1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   Copyright (C) 2013  Vayavya Labs Pvt Ltd
4 
5   This implements all the API for managing HW timestamp & PTP.
6 
7 
8   Author: Rayagond Kokatanur <rayagond@vayavyalabs.com>
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10 *******************************************************************************/
11 
12 #include <linux/io.h>
13 #include <linux/iopoll.h>
14 #include <linux/delay.h>
15 #include <linux/ptp_clock_kernel.h>
16 #include "common.h"
17 #include "stmmac_ptp.h"
18 #include "dwmac4.h"
19 #include "stmmac.h"
20 
21 static void config_hw_tstamping(void __iomem *ioaddr, u32 data)
22 {
23 	writel(data, ioaddr + PTP_TCR);
24 }
25 
26 static void config_sub_second_increment(void __iomem *ioaddr,
27 		u32 ptp_clock, int gmac4, u32 *ssinc)
28 {
29 	u32 value = readl(ioaddr + PTP_TCR);
30 	unsigned long data;
31 	u32 reg_value;
32 
33 	/* For GMAC3.x, 4.x versions, in "fine adjustement mode" set sub-second
34 	 * increment to twice the number of nanoseconds of a clock cycle.
35 	 * The calculation of the default_addend value by the caller will set it
36 	 * to mid-range = 2^31 when the remainder of this division is zero,
37 	 * which will make the accumulator overflow once every 2 ptp_clock
38 	 * cycles, adding twice the number of nanoseconds of a clock cycle :
39 	 * 2000000000ULL / ptp_clock.
40 	 */
41 	if (value & PTP_TCR_TSCFUPDT)
42 		data = (2000000000ULL / ptp_clock);
43 	else
44 		data = (1000000000ULL / ptp_clock);
45 
46 	/* 0.465ns accuracy */
47 	if (!(value & PTP_TCR_TSCTRLSSR))
48 		data = (data * 1000) / 465;
49 
50 	if (data > PTP_SSIR_SSINC_MAX)
51 		data = PTP_SSIR_SSINC_MAX;
52 
53 	reg_value = data;
54 	if (gmac4)
55 		reg_value <<= GMAC4_PTP_SSIR_SSINC_SHIFT;
56 
57 	writel(reg_value, ioaddr + PTP_SSIR);
58 
59 	if (ssinc)
60 		*ssinc = data;
61 }
62 
63 static void hwtstamp_correct_latency(struct stmmac_priv *priv)
64 {
65 	void __iomem *ioaddr = priv->ptpaddr;
66 	u32 reg_tsic, reg_tsicsns;
67 	u32 reg_tsec, reg_tsecsns;
68 	u64 scaled_ns;
69 	u32 val;
70 
71 	/* MAC-internal ingress latency */
72 	scaled_ns = readl(ioaddr + PTP_TS_INGR_LAT);
73 
74 	/* See section 11.7.2.5.3.1 "Ingress Correction" on page 4001 of
75 	 * i.MX8MP Applications Processor Reference Manual Rev. 1, 06/2021
76 	 */
77 	val = readl(ioaddr + PTP_TCR);
78 	if (val & PTP_TCR_TSCTRLSSR)
79 		/* nanoseconds field is in decimal format with granularity of 1ns/bit */
80 		scaled_ns = ((u64)NSEC_PER_SEC << 16) - scaled_ns;
81 	else
82 		/* nanoseconds field is in binary format with granularity of ~0.466ns/bit */
83 		scaled_ns = ((1ULL << 31) << 16) -
84 			DIV_U64_ROUND_CLOSEST(scaled_ns * PSEC_PER_NSEC, 466U);
85 
86 	reg_tsic = scaled_ns >> 16;
87 	reg_tsicsns = scaled_ns & 0xff00;
88 
89 	/* set bit 31 for 2's compliment */
90 	reg_tsic |= BIT(31);
91 
92 	writel(reg_tsic, ioaddr + PTP_TS_INGR_CORR_NS);
93 	writel(reg_tsicsns, ioaddr + PTP_TS_INGR_CORR_SNS);
94 
95 	/* MAC-internal egress latency */
96 	scaled_ns = readl(ioaddr + PTP_TS_EGR_LAT);
97 
98 	reg_tsec = scaled_ns >> 16;
99 	reg_tsecsns = scaled_ns & 0xff00;
100 
101 	writel(reg_tsec, ioaddr + PTP_TS_EGR_CORR_NS);
102 	writel(reg_tsecsns, ioaddr + PTP_TS_EGR_CORR_SNS);
103 }
104 
105 static int init_systime(void __iomem *ioaddr, u32 sec, u32 nsec)
106 {
107 	u32 value;
108 
109 	writel(sec, ioaddr + PTP_STSUR);
110 	writel(nsec, ioaddr + PTP_STNSUR);
111 	/* issue command to initialize the system time value */
112 	value = readl(ioaddr + PTP_TCR);
113 	value |= PTP_TCR_TSINIT;
114 	writel(value, ioaddr + PTP_TCR);
115 
116 	/* wait for present system time initialize to complete */
117 	return readl_poll_timeout_atomic(ioaddr + PTP_TCR, value,
118 				 !(value & PTP_TCR_TSINIT),
119 				 10, 100000);
120 }
121 
122 static int config_addend(void __iomem *ioaddr, u32 addend)
123 {
124 	u32 value;
125 	int limit;
126 
127 	writel(addend, ioaddr + PTP_TAR);
128 	/* issue command to update the addend value */
129 	value = readl(ioaddr + PTP_TCR);
130 	value |= PTP_TCR_TSADDREG;
131 	writel(value, ioaddr + PTP_TCR);
132 
133 	/* wait for present addend update to complete */
134 	limit = 10;
135 	while (limit--) {
136 		if (!(readl(ioaddr + PTP_TCR) & PTP_TCR_TSADDREG))
137 			break;
138 		mdelay(10);
139 	}
140 	if (limit < 0)
141 		return -EBUSY;
142 
143 	return 0;
144 }
145 
146 static int adjust_systime(void __iomem *ioaddr, u32 sec, u32 nsec,
147 		int add_sub, int gmac4)
148 {
149 	u32 value;
150 	int limit;
151 
152 	if (add_sub) {
153 		/* If the new sec value needs to be subtracted with
154 		 * the system time, then MAC_STSUR reg should be
155 		 * programmed with (2^32 – <new_sec_value>)
156 		 */
157 		if (gmac4)
158 			sec = -sec;
159 
160 		value = readl(ioaddr + PTP_TCR);
161 		if (value & PTP_TCR_TSCTRLSSR)
162 			nsec = (PTP_DIGITAL_ROLLOVER_MODE - nsec);
163 		else
164 			nsec = (PTP_BINARY_ROLLOVER_MODE - nsec);
165 	}
166 
167 	writel(sec, ioaddr + PTP_STSUR);
168 	value = (add_sub << PTP_STNSUR_ADDSUB_SHIFT) | nsec;
169 	writel(value, ioaddr + PTP_STNSUR);
170 
171 	/* issue command to initialize the system time value */
172 	value = readl(ioaddr + PTP_TCR);
173 	value |= PTP_TCR_TSUPDT;
174 	writel(value, ioaddr + PTP_TCR);
175 
176 	/* wait for present system time adjust/update to complete */
177 	limit = 10;
178 	while (limit--) {
179 		if (!(readl(ioaddr + PTP_TCR) & PTP_TCR_TSUPDT))
180 			break;
181 		mdelay(10);
182 	}
183 	if (limit < 0)
184 		return -EBUSY;
185 
186 	return 0;
187 }
188 
189 static void get_systime(void __iomem *ioaddr, u64 *systime)
190 {
191 	u64 ns, sec0, sec1;
192 
193 	/* Get the TSS value */
194 	sec1 = readl_relaxed(ioaddr + PTP_STSR);
195 	do {
196 		sec0 = sec1;
197 		/* Get the TSSS value */
198 		ns = readl_relaxed(ioaddr + PTP_STNSR);
199 		/* Get the TSS value */
200 		sec1 = readl_relaxed(ioaddr + PTP_STSR);
201 	} while (sec0 != sec1);
202 
203 	if (systime)
204 		*systime = ns + (sec1 * 1000000000ULL);
205 }
206 
207 static void get_ptptime(void __iomem *ptpaddr, u64 *ptp_time)
208 {
209 	u64 ns;
210 
211 	ns = readl(ptpaddr + PTP_ATNR);
212 	ns += readl(ptpaddr + PTP_ATSR) * NSEC_PER_SEC;
213 
214 	*ptp_time = ns;
215 }
216 
217 static void timestamp_interrupt(struct stmmac_priv *priv)
218 {
219 	u32 num_snapshot, ts_status, tsync_int;
220 	struct ptp_clock_event event;
221 	unsigned long flags;
222 	u64 ptp_time;
223 	int i;
224 
225 	if (priv->plat->flags & STMMAC_FLAG_INT_SNAPSHOT_EN) {
226 		wake_up(&priv->tstamp_busy_wait);
227 		return;
228 	}
229 
230 	tsync_int = readl(priv->ioaddr + GMAC_INT_STATUS) & GMAC_INT_TSIE;
231 
232 	if (!tsync_int)
233 		return;
234 
235 	/* Read timestamp status to clear interrupt from either external
236 	 * timestamp or start/end of PPS.
237 	 */
238 	ts_status = readl(priv->ioaddr + GMAC_TIMESTAMP_STATUS);
239 
240 	if (priv->plat->flags & STMMAC_FLAG_EXT_SNAPSHOT_EN)
241 		return;
242 
243 	num_snapshot = (ts_status & GMAC_TIMESTAMP_ATSNS_MASK) >>
244 		       GMAC_TIMESTAMP_ATSNS_SHIFT;
245 
246 	for (i = 0; i < num_snapshot; i++) {
247 		read_lock_irqsave(&priv->ptp_lock, flags);
248 		get_ptptime(priv->ptpaddr, &ptp_time);
249 		read_unlock_irqrestore(&priv->ptp_lock, flags);
250 		event.type = PTP_CLOCK_EXTTS;
251 		event.index = 0;
252 		event.timestamp = ptp_time;
253 		ptp_clock_event(priv->ptp_clock, &event);
254 	}
255 }
256 
257 const struct stmmac_hwtimestamp stmmac_ptp = {
258 	.config_hw_tstamping = config_hw_tstamping,
259 	.init_systime = init_systime,
260 	.config_sub_second_increment = config_sub_second_increment,
261 	.config_addend = config_addend,
262 	.adjust_systime = adjust_systime,
263 	.get_systime = get_systime,
264 	.get_ptptime = get_ptptime,
265 	.timestamp_interrupt = timestamp_interrupt,
266 	.hwtstamp_correct_latency = hwtstamp_correct_latency,
267 };
268