xref: /linux/drivers/net/ethernet/renesas/ravb_main.c (revision 52338415)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Renesas Ethernet AVB device driver
3  *
4  * Copyright (C) 2014-2019 Renesas Electronics Corporation
5  * Copyright (C) 2015 Renesas Solutions Corp.
6  * Copyright (C) 2015-2016 Cogent Embedded, Inc. <source@cogentembedded.com>
7  *
8  * Based on the SuperH Ethernet driver
9  */
10 
11 #include <linux/cache.h>
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ethtool.h>
18 #include <linux/if_vlan.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/net_tstamp.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/of_irq.h>
26 #include <linux/of_mdio.h>
27 #include <linux/of_net.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/slab.h>
30 #include <linux/spinlock.h>
31 #include <linux/sys_soc.h>
32 
33 #include <asm/div64.h>
34 
35 #include "ravb.h"
36 
37 #define RAVB_DEF_MSG_ENABLE \
38 		(NETIF_MSG_LINK	  | \
39 		 NETIF_MSG_TIMER  | \
40 		 NETIF_MSG_RX_ERR | \
41 		 NETIF_MSG_TX_ERR)
42 
43 static const char *ravb_rx_irqs[NUM_RX_QUEUE] = {
44 	"ch0", /* RAVB_BE */
45 	"ch1", /* RAVB_NC */
46 };
47 
48 static const char *ravb_tx_irqs[NUM_TX_QUEUE] = {
49 	"ch18", /* RAVB_BE */
50 	"ch19", /* RAVB_NC */
51 };
52 
53 void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear,
54 		 u32 set)
55 {
56 	ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg);
57 }
58 
59 int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
60 {
61 	int i;
62 
63 	for (i = 0; i < 10000; i++) {
64 		if ((ravb_read(ndev, reg) & mask) == value)
65 			return 0;
66 		udelay(10);
67 	}
68 	return -ETIMEDOUT;
69 }
70 
71 static int ravb_config(struct net_device *ndev)
72 {
73 	int error;
74 
75 	/* Set config mode */
76 	ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
77 	/* Check if the operating mode is changed to the config mode */
78 	error = ravb_wait(ndev, CSR, CSR_OPS, CSR_OPS_CONFIG);
79 	if (error)
80 		netdev_err(ndev, "failed to switch device to config mode\n");
81 
82 	return error;
83 }
84 
85 static void ravb_set_rate(struct net_device *ndev)
86 {
87 	struct ravb_private *priv = netdev_priv(ndev);
88 
89 	switch (priv->speed) {
90 	case 100:		/* 100BASE */
91 		ravb_write(ndev, GECMR_SPEED_100, GECMR);
92 		break;
93 	case 1000:		/* 1000BASE */
94 		ravb_write(ndev, GECMR_SPEED_1000, GECMR);
95 		break;
96 	}
97 }
98 
99 static void ravb_set_buffer_align(struct sk_buff *skb)
100 {
101 	u32 reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1);
102 
103 	if (reserve)
104 		skb_reserve(skb, RAVB_ALIGN - reserve);
105 }
106 
107 /* Get MAC address from the MAC address registers
108  *
109  * Ethernet AVB device doesn't have ROM for MAC address.
110  * This function gets the MAC address that was used by a bootloader.
111  */
112 static void ravb_read_mac_address(struct net_device *ndev, const u8 *mac)
113 {
114 	if (!IS_ERR(mac)) {
115 		ether_addr_copy(ndev->dev_addr, mac);
116 	} else {
117 		u32 mahr = ravb_read(ndev, MAHR);
118 		u32 malr = ravb_read(ndev, MALR);
119 
120 		ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
121 		ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
122 		ndev->dev_addr[2] = (mahr >>  8) & 0xFF;
123 		ndev->dev_addr[3] = (mahr >>  0) & 0xFF;
124 		ndev->dev_addr[4] = (malr >>  8) & 0xFF;
125 		ndev->dev_addr[5] = (malr >>  0) & 0xFF;
126 	}
127 }
128 
129 static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
130 {
131 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
132 						 mdiobb);
133 
134 	ravb_modify(priv->ndev, PIR, mask, set ? mask : 0);
135 }
136 
137 /* MDC pin control */
138 static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
139 {
140 	ravb_mdio_ctrl(ctrl, PIR_MDC, level);
141 }
142 
143 /* Data I/O pin control */
144 static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
145 {
146 	ravb_mdio_ctrl(ctrl, PIR_MMD, output);
147 }
148 
149 /* Set data bit */
150 static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
151 {
152 	ravb_mdio_ctrl(ctrl, PIR_MDO, value);
153 }
154 
155 /* Get data bit */
156 static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
157 {
158 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
159 						 mdiobb);
160 
161 	return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
162 }
163 
164 /* MDIO bus control struct */
165 static struct mdiobb_ops bb_ops = {
166 	.owner = THIS_MODULE,
167 	.set_mdc = ravb_set_mdc,
168 	.set_mdio_dir = ravb_set_mdio_dir,
169 	.set_mdio_data = ravb_set_mdio_data,
170 	.get_mdio_data = ravb_get_mdio_data,
171 };
172 
173 /* Free TX skb function for AVB-IP */
174 static int ravb_tx_free(struct net_device *ndev, int q, bool free_txed_only)
175 {
176 	struct ravb_private *priv = netdev_priv(ndev);
177 	struct net_device_stats *stats = &priv->stats[q];
178 	int num_tx_desc = priv->num_tx_desc;
179 	struct ravb_tx_desc *desc;
180 	int free_num = 0;
181 	int entry;
182 	u32 size;
183 
184 	for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
185 		bool txed;
186 
187 		entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
188 					     num_tx_desc);
189 		desc = &priv->tx_ring[q][entry];
190 		txed = desc->die_dt == DT_FEMPTY;
191 		if (free_txed_only && !txed)
192 			break;
193 		/* Descriptor type must be checked before all other reads */
194 		dma_rmb();
195 		size = le16_to_cpu(desc->ds_tagl) & TX_DS;
196 		/* Free the original skb. */
197 		if (priv->tx_skb[q][entry / num_tx_desc]) {
198 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
199 					 size, DMA_TO_DEVICE);
200 			/* Last packet descriptor? */
201 			if (entry % num_tx_desc == num_tx_desc - 1) {
202 				entry /= num_tx_desc;
203 				dev_kfree_skb_any(priv->tx_skb[q][entry]);
204 				priv->tx_skb[q][entry] = NULL;
205 				if (txed)
206 					stats->tx_packets++;
207 			}
208 			free_num++;
209 		}
210 		if (txed)
211 			stats->tx_bytes += size;
212 		desc->die_dt = DT_EEMPTY;
213 	}
214 	return free_num;
215 }
216 
217 /* Free skb's and DMA buffers for Ethernet AVB */
218 static void ravb_ring_free(struct net_device *ndev, int q)
219 {
220 	struct ravb_private *priv = netdev_priv(ndev);
221 	int num_tx_desc = priv->num_tx_desc;
222 	int ring_size;
223 	int i;
224 
225 	if (priv->rx_ring[q]) {
226 		for (i = 0; i < priv->num_rx_ring[q]; i++) {
227 			struct ravb_ex_rx_desc *desc = &priv->rx_ring[q][i];
228 
229 			if (!dma_mapping_error(ndev->dev.parent,
230 					       le32_to_cpu(desc->dptr)))
231 				dma_unmap_single(ndev->dev.parent,
232 						 le32_to_cpu(desc->dptr),
233 						 priv->rx_buf_sz,
234 						 DMA_FROM_DEVICE);
235 		}
236 		ring_size = sizeof(struct ravb_ex_rx_desc) *
237 			    (priv->num_rx_ring[q] + 1);
238 		dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q],
239 				  priv->rx_desc_dma[q]);
240 		priv->rx_ring[q] = NULL;
241 	}
242 
243 	if (priv->tx_ring[q]) {
244 		ravb_tx_free(ndev, q, false);
245 
246 		ring_size = sizeof(struct ravb_tx_desc) *
247 			    (priv->num_tx_ring[q] * num_tx_desc + 1);
248 		dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
249 				  priv->tx_desc_dma[q]);
250 		priv->tx_ring[q] = NULL;
251 	}
252 
253 	/* Free RX skb ringbuffer */
254 	if (priv->rx_skb[q]) {
255 		for (i = 0; i < priv->num_rx_ring[q]; i++)
256 			dev_kfree_skb(priv->rx_skb[q][i]);
257 	}
258 	kfree(priv->rx_skb[q]);
259 	priv->rx_skb[q] = NULL;
260 
261 	/* Free aligned TX buffers */
262 	kfree(priv->tx_align[q]);
263 	priv->tx_align[q] = NULL;
264 
265 	/* Free TX skb ringbuffer.
266 	 * SKBs are freed by ravb_tx_free() call above.
267 	 */
268 	kfree(priv->tx_skb[q]);
269 	priv->tx_skb[q] = NULL;
270 }
271 
272 /* Format skb and descriptor buffer for Ethernet AVB */
273 static void ravb_ring_format(struct net_device *ndev, int q)
274 {
275 	struct ravb_private *priv = netdev_priv(ndev);
276 	int num_tx_desc = priv->num_tx_desc;
277 	struct ravb_ex_rx_desc *rx_desc;
278 	struct ravb_tx_desc *tx_desc;
279 	struct ravb_desc *desc;
280 	int rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
281 	int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
282 			   num_tx_desc;
283 	dma_addr_t dma_addr;
284 	int i;
285 
286 	priv->cur_rx[q] = 0;
287 	priv->cur_tx[q] = 0;
288 	priv->dirty_rx[q] = 0;
289 	priv->dirty_tx[q] = 0;
290 
291 	memset(priv->rx_ring[q], 0, rx_ring_size);
292 	/* Build RX ring buffer */
293 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
294 		/* RX descriptor */
295 		rx_desc = &priv->rx_ring[q][i];
296 		rx_desc->ds_cc = cpu_to_le16(priv->rx_buf_sz);
297 		dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
298 					  priv->rx_buf_sz,
299 					  DMA_FROM_DEVICE);
300 		/* We just set the data size to 0 for a failed mapping which
301 		 * should prevent DMA from happening...
302 		 */
303 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
304 			rx_desc->ds_cc = cpu_to_le16(0);
305 		rx_desc->dptr = cpu_to_le32(dma_addr);
306 		rx_desc->die_dt = DT_FEMPTY;
307 	}
308 	rx_desc = &priv->rx_ring[q][i];
309 	rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
310 	rx_desc->die_dt = DT_LINKFIX; /* type */
311 
312 	memset(priv->tx_ring[q], 0, tx_ring_size);
313 	/* Build TX ring buffer */
314 	for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
315 	     i++, tx_desc++) {
316 		tx_desc->die_dt = DT_EEMPTY;
317 		if (num_tx_desc > 1) {
318 			tx_desc++;
319 			tx_desc->die_dt = DT_EEMPTY;
320 		}
321 	}
322 	tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
323 	tx_desc->die_dt = DT_LINKFIX; /* type */
324 
325 	/* RX descriptor base address for best effort */
326 	desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
327 	desc->die_dt = DT_LINKFIX; /* type */
328 	desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
329 
330 	/* TX descriptor base address for best effort */
331 	desc = &priv->desc_bat[q];
332 	desc->die_dt = DT_LINKFIX; /* type */
333 	desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
334 }
335 
336 /* Init skb and descriptor buffer for Ethernet AVB */
337 static int ravb_ring_init(struct net_device *ndev, int q)
338 {
339 	struct ravb_private *priv = netdev_priv(ndev);
340 	int num_tx_desc = priv->num_tx_desc;
341 	struct sk_buff *skb;
342 	int ring_size;
343 	int i;
344 
345 	priv->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ : ndev->mtu) +
346 		ETH_HLEN + VLAN_HLEN + sizeof(__sum16);
347 
348 	/* Allocate RX and TX skb rings */
349 	priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q],
350 				  sizeof(*priv->rx_skb[q]), GFP_KERNEL);
351 	priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
352 				  sizeof(*priv->tx_skb[q]), GFP_KERNEL);
353 	if (!priv->rx_skb[q] || !priv->tx_skb[q])
354 		goto error;
355 
356 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
357 		skb = netdev_alloc_skb(ndev, priv->rx_buf_sz + RAVB_ALIGN - 1);
358 		if (!skb)
359 			goto error;
360 		ravb_set_buffer_align(skb);
361 		priv->rx_skb[q][i] = skb;
362 	}
363 
364 	if (num_tx_desc > 1) {
365 		/* Allocate rings for the aligned buffers */
366 		priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
367 					    DPTR_ALIGN - 1, GFP_KERNEL);
368 		if (!priv->tx_align[q])
369 			goto error;
370 	}
371 
372 	/* Allocate all RX descriptors. */
373 	ring_size = sizeof(struct ravb_ex_rx_desc) * (priv->num_rx_ring[q] + 1);
374 	priv->rx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
375 					      &priv->rx_desc_dma[q],
376 					      GFP_KERNEL);
377 	if (!priv->rx_ring[q])
378 		goto error;
379 
380 	priv->dirty_rx[q] = 0;
381 
382 	/* Allocate all TX descriptors. */
383 	ring_size = sizeof(struct ravb_tx_desc) *
384 		    (priv->num_tx_ring[q] * num_tx_desc + 1);
385 	priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
386 					      &priv->tx_desc_dma[q],
387 					      GFP_KERNEL);
388 	if (!priv->tx_ring[q])
389 		goto error;
390 
391 	return 0;
392 
393 error:
394 	ravb_ring_free(ndev, q);
395 
396 	return -ENOMEM;
397 }
398 
399 /* E-MAC init function */
400 static void ravb_emac_init(struct net_device *ndev)
401 {
402 	/* Receive frame limit set register */
403 	ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR);
404 
405 	/* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
406 	ravb_write(ndev, ECMR_ZPF | ECMR_DM |
407 		   (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
408 		   ECMR_TE | ECMR_RE, ECMR);
409 
410 	ravb_set_rate(ndev);
411 
412 	/* Set MAC address */
413 	ravb_write(ndev,
414 		   (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
415 		   (ndev->dev_addr[2] << 8)  | (ndev->dev_addr[3]), MAHR);
416 	ravb_write(ndev,
417 		   (ndev->dev_addr[4] << 8)  | (ndev->dev_addr[5]), MALR);
418 
419 	/* E-MAC status register clear */
420 	ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
421 
422 	/* E-MAC interrupt enable register */
423 	ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
424 }
425 
426 /* Device init function for Ethernet AVB */
427 static int ravb_dmac_init(struct net_device *ndev)
428 {
429 	struct ravb_private *priv = netdev_priv(ndev);
430 	int error;
431 
432 	/* Set CONFIG mode */
433 	error = ravb_config(ndev);
434 	if (error)
435 		return error;
436 
437 	error = ravb_ring_init(ndev, RAVB_BE);
438 	if (error)
439 		return error;
440 	error = ravb_ring_init(ndev, RAVB_NC);
441 	if (error) {
442 		ravb_ring_free(ndev, RAVB_BE);
443 		return error;
444 	}
445 
446 	/* Descriptor format */
447 	ravb_ring_format(ndev, RAVB_BE);
448 	ravb_ring_format(ndev, RAVB_NC);
449 
450 	/* Set AVB RX */
451 	ravb_write(ndev,
452 		   RCR_EFFS | RCR_ENCF | RCR_ETS0 | RCR_ESF | 0x18000000, RCR);
453 
454 	/* Set FIFO size */
455 	ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00112200, TGC);
456 
457 	/* Timestamp enable */
458 	ravb_write(ndev, TCCR_TFEN, TCCR);
459 
460 	/* Interrupt init: */
461 	if (priv->chip_id == RCAR_GEN3) {
462 		/* Clear DIL.DPLx */
463 		ravb_write(ndev, 0, DIL);
464 		/* Set queue specific interrupt */
465 		ravb_write(ndev, CIE_CRIE | CIE_CTIE | CIE_CL0M, CIE);
466 	}
467 	/* Frame receive */
468 	ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
469 	/* Disable FIFO full warning */
470 	ravb_write(ndev, 0, RIC1);
471 	/* Receive FIFO full error, descriptor empty */
472 	ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
473 	/* Frame transmitted, timestamp FIFO updated */
474 	ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
475 
476 	/* Setting the control will start the AVB-DMAC process. */
477 	ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_OPERATION);
478 
479 	return 0;
480 }
481 
482 static void ravb_get_tx_tstamp(struct net_device *ndev)
483 {
484 	struct ravb_private *priv = netdev_priv(ndev);
485 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
486 	struct skb_shared_hwtstamps shhwtstamps;
487 	struct sk_buff *skb;
488 	struct timespec64 ts;
489 	u16 tag, tfa_tag;
490 	int count;
491 	u32 tfa2;
492 
493 	count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
494 	while (count--) {
495 		tfa2 = ravb_read(ndev, TFA2);
496 		tfa_tag = (tfa2 & TFA2_TST) >> 16;
497 		ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
498 		ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
499 			    ravb_read(ndev, TFA1);
500 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
501 		shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
502 		list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
503 					 list) {
504 			skb = ts_skb->skb;
505 			tag = ts_skb->tag;
506 			list_del(&ts_skb->list);
507 			kfree(ts_skb);
508 			if (tag == tfa_tag) {
509 				skb_tstamp_tx(skb, &shhwtstamps);
510 				dev_consume_skb_any(skb);
511 				break;
512 			} else {
513 				dev_kfree_skb_any(skb);
514 			}
515 		}
516 		ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR);
517 	}
518 }
519 
520 static void ravb_rx_csum(struct sk_buff *skb)
521 {
522 	u8 *hw_csum;
523 
524 	/* The hardware checksum is contained in sizeof(__sum16) (2) bytes
525 	 * appended to packet data
526 	 */
527 	if (unlikely(skb->len < sizeof(__sum16)))
528 		return;
529 	hw_csum = skb_tail_pointer(skb) - sizeof(__sum16);
530 	skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
531 	skb->ip_summed = CHECKSUM_COMPLETE;
532 	skb_trim(skb, skb->len - sizeof(__sum16));
533 }
534 
535 /* Packet receive function for Ethernet AVB */
536 static bool ravb_rx(struct net_device *ndev, int *quota, int q)
537 {
538 	struct ravb_private *priv = netdev_priv(ndev);
539 	int entry = priv->cur_rx[q] % priv->num_rx_ring[q];
540 	int boguscnt = (priv->dirty_rx[q] + priv->num_rx_ring[q]) -
541 			priv->cur_rx[q];
542 	struct net_device_stats *stats = &priv->stats[q];
543 	struct ravb_ex_rx_desc *desc;
544 	struct sk_buff *skb;
545 	dma_addr_t dma_addr;
546 	struct timespec64 ts;
547 	u8  desc_status;
548 	u16 pkt_len;
549 	int limit;
550 
551 	boguscnt = min(boguscnt, *quota);
552 	limit = boguscnt;
553 	desc = &priv->rx_ring[q][entry];
554 	while (desc->die_dt != DT_FEMPTY) {
555 		/* Descriptor type must be checked before all other reads */
556 		dma_rmb();
557 		desc_status = desc->msc;
558 		pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
559 
560 		if (--boguscnt < 0)
561 			break;
562 
563 		/* We use 0-byte descriptors to mark the DMA mapping errors */
564 		if (!pkt_len)
565 			continue;
566 
567 		if (desc_status & MSC_MC)
568 			stats->multicast++;
569 
570 		if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
571 				   MSC_CEEF)) {
572 			stats->rx_errors++;
573 			if (desc_status & MSC_CRC)
574 				stats->rx_crc_errors++;
575 			if (desc_status & MSC_RFE)
576 				stats->rx_frame_errors++;
577 			if (desc_status & (MSC_RTLF | MSC_RTSF))
578 				stats->rx_length_errors++;
579 			if (desc_status & MSC_CEEF)
580 				stats->rx_missed_errors++;
581 		} else {
582 			u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
583 
584 			skb = priv->rx_skb[q][entry];
585 			priv->rx_skb[q][entry] = NULL;
586 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
587 					 priv->rx_buf_sz,
588 					 DMA_FROM_DEVICE);
589 			get_ts &= (q == RAVB_NC) ?
590 					RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
591 					~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
592 			if (get_ts) {
593 				struct skb_shared_hwtstamps *shhwtstamps;
594 
595 				shhwtstamps = skb_hwtstamps(skb);
596 				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
597 				ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
598 					     32) | le32_to_cpu(desc->ts_sl);
599 				ts.tv_nsec = le32_to_cpu(desc->ts_n);
600 				shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
601 			}
602 
603 			skb_put(skb, pkt_len);
604 			skb->protocol = eth_type_trans(skb, ndev);
605 			if (ndev->features & NETIF_F_RXCSUM)
606 				ravb_rx_csum(skb);
607 			napi_gro_receive(&priv->napi[q], skb);
608 			stats->rx_packets++;
609 			stats->rx_bytes += pkt_len;
610 		}
611 
612 		entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
613 		desc = &priv->rx_ring[q][entry];
614 	}
615 
616 	/* Refill the RX ring buffers. */
617 	for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
618 		entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
619 		desc = &priv->rx_ring[q][entry];
620 		desc->ds_cc = cpu_to_le16(priv->rx_buf_sz);
621 
622 		if (!priv->rx_skb[q][entry]) {
623 			skb = netdev_alloc_skb(ndev,
624 					       priv->rx_buf_sz +
625 					       RAVB_ALIGN - 1);
626 			if (!skb)
627 				break;	/* Better luck next round. */
628 			ravb_set_buffer_align(skb);
629 			dma_addr = dma_map_single(ndev->dev.parent, skb->data,
630 						  le16_to_cpu(desc->ds_cc),
631 						  DMA_FROM_DEVICE);
632 			skb_checksum_none_assert(skb);
633 			/* We just set the data size to 0 for a failed mapping
634 			 * which should prevent DMA  from happening...
635 			 */
636 			if (dma_mapping_error(ndev->dev.parent, dma_addr))
637 				desc->ds_cc = cpu_to_le16(0);
638 			desc->dptr = cpu_to_le32(dma_addr);
639 			priv->rx_skb[q][entry] = skb;
640 		}
641 		/* Descriptor type must be set after all the above writes */
642 		dma_wmb();
643 		desc->die_dt = DT_FEMPTY;
644 	}
645 
646 	*quota -= limit - (++boguscnt);
647 
648 	return boguscnt <= 0;
649 }
650 
651 static void ravb_rcv_snd_disable(struct net_device *ndev)
652 {
653 	/* Disable TX and RX */
654 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
655 }
656 
657 static void ravb_rcv_snd_enable(struct net_device *ndev)
658 {
659 	/* Enable TX and RX */
660 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
661 }
662 
663 /* function for waiting dma process finished */
664 static int ravb_stop_dma(struct net_device *ndev)
665 {
666 	int error;
667 
668 	/* Wait for stopping the hardware TX process */
669 	error = ravb_wait(ndev, TCCR,
670 			  TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3, 0);
671 	if (error)
672 		return error;
673 
674 	error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
675 			  0);
676 	if (error)
677 		return error;
678 
679 	/* Stop the E-MAC's RX/TX processes. */
680 	ravb_rcv_snd_disable(ndev);
681 
682 	/* Wait for stopping the RX DMA process */
683 	error = ravb_wait(ndev, CSR, CSR_RPO, 0);
684 	if (error)
685 		return error;
686 
687 	/* Stop AVB-DMAC process */
688 	return ravb_config(ndev);
689 }
690 
691 /* E-MAC interrupt handler */
692 static void ravb_emac_interrupt_unlocked(struct net_device *ndev)
693 {
694 	struct ravb_private *priv = netdev_priv(ndev);
695 	u32 ecsr, psr;
696 
697 	ecsr = ravb_read(ndev, ECSR);
698 	ravb_write(ndev, ecsr, ECSR);	/* clear interrupt */
699 
700 	if (ecsr & ECSR_MPD)
701 		pm_wakeup_event(&priv->pdev->dev, 0);
702 	if (ecsr & ECSR_ICD)
703 		ndev->stats.tx_carrier_errors++;
704 	if (ecsr & ECSR_LCHNG) {
705 		/* Link changed */
706 		if (priv->no_avb_link)
707 			return;
708 		psr = ravb_read(ndev, PSR);
709 		if (priv->avb_link_active_low)
710 			psr ^= PSR_LMON;
711 		if (!(psr & PSR_LMON)) {
712 			/* DIsable RX and TX */
713 			ravb_rcv_snd_disable(ndev);
714 		} else {
715 			/* Enable RX and TX */
716 			ravb_rcv_snd_enable(ndev);
717 		}
718 	}
719 }
720 
721 static irqreturn_t ravb_emac_interrupt(int irq, void *dev_id)
722 {
723 	struct net_device *ndev = dev_id;
724 	struct ravb_private *priv = netdev_priv(ndev);
725 
726 	spin_lock(&priv->lock);
727 	ravb_emac_interrupt_unlocked(ndev);
728 	spin_unlock(&priv->lock);
729 	return IRQ_HANDLED;
730 }
731 
732 /* Error interrupt handler */
733 static void ravb_error_interrupt(struct net_device *ndev)
734 {
735 	struct ravb_private *priv = netdev_priv(ndev);
736 	u32 eis, ris2;
737 
738 	eis = ravb_read(ndev, EIS);
739 	ravb_write(ndev, ~(EIS_QFS | EIS_RESERVED), EIS);
740 	if (eis & EIS_QFS) {
741 		ris2 = ravb_read(ndev, RIS2);
742 		ravb_write(ndev, ~(RIS2_QFF0 | RIS2_RFFF | RIS2_RESERVED),
743 			   RIS2);
744 
745 		/* Receive Descriptor Empty int */
746 		if (ris2 & RIS2_QFF0)
747 			priv->stats[RAVB_BE].rx_over_errors++;
748 
749 		    /* Receive Descriptor Empty int */
750 		if (ris2 & RIS2_QFF1)
751 			priv->stats[RAVB_NC].rx_over_errors++;
752 
753 		/* Receive FIFO Overflow int */
754 		if (ris2 & RIS2_RFFF)
755 			priv->rx_fifo_errors++;
756 	}
757 }
758 
759 static bool ravb_queue_interrupt(struct net_device *ndev, int q)
760 {
761 	struct ravb_private *priv = netdev_priv(ndev);
762 	u32 ris0 = ravb_read(ndev, RIS0);
763 	u32 ric0 = ravb_read(ndev, RIC0);
764 	u32 tis  = ravb_read(ndev, TIS);
765 	u32 tic  = ravb_read(ndev, TIC);
766 
767 	if (((ris0 & ric0) & BIT(q)) || ((tis  & tic)  & BIT(q))) {
768 		if (napi_schedule_prep(&priv->napi[q])) {
769 			/* Mask RX and TX interrupts */
770 			if (priv->chip_id == RCAR_GEN2) {
771 				ravb_write(ndev, ric0 & ~BIT(q), RIC0);
772 				ravb_write(ndev, tic & ~BIT(q), TIC);
773 			} else {
774 				ravb_write(ndev, BIT(q), RID0);
775 				ravb_write(ndev, BIT(q), TID);
776 			}
777 			__napi_schedule(&priv->napi[q]);
778 		} else {
779 			netdev_warn(ndev,
780 				    "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
781 				    ris0, ric0);
782 			netdev_warn(ndev,
783 				    "                    tx status 0x%08x, tx mask 0x%08x.\n",
784 				    tis, tic);
785 		}
786 		return true;
787 	}
788 	return false;
789 }
790 
791 static bool ravb_timestamp_interrupt(struct net_device *ndev)
792 {
793 	u32 tis = ravb_read(ndev, TIS);
794 
795 	if (tis & TIS_TFUF) {
796 		ravb_write(ndev, ~(TIS_TFUF | TIS_RESERVED), TIS);
797 		ravb_get_tx_tstamp(ndev);
798 		return true;
799 	}
800 	return false;
801 }
802 
803 static irqreturn_t ravb_interrupt(int irq, void *dev_id)
804 {
805 	struct net_device *ndev = dev_id;
806 	struct ravb_private *priv = netdev_priv(ndev);
807 	irqreturn_t result = IRQ_NONE;
808 	u32 iss;
809 
810 	spin_lock(&priv->lock);
811 	/* Get interrupt status */
812 	iss = ravb_read(ndev, ISS);
813 
814 	/* Received and transmitted interrupts */
815 	if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
816 		int q;
817 
818 		/* Timestamp updated */
819 		if (ravb_timestamp_interrupt(ndev))
820 			result = IRQ_HANDLED;
821 
822 		/* Network control and best effort queue RX/TX */
823 		for (q = RAVB_NC; q >= RAVB_BE; q--) {
824 			if (ravb_queue_interrupt(ndev, q))
825 				result = IRQ_HANDLED;
826 		}
827 	}
828 
829 	/* E-MAC status summary */
830 	if (iss & ISS_MS) {
831 		ravb_emac_interrupt_unlocked(ndev);
832 		result = IRQ_HANDLED;
833 	}
834 
835 	/* Error status summary */
836 	if (iss & ISS_ES) {
837 		ravb_error_interrupt(ndev);
838 		result = IRQ_HANDLED;
839 	}
840 
841 	/* gPTP interrupt status summary */
842 	if (iss & ISS_CGIS) {
843 		ravb_ptp_interrupt(ndev);
844 		result = IRQ_HANDLED;
845 	}
846 
847 	spin_unlock(&priv->lock);
848 	return result;
849 }
850 
851 /* Timestamp/Error/gPTP interrupt handler */
852 static irqreturn_t ravb_multi_interrupt(int irq, void *dev_id)
853 {
854 	struct net_device *ndev = dev_id;
855 	struct ravb_private *priv = netdev_priv(ndev);
856 	irqreturn_t result = IRQ_NONE;
857 	u32 iss;
858 
859 	spin_lock(&priv->lock);
860 	/* Get interrupt status */
861 	iss = ravb_read(ndev, ISS);
862 
863 	/* Timestamp updated */
864 	if ((iss & ISS_TFUS) && ravb_timestamp_interrupt(ndev))
865 		result = IRQ_HANDLED;
866 
867 	/* Error status summary */
868 	if (iss & ISS_ES) {
869 		ravb_error_interrupt(ndev);
870 		result = IRQ_HANDLED;
871 	}
872 
873 	/* gPTP interrupt status summary */
874 	if (iss & ISS_CGIS) {
875 		ravb_ptp_interrupt(ndev);
876 		result = IRQ_HANDLED;
877 	}
878 
879 	spin_unlock(&priv->lock);
880 	return result;
881 }
882 
883 static irqreturn_t ravb_dma_interrupt(int irq, void *dev_id, int q)
884 {
885 	struct net_device *ndev = dev_id;
886 	struct ravb_private *priv = netdev_priv(ndev);
887 	irqreturn_t result = IRQ_NONE;
888 
889 	spin_lock(&priv->lock);
890 
891 	/* Network control/Best effort queue RX/TX */
892 	if (ravb_queue_interrupt(ndev, q))
893 		result = IRQ_HANDLED;
894 
895 	spin_unlock(&priv->lock);
896 	return result;
897 }
898 
899 static irqreturn_t ravb_be_interrupt(int irq, void *dev_id)
900 {
901 	return ravb_dma_interrupt(irq, dev_id, RAVB_BE);
902 }
903 
904 static irqreturn_t ravb_nc_interrupt(int irq, void *dev_id)
905 {
906 	return ravb_dma_interrupt(irq, dev_id, RAVB_NC);
907 }
908 
909 static int ravb_poll(struct napi_struct *napi, int budget)
910 {
911 	struct net_device *ndev = napi->dev;
912 	struct ravb_private *priv = netdev_priv(ndev);
913 	unsigned long flags;
914 	int q = napi - priv->napi;
915 	int mask = BIT(q);
916 	int quota = budget;
917 	u32 ris0, tis;
918 
919 	for (;;) {
920 		tis = ravb_read(ndev, TIS);
921 		ris0 = ravb_read(ndev, RIS0);
922 		if (!((ris0 & mask) || (tis & mask)))
923 			break;
924 
925 		/* Processing RX Descriptor Ring */
926 		if (ris0 & mask) {
927 			/* Clear RX interrupt */
928 			ravb_write(ndev, ~(mask | RIS0_RESERVED), RIS0);
929 			if (ravb_rx(ndev, &quota, q))
930 				goto out;
931 		}
932 		/* Processing TX Descriptor Ring */
933 		if (tis & mask) {
934 			spin_lock_irqsave(&priv->lock, flags);
935 			/* Clear TX interrupt */
936 			ravb_write(ndev, ~(mask | TIS_RESERVED), TIS);
937 			ravb_tx_free(ndev, q, true);
938 			netif_wake_subqueue(ndev, q);
939 			spin_unlock_irqrestore(&priv->lock, flags);
940 		}
941 	}
942 
943 	napi_complete(napi);
944 
945 	/* Re-enable RX/TX interrupts */
946 	spin_lock_irqsave(&priv->lock, flags);
947 	if (priv->chip_id == RCAR_GEN2) {
948 		ravb_modify(ndev, RIC0, mask, mask);
949 		ravb_modify(ndev, TIC,  mask, mask);
950 	} else {
951 		ravb_write(ndev, mask, RIE0);
952 		ravb_write(ndev, mask, TIE);
953 	}
954 	spin_unlock_irqrestore(&priv->lock, flags);
955 
956 	/* Receive error message handling */
957 	priv->rx_over_errors =  priv->stats[RAVB_BE].rx_over_errors;
958 	priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
959 	if (priv->rx_over_errors != ndev->stats.rx_over_errors)
960 		ndev->stats.rx_over_errors = priv->rx_over_errors;
961 	if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors)
962 		ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
963 out:
964 	return budget - quota;
965 }
966 
967 /* PHY state control function */
968 static void ravb_adjust_link(struct net_device *ndev)
969 {
970 	struct ravb_private *priv = netdev_priv(ndev);
971 	struct phy_device *phydev = ndev->phydev;
972 	bool new_state = false;
973 	unsigned long flags;
974 
975 	spin_lock_irqsave(&priv->lock, flags);
976 
977 	/* Disable TX and RX right over here, if E-MAC change is ignored */
978 	if (priv->no_avb_link)
979 		ravb_rcv_snd_disable(ndev);
980 
981 	if (phydev->link) {
982 		if (phydev->speed != priv->speed) {
983 			new_state = true;
984 			priv->speed = phydev->speed;
985 			ravb_set_rate(ndev);
986 		}
987 		if (!priv->link) {
988 			ravb_modify(ndev, ECMR, ECMR_TXF, 0);
989 			new_state = true;
990 			priv->link = phydev->link;
991 		}
992 	} else if (priv->link) {
993 		new_state = true;
994 		priv->link = 0;
995 		priv->speed = 0;
996 	}
997 
998 	/* Enable TX and RX right over here, if E-MAC change is ignored */
999 	if (priv->no_avb_link && phydev->link)
1000 		ravb_rcv_snd_enable(ndev);
1001 
1002 	spin_unlock_irqrestore(&priv->lock, flags);
1003 
1004 	if (new_state && netif_msg_link(priv))
1005 		phy_print_status(phydev);
1006 }
1007 
1008 static const struct soc_device_attribute r8a7795es10[] = {
1009 	{ .soc_id = "r8a7795", .revision = "ES1.0", },
1010 	{ /* sentinel */ }
1011 };
1012 
1013 /* PHY init function */
1014 static int ravb_phy_init(struct net_device *ndev)
1015 {
1016 	struct device_node *np = ndev->dev.parent->of_node;
1017 	struct ravb_private *priv = netdev_priv(ndev);
1018 	struct phy_device *phydev;
1019 	struct device_node *pn;
1020 	int err;
1021 
1022 	priv->link = 0;
1023 	priv->speed = 0;
1024 
1025 	/* Try connecting to PHY */
1026 	pn = of_parse_phandle(np, "phy-handle", 0);
1027 	if (!pn) {
1028 		/* In the case of a fixed PHY, the DT node associated
1029 		 * to the PHY is the Ethernet MAC DT node.
1030 		 */
1031 		if (of_phy_is_fixed_link(np)) {
1032 			err = of_phy_register_fixed_link(np);
1033 			if (err)
1034 				return err;
1035 		}
1036 		pn = of_node_get(np);
1037 	}
1038 	phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0,
1039 				priv->phy_interface);
1040 	of_node_put(pn);
1041 	if (!phydev) {
1042 		netdev_err(ndev, "failed to connect PHY\n");
1043 		err = -ENOENT;
1044 		goto err_deregister_fixed_link;
1045 	}
1046 
1047 	/* This driver only support 10/100Mbit speeds on R-Car H3 ES1.0
1048 	 * at this time.
1049 	 */
1050 	if (soc_device_match(r8a7795es10)) {
1051 		err = phy_set_max_speed(phydev, SPEED_100);
1052 		if (err) {
1053 			netdev_err(ndev, "failed to limit PHY to 100Mbit/s\n");
1054 			goto err_phy_disconnect;
1055 		}
1056 
1057 		netdev_info(ndev, "limited PHY to 100Mbit/s\n");
1058 	}
1059 
1060 	/* 10BASE, Pause and Asym Pause is not supported */
1061 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
1062 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT);
1063 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Pause_BIT);
1064 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Asym_Pause_BIT);
1065 
1066 	/* Half Duplex is not supported */
1067 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1068 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
1069 
1070 	phy_attached_info(phydev);
1071 
1072 	return 0;
1073 
1074 err_phy_disconnect:
1075 	phy_disconnect(phydev);
1076 err_deregister_fixed_link:
1077 	if (of_phy_is_fixed_link(np))
1078 		of_phy_deregister_fixed_link(np);
1079 
1080 	return err;
1081 }
1082 
1083 /* PHY control start function */
1084 static int ravb_phy_start(struct net_device *ndev)
1085 {
1086 	int error;
1087 
1088 	error = ravb_phy_init(ndev);
1089 	if (error)
1090 		return error;
1091 
1092 	phy_start(ndev->phydev);
1093 
1094 	return 0;
1095 }
1096 
1097 static u32 ravb_get_msglevel(struct net_device *ndev)
1098 {
1099 	struct ravb_private *priv = netdev_priv(ndev);
1100 
1101 	return priv->msg_enable;
1102 }
1103 
1104 static void ravb_set_msglevel(struct net_device *ndev, u32 value)
1105 {
1106 	struct ravb_private *priv = netdev_priv(ndev);
1107 
1108 	priv->msg_enable = value;
1109 }
1110 
1111 static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
1112 	"rx_queue_0_current",
1113 	"tx_queue_0_current",
1114 	"rx_queue_0_dirty",
1115 	"tx_queue_0_dirty",
1116 	"rx_queue_0_packets",
1117 	"tx_queue_0_packets",
1118 	"rx_queue_0_bytes",
1119 	"tx_queue_0_bytes",
1120 	"rx_queue_0_mcast_packets",
1121 	"rx_queue_0_errors",
1122 	"rx_queue_0_crc_errors",
1123 	"rx_queue_0_frame_errors",
1124 	"rx_queue_0_length_errors",
1125 	"rx_queue_0_missed_errors",
1126 	"rx_queue_0_over_errors",
1127 
1128 	"rx_queue_1_current",
1129 	"tx_queue_1_current",
1130 	"rx_queue_1_dirty",
1131 	"tx_queue_1_dirty",
1132 	"rx_queue_1_packets",
1133 	"tx_queue_1_packets",
1134 	"rx_queue_1_bytes",
1135 	"tx_queue_1_bytes",
1136 	"rx_queue_1_mcast_packets",
1137 	"rx_queue_1_errors",
1138 	"rx_queue_1_crc_errors",
1139 	"rx_queue_1_frame_errors",
1140 	"rx_queue_1_length_errors",
1141 	"rx_queue_1_missed_errors",
1142 	"rx_queue_1_over_errors",
1143 };
1144 
1145 #define RAVB_STATS_LEN	ARRAY_SIZE(ravb_gstrings_stats)
1146 
1147 static int ravb_get_sset_count(struct net_device *netdev, int sset)
1148 {
1149 	switch (sset) {
1150 	case ETH_SS_STATS:
1151 		return RAVB_STATS_LEN;
1152 	default:
1153 		return -EOPNOTSUPP;
1154 	}
1155 }
1156 
1157 static void ravb_get_ethtool_stats(struct net_device *ndev,
1158 				   struct ethtool_stats *estats, u64 *data)
1159 {
1160 	struct ravb_private *priv = netdev_priv(ndev);
1161 	int i = 0;
1162 	int q;
1163 
1164 	/* Device-specific stats */
1165 	for (q = RAVB_BE; q < NUM_RX_QUEUE; q++) {
1166 		struct net_device_stats *stats = &priv->stats[q];
1167 
1168 		data[i++] = priv->cur_rx[q];
1169 		data[i++] = priv->cur_tx[q];
1170 		data[i++] = priv->dirty_rx[q];
1171 		data[i++] = priv->dirty_tx[q];
1172 		data[i++] = stats->rx_packets;
1173 		data[i++] = stats->tx_packets;
1174 		data[i++] = stats->rx_bytes;
1175 		data[i++] = stats->tx_bytes;
1176 		data[i++] = stats->multicast;
1177 		data[i++] = stats->rx_errors;
1178 		data[i++] = stats->rx_crc_errors;
1179 		data[i++] = stats->rx_frame_errors;
1180 		data[i++] = stats->rx_length_errors;
1181 		data[i++] = stats->rx_missed_errors;
1182 		data[i++] = stats->rx_over_errors;
1183 	}
1184 }
1185 
1186 static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1187 {
1188 	switch (stringset) {
1189 	case ETH_SS_STATS:
1190 		memcpy(data, ravb_gstrings_stats, sizeof(ravb_gstrings_stats));
1191 		break;
1192 	}
1193 }
1194 
1195 static void ravb_get_ringparam(struct net_device *ndev,
1196 			       struct ethtool_ringparam *ring)
1197 {
1198 	struct ravb_private *priv = netdev_priv(ndev);
1199 
1200 	ring->rx_max_pending = BE_RX_RING_MAX;
1201 	ring->tx_max_pending = BE_TX_RING_MAX;
1202 	ring->rx_pending = priv->num_rx_ring[RAVB_BE];
1203 	ring->tx_pending = priv->num_tx_ring[RAVB_BE];
1204 }
1205 
1206 static int ravb_set_ringparam(struct net_device *ndev,
1207 			      struct ethtool_ringparam *ring)
1208 {
1209 	struct ravb_private *priv = netdev_priv(ndev);
1210 	int error;
1211 
1212 	if (ring->tx_pending > BE_TX_RING_MAX ||
1213 	    ring->rx_pending > BE_RX_RING_MAX ||
1214 	    ring->tx_pending < BE_TX_RING_MIN ||
1215 	    ring->rx_pending < BE_RX_RING_MIN)
1216 		return -EINVAL;
1217 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1218 		return -EINVAL;
1219 
1220 	if (netif_running(ndev)) {
1221 		netif_device_detach(ndev);
1222 		/* Stop PTP Clock driver */
1223 		if (priv->chip_id == RCAR_GEN2)
1224 			ravb_ptp_stop(ndev);
1225 		/* Wait for DMA stopping */
1226 		error = ravb_stop_dma(ndev);
1227 		if (error) {
1228 			netdev_err(ndev,
1229 				   "cannot set ringparam! Any AVB processes are still running?\n");
1230 			return error;
1231 		}
1232 		synchronize_irq(ndev->irq);
1233 
1234 		/* Free all the skb's in the RX queue and the DMA buffers. */
1235 		ravb_ring_free(ndev, RAVB_BE);
1236 		ravb_ring_free(ndev, RAVB_NC);
1237 	}
1238 
1239 	/* Set new parameters */
1240 	priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
1241 	priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
1242 
1243 	if (netif_running(ndev)) {
1244 		error = ravb_dmac_init(ndev);
1245 		if (error) {
1246 			netdev_err(ndev,
1247 				   "%s: ravb_dmac_init() failed, error %d\n",
1248 				   __func__, error);
1249 			return error;
1250 		}
1251 
1252 		ravb_emac_init(ndev);
1253 
1254 		/* Initialise PTP Clock driver */
1255 		if (priv->chip_id == RCAR_GEN2)
1256 			ravb_ptp_init(ndev, priv->pdev);
1257 
1258 		netif_device_attach(ndev);
1259 	}
1260 
1261 	return 0;
1262 }
1263 
1264 static int ravb_get_ts_info(struct net_device *ndev,
1265 			    struct ethtool_ts_info *info)
1266 {
1267 	struct ravb_private *priv = netdev_priv(ndev);
1268 
1269 	info->so_timestamping =
1270 		SOF_TIMESTAMPING_TX_SOFTWARE |
1271 		SOF_TIMESTAMPING_RX_SOFTWARE |
1272 		SOF_TIMESTAMPING_SOFTWARE |
1273 		SOF_TIMESTAMPING_TX_HARDWARE |
1274 		SOF_TIMESTAMPING_RX_HARDWARE |
1275 		SOF_TIMESTAMPING_RAW_HARDWARE;
1276 	info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
1277 	info->rx_filters =
1278 		(1 << HWTSTAMP_FILTER_NONE) |
1279 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1280 		(1 << HWTSTAMP_FILTER_ALL);
1281 	info->phc_index = ptp_clock_index(priv->ptp.clock);
1282 
1283 	return 0;
1284 }
1285 
1286 static void ravb_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1287 {
1288 	struct ravb_private *priv = netdev_priv(ndev);
1289 
1290 	wol->supported = WAKE_MAGIC;
1291 	wol->wolopts = priv->wol_enabled ? WAKE_MAGIC : 0;
1292 }
1293 
1294 static int ravb_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1295 {
1296 	struct ravb_private *priv = netdev_priv(ndev);
1297 
1298 	if (wol->wolopts & ~WAKE_MAGIC)
1299 		return -EOPNOTSUPP;
1300 
1301 	priv->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
1302 
1303 	device_set_wakeup_enable(&priv->pdev->dev, priv->wol_enabled);
1304 
1305 	return 0;
1306 }
1307 
1308 static const struct ethtool_ops ravb_ethtool_ops = {
1309 	.nway_reset		= phy_ethtool_nway_reset,
1310 	.get_msglevel		= ravb_get_msglevel,
1311 	.set_msglevel		= ravb_set_msglevel,
1312 	.get_link		= ethtool_op_get_link,
1313 	.get_strings		= ravb_get_strings,
1314 	.get_ethtool_stats	= ravb_get_ethtool_stats,
1315 	.get_sset_count		= ravb_get_sset_count,
1316 	.get_ringparam		= ravb_get_ringparam,
1317 	.set_ringparam		= ravb_set_ringparam,
1318 	.get_ts_info		= ravb_get_ts_info,
1319 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
1320 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
1321 	.get_wol		= ravb_get_wol,
1322 	.set_wol		= ravb_set_wol,
1323 };
1324 
1325 static inline int ravb_hook_irq(unsigned int irq, irq_handler_t handler,
1326 				struct net_device *ndev, struct device *dev,
1327 				const char *ch)
1328 {
1329 	char *name;
1330 	int error;
1331 
1332 	name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", ndev->name, ch);
1333 	if (!name)
1334 		return -ENOMEM;
1335 	error = request_irq(irq, handler, 0, name, ndev);
1336 	if (error)
1337 		netdev_err(ndev, "cannot request IRQ %s\n", name);
1338 
1339 	return error;
1340 }
1341 
1342 /* Network device open function for Ethernet AVB */
1343 static int ravb_open(struct net_device *ndev)
1344 {
1345 	struct ravb_private *priv = netdev_priv(ndev);
1346 	struct platform_device *pdev = priv->pdev;
1347 	struct device *dev = &pdev->dev;
1348 	int error;
1349 
1350 	napi_enable(&priv->napi[RAVB_BE]);
1351 	napi_enable(&priv->napi[RAVB_NC]);
1352 
1353 	if (priv->chip_id == RCAR_GEN2) {
1354 		error = request_irq(ndev->irq, ravb_interrupt, IRQF_SHARED,
1355 				    ndev->name, ndev);
1356 		if (error) {
1357 			netdev_err(ndev, "cannot request IRQ\n");
1358 			goto out_napi_off;
1359 		}
1360 	} else {
1361 		error = ravb_hook_irq(ndev->irq, ravb_multi_interrupt, ndev,
1362 				      dev, "ch22:multi");
1363 		if (error)
1364 			goto out_napi_off;
1365 		error = ravb_hook_irq(priv->emac_irq, ravb_emac_interrupt, ndev,
1366 				      dev, "ch24:emac");
1367 		if (error)
1368 			goto out_free_irq;
1369 		error = ravb_hook_irq(priv->rx_irqs[RAVB_BE], ravb_be_interrupt,
1370 				      ndev, dev, "ch0:rx_be");
1371 		if (error)
1372 			goto out_free_irq_emac;
1373 		error = ravb_hook_irq(priv->tx_irqs[RAVB_BE], ravb_be_interrupt,
1374 				      ndev, dev, "ch18:tx_be");
1375 		if (error)
1376 			goto out_free_irq_be_rx;
1377 		error = ravb_hook_irq(priv->rx_irqs[RAVB_NC], ravb_nc_interrupt,
1378 				      ndev, dev, "ch1:rx_nc");
1379 		if (error)
1380 			goto out_free_irq_be_tx;
1381 		error = ravb_hook_irq(priv->tx_irqs[RAVB_NC], ravb_nc_interrupt,
1382 				      ndev, dev, "ch19:tx_nc");
1383 		if (error)
1384 			goto out_free_irq_nc_rx;
1385 	}
1386 
1387 	/* Device init */
1388 	error = ravb_dmac_init(ndev);
1389 	if (error)
1390 		goto out_free_irq_nc_tx;
1391 	ravb_emac_init(ndev);
1392 
1393 	/* Initialise PTP Clock driver */
1394 	if (priv->chip_id == RCAR_GEN2)
1395 		ravb_ptp_init(ndev, priv->pdev);
1396 
1397 	netif_tx_start_all_queues(ndev);
1398 
1399 	/* PHY control start */
1400 	error = ravb_phy_start(ndev);
1401 	if (error)
1402 		goto out_ptp_stop;
1403 
1404 	return 0;
1405 
1406 out_ptp_stop:
1407 	/* Stop PTP Clock driver */
1408 	if (priv->chip_id == RCAR_GEN2)
1409 		ravb_ptp_stop(ndev);
1410 out_free_irq_nc_tx:
1411 	if (priv->chip_id == RCAR_GEN2)
1412 		goto out_free_irq;
1413 	free_irq(priv->tx_irqs[RAVB_NC], ndev);
1414 out_free_irq_nc_rx:
1415 	free_irq(priv->rx_irqs[RAVB_NC], ndev);
1416 out_free_irq_be_tx:
1417 	free_irq(priv->tx_irqs[RAVB_BE], ndev);
1418 out_free_irq_be_rx:
1419 	free_irq(priv->rx_irqs[RAVB_BE], ndev);
1420 out_free_irq_emac:
1421 	free_irq(priv->emac_irq, ndev);
1422 out_free_irq:
1423 	free_irq(ndev->irq, ndev);
1424 out_napi_off:
1425 	napi_disable(&priv->napi[RAVB_NC]);
1426 	napi_disable(&priv->napi[RAVB_BE]);
1427 	return error;
1428 }
1429 
1430 /* Timeout function for Ethernet AVB */
1431 static void ravb_tx_timeout(struct net_device *ndev)
1432 {
1433 	struct ravb_private *priv = netdev_priv(ndev);
1434 
1435 	netif_err(priv, tx_err, ndev,
1436 		  "transmit timed out, status %08x, resetting...\n",
1437 		  ravb_read(ndev, ISS));
1438 
1439 	/* tx_errors count up */
1440 	ndev->stats.tx_errors++;
1441 
1442 	schedule_work(&priv->work);
1443 }
1444 
1445 static void ravb_tx_timeout_work(struct work_struct *work)
1446 {
1447 	struct ravb_private *priv = container_of(work, struct ravb_private,
1448 						 work);
1449 	struct net_device *ndev = priv->ndev;
1450 
1451 	netif_tx_stop_all_queues(ndev);
1452 
1453 	/* Stop PTP Clock driver */
1454 	if (priv->chip_id == RCAR_GEN2)
1455 		ravb_ptp_stop(ndev);
1456 
1457 	/* Wait for DMA stopping */
1458 	ravb_stop_dma(ndev);
1459 
1460 	ravb_ring_free(ndev, RAVB_BE);
1461 	ravb_ring_free(ndev, RAVB_NC);
1462 
1463 	/* Device init */
1464 	ravb_dmac_init(ndev);
1465 	ravb_emac_init(ndev);
1466 
1467 	/* Initialise PTP Clock driver */
1468 	if (priv->chip_id == RCAR_GEN2)
1469 		ravb_ptp_init(ndev, priv->pdev);
1470 
1471 	netif_tx_start_all_queues(ndev);
1472 }
1473 
1474 /* Packet transmit function for Ethernet AVB */
1475 static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1476 {
1477 	struct ravb_private *priv = netdev_priv(ndev);
1478 	int num_tx_desc = priv->num_tx_desc;
1479 	u16 q = skb_get_queue_mapping(skb);
1480 	struct ravb_tstamp_skb *ts_skb;
1481 	struct ravb_tx_desc *desc;
1482 	unsigned long flags;
1483 	u32 dma_addr;
1484 	void *buffer;
1485 	u32 entry;
1486 	u32 len;
1487 
1488 	spin_lock_irqsave(&priv->lock, flags);
1489 	if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
1490 	    num_tx_desc) {
1491 		netif_err(priv, tx_queued, ndev,
1492 			  "still transmitting with the full ring!\n");
1493 		netif_stop_subqueue(ndev, q);
1494 		spin_unlock_irqrestore(&priv->lock, flags);
1495 		return NETDEV_TX_BUSY;
1496 	}
1497 
1498 	if (skb_put_padto(skb, ETH_ZLEN))
1499 		goto exit;
1500 
1501 	entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * num_tx_desc);
1502 	priv->tx_skb[q][entry / num_tx_desc] = skb;
1503 
1504 	if (num_tx_desc > 1) {
1505 		buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
1506 			 entry / num_tx_desc * DPTR_ALIGN;
1507 		len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
1508 
1509 		/* Zero length DMA descriptors are problematic as they seem
1510 		 * to terminate DMA transfers. Avoid them by simply using a
1511 		 * length of DPTR_ALIGN (4) when skb data is aligned to
1512 		 * DPTR_ALIGN.
1513 		 *
1514 		 * As skb is guaranteed to have at least ETH_ZLEN (60)
1515 		 * bytes of data by the call to skb_put_padto() above this
1516 		 * is safe with respect to both the length of the first DMA
1517 		 * descriptor (len) overflowing the available data and the
1518 		 * length of the second DMA descriptor (skb->len - len)
1519 		 * being negative.
1520 		 */
1521 		if (len == 0)
1522 			len = DPTR_ALIGN;
1523 
1524 		memcpy(buffer, skb->data, len);
1525 		dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
1526 					  DMA_TO_DEVICE);
1527 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
1528 			goto drop;
1529 
1530 		desc = &priv->tx_ring[q][entry];
1531 		desc->ds_tagl = cpu_to_le16(len);
1532 		desc->dptr = cpu_to_le32(dma_addr);
1533 
1534 		buffer = skb->data + len;
1535 		len = skb->len - len;
1536 		dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
1537 					  DMA_TO_DEVICE);
1538 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
1539 			goto unmap;
1540 
1541 		desc++;
1542 	} else {
1543 		desc = &priv->tx_ring[q][entry];
1544 		len = skb->len;
1545 		dma_addr = dma_map_single(ndev->dev.parent, skb->data, skb->len,
1546 					  DMA_TO_DEVICE);
1547 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
1548 			goto drop;
1549 	}
1550 	desc->ds_tagl = cpu_to_le16(len);
1551 	desc->dptr = cpu_to_le32(dma_addr);
1552 
1553 	/* TX timestamp required */
1554 	if (q == RAVB_NC) {
1555 		ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
1556 		if (!ts_skb) {
1557 			if (num_tx_desc > 1) {
1558 				desc--;
1559 				dma_unmap_single(ndev->dev.parent, dma_addr,
1560 						 len, DMA_TO_DEVICE);
1561 			}
1562 			goto unmap;
1563 		}
1564 		ts_skb->skb = skb_get(skb);
1565 		ts_skb->tag = priv->ts_skb_tag++;
1566 		priv->ts_skb_tag &= 0x3ff;
1567 		list_add_tail(&ts_skb->list, &priv->ts_skb_list);
1568 
1569 		/* TAG and timestamp required flag */
1570 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1571 		desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
1572 		desc->ds_tagl |= cpu_to_le16(ts_skb->tag << 12);
1573 	}
1574 
1575 	skb_tx_timestamp(skb);
1576 	/* Descriptor type must be set after all the above writes */
1577 	dma_wmb();
1578 	if (num_tx_desc > 1) {
1579 		desc->die_dt = DT_FEND;
1580 		desc--;
1581 		desc->die_dt = DT_FSTART;
1582 	} else {
1583 		desc->die_dt = DT_FSINGLE;
1584 	}
1585 	ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q);
1586 
1587 	priv->cur_tx[q] += num_tx_desc;
1588 	if (priv->cur_tx[q] - priv->dirty_tx[q] >
1589 	    (priv->num_tx_ring[q] - 1) * num_tx_desc &&
1590 	    !ravb_tx_free(ndev, q, true))
1591 		netif_stop_subqueue(ndev, q);
1592 
1593 exit:
1594 	spin_unlock_irqrestore(&priv->lock, flags);
1595 	return NETDEV_TX_OK;
1596 
1597 unmap:
1598 	dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
1599 			 le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
1600 drop:
1601 	dev_kfree_skb_any(skb);
1602 	priv->tx_skb[q][entry / num_tx_desc] = NULL;
1603 	goto exit;
1604 }
1605 
1606 static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
1607 			     struct net_device *sb_dev)
1608 {
1609 	/* If skb needs TX timestamp, it is handled in network control queue */
1610 	return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
1611 							       RAVB_BE;
1612 
1613 }
1614 
1615 static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
1616 {
1617 	struct ravb_private *priv = netdev_priv(ndev);
1618 	struct net_device_stats *nstats, *stats0, *stats1;
1619 
1620 	nstats = &ndev->stats;
1621 	stats0 = &priv->stats[RAVB_BE];
1622 	stats1 = &priv->stats[RAVB_NC];
1623 
1624 	if (priv->chip_id == RCAR_GEN3) {
1625 		nstats->tx_dropped += ravb_read(ndev, TROCR);
1626 		ravb_write(ndev, 0, TROCR);	/* (write clear) */
1627 	}
1628 
1629 	nstats->rx_packets = stats0->rx_packets + stats1->rx_packets;
1630 	nstats->tx_packets = stats0->tx_packets + stats1->tx_packets;
1631 	nstats->rx_bytes = stats0->rx_bytes + stats1->rx_bytes;
1632 	nstats->tx_bytes = stats0->tx_bytes + stats1->tx_bytes;
1633 	nstats->multicast = stats0->multicast + stats1->multicast;
1634 	nstats->rx_errors = stats0->rx_errors + stats1->rx_errors;
1635 	nstats->rx_crc_errors = stats0->rx_crc_errors + stats1->rx_crc_errors;
1636 	nstats->rx_frame_errors =
1637 		stats0->rx_frame_errors + stats1->rx_frame_errors;
1638 	nstats->rx_length_errors =
1639 		stats0->rx_length_errors + stats1->rx_length_errors;
1640 	nstats->rx_missed_errors =
1641 		stats0->rx_missed_errors + stats1->rx_missed_errors;
1642 	nstats->rx_over_errors =
1643 		stats0->rx_over_errors + stats1->rx_over_errors;
1644 
1645 	return nstats;
1646 }
1647 
1648 /* Update promiscuous bit */
1649 static void ravb_set_rx_mode(struct net_device *ndev)
1650 {
1651 	struct ravb_private *priv = netdev_priv(ndev);
1652 	unsigned long flags;
1653 
1654 	spin_lock_irqsave(&priv->lock, flags);
1655 	ravb_modify(ndev, ECMR, ECMR_PRM,
1656 		    ndev->flags & IFF_PROMISC ? ECMR_PRM : 0);
1657 	spin_unlock_irqrestore(&priv->lock, flags);
1658 }
1659 
1660 /* Device close function for Ethernet AVB */
1661 static int ravb_close(struct net_device *ndev)
1662 {
1663 	struct device_node *np = ndev->dev.parent->of_node;
1664 	struct ravb_private *priv = netdev_priv(ndev);
1665 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
1666 
1667 	netif_tx_stop_all_queues(ndev);
1668 
1669 	/* Disable interrupts by clearing the interrupt masks. */
1670 	ravb_write(ndev, 0, RIC0);
1671 	ravb_write(ndev, 0, RIC2);
1672 	ravb_write(ndev, 0, TIC);
1673 
1674 	/* Stop PTP Clock driver */
1675 	if (priv->chip_id == RCAR_GEN2)
1676 		ravb_ptp_stop(ndev);
1677 
1678 	/* Set the config mode to stop the AVB-DMAC's processes */
1679 	if (ravb_stop_dma(ndev) < 0)
1680 		netdev_err(ndev,
1681 			   "device will be stopped after h/w processes are done.\n");
1682 
1683 	/* Clear the timestamp list */
1684 	list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
1685 		list_del(&ts_skb->list);
1686 		kfree_skb(ts_skb->skb);
1687 		kfree(ts_skb);
1688 	}
1689 
1690 	/* PHY disconnect */
1691 	if (ndev->phydev) {
1692 		phy_stop(ndev->phydev);
1693 		phy_disconnect(ndev->phydev);
1694 		if (of_phy_is_fixed_link(np))
1695 			of_phy_deregister_fixed_link(np);
1696 	}
1697 
1698 	if (priv->chip_id != RCAR_GEN2) {
1699 		free_irq(priv->tx_irqs[RAVB_NC], ndev);
1700 		free_irq(priv->rx_irqs[RAVB_NC], ndev);
1701 		free_irq(priv->tx_irqs[RAVB_BE], ndev);
1702 		free_irq(priv->rx_irqs[RAVB_BE], ndev);
1703 		free_irq(priv->emac_irq, ndev);
1704 	}
1705 	free_irq(ndev->irq, ndev);
1706 
1707 	napi_disable(&priv->napi[RAVB_NC]);
1708 	napi_disable(&priv->napi[RAVB_BE]);
1709 
1710 	/* Free all the skb's in the RX queue and the DMA buffers. */
1711 	ravb_ring_free(ndev, RAVB_BE);
1712 	ravb_ring_free(ndev, RAVB_NC);
1713 
1714 	return 0;
1715 }
1716 
1717 static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
1718 {
1719 	struct ravb_private *priv = netdev_priv(ndev);
1720 	struct hwtstamp_config config;
1721 
1722 	config.flags = 0;
1723 	config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
1724 						HWTSTAMP_TX_OFF;
1725 	if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_V2_L2_EVENT)
1726 		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
1727 	else if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_ALL)
1728 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1729 	else
1730 		config.rx_filter = HWTSTAMP_FILTER_NONE;
1731 
1732 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1733 		-EFAULT : 0;
1734 }
1735 
1736 /* Control hardware time stamping */
1737 static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
1738 {
1739 	struct ravb_private *priv = netdev_priv(ndev);
1740 	struct hwtstamp_config config;
1741 	u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
1742 	u32 tstamp_tx_ctrl;
1743 
1744 	if (copy_from_user(&config, req->ifr_data, sizeof(config)))
1745 		return -EFAULT;
1746 
1747 	/* Reserved for future extensions */
1748 	if (config.flags)
1749 		return -EINVAL;
1750 
1751 	switch (config.tx_type) {
1752 	case HWTSTAMP_TX_OFF:
1753 		tstamp_tx_ctrl = 0;
1754 		break;
1755 	case HWTSTAMP_TX_ON:
1756 		tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
1757 		break;
1758 	default:
1759 		return -ERANGE;
1760 	}
1761 
1762 	switch (config.rx_filter) {
1763 	case HWTSTAMP_FILTER_NONE:
1764 		tstamp_rx_ctrl = 0;
1765 		break;
1766 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1767 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
1768 		break;
1769 	default:
1770 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1771 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
1772 	}
1773 
1774 	priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
1775 	priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
1776 
1777 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1778 		-EFAULT : 0;
1779 }
1780 
1781 /* ioctl to device function */
1782 static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
1783 {
1784 	struct phy_device *phydev = ndev->phydev;
1785 
1786 	if (!netif_running(ndev))
1787 		return -EINVAL;
1788 
1789 	if (!phydev)
1790 		return -ENODEV;
1791 
1792 	switch (cmd) {
1793 	case SIOCGHWTSTAMP:
1794 		return ravb_hwtstamp_get(ndev, req);
1795 	case SIOCSHWTSTAMP:
1796 		return ravb_hwtstamp_set(ndev, req);
1797 	}
1798 
1799 	return phy_mii_ioctl(phydev, req, cmd);
1800 }
1801 
1802 static int ravb_change_mtu(struct net_device *ndev, int new_mtu)
1803 {
1804 	if (netif_running(ndev))
1805 		return -EBUSY;
1806 
1807 	ndev->mtu = new_mtu;
1808 	netdev_update_features(ndev);
1809 
1810 	return 0;
1811 }
1812 
1813 static void ravb_set_rx_csum(struct net_device *ndev, bool enable)
1814 {
1815 	struct ravb_private *priv = netdev_priv(ndev);
1816 	unsigned long flags;
1817 
1818 	spin_lock_irqsave(&priv->lock, flags);
1819 
1820 	/* Disable TX and RX */
1821 	ravb_rcv_snd_disable(ndev);
1822 
1823 	/* Modify RX Checksum setting */
1824 	ravb_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
1825 
1826 	/* Enable TX and RX */
1827 	ravb_rcv_snd_enable(ndev);
1828 
1829 	spin_unlock_irqrestore(&priv->lock, flags);
1830 }
1831 
1832 static int ravb_set_features(struct net_device *ndev,
1833 			     netdev_features_t features)
1834 {
1835 	netdev_features_t changed = ndev->features ^ features;
1836 
1837 	if (changed & NETIF_F_RXCSUM)
1838 		ravb_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
1839 
1840 	ndev->features = features;
1841 
1842 	return 0;
1843 }
1844 
1845 static const struct net_device_ops ravb_netdev_ops = {
1846 	.ndo_open		= ravb_open,
1847 	.ndo_stop		= ravb_close,
1848 	.ndo_start_xmit		= ravb_start_xmit,
1849 	.ndo_select_queue	= ravb_select_queue,
1850 	.ndo_get_stats		= ravb_get_stats,
1851 	.ndo_set_rx_mode	= ravb_set_rx_mode,
1852 	.ndo_tx_timeout		= ravb_tx_timeout,
1853 	.ndo_do_ioctl		= ravb_do_ioctl,
1854 	.ndo_change_mtu		= ravb_change_mtu,
1855 	.ndo_validate_addr	= eth_validate_addr,
1856 	.ndo_set_mac_address	= eth_mac_addr,
1857 	.ndo_set_features	= ravb_set_features,
1858 };
1859 
1860 /* MDIO bus init function */
1861 static int ravb_mdio_init(struct ravb_private *priv)
1862 {
1863 	struct platform_device *pdev = priv->pdev;
1864 	struct device *dev = &pdev->dev;
1865 	int error;
1866 
1867 	/* Bitbang init */
1868 	priv->mdiobb.ops = &bb_ops;
1869 
1870 	/* MII controller setting */
1871 	priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
1872 	if (!priv->mii_bus)
1873 		return -ENOMEM;
1874 
1875 	/* Hook up MII support for ethtool */
1876 	priv->mii_bus->name = "ravb_mii";
1877 	priv->mii_bus->parent = dev;
1878 	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1879 		 pdev->name, pdev->id);
1880 
1881 	/* Register MDIO bus */
1882 	error = of_mdiobus_register(priv->mii_bus, dev->of_node);
1883 	if (error)
1884 		goto out_free_bus;
1885 
1886 	return 0;
1887 
1888 out_free_bus:
1889 	free_mdio_bitbang(priv->mii_bus);
1890 	return error;
1891 }
1892 
1893 /* MDIO bus release function */
1894 static int ravb_mdio_release(struct ravb_private *priv)
1895 {
1896 	/* Unregister mdio bus */
1897 	mdiobus_unregister(priv->mii_bus);
1898 
1899 	/* Free bitbang info */
1900 	free_mdio_bitbang(priv->mii_bus);
1901 
1902 	return 0;
1903 }
1904 
1905 static const struct of_device_id ravb_match_table[] = {
1906 	{ .compatible = "renesas,etheravb-r8a7790", .data = (void *)RCAR_GEN2 },
1907 	{ .compatible = "renesas,etheravb-r8a7794", .data = (void *)RCAR_GEN2 },
1908 	{ .compatible = "renesas,etheravb-rcar-gen2", .data = (void *)RCAR_GEN2 },
1909 	{ .compatible = "renesas,etheravb-r8a7795", .data = (void *)RCAR_GEN3 },
1910 	{ .compatible = "renesas,etheravb-rcar-gen3", .data = (void *)RCAR_GEN3 },
1911 	{ }
1912 };
1913 MODULE_DEVICE_TABLE(of, ravb_match_table);
1914 
1915 static int ravb_set_gti(struct net_device *ndev)
1916 {
1917 	struct ravb_private *priv = netdev_priv(ndev);
1918 	struct device *dev = ndev->dev.parent;
1919 	unsigned long rate;
1920 	uint64_t inc;
1921 
1922 	rate = clk_get_rate(priv->clk);
1923 	if (!rate)
1924 		return -EINVAL;
1925 
1926 	inc = 1000000000ULL << 20;
1927 	do_div(inc, rate);
1928 
1929 	if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
1930 		dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
1931 			inc, GTI_TIV_MIN, GTI_TIV_MAX);
1932 		return -EINVAL;
1933 	}
1934 
1935 	ravb_write(ndev, inc, GTI);
1936 
1937 	return 0;
1938 }
1939 
1940 static void ravb_set_config_mode(struct net_device *ndev)
1941 {
1942 	struct ravb_private *priv = netdev_priv(ndev);
1943 
1944 	if (priv->chip_id == RCAR_GEN2) {
1945 		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
1946 		/* Set CSEL value */
1947 		ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB);
1948 	} else {
1949 		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG |
1950 			    CCC_GAC | CCC_CSEL_HPB);
1951 	}
1952 }
1953 
1954 static const struct soc_device_attribute ravb_delay_mode_quirk_match[] = {
1955 	{ .soc_id = "r8a774c0" },
1956 	{ .soc_id = "r8a77990" },
1957 	{ .soc_id = "r8a77995" },
1958 	{ /* sentinel */ }
1959 };
1960 
1961 /* Set tx and rx clock internal delay modes */
1962 static void ravb_set_delay_mode(struct net_device *ndev)
1963 {
1964 	struct ravb_private *priv = netdev_priv(ndev);
1965 	int set = 0;
1966 
1967 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1968 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID)
1969 		set |= APSR_DM_RDM;
1970 
1971 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1972 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) {
1973 		if (!WARN(soc_device_match(ravb_delay_mode_quirk_match),
1974 			  "phy-mode %s requires TX clock internal delay mode which is not supported by this hardware revision. Please update device tree",
1975 			  phy_modes(priv->phy_interface)))
1976 			set |= APSR_DM_TDM;
1977 	}
1978 
1979 	ravb_modify(ndev, APSR, APSR_DM, set);
1980 }
1981 
1982 static int ravb_probe(struct platform_device *pdev)
1983 {
1984 	struct device_node *np = pdev->dev.of_node;
1985 	struct ravb_private *priv;
1986 	enum ravb_chip_id chip_id;
1987 	struct net_device *ndev;
1988 	int error, irq, q;
1989 	struct resource *res;
1990 	int i;
1991 
1992 	if (!np) {
1993 		dev_err(&pdev->dev,
1994 			"this driver is required to be instantiated from device tree\n");
1995 		return -EINVAL;
1996 	}
1997 
1998 	/* Get base address */
1999 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2000 	if (!res) {
2001 		dev_err(&pdev->dev, "invalid resource\n");
2002 		return -EINVAL;
2003 	}
2004 
2005 	ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
2006 				  NUM_TX_QUEUE, NUM_RX_QUEUE);
2007 	if (!ndev)
2008 		return -ENOMEM;
2009 
2010 	ndev->features = NETIF_F_RXCSUM;
2011 	ndev->hw_features = NETIF_F_RXCSUM;
2012 
2013 	pm_runtime_enable(&pdev->dev);
2014 	pm_runtime_get_sync(&pdev->dev);
2015 
2016 	/* The Ether-specific entries in the device structure. */
2017 	ndev->base_addr = res->start;
2018 
2019 	chip_id = (enum ravb_chip_id)of_device_get_match_data(&pdev->dev);
2020 
2021 	if (chip_id == RCAR_GEN3)
2022 		irq = platform_get_irq_byname(pdev, "ch22");
2023 	else
2024 		irq = platform_get_irq(pdev, 0);
2025 	if (irq < 0) {
2026 		error = irq;
2027 		goto out_release;
2028 	}
2029 	ndev->irq = irq;
2030 
2031 	SET_NETDEV_DEV(ndev, &pdev->dev);
2032 
2033 	priv = netdev_priv(ndev);
2034 	priv->ndev = ndev;
2035 	priv->pdev = pdev;
2036 	priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
2037 	priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
2038 	priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
2039 	priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
2040 	priv->addr = devm_ioremap_resource(&pdev->dev, res);
2041 	if (IS_ERR(priv->addr)) {
2042 		error = PTR_ERR(priv->addr);
2043 		goto out_release;
2044 	}
2045 
2046 	spin_lock_init(&priv->lock);
2047 	INIT_WORK(&priv->work, ravb_tx_timeout_work);
2048 
2049 	priv->phy_interface = of_get_phy_mode(np);
2050 
2051 	priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
2052 	priv->avb_link_active_low =
2053 		of_property_read_bool(np, "renesas,ether-link-active-low");
2054 
2055 	if (chip_id == RCAR_GEN3) {
2056 		irq = platform_get_irq_byname(pdev, "ch24");
2057 		if (irq < 0) {
2058 			error = irq;
2059 			goto out_release;
2060 		}
2061 		priv->emac_irq = irq;
2062 		for (i = 0; i < NUM_RX_QUEUE; i++) {
2063 			irq = platform_get_irq_byname(pdev, ravb_rx_irqs[i]);
2064 			if (irq < 0) {
2065 				error = irq;
2066 				goto out_release;
2067 			}
2068 			priv->rx_irqs[i] = irq;
2069 		}
2070 		for (i = 0; i < NUM_TX_QUEUE; i++) {
2071 			irq = platform_get_irq_byname(pdev, ravb_tx_irqs[i]);
2072 			if (irq < 0) {
2073 				error = irq;
2074 				goto out_release;
2075 			}
2076 			priv->tx_irqs[i] = irq;
2077 		}
2078 	}
2079 
2080 	priv->chip_id = chip_id;
2081 
2082 	priv->clk = devm_clk_get(&pdev->dev, NULL);
2083 	if (IS_ERR(priv->clk)) {
2084 		error = PTR_ERR(priv->clk);
2085 		goto out_release;
2086 	}
2087 
2088 	ndev->max_mtu = 2048 - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
2089 	ndev->min_mtu = ETH_MIN_MTU;
2090 
2091 	priv->num_tx_desc = chip_id == RCAR_GEN2 ?
2092 		NUM_TX_DESC_GEN2 : NUM_TX_DESC_GEN3;
2093 
2094 	/* Set function */
2095 	ndev->netdev_ops = &ravb_netdev_ops;
2096 	ndev->ethtool_ops = &ravb_ethtool_ops;
2097 
2098 	/* Set AVB config mode */
2099 	ravb_set_config_mode(ndev);
2100 
2101 	/* Set GTI value */
2102 	error = ravb_set_gti(ndev);
2103 	if (error)
2104 		goto out_release;
2105 
2106 	/* Request GTI loading */
2107 	ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2108 
2109 	if (priv->chip_id != RCAR_GEN2)
2110 		ravb_set_delay_mode(ndev);
2111 
2112 	/* Allocate descriptor base address table */
2113 	priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
2114 	priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
2115 					    &priv->desc_bat_dma, GFP_KERNEL);
2116 	if (!priv->desc_bat) {
2117 		dev_err(&pdev->dev,
2118 			"Cannot allocate desc base address table (size %d bytes)\n",
2119 			priv->desc_bat_size);
2120 		error = -ENOMEM;
2121 		goto out_release;
2122 	}
2123 	for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
2124 		priv->desc_bat[q].die_dt = DT_EOS;
2125 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
2126 
2127 	/* Initialise HW timestamp list */
2128 	INIT_LIST_HEAD(&priv->ts_skb_list);
2129 
2130 	/* Initialise PTP Clock driver */
2131 	if (chip_id != RCAR_GEN2)
2132 		ravb_ptp_init(ndev, pdev);
2133 
2134 	/* Debug message level */
2135 	priv->msg_enable = RAVB_DEF_MSG_ENABLE;
2136 
2137 	/* Read and set MAC address */
2138 	ravb_read_mac_address(ndev, of_get_mac_address(np));
2139 	if (!is_valid_ether_addr(ndev->dev_addr)) {
2140 		dev_warn(&pdev->dev,
2141 			 "no valid MAC address supplied, using a random one\n");
2142 		eth_hw_addr_random(ndev);
2143 	}
2144 
2145 	/* MDIO bus init */
2146 	error = ravb_mdio_init(priv);
2147 	if (error) {
2148 		dev_err(&pdev->dev, "failed to initialize MDIO\n");
2149 		goto out_dma_free;
2150 	}
2151 
2152 	netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll, 64);
2153 	netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll, 64);
2154 
2155 	/* Network device register */
2156 	error = register_netdev(ndev);
2157 	if (error)
2158 		goto out_napi_del;
2159 
2160 	device_set_wakeup_capable(&pdev->dev, 1);
2161 
2162 	/* Print device information */
2163 	netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
2164 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2165 
2166 	platform_set_drvdata(pdev, ndev);
2167 
2168 	return 0;
2169 
2170 out_napi_del:
2171 	netif_napi_del(&priv->napi[RAVB_NC]);
2172 	netif_napi_del(&priv->napi[RAVB_BE]);
2173 	ravb_mdio_release(priv);
2174 out_dma_free:
2175 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2176 			  priv->desc_bat_dma);
2177 
2178 	/* Stop PTP Clock driver */
2179 	if (chip_id != RCAR_GEN2)
2180 		ravb_ptp_stop(ndev);
2181 out_release:
2182 	free_netdev(ndev);
2183 
2184 	pm_runtime_put(&pdev->dev);
2185 	pm_runtime_disable(&pdev->dev);
2186 	return error;
2187 }
2188 
2189 static int ravb_remove(struct platform_device *pdev)
2190 {
2191 	struct net_device *ndev = platform_get_drvdata(pdev);
2192 	struct ravb_private *priv = netdev_priv(ndev);
2193 
2194 	/* Stop PTP Clock driver */
2195 	if (priv->chip_id != RCAR_GEN2)
2196 		ravb_ptp_stop(ndev);
2197 
2198 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2199 			  priv->desc_bat_dma);
2200 	/* Set reset mode */
2201 	ravb_write(ndev, CCC_OPC_RESET, CCC);
2202 	pm_runtime_put_sync(&pdev->dev);
2203 	unregister_netdev(ndev);
2204 	netif_napi_del(&priv->napi[RAVB_NC]);
2205 	netif_napi_del(&priv->napi[RAVB_BE]);
2206 	ravb_mdio_release(priv);
2207 	pm_runtime_disable(&pdev->dev);
2208 	free_netdev(ndev);
2209 	platform_set_drvdata(pdev, NULL);
2210 
2211 	return 0;
2212 }
2213 
2214 static int ravb_wol_setup(struct net_device *ndev)
2215 {
2216 	struct ravb_private *priv = netdev_priv(ndev);
2217 
2218 	/* Disable interrupts by clearing the interrupt masks. */
2219 	ravb_write(ndev, 0, RIC0);
2220 	ravb_write(ndev, 0, RIC2);
2221 	ravb_write(ndev, 0, TIC);
2222 
2223 	/* Only allow ECI interrupts */
2224 	synchronize_irq(priv->emac_irq);
2225 	napi_disable(&priv->napi[RAVB_NC]);
2226 	napi_disable(&priv->napi[RAVB_BE]);
2227 	ravb_write(ndev, ECSIPR_MPDIP, ECSIPR);
2228 
2229 	/* Enable MagicPacket */
2230 	ravb_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
2231 
2232 	return enable_irq_wake(priv->emac_irq);
2233 }
2234 
2235 static int ravb_wol_restore(struct net_device *ndev)
2236 {
2237 	struct ravb_private *priv = netdev_priv(ndev);
2238 	int ret;
2239 
2240 	napi_enable(&priv->napi[RAVB_NC]);
2241 	napi_enable(&priv->napi[RAVB_BE]);
2242 
2243 	/* Disable MagicPacket */
2244 	ravb_modify(ndev, ECMR, ECMR_MPDE, 0);
2245 
2246 	ret = ravb_close(ndev);
2247 	if (ret < 0)
2248 		return ret;
2249 
2250 	return disable_irq_wake(priv->emac_irq);
2251 }
2252 
2253 static int __maybe_unused ravb_suspend(struct device *dev)
2254 {
2255 	struct net_device *ndev = dev_get_drvdata(dev);
2256 	struct ravb_private *priv = netdev_priv(ndev);
2257 	int ret;
2258 
2259 	if (!netif_running(ndev))
2260 		return 0;
2261 
2262 	netif_device_detach(ndev);
2263 
2264 	if (priv->wol_enabled)
2265 		ret = ravb_wol_setup(ndev);
2266 	else
2267 		ret = ravb_close(ndev);
2268 
2269 	return ret;
2270 }
2271 
2272 static int __maybe_unused ravb_resume(struct device *dev)
2273 {
2274 	struct net_device *ndev = dev_get_drvdata(dev);
2275 	struct ravb_private *priv = netdev_priv(ndev);
2276 	int ret = 0;
2277 
2278 	/* If WoL is enabled set reset mode to rearm the WoL logic */
2279 	if (priv->wol_enabled)
2280 		ravb_write(ndev, CCC_OPC_RESET, CCC);
2281 
2282 	/* All register have been reset to default values.
2283 	 * Restore all registers which where setup at probe time and
2284 	 * reopen device if it was running before system suspended.
2285 	 */
2286 
2287 	/* Set AVB config mode */
2288 	ravb_set_config_mode(ndev);
2289 
2290 	/* Set GTI value */
2291 	ret = ravb_set_gti(ndev);
2292 	if (ret)
2293 		return ret;
2294 
2295 	/* Request GTI loading */
2296 	ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2297 
2298 	if (priv->chip_id != RCAR_GEN2)
2299 		ravb_set_delay_mode(ndev);
2300 
2301 	/* Restore descriptor base address table */
2302 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
2303 
2304 	if (netif_running(ndev)) {
2305 		if (priv->wol_enabled) {
2306 			ret = ravb_wol_restore(ndev);
2307 			if (ret)
2308 				return ret;
2309 		}
2310 		ret = ravb_open(ndev);
2311 		if (ret < 0)
2312 			return ret;
2313 		netif_device_attach(ndev);
2314 	}
2315 
2316 	return ret;
2317 }
2318 
2319 static int __maybe_unused ravb_runtime_nop(struct device *dev)
2320 {
2321 	/* Runtime PM callback shared between ->runtime_suspend()
2322 	 * and ->runtime_resume(). Simply returns success.
2323 	 *
2324 	 * This driver re-initializes all registers after
2325 	 * pm_runtime_get_sync() anyway so there is no need
2326 	 * to save and restore registers here.
2327 	 */
2328 	return 0;
2329 }
2330 
2331 static const struct dev_pm_ops ravb_dev_pm_ops = {
2332 	SET_SYSTEM_SLEEP_PM_OPS(ravb_suspend, ravb_resume)
2333 	SET_RUNTIME_PM_OPS(ravb_runtime_nop, ravb_runtime_nop, NULL)
2334 };
2335 
2336 static struct platform_driver ravb_driver = {
2337 	.probe		= ravb_probe,
2338 	.remove		= ravb_remove,
2339 	.driver = {
2340 		.name	= "ravb",
2341 		.pm	= &ravb_dev_pm_ops,
2342 		.of_match_table = ravb_match_table,
2343 	},
2344 };
2345 
2346 module_platform_driver(ravb_driver);
2347 
2348 MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
2349 MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
2350 MODULE_LICENSE("GPL v2");
2351