xref: /linux/drivers/net/ethernet/ti/am65-cpts.c (revision 2da68a77)
1 // SPDX-License-Identifier: GPL-2.0
2 /* TI K3 AM65x Common Platform Time Sync
3  *
4  * Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
5  *
6  */
7 
8 #include <linux/clk.h>
9 #include <linux/clk-provider.h>
10 #include <linux/err.h>
11 #include <linux/if_vlan.h>
12 #include <linux/interrupt.h>
13 #include <linux/module.h>
14 #include <linux/netdevice.h>
15 #include <linux/net_tstamp.h>
16 #include <linux/of.h>
17 #include <linux/of_irq.h>
18 #include <linux/platform_device.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/ptp_classify.h>
21 #include <linux/ptp_clock_kernel.h>
22 
23 #include "am65-cpts.h"
24 
25 struct am65_genf_regs {
26 	u32 comp_lo;	/* Comparison Low Value 0:31 */
27 	u32 comp_hi;	/* Comparison High Value 32:63 */
28 	u32 control;	/* control */
29 	u32 length;	/* Length */
30 	u32 ppm_low;	/* PPM Load Low Value 0:31 */
31 	u32 ppm_hi;	/* PPM Load High Value 32:63 */
32 	u32 ts_nudge;	/* Nudge value */
33 } __aligned(32) __packed;
34 
35 #define AM65_CPTS_GENF_MAX_NUM 9
36 #define AM65_CPTS_ESTF_MAX_NUM 8
37 
38 struct am65_cpts_regs {
39 	u32 idver;		/* Identification and version */
40 	u32 control;		/* Time sync control */
41 	u32 rftclk_sel;		/* Reference Clock Select Register */
42 	u32 ts_push;		/* Time stamp event push */
43 	u32 ts_load_val_lo;	/* Time Stamp Load Low Value 0:31 */
44 	u32 ts_load_en;		/* Time stamp load enable */
45 	u32 ts_comp_lo;		/* Time Stamp Comparison Low Value 0:31 */
46 	u32 ts_comp_length;	/* Time Stamp Comparison Length */
47 	u32 intstat_raw;	/* Time sync interrupt status raw */
48 	u32 intstat_masked;	/* Time sync interrupt status masked */
49 	u32 int_enable;		/* Time sync interrupt enable */
50 	u32 ts_comp_nudge;	/* Time Stamp Comparison Nudge Value */
51 	u32 event_pop;		/* Event interrupt pop */
52 	u32 event_0;		/* Event Time Stamp lo 0:31 */
53 	u32 event_1;		/* Event Type Fields */
54 	u32 event_2;		/* Event Type Fields domain */
55 	u32 event_3;		/* Event Time Stamp hi 32:63 */
56 	u32 ts_load_val_hi;	/* Time Stamp Load High Value 32:63 */
57 	u32 ts_comp_hi;		/* Time Stamp Comparison High Value 32:63 */
58 	u32 ts_add_val;		/* Time Stamp Add value */
59 	u32 ts_ppm_low;		/* Time Stamp PPM Load Low Value 0:31 */
60 	u32 ts_ppm_hi;		/* Time Stamp PPM Load High Value 32:63 */
61 	u32 ts_nudge;		/* Time Stamp Nudge value */
62 	u32 reserv[33];
63 	struct am65_genf_regs genf[AM65_CPTS_GENF_MAX_NUM];
64 	struct am65_genf_regs estf[AM65_CPTS_ESTF_MAX_NUM];
65 };
66 
67 /* CONTROL_REG */
68 #define AM65_CPTS_CONTROL_EN			BIT(0)
69 #define AM65_CPTS_CONTROL_INT_TEST		BIT(1)
70 #define AM65_CPTS_CONTROL_TS_COMP_POLARITY	BIT(2)
71 #define AM65_CPTS_CONTROL_TSTAMP_EN		BIT(3)
72 #define AM65_CPTS_CONTROL_SEQUENCE_EN		BIT(4)
73 #define AM65_CPTS_CONTROL_64MODE		BIT(5)
74 #define AM65_CPTS_CONTROL_TS_COMP_TOG		BIT(6)
75 #define AM65_CPTS_CONTROL_TS_PPM_DIR		BIT(7)
76 #define AM65_CPTS_CONTROL_HW1_TS_PUSH_EN	BIT(8)
77 #define AM65_CPTS_CONTROL_HW2_TS_PUSH_EN	BIT(9)
78 #define AM65_CPTS_CONTROL_HW3_TS_PUSH_EN	BIT(10)
79 #define AM65_CPTS_CONTROL_HW4_TS_PUSH_EN	BIT(11)
80 #define AM65_CPTS_CONTROL_HW5_TS_PUSH_EN	BIT(12)
81 #define AM65_CPTS_CONTROL_HW6_TS_PUSH_EN	BIT(13)
82 #define AM65_CPTS_CONTROL_HW7_TS_PUSH_EN	BIT(14)
83 #define AM65_CPTS_CONTROL_HW8_TS_PUSH_EN	BIT(15)
84 #define AM65_CPTS_CONTROL_HW1_TS_PUSH_OFFSET	(8)
85 
86 #define AM65_CPTS_CONTROL_TX_GENF_CLR_EN	BIT(17)
87 
88 #define AM65_CPTS_CONTROL_TS_SYNC_SEL_MASK	(0xF)
89 #define AM65_CPTS_CONTROL_TS_SYNC_SEL_SHIFT	(28)
90 
91 /* RFTCLK_SEL_REG */
92 #define AM65_CPTS_RFTCLK_SEL_MASK		(0x1F)
93 
94 /* TS_PUSH_REG */
95 #define AM65_CPTS_TS_PUSH			BIT(0)
96 
97 /* TS_LOAD_EN_REG */
98 #define AM65_CPTS_TS_LOAD_EN			BIT(0)
99 
100 /* INTSTAT_RAW_REG */
101 #define AM65_CPTS_INTSTAT_RAW_TS_PEND		BIT(0)
102 
103 /* INTSTAT_MASKED_REG */
104 #define AM65_CPTS_INTSTAT_MASKED_TS_PEND	BIT(0)
105 
106 /* INT_ENABLE_REG */
107 #define AM65_CPTS_INT_ENABLE_TS_PEND_EN		BIT(0)
108 
109 /* TS_COMP_NUDGE_REG */
110 #define AM65_CPTS_TS_COMP_NUDGE_MASK		(0xFF)
111 
112 /* EVENT_POP_REG */
113 #define AM65_CPTS_EVENT_POP			BIT(0)
114 
115 /* EVENT_1_REG */
116 #define AM65_CPTS_EVENT_1_SEQUENCE_ID_MASK	GENMASK(15, 0)
117 
118 #define AM65_CPTS_EVENT_1_MESSAGE_TYPE_MASK	GENMASK(19, 16)
119 #define AM65_CPTS_EVENT_1_MESSAGE_TYPE_SHIFT	(16)
120 
121 #define AM65_CPTS_EVENT_1_EVENT_TYPE_MASK	GENMASK(23, 20)
122 #define AM65_CPTS_EVENT_1_EVENT_TYPE_SHIFT	(20)
123 
124 #define AM65_CPTS_EVENT_1_PORT_NUMBER_MASK	GENMASK(28, 24)
125 #define AM65_CPTS_EVENT_1_PORT_NUMBER_SHIFT	(24)
126 
127 /* EVENT_2_REG */
128 #define AM65_CPTS_EVENT_2_REG_DOMAIN_MASK	(0xFF)
129 #define AM65_CPTS_EVENT_2_REG_DOMAIN_SHIFT	(0)
130 
131 enum {
132 	AM65_CPTS_EV_PUSH,	/* Time Stamp Push Event */
133 	AM65_CPTS_EV_ROLL,	/* Time Stamp Rollover Event */
134 	AM65_CPTS_EV_HALF,	/* Time Stamp Half Rollover Event */
135 	AM65_CPTS_EV_HW,		/* Hardware Time Stamp Push Event */
136 	AM65_CPTS_EV_RX,		/* Ethernet Receive Event */
137 	AM65_CPTS_EV_TX,		/* Ethernet Transmit Event */
138 	AM65_CPTS_EV_TS_COMP,	/* Time Stamp Compare Event */
139 	AM65_CPTS_EV_HOST,	/* Host Transmit Event */
140 };
141 
142 struct am65_cpts_event {
143 	struct list_head list;
144 	unsigned long tmo;
145 	u32 event1;
146 	u32 event2;
147 	u64 timestamp;
148 };
149 
150 #define AM65_CPTS_FIFO_DEPTH		(16)
151 #define AM65_CPTS_MAX_EVENTS		(32)
152 #define AM65_CPTS_EVENT_RX_TX_TIMEOUT	(20) /* ms */
153 #define AM65_CPTS_SKB_TX_WORK_TIMEOUT	1 /* jiffies */
154 #define AM65_CPTS_MIN_PPM		0x400
155 
156 struct am65_cpts {
157 	struct device *dev;
158 	struct am65_cpts_regs __iomem *reg;
159 	struct ptp_clock_info ptp_info;
160 	struct ptp_clock *ptp_clock;
161 	int phc_index;
162 	struct clk_hw *clk_mux_hw;
163 	struct device_node *clk_mux_np;
164 	struct clk *refclk;
165 	u32 refclk_freq;
166 	struct list_head events;
167 	struct list_head pool;
168 	struct am65_cpts_event pool_data[AM65_CPTS_MAX_EVENTS];
169 	spinlock_t lock; /* protects events lists*/
170 	u32 ext_ts_inputs;
171 	u32 genf_num;
172 	u32 ts_add_val;
173 	int irq;
174 	struct mutex ptp_clk_lock; /* PHC access sync */
175 	u64 timestamp;
176 	u32 genf_enable;
177 	u32 hw_ts_enable;
178 	struct sk_buff_head txq;
179 };
180 
181 struct am65_cpts_skb_cb_data {
182 	unsigned long tmo;
183 	u32 skb_mtype_seqid;
184 };
185 
186 #define am65_cpts_write32(c, v, r) writel(v, &(c)->reg->r)
187 #define am65_cpts_read32(c, r) readl(&(c)->reg->r)
188 
189 static void am65_cpts_settime(struct am65_cpts *cpts, u64 start_tstamp)
190 {
191 	u32 val;
192 
193 	val = upper_32_bits(start_tstamp);
194 	am65_cpts_write32(cpts, val, ts_load_val_hi);
195 	val = lower_32_bits(start_tstamp);
196 	am65_cpts_write32(cpts, val, ts_load_val_lo);
197 
198 	am65_cpts_write32(cpts, AM65_CPTS_TS_LOAD_EN, ts_load_en);
199 }
200 
201 static void am65_cpts_set_add_val(struct am65_cpts *cpts)
202 {
203 	/* select coefficient according to the rate */
204 	cpts->ts_add_val = (NSEC_PER_SEC / cpts->refclk_freq - 1) & 0x7;
205 
206 	am65_cpts_write32(cpts, cpts->ts_add_val, ts_add_val);
207 }
208 
209 static void am65_cpts_disable(struct am65_cpts *cpts)
210 {
211 	am65_cpts_write32(cpts, 0, control);
212 	am65_cpts_write32(cpts, 0, int_enable);
213 }
214 
215 static int am65_cpts_event_get_port(struct am65_cpts_event *event)
216 {
217 	return (event->event1 & AM65_CPTS_EVENT_1_PORT_NUMBER_MASK) >>
218 		AM65_CPTS_EVENT_1_PORT_NUMBER_SHIFT;
219 }
220 
221 static int am65_cpts_event_get_type(struct am65_cpts_event *event)
222 {
223 	return (event->event1 & AM65_CPTS_EVENT_1_EVENT_TYPE_MASK) >>
224 		AM65_CPTS_EVENT_1_EVENT_TYPE_SHIFT;
225 }
226 
227 static int am65_cpts_cpts_purge_events(struct am65_cpts *cpts)
228 {
229 	struct list_head *this, *next;
230 	struct am65_cpts_event *event;
231 	int removed = 0;
232 
233 	list_for_each_safe(this, next, &cpts->events) {
234 		event = list_entry(this, struct am65_cpts_event, list);
235 		if (time_after(jiffies, event->tmo)) {
236 			list_del_init(&event->list);
237 			list_add(&event->list, &cpts->pool);
238 			++removed;
239 		}
240 	}
241 
242 	if (removed)
243 		dev_dbg(cpts->dev, "event pool cleaned up %d\n", removed);
244 	return removed ? 0 : -1;
245 }
246 
247 static bool am65_cpts_fifo_pop_event(struct am65_cpts *cpts,
248 				     struct am65_cpts_event *event)
249 {
250 	u32 r = am65_cpts_read32(cpts, intstat_raw);
251 
252 	if (r & AM65_CPTS_INTSTAT_RAW_TS_PEND) {
253 		event->timestamp = am65_cpts_read32(cpts, event_0);
254 		event->event1 = am65_cpts_read32(cpts, event_1);
255 		event->event2 = am65_cpts_read32(cpts, event_2);
256 		event->timestamp |= (u64)am65_cpts_read32(cpts, event_3) << 32;
257 		am65_cpts_write32(cpts, AM65_CPTS_EVENT_POP, event_pop);
258 		return false;
259 	}
260 	return true;
261 }
262 
263 static int am65_cpts_fifo_read(struct am65_cpts *cpts)
264 {
265 	struct ptp_clock_event pevent;
266 	struct am65_cpts_event *event;
267 	bool schedule = false;
268 	int i, type, ret = 0;
269 	unsigned long flags;
270 
271 	spin_lock_irqsave(&cpts->lock, flags);
272 	for (i = 0; i < AM65_CPTS_FIFO_DEPTH; i++) {
273 		event = list_first_entry_or_null(&cpts->pool,
274 						 struct am65_cpts_event, list);
275 
276 		if (!event) {
277 			if (am65_cpts_cpts_purge_events(cpts)) {
278 				dev_err(cpts->dev, "cpts: event pool empty\n");
279 				ret = -1;
280 				goto out;
281 			}
282 			continue;
283 		}
284 
285 		if (am65_cpts_fifo_pop_event(cpts, event))
286 			break;
287 
288 		type = am65_cpts_event_get_type(event);
289 		switch (type) {
290 		case AM65_CPTS_EV_PUSH:
291 			cpts->timestamp = event->timestamp;
292 			dev_dbg(cpts->dev, "AM65_CPTS_EV_PUSH t:%llu\n",
293 				cpts->timestamp);
294 			break;
295 		case AM65_CPTS_EV_RX:
296 		case AM65_CPTS_EV_TX:
297 			event->tmo = jiffies +
298 				msecs_to_jiffies(AM65_CPTS_EVENT_RX_TX_TIMEOUT);
299 
300 			list_del_init(&event->list);
301 			list_add_tail(&event->list, &cpts->events);
302 
303 			dev_dbg(cpts->dev,
304 				"AM65_CPTS_EV_TX e1:%08x e2:%08x t:%lld\n",
305 				event->event1, event->event2,
306 				event->timestamp);
307 			schedule = true;
308 			break;
309 		case AM65_CPTS_EV_HW:
310 			pevent.index = am65_cpts_event_get_port(event) - 1;
311 			pevent.timestamp = event->timestamp;
312 			pevent.type = PTP_CLOCK_EXTTS;
313 			dev_dbg(cpts->dev, "AM65_CPTS_EV_HW p:%d t:%llu\n",
314 				pevent.index, event->timestamp);
315 
316 			ptp_clock_event(cpts->ptp_clock, &pevent);
317 			break;
318 		case AM65_CPTS_EV_HOST:
319 			break;
320 		case AM65_CPTS_EV_ROLL:
321 		case AM65_CPTS_EV_HALF:
322 		case AM65_CPTS_EV_TS_COMP:
323 			dev_dbg(cpts->dev,
324 				"AM65_CPTS_EVT: %d e1:%08x e2:%08x t:%lld\n",
325 				type,
326 				event->event1, event->event2,
327 				event->timestamp);
328 			break;
329 		default:
330 			dev_err(cpts->dev, "cpts: unknown event type\n");
331 			ret = -1;
332 			goto out;
333 		}
334 	}
335 
336 out:
337 	spin_unlock_irqrestore(&cpts->lock, flags);
338 
339 	if (schedule)
340 		ptp_schedule_worker(cpts->ptp_clock, 0);
341 
342 	return ret;
343 }
344 
345 static u64 am65_cpts_gettime(struct am65_cpts *cpts,
346 			     struct ptp_system_timestamp *sts)
347 {
348 	unsigned long flags;
349 	u64 val = 0;
350 
351 	/* temporarily disable cpts interrupt to avoid intentional
352 	 * doubled read. Interrupt can be in-flight - it's Ok.
353 	 */
354 	am65_cpts_write32(cpts, 0, int_enable);
355 
356 	/* use spin_lock_irqsave() here as it has to run very fast */
357 	spin_lock_irqsave(&cpts->lock, flags);
358 	ptp_read_system_prets(sts);
359 	am65_cpts_write32(cpts, AM65_CPTS_TS_PUSH, ts_push);
360 	am65_cpts_read32(cpts, ts_push);
361 	ptp_read_system_postts(sts);
362 	spin_unlock_irqrestore(&cpts->lock, flags);
363 
364 	am65_cpts_fifo_read(cpts);
365 
366 	am65_cpts_write32(cpts, AM65_CPTS_INT_ENABLE_TS_PEND_EN, int_enable);
367 
368 	val = cpts->timestamp;
369 
370 	return val;
371 }
372 
373 static irqreturn_t am65_cpts_interrupt(int irq, void *dev_id)
374 {
375 	struct am65_cpts *cpts = dev_id;
376 
377 	if (am65_cpts_fifo_read(cpts))
378 		dev_dbg(cpts->dev, "cpts: unable to obtain a time stamp\n");
379 
380 	return IRQ_HANDLED;
381 }
382 
383 /* PTP clock operations */
384 static int am65_cpts_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
385 {
386 	struct am65_cpts *cpts = container_of(ptp, struct am65_cpts, ptp_info);
387 	int neg_adj = 0;
388 	u64 adj_period;
389 	u32 val;
390 
391 	if (ppb < 0) {
392 		neg_adj = 1;
393 		ppb = -ppb;
394 	}
395 
396 	/* base freq = 1GHz = 1 000 000 000
397 	 * ppb_norm = ppb * base_freq / clock_freq;
398 	 * ppm_norm = ppb_norm / 1000
399 	 * adj_period = 1 000 000 / ppm_norm
400 	 * adj_period = 1 000 000 000 / ppb_norm
401 	 * adj_period = 1 000 000 000 / (ppb * base_freq / clock_freq)
402 	 * adj_period = (1 000 000 000 * clock_freq) / (ppb * base_freq)
403 	 * adj_period = clock_freq / ppb
404 	 */
405 	adj_period = div_u64(cpts->refclk_freq, ppb);
406 
407 	mutex_lock(&cpts->ptp_clk_lock);
408 
409 	val = am65_cpts_read32(cpts, control);
410 	if (neg_adj)
411 		val |= AM65_CPTS_CONTROL_TS_PPM_DIR;
412 	else
413 		val &= ~AM65_CPTS_CONTROL_TS_PPM_DIR;
414 	am65_cpts_write32(cpts, val, control);
415 
416 	val = upper_32_bits(adj_period) & 0x3FF;
417 	am65_cpts_write32(cpts, val, ts_ppm_hi);
418 	val = lower_32_bits(adj_period);
419 	am65_cpts_write32(cpts, val, ts_ppm_low);
420 
421 	mutex_unlock(&cpts->ptp_clk_lock);
422 
423 	return 0;
424 }
425 
426 static int am65_cpts_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
427 {
428 	struct am65_cpts *cpts = container_of(ptp, struct am65_cpts, ptp_info);
429 	s64 ns;
430 
431 	mutex_lock(&cpts->ptp_clk_lock);
432 	ns = am65_cpts_gettime(cpts, NULL);
433 	ns += delta;
434 	am65_cpts_settime(cpts, ns);
435 	mutex_unlock(&cpts->ptp_clk_lock);
436 
437 	return 0;
438 }
439 
440 static int am65_cpts_ptp_gettimex(struct ptp_clock_info *ptp,
441 				  struct timespec64 *ts,
442 				  struct ptp_system_timestamp *sts)
443 {
444 	struct am65_cpts *cpts = container_of(ptp, struct am65_cpts, ptp_info);
445 	u64 ns;
446 
447 	mutex_lock(&cpts->ptp_clk_lock);
448 	ns = am65_cpts_gettime(cpts, sts);
449 	mutex_unlock(&cpts->ptp_clk_lock);
450 	*ts = ns_to_timespec64(ns);
451 
452 	return 0;
453 }
454 
455 u64 am65_cpts_ns_gettime(struct am65_cpts *cpts)
456 {
457 	u64 ns;
458 
459 	/* reuse ptp_clk_lock as it serialize ts push */
460 	mutex_lock(&cpts->ptp_clk_lock);
461 	ns = am65_cpts_gettime(cpts, NULL);
462 	mutex_unlock(&cpts->ptp_clk_lock);
463 
464 	return ns;
465 }
466 EXPORT_SYMBOL_GPL(am65_cpts_ns_gettime);
467 
468 static int am65_cpts_ptp_settime(struct ptp_clock_info *ptp,
469 				 const struct timespec64 *ts)
470 {
471 	struct am65_cpts *cpts = container_of(ptp, struct am65_cpts, ptp_info);
472 	u64 ns;
473 
474 	ns = timespec64_to_ns(ts);
475 	mutex_lock(&cpts->ptp_clk_lock);
476 	am65_cpts_settime(cpts, ns);
477 	mutex_unlock(&cpts->ptp_clk_lock);
478 
479 	return 0;
480 }
481 
482 static void am65_cpts_extts_enable_hw(struct am65_cpts *cpts, u32 index, int on)
483 {
484 	u32 v;
485 
486 	v = am65_cpts_read32(cpts, control);
487 	if (on) {
488 		v |= BIT(AM65_CPTS_CONTROL_HW1_TS_PUSH_OFFSET + index);
489 		cpts->hw_ts_enable |= BIT(index);
490 	} else {
491 		v &= ~BIT(AM65_CPTS_CONTROL_HW1_TS_PUSH_OFFSET + index);
492 		cpts->hw_ts_enable &= ~BIT(index);
493 	}
494 	am65_cpts_write32(cpts, v, control);
495 }
496 
497 static int am65_cpts_extts_enable(struct am65_cpts *cpts, u32 index, int on)
498 {
499 	if (!!(cpts->hw_ts_enable & BIT(index)) == !!on)
500 		return 0;
501 
502 	mutex_lock(&cpts->ptp_clk_lock);
503 	am65_cpts_extts_enable_hw(cpts, index, on);
504 	mutex_unlock(&cpts->ptp_clk_lock);
505 
506 	dev_dbg(cpts->dev, "%s: ExtTS:%u %s\n",
507 		__func__, index, on ? "enabled" : "disabled");
508 
509 	return 0;
510 }
511 
512 int am65_cpts_estf_enable(struct am65_cpts *cpts, int idx,
513 			  struct am65_cpts_estf_cfg *cfg)
514 {
515 	u64 cycles;
516 	u32 val;
517 
518 	cycles = cfg->ns_period * cpts->refclk_freq;
519 	cycles = DIV_ROUND_UP(cycles, NSEC_PER_SEC);
520 	if (cycles > U32_MAX)
521 		return -EINVAL;
522 
523 	/* according to TRM should be zeroed */
524 	am65_cpts_write32(cpts, 0, estf[idx].length);
525 
526 	val = upper_32_bits(cfg->ns_start);
527 	am65_cpts_write32(cpts, val, estf[idx].comp_hi);
528 	val = lower_32_bits(cfg->ns_start);
529 	am65_cpts_write32(cpts, val, estf[idx].comp_lo);
530 	val = lower_32_bits(cycles);
531 	am65_cpts_write32(cpts, val, estf[idx].length);
532 
533 	dev_dbg(cpts->dev, "%s: ESTF:%u enabled\n", __func__, idx);
534 
535 	return 0;
536 }
537 EXPORT_SYMBOL_GPL(am65_cpts_estf_enable);
538 
539 void am65_cpts_estf_disable(struct am65_cpts *cpts, int idx)
540 {
541 	am65_cpts_write32(cpts, 0, estf[idx].length);
542 
543 	dev_dbg(cpts->dev, "%s: ESTF:%u disabled\n", __func__, idx);
544 }
545 EXPORT_SYMBOL_GPL(am65_cpts_estf_disable);
546 
547 static void am65_cpts_perout_enable_hw(struct am65_cpts *cpts,
548 				       struct ptp_perout_request *req, int on)
549 {
550 	u64 ns_period, ns_start, cycles;
551 	struct timespec64 ts;
552 	u32 val;
553 
554 	if (on) {
555 		ts.tv_sec = req->period.sec;
556 		ts.tv_nsec = req->period.nsec;
557 		ns_period = timespec64_to_ns(&ts);
558 
559 		cycles = (ns_period * cpts->refclk_freq) / NSEC_PER_SEC;
560 
561 		ts.tv_sec = req->start.sec;
562 		ts.tv_nsec = req->start.nsec;
563 		ns_start = timespec64_to_ns(&ts);
564 
565 		val = upper_32_bits(ns_start);
566 		am65_cpts_write32(cpts, val, genf[req->index].comp_hi);
567 		val = lower_32_bits(ns_start);
568 		am65_cpts_write32(cpts, val, genf[req->index].comp_lo);
569 		val = lower_32_bits(cycles);
570 		am65_cpts_write32(cpts, val, genf[req->index].length);
571 
572 		cpts->genf_enable |= BIT(req->index);
573 	} else {
574 		am65_cpts_write32(cpts, 0, genf[req->index].length);
575 
576 		cpts->genf_enable &= ~BIT(req->index);
577 	}
578 }
579 
580 static int am65_cpts_perout_enable(struct am65_cpts *cpts,
581 				   struct ptp_perout_request *req, int on)
582 {
583 	if (!!(cpts->genf_enable & BIT(req->index)) == !!on)
584 		return 0;
585 
586 	mutex_lock(&cpts->ptp_clk_lock);
587 	am65_cpts_perout_enable_hw(cpts, req, on);
588 	mutex_unlock(&cpts->ptp_clk_lock);
589 
590 	dev_dbg(cpts->dev, "%s: GenF:%u %s\n",
591 		__func__, req->index, on ? "enabled" : "disabled");
592 
593 	return 0;
594 }
595 
596 static int am65_cpts_ptp_enable(struct ptp_clock_info *ptp,
597 				struct ptp_clock_request *rq, int on)
598 {
599 	struct am65_cpts *cpts = container_of(ptp, struct am65_cpts, ptp_info);
600 
601 	switch (rq->type) {
602 	case PTP_CLK_REQ_EXTTS:
603 		return am65_cpts_extts_enable(cpts, rq->extts.index, on);
604 	case PTP_CLK_REQ_PEROUT:
605 		return am65_cpts_perout_enable(cpts, &rq->perout, on);
606 	default:
607 		break;
608 	}
609 
610 	return -EOPNOTSUPP;
611 }
612 
613 static long am65_cpts_ts_work(struct ptp_clock_info *ptp);
614 
615 static struct ptp_clock_info am65_ptp_info = {
616 	.owner		= THIS_MODULE,
617 	.name		= "CTPS timer",
618 	.adjfreq	= am65_cpts_ptp_adjfreq,
619 	.adjtime	= am65_cpts_ptp_adjtime,
620 	.gettimex64	= am65_cpts_ptp_gettimex,
621 	.settime64	= am65_cpts_ptp_settime,
622 	.enable		= am65_cpts_ptp_enable,
623 	.do_aux_work	= am65_cpts_ts_work,
624 };
625 
626 static bool am65_cpts_match_tx_ts(struct am65_cpts *cpts,
627 				  struct am65_cpts_event *event)
628 {
629 	struct sk_buff_head txq_list;
630 	struct sk_buff *skb, *tmp;
631 	unsigned long flags;
632 	bool found = false;
633 	u32 mtype_seqid;
634 
635 	mtype_seqid = event->event1 &
636 		      (AM65_CPTS_EVENT_1_MESSAGE_TYPE_MASK |
637 		       AM65_CPTS_EVENT_1_EVENT_TYPE_MASK |
638 		       AM65_CPTS_EVENT_1_SEQUENCE_ID_MASK);
639 
640 	__skb_queue_head_init(&txq_list);
641 
642 	spin_lock_irqsave(&cpts->txq.lock, flags);
643 	skb_queue_splice_init(&cpts->txq, &txq_list);
644 	spin_unlock_irqrestore(&cpts->txq.lock, flags);
645 
646 	/* no need to grab txq.lock as access is always done under cpts->lock */
647 	skb_queue_walk_safe(&txq_list, skb, tmp) {
648 		struct skb_shared_hwtstamps ssh;
649 		struct am65_cpts_skb_cb_data *skb_cb =
650 					(struct am65_cpts_skb_cb_data *)skb->cb;
651 
652 		if (mtype_seqid == skb_cb->skb_mtype_seqid) {
653 			u64 ns = event->timestamp;
654 
655 			memset(&ssh, 0, sizeof(ssh));
656 			ssh.hwtstamp = ns_to_ktime(ns);
657 			skb_tstamp_tx(skb, &ssh);
658 			found = true;
659 			__skb_unlink(skb, &txq_list);
660 			dev_consume_skb_any(skb);
661 			dev_dbg(cpts->dev,
662 				"match tx timestamp mtype_seqid %08x\n",
663 				mtype_seqid);
664 			break;
665 		}
666 
667 		if (time_after(jiffies, skb_cb->tmo)) {
668 			/* timeout any expired skbs over 100 ms */
669 			dev_dbg(cpts->dev,
670 				"expiring tx timestamp mtype_seqid %08x\n",
671 				mtype_seqid);
672 			__skb_unlink(skb, &txq_list);
673 			dev_consume_skb_any(skb);
674 		}
675 	}
676 
677 	spin_lock_irqsave(&cpts->txq.lock, flags);
678 	skb_queue_splice(&txq_list, &cpts->txq);
679 	spin_unlock_irqrestore(&cpts->txq.lock, flags);
680 
681 	return found;
682 }
683 
684 static void am65_cpts_find_ts(struct am65_cpts *cpts)
685 {
686 	struct am65_cpts_event *event;
687 	struct list_head *this, *next;
688 	LIST_HEAD(events_free);
689 	unsigned long flags;
690 	LIST_HEAD(events);
691 
692 	spin_lock_irqsave(&cpts->lock, flags);
693 	list_splice_init(&cpts->events, &events);
694 	spin_unlock_irqrestore(&cpts->lock, flags);
695 
696 	list_for_each_safe(this, next, &events) {
697 		event = list_entry(this, struct am65_cpts_event, list);
698 		if (am65_cpts_match_tx_ts(cpts, event) ||
699 		    time_after(jiffies, event->tmo)) {
700 			list_del_init(&event->list);
701 			list_add(&event->list, &events_free);
702 		}
703 	}
704 
705 	spin_lock_irqsave(&cpts->lock, flags);
706 	list_splice_tail(&events, &cpts->events);
707 	list_splice_tail(&events_free, &cpts->pool);
708 	spin_unlock_irqrestore(&cpts->lock, flags);
709 }
710 
711 static long am65_cpts_ts_work(struct ptp_clock_info *ptp)
712 {
713 	struct am65_cpts *cpts = container_of(ptp, struct am65_cpts, ptp_info);
714 	unsigned long flags;
715 	long delay = -1;
716 
717 	am65_cpts_find_ts(cpts);
718 
719 	spin_lock_irqsave(&cpts->txq.lock, flags);
720 	if (!skb_queue_empty(&cpts->txq))
721 		delay = AM65_CPTS_SKB_TX_WORK_TIMEOUT;
722 	spin_unlock_irqrestore(&cpts->txq.lock, flags);
723 
724 	return delay;
725 }
726 
727 /**
728  * am65_cpts_rx_enable - enable rx timestamping
729  * @cpts: cpts handle
730  * @en: enable
731  *
732  * This functions enables rx packets timestamping. The CPTS can timestamp all
733  * rx packets.
734  */
735 void am65_cpts_rx_enable(struct am65_cpts *cpts, bool en)
736 {
737 	u32 val;
738 
739 	mutex_lock(&cpts->ptp_clk_lock);
740 	val = am65_cpts_read32(cpts, control);
741 	if (en)
742 		val |= AM65_CPTS_CONTROL_TSTAMP_EN;
743 	else
744 		val &= ~AM65_CPTS_CONTROL_TSTAMP_EN;
745 	am65_cpts_write32(cpts, val, control);
746 	mutex_unlock(&cpts->ptp_clk_lock);
747 }
748 EXPORT_SYMBOL_GPL(am65_cpts_rx_enable);
749 
750 static int am65_skb_get_mtype_seqid(struct sk_buff *skb, u32 *mtype_seqid)
751 {
752 	unsigned int ptp_class = ptp_classify_raw(skb);
753 	struct ptp_header *hdr;
754 	u8 msgtype;
755 	u16 seqid;
756 
757 	if (ptp_class == PTP_CLASS_NONE)
758 		return 0;
759 
760 	hdr = ptp_parse_header(skb, ptp_class);
761 	if (!hdr)
762 		return 0;
763 
764 	msgtype = ptp_get_msgtype(hdr, ptp_class);
765 	seqid	= ntohs(hdr->sequence_id);
766 
767 	*mtype_seqid  = (msgtype << AM65_CPTS_EVENT_1_MESSAGE_TYPE_SHIFT) &
768 			AM65_CPTS_EVENT_1_MESSAGE_TYPE_MASK;
769 	*mtype_seqid |= (seqid & AM65_CPTS_EVENT_1_SEQUENCE_ID_MASK);
770 
771 	return 1;
772 }
773 
774 /**
775  * am65_cpts_tx_timestamp - save tx packet for timestamping
776  * @cpts: cpts handle
777  * @skb: packet
778  *
779  * This functions saves tx packet for timestamping if packet can be timestamped.
780  * The future processing is done in from PTP auxiliary worker.
781  */
782 void am65_cpts_tx_timestamp(struct am65_cpts *cpts, struct sk_buff *skb)
783 {
784 	struct am65_cpts_skb_cb_data *skb_cb = (void *)skb->cb;
785 
786 	if (!(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
787 		return;
788 
789 	/* add frame to queue for processing later.
790 	 * The periodic FIFO check will handle this.
791 	 */
792 	skb_get(skb);
793 	/* get the timestamp for timeouts */
794 	skb_cb->tmo = jiffies + msecs_to_jiffies(100);
795 	skb_queue_tail(&cpts->txq, skb);
796 	ptp_schedule_worker(cpts->ptp_clock, 0);
797 }
798 EXPORT_SYMBOL_GPL(am65_cpts_tx_timestamp);
799 
800 /**
801  * am65_cpts_prep_tx_timestamp - check and prepare tx packet for timestamping
802  * @cpts: cpts handle
803  * @skb: packet
804  *
805  * This functions should be called from .xmit().
806  * It checks if packet can be timestamped, fills internal cpts data
807  * in skb-cb and marks packet as SKBTX_IN_PROGRESS.
808  */
809 void am65_cpts_prep_tx_timestamp(struct am65_cpts *cpts, struct sk_buff *skb)
810 {
811 	struct am65_cpts_skb_cb_data *skb_cb = (void *)skb->cb;
812 	int ret;
813 
814 	if (!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))
815 		return;
816 
817 	ret = am65_skb_get_mtype_seqid(skb, &skb_cb->skb_mtype_seqid);
818 	if (!ret)
819 		return;
820 	skb_cb->skb_mtype_seqid |= (AM65_CPTS_EV_TX <<
821 				   AM65_CPTS_EVENT_1_EVENT_TYPE_SHIFT);
822 
823 	skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
824 }
825 EXPORT_SYMBOL_GPL(am65_cpts_prep_tx_timestamp);
826 
827 int am65_cpts_phc_index(struct am65_cpts *cpts)
828 {
829 	return cpts->phc_index;
830 }
831 EXPORT_SYMBOL_GPL(am65_cpts_phc_index);
832 
833 static void cpts_free_clk_mux(void *data)
834 {
835 	struct am65_cpts *cpts = data;
836 
837 	of_clk_del_provider(cpts->clk_mux_np);
838 	clk_hw_unregister_mux(cpts->clk_mux_hw);
839 	of_node_put(cpts->clk_mux_np);
840 }
841 
842 static int cpts_of_mux_clk_setup(struct am65_cpts *cpts,
843 				 struct device_node *node)
844 {
845 	unsigned int num_parents;
846 	const char **parent_names;
847 	char *clk_mux_name;
848 	void __iomem *reg;
849 	int ret = -EINVAL;
850 
851 	cpts->clk_mux_np = of_get_child_by_name(node, "refclk-mux");
852 	if (!cpts->clk_mux_np)
853 		return 0;
854 
855 	num_parents = of_clk_get_parent_count(cpts->clk_mux_np);
856 	if (num_parents < 1) {
857 		dev_err(cpts->dev, "mux-clock %pOF must have parents\n",
858 			cpts->clk_mux_np);
859 		goto mux_fail;
860 	}
861 
862 	parent_names = devm_kcalloc(cpts->dev, sizeof(char *), num_parents,
863 				    GFP_KERNEL);
864 	if (!parent_names) {
865 		ret = -ENOMEM;
866 		goto mux_fail;
867 	}
868 
869 	of_clk_parent_fill(cpts->clk_mux_np, parent_names, num_parents);
870 
871 	clk_mux_name = devm_kasprintf(cpts->dev, GFP_KERNEL, "%s.%pOFn",
872 				      dev_name(cpts->dev), cpts->clk_mux_np);
873 	if (!clk_mux_name) {
874 		ret = -ENOMEM;
875 		goto mux_fail;
876 	}
877 
878 	reg = &cpts->reg->rftclk_sel;
879 	/* dev must be NULL to avoid recursive incrementing
880 	 * of module refcnt
881 	 */
882 	cpts->clk_mux_hw = clk_hw_register_mux(NULL, clk_mux_name,
883 					       parent_names, num_parents,
884 					       0, reg, 0, 5, 0, NULL);
885 	if (IS_ERR(cpts->clk_mux_hw)) {
886 		ret = PTR_ERR(cpts->clk_mux_hw);
887 		goto mux_fail;
888 	}
889 
890 	ret = of_clk_add_hw_provider(cpts->clk_mux_np, of_clk_hw_simple_get,
891 				     cpts->clk_mux_hw);
892 	if (ret)
893 		goto clk_hw_register;
894 
895 	ret = devm_add_action_or_reset(cpts->dev, cpts_free_clk_mux, cpts);
896 	if (ret)
897 		dev_err(cpts->dev, "failed to add clkmux reset action %d", ret);
898 
899 	return ret;
900 
901 clk_hw_register:
902 	clk_hw_unregister_mux(cpts->clk_mux_hw);
903 mux_fail:
904 	of_node_put(cpts->clk_mux_np);
905 	return ret;
906 }
907 
908 static int am65_cpts_of_parse(struct am65_cpts *cpts, struct device_node *node)
909 {
910 	u32 prop[2];
911 
912 	if (!of_property_read_u32(node, "ti,cpts-ext-ts-inputs", &prop[0]))
913 		cpts->ext_ts_inputs = prop[0];
914 
915 	if (!of_property_read_u32(node, "ti,cpts-periodic-outputs", &prop[0]))
916 		cpts->genf_num = prop[0];
917 
918 	return cpts_of_mux_clk_setup(cpts, node);
919 }
920 
921 static void am65_cpts_release(void *data)
922 {
923 	struct am65_cpts *cpts = data;
924 
925 	ptp_clock_unregister(cpts->ptp_clock);
926 	am65_cpts_disable(cpts);
927 	clk_disable_unprepare(cpts->refclk);
928 }
929 
930 struct am65_cpts *am65_cpts_create(struct device *dev, void __iomem *regs,
931 				   struct device_node *node)
932 {
933 	struct am65_cpts *cpts;
934 	int ret, i;
935 
936 	cpts = devm_kzalloc(dev, sizeof(*cpts), GFP_KERNEL);
937 	if (!cpts)
938 		return ERR_PTR(-ENOMEM);
939 
940 	cpts->dev = dev;
941 	cpts->reg = (struct am65_cpts_regs __iomem *)regs;
942 
943 	cpts->irq = of_irq_get_byname(node, "cpts");
944 	if (cpts->irq <= 0) {
945 		ret = cpts->irq ?: -ENXIO;
946 		dev_err_probe(dev, ret, "Failed to get IRQ number\n");
947 		return ERR_PTR(ret);
948 	}
949 
950 	ret = am65_cpts_of_parse(cpts, node);
951 	if (ret)
952 		return ERR_PTR(ret);
953 
954 	mutex_init(&cpts->ptp_clk_lock);
955 	INIT_LIST_HEAD(&cpts->events);
956 	INIT_LIST_HEAD(&cpts->pool);
957 	spin_lock_init(&cpts->lock);
958 	skb_queue_head_init(&cpts->txq);
959 
960 	for (i = 0; i < AM65_CPTS_MAX_EVENTS; i++)
961 		list_add(&cpts->pool_data[i].list, &cpts->pool);
962 
963 	cpts->refclk = devm_get_clk_from_child(dev, node, "cpts");
964 	if (IS_ERR(cpts->refclk)) {
965 		ret = PTR_ERR(cpts->refclk);
966 		dev_err_probe(dev, ret, "Failed to get refclk\n");
967 		return ERR_PTR(ret);
968 	}
969 
970 	ret = clk_prepare_enable(cpts->refclk);
971 	if (ret) {
972 		dev_err(dev, "Failed to enable refclk %d\n", ret);
973 		return ERR_PTR(ret);
974 	}
975 
976 	cpts->refclk_freq = clk_get_rate(cpts->refclk);
977 
978 	am65_ptp_info.max_adj = cpts->refclk_freq / AM65_CPTS_MIN_PPM;
979 	cpts->ptp_info = am65_ptp_info;
980 
981 	if (cpts->ext_ts_inputs)
982 		cpts->ptp_info.n_ext_ts = cpts->ext_ts_inputs;
983 	if (cpts->genf_num)
984 		cpts->ptp_info.n_per_out = cpts->genf_num;
985 
986 	am65_cpts_set_add_val(cpts);
987 
988 	am65_cpts_write32(cpts, AM65_CPTS_CONTROL_EN |
989 			  AM65_CPTS_CONTROL_64MODE |
990 			  AM65_CPTS_CONTROL_TX_GENF_CLR_EN,
991 			  control);
992 	am65_cpts_write32(cpts, AM65_CPTS_INT_ENABLE_TS_PEND_EN, int_enable);
993 
994 	/* set time to the current system time */
995 	am65_cpts_settime(cpts, ktime_to_ns(ktime_get_real()));
996 
997 	cpts->ptp_clock = ptp_clock_register(&cpts->ptp_info, cpts->dev);
998 	if (IS_ERR_OR_NULL(cpts->ptp_clock)) {
999 		dev_err(dev, "Failed to register ptp clk %ld\n",
1000 			PTR_ERR(cpts->ptp_clock));
1001 		ret = cpts->ptp_clock ? PTR_ERR(cpts->ptp_clock) : -ENODEV;
1002 		goto refclk_disable;
1003 	}
1004 	cpts->phc_index = ptp_clock_index(cpts->ptp_clock);
1005 
1006 	ret = devm_add_action_or_reset(dev, am65_cpts_release, cpts);
1007 	if (ret) {
1008 		dev_err(dev, "failed to add ptpclk reset action %d", ret);
1009 		return ERR_PTR(ret);
1010 	}
1011 
1012 	ret = devm_request_threaded_irq(dev, cpts->irq, NULL,
1013 					am65_cpts_interrupt,
1014 					IRQF_ONESHOT, dev_name(dev), cpts);
1015 	if (ret < 0) {
1016 		dev_err(cpts->dev, "error attaching irq %d\n", ret);
1017 		return ERR_PTR(ret);
1018 	}
1019 
1020 	dev_info(dev, "CPTS ver 0x%08x, freq:%u, add_val:%u\n",
1021 		 am65_cpts_read32(cpts, idver),
1022 		 cpts->refclk_freq, cpts->ts_add_val);
1023 
1024 	return cpts;
1025 
1026 refclk_disable:
1027 	clk_disable_unprepare(cpts->refclk);
1028 	return ERR_PTR(ret);
1029 }
1030 EXPORT_SYMBOL_GPL(am65_cpts_create);
1031 
1032 static int am65_cpts_probe(struct platform_device *pdev)
1033 {
1034 	struct device_node *node = pdev->dev.of_node;
1035 	struct device *dev = &pdev->dev;
1036 	struct am65_cpts *cpts;
1037 	void __iomem *base;
1038 
1039 	base = devm_platform_ioremap_resource_byname(pdev, "cpts");
1040 	if (IS_ERR(base))
1041 		return PTR_ERR(base);
1042 
1043 	cpts = am65_cpts_create(dev, base, node);
1044 	return PTR_ERR_OR_ZERO(cpts);
1045 }
1046 
1047 static const struct of_device_id am65_cpts_of_match[] = {
1048 	{ .compatible = "ti,am65-cpts", },
1049 	{ .compatible = "ti,j721e-cpts", },
1050 	{},
1051 };
1052 MODULE_DEVICE_TABLE(of, am65_cpts_of_match);
1053 
1054 static struct platform_driver am65_cpts_driver = {
1055 	.probe		= am65_cpts_probe,
1056 	.driver		= {
1057 		.name	= "am65-cpts",
1058 		.of_match_table = am65_cpts_of_match,
1059 	},
1060 };
1061 module_platform_driver(am65_cpts_driver);
1062 
1063 MODULE_LICENSE("GPL v2");
1064 MODULE_AUTHOR("Grygorii Strashko <grygorii.strashko@ti.com>");
1065 MODULE_DESCRIPTION("TI K3 AM65 CPTS driver");
1066