xref: /linux/drivers/net/ethernet/sfc/falcon/farch.c (revision 44f57d78)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2005-2006 Fen Systems Ltd.
5  * Copyright 2006-2013 Solarflare Communications Inc.
6  */
7 
8 #include <linux/bitops.h>
9 #include <linux/delay.h>
10 #include <linux/interrupt.h>
11 #include <linux/pci.h>
12 #include <linux/module.h>
13 #include <linux/seq_file.h>
14 #include <linux/crc32.h>
15 #include "net_driver.h"
16 #include "bitfield.h"
17 #include "efx.h"
18 #include "nic.h"
19 #include "farch_regs.h"
20 #include "io.h"
21 #include "workarounds.h"
22 
23 /* Falcon-architecture (SFC4000) support */
24 
25 /**************************************************************************
26  *
27  * Configurable values
28  *
29  **************************************************************************
30  */
31 
32 /* This is set to 16 for a good reason.  In summary, if larger than
33  * 16, the descriptor cache holds more than a default socket
34  * buffer's worth of packets (for UDP we can only have at most one
35  * socket buffer's worth outstanding).  This combined with the fact
36  * that we only get 1 TX event per descriptor cache means the NIC
37  * goes idle.
38  */
39 #define TX_DC_ENTRIES 16
40 #define TX_DC_ENTRIES_ORDER 1
41 
42 #define RX_DC_ENTRIES 64
43 #define RX_DC_ENTRIES_ORDER 3
44 
45 /* If EF4_MAX_INT_ERRORS internal errors occur within
46  * EF4_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
47  * disable it.
48  */
49 #define EF4_INT_ERROR_EXPIRE 3600
50 #define EF4_MAX_INT_ERRORS 5
51 
52 /* Depth of RX flush request fifo */
53 #define EF4_RX_FLUSH_COUNT 4
54 
55 /* Driver generated events */
56 #define _EF4_CHANNEL_MAGIC_TEST		0x000101
57 #define _EF4_CHANNEL_MAGIC_FILL		0x000102
58 #define _EF4_CHANNEL_MAGIC_RX_DRAIN	0x000103
59 #define _EF4_CHANNEL_MAGIC_TX_DRAIN	0x000104
60 
61 #define _EF4_CHANNEL_MAGIC(_code, _data)	((_code) << 8 | (_data))
62 #define _EF4_CHANNEL_MAGIC_CODE(_magic)		((_magic) >> 8)
63 
64 #define EF4_CHANNEL_MAGIC_TEST(_channel)				\
65 	_EF4_CHANNEL_MAGIC(_EF4_CHANNEL_MAGIC_TEST, (_channel)->channel)
66 #define EF4_CHANNEL_MAGIC_FILL(_rx_queue)				\
67 	_EF4_CHANNEL_MAGIC(_EF4_CHANNEL_MAGIC_FILL,			\
68 			   ef4_rx_queue_index(_rx_queue))
69 #define EF4_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)				\
70 	_EF4_CHANNEL_MAGIC(_EF4_CHANNEL_MAGIC_RX_DRAIN,			\
71 			   ef4_rx_queue_index(_rx_queue))
72 #define EF4_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)				\
73 	_EF4_CHANNEL_MAGIC(_EF4_CHANNEL_MAGIC_TX_DRAIN,			\
74 			   (_tx_queue)->queue)
75 
76 static void ef4_farch_magic_event(struct ef4_channel *channel, u32 magic);
77 
78 /**************************************************************************
79  *
80  * Hardware access
81  *
82  **************************************************************************/
83 
84 static inline void ef4_write_buf_tbl(struct ef4_nic *efx, ef4_qword_t *value,
85 				     unsigned int index)
86 {
87 	ef4_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
88 			value, index);
89 }
90 
91 static bool ef4_masked_compare_oword(const ef4_oword_t *a, const ef4_oword_t *b,
92 				     const ef4_oword_t *mask)
93 {
94 	return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
95 		((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
96 }
97 
98 int ef4_farch_test_registers(struct ef4_nic *efx,
99 			     const struct ef4_farch_register_test *regs,
100 			     size_t n_regs)
101 {
102 	unsigned address = 0;
103 	int i, j;
104 	ef4_oword_t mask, imask, original, reg, buf;
105 
106 	for (i = 0; i < n_regs; ++i) {
107 		address = regs[i].address;
108 		mask = imask = regs[i].mask;
109 		EF4_INVERT_OWORD(imask);
110 
111 		ef4_reado(efx, &original, address);
112 
113 		/* bit sweep on and off */
114 		for (j = 0; j < 128; j++) {
115 			if (!EF4_EXTRACT_OWORD32(mask, j, j))
116 				continue;
117 
118 			/* Test this testable bit can be set in isolation */
119 			EF4_AND_OWORD(reg, original, mask);
120 			EF4_SET_OWORD32(reg, j, j, 1);
121 
122 			ef4_writeo(efx, &reg, address);
123 			ef4_reado(efx, &buf, address);
124 
125 			if (ef4_masked_compare_oword(&reg, &buf, &mask))
126 				goto fail;
127 
128 			/* Test this testable bit can be cleared in isolation */
129 			EF4_OR_OWORD(reg, original, mask);
130 			EF4_SET_OWORD32(reg, j, j, 0);
131 
132 			ef4_writeo(efx, &reg, address);
133 			ef4_reado(efx, &buf, address);
134 
135 			if (ef4_masked_compare_oword(&reg, &buf, &mask))
136 				goto fail;
137 		}
138 
139 		ef4_writeo(efx, &original, address);
140 	}
141 
142 	return 0;
143 
144 fail:
145 	netif_err(efx, hw, efx->net_dev,
146 		  "wrote "EF4_OWORD_FMT" read "EF4_OWORD_FMT
147 		  " at address 0x%x mask "EF4_OWORD_FMT"\n", EF4_OWORD_VAL(reg),
148 		  EF4_OWORD_VAL(buf), address, EF4_OWORD_VAL(mask));
149 	return -EIO;
150 }
151 
152 /**************************************************************************
153  *
154  * Special buffer handling
155  * Special buffers are used for event queues and the TX and RX
156  * descriptor rings.
157  *
158  *************************************************************************/
159 
160 /*
161  * Initialise a special buffer
162  *
163  * This will define a buffer (previously allocated via
164  * ef4_alloc_special_buffer()) in the buffer table, allowing
165  * it to be used for event queues, descriptor rings etc.
166  */
167 static void
168 ef4_init_special_buffer(struct ef4_nic *efx, struct ef4_special_buffer *buffer)
169 {
170 	ef4_qword_t buf_desc;
171 	unsigned int index;
172 	dma_addr_t dma_addr;
173 	int i;
174 
175 	EF4_BUG_ON_PARANOID(!buffer->buf.addr);
176 
177 	/* Write buffer descriptors to NIC */
178 	for (i = 0; i < buffer->entries; i++) {
179 		index = buffer->index + i;
180 		dma_addr = buffer->buf.dma_addr + (i * EF4_BUF_SIZE);
181 		netif_dbg(efx, probe, efx->net_dev,
182 			  "mapping special buffer %d at %llx\n",
183 			  index, (unsigned long long)dma_addr);
184 		EF4_POPULATE_QWORD_3(buf_desc,
185 				     FRF_AZ_BUF_ADR_REGION, 0,
186 				     FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
187 				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
188 		ef4_write_buf_tbl(efx, &buf_desc, index);
189 	}
190 }
191 
192 /* Unmaps a buffer and clears the buffer table entries */
193 static void
194 ef4_fini_special_buffer(struct ef4_nic *efx, struct ef4_special_buffer *buffer)
195 {
196 	ef4_oword_t buf_tbl_upd;
197 	unsigned int start = buffer->index;
198 	unsigned int end = (buffer->index + buffer->entries - 1);
199 
200 	if (!buffer->entries)
201 		return;
202 
203 	netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
204 		  buffer->index, buffer->index + buffer->entries - 1);
205 
206 	EF4_POPULATE_OWORD_4(buf_tbl_upd,
207 			     FRF_AZ_BUF_UPD_CMD, 0,
208 			     FRF_AZ_BUF_CLR_CMD, 1,
209 			     FRF_AZ_BUF_CLR_END_ID, end,
210 			     FRF_AZ_BUF_CLR_START_ID, start);
211 	ef4_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
212 }
213 
214 /*
215  * Allocate a new special buffer
216  *
217  * This allocates memory for a new buffer, clears it and allocates a
218  * new buffer ID range.  It does not write into the buffer table.
219  *
220  * This call will allocate 4KB buffers, since 8KB buffers can't be
221  * used for event queues and descriptor rings.
222  */
223 static int ef4_alloc_special_buffer(struct ef4_nic *efx,
224 				    struct ef4_special_buffer *buffer,
225 				    unsigned int len)
226 {
227 	len = ALIGN(len, EF4_BUF_SIZE);
228 
229 	if (ef4_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
230 		return -ENOMEM;
231 	buffer->entries = len / EF4_BUF_SIZE;
232 	BUG_ON(buffer->buf.dma_addr & (EF4_BUF_SIZE - 1));
233 
234 	/* Select new buffer ID */
235 	buffer->index = efx->next_buffer_table;
236 	efx->next_buffer_table += buffer->entries;
237 
238 	netif_dbg(efx, probe, efx->net_dev,
239 		  "allocating special buffers %d-%d at %llx+%x "
240 		  "(virt %p phys %llx)\n", buffer->index,
241 		  buffer->index + buffer->entries - 1,
242 		  (u64)buffer->buf.dma_addr, len,
243 		  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
244 
245 	return 0;
246 }
247 
248 static void
249 ef4_free_special_buffer(struct ef4_nic *efx, struct ef4_special_buffer *buffer)
250 {
251 	if (!buffer->buf.addr)
252 		return;
253 
254 	netif_dbg(efx, hw, efx->net_dev,
255 		  "deallocating special buffers %d-%d at %llx+%x "
256 		  "(virt %p phys %llx)\n", buffer->index,
257 		  buffer->index + buffer->entries - 1,
258 		  (u64)buffer->buf.dma_addr, buffer->buf.len,
259 		  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
260 
261 	ef4_nic_free_buffer(efx, &buffer->buf);
262 	buffer->entries = 0;
263 }
264 
265 /**************************************************************************
266  *
267  * TX path
268  *
269  **************************************************************************/
270 
271 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
272 static inline void ef4_farch_notify_tx_desc(struct ef4_tx_queue *tx_queue)
273 {
274 	unsigned write_ptr;
275 	ef4_dword_t reg;
276 
277 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
278 	EF4_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
279 	ef4_writed_page(tx_queue->efx, &reg,
280 			FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
281 }
282 
283 /* Write pointer and first descriptor for TX descriptor ring */
284 static inline void ef4_farch_push_tx_desc(struct ef4_tx_queue *tx_queue,
285 					  const ef4_qword_t *txd)
286 {
287 	unsigned write_ptr;
288 	ef4_oword_t reg;
289 
290 	BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
291 	BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
292 
293 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
294 	EF4_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
295 			     FRF_AZ_TX_DESC_WPTR, write_ptr);
296 	reg.qword[0] = *txd;
297 	ef4_writeo_page(tx_queue->efx, &reg,
298 			FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
299 }
300 
301 
302 /* For each entry inserted into the software descriptor ring, create a
303  * descriptor in the hardware TX descriptor ring (in host memory), and
304  * write a doorbell.
305  */
306 void ef4_farch_tx_write(struct ef4_tx_queue *tx_queue)
307 {
308 	struct ef4_tx_buffer *buffer;
309 	ef4_qword_t *txd;
310 	unsigned write_ptr;
311 	unsigned old_write_count = tx_queue->write_count;
312 
313 	tx_queue->xmit_more_available = false;
314 	if (unlikely(tx_queue->write_count == tx_queue->insert_count))
315 		return;
316 
317 	do {
318 		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
319 		buffer = &tx_queue->buffer[write_ptr];
320 		txd = ef4_tx_desc(tx_queue, write_ptr);
321 		++tx_queue->write_count;
322 
323 		EF4_BUG_ON_PARANOID(buffer->flags & EF4_TX_BUF_OPTION);
324 
325 		/* Create TX descriptor ring entry */
326 		BUILD_BUG_ON(EF4_TX_BUF_CONT != 1);
327 		EF4_POPULATE_QWORD_4(*txd,
328 				     FSF_AZ_TX_KER_CONT,
329 				     buffer->flags & EF4_TX_BUF_CONT,
330 				     FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
331 				     FSF_AZ_TX_KER_BUF_REGION, 0,
332 				     FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
333 	} while (tx_queue->write_count != tx_queue->insert_count);
334 
335 	wmb(); /* Ensure descriptors are written before they are fetched */
336 
337 	if (ef4_nic_may_push_tx_desc(tx_queue, old_write_count)) {
338 		txd = ef4_tx_desc(tx_queue,
339 				  old_write_count & tx_queue->ptr_mask);
340 		ef4_farch_push_tx_desc(tx_queue, txd);
341 		++tx_queue->pushes;
342 	} else {
343 		ef4_farch_notify_tx_desc(tx_queue);
344 	}
345 }
346 
347 unsigned int ef4_farch_tx_limit_len(struct ef4_tx_queue *tx_queue,
348 				    dma_addr_t dma_addr, unsigned int len)
349 {
350 	/* Don't cross 4K boundaries with descriptors. */
351 	unsigned int limit = (~dma_addr & (EF4_PAGE_SIZE - 1)) + 1;
352 
353 	len = min(limit, len);
354 
355 	if (EF4_WORKAROUND_5391(tx_queue->efx) && (dma_addr & 0xf))
356 		len = min_t(unsigned int, len, 512 - (dma_addr & 0xf));
357 
358 	return len;
359 }
360 
361 
362 /* Allocate hardware resources for a TX queue */
363 int ef4_farch_tx_probe(struct ef4_tx_queue *tx_queue)
364 {
365 	struct ef4_nic *efx = tx_queue->efx;
366 	unsigned entries;
367 
368 	entries = tx_queue->ptr_mask + 1;
369 	return ef4_alloc_special_buffer(efx, &tx_queue->txd,
370 					entries * sizeof(ef4_qword_t));
371 }
372 
373 void ef4_farch_tx_init(struct ef4_tx_queue *tx_queue)
374 {
375 	struct ef4_nic *efx = tx_queue->efx;
376 	ef4_oword_t reg;
377 
378 	/* Pin TX descriptor ring */
379 	ef4_init_special_buffer(efx, &tx_queue->txd);
380 
381 	/* Push TX descriptor ring to card */
382 	EF4_POPULATE_OWORD_10(reg,
383 			      FRF_AZ_TX_DESCQ_EN, 1,
384 			      FRF_AZ_TX_ISCSI_DDIG_EN, 0,
385 			      FRF_AZ_TX_ISCSI_HDIG_EN, 0,
386 			      FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
387 			      FRF_AZ_TX_DESCQ_EVQ_ID,
388 			      tx_queue->channel->channel,
389 			      FRF_AZ_TX_DESCQ_OWNER_ID, 0,
390 			      FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
391 			      FRF_AZ_TX_DESCQ_SIZE,
392 			      __ffs(tx_queue->txd.entries),
393 			      FRF_AZ_TX_DESCQ_TYPE, 0,
394 			      FRF_BZ_TX_NON_IP_DROP_DIS, 1);
395 
396 	if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
397 		int csum = tx_queue->queue & EF4_TXQ_TYPE_OFFLOAD;
398 		EF4_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
399 		EF4_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
400 				    !csum);
401 	}
402 
403 	ef4_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
404 			 tx_queue->queue);
405 
406 	if (ef4_nic_rev(efx) < EF4_REV_FALCON_B0) {
407 		/* Only 128 bits in this register */
408 		BUILD_BUG_ON(EF4_MAX_TX_QUEUES > 128);
409 
410 		ef4_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
411 		if (tx_queue->queue & EF4_TXQ_TYPE_OFFLOAD)
412 			__clear_bit_le(tx_queue->queue, &reg);
413 		else
414 			__set_bit_le(tx_queue->queue, &reg);
415 		ef4_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
416 	}
417 
418 	if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
419 		EF4_POPULATE_OWORD_1(reg,
420 				     FRF_BZ_TX_PACE,
421 				     (tx_queue->queue & EF4_TXQ_TYPE_HIGHPRI) ?
422 				     FFE_BZ_TX_PACE_OFF :
423 				     FFE_BZ_TX_PACE_RESERVED);
424 		ef4_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
425 				 tx_queue->queue);
426 	}
427 }
428 
429 static void ef4_farch_flush_tx_queue(struct ef4_tx_queue *tx_queue)
430 {
431 	struct ef4_nic *efx = tx_queue->efx;
432 	ef4_oword_t tx_flush_descq;
433 
434 	WARN_ON(atomic_read(&tx_queue->flush_outstanding));
435 	atomic_set(&tx_queue->flush_outstanding, 1);
436 
437 	EF4_POPULATE_OWORD_2(tx_flush_descq,
438 			     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
439 			     FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
440 	ef4_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
441 }
442 
443 void ef4_farch_tx_fini(struct ef4_tx_queue *tx_queue)
444 {
445 	struct ef4_nic *efx = tx_queue->efx;
446 	ef4_oword_t tx_desc_ptr;
447 
448 	/* Remove TX descriptor ring from card */
449 	EF4_ZERO_OWORD(tx_desc_ptr);
450 	ef4_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
451 			 tx_queue->queue);
452 
453 	/* Unpin TX descriptor ring */
454 	ef4_fini_special_buffer(efx, &tx_queue->txd);
455 }
456 
457 /* Free buffers backing TX queue */
458 void ef4_farch_tx_remove(struct ef4_tx_queue *tx_queue)
459 {
460 	ef4_free_special_buffer(tx_queue->efx, &tx_queue->txd);
461 }
462 
463 /**************************************************************************
464  *
465  * RX path
466  *
467  **************************************************************************/
468 
469 /* This creates an entry in the RX descriptor queue */
470 static inline void
471 ef4_farch_build_rx_desc(struct ef4_rx_queue *rx_queue, unsigned index)
472 {
473 	struct ef4_rx_buffer *rx_buf;
474 	ef4_qword_t *rxd;
475 
476 	rxd = ef4_rx_desc(rx_queue, index);
477 	rx_buf = ef4_rx_buffer(rx_queue, index);
478 	EF4_POPULATE_QWORD_3(*rxd,
479 			     FSF_AZ_RX_KER_BUF_SIZE,
480 			     rx_buf->len -
481 			     rx_queue->efx->type->rx_buffer_padding,
482 			     FSF_AZ_RX_KER_BUF_REGION, 0,
483 			     FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
484 }
485 
486 /* This writes to the RX_DESC_WPTR register for the specified receive
487  * descriptor ring.
488  */
489 void ef4_farch_rx_write(struct ef4_rx_queue *rx_queue)
490 {
491 	struct ef4_nic *efx = rx_queue->efx;
492 	ef4_dword_t reg;
493 	unsigned write_ptr;
494 
495 	while (rx_queue->notified_count != rx_queue->added_count) {
496 		ef4_farch_build_rx_desc(
497 			rx_queue,
498 			rx_queue->notified_count & rx_queue->ptr_mask);
499 		++rx_queue->notified_count;
500 	}
501 
502 	wmb();
503 	write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
504 	EF4_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
505 	ef4_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
506 			ef4_rx_queue_index(rx_queue));
507 }
508 
509 int ef4_farch_rx_probe(struct ef4_rx_queue *rx_queue)
510 {
511 	struct ef4_nic *efx = rx_queue->efx;
512 	unsigned entries;
513 
514 	entries = rx_queue->ptr_mask + 1;
515 	return ef4_alloc_special_buffer(efx, &rx_queue->rxd,
516 					entries * sizeof(ef4_qword_t));
517 }
518 
519 void ef4_farch_rx_init(struct ef4_rx_queue *rx_queue)
520 {
521 	ef4_oword_t rx_desc_ptr;
522 	struct ef4_nic *efx = rx_queue->efx;
523 	bool is_b0 = ef4_nic_rev(efx) >= EF4_REV_FALCON_B0;
524 	bool iscsi_digest_en = is_b0;
525 	bool jumbo_en;
526 
527 	/* For kernel-mode queues in Falcon A1, the JUMBO flag enables
528 	 * DMA to continue after a PCIe page boundary (and scattering
529 	 * is not possible).  In Falcon B0 and Siena, it enables
530 	 * scatter.
531 	 */
532 	jumbo_en = !is_b0 || efx->rx_scatter;
533 
534 	netif_dbg(efx, hw, efx->net_dev,
535 		  "RX queue %d ring in special buffers %d-%d\n",
536 		  ef4_rx_queue_index(rx_queue), rx_queue->rxd.index,
537 		  rx_queue->rxd.index + rx_queue->rxd.entries - 1);
538 
539 	rx_queue->scatter_n = 0;
540 
541 	/* Pin RX descriptor ring */
542 	ef4_init_special_buffer(efx, &rx_queue->rxd);
543 
544 	/* Push RX descriptor ring to card */
545 	EF4_POPULATE_OWORD_10(rx_desc_ptr,
546 			      FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
547 			      FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
548 			      FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
549 			      FRF_AZ_RX_DESCQ_EVQ_ID,
550 			      ef4_rx_queue_channel(rx_queue)->channel,
551 			      FRF_AZ_RX_DESCQ_OWNER_ID, 0,
552 			      FRF_AZ_RX_DESCQ_LABEL,
553 			      ef4_rx_queue_index(rx_queue),
554 			      FRF_AZ_RX_DESCQ_SIZE,
555 			      __ffs(rx_queue->rxd.entries),
556 			      FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
557 			      FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
558 			      FRF_AZ_RX_DESCQ_EN, 1);
559 	ef4_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
560 			 ef4_rx_queue_index(rx_queue));
561 }
562 
563 static void ef4_farch_flush_rx_queue(struct ef4_rx_queue *rx_queue)
564 {
565 	struct ef4_nic *efx = rx_queue->efx;
566 	ef4_oword_t rx_flush_descq;
567 
568 	EF4_POPULATE_OWORD_2(rx_flush_descq,
569 			     FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
570 			     FRF_AZ_RX_FLUSH_DESCQ,
571 			     ef4_rx_queue_index(rx_queue));
572 	ef4_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
573 }
574 
575 void ef4_farch_rx_fini(struct ef4_rx_queue *rx_queue)
576 {
577 	ef4_oword_t rx_desc_ptr;
578 	struct ef4_nic *efx = rx_queue->efx;
579 
580 	/* Remove RX descriptor ring from card */
581 	EF4_ZERO_OWORD(rx_desc_ptr);
582 	ef4_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
583 			 ef4_rx_queue_index(rx_queue));
584 
585 	/* Unpin RX descriptor ring */
586 	ef4_fini_special_buffer(efx, &rx_queue->rxd);
587 }
588 
589 /* Free buffers backing RX queue */
590 void ef4_farch_rx_remove(struct ef4_rx_queue *rx_queue)
591 {
592 	ef4_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
593 }
594 
595 /**************************************************************************
596  *
597  * Flush handling
598  *
599  **************************************************************************/
600 
601 /* ef4_farch_flush_queues() must be woken up when all flushes are completed,
602  * or more RX flushes can be kicked off.
603  */
604 static bool ef4_farch_flush_wake(struct ef4_nic *efx)
605 {
606 	/* Ensure that all updates are visible to ef4_farch_flush_queues() */
607 	smp_mb();
608 
609 	return (atomic_read(&efx->active_queues) == 0 ||
610 		(atomic_read(&efx->rxq_flush_outstanding) < EF4_RX_FLUSH_COUNT
611 		 && atomic_read(&efx->rxq_flush_pending) > 0));
612 }
613 
614 static bool ef4_check_tx_flush_complete(struct ef4_nic *efx)
615 {
616 	bool i = true;
617 	ef4_oword_t txd_ptr_tbl;
618 	struct ef4_channel *channel;
619 	struct ef4_tx_queue *tx_queue;
620 
621 	ef4_for_each_channel(channel, efx) {
622 		ef4_for_each_channel_tx_queue(tx_queue, channel) {
623 			ef4_reado_table(efx, &txd_ptr_tbl,
624 					FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
625 			if (EF4_OWORD_FIELD(txd_ptr_tbl,
626 					    FRF_AZ_TX_DESCQ_FLUSH) ||
627 			    EF4_OWORD_FIELD(txd_ptr_tbl,
628 					    FRF_AZ_TX_DESCQ_EN)) {
629 				netif_dbg(efx, hw, efx->net_dev,
630 					  "flush did not complete on TXQ %d\n",
631 					  tx_queue->queue);
632 				i = false;
633 			} else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
634 						  1, 0)) {
635 				/* The flush is complete, but we didn't
636 				 * receive a flush completion event
637 				 */
638 				netif_dbg(efx, hw, efx->net_dev,
639 					  "flush complete on TXQ %d, so drain "
640 					  "the queue\n", tx_queue->queue);
641 				/* Don't need to increment active_queues as it
642 				 * has already been incremented for the queues
643 				 * which did not drain
644 				 */
645 				ef4_farch_magic_event(channel,
646 						      EF4_CHANNEL_MAGIC_TX_DRAIN(
647 							      tx_queue));
648 			}
649 		}
650 	}
651 
652 	return i;
653 }
654 
655 /* Flush all the transmit queues, and continue flushing receive queues until
656  * they're all flushed. Wait for the DRAIN events to be received so that there
657  * are no more RX and TX events left on any channel. */
658 static int ef4_farch_do_flush(struct ef4_nic *efx)
659 {
660 	unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
661 	struct ef4_channel *channel;
662 	struct ef4_rx_queue *rx_queue;
663 	struct ef4_tx_queue *tx_queue;
664 	int rc = 0;
665 
666 	ef4_for_each_channel(channel, efx) {
667 		ef4_for_each_channel_tx_queue(tx_queue, channel) {
668 			ef4_farch_flush_tx_queue(tx_queue);
669 		}
670 		ef4_for_each_channel_rx_queue(rx_queue, channel) {
671 			rx_queue->flush_pending = true;
672 			atomic_inc(&efx->rxq_flush_pending);
673 		}
674 	}
675 
676 	while (timeout && atomic_read(&efx->active_queues) > 0) {
677 		/* The hardware supports four concurrent rx flushes, each of
678 		 * which may need to be retried if there is an outstanding
679 		 * descriptor fetch
680 		 */
681 		ef4_for_each_channel(channel, efx) {
682 			ef4_for_each_channel_rx_queue(rx_queue, channel) {
683 				if (atomic_read(&efx->rxq_flush_outstanding) >=
684 				    EF4_RX_FLUSH_COUNT)
685 					break;
686 
687 				if (rx_queue->flush_pending) {
688 					rx_queue->flush_pending = false;
689 					atomic_dec(&efx->rxq_flush_pending);
690 					atomic_inc(&efx->rxq_flush_outstanding);
691 					ef4_farch_flush_rx_queue(rx_queue);
692 				}
693 			}
694 		}
695 
696 		timeout = wait_event_timeout(efx->flush_wq,
697 					     ef4_farch_flush_wake(efx),
698 					     timeout);
699 	}
700 
701 	if (atomic_read(&efx->active_queues) &&
702 	    !ef4_check_tx_flush_complete(efx)) {
703 		netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
704 			  "(rx %d+%d)\n", atomic_read(&efx->active_queues),
705 			  atomic_read(&efx->rxq_flush_outstanding),
706 			  atomic_read(&efx->rxq_flush_pending));
707 		rc = -ETIMEDOUT;
708 
709 		atomic_set(&efx->active_queues, 0);
710 		atomic_set(&efx->rxq_flush_pending, 0);
711 		atomic_set(&efx->rxq_flush_outstanding, 0);
712 	}
713 
714 	return rc;
715 }
716 
717 int ef4_farch_fini_dmaq(struct ef4_nic *efx)
718 {
719 	struct ef4_channel *channel;
720 	struct ef4_tx_queue *tx_queue;
721 	struct ef4_rx_queue *rx_queue;
722 	int rc = 0;
723 
724 	/* Do not attempt to write to the NIC during EEH recovery */
725 	if (efx->state != STATE_RECOVERY) {
726 		/* Only perform flush if DMA is enabled */
727 		if (efx->pci_dev->is_busmaster) {
728 			efx->type->prepare_flush(efx);
729 			rc = ef4_farch_do_flush(efx);
730 			efx->type->finish_flush(efx);
731 		}
732 
733 		ef4_for_each_channel(channel, efx) {
734 			ef4_for_each_channel_rx_queue(rx_queue, channel)
735 				ef4_farch_rx_fini(rx_queue);
736 			ef4_for_each_channel_tx_queue(tx_queue, channel)
737 				ef4_farch_tx_fini(tx_queue);
738 		}
739 	}
740 
741 	return rc;
742 }
743 
744 /* Reset queue and flush accounting after FLR
745  *
746  * One possible cause of FLR recovery is that DMA may be failing (eg. if bus
747  * mastering was disabled), in which case we don't receive (RXQ) flush
748  * completion events.  This means that efx->rxq_flush_outstanding remained at 4
749  * after the FLR; also, efx->active_queues was non-zero (as no flush completion
750  * events were received, and we didn't go through ef4_check_tx_flush_complete())
751  * If we don't fix this up, on the next call to ef4_realloc_channels() we won't
752  * flush any RX queues because efx->rxq_flush_outstanding is at the limit of 4
753  * for batched flush requests; and the efx->active_queues gets messed up because
754  * we keep incrementing for the newly initialised queues, but it never went to
755  * zero previously.  Then we get a timeout every time we try to restart the
756  * queues, as it doesn't go back to zero when we should be flushing the queues.
757  */
758 void ef4_farch_finish_flr(struct ef4_nic *efx)
759 {
760 	atomic_set(&efx->rxq_flush_pending, 0);
761 	atomic_set(&efx->rxq_flush_outstanding, 0);
762 	atomic_set(&efx->active_queues, 0);
763 }
764 
765 
766 /**************************************************************************
767  *
768  * Event queue processing
769  * Event queues are processed by per-channel tasklets.
770  *
771  **************************************************************************/
772 
773 /* Update a channel's event queue's read pointer (RPTR) register
774  *
775  * This writes the EVQ_RPTR_REG register for the specified channel's
776  * event queue.
777  */
778 void ef4_farch_ev_read_ack(struct ef4_channel *channel)
779 {
780 	ef4_dword_t reg;
781 	struct ef4_nic *efx = channel->efx;
782 
783 	EF4_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
784 			     channel->eventq_read_ptr & channel->eventq_mask);
785 
786 	/* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
787 	 * of 4 bytes, but it is really 16 bytes just like later revisions.
788 	 */
789 	ef4_writed(efx, &reg,
790 		   efx->type->evq_rptr_tbl_base +
791 		   FR_BZ_EVQ_RPTR_STEP * channel->channel);
792 }
793 
794 /* Use HW to insert a SW defined event */
795 void ef4_farch_generate_event(struct ef4_nic *efx, unsigned int evq,
796 			      ef4_qword_t *event)
797 {
798 	ef4_oword_t drv_ev_reg;
799 
800 	BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
801 		     FRF_AZ_DRV_EV_DATA_WIDTH != 64);
802 	drv_ev_reg.u32[0] = event->u32[0];
803 	drv_ev_reg.u32[1] = event->u32[1];
804 	drv_ev_reg.u32[2] = 0;
805 	drv_ev_reg.u32[3] = 0;
806 	EF4_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
807 	ef4_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
808 }
809 
810 static void ef4_farch_magic_event(struct ef4_channel *channel, u32 magic)
811 {
812 	ef4_qword_t event;
813 
814 	EF4_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
815 			     FSE_AZ_EV_CODE_DRV_GEN_EV,
816 			     FSF_AZ_DRV_GEN_EV_MAGIC, magic);
817 	ef4_farch_generate_event(channel->efx, channel->channel, &event);
818 }
819 
820 /* Handle a transmit completion event
821  *
822  * The NIC batches TX completion events; the message we receive is of
823  * the form "complete all TX events up to this index".
824  */
825 static int
826 ef4_farch_handle_tx_event(struct ef4_channel *channel, ef4_qword_t *event)
827 {
828 	unsigned int tx_ev_desc_ptr;
829 	unsigned int tx_ev_q_label;
830 	struct ef4_tx_queue *tx_queue;
831 	struct ef4_nic *efx = channel->efx;
832 	int tx_packets = 0;
833 
834 	if (unlikely(READ_ONCE(efx->reset_pending)))
835 		return 0;
836 
837 	if (likely(EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
838 		/* Transmit completion */
839 		tx_ev_desc_ptr = EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
840 		tx_ev_q_label = EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
841 		tx_queue = ef4_channel_get_tx_queue(
842 			channel, tx_ev_q_label % EF4_TXQ_TYPES);
843 		tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
844 			      tx_queue->ptr_mask);
845 		ef4_xmit_done(tx_queue, tx_ev_desc_ptr);
846 	} else if (EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
847 		/* Rewrite the FIFO write pointer */
848 		tx_ev_q_label = EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
849 		tx_queue = ef4_channel_get_tx_queue(
850 			channel, tx_ev_q_label % EF4_TXQ_TYPES);
851 
852 		netif_tx_lock(efx->net_dev);
853 		ef4_farch_notify_tx_desc(tx_queue);
854 		netif_tx_unlock(efx->net_dev);
855 	} else if (EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
856 		ef4_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
857 	} else {
858 		netif_err(efx, tx_err, efx->net_dev,
859 			  "channel %d unexpected TX event "
860 			  EF4_QWORD_FMT"\n", channel->channel,
861 			  EF4_QWORD_VAL(*event));
862 	}
863 
864 	return tx_packets;
865 }
866 
867 /* Detect errors included in the rx_evt_pkt_ok bit. */
868 static u16 ef4_farch_handle_rx_not_ok(struct ef4_rx_queue *rx_queue,
869 				      const ef4_qword_t *event)
870 {
871 	struct ef4_channel *channel = ef4_rx_queue_channel(rx_queue);
872 	struct ef4_nic *efx = rx_queue->efx;
873 	bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
874 	bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
875 	bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
876 	bool rx_ev_other_err, rx_ev_pause_frm;
877 	bool rx_ev_hdr_type, rx_ev_mcast_pkt;
878 	unsigned rx_ev_pkt_type;
879 
880 	rx_ev_hdr_type = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
881 	rx_ev_mcast_pkt = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
882 	rx_ev_tobe_disc = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
883 	rx_ev_pkt_type = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
884 	rx_ev_buf_owner_id_err = EF4_QWORD_FIELD(*event,
885 						 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
886 	rx_ev_ip_hdr_chksum_err = EF4_QWORD_FIELD(*event,
887 						  FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
888 	rx_ev_tcp_udp_chksum_err = EF4_QWORD_FIELD(*event,
889 						   FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
890 	rx_ev_eth_crc_err = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
891 	rx_ev_frm_trunc = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
892 	rx_ev_drib_nib = ((ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) ?
893 			  0 : EF4_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
894 	rx_ev_pause_frm = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
895 
896 	/* Every error apart from tobe_disc and pause_frm */
897 	rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
898 			   rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
899 			   rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
900 
901 	/* Count errors that are not in MAC stats.  Ignore expected
902 	 * checksum errors during self-test. */
903 	if (rx_ev_frm_trunc)
904 		++channel->n_rx_frm_trunc;
905 	else if (rx_ev_tobe_disc)
906 		++channel->n_rx_tobe_disc;
907 	else if (!efx->loopback_selftest) {
908 		if (rx_ev_ip_hdr_chksum_err)
909 			++channel->n_rx_ip_hdr_chksum_err;
910 		else if (rx_ev_tcp_udp_chksum_err)
911 			++channel->n_rx_tcp_udp_chksum_err;
912 	}
913 
914 	/* TOBE_DISC is expected on unicast mismatches; don't print out an
915 	 * error message.  FRM_TRUNC indicates RXDP dropped the packet due
916 	 * to a FIFO overflow.
917 	 */
918 #ifdef DEBUG
919 	if (rx_ev_other_err && net_ratelimit()) {
920 		netif_dbg(efx, rx_err, efx->net_dev,
921 			  " RX queue %d unexpected RX event "
922 			  EF4_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
923 			  ef4_rx_queue_index(rx_queue), EF4_QWORD_VAL(*event),
924 			  rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
925 			  rx_ev_ip_hdr_chksum_err ?
926 			  " [IP_HDR_CHKSUM_ERR]" : "",
927 			  rx_ev_tcp_udp_chksum_err ?
928 			  " [TCP_UDP_CHKSUM_ERR]" : "",
929 			  rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
930 			  rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
931 			  rx_ev_drib_nib ? " [DRIB_NIB]" : "",
932 			  rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
933 			  rx_ev_pause_frm ? " [PAUSE]" : "");
934 	}
935 #endif
936 
937 	/* The frame must be discarded if any of these are true. */
938 	return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
939 		rx_ev_tobe_disc | rx_ev_pause_frm) ?
940 		EF4_RX_PKT_DISCARD : 0;
941 }
942 
943 /* Handle receive events that are not in-order. Return true if this
944  * can be handled as a partial packet discard, false if it's more
945  * serious.
946  */
947 static bool
948 ef4_farch_handle_rx_bad_index(struct ef4_rx_queue *rx_queue, unsigned index)
949 {
950 	struct ef4_channel *channel = ef4_rx_queue_channel(rx_queue);
951 	struct ef4_nic *efx = rx_queue->efx;
952 	unsigned expected, dropped;
953 
954 	if (rx_queue->scatter_n &&
955 	    index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
956 		      rx_queue->ptr_mask)) {
957 		++channel->n_rx_nodesc_trunc;
958 		return true;
959 	}
960 
961 	expected = rx_queue->removed_count & rx_queue->ptr_mask;
962 	dropped = (index - expected) & rx_queue->ptr_mask;
963 	netif_info(efx, rx_err, efx->net_dev,
964 		   "dropped %d events (index=%d expected=%d)\n",
965 		   dropped, index, expected);
966 
967 	ef4_schedule_reset(efx, EF4_WORKAROUND_5676(efx) ?
968 			   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
969 	return false;
970 }
971 
972 /* Handle a packet received event
973  *
974  * The NIC gives a "discard" flag if it's a unicast packet with the
975  * wrong destination address
976  * Also "is multicast" and "matches multicast filter" flags can be used to
977  * discard non-matching multicast packets.
978  */
979 static void
980 ef4_farch_handle_rx_event(struct ef4_channel *channel, const ef4_qword_t *event)
981 {
982 	unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
983 	unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
984 	unsigned expected_ptr;
985 	bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
986 	u16 flags;
987 	struct ef4_rx_queue *rx_queue;
988 	struct ef4_nic *efx = channel->efx;
989 
990 	if (unlikely(READ_ONCE(efx->reset_pending)))
991 		return;
992 
993 	rx_ev_cont = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
994 	rx_ev_sop = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
995 	WARN_ON(EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
996 		channel->channel);
997 
998 	rx_queue = ef4_channel_get_rx_queue(channel);
999 
1000 	rx_ev_desc_ptr = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
1001 	expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
1002 			rx_queue->ptr_mask);
1003 
1004 	/* Check for partial drops and other errors */
1005 	if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
1006 	    unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
1007 		if (rx_ev_desc_ptr != expected_ptr &&
1008 		    !ef4_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
1009 			return;
1010 
1011 		/* Discard all pending fragments */
1012 		if (rx_queue->scatter_n) {
1013 			ef4_rx_packet(
1014 				rx_queue,
1015 				rx_queue->removed_count & rx_queue->ptr_mask,
1016 				rx_queue->scatter_n, 0, EF4_RX_PKT_DISCARD);
1017 			rx_queue->removed_count += rx_queue->scatter_n;
1018 			rx_queue->scatter_n = 0;
1019 		}
1020 
1021 		/* Return if there is no new fragment */
1022 		if (rx_ev_desc_ptr != expected_ptr)
1023 			return;
1024 
1025 		/* Discard new fragment if not SOP */
1026 		if (!rx_ev_sop) {
1027 			ef4_rx_packet(
1028 				rx_queue,
1029 				rx_queue->removed_count & rx_queue->ptr_mask,
1030 				1, 0, EF4_RX_PKT_DISCARD);
1031 			++rx_queue->removed_count;
1032 			return;
1033 		}
1034 	}
1035 
1036 	++rx_queue->scatter_n;
1037 	if (rx_ev_cont)
1038 		return;
1039 
1040 	rx_ev_byte_cnt = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1041 	rx_ev_pkt_ok = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1042 	rx_ev_hdr_type = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1043 
1044 	if (likely(rx_ev_pkt_ok)) {
1045 		/* If packet is marked as OK then we can rely on the
1046 		 * hardware checksum and classification.
1047 		 */
1048 		flags = 0;
1049 		switch (rx_ev_hdr_type) {
1050 		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1051 			flags |= EF4_RX_PKT_TCP;
1052 			/* fall through */
1053 		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1054 			flags |= EF4_RX_PKT_CSUMMED;
1055 			/* fall through */
1056 		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1057 		case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1058 			break;
1059 		}
1060 	} else {
1061 		flags = ef4_farch_handle_rx_not_ok(rx_queue, event);
1062 	}
1063 
1064 	/* Detect multicast packets that didn't match the filter */
1065 	rx_ev_mcast_pkt = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1066 	if (rx_ev_mcast_pkt) {
1067 		unsigned int rx_ev_mcast_hash_match =
1068 			EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1069 
1070 		if (unlikely(!rx_ev_mcast_hash_match)) {
1071 			++channel->n_rx_mcast_mismatch;
1072 			flags |= EF4_RX_PKT_DISCARD;
1073 		}
1074 	}
1075 
1076 	channel->irq_mod_score += 2;
1077 
1078 	/* Handle received packet */
1079 	ef4_rx_packet(rx_queue,
1080 		      rx_queue->removed_count & rx_queue->ptr_mask,
1081 		      rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1082 	rx_queue->removed_count += rx_queue->scatter_n;
1083 	rx_queue->scatter_n = 0;
1084 }
1085 
1086 /* If this flush done event corresponds to a &struct ef4_tx_queue, then
1087  * send an %EF4_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1088  * of all transmit completions.
1089  */
1090 static void
1091 ef4_farch_handle_tx_flush_done(struct ef4_nic *efx, ef4_qword_t *event)
1092 {
1093 	struct ef4_tx_queue *tx_queue;
1094 	int qid;
1095 
1096 	qid = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1097 	if (qid < EF4_TXQ_TYPES * efx->n_tx_channels) {
1098 		tx_queue = ef4_get_tx_queue(efx, qid / EF4_TXQ_TYPES,
1099 					    qid % EF4_TXQ_TYPES);
1100 		if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1101 			ef4_farch_magic_event(tx_queue->channel,
1102 					      EF4_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1103 		}
1104 	}
1105 }
1106 
1107 /* If this flush done event corresponds to a &struct ef4_rx_queue: If the flush
1108  * was successful then send an %EF4_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1109  * the RX queue back to the mask of RX queues in need of flushing.
1110  */
1111 static void
1112 ef4_farch_handle_rx_flush_done(struct ef4_nic *efx, ef4_qword_t *event)
1113 {
1114 	struct ef4_channel *channel;
1115 	struct ef4_rx_queue *rx_queue;
1116 	int qid;
1117 	bool failed;
1118 
1119 	qid = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1120 	failed = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1121 	if (qid >= efx->n_channels)
1122 		return;
1123 	channel = ef4_get_channel(efx, qid);
1124 	if (!ef4_channel_has_rx_queue(channel))
1125 		return;
1126 	rx_queue = ef4_channel_get_rx_queue(channel);
1127 
1128 	if (failed) {
1129 		netif_info(efx, hw, efx->net_dev,
1130 			   "RXQ %d flush retry\n", qid);
1131 		rx_queue->flush_pending = true;
1132 		atomic_inc(&efx->rxq_flush_pending);
1133 	} else {
1134 		ef4_farch_magic_event(ef4_rx_queue_channel(rx_queue),
1135 				      EF4_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1136 	}
1137 	atomic_dec(&efx->rxq_flush_outstanding);
1138 	if (ef4_farch_flush_wake(efx))
1139 		wake_up(&efx->flush_wq);
1140 }
1141 
1142 static void
1143 ef4_farch_handle_drain_event(struct ef4_channel *channel)
1144 {
1145 	struct ef4_nic *efx = channel->efx;
1146 
1147 	WARN_ON(atomic_read(&efx->active_queues) == 0);
1148 	atomic_dec(&efx->active_queues);
1149 	if (ef4_farch_flush_wake(efx))
1150 		wake_up(&efx->flush_wq);
1151 }
1152 
1153 static void ef4_farch_handle_generated_event(struct ef4_channel *channel,
1154 					     ef4_qword_t *event)
1155 {
1156 	struct ef4_nic *efx = channel->efx;
1157 	struct ef4_rx_queue *rx_queue =
1158 		ef4_channel_has_rx_queue(channel) ?
1159 		ef4_channel_get_rx_queue(channel) : NULL;
1160 	unsigned magic, code;
1161 
1162 	magic = EF4_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1163 	code = _EF4_CHANNEL_MAGIC_CODE(magic);
1164 
1165 	if (magic == EF4_CHANNEL_MAGIC_TEST(channel)) {
1166 		channel->event_test_cpu = raw_smp_processor_id();
1167 	} else if (rx_queue && magic == EF4_CHANNEL_MAGIC_FILL(rx_queue)) {
1168 		/* The queue must be empty, so we won't receive any rx
1169 		 * events, so ef4_process_channel() won't refill the
1170 		 * queue. Refill it here */
1171 		ef4_fast_push_rx_descriptors(rx_queue, true);
1172 	} else if (rx_queue && magic == EF4_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1173 		ef4_farch_handle_drain_event(channel);
1174 	} else if (code == _EF4_CHANNEL_MAGIC_TX_DRAIN) {
1175 		ef4_farch_handle_drain_event(channel);
1176 	} else {
1177 		netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1178 			  "generated event "EF4_QWORD_FMT"\n",
1179 			  channel->channel, EF4_QWORD_VAL(*event));
1180 	}
1181 }
1182 
1183 static void
1184 ef4_farch_handle_driver_event(struct ef4_channel *channel, ef4_qword_t *event)
1185 {
1186 	struct ef4_nic *efx = channel->efx;
1187 	unsigned int ev_sub_code;
1188 	unsigned int ev_sub_data;
1189 
1190 	ev_sub_code = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1191 	ev_sub_data = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1192 
1193 	switch (ev_sub_code) {
1194 	case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1195 		netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1196 			   channel->channel, ev_sub_data);
1197 		ef4_farch_handle_tx_flush_done(efx, event);
1198 		break;
1199 	case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1200 		netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1201 			   channel->channel, ev_sub_data);
1202 		ef4_farch_handle_rx_flush_done(efx, event);
1203 		break;
1204 	case FSE_AZ_EVQ_INIT_DONE_EV:
1205 		netif_dbg(efx, hw, efx->net_dev,
1206 			  "channel %d EVQ %d initialised\n",
1207 			  channel->channel, ev_sub_data);
1208 		break;
1209 	case FSE_AZ_SRM_UPD_DONE_EV:
1210 		netif_vdbg(efx, hw, efx->net_dev,
1211 			   "channel %d SRAM update done\n", channel->channel);
1212 		break;
1213 	case FSE_AZ_WAKE_UP_EV:
1214 		netif_vdbg(efx, hw, efx->net_dev,
1215 			   "channel %d RXQ %d wakeup event\n",
1216 			   channel->channel, ev_sub_data);
1217 		break;
1218 	case FSE_AZ_TIMER_EV:
1219 		netif_vdbg(efx, hw, efx->net_dev,
1220 			   "channel %d RX queue %d timer expired\n",
1221 			   channel->channel, ev_sub_data);
1222 		break;
1223 	case FSE_AA_RX_RECOVER_EV:
1224 		netif_err(efx, rx_err, efx->net_dev,
1225 			  "channel %d seen DRIVER RX_RESET event. "
1226 			"Resetting.\n", channel->channel);
1227 		atomic_inc(&efx->rx_reset);
1228 		ef4_schedule_reset(efx,
1229 				   EF4_WORKAROUND_6555(efx) ?
1230 				   RESET_TYPE_RX_RECOVERY :
1231 				   RESET_TYPE_DISABLE);
1232 		break;
1233 	case FSE_BZ_RX_DSC_ERROR_EV:
1234 		netif_err(efx, rx_err, efx->net_dev,
1235 			  "RX DMA Q %d reports descriptor fetch error."
1236 			  " RX Q %d is disabled.\n", ev_sub_data,
1237 			  ev_sub_data);
1238 		ef4_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1239 		break;
1240 	case FSE_BZ_TX_DSC_ERROR_EV:
1241 		netif_err(efx, tx_err, efx->net_dev,
1242 			  "TX DMA Q %d reports descriptor fetch error."
1243 			  " TX Q %d is disabled.\n", ev_sub_data,
1244 			  ev_sub_data);
1245 		ef4_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1246 		break;
1247 	default:
1248 		netif_vdbg(efx, hw, efx->net_dev,
1249 			   "channel %d unknown driver event code %d "
1250 			   "data %04x\n", channel->channel, ev_sub_code,
1251 			   ev_sub_data);
1252 		break;
1253 	}
1254 }
1255 
1256 int ef4_farch_ev_process(struct ef4_channel *channel, int budget)
1257 {
1258 	struct ef4_nic *efx = channel->efx;
1259 	unsigned int read_ptr;
1260 	ef4_qword_t event, *p_event;
1261 	int ev_code;
1262 	int tx_packets = 0;
1263 	int spent = 0;
1264 
1265 	if (budget <= 0)
1266 		return spent;
1267 
1268 	read_ptr = channel->eventq_read_ptr;
1269 
1270 	for (;;) {
1271 		p_event = ef4_event(channel, read_ptr);
1272 		event = *p_event;
1273 
1274 		if (!ef4_event_present(&event))
1275 			/* End of events */
1276 			break;
1277 
1278 		netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1279 			   "channel %d event is "EF4_QWORD_FMT"\n",
1280 			   channel->channel, EF4_QWORD_VAL(event));
1281 
1282 		/* Clear this event by marking it all ones */
1283 		EF4_SET_QWORD(*p_event);
1284 
1285 		++read_ptr;
1286 
1287 		ev_code = EF4_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1288 
1289 		switch (ev_code) {
1290 		case FSE_AZ_EV_CODE_RX_EV:
1291 			ef4_farch_handle_rx_event(channel, &event);
1292 			if (++spent == budget)
1293 				goto out;
1294 			break;
1295 		case FSE_AZ_EV_CODE_TX_EV:
1296 			tx_packets += ef4_farch_handle_tx_event(channel,
1297 								&event);
1298 			if (tx_packets > efx->txq_entries) {
1299 				spent = budget;
1300 				goto out;
1301 			}
1302 			break;
1303 		case FSE_AZ_EV_CODE_DRV_GEN_EV:
1304 			ef4_farch_handle_generated_event(channel, &event);
1305 			break;
1306 		case FSE_AZ_EV_CODE_DRIVER_EV:
1307 			ef4_farch_handle_driver_event(channel, &event);
1308 			break;
1309 		case FSE_AZ_EV_CODE_GLOBAL_EV:
1310 			if (efx->type->handle_global_event &&
1311 			    efx->type->handle_global_event(channel, &event))
1312 				break;
1313 			/* else fall through */
1314 		default:
1315 			netif_err(channel->efx, hw, channel->efx->net_dev,
1316 				  "channel %d unknown event type %d (data "
1317 				  EF4_QWORD_FMT ")\n", channel->channel,
1318 				  ev_code, EF4_QWORD_VAL(event));
1319 		}
1320 	}
1321 
1322 out:
1323 	channel->eventq_read_ptr = read_ptr;
1324 	return spent;
1325 }
1326 
1327 /* Allocate buffer table entries for event queue */
1328 int ef4_farch_ev_probe(struct ef4_channel *channel)
1329 {
1330 	struct ef4_nic *efx = channel->efx;
1331 	unsigned entries;
1332 
1333 	entries = channel->eventq_mask + 1;
1334 	return ef4_alloc_special_buffer(efx, &channel->eventq,
1335 					entries * sizeof(ef4_qword_t));
1336 }
1337 
1338 int ef4_farch_ev_init(struct ef4_channel *channel)
1339 {
1340 	ef4_oword_t reg;
1341 	struct ef4_nic *efx = channel->efx;
1342 
1343 	netif_dbg(efx, hw, efx->net_dev,
1344 		  "channel %d event queue in special buffers %d-%d\n",
1345 		  channel->channel, channel->eventq.index,
1346 		  channel->eventq.index + channel->eventq.entries - 1);
1347 
1348 	/* Pin event queue buffer */
1349 	ef4_init_special_buffer(efx, &channel->eventq);
1350 
1351 	/* Fill event queue with all ones (i.e. empty events) */
1352 	memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1353 
1354 	/* Push event queue to card */
1355 	EF4_POPULATE_OWORD_3(reg,
1356 			     FRF_AZ_EVQ_EN, 1,
1357 			     FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1358 			     FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1359 	ef4_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1360 			 channel->channel);
1361 
1362 	return 0;
1363 }
1364 
1365 void ef4_farch_ev_fini(struct ef4_channel *channel)
1366 {
1367 	ef4_oword_t reg;
1368 	struct ef4_nic *efx = channel->efx;
1369 
1370 	/* Remove event queue from card */
1371 	EF4_ZERO_OWORD(reg);
1372 	ef4_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1373 			 channel->channel);
1374 
1375 	/* Unpin event queue */
1376 	ef4_fini_special_buffer(efx, &channel->eventq);
1377 }
1378 
1379 /* Free buffers backing event queue */
1380 void ef4_farch_ev_remove(struct ef4_channel *channel)
1381 {
1382 	ef4_free_special_buffer(channel->efx, &channel->eventq);
1383 }
1384 
1385 
1386 void ef4_farch_ev_test_generate(struct ef4_channel *channel)
1387 {
1388 	ef4_farch_magic_event(channel, EF4_CHANNEL_MAGIC_TEST(channel));
1389 }
1390 
1391 void ef4_farch_rx_defer_refill(struct ef4_rx_queue *rx_queue)
1392 {
1393 	ef4_farch_magic_event(ef4_rx_queue_channel(rx_queue),
1394 			      EF4_CHANNEL_MAGIC_FILL(rx_queue));
1395 }
1396 
1397 /**************************************************************************
1398  *
1399  * Hardware interrupts
1400  * The hardware interrupt handler does very little work; all the event
1401  * queue processing is carried out by per-channel tasklets.
1402  *
1403  **************************************************************************/
1404 
1405 /* Enable/disable/generate interrupts */
1406 static inline void ef4_farch_interrupts(struct ef4_nic *efx,
1407 				      bool enabled, bool force)
1408 {
1409 	ef4_oword_t int_en_reg_ker;
1410 
1411 	EF4_POPULATE_OWORD_3(int_en_reg_ker,
1412 			     FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1413 			     FRF_AZ_KER_INT_KER, force,
1414 			     FRF_AZ_DRV_INT_EN_KER, enabled);
1415 	ef4_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1416 }
1417 
1418 void ef4_farch_irq_enable_master(struct ef4_nic *efx)
1419 {
1420 	EF4_ZERO_OWORD(*((ef4_oword_t *) efx->irq_status.addr));
1421 	wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1422 
1423 	ef4_farch_interrupts(efx, true, false);
1424 }
1425 
1426 void ef4_farch_irq_disable_master(struct ef4_nic *efx)
1427 {
1428 	/* Disable interrupts */
1429 	ef4_farch_interrupts(efx, false, false);
1430 }
1431 
1432 /* Generate a test interrupt
1433  * Interrupt must already have been enabled, otherwise nasty things
1434  * may happen.
1435  */
1436 int ef4_farch_irq_test_generate(struct ef4_nic *efx)
1437 {
1438 	ef4_farch_interrupts(efx, true, true);
1439 	return 0;
1440 }
1441 
1442 /* Process a fatal interrupt
1443  * Disable bus mastering ASAP and schedule a reset
1444  */
1445 irqreturn_t ef4_farch_fatal_interrupt(struct ef4_nic *efx)
1446 {
1447 	struct falcon_nic_data *nic_data = efx->nic_data;
1448 	ef4_oword_t *int_ker = efx->irq_status.addr;
1449 	ef4_oword_t fatal_intr;
1450 	int error, mem_perr;
1451 
1452 	ef4_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1453 	error = EF4_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1454 
1455 	netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EF4_OWORD_FMT" status "
1456 		  EF4_OWORD_FMT ": %s\n", EF4_OWORD_VAL(*int_ker),
1457 		  EF4_OWORD_VAL(fatal_intr),
1458 		  error ? "disabling bus mastering" : "no recognised error");
1459 
1460 	/* If this is a memory parity error dump which blocks are offending */
1461 	mem_perr = (EF4_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1462 		    EF4_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1463 	if (mem_perr) {
1464 		ef4_oword_t reg;
1465 		ef4_reado(efx, &reg, FR_AZ_MEM_STAT);
1466 		netif_err(efx, hw, efx->net_dev,
1467 			  "SYSTEM ERROR: memory parity error "EF4_OWORD_FMT"\n",
1468 			  EF4_OWORD_VAL(reg));
1469 	}
1470 
1471 	/* Disable both devices */
1472 	pci_clear_master(efx->pci_dev);
1473 	if (ef4_nic_is_dual_func(efx))
1474 		pci_clear_master(nic_data->pci_dev2);
1475 	ef4_farch_irq_disable_master(efx);
1476 
1477 	/* Count errors and reset or disable the NIC accordingly */
1478 	if (efx->int_error_count == 0 ||
1479 	    time_after(jiffies, efx->int_error_expire)) {
1480 		efx->int_error_count = 0;
1481 		efx->int_error_expire =
1482 			jiffies + EF4_INT_ERROR_EXPIRE * HZ;
1483 	}
1484 	if (++efx->int_error_count < EF4_MAX_INT_ERRORS) {
1485 		netif_err(efx, hw, efx->net_dev,
1486 			  "SYSTEM ERROR - reset scheduled\n");
1487 		ef4_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1488 	} else {
1489 		netif_err(efx, hw, efx->net_dev,
1490 			  "SYSTEM ERROR - max number of errors seen."
1491 			  "NIC will be disabled\n");
1492 		ef4_schedule_reset(efx, RESET_TYPE_DISABLE);
1493 	}
1494 
1495 	return IRQ_HANDLED;
1496 }
1497 
1498 /* Handle a legacy interrupt
1499  * Acknowledges the interrupt and schedule event queue processing.
1500  */
1501 irqreturn_t ef4_farch_legacy_interrupt(int irq, void *dev_id)
1502 {
1503 	struct ef4_nic *efx = dev_id;
1504 	bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
1505 	ef4_oword_t *int_ker = efx->irq_status.addr;
1506 	irqreturn_t result = IRQ_NONE;
1507 	struct ef4_channel *channel;
1508 	ef4_dword_t reg;
1509 	u32 queues;
1510 	int syserr;
1511 
1512 	/* Read the ISR which also ACKs the interrupts */
1513 	ef4_readd(efx, &reg, FR_BZ_INT_ISR0);
1514 	queues = EF4_EXTRACT_DWORD(reg, 0, 31);
1515 
1516 	/* Legacy interrupts are disabled too late by the EEH kernel
1517 	 * code. Disable them earlier.
1518 	 * If an EEH error occurred, the read will have returned all ones.
1519 	 */
1520 	if (EF4_DWORD_IS_ALL_ONES(reg) && ef4_try_recovery(efx) &&
1521 	    !efx->eeh_disabled_legacy_irq) {
1522 		disable_irq_nosync(efx->legacy_irq);
1523 		efx->eeh_disabled_legacy_irq = true;
1524 	}
1525 
1526 	/* Handle non-event-queue sources */
1527 	if (queues & (1U << efx->irq_level) && soft_enabled) {
1528 		syserr = EF4_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1529 		if (unlikely(syserr))
1530 			return ef4_farch_fatal_interrupt(efx);
1531 		efx->last_irq_cpu = raw_smp_processor_id();
1532 	}
1533 
1534 	if (queues != 0) {
1535 		efx->irq_zero_count = 0;
1536 
1537 		/* Schedule processing of any interrupting queues */
1538 		if (likely(soft_enabled)) {
1539 			ef4_for_each_channel(channel, efx) {
1540 				if (queues & 1)
1541 					ef4_schedule_channel_irq(channel);
1542 				queues >>= 1;
1543 			}
1544 		}
1545 		result = IRQ_HANDLED;
1546 
1547 	} else {
1548 		ef4_qword_t *event;
1549 
1550 		/* Legacy ISR read can return zero once (SF bug 15783) */
1551 
1552 		/* We can't return IRQ_HANDLED more than once on seeing ISR=0
1553 		 * because this might be a shared interrupt. */
1554 		if (efx->irq_zero_count++ == 0)
1555 			result = IRQ_HANDLED;
1556 
1557 		/* Ensure we schedule or rearm all event queues */
1558 		if (likely(soft_enabled)) {
1559 			ef4_for_each_channel(channel, efx) {
1560 				event = ef4_event(channel,
1561 						  channel->eventq_read_ptr);
1562 				if (ef4_event_present(event))
1563 					ef4_schedule_channel_irq(channel);
1564 				else
1565 					ef4_farch_ev_read_ack(channel);
1566 			}
1567 		}
1568 	}
1569 
1570 	if (result == IRQ_HANDLED)
1571 		netif_vdbg(efx, intr, efx->net_dev,
1572 			   "IRQ %d on CPU %d status " EF4_DWORD_FMT "\n",
1573 			   irq, raw_smp_processor_id(), EF4_DWORD_VAL(reg));
1574 
1575 	return result;
1576 }
1577 
1578 /* Handle an MSI interrupt
1579  *
1580  * Handle an MSI hardware interrupt.  This routine schedules event
1581  * queue processing.  No interrupt acknowledgement cycle is necessary.
1582  * Also, we never need to check that the interrupt is for us, since
1583  * MSI interrupts cannot be shared.
1584  */
1585 irqreturn_t ef4_farch_msi_interrupt(int irq, void *dev_id)
1586 {
1587 	struct ef4_msi_context *context = dev_id;
1588 	struct ef4_nic *efx = context->efx;
1589 	ef4_oword_t *int_ker = efx->irq_status.addr;
1590 	int syserr;
1591 
1592 	netif_vdbg(efx, intr, efx->net_dev,
1593 		   "IRQ %d on CPU %d status " EF4_OWORD_FMT "\n",
1594 		   irq, raw_smp_processor_id(), EF4_OWORD_VAL(*int_ker));
1595 
1596 	if (!likely(READ_ONCE(efx->irq_soft_enabled)))
1597 		return IRQ_HANDLED;
1598 
1599 	/* Handle non-event-queue sources */
1600 	if (context->index == efx->irq_level) {
1601 		syserr = EF4_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1602 		if (unlikely(syserr))
1603 			return ef4_farch_fatal_interrupt(efx);
1604 		efx->last_irq_cpu = raw_smp_processor_id();
1605 	}
1606 
1607 	/* Schedule processing of the channel */
1608 	ef4_schedule_channel_irq(efx->channel[context->index]);
1609 
1610 	return IRQ_HANDLED;
1611 }
1612 
1613 /* Setup RSS indirection table.
1614  * This maps from the hash value of the packet to RXQ
1615  */
1616 void ef4_farch_rx_push_indir_table(struct ef4_nic *efx)
1617 {
1618 	size_t i = 0;
1619 	ef4_dword_t dword;
1620 
1621 	BUG_ON(ef4_nic_rev(efx) < EF4_REV_FALCON_B0);
1622 
1623 	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1624 		     FR_BZ_RX_INDIRECTION_TBL_ROWS);
1625 
1626 	for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1627 		EF4_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1628 				     efx->rx_indir_table[i]);
1629 		ef4_writed(efx, &dword,
1630 			   FR_BZ_RX_INDIRECTION_TBL +
1631 			   FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1632 	}
1633 }
1634 
1635 /* Looks at available SRAM resources and works out how many queues we
1636  * can support, and where things like descriptor caches should live.
1637  *
1638  * SRAM is split up as follows:
1639  * 0                          buftbl entries for channels
1640  * efx->vf_buftbl_base        buftbl entries for SR-IOV
1641  * efx->rx_dc_base            RX descriptor caches
1642  * efx->tx_dc_base            TX descriptor caches
1643  */
1644 void ef4_farch_dimension_resources(struct ef4_nic *efx, unsigned sram_lim_qw)
1645 {
1646 	unsigned vi_count, buftbl_min;
1647 
1648 	/* Account for the buffer table entries backing the datapath channels
1649 	 * and the descriptor caches for those channels.
1650 	 */
1651 	buftbl_min = ((efx->n_rx_channels * EF4_MAX_DMAQ_SIZE +
1652 		       efx->n_tx_channels * EF4_TXQ_TYPES * EF4_MAX_DMAQ_SIZE +
1653 		       efx->n_channels * EF4_MAX_EVQ_SIZE)
1654 		      * sizeof(ef4_qword_t) / EF4_BUF_SIZE);
1655 	vi_count = max(efx->n_channels, efx->n_tx_channels * EF4_TXQ_TYPES);
1656 
1657 	efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1658 	efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1659 }
1660 
1661 u32 ef4_farch_fpga_ver(struct ef4_nic *efx)
1662 {
1663 	ef4_oword_t altera_build;
1664 	ef4_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1665 	return EF4_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1666 }
1667 
1668 void ef4_farch_init_common(struct ef4_nic *efx)
1669 {
1670 	ef4_oword_t temp;
1671 
1672 	/* Set positions of descriptor caches in SRAM. */
1673 	EF4_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1674 	ef4_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1675 	EF4_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1676 	ef4_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1677 
1678 	/* Set TX descriptor cache size. */
1679 	BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1680 	EF4_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1681 	ef4_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1682 
1683 	/* Set RX descriptor cache size.  Set low watermark to size-8, as
1684 	 * this allows most efficient prefetching.
1685 	 */
1686 	BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1687 	EF4_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1688 	ef4_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1689 	EF4_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1690 	ef4_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1691 
1692 	/* Program INT_KER address */
1693 	EF4_POPULATE_OWORD_2(temp,
1694 			     FRF_AZ_NORM_INT_VEC_DIS_KER,
1695 			     EF4_INT_MODE_USE_MSI(efx),
1696 			     FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1697 	ef4_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1698 
1699 	/* Use a valid MSI-X vector */
1700 	efx->irq_level = 0;
1701 
1702 	/* Enable all the genuinely fatal interrupts.  (They are still
1703 	 * masked by the overall interrupt mask, controlled by
1704 	 * falcon_interrupts()).
1705 	 *
1706 	 * Note: All other fatal interrupts are enabled
1707 	 */
1708 	EF4_POPULATE_OWORD_3(temp,
1709 			     FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1710 			     FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1711 			     FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1712 	EF4_INVERT_OWORD(temp);
1713 	ef4_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1714 
1715 	/* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1716 	 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1717 	 */
1718 	ef4_reado(efx, &temp, FR_AZ_TX_RESERVED);
1719 	EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1720 	EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1721 	EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1722 	EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1723 	EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1724 	/* Enable SW_EV to inherit in char driver - assume harmless here */
1725 	EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1726 	/* Prefetch threshold 2 => fetch when descriptor cache half empty */
1727 	EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1728 	/* Disable hardware watchdog which can misfire */
1729 	EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1730 	/* Squash TX of packets of 16 bytes or less */
1731 	if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0)
1732 		EF4_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1733 	ef4_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1734 
1735 	if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
1736 		EF4_POPULATE_OWORD_4(temp,
1737 				     /* Default values */
1738 				     FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1739 				     FRF_BZ_TX_PACE_SB_AF, 0xb,
1740 				     FRF_BZ_TX_PACE_FB_BASE, 0,
1741 				     /* Allow large pace values in the
1742 				      * fast bin. */
1743 				     FRF_BZ_TX_PACE_BIN_TH,
1744 				     FFE_BZ_TX_PACE_RESERVED);
1745 		ef4_writeo(efx, &temp, FR_BZ_TX_PACE);
1746 	}
1747 }
1748 
1749 /**************************************************************************
1750  *
1751  * Filter tables
1752  *
1753  **************************************************************************
1754  */
1755 
1756 /* "Fudge factors" - difference between programmed value and actual depth.
1757  * Due to pipelined implementation we need to program H/W with a value that
1758  * is larger than the hop limit we want.
1759  */
1760 #define EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1761 #define EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1762 
1763 /* Hard maximum search limit.  Hardware will time-out beyond 200-something.
1764  * We also need to avoid infinite loops in ef4_farch_filter_search() when the
1765  * table is full.
1766  */
1767 #define EF4_FARCH_FILTER_CTL_SRCH_MAX 200
1768 
1769 /* Don't try very hard to find space for performance hints, as this is
1770  * counter-productive. */
1771 #define EF4_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1772 
1773 enum ef4_farch_filter_type {
1774 	EF4_FARCH_FILTER_TCP_FULL = 0,
1775 	EF4_FARCH_FILTER_TCP_WILD,
1776 	EF4_FARCH_FILTER_UDP_FULL,
1777 	EF4_FARCH_FILTER_UDP_WILD,
1778 	EF4_FARCH_FILTER_MAC_FULL = 4,
1779 	EF4_FARCH_FILTER_MAC_WILD,
1780 	EF4_FARCH_FILTER_UC_DEF = 8,
1781 	EF4_FARCH_FILTER_MC_DEF,
1782 	EF4_FARCH_FILTER_TYPE_COUNT,		/* number of specific types */
1783 };
1784 
1785 enum ef4_farch_filter_table_id {
1786 	EF4_FARCH_FILTER_TABLE_RX_IP = 0,
1787 	EF4_FARCH_FILTER_TABLE_RX_MAC,
1788 	EF4_FARCH_FILTER_TABLE_RX_DEF,
1789 	EF4_FARCH_FILTER_TABLE_TX_MAC,
1790 	EF4_FARCH_FILTER_TABLE_COUNT,
1791 };
1792 
1793 enum ef4_farch_filter_index {
1794 	EF4_FARCH_FILTER_INDEX_UC_DEF,
1795 	EF4_FARCH_FILTER_INDEX_MC_DEF,
1796 	EF4_FARCH_FILTER_SIZE_RX_DEF,
1797 };
1798 
1799 struct ef4_farch_filter_spec {
1800 	u8	type:4;
1801 	u8	priority:4;
1802 	u8	flags;
1803 	u16	dmaq_id;
1804 	u32	data[3];
1805 };
1806 
1807 struct ef4_farch_filter_table {
1808 	enum ef4_farch_filter_table_id id;
1809 	u32		offset;		/* address of table relative to BAR */
1810 	unsigned	size;		/* number of entries */
1811 	unsigned	step;		/* step between entries */
1812 	unsigned	used;		/* number currently used */
1813 	unsigned long	*used_bitmap;
1814 	struct ef4_farch_filter_spec *spec;
1815 	unsigned	search_limit[EF4_FARCH_FILTER_TYPE_COUNT];
1816 };
1817 
1818 struct ef4_farch_filter_state {
1819 	struct ef4_farch_filter_table table[EF4_FARCH_FILTER_TABLE_COUNT];
1820 };
1821 
1822 static void
1823 ef4_farch_filter_table_clear_entry(struct ef4_nic *efx,
1824 				   struct ef4_farch_filter_table *table,
1825 				   unsigned int filter_idx);
1826 
1827 /* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1828  * key derived from the n-tuple.  The initial LFSR state is 0xffff. */
1829 static u16 ef4_farch_filter_hash(u32 key)
1830 {
1831 	u16 tmp;
1832 
1833 	/* First 16 rounds */
1834 	tmp = 0x1fff ^ key >> 16;
1835 	tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1836 	tmp = tmp ^ tmp >> 9;
1837 	/* Last 16 rounds */
1838 	tmp = tmp ^ tmp << 13 ^ key;
1839 	tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1840 	return tmp ^ tmp >> 9;
1841 }
1842 
1843 /* To allow for hash collisions, filter search continues at these
1844  * increments from the first possible entry selected by the hash. */
1845 static u16 ef4_farch_filter_increment(u32 key)
1846 {
1847 	return key * 2 - 1;
1848 }
1849 
1850 static enum ef4_farch_filter_table_id
1851 ef4_farch_filter_spec_table_id(const struct ef4_farch_filter_spec *spec)
1852 {
1853 	BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_IP !=
1854 		     (EF4_FARCH_FILTER_TCP_FULL >> 2));
1855 	BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_IP !=
1856 		     (EF4_FARCH_FILTER_TCP_WILD >> 2));
1857 	BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_IP !=
1858 		     (EF4_FARCH_FILTER_UDP_FULL >> 2));
1859 	BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_IP !=
1860 		     (EF4_FARCH_FILTER_UDP_WILD >> 2));
1861 	BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_MAC !=
1862 		     (EF4_FARCH_FILTER_MAC_FULL >> 2));
1863 	BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_MAC !=
1864 		     (EF4_FARCH_FILTER_MAC_WILD >> 2));
1865 	BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_TX_MAC !=
1866 		     EF4_FARCH_FILTER_TABLE_RX_MAC + 2);
1867 	return (spec->type >> 2) + ((spec->flags & EF4_FILTER_FLAG_TX) ? 2 : 0);
1868 }
1869 
1870 static void ef4_farch_filter_push_rx_config(struct ef4_nic *efx)
1871 {
1872 	struct ef4_farch_filter_state *state = efx->filter_state;
1873 	struct ef4_farch_filter_table *table;
1874 	ef4_oword_t filter_ctl;
1875 
1876 	ef4_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1877 
1878 	table = &state->table[EF4_FARCH_FILTER_TABLE_RX_IP];
1879 	EF4_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
1880 			    table->search_limit[EF4_FARCH_FILTER_TCP_FULL] +
1881 			    EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1882 	EF4_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
1883 			    table->search_limit[EF4_FARCH_FILTER_TCP_WILD] +
1884 			    EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1885 	EF4_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
1886 			    table->search_limit[EF4_FARCH_FILTER_UDP_FULL] +
1887 			    EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1888 	EF4_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
1889 			    table->search_limit[EF4_FARCH_FILTER_UDP_WILD] +
1890 			    EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1891 
1892 	table = &state->table[EF4_FARCH_FILTER_TABLE_RX_MAC];
1893 	if (table->size) {
1894 		EF4_SET_OWORD_FIELD(
1895 			filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
1896 			table->search_limit[EF4_FARCH_FILTER_MAC_FULL] +
1897 			EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1898 		EF4_SET_OWORD_FIELD(
1899 			filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
1900 			table->search_limit[EF4_FARCH_FILTER_MAC_WILD] +
1901 			EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1902 	}
1903 
1904 	table = &state->table[EF4_FARCH_FILTER_TABLE_RX_DEF];
1905 	if (table->size) {
1906 		EF4_SET_OWORD_FIELD(
1907 			filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
1908 			table->spec[EF4_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
1909 		EF4_SET_OWORD_FIELD(
1910 			filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
1911 			!!(table->spec[EF4_FARCH_FILTER_INDEX_UC_DEF].flags &
1912 			   EF4_FILTER_FLAG_RX_RSS));
1913 		EF4_SET_OWORD_FIELD(
1914 			filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
1915 			table->spec[EF4_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
1916 		EF4_SET_OWORD_FIELD(
1917 			filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
1918 			!!(table->spec[EF4_FARCH_FILTER_INDEX_MC_DEF].flags &
1919 			   EF4_FILTER_FLAG_RX_RSS));
1920 
1921 		/* There is a single bit to enable RX scatter for all
1922 		 * unmatched packets.  Only set it if scatter is
1923 		 * enabled in both filter specs.
1924 		 */
1925 		EF4_SET_OWORD_FIELD(
1926 			filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1927 			!!(table->spec[EF4_FARCH_FILTER_INDEX_UC_DEF].flags &
1928 			   table->spec[EF4_FARCH_FILTER_INDEX_MC_DEF].flags &
1929 			   EF4_FILTER_FLAG_RX_SCATTER));
1930 	} else if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
1931 		/* We don't expose 'default' filters because unmatched
1932 		 * packets always go to the queue number found in the
1933 		 * RSS table.  But we still need to set the RX scatter
1934 		 * bit here.
1935 		 */
1936 		EF4_SET_OWORD_FIELD(
1937 			filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1938 			efx->rx_scatter);
1939 	}
1940 
1941 	ef4_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1942 }
1943 
1944 static void ef4_farch_filter_push_tx_limits(struct ef4_nic *efx)
1945 {
1946 	struct ef4_farch_filter_state *state = efx->filter_state;
1947 	struct ef4_farch_filter_table *table;
1948 	ef4_oword_t tx_cfg;
1949 
1950 	ef4_reado(efx, &tx_cfg, FR_AZ_TX_CFG);
1951 
1952 	table = &state->table[EF4_FARCH_FILTER_TABLE_TX_MAC];
1953 	if (table->size) {
1954 		EF4_SET_OWORD_FIELD(
1955 			tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
1956 			table->search_limit[EF4_FARCH_FILTER_MAC_FULL] +
1957 			EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1958 		EF4_SET_OWORD_FIELD(
1959 			tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
1960 			table->search_limit[EF4_FARCH_FILTER_MAC_WILD] +
1961 			EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1962 	}
1963 
1964 	ef4_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
1965 }
1966 
1967 static int
1968 ef4_farch_filter_from_gen_spec(struct ef4_farch_filter_spec *spec,
1969 			       const struct ef4_filter_spec *gen_spec)
1970 {
1971 	bool is_full = false;
1972 
1973 	if ((gen_spec->flags & EF4_FILTER_FLAG_RX_RSS) &&
1974 	    gen_spec->rss_context != EF4_FILTER_RSS_CONTEXT_DEFAULT)
1975 		return -EINVAL;
1976 
1977 	spec->priority = gen_spec->priority;
1978 	spec->flags = gen_spec->flags;
1979 	spec->dmaq_id = gen_spec->dmaq_id;
1980 
1981 	switch (gen_spec->match_flags) {
1982 	case (EF4_FILTER_MATCH_ETHER_TYPE | EF4_FILTER_MATCH_IP_PROTO |
1983 	      EF4_FILTER_MATCH_LOC_HOST | EF4_FILTER_MATCH_LOC_PORT |
1984 	      EF4_FILTER_MATCH_REM_HOST | EF4_FILTER_MATCH_REM_PORT):
1985 		is_full = true;
1986 		/* fall through */
1987 	case (EF4_FILTER_MATCH_ETHER_TYPE | EF4_FILTER_MATCH_IP_PROTO |
1988 	      EF4_FILTER_MATCH_LOC_HOST | EF4_FILTER_MATCH_LOC_PORT): {
1989 		__be32 rhost, host1, host2;
1990 		__be16 rport, port1, port2;
1991 
1992 		EF4_BUG_ON_PARANOID(!(gen_spec->flags & EF4_FILTER_FLAG_RX));
1993 
1994 		if (gen_spec->ether_type != htons(ETH_P_IP))
1995 			return -EPROTONOSUPPORT;
1996 		if (gen_spec->loc_port == 0 ||
1997 		    (is_full && gen_spec->rem_port == 0))
1998 			return -EADDRNOTAVAIL;
1999 		switch (gen_spec->ip_proto) {
2000 		case IPPROTO_TCP:
2001 			spec->type = (is_full ? EF4_FARCH_FILTER_TCP_FULL :
2002 				      EF4_FARCH_FILTER_TCP_WILD);
2003 			break;
2004 		case IPPROTO_UDP:
2005 			spec->type = (is_full ? EF4_FARCH_FILTER_UDP_FULL :
2006 				      EF4_FARCH_FILTER_UDP_WILD);
2007 			break;
2008 		default:
2009 			return -EPROTONOSUPPORT;
2010 		}
2011 
2012 		/* Filter is constructed in terms of source and destination,
2013 		 * with the odd wrinkle that the ports are swapped in a UDP
2014 		 * wildcard filter.  We need to convert from local and remote
2015 		 * (= zero for wildcard) addresses.
2016 		 */
2017 		rhost = is_full ? gen_spec->rem_host[0] : 0;
2018 		rport = is_full ? gen_spec->rem_port : 0;
2019 		host1 = rhost;
2020 		host2 = gen_spec->loc_host[0];
2021 		if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
2022 			port1 = gen_spec->loc_port;
2023 			port2 = rport;
2024 		} else {
2025 			port1 = rport;
2026 			port2 = gen_spec->loc_port;
2027 		}
2028 		spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
2029 		spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
2030 		spec->data[2] = ntohl(host2);
2031 
2032 		break;
2033 	}
2034 
2035 	case EF4_FILTER_MATCH_LOC_MAC | EF4_FILTER_MATCH_OUTER_VID:
2036 		is_full = true;
2037 		/* fall through */
2038 	case EF4_FILTER_MATCH_LOC_MAC:
2039 		spec->type = (is_full ? EF4_FARCH_FILTER_MAC_FULL :
2040 			      EF4_FARCH_FILTER_MAC_WILD);
2041 		spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
2042 		spec->data[1] = (gen_spec->loc_mac[2] << 24 |
2043 				 gen_spec->loc_mac[3] << 16 |
2044 				 gen_spec->loc_mac[4] << 8 |
2045 				 gen_spec->loc_mac[5]);
2046 		spec->data[2] = (gen_spec->loc_mac[0] << 8 |
2047 				 gen_spec->loc_mac[1]);
2048 		break;
2049 
2050 	case EF4_FILTER_MATCH_LOC_MAC_IG:
2051 		spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
2052 			      EF4_FARCH_FILTER_MC_DEF :
2053 			      EF4_FARCH_FILTER_UC_DEF);
2054 		memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
2055 		break;
2056 
2057 	default:
2058 		return -EPROTONOSUPPORT;
2059 	}
2060 
2061 	return 0;
2062 }
2063 
2064 static void
2065 ef4_farch_filter_to_gen_spec(struct ef4_filter_spec *gen_spec,
2066 			     const struct ef4_farch_filter_spec *spec)
2067 {
2068 	bool is_full = false;
2069 
2070 	/* *gen_spec should be completely initialised, to be consistent
2071 	 * with ef4_filter_init_{rx,tx}() and in case we want to copy
2072 	 * it back to userland.
2073 	 */
2074 	memset(gen_spec, 0, sizeof(*gen_spec));
2075 
2076 	gen_spec->priority = spec->priority;
2077 	gen_spec->flags = spec->flags;
2078 	gen_spec->dmaq_id = spec->dmaq_id;
2079 
2080 	switch (spec->type) {
2081 	case EF4_FARCH_FILTER_TCP_FULL:
2082 	case EF4_FARCH_FILTER_UDP_FULL:
2083 		is_full = true;
2084 		/* fall through */
2085 	case EF4_FARCH_FILTER_TCP_WILD:
2086 	case EF4_FARCH_FILTER_UDP_WILD: {
2087 		__be32 host1, host2;
2088 		__be16 port1, port2;
2089 
2090 		gen_spec->match_flags =
2091 			EF4_FILTER_MATCH_ETHER_TYPE |
2092 			EF4_FILTER_MATCH_IP_PROTO |
2093 			EF4_FILTER_MATCH_LOC_HOST | EF4_FILTER_MATCH_LOC_PORT;
2094 		if (is_full)
2095 			gen_spec->match_flags |= (EF4_FILTER_MATCH_REM_HOST |
2096 						  EF4_FILTER_MATCH_REM_PORT);
2097 		gen_spec->ether_type = htons(ETH_P_IP);
2098 		gen_spec->ip_proto =
2099 			(spec->type == EF4_FARCH_FILTER_TCP_FULL ||
2100 			 spec->type == EF4_FARCH_FILTER_TCP_WILD) ?
2101 			IPPROTO_TCP : IPPROTO_UDP;
2102 
2103 		host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
2104 		port1 = htons(spec->data[0]);
2105 		host2 = htonl(spec->data[2]);
2106 		port2 = htons(spec->data[1] >> 16);
2107 		if (spec->flags & EF4_FILTER_FLAG_TX) {
2108 			gen_spec->loc_host[0] = host1;
2109 			gen_spec->rem_host[0] = host2;
2110 		} else {
2111 			gen_spec->loc_host[0] = host2;
2112 			gen_spec->rem_host[0] = host1;
2113 		}
2114 		if (!!(gen_spec->flags & EF4_FILTER_FLAG_TX) ^
2115 		    (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
2116 			gen_spec->loc_port = port1;
2117 			gen_spec->rem_port = port2;
2118 		} else {
2119 			gen_spec->loc_port = port2;
2120 			gen_spec->rem_port = port1;
2121 		}
2122 
2123 		break;
2124 	}
2125 
2126 	case EF4_FARCH_FILTER_MAC_FULL:
2127 		is_full = true;
2128 		/* fall through */
2129 	case EF4_FARCH_FILTER_MAC_WILD:
2130 		gen_spec->match_flags = EF4_FILTER_MATCH_LOC_MAC;
2131 		if (is_full)
2132 			gen_spec->match_flags |= EF4_FILTER_MATCH_OUTER_VID;
2133 		gen_spec->loc_mac[0] = spec->data[2] >> 8;
2134 		gen_spec->loc_mac[1] = spec->data[2];
2135 		gen_spec->loc_mac[2] = spec->data[1] >> 24;
2136 		gen_spec->loc_mac[3] = spec->data[1] >> 16;
2137 		gen_spec->loc_mac[4] = spec->data[1] >> 8;
2138 		gen_spec->loc_mac[5] = spec->data[1];
2139 		gen_spec->outer_vid = htons(spec->data[0]);
2140 		break;
2141 
2142 	case EF4_FARCH_FILTER_UC_DEF:
2143 	case EF4_FARCH_FILTER_MC_DEF:
2144 		gen_spec->match_flags = EF4_FILTER_MATCH_LOC_MAC_IG;
2145 		gen_spec->loc_mac[0] = spec->type == EF4_FARCH_FILTER_MC_DEF;
2146 		break;
2147 
2148 	default:
2149 		WARN_ON(1);
2150 		break;
2151 	}
2152 }
2153 
2154 static void
2155 ef4_farch_filter_init_rx_auto(struct ef4_nic *efx,
2156 			      struct ef4_farch_filter_spec *spec)
2157 {
2158 	/* If there's only one channel then disable RSS for non VF
2159 	 * traffic, thereby allowing VFs to use RSS when the PF can't.
2160 	 */
2161 	spec->priority = EF4_FILTER_PRI_AUTO;
2162 	spec->flags = (EF4_FILTER_FLAG_RX |
2163 		       (ef4_rss_enabled(efx) ? EF4_FILTER_FLAG_RX_RSS : 0) |
2164 		       (efx->rx_scatter ? EF4_FILTER_FLAG_RX_SCATTER : 0));
2165 	spec->dmaq_id = 0;
2166 }
2167 
2168 /* Build a filter entry and return its n-tuple key. */
2169 static u32 ef4_farch_filter_build(ef4_oword_t *filter,
2170 				  struct ef4_farch_filter_spec *spec)
2171 {
2172 	u32 data3;
2173 
2174 	switch (ef4_farch_filter_spec_table_id(spec)) {
2175 	case EF4_FARCH_FILTER_TABLE_RX_IP: {
2176 		bool is_udp = (spec->type == EF4_FARCH_FILTER_UDP_FULL ||
2177 			       spec->type == EF4_FARCH_FILTER_UDP_WILD);
2178 		EF4_POPULATE_OWORD_7(
2179 			*filter,
2180 			FRF_BZ_RSS_EN,
2181 			!!(spec->flags & EF4_FILTER_FLAG_RX_RSS),
2182 			FRF_BZ_SCATTER_EN,
2183 			!!(spec->flags & EF4_FILTER_FLAG_RX_SCATTER),
2184 			FRF_BZ_TCP_UDP, is_udp,
2185 			FRF_BZ_RXQ_ID, spec->dmaq_id,
2186 			EF4_DWORD_2, spec->data[2],
2187 			EF4_DWORD_1, spec->data[1],
2188 			EF4_DWORD_0, spec->data[0]);
2189 		data3 = is_udp;
2190 		break;
2191 	}
2192 
2193 	case EF4_FARCH_FILTER_TABLE_RX_MAC: {
2194 		bool is_wild = spec->type == EF4_FARCH_FILTER_MAC_WILD;
2195 		EF4_POPULATE_OWORD_7(
2196 			*filter,
2197 			FRF_CZ_RMFT_RSS_EN,
2198 			!!(spec->flags & EF4_FILTER_FLAG_RX_RSS),
2199 			FRF_CZ_RMFT_SCATTER_EN,
2200 			!!(spec->flags & EF4_FILTER_FLAG_RX_SCATTER),
2201 			FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
2202 			FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
2203 			FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
2204 			FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
2205 			FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
2206 		data3 = is_wild;
2207 		break;
2208 	}
2209 
2210 	case EF4_FARCH_FILTER_TABLE_TX_MAC: {
2211 		bool is_wild = spec->type == EF4_FARCH_FILTER_MAC_WILD;
2212 		EF4_POPULATE_OWORD_5(*filter,
2213 				     FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
2214 				     FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
2215 				     FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
2216 				     FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
2217 				     FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
2218 		data3 = is_wild | spec->dmaq_id << 1;
2219 		break;
2220 	}
2221 
2222 	default:
2223 		BUG();
2224 	}
2225 
2226 	return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
2227 }
2228 
2229 static bool ef4_farch_filter_equal(const struct ef4_farch_filter_spec *left,
2230 				   const struct ef4_farch_filter_spec *right)
2231 {
2232 	if (left->type != right->type ||
2233 	    memcmp(left->data, right->data, sizeof(left->data)))
2234 		return false;
2235 
2236 	if (left->flags & EF4_FILTER_FLAG_TX &&
2237 	    left->dmaq_id != right->dmaq_id)
2238 		return false;
2239 
2240 	return true;
2241 }
2242 
2243 /*
2244  * Construct/deconstruct external filter IDs.  At least the RX filter
2245  * IDs must be ordered by matching priority, for RX NFC semantics.
2246  *
2247  * Deconstruction needs to be robust against invalid IDs so that
2248  * ef4_filter_remove_id_safe() and ef4_filter_get_filter_safe() can
2249  * accept user-provided IDs.
2250  */
2251 
2252 #define EF4_FARCH_FILTER_MATCH_PRI_COUNT	5
2253 
2254 static const u8 ef4_farch_filter_type_match_pri[EF4_FARCH_FILTER_TYPE_COUNT] = {
2255 	[EF4_FARCH_FILTER_TCP_FULL]	= 0,
2256 	[EF4_FARCH_FILTER_UDP_FULL]	= 0,
2257 	[EF4_FARCH_FILTER_TCP_WILD]	= 1,
2258 	[EF4_FARCH_FILTER_UDP_WILD]	= 1,
2259 	[EF4_FARCH_FILTER_MAC_FULL]	= 2,
2260 	[EF4_FARCH_FILTER_MAC_WILD]	= 3,
2261 	[EF4_FARCH_FILTER_UC_DEF]	= 4,
2262 	[EF4_FARCH_FILTER_MC_DEF]	= 4,
2263 };
2264 
2265 static const enum ef4_farch_filter_table_id ef4_farch_filter_range_table[] = {
2266 	EF4_FARCH_FILTER_TABLE_RX_IP,	/* RX match pri 0 */
2267 	EF4_FARCH_FILTER_TABLE_RX_IP,
2268 	EF4_FARCH_FILTER_TABLE_RX_MAC,
2269 	EF4_FARCH_FILTER_TABLE_RX_MAC,
2270 	EF4_FARCH_FILTER_TABLE_RX_DEF,	/* RX match pri 4 */
2271 	EF4_FARCH_FILTER_TABLE_TX_MAC,	/* TX match pri 0 */
2272 	EF4_FARCH_FILTER_TABLE_TX_MAC,	/* TX match pri 1 */
2273 };
2274 
2275 #define EF4_FARCH_FILTER_INDEX_WIDTH 13
2276 #define EF4_FARCH_FILTER_INDEX_MASK ((1 << EF4_FARCH_FILTER_INDEX_WIDTH) - 1)
2277 
2278 static inline u32
2279 ef4_farch_filter_make_id(const struct ef4_farch_filter_spec *spec,
2280 			 unsigned int index)
2281 {
2282 	unsigned int range;
2283 
2284 	range = ef4_farch_filter_type_match_pri[spec->type];
2285 	if (!(spec->flags & EF4_FILTER_FLAG_RX))
2286 		range += EF4_FARCH_FILTER_MATCH_PRI_COUNT;
2287 
2288 	return range << EF4_FARCH_FILTER_INDEX_WIDTH | index;
2289 }
2290 
2291 static inline enum ef4_farch_filter_table_id
2292 ef4_farch_filter_id_table_id(u32 id)
2293 {
2294 	unsigned int range = id >> EF4_FARCH_FILTER_INDEX_WIDTH;
2295 
2296 	if (range < ARRAY_SIZE(ef4_farch_filter_range_table))
2297 		return ef4_farch_filter_range_table[range];
2298 	else
2299 		return EF4_FARCH_FILTER_TABLE_COUNT; /* invalid */
2300 }
2301 
2302 static inline unsigned int ef4_farch_filter_id_index(u32 id)
2303 {
2304 	return id & EF4_FARCH_FILTER_INDEX_MASK;
2305 }
2306 
2307 u32 ef4_farch_filter_get_rx_id_limit(struct ef4_nic *efx)
2308 {
2309 	struct ef4_farch_filter_state *state = efx->filter_state;
2310 	unsigned int range = EF4_FARCH_FILTER_MATCH_PRI_COUNT - 1;
2311 	enum ef4_farch_filter_table_id table_id;
2312 
2313 	do {
2314 		table_id = ef4_farch_filter_range_table[range];
2315 		if (state->table[table_id].size != 0)
2316 			return range << EF4_FARCH_FILTER_INDEX_WIDTH |
2317 				state->table[table_id].size;
2318 	} while (range--);
2319 
2320 	return 0;
2321 }
2322 
2323 s32 ef4_farch_filter_insert(struct ef4_nic *efx,
2324 			    struct ef4_filter_spec *gen_spec,
2325 			    bool replace_equal)
2326 {
2327 	struct ef4_farch_filter_state *state = efx->filter_state;
2328 	struct ef4_farch_filter_table *table;
2329 	struct ef4_farch_filter_spec spec;
2330 	ef4_oword_t filter;
2331 	int rep_index, ins_index;
2332 	unsigned int depth = 0;
2333 	int rc;
2334 
2335 	rc = ef4_farch_filter_from_gen_spec(&spec, gen_spec);
2336 	if (rc)
2337 		return rc;
2338 
2339 	table = &state->table[ef4_farch_filter_spec_table_id(&spec)];
2340 	if (table->size == 0)
2341 		return -EINVAL;
2342 
2343 	netif_vdbg(efx, hw, efx->net_dev,
2344 		   "%s: type %d search_limit=%d", __func__, spec.type,
2345 		   table->search_limit[spec.type]);
2346 
2347 	if (table->id == EF4_FARCH_FILTER_TABLE_RX_DEF) {
2348 		/* One filter spec per type */
2349 		BUILD_BUG_ON(EF4_FARCH_FILTER_INDEX_UC_DEF != 0);
2350 		BUILD_BUG_ON(EF4_FARCH_FILTER_INDEX_MC_DEF !=
2351 			     EF4_FARCH_FILTER_MC_DEF - EF4_FARCH_FILTER_UC_DEF);
2352 		rep_index = spec.type - EF4_FARCH_FILTER_UC_DEF;
2353 		ins_index = rep_index;
2354 
2355 		spin_lock_bh(&efx->filter_lock);
2356 	} else {
2357 		/* Search concurrently for
2358 		 * (1) a filter to be replaced (rep_index): any filter
2359 		 *     with the same match values, up to the current
2360 		 *     search depth for this type, and
2361 		 * (2) the insertion point (ins_index): (1) or any
2362 		 *     free slot before it or up to the maximum search
2363 		 *     depth for this priority
2364 		 * We fail if we cannot find (2).
2365 		 *
2366 		 * We can stop once either
2367 		 * (a) we find (1), in which case we have definitely
2368 		 *     found (2) as well; or
2369 		 * (b) we have searched exhaustively for (1), and have
2370 		 *     either found (2) or searched exhaustively for it
2371 		 */
2372 		u32 key = ef4_farch_filter_build(&filter, &spec);
2373 		unsigned int hash = ef4_farch_filter_hash(key);
2374 		unsigned int incr = ef4_farch_filter_increment(key);
2375 		unsigned int max_rep_depth = table->search_limit[spec.type];
2376 		unsigned int max_ins_depth =
2377 			spec.priority <= EF4_FILTER_PRI_HINT ?
2378 			EF4_FARCH_FILTER_CTL_SRCH_HINT_MAX :
2379 			EF4_FARCH_FILTER_CTL_SRCH_MAX;
2380 		unsigned int i = hash & (table->size - 1);
2381 
2382 		ins_index = -1;
2383 		depth = 1;
2384 
2385 		spin_lock_bh(&efx->filter_lock);
2386 
2387 		for (;;) {
2388 			if (!test_bit(i, table->used_bitmap)) {
2389 				if (ins_index < 0)
2390 					ins_index = i;
2391 			} else if (ef4_farch_filter_equal(&spec,
2392 							  &table->spec[i])) {
2393 				/* Case (a) */
2394 				if (ins_index < 0)
2395 					ins_index = i;
2396 				rep_index = i;
2397 				break;
2398 			}
2399 
2400 			if (depth >= max_rep_depth &&
2401 			    (ins_index >= 0 || depth >= max_ins_depth)) {
2402 				/* Case (b) */
2403 				if (ins_index < 0) {
2404 					rc = -EBUSY;
2405 					goto out;
2406 				}
2407 				rep_index = -1;
2408 				break;
2409 			}
2410 
2411 			i = (i + incr) & (table->size - 1);
2412 			++depth;
2413 		}
2414 	}
2415 
2416 	/* If we found a filter to be replaced, check whether we
2417 	 * should do so
2418 	 */
2419 	if (rep_index >= 0) {
2420 		struct ef4_farch_filter_spec *saved_spec =
2421 			&table->spec[rep_index];
2422 
2423 		if (spec.priority == saved_spec->priority && !replace_equal) {
2424 			rc = -EEXIST;
2425 			goto out;
2426 		}
2427 		if (spec.priority < saved_spec->priority) {
2428 			rc = -EPERM;
2429 			goto out;
2430 		}
2431 		if (saved_spec->priority == EF4_FILTER_PRI_AUTO ||
2432 		    saved_spec->flags & EF4_FILTER_FLAG_RX_OVER_AUTO)
2433 			spec.flags |= EF4_FILTER_FLAG_RX_OVER_AUTO;
2434 	}
2435 
2436 	/* Insert the filter */
2437 	if (ins_index != rep_index) {
2438 		__set_bit(ins_index, table->used_bitmap);
2439 		++table->used;
2440 	}
2441 	table->spec[ins_index] = spec;
2442 
2443 	if (table->id == EF4_FARCH_FILTER_TABLE_RX_DEF) {
2444 		ef4_farch_filter_push_rx_config(efx);
2445 	} else {
2446 		if (table->search_limit[spec.type] < depth) {
2447 			table->search_limit[spec.type] = depth;
2448 			if (spec.flags & EF4_FILTER_FLAG_TX)
2449 				ef4_farch_filter_push_tx_limits(efx);
2450 			else
2451 				ef4_farch_filter_push_rx_config(efx);
2452 		}
2453 
2454 		ef4_writeo(efx, &filter,
2455 			   table->offset + table->step * ins_index);
2456 
2457 		/* If we were able to replace a filter by inserting
2458 		 * at a lower depth, clear the replaced filter
2459 		 */
2460 		if (ins_index != rep_index && rep_index >= 0)
2461 			ef4_farch_filter_table_clear_entry(efx, table,
2462 							   rep_index);
2463 	}
2464 
2465 	netif_vdbg(efx, hw, efx->net_dev,
2466 		   "%s: filter type %d index %d rxq %u set",
2467 		   __func__, spec.type, ins_index, spec.dmaq_id);
2468 	rc = ef4_farch_filter_make_id(&spec, ins_index);
2469 
2470 out:
2471 	spin_unlock_bh(&efx->filter_lock);
2472 	return rc;
2473 }
2474 
2475 static void
2476 ef4_farch_filter_table_clear_entry(struct ef4_nic *efx,
2477 				   struct ef4_farch_filter_table *table,
2478 				   unsigned int filter_idx)
2479 {
2480 	static ef4_oword_t filter;
2481 
2482 	EF4_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
2483 	BUG_ON(table->offset == 0); /* can't clear MAC default filters */
2484 
2485 	__clear_bit(filter_idx, table->used_bitmap);
2486 	--table->used;
2487 	memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
2488 
2489 	ef4_writeo(efx, &filter, table->offset + table->step * filter_idx);
2490 
2491 	/* If this filter required a greater search depth than
2492 	 * any other, the search limit for its type can now be
2493 	 * decreased.  However, it is hard to determine that
2494 	 * unless the table has become completely empty - in
2495 	 * which case, all its search limits can be set to 0.
2496 	 */
2497 	if (unlikely(table->used == 0)) {
2498 		memset(table->search_limit, 0, sizeof(table->search_limit));
2499 		if (table->id == EF4_FARCH_FILTER_TABLE_TX_MAC)
2500 			ef4_farch_filter_push_tx_limits(efx);
2501 		else
2502 			ef4_farch_filter_push_rx_config(efx);
2503 	}
2504 }
2505 
2506 static int ef4_farch_filter_remove(struct ef4_nic *efx,
2507 				   struct ef4_farch_filter_table *table,
2508 				   unsigned int filter_idx,
2509 				   enum ef4_filter_priority priority)
2510 {
2511 	struct ef4_farch_filter_spec *spec = &table->spec[filter_idx];
2512 
2513 	if (!test_bit(filter_idx, table->used_bitmap) ||
2514 	    spec->priority != priority)
2515 		return -ENOENT;
2516 
2517 	if (spec->flags & EF4_FILTER_FLAG_RX_OVER_AUTO) {
2518 		ef4_farch_filter_init_rx_auto(efx, spec);
2519 		ef4_farch_filter_push_rx_config(efx);
2520 	} else {
2521 		ef4_farch_filter_table_clear_entry(efx, table, filter_idx);
2522 	}
2523 
2524 	return 0;
2525 }
2526 
2527 int ef4_farch_filter_remove_safe(struct ef4_nic *efx,
2528 				 enum ef4_filter_priority priority,
2529 				 u32 filter_id)
2530 {
2531 	struct ef4_farch_filter_state *state = efx->filter_state;
2532 	enum ef4_farch_filter_table_id table_id;
2533 	struct ef4_farch_filter_table *table;
2534 	unsigned int filter_idx;
2535 	struct ef4_farch_filter_spec *spec;
2536 	int rc;
2537 
2538 	table_id = ef4_farch_filter_id_table_id(filter_id);
2539 	if ((unsigned int)table_id >= EF4_FARCH_FILTER_TABLE_COUNT)
2540 		return -ENOENT;
2541 	table = &state->table[table_id];
2542 
2543 	filter_idx = ef4_farch_filter_id_index(filter_id);
2544 	if (filter_idx >= table->size)
2545 		return -ENOENT;
2546 	spec = &table->spec[filter_idx];
2547 
2548 	spin_lock_bh(&efx->filter_lock);
2549 	rc = ef4_farch_filter_remove(efx, table, filter_idx, priority);
2550 	spin_unlock_bh(&efx->filter_lock);
2551 
2552 	return rc;
2553 }
2554 
2555 int ef4_farch_filter_get_safe(struct ef4_nic *efx,
2556 			      enum ef4_filter_priority priority,
2557 			      u32 filter_id, struct ef4_filter_spec *spec_buf)
2558 {
2559 	struct ef4_farch_filter_state *state = efx->filter_state;
2560 	enum ef4_farch_filter_table_id table_id;
2561 	struct ef4_farch_filter_table *table;
2562 	struct ef4_farch_filter_spec *spec;
2563 	unsigned int filter_idx;
2564 	int rc;
2565 
2566 	table_id = ef4_farch_filter_id_table_id(filter_id);
2567 	if ((unsigned int)table_id >= EF4_FARCH_FILTER_TABLE_COUNT)
2568 		return -ENOENT;
2569 	table = &state->table[table_id];
2570 
2571 	filter_idx = ef4_farch_filter_id_index(filter_id);
2572 	if (filter_idx >= table->size)
2573 		return -ENOENT;
2574 	spec = &table->spec[filter_idx];
2575 
2576 	spin_lock_bh(&efx->filter_lock);
2577 
2578 	if (test_bit(filter_idx, table->used_bitmap) &&
2579 	    spec->priority == priority) {
2580 		ef4_farch_filter_to_gen_spec(spec_buf, spec);
2581 		rc = 0;
2582 	} else {
2583 		rc = -ENOENT;
2584 	}
2585 
2586 	spin_unlock_bh(&efx->filter_lock);
2587 
2588 	return rc;
2589 }
2590 
2591 static void
2592 ef4_farch_filter_table_clear(struct ef4_nic *efx,
2593 			     enum ef4_farch_filter_table_id table_id,
2594 			     enum ef4_filter_priority priority)
2595 {
2596 	struct ef4_farch_filter_state *state = efx->filter_state;
2597 	struct ef4_farch_filter_table *table = &state->table[table_id];
2598 	unsigned int filter_idx;
2599 
2600 	spin_lock_bh(&efx->filter_lock);
2601 	for (filter_idx = 0; filter_idx < table->size; ++filter_idx) {
2602 		if (table->spec[filter_idx].priority != EF4_FILTER_PRI_AUTO)
2603 			ef4_farch_filter_remove(efx, table,
2604 						filter_idx, priority);
2605 	}
2606 	spin_unlock_bh(&efx->filter_lock);
2607 }
2608 
2609 int ef4_farch_filter_clear_rx(struct ef4_nic *efx,
2610 			       enum ef4_filter_priority priority)
2611 {
2612 	ef4_farch_filter_table_clear(efx, EF4_FARCH_FILTER_TABLE_RX_IP,
2613 				     priority);
2614 	ef4_farch_filter_table_clear(efx, EF4_FARCH_FILTER_TABLE_RX_MAC,
2615 				     priority);
2616 	ef4_farch_filter_table_clear(efx, EF4_FARCH_FILTER_TABLE_RX_DEF,
2617 				     priority);
2618 	return 0;
2619 }
2620 
2621 u32 ef4_farch_filter_count_rx_used(struct ef4_nic *efx,
2622 				   enum ef4_filter_priority priority)
2623 {
2624 	struct ef4_farch_filter_state *state = efx->filter_state;
2625 	enum ef4_farch_filter_table_id table_id;
2626 	struct ef4_farch_filter_table *table;
2627 	unsigned int filter_idx;
2628 	u32 count = 0;
2629 
2630 	spin_lock_bh(&efx->filter_lock);
2631 
2632 	for (table_id = EF4_FARCH_FILTER_TABLE_RX_IP;
2633 	     table_id <= EF4_FARCH_FILTER_TABLE_RX_DEF;
2634 	     table_id++) {
2635 		table = &state->table[table_id];
2636 		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2637 			if (test_bit(filter_idx, table->used_bitmap) &&
2638 			    table->spec[filter_idx].priority == priority)
2639 				++count;
2640 		}
2641 	}
2642 
2643 	spin_unlock_bh(&efx->filter_lock);
2644 
2645 	return count;
2646 }
2647 
2648 s32 ef4_farch_filter_get_rx_ids(struct ef4_nic *efx,
2649 				enum ef4_filter_priority priority,
2650 				u32 *buf, u32 size)
2651 {
2652 	struct ef4_farch_filter_state *state = efx->filter_state;
2653 	enum ef4_farch_filter_table_id table_id;
2654 	struct ef4_farch_filter_table *table;
2655 	unsigned int filter_idx;
2656 	s32 count = 0;
2657 
2658 	spin_lock_bh(&efx->filter_lock);
2659 
2660 	for (table_id = EF4_FARCH_FILTER_TABLE_RX_IP;
2661 	     table_id <= EF4_FARCH_FILTER_TABLE_RX_DEF;
2662 	     table_id++) {
2663 		table = &state->table[table_id];
2664 		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2665 			if (test_bit(filter_idx, table->used_bitmap) &&
2666 			    table->spec[filter_idx].priority == priority) {
2667 				if (count == size) {
2668 					count = -EMSGSIZE;
2669 					goto out;
2670 				}
2671 				buf[count++] = ef4_farch_filter_make_id(
2672 					&table->spec[filter_idx], filter_idx);
2673 			}
2674 		}
2675 	}
2676 out:
2677 	spin_unlock_bh(&efx->filter_lock);
2678 
2679 	return count;
2680 }
2681 
2682 /* Restore filter stater after reset */
2683 void ef4_farch_filter_table_restore(struct ef4_nic *efx)
2684 {
2685 	struct ef4_farch_filter_state *state = efx->filter_state;
2686 	enum ef4_farch_filter_table_id table_id;
2687 	struct ef4_farch_filter_table *table;
2688 	ef4_oword_t filter;
2689 	unsigned int filter_idx;
2690 
2691 	spin_lock_bh(&efx->filter_lock);
2692 
2693 	for (table_id = 0; table_id < EF4_FARCH_FILTER_TABLE_COUNT; table_id++) {
2694 		table = &state->table[table_id];
2695 
2696 		/* Check whether this is a regular register table */
2697 		if (table->step == 0)
2698 			continue;
2699 
2700 		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2701 			if (!test_bit(filter_idx, table->used_bitmap))
2702 				continue;
2703 			ef4_farch_filter_build(&filter, &table->spec[filter_idx]);
2704 			ef4_writeo(efx, &filter,
2705 				   table->offset + table->step * filter_idx);
2706 		}
2707 	}
2708 
2709 	ef4_farch_filter_push_rx_config(efx);
2710 	ef4_farch_filter_push_tx_limits(efx);
2711 
2712 	spin_unlock_bh(&efx->filter_lock);
2713 }
2714 
2715 void ef4_farch_filter_table_remove(struct ef4_nic *efx)
2716 {
2717 	struct ef4_farch_filter_state *state = efx->filter_state;
2718 	enum ef4_farch_filter_table_id table_id;
2719 
2720 	for (table_id = 0; table_id < EF4_FARCH_FILTER_TABLE_COUNT; table_id++) {
2721 		kfree(state->table[table_id].used_bitmap);
2722 		vfree(state->table[table_id].spec);
2723 	}
2724 	kfree(state);
2725 }
2726 
2727 int ef4_farch_filter_table_probe(struct ef4_nic *efx)
2728 {
2729 	struct ef4_farch_filter_state *state;
2730 	struct ef4_farch_filter_table *table;
2731 	unsigned table_id;
2732 
2733 	state = kzalloc(sizeof(struct ef4_farch_filter_state), GFP_KERNEL);
2734 	if (!state)
2735 		return -ENOMEM;
2736 	efx->filter_state = state;
2737 
2738 	if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
2739 		table = &state->table[EF4_FARCH_FILTER_TABLE_RX_IP];
2740 		table->id = EF4_FARCH_FILTER_TABLE_RX_IP;
2741 		table->offset = FR_BZ_RX_FILTER_TBL0;
2742 		table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
2743 		table->step = FR_BZ_RX_FILTER_TBL0_STEP;
2744 	}
2745 
2746 	for (table_id = 0; table_id < EF4_FARCH_FILTER_TABLE_COUNT; table_id++) {
2747 		table = &state->table[table_id];
2748 		if (table->size == 0)
2749 			continue;
2750 		table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size),
2751 					     sizeof(unsigned long),
2752 					     GFP_KERNEL);
2753 		if (!table->used_bitmap)
2754 			goto fail;
2755 		table->spec = vzalloc(array_size(sizeof(*table->spec),
2756 						 table->size));
2757 		if (!table->spec)
2758 			goto fail;
2759 	}
2760 
2761 	table = &state->table[EF4_FARCH_FILTER_TABLE_RX_DEF];
2762 	if (table->size) {
2763 		/* RX default filters must always exist */
2764 		struct ef4_farch_filter_spec *spec;
2765 		unsigned i;
2766 
2767 		for (i = 0; i < EF4_FARCH_FILTER_SIZE_RX_DEF; i++) {
2768 			spec = &table->spec[i];
2769 			spec->type = EF4_FARCH_FILTER_UC_DEF + i;
2770 			ef4_farch_filter_init_rx_auto(efx, spec);
2771 			__set_bit(i, table->used_bitmap);
2772 		}
2773 	}
2774 
2775 	ef4_farch_filter_push_rx_config(efx);
2776 
2777 	return 0;
2778 
2779 fail:
2780 	ef4_farch_filter_table_remove(efx);
2781 	return -ENOMEM;
2782 }
2783 
2784 /* Update scatter enable flags for filters pointing to our own RX queues */
2785 void ef4_farch_filter_update_rx_scatter(struct ef4_nic *efx)
2786 {
2787 	struct ef4_farch_filter_state *state = efx->filter_state;
2788 	enum ef4_farch_filter_table_id table_id;
2789 	struct ef4_farch_filter_table *table;
2790 	ef4_oword_t filter;
2791 	unsigned int filter_idx;
2792 
2793 	spin_lock_bh(&efx->filter_lock);
2794 
2795 	for (table_id = EF4_FARCH_FILTER_TABLE_RX_IP;
2796 	     table_id <= EF4_FARCH_FILTER_TABLE_RX_DEF;
2797 	     table_id++) {
2798 		table = &state->table[table_id];
2799 
2800 		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2801 			if (!test_bit(filter_idx, table->used_bitmap) ||
2802 			    table->spec[filter_idx].dmaq_id >=
2803 			    efx->n_rx_channels)
2804 				continue;
2805 
2806 			if (efx->rx_scatter)
2807 				table->spec[filter_idx].flags |=
2808 					EF4_FILTER_FLAG_RX_SCATTER;
2809 			else
2810 				table->spec[filter_idx].flags &=
2811 					~EF4_FILTER_FLAG_RX_SCATTER;
2812 
2813 			if (table_id == EF4_FARCH_FILTER_TABLE_RX_DEF)
2814 				/* Pushed by ef4_farch_filter_push_rx_config() */
2815 				continue;
2816 
2817 			ef4_farch_filter_build(&filter, &table->spec[filter_idx]);
2818 			ef4_writeo(efx, &filter,
2819 				   table->offset + table->step * filter_idx);
2820 		}
2821 	}
2822 
2823 	ef4_farch_filter_push_rx_config(efx);
2824 
2825 	spin_unlock_bh(&efx->filter_lock);
2826 }
2827 
2828 #ifdef CONFIG_RFS_ACCEL
2829 
2830 s32 ef4_farch_filter_rfs_insert(struct ef4_nic *efx,
2831 				struct ef4_filter_spec *gen_spec)
2832 {
2833 	return ef4_farch_filter_insert(efx, gen_spec, true);
2834 }
2835 
2836 bool ef4_farch_filter_rfs_expire_one(struct ef4_nic *efx, u32 flow_id,
2837 				     unsigned int index)
2838 {
2839 	struct ef4_farch_filter_state *state = efx->filter_state;
2840 	struct ef4_farch_filter_table *table =
2841 		&state->table[EF4_FARCH_FILTER_TABLE_RX_IP];
2842 
2843 	if (test_bit(index, table->used_bitmap) &&
2844 	    table->spec[index].priority == EF4_FILTER_PRI_HINT &&
2845 	    rps_may_expire_flow(efx->net_dev, table->spec[index].dmaq_id,
2846 				flow_id, index)) {
2847 		ef4_farch_filter_table_clear_entry(efx, table, index);
2848 		return true;
2849 	}
2850 
2851 	return false;
2852 }
2853 
2854 #endif /* CONFIG_RFS_ACCEL */
2855 
2856 void ef4_farch_filter_sync_rx_mode(struct ef4_nic *efx)
2857 {
2858 	struct net_device *net_dev = efx->net_dev;
2859 	struct netdev_hw_addr *ha;
2860 	union ef4_multicast_hash *mc_hash = &efx->multicast_hash;
2861 	u32 crc;
2862 	int bit;
2863 
2864 	if (!ef4_dev_registered(efx))
2865 		return;
2866 
2867 	netif_addr_lock_bh(net_dev);
2868 
2869 	efx->unicast_filter = !(net_dev->flags & IFF_PROMISC);
2870 
2871 	/* Build multicast hash table */
2872 	if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2873 		memset(mc_hash, 0xff, sizeof(*mc_hash));
2874 	} else {
2875 		memset(mc_hash, 0x00, sizeof(*mc_hash));
2876 		netdev_for_each_mc_addr(ha, net_dev) {
2877 			crc = ether_crc_le(ETH_ALEN, ha->addr);
2878 			bit = crc & (EF4_MCAST_HASH_ENTRIES - 1);
2879 			__set_bit_le(bit, mc_hash);
2880 		}
2881 
2882 		/* Broadcast packets go through the multicast hash filter.
2883 		 * ether_crc_le() of the broadcast address is 0xbe2612ff
2884 		 * so we always add bit 0xff to the mask.
2885 		 */
2886 		__set_bit_le(0xff, mc_hash);
2887 	}
2888 
2889 	netif_addr_unlock_bh(net_dev);
2890 }
2891