p_hwfn);
675 
676 	if (qed_status) {
677 		DP_NOTICE(p_hwfn,
678 			  "qed_dmae_host2grc: Wait Failed. source_addr 0x%llx, grc_addr 0x%llx, size_in_dwords 0x%x\n",
679 			  src_addr, dst_addr, length_dw);
680 		return qed_status;
681 	}
682 
683 	if (dst_type == QED_DMAE_ADDRESS_HOST_VIRT)
684 		memcpy((void *)(uintptr_t)(dst_addr),
685 		       &p_hwfn->dmae_info.p_intermediate_buffer[0],
686 		       length_dw * sizeof(u32));
687 
688 	return 0;
689 }
690 
691 static int qed_dmae_execute_command(struct qed_hwfn *p_hwfn,
692 				    struct qed_ptt *p_ptt,
693 				    u64 src_addr, u64 dst_addr,
694 				    u8 src_type, u8 dst_type,
695 				    u32 size_in_dwords,
696 				    struct qed_dmae_params *p_params)
697 {
698 	dma_addr_t phys = p_hwfn->dmae_info.completion_word_phys_addr;
699 	u16 length_cur = 0, i = 0, cnt_split = 0, length_mod = 0;
700 	struct dmae_cmd *cmd = p_hwfn->dmae_info.p_dmae_cmd;
701 	u64 src_addr_split = 0, dst_addr_split = 0;
702 	u16 length_limit = DMAE_MAX_RW_SIZE;
703 	int qed_status = 0;
704 	u32 offset = 0;
705 
706 	if (p_hwfn->cdev->recov_in_prog) {
707 		DP_VERBOSE(p_hwfn,
708 			   NETIF_MSG_HW,
709 			   "Recovery is in progress. Avoid DMAE transaction [{src: addr 0x%llx, type %d}, {dst: addr 0x%llx, type %d}, size %d].\n",
710 			   src_addr, src_type, dst_addr, dst_type,
711 			   size_in_dwords);
712 
713 		/* Let the flow complete w/o any error handling */
714 		return 0;
715 	}
716 
717 	qed_dmae_opcode(p_hwfn,
718 			(src_type == QED_DMAE_ADDRESS_GRC),
719 			(dst_type == QED_DMAE_ADDRESS_GRC),
720 			p_params);
721 
722 	cmd->comp_addr_lo = cpu_to_le32(lower_32_bits(phys));
723 	cmd->comp_addr_hi = cpu_to_le32(upper_32_bits(phys));
724 	cmd->comp_val = cpu_to_le32(DMAE_COMPLETION_VAL);
725 
726 	/* Check if the grc_addr is valid like < MAX_GRC_OFFSET */
727 	cnt_split = size_in_dwords / length_limit;
728 	length_mod = size_in_dwords % length_limit;
729 
730 	src_addr_split = src_addr;
731 	dst_addr_split = dst_addr;
732 
733 	for (i = 0; i <= cnt_split; i++) {
734 		offset = length_limit * i;
735 
736 		if (!(p_params->flags & QED_DMAE_FLAG_RW_REPL_SRC)) {
737 			if (src_type == QED_DMAE_ADDRESS_GRC)
738 				src_addr_split = src_addr + offset;
739 			else
740 				src_addr_split = src_addr + (offset * 4);
741 		}
742 
743 		if (dst_type == QED_DMAE_ADDRESS_GRC)
744 			dst_addr_split = dst_addr + offset;
745 		else
746 			dst_addr_split = dst_addr + (offset * 4);
747 
748 		length_cur = (cnt_split == i) ? length_mod : length_limit;
749 
750 		/* might be zero on last iteration */
751 		if (!length_cur)
752 			continue;
753 
754 		qed_status = qed_dmae_execute_sub_operation(p_hwfn,
755 							    p_ptt,
756 							    src_addr_split,
757 							    dst_addr_split,
758 							    src_type,
759 							    dst_type,
760 							    length_cur);
761 		if (qed_status) {
762 			DP_NOTICE(p_hwfn,
763 				  "qed_dmae_execute_sub_operation Failed with error 0x%x. source_addr 0x%llx, destination addr 0x%llx, size_in_dwords 0x%x\n",
764 				  qed_status, src_addr, dst_addr, length_cur);
765 			break;
766 		}
767 	}
768 
769 	return qed_status;
770 }
771 
772 int qed_dmae_host2grc(struct qed_hwfn *p_hwfn,
773 		      struct qed_ptt *p_ptt,
774 		  u64 source_addr, u32 grc_addr, u32 size_in_dwords, u32 flags)
775 {
776 	u32 grc_addr_in_dw = grc_addr / sizeof(u32);
777 	struct qed_dmae_params params;
778 	int rc;
779 
780 	memset(&params, 0, sizeof(struct qed_dmae_params));
781 	params.flags = flags;
782 
783 	mutex_lock(&p_hwfn->dmae_info.mutex);
784 
785 	rc = qed_dmae_execute_command(p_hwfn, p_ptt, source_addr,
786 				      grc_addr_in_dw,
787 				      QED_DMAE_ADDRESS_HOST_VIRT,
788 				      QED_DMAE_ADDRESS_GRC,
789 				      size_in_dwords, &params);
790 
791 	mutex_unlock(&p_hwfn->dmae_info.mutex);
792 
793 	return rc;
794 }
795 
796 int qed_dmae_grc2host(struct qed_hwfn *p_hwfn,
797 		      struct qed_ptt *p_ptt,
798 		      u32 grc_addr,
799 		      dma_addr_t dest_addr, u32 size_in_dwords, u32 flags)
800 {
801 	u32 grc_addr_in_dw = grc_addr / sizeof(u32);
802 	struct qed_dmae_params params;
803 	int rc;
804 
805 	memset(&params, 0, sizeof(struct qed_dmae_params));
806 	params.flags = flags;
807 
808 	mutex_lock(&p_hwfn->dmae_info.mutex);
809 
810 	rc = qed_dmae_execute_command(p_hwfn, p_ptt, grc_addr_in_dw,
811 				      dest_addr, QED_DMAE_ADDRESS_GRC,
812 				      QED_DMAE_ADDRESS_HOST_VIRT,
813 				      size_in_dwords, &params);
814 
815 	mutex_unlock(&p_hwfn->dmae_info.mutex);
816 
817 	return rc;
818 }
819 
820 int qed_dmae_host2host(struct qed_hwfn *p_hwfn,
821 		       struct qed_ptt *p_ptt,
822 		       dma_addr_t source_addr,
823 		       dma_addr_t dest_addr,
824 		       u32 size_in_dwords, struct qed_dmae_params *p_params)
825 {
826 	int rc;
827 
828 	mutex_lock(&(p_hwfn->dmae_info.mutex));
829 
830 	rc = qed_dmae_execute_command(p_hwfn, p_ptt, source_addr,
831 				      dest_addr,
832 				      QED_DMAE_ADDRESS_HOST_PHYS,
833 				      QED_DMAE_ADDRESS_HOST_PHYS,
834 				      size_in_dwords, p_params);
835 
836 	mutex_unlock(&(p_hwfn->dmae_info.mutex));
837 
838 	return rc;
839 }
840 
841 int qed_dmae_sanity(struct qed_hwfn *p_hwfn,
842 		    struct qed_ptt *p_ptt, const char *phase)
843 {
844 	u32 size = PAGE_SIZE / 2, val;
845 	struct qed_dmae_params params;
846 	int rc = 0;
847 	dma_addr_t p_phys;
848 	void *p_virt;
849 	u32 *p_tmp;
850 
851 	p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
852 				    2 * size, &p_phys, GFP_KERNEL);
853 	if (!p_virt) {
854 		DP_NOTICE(p_hwfn,
855 			  "DMAE sanity [%s]: failed to allocate memory\n",
856 			  phase);
857 		return -ENOMEM;
858 	}
859 
860 	/* Fill the bottom half of the allocated memory with a known pattern */
861 	for (p_tmp = (u32 *)p_virt;
862 	     p_tmp < (u32 *)((u8 *)p_virt + size); p_tmp++) {
863 		/* Save the address itself as the value */
864 		val = (u32)(uintptr_t)p_tmp;
865 		*p_tmp = val;
866 	}
867 
868 	/* Zero the top half of the allocated memory */
869 	memset((u8 *)p_virt + size, 0, size);
870 
871 	DP_VERBOSE(p_hwfn,
872 		   QED_MSG_SP,
873 		   "DMAE sanity [%s]: src_addr={phys 0x%llx, virt %p}, dst_addr={phys 0x%llx, virt %p}, size 0x%x\n",
874 		   phase,
875 		   (u64)p_phys,
876 		   p_virt, (u64)(p_phys + size), (u8 *)p_virt + size, size);
877 
878 	memset(&params, 0, sizeof(params));
879 	rc = qed_dmae_host2host(p_hwfn, p_ptt, p_phys, p_phys + size,
880 				size / 4 /* size_in_dwords */, &params);
881 	if (rc) {
882 		DP_NOTICE(p_hwfn,
883 			  "DMAE sanity [%s]: qed_dmae_host2host() failed. rc = %d.\n",
884 			  phase, rc);
885 		goto out;
886 	}
887 
888 	/* Verify that the top half of the allocated memory has the pattern */
889 	for (p_tmp = (u32 *)((u8 *)p_virt + size);
890 	     p_tmp < (u32 *)((u8 *)p_virt + (2 * size)); p_tmp++) {
891 		/* The corresponding address in the bottom half */
892 		val = (u32)(uintptr_t)p_tmp - size;
893 
894 		if (*p_tmp != val) {
895 			DP_NOTICE(p_hwfn,
896 				  "DMAE sanity [%s]: addr={phys 0x%llx, virt %p}, read_val 0x%08x, expected_val 0x%08x\n",
897 				  phase,
898 				  (u64)p_phys + ((u8 *)p_tmp - (u8 *)p_virt),
899 				  p_tmp, *p_tmp, val);
900 			rc = -EINVAL;
901 			goto out;
902 		}
903 	}
904 
905 out:
906 	dma_free_coherent(&p_hwfn->cdev->pdev->dev, 2 * size, p_virt, p_phys);
907 	return rc;
908 }
909