1 /* QLogic qede NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <net/udp_tunnel.h>
35 #include <linux/bitops.h>
36 #include <linux/vmalloc.h>
37 
38 #include <linux/qed/qed_if.h>
39 #include "qede.h"
40 
41 #define QEDE_FILTER_PRINT_MAX_LEN	(64)
42 struct qede_arfs_tuple {
43 	union {
44 		__be32 src_ipv4;
45 		struct in6_addr src_ipv6;
46 	};
47 	union {
48 		__be32 dst_ipv4;
49 		struct in6_addr dst_ipv6;
50 	};
51 	__be16  src_port;
52 	__be16  dst_port;
53 	__be16  eth_proto;
54 	u8      ip_proto;
55 
56 	/* Describe filtering mode needed for this kind of filter */
57 	enum qed_filter_config_mode mode;
58 
59 	/* Used to compare new/old filters. Return true if IPs match */
60 	bool (*ip_comp)(struct qede_arfs_tuple *a, struct qede_arfs_tuple *b);
61 
62 	/* Given an address into ethhdr build a header from tuple info */
63 	void (*build_hdr)(struct qede_arfs_tuple *t, void *header);
64 
65 	/* Stringify the tuple for a print into the provided buffer */
66 	void (*stringify)(struct qede_arfs_tuple *t, void *buffer);
67 };
68 
69 struct qede_arfs_fltr_node {
70 #define QEDE_FLTR_VALID	 0
71 	unsigned long state;
72 
73 	/* pointer to aRFS packet buffer */
74 	void *data;
75 
76 	/* dma map address of aRFS packet buffer */
77 	dma_addr_t mapping;
78 
79 	/* length of aRFS packet buffer */
80 	int buf_len;
81 
82 	/* tuples to hold from aRFS packet buffer */
83 	struct qede_arfs_tuple tuple;
84 
85 	u32 flow_id;
86 	u64 sw_id;
87 	u16 rxq_id;
88 	u16 next_rxq_id;
89 	u8 vfid;
90 	bool filter_op;
91 	bool used;
92 	u8 fw_rc;
93 	bool b_is_drop;
94 	struct hlist_node node;
95 };
96 
97 struct qede_arfs {
98 #define QEDE_ARFS_BUCKET_HEAD(edev, idx) (&(edev)->arfs->arfs_hl_head[idx])
99 #define QEDE_ARFS_POLL_COUNT	100
100 #define QEDE_RFS_FLW_BITSHIFT	(4)
101 #define QEDE_RFS_FLW_MASK	((1 << QEDE_RFS_FLW_BITSHIFT) - 1)
102 	struct hlist_head	arfs_hl_head[1 << QEDE_RFS_FLW_BITSHIFT];
103 
104 	/* lock for filter list access */
105 	spinlock_t		arfs_list_lock;
106 	unsigned long		*arfs_fltr_bmap;
107 	int			filter_count;
108 
109 	/* Currently configured filtering mode */
110 	enum qed_filter_config_mode mode;
111 };
112 
113 static void qede_configure_arfs_fltr(struct qede_dev *edev,
114 				     struct qede_arfs_fltr_node *n,
115 				     u16 rxq_id, bool add_fltr)
116 {
117 	const struct qed_eth_ops *op = edev->ops;
118 	struct qed_ntuple_filter_params params;
119 
120 	if (n->used)
121 		return;
122 
123 	memset(&params, 0, sizeof(params));
124 
125 	params.addr = n->mapping;
126 	params.length = n->buf_len;
127 	params.qid = rxq_id;
128 	params.b_is_add = add_fltr;
129 	params.b_is_drop = n->b_is_drop;
130 
131 	if (n->vfid) {
132 		params.b_is_vf = true;
133 		params.vf_id = n->vfid - 1;
134 	}
135 
136 	if (n->tuple.stringify) {
137 		char tuple_buffer[QEDE_FILTER_PRINT_MAX_LEN];
138 
139 		n->tuple.stringify(&n->tuple, tuple_buffer);
140 		DP_VERBOSE(edev, NETIF_MSG_RX_STATUS,
141 			   "%s sw_id[0x%llx]: %s [vf %u queue %d]\n",
142 			   add_fltr ? "Adding" : "Deleting",
143 			   n->sw_id, tuple_buffer, n->vfid, rxq_id);
144 	}
145 
146 	n->used = true;
147 	n->filter_op = add_fltr;
148 	op->ntuple_filter_config(edev->cdev, n, &params);
149 }
150 
151 static void
152 qede_free_arfs_filter(struct qede_dev *edev,  struct qede_arfs_fltr_node *fltr)
153 {
154 	kfree(fltr->data);
155 
156 	if (fltr->sw_id < QEDE_RFS_MAX_FLTR)
157 		clear_bit(fltr->sw_id, edev->arfs->arfs_fltr_bmap);
158 
159 	kfree(fltr);
160 }
161 
162 static int
163 qede_enqueue_fltr_and_config_searcher(struct qede_dev *edev,
164 				      struct qede_arfs_fltr_node *fltr,
165 				      u16 bucket_idx)
166 {
167 	fltr->mapping = dma_map_single(&edev->pdev->dev, fltr->data,
168 				       fltr->buf_len, DMA_TO_DEVICE);
169 	if (dma_mapping_error(&edev->pdev->dev, fltr->mapping)) {
170 		DP_NOTICE(edev, "Failed to map DMA memory for rule\n");
171 		qede_free_arfs_filter(edev, fltr);
172 		return -ENOMEM;
173 	}
174 
175 	INIT_HLIST_NODE(&fltr->node);
176 	hlist_add_head(&fltr->node,
177 		       QEDE_ARFS_BUCKET_HEAD(edev, bucket_idx));
178 
179 	edev->arfs->filter_count++;
180 	if (edev->arfs->filter_count == 1 &&
181 	    edev->arfs->mode == QED_FILTER_CONFIG_MODE_DISABLE) {
182 		edev->ops->configure_arfs_searcher(edev->cdev,
183 						   fltr->tuple.mode);
184 		edev->arfs->mode = fltr->tuple.mode;
185 	}
186 
187 	return 0;
188 }
189 
190 static void
191 qede_dequeue_fltr_and_config_searcher(struct qede_dev *edev,
192 				      struct qede_arfs_fltr_node *fltr)
193 {
194 	hlist_del(&fltr->node);
195 	dma_unmap_single(&edev->pdev->dev, fltr->mapping,
196 			 fltr->buf_len, DMA_TO_DEVICE);
197 
198 	qede_free_arfs_filter(edev, fltr);
199 
200 	edev->arfs->filter_count--;
201 	if (!edev->arfs->filter_count &&
202 	    edev->arfs->mode != QED_FILTER_CONFIG_MODE_DISABLE) {
203 		enum qed_filter_config_mode mode;
204 
205 		mode = QED_FILTER_CONFIG_MODE_DISABLE;
206 		edev->ops->configure_arfs_searcher(edev->cdev, mode);
207 		edev->arfs->mode = QED_FILTER_CONFIG_MODE_DISABLE;
208 	}
209 }
210 
211 void qede_arfs_filter_op(void *dev, void *filter, u8 fw_rc)
212 {
213 	struct qede_arfs_fltr_node *fltr = filter;
214 	struct qede_dev *edev = dev;
215 
216 	fltr->fw_rc = fw_rc;
217 
218 	if (fw_rc) {
219 		DP_NOTICE(edev,
220 			  "Failed arfs filter configuration fw_rc=%d, flow_id=%d, sw_id=0x%llx, src_port=%d, dst_port=%d, rxq=%d\n",
221 			  fw_rc, fltr->flow_id, fltr->sw_id,
222 			  ntohs(fltr->tuple.src_port),
223 			  ntohs(fltr->tuple.dst_port), fltr->rxq_id);
224 
225 		spin_lock_bh(&edev->arfs->arfs_list_lock);
226 
227 		fltr->used = false;
228 		clear_bit(QEDE_FLTR_VALID, &fltr->state);
229 
230 		spin_unlock_bh(&edev->arfs->arfs_list_lock);
231 		return;
232 	}
233 
234 	spin_lock_bh(&edev->arfs->arfs_list_lock);
235 
236 	fltr->used = false;
237 
238 	if (fltr->filter_op) {
239 		set_bit(QEDE_FLTR_VALID, &fltr->state);
240 		if (fltr->rxq_id != fltr->next_rxq_id)
241 			qede_configure_arfs_fltr(edev, fltr, fltr->rxq_id,
242 						 false);
243 	} else {
244 		clear_bit(QEDE_FLTR_VALID, &fltr->state);
245 		if (fltr->rxq_id != fltr->next_rxq_id) {
246 			fltr->rxq_id = fltr->next_rxq_id;
247 			qede_configure_arfs_fltr(edev, fltr,
248 						 fltr->rxq_id, true);
249 		}
250 	}
251 
252 	spin_unlock_bh(&edev->arfs->arfs_list_lock);
253 }
254 
255 /* Should be called while qede_lock is held */
256 void qede_process_arfs_filters(struct qede_dev *edev, bool free_fltr)
257 {
258 	int i;
259 
260 	for (i = 0; i <= QEDE_RFS_FLW_MASK; i++) {
261 		struct hlist_node *temp;
262 		struct hlist_head *head;
263 		struct qede_arfs_fltr_node *fltr;
264 
265 		head = &edev->arfs->arfs_hl_head[i];
266 
267 		hlist_for_each_entry_safe(fltr, temp, head, node) {
268 			bool del = false;
269 
270 			if (edev->state != QEDE_STATE_OPEN)
271 				del = true;
272 
273 			spin_lock_bh(&edev->arfs->arfs_list_lock);
274 
275 			if ((!test_bit(QEDE_FLTR_VALID, &fltr->state) &&
276 			     !fltr->used) || free_fltr) {
277 				qede_dequeue_fltr_and_config_searcher(edev,
278 								      fltr);
279 			} else {
280 				bool flow_exp = false;
281 #ifdef CONFIG_RFS_ACCEL
282 				flow_exp = rps_may_expire_flow(edev->ndev,
283 							       fltr->rxq_id,
284 							       fltr->flow_id,
285 							       fltr->sw_id);
286 #endif
287 				if ((flow_exp || del) && !free_fltr)
288 					qede_configure_arfs_fltr(edev, fltr,
289 								 fltr->rxq_id,
290 								 false);
291 			}
292 
293 			spin_unlock_bh(&edev->arfs->arfs_list_lock);
294 		}
295 	}
296 
297 #ifdef CONFIG_RFS_ACCEL
298 	spin_lock_bh(&edev->arfs->arfs_list_lock);
299 
300 	if (edev->arfs->filter_count) {
301 		set_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags);
302 		schedule_delayed_work(&edev->sp_task,
303 				      QEDE_SP_TASK_POLL_DELAY);
304 	}
305 
306 	spin_unlock_bh(&edev->arfs->arfs_list_lock);
307 #endif
308 }
309 
310 /* This function waits until all aRFS filters get deleted and freed.
311  * On timeout it frees all filters forcefully.
312  */
313 void qede_poll_for_freeing_arfs_filters(struct qede_dev *edev)
314 {
315 	int count = QEDE_ARFS_POLL_COUNT;
316 
317 	while (count) {
318 		qede_process_arfs_filters(edev, false);
319 
320 		if (!edev->arfs->filter_count)
321 			break;
322 
323 		msleep(100);
324 		count--;
325 	}
326 
327 	if (!count) {
328 		DP_NOTICE(edev, "Timeout in polling for arfs filter free\n");
329 
330 		/* Something is terribly wrong, free forcefully */
331 		qede_process_arfs_filters(edev, true);
332 	}
333 }
334 
335 int qede_alloc_arfs(struct qede_dev *edev)
336 {
337 	int i;
338 
339 	edev->arfs = vzalloc(sizeof(*edev->arfs));
340 	if (!edev->arfs)
341 		return -ENOMEM;
342 
343 	spin_lock_init(&edev->arfs->arfs_list_lock);
344 
345 	for (i = 0; i <= QEDE_RFS_FLW_MASK; i++)
346 		INIT_HLIST_HEAD(QEDE_ARFS_BUCKET_HEAD(edev, i));
347 
348 	edev->arfs->arfs_fltr_bmap =
349 		vzalloc(array_size(sizeof(long),
350 				   BITS_TO_LONGS(QEDE_RFS_MAX_FLTR)));
351 	if (!edev->arfs->arfs_fltr_bmap) {
352 		vfree(edev->arfs);
353 		edev->arfs = NULL;
354 		return -ENOMEM;
355 	}
356 
357 #ifdef CONFIG_RFS_ACCEL
358 	edev->ndev->rx_cpu_rmap = alloc_irq_cpu_rmap(QEDE_RSS_COUNT(edev));
359 	if (!edev->ndev->rx_cpu_rmap) {
360 		vfree(edev->arfs->arfs_fltr_bmap);
361 		edev->arfs->arfs_fltr_bmap = NULL;
362 		vfree(edev->arfs);
363 		edev->arfs = NULL;
364 		return -ENOMEM;
365 	}
366 #endif
367 	return 0;
368 }
369 
370 void qede_free_arfs(struct qede_dev *edev)
371 {
372 	if (!edev->arfs)
373 		return;
374 
375 #ifdef CONFIG_RFS_ACCEL
376 	if (edev->ndev->rx_cpu_rmap)
377 		free_irq_cpu_rmap(edev->ndev->rx_cpu_rmap);
378 
379 	edev->ndev->rx_cpu_rmap = NULL;
380 #endif
381 	vfree(edev->arfs->arfs_fltr_bmap);
382 	edev->arfs->arfs_fltr_bmap = NULL;
383 	vfree(edev->arfs);
384 	edev->arfs = NULL;
385 }
386 
387 #ifdef CONFIG_RFS_ACCEL
388 static bool qede_compare_ip_addr(struct qede_arfs_fltr_node *tpos,
389 				 const struct sk_buff *skb)
390 {
391 	if (skb->protocol == htons(ETH_P_IP)) {
392 		if (tpos->tuple.src_ipv4 == ip_hdr(skb)->saddr &&
393 		    tpos->tuple.dst_ipv4 == ip_hdr(skb)->daddr)
394 			return true;
395 		else
396 			return false;
397 	} else {
398 		struct in6_addr *src = &tpos->tuple.src_ipv6;
399 		u8 size = sizeof(struct in6_addr);
400 
401 		if (!memcmp(src, &ipv6_hdr(skb)->saddr, size) &&
402 		    !memcmp(&tpos->tuple.dst_ipv6, &ipv6_hdr(skb)->daddr, size))
403 			return true;
404 		else
405 			return false;
406 	}
407 }
408 
409 static struct qede_arfs_fltr_node *
410 qede_arfs_htbl_key_search(struct hlist_head *h, const struct sk_buff *skb,
411 			  __be16 src_port, __be16 dst_port, u8 ip_proto)
412 {
413 	struct qede_arfs_fltr_node *tpos;
414 
415 	hlist_for_each_entry(tpos, h, node)
416 		if (tpos->tuple.ip_proto == ip_proto &&
417 		    tpos->tuple.eth_proto == skb->protocol &&
418 		    qede_compare_ip_addr(tpos, skb) &&
419 		    tpos->tuple.src_port == src_port &&
420 		    tpos->tuple.dst_port == dst_port)
421 			return tpos;
422 
423 	return NULL;
424 }
425 
426 static struct qede_arfs_fltr_node *
427 qede_alloc_filter(struct qede_dev *edev, int min_hlen)
428 {
429 	struct qede_arfs_fltr_node *n;
430 	int bit_id;
431 
432 	bit_id = find_first_zero_bit(edev->arfs->arfs_fltr_bmap,
433 				     QEDE_RFS_MAX_FLTR);
434 
435 	if (bit_id >= QEDE_RFS_MAX_FLTR)
436 		return NULL;
437 
438 	n = kzalloc(sizeof(*n), GFP_ATOMIC);
439 	if (!n)
440 		return NULL;
441 
442 	n->data = kzalloc(min_hlen, GFP_ATOMIC);
443 	if (!n->data) {
444 		kfree(n);
445 		return NULL;
446 	}
447 
448 	n->sw_id = (u16)bit_id;
449 	set_bit(bit_id, edev->arfs->arfs_fltr_bmap);
450 	return n;
451 }
452 
453 int qede_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
454 		       u16 rxq_index, u32 flow_id)
455 {
456 	struct qede_dev *edev = netdev_priv(dev);
457 	struct qede_arfs_fltr_node *n;
458 	int min_hlen, rc, tp_offset;
459 	struct ethhdr *eth;
460 	__be16 *ports;
461 	u16 tbl_idx;
462 	u8 ip_proto;
463 
464 	if (skb->encapsulation)
465 		return -EPROTONOSUPPORT;
466 
467 	if (skb->protocol != htons(ETH_P_IP) &&
468 	    skb->protocol != htons(ETH_P_IPV6))
469 		return -EPROTONOSUPPORT;
470 
471 	if (skb->protocol == htons(ETH_P_IP)) {
472 		ip_proto = ip_hdr(skb)->protocol;
473 		tp_offset = sizeof(struct iphdr);
474 	} else {
475 		ip_proto = ipv6_hdr(skb)->nexthdr;
476 		tp_offset = sizeof(struct ipv6hdr);
477 	}
478 
479 	if (ip_proto != IPPROTO_TCP && ip_proto != IPPROTO_UDP)
480 		return -EPROTONOSUPPORT;
481 
482 	ports = (__be16 *)(skb->data + tp_offset);
483 	tbl_idx = skb_get_hash_raw(skb) & QEDE_RFS_FLW_MASK;
484 
485 	spin_lock_bh(&edev->arfs->arfs_list_lock);
486 
487 	n = qede_arfs_htbl_key_search(QEDE_ARFS_BUCKET_HEAD(edev, tbl_idx),
488 				      skb, ports[0], ports[1], ip_proto);
489 	if (n) {
490 		/* Filter match */
491 		n->next_rxq_id = rxq_index;
492 
493 		if (test_bit(QEDE_FLTR_VALID, &n->state)) {
494 			if (n->rxq_id != rxq_index)
495 				qede_configure_arfs_fltr(edev, n, n->rxq_id,
496 							 false);
497 		} else {
498 			if (!n->used) {
499 				n->rxq_id = rxq_index;
500 				qede_configure_arfs_fltr(edev, n, n->rxq_id,
501 							 true);
502 			}
503 		}
504 
505 		rc = n->sw_id;
506 		goto ret_unlock;
507 	}
508 
509 	min_hlen = ETH_HLEN + skb_headlen(skb);
510 
511 	n = qede_alloc_filter(edev, min_hlen);
512 	if (!n) {
513 		rc = -ENOMEM;
514 		goto ret_unlock;
515 	}
516 
517 	n->buf_len = min_hlen;
518 	n->rxq_id = rxq_index;
519 	n->next_rxq_id = rxq_index;
520 	n->tuple.src_port = ports[0];
521 	n->tuple.dst_port = ports[1];
522 	n->flow_id = flow_id;
523 
524 	if (skb->protocol == htons(ETH_P_IP)) {
525 		n->tuple.src_ipv4 = ip_hdr(skb)->saddr;
526 		n->tuple.dst_ipv4 = ip_hdr(skb)->daddr;
527 	} else {
528 		memcpy(&n->tuple.src_ipv6, &ipv6_hdr(skb)->saddr,
529 		       sizeof(struct in6_addr));
530 		memcpy(&n->tuple.dst_ipv6, &ipv6_hdr(skb)->daddr,
531 		       sizeof(struct in6_addr));
532 	}
533 
534 	eth = (struct ethhdr *)n->data;
535 	eth->h_proto = skb->protocol;
536 	n->tuple.eth_proto = skb->protocol;
537 	n->tuple.ip_proto = ip_proto;
538 	n->tuple.mode = QED_FILTER_CONFIG_MODE_5_TUPLE;
539 	memcpy(n->data + ETH_HLEN, skb->data, skb_headlen(skb));
540 
541 	rc = qede_enqueue_fltr_and_config_searcher(edev, n, tbl_idx);
542 	if (rc)
543 		goto ret_unlock;
544 
545 	qede_configure_arfs_fltr(edev, n, n->rxq_id, true);
546 
547 	spin_unlock_bh(&edev->arfs->arfs_list_lock);
548 
549 	set_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags);
550 	schedule_delayed_work(&edev->sp_task, 0);
551 
552 	return n->sw_id;
553 
554 ret_unlock:
555 	spin_unlock_bh(&edev->arfs->arfs_list_lock);
556 	return rc;
557 }
558 #endif
559 
560 void qede_udp_ports_update(void *dev, u16 vxlan_port, u16 geneve_port)
561 {
562 	struct qede_dev *edev = dev;
563 
564 	if (edev->vxlan_dst_port != vxlan_port)
565 		edev->vxlan_dst_port = 0;
566 
567 	if (edev->geneve_dst_port != geneve_port)
568 		edev->geneve_dst_port = 0;
569 }
570 
571 void qede_force_mac(void *dev, u8 *mac, bool forced)
572 {
573 	struct qede_dev *edev = dev;
574 
575 	__qede_lock(edev);
576 
577 	if (!is_valid_ether_addr(mac)) {
578 		__qede_unlock(edev);
579 		return;
580 	}
581 
582 	ether_addr_copy(edev->ndev->dev_addr, mac);
583 	__qede_unlock(edev);
584 }
585 
586 void qede_fill_rss_params(struct qede_dev *edev,
587 			  struct qed_update_vport_rss_params *rss, u8 *update)
588 {
589 	bool need_reset = false;
590 	int i;
591 
592 	if (QEDE_RSS_COUNT(edev) <= 1) {
593 		memset(rss, 0, sizeof(*rss));
594 		*update = 0;
595 		return;
596 	}
597 
598 	/* Need to validate current RSS config uses valid entries */
599 	for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) {
600 		if (edev->rss_ind_table[i] >= QEDE_RSS_COUNT(edev)) {
601 			need_reset = true;
602 			break;
603 		}
604 	}
605 
606 	if (!(edev->rss_params_inited & QEDE_RSS_INDIR_INITED) || need_reset) {
607 		for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) {
608 			u16 indir_val, val;
609 
610 			val = QEDE_RSS_COUNT(edev);
611 			indir_val = ethtool_rxfh_indir_default(i, val);
612 			edev->rss_ind_table[i] = indir_val;
613 		}
614 		edev->rss_params_inited |= QEDE_RSS_INDIR_INITED;
615 	}
616 
617 	/* Now that we have the queue-indirection, prepare the handles */
618 	for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) {
619 		u16 idx = QEDE_RX_QUEUE_IDX(edev, edev->rss_ind_table[i]);
620 
621 		rss->rss_ind_table[i] = edev->fp_array[idx].rxq->handle;
622 	}
623 
624 	if (!(edev->rss_params_inited & QEDE_RSS_KEY_INITED)) {
625 		netdev_rss_key_fill(edev->rss_key, sizeof(edev->rss_key));
626 		edev->rss_params_inited |= QEDE_RSS_KEY_INITED;
627 	}
628 	memcpy(rss->rss_key, edev->rss_key, sizeof(rss->rss_key));
629 
630 	if (!(edev->rss_params_inited & QEDE_RSS_CAPS_INITED)) {
631 		edev->rss_caps = QED_RSS_IPV4 | QED_RSS_IPV6 |
632 		    QED_RSS_IPV4_TCP | QED_RSS_IPV6_TCP;
633 		edev->rss_params_inited |= QEDE_RSS_CAPS_INITED;
634 	}
635 	rss->rss_caps = edev->rss_caps;
636 
637 	*update = 1;
638 }
639 
640 static int qede_set_ucast_rx_mac(struct qede_dev *edev,
641 				 enum qed_filter_xcast_params_type opcode,
642 				 unsigned char mac[ETH_ALEN])
643 {
644 	struct qed_filter_params filter_cmd;
645 
646 	memset(&filter_cmd, 0, sizeof(filter_cmd));
647 	filter_cmd.type = QED_FILTER_TYPE_UCAST;
648 	filter_cmd.filter.ucast.type = opcode;
649 	filter_cmd.filter.ucast.mac_valid = 1;
650 	ether_addr_copy(filter_cmd.filter.ucast.mac, mac);
651 
652 	return edev->ops->filter_config(edev->cdev, &filter_cmd);
653 }
654 
655 static int qede_set_ucast_rx_vlan(struct qede_dev *edev,
656 				  enum qed_filter_xcast_params_type opcode,
657 				  u16 vid)
658 {
659 	struct qed_filter_params filter_cmd;
660 
661 	memset(&filter_cmd, 0, sizeof(filter_cmd));
662 	filter_cmd.type = QED_FILTER_TYPE_UCAST;
663 	filter_cmd.filter.ucast.type = opcode;
664 	filter_cmd.filter.ucast.vlan_valid = 1;
665 	filter_cmd.filter.ucast.vlan = vid;
666 
667 	return edev->ops->filter_config(edev->cdev, &filter_cmd);
668 }
669 
670 static int qede_config_accept_any_vlan(struct qede_dev *edev, bool action)
671 {
672 	struct qed_update_vport_params *params;
673 	int rc;
674 
675 	/* Proceed only if action actually needs to be performed */
676 	if (edev->accept_any_vlan == action)
677 		return 0;
678 
679 	params = vzalloc(sizeof(*params));
680 	if (!params)
681 		return -ENOMEM;
682 
683 	params->vport_id = 0;
684 	params->accept_any_vlan = action;
685 	params->update_accept_any_vlan_flg = 1;
686 
687 	rc = edev->ops->vport_update(edev->cdev, params);
688 	if (rc) {
689 		DP_ERR(edev, "Failed to %s accept-any-vlan\n",
690 		       action ? "enable" : "disable");
691 	} else {
692 		DP_INFO(edev, "%s accept-any-vlan\n",
693 			action ? "enabled" : "disabled");
694 		edev->accept_any_vlan = action;
695 	}
696 
697 	vfree(params);
698 	return 0;
699 }
700 
701 int qede_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
702 {
703 	struct qede_dev *edev = netdev_priv(dev);
704 	struct qede_vlan *vlan, *tmp;
705 	int rc = 0;
706 
707 	DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan 0x%04x\n", vid);
708 
709 	vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
710 	if (!vlan) {
711 		DP_INFO(edev, "Failed to allocate struct for vlan\n");
712 		return -ENOMEM;
713 	}
714 	INIT_LIST_HEAD(&vlan->list);
715 	vlan->vid = vid;
716 	vlan->configured = false;
717 
718 	/* Verify vlan isn't already configured */
719 	list_for_each_entry(tmp, &edev->vlan_list, list) {
720 		if (tmp->vid == vlan->vid) {
721 			DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
722 				   "vlan already configured\n");
723 			kfree(vlan);
724 			return -EEXIST;
725 		}
726 	}
727 
728 	/* If interface is down, cache this VLAN ID and return */
729 	__qede_lock(edev);
730 	if (edev->state != QEDE_STATE_OPEN) {
731 		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
732 			   "Interface is down, VLAN %d will be configured when interface is up\n",
733 			   vid);
734 		if (vid != 0)
735 			edev->non_configured_vlans++;
736 		list_add(&vlan->list, &edev->vlan_list);
737 		goto out;
738 	}
739 
740 	/* Check for the filter limit.
741 	 * Note - vlan0 has a reserved filter and can be added without
742 	 * worrying about quota
743 	 */
744 	if ((edev->configured_vlans < edev->dev_info.num_vlan_filters) ||
745 	    (vlan->vid == 0)) {
746 		rc = qede_set_ucast_rx_vlan(edev,
747 					    QED_FILTER_XCAST_TYPE_ADD,
748 					    vlan->vid);
749 		if (rc) {
750 			DP_ERR(edev, "Failed to configure VLAN %d\n",
751 			       vlan->vid);
752 			kfree(vlan);
753 			goto out;
754 		}
755 		vlan->configured = true;
756 
757 		/* vlan0 filter isn't consuming out of our quota */
758 		if (vlan->vid != 0)
759 			edev->configured_vlans++;
760 	} else {
761 		/* Out of quota; Activate accept-any-VLAN mode */
762 		if (!edev->non_configured_vlans) {
763 			rc = qede_config_accept_any_vlan(edev, true);
764 			if (rc) {
765 				kfree(vlan);
766 				goto out;
767 			}
768 		}
769 
770 		edev->non_configured_vlans++;
771 	}
772 
773 	list_add(&vlan->list, &edev->vlan_list);
774 
775 out:
776 	__qede_unlock(edev);
777 	return rc;
778 }
779 
780 static void qede_del_vlan_from_list(struct qede_dev *edev,
781 				    struct qede_vlan *vlan)
782 {
783 	/* vlan0 filter isn't consuming out of our quota */
784 	if (vlan->vid != 0) {
785 		if (vlan->configured)
786 			edev->configured_vlans--;
787 		else
788 			edev->non_configured_vlans--;
789 	}
790 
791 	list_del(&vlan->list);
792 	kfree(vlan);
793 }
794 
795 int qede_configure_vlan_filters(struct qede_dev *edev)
796 {
797 	int rc = 0, real_rc = 0, accept_any_vlan = 0;
798 	struct qed_dev_eth_info *dev_info;
799 	struct qede_vlan *vlan = NULL;
800 
801 	if (list_empty(&edev->vlan_list))
802 		return 0;
803 
804 	dev_info = &edev->dev_info;
805 
806 	/* Configure non-configured vlans */
807 	list_for_each_entry(vlan, &edev->vlan_list, list) {
808 		if (vlan->configured)
809 			continue;
810 
811 		/* We have used all our credits, now enable accept_any_vlan */
812 		if ((vlan->vid != 0) &&
813 		    (edev->configured_vlans == dev_info->num_vlan_filters)) {
814 			accept_any_vlan = 1;
815 			continue;
816 		}
817 
818 		DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan %d\n", vlan->vid);
819 
820 		rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_ADD,
821 					    vlan->vid);
822 		if (rc) {
823 			DP_ERR(edev, "Failed to configure VLAN %u\n",
824 			       vlan->vid);
825 			real_rc = rc;
826 			continue;
827 		}
828 
829 		vlan->configured = true;
830 		/* vlan0 filter doesn't consume our VLAN filter's quota */
831 		if (vlan->vid != 0) {
832 			edev->non_configured_vlans--;
833 			edev->configured_vlans++;
834 		}
835 	}
836 
837 	/* enable accept_any_vlan mode if we have more VLANs than credits,
838 	 * or remove accept_any_vlan mode if we've actually removed
839 	 * a non-configured vlan, and all remaining vlans are truly configured.
840 	 */
841 
842 	if (accept_any_vlan)
843 		rc = qede_config_accept_any_vlan(edev, true);
844 	else if (!edev->non_configured_vlans)
845 		rc = qede_config_accept_any_vlan(edev, false);
846 
847 	if (rc && !real_rc)
848 		real_rc = rc;
849 
850 	return real_rc;
851 }
852 
853 int qede_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
854 {
855 	struct qede_dev *edev = netdev_priv(dev);
856 	struct qede_vlan *vlan = NULL;
857 	int rc = 0;
858 
859 	DP_VERBOSE(edev, NETIF_MSG_IFDOWN, "Removing vlan 0x%04x\n", vid);
860 
861 	/* Find whether entry exists */
862 	__qede_lock(edev);
863 	list_for_each_entry(vlan, &edev->vlan_list, list)
864 		if (vlan->vid == vid)
865 			break;
866 
867 	if (!vlan || (vlan->vid != vid)) {
868 		DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
869 			   "Vlan isn't configured\n");
870 		goto out;
871 	}
872 
873 	if (edev->state != QEDE_STATE_OPEN) {
874 		/* As interface is already down, we don't have a VPORT
875 		 * instance to remove vlan filter. So just update vlan list
876 		 */
877 		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
878 			   "Interface is down, removing VLAN from list only\n");
879 		qede_del_vlan_from_list(edev, vlan);
880 		goto out;
881 	}
882 
883 	/* Remove vlan */
884 	if (vlan->configured) {
885 		rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_DEL,
886 					    vid);
887 		if (rc) {
888 			DP_ERR(edev, "Failed to remove VLAN %d\n", vid);
889 			goto out;
890 		}
891 	}
892 
893 	qede_del_vlan_from_list(edev, vlan);
894 
895 	/* We have removed a VLAN - try to see if we can
896 	 * configure non-configured VLAN from the list.
897 	 */
898 	rc = qede_configure_vlan_filters(edev);
899 
900 out:
901 	__qede_unlock(edev);
902 	return rc;
903 }
904 
905 void qede_vlan_mark_nonconfigured(struct qede_dev *edev)
906 {
907 	struct qede_vlan *vlan = NULL;
908 
909 	if (list_empty(&edev->vlan_list))
910 		return;
911 
912 	list_for_each_entry(vlan, &edev->vlan_list, list) {
913 		if (!vlan->configured)
914 			continue;
915 
916 		vlan->configured = false;
917 
918 		/* vlan0 filter isn't consuming out of our quota */
919 		if (vlan->vid != 0) {
920 			edev->non_configured_vlans++;
921 			edev->configured_vlans--;
922 		}
923 
924 		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
925 			   "marked vlan %d as non-configured\n", vlan->vid);
926 	}
927 
928 	edev->accept_any_vlan = false;
929 }
930 
931 static void qede_set_features_reload(struct qede_dev *edev,
932 				     struct qede_reload_args *args)
933 {
934 	edev->ndev->features = args->u.features;
935 }
936 
937 netdev_features_t qede_fix_features(struct net_device *dev,
938 				    netdev_features_t features)
939 {
940 	struct qede_dev *edev = netdev_priv(dev);
941 
942 	if (edev->xdp_prog || edev->ndev->mtu > PAGE_SIZE ||
943 	    !(features & NETIF_F_GRO))
944 		features &= ~NETIF_F_GRO_HW;
945 
946 	return features;
947 }
948 
949 int qede_set_features(struct net_device *dev, netdev_features_t features)
950 {
951 	struct qede_dev *edev = netdev_priv(dev);
952 	netdev_features_t changes = features ^ dev->features;
953 	bool need_reload = false;
954 
955 	if (changes & NETIF_F_GRO_HW)
956 		need_reload = true;
957 
958 	if (need_reload) {
959 		struct qede_reload_args args;
960 
961 		args.u.features = features;
962 		args.func = &qede_set_features_reload;
963 
964 		/* Make sure that we definitely need to reload.
965 		 * In case of an eBPF attached program, there will be no FW
966 		 * aggregations, so no need to actually reload.
967 		 */
968 		__qede_lock(edev);
969 		if (edev->xdp_prog)
970 			args.func(edev, &args);
971 		else
972 			qede_reload(edev, &args, true);
973 		__qede_unlock(edev);
974 
975 		return 1;
976 	}
977 
978 	return 0;
979 }
980 
981 void qede_udp_tunnel_add(struct net_device *dev, struct udp_tunnel_info *ti)
982 {
983 	struct qede_dev *edev = netdev_priv(dev);
984 	struct qed_tunn_params tunn_params;
985 	u16 t_port = ntohs(ti->port);
986 	int rc;
987 
988 	memset(&tunn_params, 0, sizeof(tunn_params));
989 
990 	switch (ti->type) {
991 	case UDP_TUNNEL_TYPE_VXLAN:
992 		if (!edev->dev_info.common.vxlan_enable)
993 			return;
994 
995 		if (edev->vxlan_dst_port)
996 			return;
997 
998 		tunn_params.update_vxlan_port = 1;
999 		tunn_params.vxlan_port = t_port;
1000 
1001 		__qede_lock(edev);
1002 		rc = edev->ops->tunn_config(edev->cdev, &tunn_params);
1003 		__qede_unlock(edev);
1004 
1005 		if (!rc) {
1006 			edev->vxlan_dst_port = t_port;
1007 			DP_VERBOSE(edev, QED_MSG_DEBUG, "Added vxlan port=%d\n",
1008 				   t_port);
1009 		} else {
1010 			DP_NOTICE(edev, "Failed to add vxlan UDP port=%d\n",
1011 				  t_port);
1012 		}
1013 
1014 		break;
1015 	case UDP_TUNNEL_TYPE_GENEVE:
1016 		if (!edev->dev_info.common.geneve_enable)
1017 			return;
1018 
1019 		if (edev->geneve_dst_port)
1020 			return;
1021 
1022 		tunn_params.update_geneve_port = 1;
1023 		tunn_params.geneve_port = t_port;
1024 
1025 		__qede_lock(edev);
1026 		rc = edev->ops->tunn_config(edev->cdev, &tunn_params);
1027 		__qede_unlock(edev);
1028 
1029 		if (!rc) {
1030 			edev->geneve_dst_port = t_port;
1031 			DP_VERBOSE(edev, QED_MSG_DEBUG,
1032 				   "Added geneve port=%d\n", t_port);
1033 		} else {
1034 			DP_NOTICE(edev, "Failed to add geneve UDP port=%d\n",
1035 				  t_port);
1036 		}
1037 
1038 		break;
1039 	default:
1040 		return;
1041 	}
1042 }
1043 
1044 void qede_udp_tunnel_del(struct net_device *dev,
1045 			 struct udp_tunnel_info *ti)
1046 {
1047 	struct qede_dev *edev = netdev_priv(dev);
1048 	struct qed_tunn_params tunn_params;
1049 	u16 t_port = ntohs(ti->port);
1050 
1051 	memset(&tunn_params, 0, sizeof(tunn_params));
1052 
1053 	switch (ti->type) {
1054 	case UDP_TUNNEL_TYPE_VXLAN:
1055 		if (t_port != edev->vxlan_dst_port)
1056 			return;
1057 
1058 		tunn_params.update_vxlan_port = 1;
1059 		tunn_params.vxlan_port = 0;
1060 
1061 		__qede_lock(edev);
1062 		edev->ops->tunn_config(edev->cdev, &tunn_params);
1063 		__qede_unlock(edev);
1064 
1065 		edev->vxlan_dst_port = 0;
1066 
1067 		DP_VERBOSE(edev, QED_MSG_DEBUG, "Deleted vxlan port=%d\n",
1068 			   t_port);
1069 
1070 		break;
1071 	case UDP_TUNNEL_TYPE_GENEVE:
1072 		if (t_port != edev->geneve_dst_port)
1073 			return;
1074 
1075 		tunn_params.update_geneve_port = 1;
1076 		tunn_params.geneve_port = 0;
1077 
1078 		__qede_lock(edev);
1079 		edev->ops->tunn_config(edev->cdev, &tunn_params);
1080 		__qede_unlock(edev);
1081 
1082 		edev->geneve_dst_port = 0;
1083 
1084 		DP_VERBOSE(edev, QED_MSG_DEBUG, "Deleted geneve port=%d\n",
1085 			   t_port);
1086 		break;
1087 	default:
1088 		return;
1089 	}
1090 }
1091 
1092 static void qede_xdp_reload_func(struct qede_dev *edev,
1093 				 struct qede_reload_args *args)
1094 {
1095 	struct bpf_prog *old;
1096 
1097 	old = xchg(&edev->xdp_prog, args->u.new_prog);
1098 	if (old)
1099 		bpf_prog_put(old);
1100 }
1101 
1102 static int qede_xdp_set(struct qede_dev *edev, struct bpf_prog *prog)
1103 {
1104 	struct qede_reload_args args;
1105 
1106 	/* If we're called, there was already a bpf reference increment */
1107 	args.func = &qede_xdp_reload_func;
1108 	args.u.new_prog = prog;
1109 	qede_reload(edev, &args, false);
1110 
1111 	return 0;
1112 }
1113 
1114 int qede_xdp(struct net_device *dev, struct netdev_bpf *xdp)
1115 {
1116 	struct qede_dev *edev = netdev_priv(dev);
1117 
1118 	switch (xdp->command) {
1119 	case XDP_SETUP_PROG:
1120 		return qede_xdp_set(edev, xdp->prog);
1121 	case XDP_QUERY_PROG:
1122 		xdp->prog_id = edev->xdp_prog ? edev->xdp_prog->aux->id : 0;
1123 		return 0;
1124 	default:
1125 		return -EINVAL;
1126 	}
1127 }
1128 
1129 static int qede_set_mcast_rx_mac(struct qede_dev *edev,
1130 				 enum qed_filter_xcast_params_type opcode,
1131 				 unsigned char *mac, int num_macs)
1132 {
1133 	struct qed_filter_params filter_cmd;
1134 	int i;
1135 
1136 	memset(&filter_cmd, 0, sizeof(filter_cmd));
1137 	filter_cmd.type = QED_FILTER_TYPE_MCAST;
1138 	filter_cmd.filter.mcast.type = opcode;
1139 	filter_cmd.filter.mcast.num = num_macs;
1140 
1141 	for (i = 0; i < num_macs; i++, mac += ETH_ALEN)
1142 		ether_addr_copy(filter_cmd.filter.mcast.mac[i], mac);
1143 
1144 	return edev->ops->filter_config(edev->cdev, &filter_cmd);
1145 }
1146 
1147 int qede_set_mac_addr(struct net_device *ndev, void *p)
1148 {
1149 	struct qede_dev *edev = netdev_priv(ndev);
1150 	struct sockaddr *addr = p;
1151 	int rc = 0;
1152 
1153 	/* Make sure the state doesn't transition while changing the MAC.
1154 	 * Also, all flows accessing the dev_addr field are doing that under
1155 	 * this lock.
1156 	 */
1157 	__qede_lock(edev);
1158 
1159 	if (!is_valid_ether_addr(addr->sa_data)) {
1160 		DP_NOTICE(edev, "The MAC address is not valid\n");
1161 		rc = -EFAULT;
1162 		goto out;
1163 	}
1164 
1165 	if (!edev->ops->check_mac(edev->cdev, addr->sa_data)) {
1166 		DP_NOTICE(edev, "qed prevents setting MAC %pM\n",
1167 			  addr->sa_data);
1168 		rc = -EINVAL;
1169 		goto out;
1170 	}
1171 
1172 	if (edev->state == QEDE_STATE_OPEN) {
1173 		/* Remove the previous primary mac */
1174 		rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
1175 					   ndev->dev_addr);
1176 		if (rc)
1177 			goto out;
1178 	}
1179 
1180 	ether_addr_copy(ndev->dev_addr, addr->sa_data);
1181 	DP_INFO(edev, "Setting device MAC to %pM\n", addr->sa_data);
1182 
1183 	if (edev->state != QEDE_STATE_OPEN) {
1184 		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1185 			   "The device is currently down\n");
1186 		/* Ask PF to explicitly update a copy in bulletin board */
1187 		if (IS_VF(edev) && edev->ops->req_bulletin_update_mac)
1188 			edev->ops->req_bulletin_update_mac(edev->cdev,
1189 							   ndev->dev_addr);
1190 		goto out;
1191 	}
1192 
1193 	edev->ops->common->update_mac(edev->cdev, ndev->dev_addr);
1194 
1195 	rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
1196 				   ndev->dev_addr);
1197 out:
1198 	__qede_unlock(edev);
1199 	return rc;
1200 }
1201 
1202 static int
1203 qede_configure_mcast_filtering(struct net_device *ndev,
1204 			       enum qed_filter_rx_mode_type *accept_flags)
1205 {
1206 	struct qede_dev *edev = netdev_priv(ndev);
1207 	unsigned char *mc_macs, *temp;
1208 	struct netdev_hw_addr *ha;
1209 	int rc = 0, mc_count;
1210 	size_t size;
1211 
1212 	size = 64 * ETH_ALEN;
1213 
1214 	mc_macs = kzalloc(size, GFP_KERNEL);
1215 	if (!mc_macs) {
1216 		DP_NOTICE(edev,
1217 			  "Failed to allocate memory for multicast MACs\n");
1218 		rc = -ENOMEM;
1219 		goto exit;
1220 	}
1221 
1222 	temp = mc_macs;
1223 
1224 	/* Remove all previously configured MAC filters */
1225 	rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
1226 				   mc_macs, 1);
1227 	if (rc)
1228 		goto exit;
1229 
1230 	netif_addr_lock_bh(ndev);
1231 
1232 	mc_count = netdev_mc_count(ndev);
1233 	if (mc_count < 64) {
1234 		netdev_for_each_mc_addr(ha, ndev) {
1235 			ether_addr_copy(temp, ha->addr);
1236 			temp += ETH_ALEN;
1237 		}
1238 	}
1239 
1240 	netif_addr_unlock_bh(ndev);
1241 
1242 	/* Check for all multicast @@@TBD resource allocation */
1243 	if ((ndev->flags & IFF_ALLMULTI) || (mc_count > 64)) {
1244 		if (*accept_flags == QED_FILTER_RX_MODE_TYPE_REGULAR)
1245 			*accept_flags = QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC;
1246 	} else {
1247 		/* Add all multicast MAC filters */
1248 		rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
1249 					   mc_macs, mc_count);
1250 	}
1251 
1252 exit:
1253 	kfree(mc_macs);
1254 	return rc;
1255 }
1256 
1257 void qede_set_rx_mode(struct net_device *ndev)
1258 {
1259 	struct qede_dev *edev = netdev_priv(ndev);
1260 
1261 	set_bit(QEDE_SP_RX_MODE, &edev->sp_flags);
1262 	schedule_delayed_work(&edev->sp_task, 0);
1263 }
1264 
1265 /* Must be called with qede_lock held */
1266 void qede_config_rx_mode(struct net_device *ndev)
1267 {
1268 	enum qed_filter_rx_mode_type accept_flags;
1269 	struct qede_dev *edev = netdev_priv(ndev);
1270 	struct qed_filter_params rx_mode;
1271 	unsigned char *uc_macs, *temp;
1272 	struct netdev_hw_addr *ha;
1273 	int rc, uc_count;
1274 	size_t size;
1275 
1276 	netif_addr_lock_bh(ndev);
1277 
1278 	uc_count = netdev_uc_count(ndev);
1279 	size = uc_count * ETH_ALEN;
1280 
1281 	uc_macs = kzalloc(size, GFP_ATOMIC);
1282 	if (!uc_macs) {
1283 		DP_NOTICE(edev, "Failed to allocate memory for unicast MACs\n");
1284 		netif_addr_unlock_bh(ndev);
1285 		return;
1286 	}
1287 
1288 	temp = uc_macs;
1289 	netdev_for_each_uc_addr(ha, ndev) {
1290 		ether_addr_copy(temp, ha->addr);
1291 		temp += ETH_ALEN;
1292 	}
1293 
1294 	netif_addr_unlock_bh(ndev);
1295 
1296 	/* Configure the struct for the Rx mode */
1297 	memset(&rx_mode, 0, sizeof(struct qed_filter_params));
1298 	rx_mode.type = QED_FILTER_TYPE_RX_MODE;
1299 
1300 	/* Remove all previous unicast secondary macs and multicast macs
1301 	 * (configrue / leave the primary mac)
1302 	 */
1303 	rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_REPLACE,
1304 				   edev->ndev->dev_addr);
1305 	if (rc)
1306 		goto out;
1307 
1308 	/* Check for promiscuous */
1309 	if (ndev->flags & IFF_PROMISC)
1310 		accept_flags = QED_FILTER_RX_MODE_TYPE_PROMISC;
1311 	else
1312 		accept_flags = QED_FILTER_RX_MODE_TYPE_REGULAR;
1313 
1314 	/* Configure all filters regardless, in case promisc is rejected */
1315 	if (uc_count < edev->dev_info.num_mac_filters) {
1316 		int i;
1317 
1318 		temp = uc_macs;
1319 		for (i = 0; i < uc_count; i++) {
1320 			rc = qede_set_ucast_rx_mac(edev,
1321 						   QED_FILTER_XCAST_TYPE_ADD,
1322 						   temp);
1323 			if (rc)
1324 				goto out;
1325 
1326 			temp += ETH_ALEN;
1327 		}
1328 	} else {
1329 		accept_flags = QED_FILTER_RX_MODE_TYPE_PROMISC;
1330 	}
1331 
1332 	rc = qede_configure_mcast_filtering(ndev, &accept_flags);
1333 	if (rc)
1334 		goto out;
1335 
1336 	/* take care of VLAN mode */
1337 	if (ndev->flags & IFF_PROMISC) {
1338 		qede_config_accept_any_vlan(edev, true);
1339 	} else if (!edev->non_configured_vlans) {
1340 		/* It's possible that accept_any_vlan mode is set due to a
1341 		 * previous setting of IFF_PROMISC. If vlan credits are
1342 		 * sufficient, disable accept_any_vlan.
1343 		 */
1344 		qede_config_accept_any_vlan(edev, false);
1345 	}
1346 
1347 	rx_mode.filter.accept_flags = accept_flags;
1348 	edev->ops->filter_config(edev->cdev, &rx_mode);
1349 out:
1350 	kfree(uc_macs);
1351 }
1352 
1353 static struct qede_arfs_fltr_node *
1354 qede_get_arfs_fltr_by_loc(struct hlist_head *head, u64 location)
1355 {
1356 	struct qede_arfs_fltr_node *fltr;
1357 
1358 	hlist_for_each_entry(fltr, head, node)
1359 		if (location == fltr->sw_id)
1360 			return fltr;
1361 
1362 	return NULL;
1363 }
1364 
1365 int qede_get_cls_rule_all(struct qede_dev *edev, struct ethtool_rxnfc *info,
1366 			  u32 *rule_locs)
1367 {
1368 	struct qede_arfs_fltr_node *fltr;
1369 	struct hlist_head *head;
1370 	int cnt = 0, rc = 0;
1371 
1372 	info->data = QEDE_RFS_MAX_FLTR;
1373 
1374 	__qede_lock(edev);
1375 
1376 	if (!edev->arfs) {
1377 		rc = -EPERM;
1378 		goto unlock;
1379 	}
1380 
1381 	head = QEDE_ARFS_BUCKET_HEAD(edev, 0);
1382 
1383 	hlist_for_each_entry(fltr, head, node) {
1384 		if (cnt == info->rule_cnt) {
1385 			rc = -EMSGSIZE;
1386 			goto unlock;
1387 		}
1388 
1389 		rule_locs[cnt] = fltr->sw_id;
1390 		cnt++;
1391 	}
1392 
1393 	info->rule_cnt = cnt;
1394 
1395 unlock:
1396 	__qede_unlock(edev);
1397 	return rc;
1398 }
1399 
1400 int qede_get_cls_rule_entry(struct qede_dev *edev, struct ethtool_rxnfc *cmd)
1401 {
1402 	struct ethtool_rx_flow_spec *fsp = &cmd->fs;
1403 	struct qede_arfs_fltr_node *fltr = NULL;
1404 	int rc = 0;
1405 
1406 	cmd->data = QEDE_RFS_MAX_FLTR;
1407 
1408 	__qede_lock(edev);
1409 
1410 	if (!edev->arfs) {
1411 		rc = -EPERM;
1412 		goto unlock;
1413 	}
1414 
1415 	fltr = qede_get_arfs_fltr_by_loc(QEDE_ARFS_BUCKET_HEAD(edev, 0),
1416 					 fsp->location);
1417 	if (!fltr) {
1418 		DP_NOTICE(edev, "Rule not found - location=0x%x\n",
1419 			  fsp->location);
1420 		rc = -EINVAL;
1421 		goto unlock;
1422 	}
1423 
1424 	if (fltr->tuple.eth_proto == htons(ETH_P_IP)) {
1425 		if (fltr->tuple.ip_proto == IPPROTO_TCP)
1426 			fsp->flow_type = TCP_V4_FLOW;
1427 		else
1428 			fsp->flow_type = UDP_V4_FLOW;
1429 
1430 		fsp->h_u.tcp_ip4_spec.psrc = fltr->tuple.src_port;
1431 		fsp->h_u.tcp_ip4_spec.pdst = fltr->tuple.dst_port;
1432 		fsp->h_u.tcp_ip4_spec.ip4src = fltr->tuple.src_ipv4;
1433 		fsp->h_u.tcp_ip4_spec.ip4dst = fltr->tuple.dst_ipv4;
1434 	} else {
1435 		if (fltr->tuple.ip_proto == IPPROTO_TCP)
1436 			fsp->flow_type = TCP_V6_FLOW;
1437 		else
1438 			fsp->flow_type = UDP_V6_FLOW;
1439 		fsp->h_u.tcp_ip6_spec.psrc = fltr->tuple.src_port;
1440 		fsp->h_u.tcp_ip6_spec.pdst = fltr->tuple.dst_port;
1441 		memcpy(&fsp->h_u.tcp_ip6_spec.ip6src,
1442 		       &fltr->tuple.src_ipv6, sizeof(struct in6_addr));
1443 		memcpy(&fsp->h_u.tcp_ip6_spec.ip6dst,
1444 		       &fltr->tuple.dst_ipv6, sizeof(struct in6_addr));
1445 	}
1446 
1447 	fsp->ring_cookie = fltr->rxq_id;
1448 
1449 	if (fltr->vfid) {
1450 		fsp->ring_cookie |= ((u64)fltr->vfid) <<
1451 					ETHTOOL_RX_FLOW_SPEC_RING_VF_OFF;
1452 	}
1453 
1454 	if (fltr->b_is_drop)
1455 		fsp->ring_cookie = RX_CLS_FLOW_DISC;
1456 unlock:
1457 	__qede_unlock(edev);
1458 	return rc;
1459 }
1460 
1461 static int
1462 qede_poll_arfs_filter_config(struct qede_dev *edev,
1463 			     struct qede_arfs_fltr_node *fltr)
1464 {
1465 	int count = QEDE_ARFS_POLL_COUNT;
1466 
1467 	while (fltr->used && count) {
1468 		msleep(20);
1469 		count--;
1470 	}
1471 
1472 	if (count == 0 || fltr->fw_rc) {
1473 		DP_NOTICE(edev, "Timeout in polling filter config\n");
1474 		qede_dequeue_fltr_and_config_searcher(edev, fltr);
1475 		return -EIO;
1476 	}
1477 
1478 	return fltr->fw_rc;
1479 }
1480 
1481 static int qede_flow_get_min_header_size(struct qede_arfs_tuple *t)
1482 {
1483 	int size = ETH_HLEN;
1484 
1485 	if (t->eth_proto == htons(ETH_P_IP))
1486 		size += sizeof(struct iphdr);
1487 	else
1488 		size += sizeof(struct ipv6hdr);
1489 
1490 	if (t->ip_proto == IPPROTO_TCP)
1491 		size += sizeof(struct tcphdr);
1492 	else
1493 		size += sizeof(struct udphdr);
1494 
1495 	return size;
1496 }
1497 
1498 static bool qede_flow_spec_ipv4_cmp(struct qede_arfs_tuple *a,
1499 				    struct qede_arfs_tuple *b)
1500 {
1501 	if (a->eth_proto != htons(ETH_P_IP) ||
1502 	    b->eth_proto != htons(ETH_P_IP))
1503 		return false;
1504 
1505 	return (a->src_ipv4 == b->src_ipv4) &&
1506 	       (a->dst_ipv4 == b->dst_ipv4);
1507 }
1508 
1509 static void qede_flow_build_ipv4_hdr(struct qede_arfs_tuple *t,
1510 				     void *header)
1511 {
1512 	__be16 *ports = (__be16 *)(header + ETH_HLEN + sizeof(struct iphdr));
1513 	struct iphdr *ip = (struct iphdr *)(header + ETH_HLEN);
1514 	struct ethhdr *eth = (struct ethhdr *)header;
1515 
1516 	eth->h_proto = t->eth_proto;
1517 	ip->saddr = t->src_ipv4;
1518 	ip->daddr = t->dst_ipv4;
1519 	ip->version = 0x4;
1520 	ip->ihl = 0x5;
1521 	ip->protocol = t->ip_proto;
1522 	ip->tot_len = cpu_to_be16(qede_flow_get_min_header_size(t) - ETH_HLEN);
1523 
1524 	/* ports is weakly typed to suit both TCP and UDP ports */
1525 	ports[0] = t->src_port;
1526 	ports[1] = t->dst_port;
1527 }
1528 
1529 static void qede_flow_stringify_ipv4_hdr(struct qede_arfs_tuple *t,
1530 					 void *buffer)
1531 {
1532 	const char *prefix = t->ip_proto == IPPROTO_TCP ? "TCP" : "UDP";
1533 
1534 	snprintf(buffer, QEDE_FILTER_PRINT_MAX_LEN,
1535 		 "%s %pI4 (%04x) -> %pI4 (%04x)",
1536 		 prefix, &t->src_ipv4, t->src_port,
1537 		 &t->dst_ipv4, t->dst_port);
1538 }
1539 
1540 static bool qede_flow_spec_ipv6_cmp(struct qede_arfs_tuple *a,
1541 				    struct qede_arfs_tuple *b)
1542 {
1543 	if (a->eth_proto != htons(ETH_P_IPV6) ||
1544 	    b->eth_proto != htons(ETH_P_IPV6))
1545 		return false;
1546 
1547 	if (memcmp(&a->src_ipv6, &b->src_ipv6, sizeof(struct in6_addr)))
1548 		return false;
1549 
1550 	if (memcmp(&a->dst_ipv6, &b->dst_ipv6, sizeof(struct in6_addr)))
1551 		return false;
1552 
1553 	return true;
1554 }
1555 
1556 static void qede_flow_build_ipv6_hdr(struct qede_arfs_tuple *t,
1557 				     void *header)
1558 {
1559 	__be16 *ports = (__be16 *)(header + ETH_HLEN + sizeof(struct ipv6hdr));
1560 	struct ipv6hdr *ip6 = (struct ipv6hdr *)(header + ETH_HLEN);
1561 	struct ethhdr *eth = (struct ethhdr *)header;
1562 
1563 	eth->h_proto = t->eth_proto;
1564 	memcpy(&ip6->saddr, &t->src_ipv6, sizeof(struct in6_addr));
1565 	memcpy(&ip6->daddr, &t->dst_ipv6, sizeof(struct in6_addr));
1566 	ip6->version = 0x6;
1567 
1568 	if (t->ip_proto == IPPROTO_TCP) {
1569 		ip6->nexthdr = NEXTHDR_TCP;
1570 		ip6->payload_len = cpu_to_be16(sizeof(struct tcphdr));
1571 	} else {
1572 		ip6->nexthdr = NEXTHDR_UDP;
1573 		ip6->payload_len = cpu_to_be16(sizeof(struct udphdr));
1574 	}
1575 
1576 	/* ports is weakly typed to suit both TCP and UDP ports */
1577 	ports[0] = t->src_port;
1578 	ports[1] = t->dst_port;
1579 }
1580 
1581 /* Validate fields which are set and not accepted by the driver */
1582 static int qede_flow_spec_validate_unused(struct qede_dev *edev,
1583 					  struct ethtool_rx_flow_spec *fs)
1584 {
1585 	if (fs->flow_type & FLOW_MAC_EXT) {
1586 		DP_INFO(edev, "Don't support MAC extensions\n");
1587 		return -EOPNOTSUPP;
1588 	}
1589 
1590 	if ((fs->flow_type & FLOW_EXT) &&
1591 	    (fs->h_ext.vlan_etype || fs->h_ext.vlan_tci)) {
1592 		DP_INFO(edev, "Don't support vlan-based classification\n");
1593 		return -EOPNOTSUPP;
1594 	}
1595 
1596 	if ((fs->flow_type & FLOW_EXT) &&
1597 	    (fs->h_ext.data[0] || fs->h_ext.data[1])) {
1598 		DP_INFO(edev, "Don't support user defined data\n");
1599 		return -EOPNOTSUPP;
1600 	}
1601 
1602 	return 0;
1603 }
1604 
1605 static int qede_set_v4_tuple_to_profile(struct qede_dev *edev,
1606 					struct qede_arfs_tuple *t)
1607 {
1608 	/* We must have Only 4-tuples/l4 port/src ip/dst ip
1609 	 * as an input.
1610 	 */
1611 	if (t->src_port && t->dst_port && t->src_ipv4 && t->dst_ipv4) {
1612 		t->mode = QED_FILTER_CONFIG_MODE_5_TUPLE;
1613 	} else if (!t->src_port && t->dst_port &&
1614 		   !t->src_ipv4 && !t->dst_ipv4) {
1615 		t->mode = QED_FILTER_CONFIG_MODE_L4_PORT;
1616 	} else if (!t->src_port && !t->dst_port &&
1617 		   !t->dst_ipv4 && t->src_ipv4) {
1618 		t->mode = QED_FILTER_CONFIG_MODE_IP_SRC;
1619 	} else if (!t->src_port && !t->dst_port &&
1620 		   t->dst_ipv4 && !t->src_ipv4) {
1621 		t->mode = QED_FILTER_CONFIG_MODE_IP_DEST;
1622 	} else {
1623 		DP_INFO(edev, "Invalid N-tuple\n");
1624 		return -EOPNOTSUPP;
1625 	}
1626 
1627 	t->ip_comp = qede_flow_spec_ipv4_cmp;
1628 	t->build_hdr = qede_flow_build_ipv4_hdr;
1629 	t->stringify = qede_flow_stringify_ipv4_hdr;
1630 
1631 	return 0;
1632 }
1633 
1634 static int qede_set_v6_tuple_to_profile(struct qede_dev *edev,
1635 					struct qede_arfs_tuple *t,
1636 					struct in6_addr *zaddr)
1637 {
1638 	/* We must have Only 4-tuples/l4 port/src ip/dst ip
1639 	 * as an input.
1640 	 */
1641 	if (t->src_port && t->dst_port &&
1642 	    memcmp(&t->src_ipv6, zaddr, sizeof(struct in6_addr)) &&
1643 	    memcmp(&t->dst_ipv6, zaddr, sizeof(struct in6_addr))) {
1644 		t->mode = QED_FILTER_CONFIG_MODE_5_TUPLE;
1645 	} else if (!t->src_port && t->dst_port &&
1646 		   !memcmp(&t->src_ipv6, zaddr, sizeof(struct in6_addr)) &&
1647 		   !memcmp(&t->dst_ipv6, zaddr, sizeof(struct in6_addr))) {
1648 		t->mode = QED_FILTER_CONFIG_MODE_L4_PORT;
1649 	} else if (!t->src_port && !t->dst_port &&
1650 		   !memcmp(&t->dst_ipv6, zaddr, sizeof(struct in6_addr)) &&
1651 		   memcmp(&t->src_ipv6, zaddr, sizeof(struct in6_addr))) {
1652 		t->mode = QED_FILTER_CONFIG_MODE_IP_SRC;
1653 	} else if (!t->src_port && !t->dst_port &&
1654 		   memcmp(&t->dst_ipv6, zaddr, sizeof(struct in6_addr)) &&
1655 		   !memcmp(&t->src_ipv6, zaddr, sizeof(struct in6_addr))) {
1656 		t->mode = QED_FILTER_CONFIG_MODE_IP_DEST;
1657 	} else {
1658 		DP_INFO(edev, "Invalid N-tuple\n");
1659 		return -EOPNOTSUPP;
1660 	}
1661 
1662 	t->ip_comp = qede_flow_spec_ipv6_cmp;
1663 	t->build_hdr = qede_flow_build_ipv6_hdr;
1664 
1665 	return 0;
1666 }
1667 
1668 /* Must be called while qede lock is held */
1669 static struct qede_arfs_fltr_node *
1670 qede_flow_find_fltr(struct qede_dev *edev, struct qede_arfs_tuple *t)
1671 {
1672 	struct qede_arfs_fltr_node *fltr;
1673 	struct hlist_node *temp;
1674 	struct hlist_head *head;
1675 
1676 	head = QEDE_ARFS_BUCKET_HEAD(edev, 0);
1677 
1678 	hlist_for_each_entry_safe(fltr, temp, head, node) {
1679 		if (fltr->tuple.ip_proto == t->ip_proto &&
1680 		    fltr->tuple.src_port == t->src_port &&
1681 		    fltr->tuple.dst_port == t->dst_port &&
1682 		    t->ip_comp(&fltr->tuple, t))
1683 			return fltr;
1684 	}
1685 
1686 	return NULL;
1687 }
1688 
1689 static void qede_flow_set_destination(struct qede_dev *edev,
1690 				      struct qede_arfs_fltr_node *n,
1691 				      struct ethtool_rx_flow_spec *fs)
1692 {
1693 	if (fs->ring_cookie == RX_CLS_FLOW_DISC) {
1694 		n->b_is_drop = true;
1695 		return;
1696 	}
1697 
1698 	n->vfid = ethtool_get_flow_spec_ring_vf(fs->ring_cookie);
1699 	n->rxq_id = ethtool_get_flow_spec_ring(fs->ring_cookie);
1700 	n->next_rxq_id = n->rxq_id;
1701 
1702 	if (n->vfid)
1703 		DP_VERBOSE(edev, QED_MSG_SP,
1704 			   "Configuring N-tuple for VF 0x%02x\n", n->vfid - 1);
1705 }
1706 
1707 int qede_delete_flow_filter(struct qede_dev *edev, u64 cookie)
1708 {
1709 	struct qede_arfs_fltr_node *fltr = NULL;
1710 	int rc = -EPERM;
1711 
1712 	__qede_lock(edev);
1713 	if (!edev->arfs)
1714 		goto unlock;
1715 
1716 	fltr = qede_get_arfs_fltr_by_loc(QEDE_ARFS_BUCKET_HEAD(edev, 0),
1717 					 cookie);
1718 	if (!fltr)
1719 		goto unlock;
1720 
1721 	qede_configure_arfs_fltr(edev, fltr, fltr->rxq_id, false);
1722 
1723 	rc = qede_poll_arfs_filter_config(edev, fltr);
1724 	if (rc == 0)
1725 		qede_dequeue_fltr_and_config_searcher(edev, fltr);
1726 
1727 unlock:
1728 	__qede_unlock(edev);
1729 	return rc;
1730 }
1731 
1732 int qede_get_arfs_filter_count(struct qede_dev *edev)
1733 {
1734 	int count = 0;
1735 
1736 	__qede_lock(edev);
1737 
1738 	if (!edev->arfs)
1739 		goto unlock;
1740 
1741 	count = edev->arfs->filter_count;
1742 
1743 unlock:
1744 	__qede_unlock(edev);
1745 	return count;
1746 }
1747 
1748 static int qede_parse_actions(struct qede_dev *edev,
1749 			      struct flow_action *flow_action)
1750 {
1751 	const struct flow_action_entry *act;
1752 	int i;
1753 
1754 	if (!flow_action_has_entries(flow_action)) {
1755 		DP_NOTICE(edev, "No actions received\n");
1756 		return -EINVAL;
1757 	}
1758 
1759 	flow_action_for_each(i, act, flow_action) {
1760 		switch (act->id) {
1761 		case FLOW_ACTION_DROP:
1762 			break;
1763 		case FLOW_ACTION_QUEUE:
1764 			if (act->queue.vf)
1765 				break;
1766 
1767 			if (act->queue.index >= QEDE_RSS_COUNT(edev)) {
1768 				DP_INFO(edev, "Queue out-of-bounds\n");
1769 				return -EINVAL;
1770 			}
1771 			break;
1772 		default:
1773 			return -EINVAL;
1774 		}
1775 	}
1776 
1777 	return 0;
1778 }
1779 
1780 static int
1781 qede_flow_parse_ports(struct qede_dev *edev, struct flow_rule *rule,
1782 		      struct qede_arfs_tuple *t)
1783 {
1784 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
1785 		struct flow_match_ports match;
1786 
1787 		flow_rule_match_ports(rule, &match);
1788 		if ((match.key->src && match.mask->src != U16_MAX) ||
1789 		    (match.key->dst && match.mask->dst != U16_MAX)) {
1790 			DP_NOTICE(edev, "Do not support ports masks\n");
1791 			return -EINVAL;
1792 		}
1793 
1794 		t->src_port = match.key->src;
1795 		t->dst_port = match.key->dst;
1796 	}
1797 
1798 	return 0;
1799 }
1800 
1801 static int
1802 qede_flow_parse_v6_common(struct qede_dev *edev, struct flow_rule *rule,
1803 			  struct qede_arfs_tuple *t)
1804 {
1805 	struct in6_addr zero_addr, addr;
1806 
1807 	memset(&zero_addr, 0, sizeof(addr));
1808 	memset(&addr, 0xff, sizeof(addr));
1809 
1810 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
1811 		struct flow_match_ipv6_addrs match;
1812 
1813 		flow_rule_match_ipv6_addrs(rule, &match);
1814 		if ((memcmp(&match.key->src, &zero_addr, sizeof(addr)) &&
1815 		     memcmp(&match.mask->src, &addr, sizeof(addr))) ||
1816 		    (memcmp(&match.key->dst, &zero_addr, sizeof(addr)) &&
1817 		     memcmp(&match.mask->dst, &addr, sizeof(addr)))) {
1818 			DP_NOTICE(edev,
1819 				  "Do not support IPv6 address prefix/mask\n");
1820 			return -EINVAL;
1821 		}
1822 
1823 		memcpy(&t->src_ipv6, &match.key->src, sizeof(addr));
1824 		memcpy(&t->dst_ipv6, &match.key->dst, sizeof(addr));
1825 	}
1826 
1827 	if (qede_flow_parse_ports(edev, rule, t))
1828 		return -EINVAL;
1829 
1830 	return qede_set_v6_tuple_to_profile(edev, t, &zero_addr);
1831 }
1832 
1833 static int
1834 qede_flow_parse_v4_common(struct qede_dev *edev, struct flow_rule *rule,
1835 			struct qede_arfs_tuple *t)
1836 {
1837 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
1838 		struct flow_match_ipv4_addrs match;
1839 
1840 		flow_rule_match_ipv4_addrs(rule, &match);
1841 		if ((match.key->src && match.mask->src != U32_MAX) ||
1842 		    (match.key->dst && match.mask->dst != U32_MAX)) {
1843 			DP_NOTICE(edev, "Do not support ipv4 prefix/masks\n");
1844 			return -EINVAL;
1845 		}
1846 
1847 		t->src_ipv4 = match.key->src;
1848 		t->dst_ipv4 = match.key->dst;
1849 	}
1850 
1851 	if (qede_flow_parse_ports(edev, rule, t))
1852 		return -EINVAL;
1853 
1854 	return qede_set_v4_tuple_to_profile(edev, t);
1855 }
1856 
1857 static int
1858 qede_flow_parse_tcp_v6(struct qede_dev *edev, struct flow_rule *rule,
1859 		     struct qede_arfs_tuple *tuple)
1860 {
1861 	tuple->ip_proto = IPPROTO_TCP;
1862 	tuple->eth_proto = htons(ETH_P_IPV6);
1863 
1864 	return qede_flow_parse_v6_common(edev, rule, tuple);
1865 }
1866 
1867 static int
1868 qede_flow_parse_tcp_v4(struct qede_dev *edev, struct flow_rule *rule,
1869 		     struct qede_arfs_tuple *tuple)
1870 {
1871 	tuple->ip_proto = IPPROTO_TCP;
1872 	tuple->eth_proto = htons(ETH_P_IP);
1873 
1874 	return qede_flow_parse_v4_common(edev, rule, tuple);
1875 }
1876 
1877 static int
1878 qede_flow_parse_udp_v6(struct qede_dev *edev, struct flow_rule *rule,
1879 		     struct qede_arfs_tuple *tuple)
1880 {
1881 	tuple->ip_proto = IPPROTO_UDP;
1882 	tuple->eth_proto = htons(ETH_P_IPV6);
1883 
1884 	return qede_flow_parse_v6_common(edev, rule, tuple);
1885 }
1886 
1887 static int
1888 qede_flow_parse_udp_v4(struct qede_dev *edev, struct flow_rule *rule,
1889 		     struct qede_arfs_tuple *tuple)
1890 {
1891 	tuple->ip_proto = IPPROTO_UDP;
1892 	tuple->eth_proto = htons(ETH_P_IP);
1893 
1894 	return qede_flow_parse_v4_common(edev, rule, tuple);
1895 }
1896 
1897 static int
1898 qede_parse_flow_attr(struct qede_dev *edev, __be16 proto,
1899 		     struct flow_rule *rule, struct qede_arfs_tuple *tuple)
1900 {
1901 	struct flow_dissector *dissector = rule->match.dissector;
1902 	int rc = -EINVAL;
1903 	u8 ip_proto = 0;
1904 
1905 	memset(tuple, 0, sizeof(*tuple));
1906 
1907 	if (dissector->used_keys &
1908 	    ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
1909 	      BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
1910 	      BIT(FLOW_DISSECTOR_KEY_BASIC) |
1911 	      BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
1912 	      BIT(FLOW_DISSECTOR_KEY_PORTS))) {
1913 		DP_NOTICE(edev, "Unsupported key set:0x%x\n",
1914 			  dissector->used_keys);
1915 		return -EOPNOTSUPP;
1916 	}
1917 
1918 	if (proto != htons(ETH_P_IP) &&
1919 	    proto != htons(ETH_P_IPV6)) {
1920 		DP_NOTICE(edev, "Unsupported proto=0x%x\n", proto);
1921 		return -EPROTONOSUPPORT;
1922 	}
1923 
1924 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
1925 		struct flow_match_basic match;
1926 
1927 		flow_rule_match_basic(rule, &match);
1928 		ip_proto = match.key->ip_proto;
1929 	}
1930 
1931 	if (ip_proto == IPPROTO_TCP && proto == htons(ETH_P_IP))
1932 		rc = qede_flow_parse_tcp_v4(edev, rule, tuple);
1933 	else if (ip_proto == IPPROTO_TCP && proto == htons(ETH_P_IPV6))
1934 		rc = qede_flow_parse_tcp_v6(edev, rule, tuple);
1935 	else if (ip_proto == IPPROTO_UDP && proto == htons(ETH_P_IP))
1936 		rc = qede_flow_parse_udp_v4(edev, rule, tuple);
1937 	else if (ip_proto == IPPROTO_UDP && proto == htons(ETH_P_IPV6))
1938 		rc = qede_flow_parse_udp_v6(edev, rule, tuple);
1939 	else
1940 		DP_NOTICE(edev, "Invalid protocol request\n");
1941 
1942 	return rc;
1943 }
1944 
1945 int qede_add_tc_flower_fltr(struct qede_dev *edev, __be16 proto,
1946 			    struct flow_cls_offload *f)
1947 {
1948 	struct qede_arfs_fltr_node *n;
1949 	int min_hlen, rc = -EINVAL;
1950 	struct qede_arfs_tuple t;
1951 
1952 	__qede_lock(edev);
1953 
1954 	if (!edev->arfs) {
1955 		rc = -EPERM;
1956 		goto unlock;
1957 	}
1958 
1959 	/* parse flower attribute and prepare filter */
1960 	if (qede_parse_flow_attr(edev, proto, f->rule, &t))
1961 		goto unlock;
1962 
1963 	/* Validate profile mode and number of filters */
1964 	if ((edev->arfs->filter_count && edev->arfs->mode != t.mode) ||
1965 	    edev->arfs->filter_count == QEDE_RFS_MAX_FLTR) {
1966 		DP_NOTICE(edev,
1967 			  "Filter configuration invalidated, filter mode=0x%x, configured mode=0x%x, filter count=0x%x\n",
1968 			  t.mode, edev->arfs->mode, edev->arfs->filter_count);
1969 		goto unlock;
1970 	}
1971 
1972 	/* parse tc actions and get the vf_id */
1973 	if (qede_parse_actions(edev, &f->rule->action))
1974 		goto unlock;
1975 
1976 	if (qede_flow_find_fltr(edev, &t)) {
1977 		rc = -EEXIST;
1978 		goto unlock;
1979 	}
1980 
1981 	n = kzalloc(sizeof(*n), GFP_KERNEL);
1982 	if (!n) {
1983 		rc = -ENOMEM;
1984 		goto unlock;
1985 	}
1986 
1987 	min_hlen = qede_flow_get_min_header_size(&t);
1988 
1989 	n->data = kzalloc(min_hlen, GFP_KERNEL);
1990 	if (!n->data) {
1991 		kfree(n);
1992 		rc = -ENOMEM;
1993 		goto unlock;
1994 	}
1995 
1996 	memcpy(&n->tuple, &t, sizeof(n->tuple));
1997 
1998 	n->buf_len = min_hlen;
1999 	n->b_is_drop = true;
2000 	n->sw_id = f->cookie;
2001 
2002 	n->tuple.build_hdr(&n->tuple, n->data);
2003 
2004 	rc = qede_enqueue_fltr_and_config_searcher(edev, n, 0);
2005 	if (rc)
2006 		goto unlock;
2007 
2008 	qede_configure_arfs_fltr(edev, n, n->rxq_id, true);
2009 	rc = qede_poll_arfs_filter_config(edev, n);
2010 
2011 unlock:
2012 	__qede_unlock(edev);
2013 	return rc;
2014 }
2015 
2016 static int qede_flow_spec_validate(struct qede_dev *edev,
2017 				   struct flow_action *flow_action,
2018 				   struct qede_arfs_tuple *t,
2019 				   __u32 location)
2020 {
2021 	if (location >= QEDE_RFS_MAX_FLTR) {
2022 		DP_INFO(edev, "Location out-of-bounds\n");
2023 		return -EINVAL;
2024 	}
2025 
2026 	/* Check location isn't already in use */
2027 	if (test_bit(location, edev->arfs->arfs_fltr_bmap)) {
2028 		DP_INFO(edev, "Location already in use\n");
2029 		return -EINVAL;
2030 	}
2031 
2032 	/* Check if the filtering-mode could support the filter */
2033 	if (edev->arfs->filter_count &&
2034 	    edev->arfs->mode != t->mode) {
2035 		DP_INFO(edev,
2036 			"flow_spec would require filtering mode %08x, but %08x is configured\n",
2037 			t->mode, edev->arfs->filter_count);
2038 		return -EINVAL;
2039 	}
2040 
2041 	if (qede_parse_actions(edev, flow_action))
2042 		return -EINVAL;
2043 
2044 	return 0;
2045 }
2046 
2047 static int qede_flow_spec_to_rule(struct qede_dev *edev,
2048 				  struct qede_arfs_tuple *t,
2049 				  struct ethtool_rx_flow_spec *fs)
2050 {
2051 	struct ethtool_rx_flow_spec_input input = {};
2052 	struct ethtool_rx_flow_rule *flow;
2053 	__be16 proto;
2054 	int err = 0;
2055 
2056 	if (qede_flow_spec_validate_unused(edev, fs))
2057 		return -EOPNOTSUPP;
2058 
2059 	switch ((fs->flow_type & ~FLOW_EXT)) {
2060 	case TCP_V4_FLOW:
2061 	case UDP_V4_FLOW:
2062 		proto = htons(ETH_P_IP);
2063 		break;
2064 	case TCP_V6_FLOW:
2065 	case UDP_V6_FLOW:
2066 		proto = htons(ETH_P_IPV6);
2067 		break;
2068 	default:
2069 		DP_VERBOSE(edev, NETIF_MSG_IFUP,
2070 			   "Can't support flow of type %08x\n", fs->flow_type);
2071 		return -EOPNOTSUPP;
2072 	}
2073 
2074 	input.fs = fs;
2075 	flow = ethtool_rx_flow_rule_create(&input);
2076 	if (IS_ERR(flow))
2077 		return PTR_ERR(flow);
2078 
2079 	if (qede_parse_flow_attr(edev, proto, flow->rule, t)) {
2080 		err = -EINVAL;
2081 		goto err_out;
2082 	}
2083 
2084 	/* Make sure location is valid and filter isn't already set */
2085 	err = qede_flow_spec_validate(edev, &flow->rule->action, t,
2086 				      fs->location);
2087 err_out:
2088 	ethtool_rx_flow_rule_destroy(flow);
2089 	return err;
2090 
2091 }
2092 
2093 int qede_add_cls_rule(struct qede_dev *edev, struct ethtool_rxnfc *info)
2094 {
2095 	struct ethtool_rx_flow_spec *fsp = &info->fs;
2096 	struct qede_arfs_fltr_node *n;
2097 	struct qede_arfs_tuple t;
2098 	int min_hlen, rc;
2099 
2100 	__qede_lock(edev);
2101 
2102 	if (!edev->arfs) {
2103 		rc = -EPERM;
2104 		goto unlock;
2105 	}
2106 
2107 	/* Translate the flow specification into something fittign our DB */
2108 	rc = qede_flow_spec_to_rule(edev, &t, fsp);
2109 	if (rc)
2110 		goto unlock;
2111 
2112 	if (qede_flow_find_fltr(edev, &t)) {
2113 		rc = -EINVAL;
2114 		goto unlock;
2115 	}
2116 
2117 	n = kzalloc(sizeof(*n), GFP_KERNEL);
2118 	if (!n) {
2119 		rc = -ENOMEM;
2120 		goto unlock;
2121 	}
2122 
2123 	min_hlen = qede_flow_get_min_header_size(&t);
2124 	n->data = kzalloc(min_hlen, GFP_KERNEL);
2125 	if (!n->data) {
2126 		kfree(n);
2127 		rc = -ENOMEM;
2128 		goto unlock;
2129 	}
2130 
2131 	n->sw_id = fsp->location;
2132 	set_bit(n->sw_id, edev->arfs->arfs_fltr_bmap);
2133 	n->buf_len = min_hlen;
2134 
2135 	memcpy(&n->tuple, &t, sizeof(n->tuple));
2136 
2137 	qede_flow_set_destination(edev, n, fsp);
2138 
2139 	/* Build a minimal header according to the flow */
2140 	n->tuple.build_hdr(&n->tuple, n->data);
2141 
2142 	rc = qede_enqueue_fltr_and_config_searcher(edev, n, 0);
2143 	if (rc)
2144 		goto unlock;
2145 
2146 	qede_configure_arfs_fltr(edev, n, n->rxq_id, true);
2147 	rc = qede_poll_arfs_filter_config(edev, n);
2148 unlock:
2149 	__qede_unlock(edev);
2150 
2151 	return rc;
2152 }
2153