xref: /linux/drivers/net/ethernet/via/via-rhine.c (revision c6fbb759)
1 /* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */
2 /*
3 	Written 1998-2001 by Donald Becker.
4 
5 	Current Maintainer: Kevin Brace <kevinbrace@bracecomputerlab.com>
6 
7 	This software may be used and distributed according to the terms of
8 	the GNU General Public License (GPL), incorporated herein by reference.
9 	Drivers based on or derived from this code fall under the GPL and must
10 	retain the authorship, copyright and license notice.  This file is not
11 	a complete program and may only be used when the entire operating
12 	system is licensed under the GPL.
13 
14 	This driver is designed for the VIA VT86C100A Rhine-I.
15 	It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM
16 	and management NIC 6105M).
17 
18 	The author may be reached as becker@scyld.com, or C/O
19 	Scyld Computing Corporation
20 	410 Severn Ave., Suite 210
21 	Annapolis MD 21403
22 
23 
24 	This driver contains some changes from the original Donald Becker
25 	version. He may or may not be interested in bug reports on this
26 	code. You can find his versions at:
27 	http://www.scyld.com/network/via-rhine.html
28 	[link no longer provides useful info -jgarzik]
29 
30 */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 #define DRV_NAME	"via-rhine"
35 
36 #include <linux/types.h>
37 
38 /* A few user-configurable values.
39    These may be modified when a driver module is loaded. */
40 static int debug = 0;
41 #define RHINE_MSG_DEFAULT \
42         (0x0000)
43 
44 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
45    Setting to > 1518 effectively disables this feature. */
46 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \
47 	defined(CONFIG_SPARC) || defined(__ia64__) ||		   \
48 	defined(__sh__) || defined(__mips__)
49 static int rx_copybreak = 1518;
50 #else
51 static int rx_copybreak;
52 #endif
53 
54 /* Work-around for broken BIOSes: they are unable to get the chip back out of
55    power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */
56 static bool avoid_D3;
57 
58 /*
59  * In case you are looking for 'options[]' or 'full_duplex[]', they
60  * are gone. Use ethtool(8) instead.
61  */
62 
63 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
64    The Rhine has a 64 element 8390-like hash table. */
65 static const int multicast_filter_limit = 32;
66 
67 
68 /* Operational parameters that are set at compile time. */
69 
70 /* Keep the ring sizes a power of two for compile efficiency.
71  * The compiler will convert <unsigned>'%'<2^N> into a bit mask.
72  * Making the Tx ring too large decreases the effectiveness of channel
73  * bonding and packet priority.
74  * With BQL support, we can increase TX ring safely.
75  * There are no ill effects from too-large receive rings.
76  */
77 #define TX_RING_SIZE	64
78 #define TX_QUEUE_LEN	(TX_RING_SIZE - 6)	/* Limit ring entries actually used. */
79 #define RX_RING_SIZE	64
80 
81 /* Operational parameters that usually are not changed. */
82 
83 /* Time in jiffies before concluding the transmitter is hung. */
84 #define TX_TIMEOUT	(2*HZ)
85 
86 #define PKT_BUF_SZ	1536	/* Size of each temporary Rx buffer.*/
87 
88 #include <linux/module.h>
89 #include <linux/moduleparam.h>
90 #include <linux/kernel.h>
91 #include <linux/string.h>
92 #include <linux/timer.h>
93 #include <linux/errno.h>
94 #include <linux/ioport.h>
95 #include <linux/interrupt.h>
96 #include <linux/pci.h>
97 #include <linux/of_device.h>
98 #include <linux/of_irq.h>
99 #include <linux/platform_device.h>
100 #include <linux/dma-mapping.h>
101 #include <linux/netdevice.h>
102 #include <linux/etherdevice.h>
103 #include <linux/skbuff.h>
104 #include <linux/init.h>
105 #include <linux/delay.h>
106 #include <linux/mii.h>
107 #include <linux/ethtool.h>
108 #include <linux/crc32.h>
109 #include <linux/if_vlan.h>
110 #include <linux/bitops.h>
111 #include <linux/workqueue.h>
112 #include <asm/processor.h>	/* Processor type for cache alignment. */
113 #include <asm/io.h>
114 #include <asm/irq.h>
115 #include <linux/uaccess.h>
116 #include <linux/dmi.h>
117 
118 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
119 MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver");
120 MODULE_LICENSE("GPL");
121 
122 module_param(debug, int, 0);
123 module_param(rx_copybreak, int, 0);
124 module_param(avoid_D3, bool, 0);
125 MODULE_PARM_DESC(debug, "VIA Rhine debug message flags");
126 MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames");
127 MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)");
128 
129 #define MCAM_SIZE	32
130 #define VCAM_SIZE	32
131 
132 /*
133 		Theory of Operation
134 
135 I. Board Compatibility
136 
137 This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet
138 controller.
139 
140 II. Board-specific settings
141 
142 Boards with this chip are functional only in a bus-master PCI slot.
143 
144 Many operational settings are loaded from the EEPROM to the Config word at
145 offset 0x78. For most of these settings, this driver assumes that they are
146 correct.
147 If this driver is compiled to use PCI memory space operations the EEPROM
148 must be configured to enable memory ops.
149 
150 III. Driver operation
151 
152 IIIa. Ring buffers
153 
154 This driver uses two statically allocated fixed-size descriptor lists
155 formed into rings by a branch from the final descriptor to the beginning of
156 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
157 
158 IIIb/c. Transmit/Receive Structure
159 
160 This driver attempts to use a zero-copy receive and transmit scheme.
161 
162 Alas, all data buffers are required to start on a 32 bit boundary, so
163 the driver must often copy transmit packets into bounce buffers.
164 
165 The driver allocates full frame size skbuffs for the Rx ring buffers at
166 open() time and passes the skb->data field to the chip as receive data
167 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
168 a fresh skbuff is allocated and the frame is copied to the new skbuff.
169 When the incoming frame is larger, the skbuff is passed directly up the
170 protocol stack. Buffers consumed this way are replaced by newly allocated
171 skbuffs in the last phase of rhine_rx().
172 
173 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
174 using a full-sized skbuff for small frames vs. the copying costs of larger
175 frames. New boards are typically used in generously configured machines
176 and the underfilled buffers have negligible impact compared to the benefit of
177 a single allocation size, so the default value of zero results in never
178 copying packets. When copying is done, the cost is usually mitigated by using
179 a combined copy/checksum routine. Copying also preloads the cache, which is
180 most useful with small frames.
181 
182 Since the VIA chips are only able to transfer data to buffers on 32 bit
183 boundaries, the IP header at offset 14 in an ethernet frame isn't
184 longword aligned for further processing. Copying these unaligned buffers
185 has the beneficial effect of 16-byte aligning the IP header.
186 
187 IIId. Synchronization
188 
189 The driver runs as two independent, single-threaded flows of control. One
190 is the send-packet routine, which enforces single-threaded use by the
191 netdev_priv(dev)->lock spinlock. The other thread is the interrupt handler,
192 which is single threaded by the hardware and interrupt handling software.
193 
194 The send packet thread has partial control over the Tx ring. It locks the
195 netdev_priv(dev)->lock whenever it's queuing a Tx packet. If the next slot in
196 the ring is not available it stops the transmit queue by
197 calling netif_stop_queue.
198 
199 The interrupt handler has exclusive control over the Rx ring and records stats
200 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
201 empty by incrementing the dirty_tx mark. If at least half of the entries in
202 the Rx ring are available the transmit queue is woken up if it was stopped.
203 
204 IV. Notes
205 
206 IVb. References
207 
208 Preliminary VT86C100A manual from http://www.via.com.tw/
209 http://www.scyld.com/expert/100mbps.html
210 http://www.scyld.com/expert/NWay.html
211 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf
212 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF
213 
214 
215 IVc. Errata
216 
217 The VT86C100A manual is not reliable information.
218 The 3043 chip does not handle unaligned transmit or receive buffers, resulting
219 in significant performance degradation for bounce buffer copies on transmit
220 and unaligned IP headers on receive.
221 The chip does not pad to minimum transmit length.
222 
223 */
224 
225 
226 /* This table drives the PCI probe routines. It's mostly boilerplate in all
227    of the drivers, and will likely be provided by some future kernel.
228    Note the matching code -- the first table entry matchs all 56** cards but
229    second only the 1234 card.
230 */
231 
232 enum rhine_revs {
233 	VT86C100A	= 0x00,
234 	VTunknown0	= 0x20,
235 	VT6102		= 0x40,
236 	VT8231		= 0x50,	/* Integrated MAC */
237 	VT8233		= 0x60,	/* Integrated MAC */
238 	VT8235		= 0x74,	/* Integrated MAC */
239 	VT8237		= 0x78,	/* Integrated MAC */
240 	VT8251		= 0x7C,	/* Integrated MAC */
241 	VT6105		= 0x80,
242 	VT6105_B0	= 0x83,
243 	VT6105L		= 0x8A,
244 	VT6107		= 0x8C,
245 	VTunknown2	= 0x8E,
246 	VT6105M		= 0x90,	/* Management adapter */
247 };
248 
249 enum rhine_quirks {
250 	rqWOL		= 0x0001,	/* Wake-On-LAN support */
251 	rqForceReset	= 0x0002,
252 	rq6patterns	= 0x0040,	/* 6 instead of 4 patterns for WOL */
253 	rqStatusWBRace	= 0x0080,	/* Tx Status Writeback Error possible */
254 	rqRhineI	= 0x0100,	/* See comment below */
255 	rqIntPHY	= 0x0200,	/* Integrated PHY */
256 	rqMgmt		= 0x0400,	/* Management adapter */
257 	rqNeedEnMMIO	= 0x0800,	/* Whether the core needs to be
258 					 * switched from PIO mode to MMIO
259 					 * (only applies to PCI)
260 					 */
261 };
262 /*
263  * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable
264  * MMIO as well as for the collision counter and the Tx FIFO underflow
265  * indicator. In addition, Tx and Rx buffers need to 4 byte aligned.
266  */
267 
268 /* Beware of PCI posted writes */
269 #define IOSYNC	do { ioread8(ioaddr + StationAddr); } while (0)
270 
271 static const struct pci_device_id rhine_pci_tbl[] = {
272 	{ 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, },	/* VT86C100A */
273 	{ 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, },	/* VT6102 */
274 	{ 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, },	/* 6105{,L,LOM} */
275 	{ 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, },	/* VT6105M */
276 	{ }	/* terminate list */
277 };
278 MODULE_DEVICE_TABLE(pci, rhine_pci_tbl);
279 
280 /* OpenFirmware identifiers for platform-bus devices
281  * The .data field is currently only used to store quirks
282  */
283 static u32 vt8500_quirks = rqWOL | rqForceReset | rq6patterns;
284 static const struct of_device_id rhine_of_tbl[] = {
285 	{ .compatible = "via,vt8500-rhine", .data = &vt8500_quirks },
286 	{ }	/* terminate list */
287 };
288 MODULE_DEVICE_TABLE(of, rhine_of_tbl);
289 
290 /* Offsets to the device registers. */
291 enum register_offsets {
292 	StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08,
293 	ChipCmd1=0x09, TQWake=0x0A,
294 	IntrStatus=0x0C, IntrEnable=0x0E,
295 	MulticastFilter0=0x10, MulticastFilter1=0x14,
296 	RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54,
297 	MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E, PCIBusConfig1=0x6F,
298 	MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74,
299 	ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B,
300 	RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81,
301 	StickyHW=0x83, IntrStatus2=0x84,
302 	CamMask=0x88, CamCon=0x92, CamAddr=0x93,
303 	WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4,
304 	WOLcrClr1=0xA6, WOLcgClr=0xA7,
305 	PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD,
306 };
307 
308 /* Bits in ConfigD */
309 enum backoff_bits {
310 	BackOptional=0x01, BackModify=0x02,
311 	BackCaptureEffect=0x04, BackRandom=0x08
312 };
313 
314 /* Bits in the TxConfig (TCR) register */
315 enum tcr_bits {
316 	TCR_PQEN=0x01,
317 	TCR_LB0=0x02,		/* loopback[0] */
318 	TCR_LB1=0x04,		/* loopback[1] */
319 	TCR_OFSET=0x08,
320 	TCR_RTGOPT=0x10,
321 	TCR_RTFT0=0x20,
322 	TCR_RTFT1=0x40,
323 	TCR_RTSF=0x80,
324 };
325 
326 /* Bits in the CamCon (CAMC) register */
327 enum camcon_bits {
328 	CAMC_CAMEN=0x01,
329 	CAMC_VCAMSL=0x02,
330 	CAMC_CAMWR=0x04,
331 	CAMC_CAMRD=0x08,
332 };
333 
334 /* Bits in the PCIBusConfig1 (BCR1) register */
335 enum bcr1_bits {
336 	BCR1_POT0=0x01,
337 	BCR1_POT1=0x02,
338 	BCR1_POT2=0x04,
339 	BCR1_CTFT0=0x08,
340 	BCR1_CTFT1=0x10,
341 	BCR1_CTSF=0x20,
342 	BCR1_TXQNOBK=0x40,	/* for VT6105 */
343 	BCR1_VIDFR=0x80,	/* for VT6105 */
344 	BCR1_MED0=0x40,		/* for VT6102 */
345 	BCR1_MED1=0x80,		/* for VT6102 */
346 };
347 
348 /* Registers we check that mmio and reg are the same. */
349 static const int mmio_verify_registers[] = {
350 	RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD,
351 	0
352 };
353 
354 /* Bits in the interrupt status/mask registers. */
355 enum intr_status_bits {
356 	IntrRxDone	= 0x0001,
357 	IntrTxDone	= 0x0002,
358 	IntrRxErr	= 0x0004,
359 	IntrTxError	= 0x0008,
360 	IntrRxEmpty	= 0x0020,
361 	IntrPCIErr	= 0x0040,
362 	IntrStatsMax	= 0x0080,
363 	IntrRxEarly	= 0x0100,
364 	IntrTxUnderrun	= 0x0210,
365 	IntrRxOverflow	= 0x0400,
366 	IntrRxDropped	= 0x0800,
367 	IntrRxNoBuf	= 0x1000,
368 	IntrTxAborted	= 0x2000,
369 	IntrLinkChange	= 0x4000,
370 	IntrRxWakeUp	= 0x8000,
371 	IntrTxDescRace		= 0x080000,	/* mapped from IntrStatus2 */
372 	IntrNormalSummary	= IntrRxDone | IntrTxDone,
373 	IntrTxErrSummary	= IntrTxDescRace | IntrTxAborted | IntrTxError |
374 				  IntrTxUnderrun,
375 };
376 
377 /* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */
378 enum wol_bits {
379 	WOLucast	= 0x10,
380 	WOLmagic	= 0x20,
381 	WOLbmcast	= 0x30,
382 	WOLlnkon	= 0x40,
383 	WOLlnkoff	= 0x80,
384 };
385 
386 /* The Rx and Tx buffer descriptors. */
387 struct rx_desc {
388 	__le32 rx_status;
389 	__le32 desc_length; /* Chain flag, Buffer/frame length */
390 	__le32 addr;
391 	__le32 next_desc;
392 };
393 struct tx_desc {
394 	__le32 tx_status;
395 	__le32 desc_length; /* Chain flag, Tx Config, Frame length */
396 	__le32 addr;
397 	__le32 next_desc;
398 };
399 
400 /* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */
401 #define TXDESC		0x00e08000
402 
403 enum rx_status_bits {
404 	RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F
405 };
406 
407 /* Bits in *_desc.*_status */
408 enum desc_status_bits {
409 	DescOwn=0x80000000
410 };
411 
412 /* Bits in *_desc.*_length */
413 enum desc_length_bits {
414 	DescTag=0x00010000
415 };
416 
417 /* Bits in ChipCmd. */
418 enum chip_cmd_bits {
419 	CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08,
420 	CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40,
421 	Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04,
422 	Cmd1NoTxPoll=0x08, Cmd1Reset=0x80,
423 };
424 
425 struct rhine_stats {
426 	u64		packets;
427 	u64		bytes;
428 	struct u64_stats_sync syncp;
429 };
430 
431 struct rhine_private {
432 	/* Bit mask for configured VLAN ids */
433 	unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
434 
435 	/* Descriptor rings */
436 	struct rx_desc *rx_ring;
437 	struct tx_desc *tx_ring;
438 	dma_addr_t rx_ring_dma;
439 	dma_addr_t tx_ring_dma;
440 
441 	/* The addresses of receive-in-place skbuffs. */
442 	struct sk_buff *rx_skbuff[RX_RING_SIZE];
443 	dma_addr_t rx_skbuff_dma[RX_RING_SIZE];
444 
445 	/* The saved address of a sent-in-place packet/buffer, for later free(). */
446 	struct sk_buff *tx_skbuff[TX_RING_SIZE];
447 	dma_addr_t tx_skbuff_dma[TX_RING_SIZE];
448 
449 	/* Tx bounce buffers (Rhine-I only) */
450 	unsigned char *tx_buf[TX_RING_SIZE];
451 	unsigned char *tx_bufs;
452 	dma_addr_t tx_bufs_dma;
453 
454 	int irq;
455 	long pioaddr;
456 	struct net_device *dev;
457 	struct napi_struct napi;
458 	spinlock_t lock;
459 	struct mutex task_lock;
460 	bool task_enable;
461 	struct work_struct slow_event_task;
462 	struct work_struct reset_task;
463 
464 	u32 msg_enable;
465 
466 	/* Frequently used values: keep some adjacent for cache effect. */
467 	u32 quirks;
468 	unsigned int cur_rx;
469 	unsigned int cur_tx, dirty_tx;
470 	unsigned int rx_buf_sz;		/* Based on MTU+slack. */
471 	struct rhine_stats rx_stats;
472 	struct rhine_stats tx_stats;
473 	u8 wolopts;
474 
475 	u8 tx_thresh, rx_thresh;
476 
477 	struct mii_if_info mii_if;
478 	void __iomem *base;
479 };
480 
481 #define BYTE_REG_BITS_ON(x, p)      do { iowrite8((ioread8((p))|(x)), (p)); } while (0)
482 #define WORD_REG_BITS_ON(x, p)      do { iowrite16((ioread16((p))|(x)), (p)); } while (0)
483 #define DWORD_REG_BITS_ON(x, p)     do { iowrite32((ioread32((p))|(x)), (p)); } while (0)
484 
485 #define BYTE_REG_BITS_IS_ON(x, p)   (ioread8((p)) & (x))
486 #define WORD_REG_BITS_IS_ON(x, p)   (ioread16((p)) & (x))
487 #define DWORD_REG_BITS_IS_ON(x, p)  (ioread32((p)) & (x))
488 
489 #define BYTE_REG_BITS_OFF(x, p)     do { iowrite8(ioread8((p)) & (~(x)), (p)); } while (0)
490 #define WORD_REG_BITS_OFF(x, p)     do { iowrite16(ioread16((p)) & (~(x)), (p)); } while (0)
491 #define DWORD_REG_BITS_OFF(x, p)    do { iowrite32(ioread32((p)) & (~(x)), (p)); } while (0)
492 
493 #define BYTE_REG_BITS_SET(x, m, p)   do { iowrite8((ioread8((p)) & (~(m)))|(x), (p)); } while (0)
494 #define WORD_REG_BITS_SET(x, m, p)   do { iowrite16((ioread16((p)) & (~(m)))|(x), (p)); } while (0)
495 #define DWORD_REG_BITS_SET(x, m, p)  do { iowrite32((ioread32((p)) & (~(m)))|(x), (p)); } while (0)
496 
497 
498 static int  mdio_read(struct net_device *dev, int phy_id, int location);
499 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
500 static int  rhine_open(struct net_device *dev);
501 static void rhine_reset_task(struct work_struct *work);
502 static void rhine_slow_event_task(struct work_struct *work);
503 static void rhine_tx_timeout(struct net_device *dev, unsigned int txqueue);
504 static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
505 				  struct net_device *dev);
506 static irqreturn_t rhine_interrupt(int irq, void *dev_instance);
507 static void rhine_tx(struct net_device *dev);
508 static int rhine_rx(struct net_device *dev, int limit);
509 static void rhine_set_rx_mode(struct net_device *dev);
510 static void rhine_get_stats64(struct net_device *dev,
511 			      struct rtnl_link_stats64 *stats);
512 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
513 static const struct ethtool_ops netdev_ethtool_ops;
514 static int  rhine_close(struct net_device *dev);
515 static int rhine_vlan_rx_add_vid(struct net_device *dev,
516 				 __be16 proto, u16 vid);
517 static int rhine_vlan_rx_kill_vid(struct net_device *dev,
518 				  __be16 proto, u16 vid);
519 static void rhine_restart_tx(struct net_device *dev);
520 
521 static void rhine_wait_bit(struct rhine_private *rp, u8 reg, u8 mask, bool low)
522 {
523 	void __iomem *ioaddr = rp->base;
524 	int i;
525 
526 	for (i = 0; i < 1024; i++) {
527 		bool has_mask_bits = !!(ioread8(ioaddr + reg) & mask);
528 
529 		if (low ^ has_mask_bits)
530 			break;
531 		udelay(10);
532 	}
533 	if (i > 64) {
534 		netif_dbg(rp, hw, rp->dev, "%s bit wait (%02x/%02x) cycle "
535 			  "count: %04d\n", low ? "low" : "high", reg, mask, i);
536 	}
537 }
538 
539 static void rhine_wait_bit_high(struct rhine_private *rp, u8 reg, u8 mask)
540 {
541 	rhine_wait_bit(rp, reg, mask, false);
542 }
543 
544 static void rhine_wait_bit_low(struct rhine_private *rp, u8 reg, u8 mask)
545 {
546 	rhine_wait_bit(rp, reg, mask, true);
547 }
548 
549 static u32 rhine_get_events(struct rhine_private *rp)
550 {
551 	void __iomem *ioaddr = rp->base;
552 	u32 intr_status;
553 
554 	intr_status = ioread16(ioaddr + IntrStatus);
555 	/* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */
556 	if (rp->quirks & rqStatusWBRace)
557 		intr_status |= ioread8(ioaddr + IntrStatus2) << 16;
558 	return intr_status;
559 }
560 
561 static void rhine_ack_events(struct rhine_private *rp, u32 mask)
562 {
563 	void __iomem *ioaddr = rp->base;
564 
565 	if (rp->quirks & rqStatusWBRace)
566 		iowrite8(mask >> 16, ioaddr + IntrStatus2);
567 	iowrite16(mask, ioaddr + IntrStatus);
568 }
569 
570 /*
571  * Get power related registers into sane state.
572  * Notify user about past WOL event.
573  */
574 static void rhine_power_init(struct net_device *dev)
575 {
576 	struct rhine_private *rp = netdev_priv(dev);
577 	void __iomem *ioaddr = rp->base;
578 	u16 wolstat;
579 
580 	if (rp->quirks & rqWOL) {
581 		/* Make sure chip is in power state D0 */
582 		iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW);
583 
584 		/* Disable "force PME-enable" */
585 		iowrite8(0x80, ioaddr + WOLcgClr);
586 
587 		/* Clear power-event config bits (WOL) */
588 		iowrite8(0xFF, ioaddr + WOLcrClr);
589 		/* More recent cards can manage two additional patterns */
590 		if (rp->quirks & rq6patterns)
591 			iowrite8(0x03, ioaddr + WOLcrClr1);
592 
593 		/* Save power-event status bits */
594 		wolstat = ioread8(ioaddr + PwrcsrSet);
595 		if (rp->quirks & rq6patterns)
596 			wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8;
597 
598 		/* Clear power-event status bits */
599 		iowrite8(0xFF, ioaddr + PwrcsrClr);
600 		if (rp->quirks & rq6patterns)
601 			iowrite8(0x03, ioaddr + PwrcsrClr1);
602 
603 		if (wolstat) {
604 			char *reason;
605 			switch (wolstat) {
606 			case WOLmagic:
607 				reason = "Magic packet";
608 				break;
609 			case WOLlnkon:
610 				reason = "Link went up";
611 				break;
612 			case WOLlnkoff:
613 				reason = "Link went down";
614 				break;
615 			case WOLucast:
616 				reason = "Unicast packet";
617 				break;
618 			case WOLbmcast:
619 				reason = "Multicast/broadcast packet";
620 				break;
621 			default:
622 				reason = "Unknown";
623 			}
624 			netdev_info(dev, "Woke system up. Reason: %s\n",
625 				    reason);
626 		}
627 	}
628 }
629 
630 static void rhine_chip_reset(struct net_device *dev)
631 {
632 	struct rhine_private *rp = netdev_priv(dev);
633 	void __iomem *ioaddr = rp->base;
634 	u8 cmd1;
635 
636 	iowrite8(Cmd1Reset, ioaddr + ChipCmd1);
637 	IOSYNC;
638 
639 	if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) {
640 		netdev_info(dev, "Reset not complete yet. Trying harder.\n");
641 
642 		/* Force reset */
643 		if (rp->quirks & rqForceReset)
644 			iowrite8(0x40, ioaddr + MiscCmd);
645 
646 		/* Reset can take somewhat longer (rare) */
647 		rhine_wait_bit_low(rp, ChipCmd1, Cmd1Reset);
648 	}
649 
650 	cmd1 = ioread8(ioaddr + ChipCmd1);
651 	netif_info(rp, hw, dev, "Reset %s\n", (cmd1 & Cmd1Reset) ?
652 		   "failed" : "succeeded");
653 }
654 
655 static void enable_mmio(long pioaddr, u32 quirks)
656 {
657 	int n;
658 
659 	if (quirks & rqNeedEnMMIO) {
660 		if (quirks & rqRhineI) {
661 			/* More recent docs say that this bit is reserved */
662 			n = inb(pioaddr + ConfigA) | 0x20;
663 			outb(n, pioaddr + ConfigA);
664 		} else {
665 			n = inb(pioaddr + ConfigD) | 0x80;
666 			outb(n, pioaddr + ConfigD);
667 		}
668 	}
669 }
670 
671 static inline int verify_mmio(struct device *hwdev,
672 			      long pioaddr,
673 			      void __iomem *ioaddr,
674 			      u32 quirks)
675 {
676 	if (quirks & rqNeedEnMMIO) {
677 		int i = 0;
678 
679 		/* Check that selected MMIO registers match the PIO ones */
680 		while (mmio_verify_registers[i]) {
681 			int reg = mmio_verify_registers[i++];
682 			unsigned char a = inb(pioaddr+reg);
683 			unsigned char b = readb(ioaddr+reg);
684 
685 			if (a != b) {
686 				dev_err(hwdev,
687 					"MMIO do not match PIO [%02x] (%02x != %02x)\n",
688 					reg, a, b);
689 				return -EIO;
690 			}
691 		}
692 	}
693 	return 0;
694 }
695 
696 /*
697  * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM
698  * (plus 0x6C for Rhine-I/II)
699  */
700 static void rhine_reload_eeprom(long pioaddr, struct net_device *dev)
701 {
702 	struct rhine_private *rp = netdev_priv(dev);
703 	void __iomem *ioaddr = rp->base;
704 	int i;
705 
706 	outb(0x20, pioaddr + MACRegEEcsr);
707 	for (i = 0; i < 1024; i++) {
708 		if (!(inb(pioaddr + MACRegEEcsr) & 0x20))
709 			break;
710 	}
711 	if (i > 512)
712 		pr_info("%4d cycles used @ %s:%d\n", i, __func__, __LINE__);
713 
714 	/*
715 	 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable
716 	 * MMIO. If reloading EEPROM was done first this could be avoided, but
717 	 * it is not known if that still works with the "win98-reboot" problem.
718 	 */
719 	enable_mmio(pioaddr, rp->quirks);
720 
721 	/* Turn off EEPROM-controlled wake-up (magic packet) */
722 	if (rp->quirks & rqWOL)
723 		iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA);
724 
725 }
726 
727 #ifdef CONFIG_NET_POLL_CONTROLLER
728 static void rhine_poll(struct net_device *dev)
729 {
730 	struct rhine_private *rp = netdev_priv(dev);
731 	const int irq = rp->irq;
732 
733 	disable_irq(irq);
734 	rhine_interrupt(irq, dev);
735 	enable_irq(irq);
736 }
737 #endif
738 
739 static void rhine_kick_tx_threshold(struct rhine_private *rp)
740 {
741 	if (rp->tx_thresh < 0xe0) {
742 		void __iomem *ioaddr = rp->base;
743 
744 		rp->tx_thresh += 0x20;
745 		BYTE_REG_BITS_SET(rp->tx_thresh, 0x80, ioaddr + TxConfig);
746 	}
747 }
748 
749 static void rhine_tx_err(struct rhine_private *rp, u32 status)
750 {
751 	struct net_device *dev = rp->dev;
752 
753 	if (status & IntrTxAborted) {
754 		netif_info(rp, tx_err, dev,
755 			   "Abort %08x, frame dropped\n", status);
756 	}
757 
758 	if (status & IntrTxUnderrun) {
759 		rhine_kick_tx_threshold(rp);
760 		netif_info(rp, tx_err ,dev, "Transmitter underrun, "
761 			   "Tx threshold now %02x\n", rp->tx_thresh);
762 	}
763 
764 	if (status & IntrTxDescRace)
765 		netif_info(rp, tx_err, dev, "Tx descriptor write-back race\n");
766 
767 	if ((status & IntrTxError) &&
768 	    (status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace)) == 0) {
769 		rhine_kick_tx_threshold(rp);
770 		netif_info(rp, tx_err, dev, "Unspecified error. "
771 			   "Tx threshold now %02x\n", rp->tx_thresh);
772 	}
773 
774 	rhine_restart_tx(dev);
775 }
776 
777 static void rhine_update_rx_crc_and_missed_errord(struct rhine_private *rp)
778 {
779 	void __iomem *ioaddr = rp->base;
780 	struct net_device_stats *stats = &rp->dev->stats;
781 
782 	stats->rx_crc_errors    += ioread16(ioaddr + RxCRCErrs);
783 	stats->rx_missed_errors += ioread16(ioaddr + RxMissed);
784 
785 	/*
786 	 * Clears the "tally counters" for CRC errors and missed frames(?).
787 	 * It has been reported that some chips need a write of 0 to clear
788 	 * these, for others the counters are set to 1 when written to and
789 	 * instead cleared when read. So we clear them both ways ...
790 	 */
791 	iowrite32(0, ioaddr + RxMissed);
792 	ioread16(ioaddr + RxCRCErrs);
793 	ioread16(ioaddr + RxMissed);
794 }
795 
796 #define RHINE_EVENT_NAPI_RX	(IntrRxDone | \
797 				 IntrRxErr | \
798 				 IntrRxEmpty | \
799 				 IntrRxOverflow	| \
800 				 IntrRxDropped | \
801 				 IntrRxNoBuf | \
802 				 IntrRxWakeUp)
803 
804 #define RHINE_EVENT_NAPI_TX_ERR	(IntrTxError | \
805 				 IntrTxAborted | \
806 				 IntrTxUnderrun | \
807 				 IntrTxDescRace)
808 #define RHINE_EVENT_NAPI_TX	(IntrTxDone | RHINE_EVENT_NAPI_TX_ERR)
809 
810 #define RHINE_EVENT_NAPI	(RHINE_EVENT_NAPI_RX | \
811 				 RHINE_EVENT_NAPI_TX | \
812 				 IntrStatsMax)
813 #define RHINE_EVENT_SLOW	(IntrPCIErr | IntrLinkChange)
814 #define RHINE_EVENT		(RHINE_EVENT_NAPI | RHINE_EVENT_SLOW)
815 
816 static int rhine_napipoll(struct napi_struct *napi, int budget)
817 {
818 	struct rhine_private *rp = container_of(napi, struct rhine_private, napi);
819 	struct net_device *dev = rp->dev;
820 	void __iomem *ioaddr = rp->base;
821 	u16 enable_mask = RHINE_EVENT & 0xffff;
822 	int work_done = 0;
823 	u32 status;
824 
825 	status = rhine_get_events(rp);
826 	rhine_ack_events(rp, status & ~RHINE_EVENT_SLOW);
827 
828 	if (status & RHINE_EVENT_NAPI_RX)
829 		work_done += rhine_rx(dev, budget);
830 
831 	if (status & RHINE_EVENT_NAPI_TX) {
832 		if (status & RHINE_EVENT_NAPI_TX_ERR) {
833 			/* Avoid scavenging before Tx engine turned off */
834 			rhine_wait_bit_low(rp, ChipCmd, CmdTxOn);
835 			if (ioread8(ioaddr + ChipCmd) & CmdTxOn)
836 				netif_warn(rp, tx_err, dev, "Tx still on\n");
837 		}
838 
839 		rhine_tx(dev);
840 
841 		if (status & RHINE_EVENT_NAPI_TX_ERR)
842 			rhine_tx_err(rp, status);
843 	}
844 
845 	if (status & IntrStatsMax) {
846 		spin_lock(&rp->lock);
847 		rhine_update_rx_crc_and_missed_errord(rp);
848 		spin_unlock(&rp->lock);
849 	}
850 
851 	if (status & RHINE_EVENT_SLOW) {
852 		enable_mask &= ~RHINE_EVENT_SLOW;
853 		schedule_work(&rp->slow_event_task);
854 	}
855 
856 	if (work_done < budget) {
857 		napi_complete_done(napi, work_done);
858 		iowrite16(enable_mask, ioaddr + IntrEnable);
859 	}
860 	return work_done;
861 }
862 
863 static void rhine_hw_init(struct net_device *dev, long pioaddr)
864 {
865 	struct rhine_private *rp = netdev_priv(dev);
866 
867 	/* Reset the chip to erase previous misconfiguration. */
868 	rhine_chip_reset(dev);
869 
870 	/* Rhine-I needs extra time to recuperate before EEPROM reload */
871 	if (rp->quirks & rqRhineI)
872 		msleep(5);
873 
874 	/* Reload EEPROM controlled bytes cleared by soft reset */
875 	if (dev_is_pci(dev->dev.parent))
876 		rhine_reload_eeprom(pioaddr, dev);
877 }
878 
879 static const struct net_device_ops rhine_netdev_ops = {
880 	.ndo_open		 = rhine_open,
881 	.ndo_stop		 = rhine_close,
882 	.ndo_start_xmit		 = rhine_start_tx,
883 	.ndo_get_stats64	 = rhine_get_stats64,
884 	.ndo_set_rx_mode	 = rhine_set_rx_mode,
885 	.ndo_validate_addr	 = eth_validate_addr,
886 	.ndo_set_mac_address 	 = eth_mac_addr,
887 	.ndo_eth_ioctl		 = netdev_ioctl,
888 	.ndo_tx_timeout 	 = rhine_tx_timeout,
889 	.ndo_vlan_rx_add_vid	 = rhine_vlan_rx_add_vid,
890 	.ndo_vlan_rx_kill_vid	 = rhine_vlan_rx_kill_vid,
891 #ifdef CONFIG_NET_POLL_CONTROLLER
892 	.ndo_poll_controller	 = rhine_poll,
893 #endif
894 };
895 
896 static int rhine_init_one_common(struct device *hwdev, u32 quirks,
897 				 long pioaddr, void __iomem *ioaddr, int irq)
898 {
899 	struct net_device *dev;
900 	struct rhine_private *rp;
901 	int i, rc, phy_id;
902 	u8 addr[ETH_ALEN];
903 	const char *name;
904 
905 	/* this should always be supported */
906 	rc = dma_set_mask(hwdev, DMA_BIT_MASK(32));
907 	if (rc) {
908 		dev_err(hwdev, "32-bit DMA addresses not supported by the card!?\n");
909 		goto err_out;
910 	}
911 
912 	dev = alloc_etherdev(sizeof(struct rhine_private));
913 	if (!dev) {
914 		rc = -ENOMEM;
915 		goto err_out;
916 	}
917 	SET_NETDEV_DEV(dev, hwdev);
918 
919 	rp = netdev_priv(dev);
920 	rp->dev = dev;
921 	rp->quirks = quirks;
922 	rp->pioaddr = pioaddr;
923 	rp->base = ioaddr;
924 	rp->irq = irq;
925 	rp->msg_enable = netif_msg_init(debug, RHINE_MSG_DEFAULT);
926 
927 	phy_id = rp->quirks & rqIntPHY ? 1 : 0;
928 
929 	u64_stats_init(&rp->tx_stats.syncp);
930 	u64_stats_init(&rp->rx_stats.syncp);
931 
932 	/* Get chip registers into a sane state */
933 	rhine_power_init(dev);
934 	rhine_hw_init(dev, pioaddr);
935 
936 	for (i = 0; i < 6; i++)
937 		addr[i] = ioread8(ioaddr + StationAddr + i);
938 	eth_hw_addr_set(dev, addr);
939 
940 	if (!is_valid_ether_addr(dev->dev_addr)) {
941 		/* Report it and use a random ethernet address instead */
942 		netdev_err(dev, "Invalid MAC address: %pM\n", dev->dev_addr);
943 		eth_hw_addr_random(dev);
944 		netdev_info(dev, "Using random MAC address: %pM\n",
945 			    dev->dev_addr);
946 	}
947 
948 	/* For Rhine-I/II, phy_id is loaded from EEPROM */
949 	if (!phy_id)
950 		phy_id = ioread8(ioaddr + 0x6C);
951 
952 	spin_lock_init(&rp->lock);
953 	mutex_init(&rp->task_lock);
954 	INIT_WORK(&rp->reset_task, rhine_reset_task);
955 	INIT_WORK(&rp->slow_event_task, rhine_slow_event_task);
956 
957 	rp->mii_if.dev = dev;
958 	rp->mii_if.mdio_read = mdio_read;
959 	rp->mii_if.mdio_write = mdio_write;
960 	rp->mii_if.phy_id_mask = 0x1f;
961 	rp->mii_if.reg_num_mask = 0x1f;
962 
963 	/* The chip-specific entries in the device structure. */
964 	dev->netdev_ops = &rhine_netdev_ops;
965 	dev->ethtool_ops = &netdev_ethtool_ops;
966 	dev->watchdog_timeo = TX_TIMEOUT;
967 
968 	netif_napi_add(dev, &rp->napi, rhine_napipoll);
969 
970 	if (rp->quirks & rqRhineI)
971 		dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM;
972 
973 	if (rp->quirks & rqMgmt)
974 		dev->features |= NETIF_F_HW_VLAN_CTAG_TX |
975 				 NETIF_F_HW_VLAN_CTAG_RX |
976 				 NETIF_F_HW_VLAN_CTAG_FILTER;
977 
978 	/* dev->name not defined before register_netdev()! */
979 	rc = register_netdev(dev);
980 	if (rc)
981 		goto err_out_free_netdev;
982 
983 	if (rp->quirks & rqRhineI)
984 		name = "Rhine";
985 	else if (rp->quirks & rqStatusWBRace)
986 		name = "Rhine II";
987 	else if (rp->quirks & rqMgmt)
988 		name = "Rhine III (Management Adapter)";
989 	else
990 		name = "Rhine III";
991 
992 	netdev_info(dev, "VIA %s at %p, %pM, IRQ %d\n",
993 		    name, ioaddr, dev->dev_addr, rp->irq);
994 
995 	dev_set_drvdata(hwdev, dev);
996 
997 	{
998 		u16 mii_cmd;
999 		int mii_status = mdio_read(dev, phy_id, 1);
1000 		mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE;
1001 		mdio_write(dev, phy_id, MII_BMCR, mii_cmd);
1002 		if (mii_status != 0xffff && mii_status != 0x0000) {
1003 			rp->mii_if.advertising = mdio_read(dev, phy_id, 4);
1004 			netdev_info(dev,
1005 				    "MII PHY found at address %d, status 0x%04x advertising %04x Link %04x\n",
1006 				    phy_id,
1007 				    mii_status, rp->mii_if.advertising,
1008 				    mdio_read(dev, phy_id, 5));
1009 
1010 			/* set IFF_RUNNING */
1011 			if (mii_status & BMSR_LSTATUS)
1012 				netif_carrier_on(dev);
1013 			else
1014 				netif_carrier_off(dev);
1015 
1016 		}
1017 	}
1018 	rp->mii_if.phy_id = phy_id;
1019 	if (avoid_D3)
1020 		netif_info(rp, probe, dev, "No D3 power state at shutdown\n");
1021 
1022 	return 0;
1023 
1024 err_out_free_netdev:
1025 	free_netdev(dev);
1026 err_out:
1027 	return rc;
1028 }
1029 
1030 static int rhine_init_one_pci(struct pci_dev *pdev,
1031 			      const struct pci_device_id *ent)
1032 {
1033 	struct device *hwdev = &pdev->dev;
1034 	int rc;
1035 	long pioaddr, memaddr;
1036 	void __iomem *ioaddr;
1037 	int io_size = pdev->revision < VTunknown0 ? 128 : 256;
1038 
1039 /* This driver was written to use PCI memory space. Some early versions
1040  * of the Rhine may only work correctly with I/O space accesses.
1041  * TODO: determine for which revisions this is true and assign the flag
1042  *	 in code as opposed to this Kconfig option (???)
1043  */
1044 #ifdef CONFIG_VIA_RHINE_MMIO
1045 	u32 quirks = rqNeedEnMMIO;
1046 #else
1047 	u32 quirks = 0;
1048 #endif
1049 
1050 	rc = pci_enable_device(pdev);
1051 	if (rc)
1052 		goto err_out;
1053 
1054 	if (pdev->revision < VTunknown0) {
1055 		quirks |= rqRhineI;
1056 	} else if (pdev->revision >= VT6102) {
1057 		quirks |= rqWOL | rqForceReset;
1058 		if (pdev->revision < VT6105) {
1059 			quirks |= rqStatusWBRace;
1060 		} else {
1061 			quirks |= rqIntPHY;
1062 			if (pdev->revision >= VT6105_B0)
1063 				quirks |= rq6patterns;
1064 			if (pdev->revision >= VT6105M)
1065 				quirks |= rqMgmt;
1066 		}
1067 	}
1068 
1069 	/* sanity check */
1070 	if ((pci_resource_len(pdev, 0) < io_size) ||
1071 	    (pci_resource_len(pdev, 1) < io_size)) {
1072 		rc = -EIO;
1073 		dev_err(hwdev, "Insufficient PCI resources, aborting\n");
1074 		goto err_out_pci_disable;
1075 	}
1076 
1077 	pioaddr = pci_resource_start(pdev, 0);
1078 	memaddr = pci_resource_start(pdev, 1);
1079 
1080 	pci_set_master(pdev);
1081 
1082 	rc = pci_request_regions(pdev, DRV_NAME);
1083 	if (rc)
1084 		goto err_out_pci_disable;
1085 
1086 	ioaddr = pci_iomap(pdev, (quirks & rqNeedEnMMIO ? 1 : 0), io_size);
1087 	if (!ioaddr) {
1088 		rc = -EIO;
1089 		dev_err(hwdev,
1090 			"ioremap failed for device %s, region 0x%X @ 0x%lX\n",
1091 			dev_name(hwdev), io_size, memaddr);
1092 		goto err_out_free_res;
1093 	}
1094 
1095 	enable_mmio(pioaddr, quirks);
1096 
1097 	rc = verify_mmio(hwdev, pioaddr, ioaddr, quirks);
1098 	if (rc)
1099 		goto err_out_unmap;
1100 
1101 	rc = rhine_init_one_common(&pdev->dev, quirks,
1102 				   pioaddr, ioaddr, pdev->irq);
1103 	if (!rc)
1104 		return 0;
1105 
1106 err_out_unmap:
1107 	pci_iounmap(pdev, ioaddr);
1108 err_out_free_res:
1109 	pci_release_regions(pdev);
1110 err_out_pci_disable:
1111 	pci_disable_device(pdev);
1112 err_out:
1113 	return rc;
1114 }
1115 
1116 static int rhine_init_one_platform(struct platform_device *pdev)
1117 {
1118 	const u32 *quirks;
1119 	int irq;
1120 	void __iomem *ioaddr;
1121 
1122 	quirks = of_device_get_match_data(&pdev->dev);
1123 	if (!quirks)
1124 		return -EINVAL;
1125 
1126 	ioaddr = devm_platform_ioremap_resource(pdev, 0);
1127 	if (IS_ERR(ioaddr))
1128 		return PTR_ERR(ioaddr);
1129 
1130 	irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
1131 	if (!irq)
1132 		return -EINVAL;
1133 
1134 	return rhine_init_one_common(&pdev->dev, *quirks,
1135 				     (long)ioaddr, ioaddr, irq);
1136 }
1137 
1138 static int alloc_ring(struct net_device* dev)
1139 {
1140 	struct rhine_private *rp = netdev_priv(dev);
1141 	struct device *hwdev = dev->dev.parent;
1142 	void *ring;
1143 	dma_addr_t ring_dma;
1144 
1145 	ring = dma_alloc_coherent(hwdev,
1146 				  RX_RING_SIZE * sizeof(struct rx_desc) +
1147 				  TX_RING_SIZE * sizeof(struct tx_desc),
1148 				  &ring_dma,
1149 				  GFP_ATOMIC);
1150 	if (!ring) {
1151 		netdev_err(dev, "Could not allocate DMA memory\n");
1152 		return -ENOMEM;
1153 	}
1154 	if (rp->quirks & rqRhineI) {
1155 		rp->tx_bufs = dma_alloc_coherent(hwdev,
1156 						 PKT_BUF_SZ * TX_RING_SIZE,
1157 						 &rp->tx_bufs_dma,
1158 						 GFP_ATOMIC);
1159 		if (rp->tx_bufs == NULL) {
1160 			dma_free_coherent(hwdev,
1161 					  RX_RING_SIZE * sizeof(struct rx_desc) +
1162 					  TX_RING_SIZE * sizeof(struct tx_desc),
1163 					  ring, ring_dma);
1164 			return -ENOMEM;
1165 		}
1166 	}
1167 
1168 	rp->rx_ring = ring;
1169 	rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc);
1170 	rp->rx_ring_dma = ring_dma;
1171 	rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc);
1172 
1173 	return 0;
1174 }
1175 
1176 static void free_ring(struct net_device* dev)
1177 {
1178 	struct rhine_private *rp = netdev_priv(dev);
1179 	struct device *hwdev = dev->dev.parent;
1180 
1181 	dma_free_coherent(hwdev,
1182 			  RX_RING_SIZE * sizeof(struct rx_desc) +
1183 			  TX_RING_SIZE * sizeof(struct tx_desc),
1184 			  rp->rx_ring, rp->rx_ring_dma);
1185 	rp->tx_ring = NULL;
1186 
1187 	if (rp->tx_bufs)
1188 		dma_free_coherent(hwdev, PKT_BUF_SZ * TX_RING_SIZE,
1189 				  rp->tx_bufs, rp->tx_bufs_dma);
1190 
1191 	rp->tx_bufs = NULL;
1192 
1193 }
1194 
1195 struct rhine_skb_dma {
1196 	struct sk_buff *skb;
1197 	dma_addr_t dma;
1198 };
1199 
1200 static inline int rhine_skb_dma_init(struct net_device *dev,
1201 				     struct rhine_skb_dma *sd)
1202 {
1203 	struct rhine_private *rp = netdev_priv(dev);
1204 	struct device *hwdev = dev->dev.parent;
1205 	const int size = rp->rx_buf_sz;
1206 
1207 	sd->skb = netdev_alloc_skb(dev, size);
1208 	if (!sd->skb)
1209 		return -ENOMEM;
1210 
1211 	sd->dma = dma_map_single(hwdev, sd->skb->data, size, DMA_FROM_DEVICE);
1212 	if (unlikely(dma_mapping_error(hwdev, sd->dma))) {
1213 		netif_err(rp, drv, dev, "Rx DMA mapping failure\n");
1214 		dev_kfree_skb_any(sd->skb);
1215 		return -EIO;
1216 	}
1217 
1218 	return 0;
1219 }
1220 
1221 static void rhine_reset_rbufs(struct rhine_private *rp)
1222 {
1223 	int i;
1224 
1225 	rp->cur_rx = 0;
1226 
1227 	for (i = 0; i < RX_RING_SIZE; i++)
1228 		rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn);
1229 }
1230 
1231 static inline void rhine_skb_dma_nic_store(struct rhine_private *rp,
1232 					   struct rhine_skb_dma *sd, int entry)
1233 {
1234 	rp->rx_skbuff_dma[entry] = sd->dma;
1235 	rp->rx_skbuff[entry] = sd->skb;
1236 
1237 	rp->rx_ring[entry].addr = cpu_to_le32(sd->dma);
1238 	dma_wmb();
1239 }
1240 
1241 static void free_rbufs(struct net_device* dev);
1242 
1243 static int alloc_rbufs(struct net_device *dev)
1244 {
1245 	struct rhine_private *rp = netdev_priv(dev);
1246 	dma_addr_t next;
1247 	int rc, i;
1248 
1249 	rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1250 	next = rp->rx_ring_dma;
1251 
1252 	/* Init the ring entries */
1253 	for (i = 0; i < RX_RING_SIZE; i++) {
1254 		rp->rx_ring[i].rx_status = 0;
1255 		rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz);
1256 		next += sizeof(struct rx_desc);
1257 		rp->rx_ring[i].next_desc = cpu_to_le32(next);
1258 		rp->rx_skbuff[i] = NULL;
1259 	}
1260 	/* Mark the last entry as wrapping the ring. */
1261 	rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma);
1262 
1263 	/* Fill in the Rx buffers.  Handle allocation failure gracefully. */
1264 	for (i = 0; i < RX_RING_SIZE; i++) {
1265 		struct rhine_skb_dma sd;
1266 
1267 		rc = rhine_skb_dma_init(dev, &sd);
1268 		if (rc < 0) {
1269 			free_rbufs(dev);
1270 			goto out;
1271 		}
1272 
1273 		rhine_skb_dma_nic_store(rp, &sd, i);
1274 	}
1275 
1276 	rhine_reset_rbufs(rp);
1277 out:
1278 	return rc;
1279 }
1280 
1281 static void free_rbufs(struct net_device* dev)
1282 {
1283 	struct rhine_private *rp = netdev_priv(dev);
1284 	struct device *hwdev = dev->dev.parent;
1285 	int i;
1286 
1287 	/* Free all the skbuffs in the Rx queue. */
1288 	for (i = 0; i < RX_RING_SIZE; i++) {
1289 		rp->rx_ring[i].rx_status = 0;
1290 		rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1291 		if (rp->rx_skbuff[i]) {
1292 			dma_unmap_single(hwdev,
1293 					 rp->rx_skbuff_dma[i],
1294 					 rp->rx_buf_sz, DMA_FROM_DEVICE);
1295 			dev_kfree_skb(rp->rx_skbuff[i]);
1296 		}
1297 		rp->rx_skbuff[i] = NULL;
1298 	}
1299 }
1300 
1301 static void alloc_tbufs(struct net_device* dev)
1302 {
1303 	struct rhine_private *rp = netdev_priv(dev);
1304 	dma_addr_t next;
1305 	int i;
1306 
1307 	rp->dirty_tx = rp->cur_tx = 0;
1308 	next = rp->tx_ring_dma;
1309 	for (i = 0; i < TX_RING_SIZE; i++) {
1310 		rp->tx_skbuff[i] = NULL;
1311 		rp->tx_ring[i].tx_status = 0;
1312 		rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1313 		next += sizeof(struct tx_desc);
1314 		rp->tx_ring[i].next_desc = cpu_to_le32(next);
1315 		if (rp->quirks & rqRhineI)
1316 			rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ];
1317 	}
1318 	rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma);
1319 
1320 	netdev_reset_queue(dev);
1321 }
1322 
1323 static void free_tbufs(struct net_device* dev)
1324 {
1325 	struct rhine_private *rp = netdev_priv(dev);
1326 	struct device *hwdev = dev->dev.parent;
1327 	int i;
1328 
1329 	for (i = 0; i < TX_RING_SIZE; i++) {
1330 		rp->tx_ring[i].tx_status = 0;
1331 		rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1332 		rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1333 		if (rp->tx_skbuff[i]) {
1334 			if (rp->tx_skbuff_dma[i]) {
1335 				dma_unmap_single(hwdev,
1336 						 rp->tx_skbuff_dma[i],
1337 						 rp->tx_skbuff[i]->len,
1338 						 DMA_TO_DEVICE);
1339 			}
1340 			dev_kfree_skb(rp->tx_skbuff[i]);
1341 		}
1342 		rp->tx_skbuff[i] = NULL;
1343 		rp->tx_buf[i] = NULL;
1344 	}
1345 }
1346 
1347 static void rhine_check_media(struct net_device *dev, unsigned int init_media)
1348 {
1349 	struct rhine_private *rp = netdev_priv(dev);
1350 	void __iomem *ioaddr = rp->base;
1351 
1352 	if (!rp->mii_if.force_media)
1353 		mii_check_media(&rp->mii_if, netif_msg_link(rp), init_media);
1354 
1355 	if (rp->mii_if.full_duplex)
1356 	    iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex,
1357 		   ioaddr + ChipCmd1);
1358 	else
1359 	    iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex,
1360 		   ioaddr + ChipCmd1);
1361 
1362 	netif_info(rp, link, dev, "force_media %d, carrier %d\n",
1363 		   rp->mii_if.force_media, netif_carrier_ok(dev));
1364 }
1365 
1366 /* Called after status of force_media possibly changed */
1367 static void rhine_set_carrier(struct mii_if_info *mii)
1368 {
1369 	struct net_device *dev = mii->dev;
1370 	struct rhine_private *rp = netdev_priv(dev);
1371 
1372 	if (mii->force_media) {
1373 		/* autoneg is off: Link is always assumed to be up */
1374 		if (!netif_carrier_ok(dev))
1375 			netif_carrier_on(dev);
1376 	}
1377 
1378 	rhine_check_media(dev, 0);
1379 
1380 	netif_info(rp, link, dev, "force_media %d, carrier %d\n",
1381 		   mii->force_media, netif_carrier_ok(dev));
1382 }
1383 
1384 /**
1385  * rhine_set_cam - set CAM multicast filters
1386  * @ioaddr: register block of this Rhine
1387  * @idx: multicast CAM index [0..MCAM_SIZE-1]
1388  * @addr: multicast address (6 bytes)
1389  *
1390  * Load addresses into multicast filters.
1391  */
1392 static void rhine_set_cam(void __iomem *ioaddr, int idx, u8 *addr)
1393 {
1394 	int i;
1395 
1396 	iowrite8(CAMC_CAMEN, ioaddr + CamCon);
1397 	wmb();
1398 
1399 	/* Paranoid -- idx out of range should never happen */
1400 	idx &= (MCAM_SIZE - 1);
1401 
1402 	iowrite8((u8) idx, ioaddr + CamAddr);
1403 
1404 	for (i = 0; i < 6; i++, addr++)
1405 		iowrite8(*addr, ioaddr + MulticastFilter0 + i);
1406 	udelay(10);
1407 	wmb();
1408 
1409 	iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
1410 	udelay(10);
1411 
1412 	iowrite8(0, ioaddr + CamCon);
1413 }
1414 
1415 /**
1416  * rhine_set_vlan_cam - set CAM VLAN filters
1417  * @ioaddr: register block of this Rhine
1418  * @idx: VLAN CAM index [0..VCAM_SIZE-1]
1419  * @addr: VLAN ID (2 bytes)
1420  *
1421  * Load addresses into VLAN filters.
1422  */
1423 static void rhine_set_vlan_cam(void __iomem *ioaddr, int idx, u8 *addr)
1424 {
1425 	iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
1426 	wmb();
1427 
1428 	/* Paranoid -- idx out of range should never happen */
1429 	idx &= (VCAM_SIZE - 1);
1430 
1431 	iowrite8((u8) idx, ioaddr + CamAddr);
1432 
1433 	iowrite16(*((u16 *) addr), ioaddr + MulticastFilter0 + 6);
1434 	udelay(10);
1435 	wmb();
1436 
1437 	iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
1438 	udelay(10);
1439 
1440 	iowrite8(0, ioaddr + CamCon);
1441 }
1442 
1443 /**
1444  * rhine_set_cam_mask - set multicast CAM mask
1445  * @ioaddr: register block of this Rhine
1446  * @mask: multicast CAM mask
1447  *
1448  * Mask sets multicast filters active/inactive.
1449  */
1450 static void rhine_set_cam_mask(void __iomem *ioaddr, u32 mask)
1451 {
1452 	iowrite8(CAMC_CAMEN, ioaddr + CamCon);
1453 	wmb();
1454 
1455 	/* write mask */
1456 	iowrite32(mask, ioaddr + CamMask);
1457 
1458 	/* disable CAMEN */
1459 	iowrite8(0, ioaddr + CamCon);
1460 }
1461 
1462 /**
1463  * rhine_set_vlan_cam_mask - set VLAN CAM mask
1464  * @ioaddr: register block of this Rhine
1465  * @mask: VLAN CAM mask
1466  *
1467  * Mask sets VLAN filters active/inactive.
1468  */
1469 static void rhine_set_vlan_cam_mask(void __iomem *ioaddr, u32 mask)
1470 {
1471 	iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
1472 	wmb();
1473 
1474 	/* write mask */
1475 	iowrite32(mask, ioaddr + CamMask);
1476 
1477 	/* disable CAMEN */
1478 	iowrite8(0, ioaddr + CamCon);
1479 }
1480 
1481 /**
1482  * rhine_init_cam_filter - initialize CAM filters
1483  * @dev: network device
1484  *
1485  * Initialize (disable) hardware VLAN and multicast support on this
1486  * Rhine.
1487  */
1488 static void rhine_init_cam_filter(struct net_device *dev)
1489 {
1490 	struct rhine_private *rp = netdev_priv(dev);
1491 	void __iomem *ioaddr = rp->base;
1492 
1493 	/* Disable all CAMs */
1494 	rhine_set_vlan_cam_mask(ioaddr, 0);
1495 	rhine_set_cam_mask(ioaddr, 0);
1496 
1497 	/* disable hardware VLAN support */
1498 	BYTE_REG_BITS_ON(TCR_PQEN, ioaddr + TxConfig);
1499 	BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
1500 }
1501 
1502 /**
1503  * rhine_update_vcam - update VLAN CAM filters
1504  * @dev: rhine_private data of this Rhine
1505  *
1506  * Update VLAN CAM filters to match configuration change.
1507  */
1508 static void rhine_update_vcam(struct net_device *dev)
1509 {
1510 	struct rhine_private *rp = netdev_priv(dev);
1511 	void __iomem *ioaddr = rp->base;
1512 	u16 vid;
1513 	u32 vCAMmask = 0;	/* 32 vCAMs (6105M and better) */
1514 	unsigned int i = 0;
1515 
1516 	for_each_set_bit(vid, rp->active_vlans, VLAN_N_VID) {
1517 		rhine_set_vlan_cam(ioaddr, i, (u8 *)&vid);
1518 		vCAMmask |= 1 << i;
1519 		if (++i >= VCAM_SIZE)
1520 			break;
1521 	}
1522 	rhine_set_vlan_cam_mask(ioaddr, vCAMmask);
1523 }
1524 
1525 static int rhine_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
1526 {
1527 	struct rhine_private *rp = netdev_priv(dev);
1528 
1529 	spin_lock_bh(&rp->lock);
1530 	set_bit(vid, rp->active_vlans);
1531 	rhine_update_vcam(dev);
1532 	spin_unlock_bh(&rp->lock);
1533 	return 0;
1534 }
1535 
1536 static int rhine_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
1537 {
1538 	struct rhine_private *rp = netdev_priv(dev);
1539 
1540 	spin_lock_bh(&rp->lock);
1541 	clear_bit(vid, rp->active_vlans);
1542 	rhine_update_vcam(dev);
1543 	spin_unlock_bh(&rp->lock);
1544 	return 0;
1545 }
1546 
1547 static void init_registers(struct net_device *dev)
1548 {
1549 	struct rhine_private *rp = netdev_priv(dev);
1550 	void __iomem *ioaddr = rp->base;
1551 	int i;
1552 
1553 	for (i = 0; i < 6; i++)
1554 		iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
1555 
1556 	/* Initialize other registers. */
1557 	iowrite16(0x0006, ioaddr + PCIBusConfig);	/* Tune configuration??? */
1558 	/* Configure initial FIFO thresholds. */
1559 	iowrite8(0x20, ioaddr + TxConfig);
1560 	rp->tx_thresh = 0x20;
1561 	rp->rx_thresh = 0x60;		/* Written in rhine_set_rx_mode(). */
1562 
1563 	iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr);
1564 	iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr);
1565 
1566 	rhine_set_rx_mode(dev);
1567 
1568 	if (rp->quirks & rqMgmt)
1569 		rhine_init_cam_filter(dev);
1570 
1571 	napi_enable(&rp->napi);
1572 
1573 	iowrite16(RHINE_EVENT & 0xffff, ioaddr + IntrEnable);
1574 
1575 	iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8),
1576 	       ioaddr + ChipCmd);
1577 	rhine_check_media(dev, 1);
1578 }
1579 
1580 /* Enable MII link status auto-polling (required for IntrLinkChange) */
1581 static void rhine_enable_linkmon(struct rhine_private *rp)
1582 {
1583 	void __iomem *ioaddr = rp->base;
1584 
1585 	iowrite8(0, ioaddr + MIICmd);
1586 	iowrite8(MII_BMSR, ioaddr + MIIRegAddr);
1587 	iowrite8(0x80, ioaddr + MIICmd);
1588 
1589 	rhine_wait_bit_high(rp, MIIRegAddr, 0x20);
1590 
1591 	iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr);
1592 }
1593 
1594 /* Disable MII link status auto-polling (required for MDIO access) */
1595 static void rhine_disable_linkmon(struct rhine_private *rp)
1596 {
1597 	void __iomem *ioaddr = rp->base;
1598 
1599 	iowrite8(0, ioaddr + MIICmd);
1600 
1601 	if (rp->quirks & rqRhineI) {
1602 		iowrite8(0x01, ioaddr + MIIRegAddr);	// MII_BMSR
1603 
1604 		/* Can be called from ISR. Evil. */
1605 		mdelay(1);
1606 
1607 		/* 0x80 must be set immediately before turning it off */
1608 		iowrite8(0x80, ioaddr + MIICmd);
1609 
1610 		rhine_wait_bit_high(rp, MIIRegAddr, 0x20);
1611 
1612 		/* Heh. Now clear 0x80 again. */
1613 		iowrite8(0, ioaddr + MIICmd);
1614 	}
1615 	else
1616 		rhine_wait_bit_high(rp, MIIRegAddr, 0x80);
1617 }
1618 
1619 /* Read and write over the MII Management Data I/O (MDIO) interface. */
1620 
1621 static int mdio_read(struct net_device *dev, int phy_id, int regnum)
1622 {
1623 	struct rhine_private *rp = netdev_priv(dev);
1624 	void __iomem *ioaddr = rp->base;
1625 	int result;
1626 
1627 	rhine_disable_linkmon(rp);
1628 
1629 	/* rhine_disable_linkmon already cleared MIICmd */
1630 	iowrite8(phy_id, ioaddr + MIIPhyAddr);
1631 	iowrite8(regnum, ioaddr + MIIRegAddr);
1632 	iowrite8(0x40, ioaddr + MIICmd);		/* Trigger read */
1633 	rhine_wait_bit_low(rp, MIICmd, 0x40);
1634 	result = ioread16(ioaddr + MIIData);
1635 
1636 	rhine_enable_linkmon(rp);
1637 	return result;
1638 }
1639 
1640 static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value)
1641 {
1642 	struct rhine_private *rp = netdev_priv(dev);
1643 	void __iomem *ioaddr = rp->base;
1644 
1645 	rhine_disable_linkmon(rp);
1646 
1647 	/* rhine_disable_linkmon already cleared MIICmd */
1648 	iowrite8(phy_id, ioaddr + MIIPhyAddr);
1649 	iowrite8(regnum, ioaddr + MIIRegAddr);
1650 	iowrite16(value, ioaddr + MIIData);
1651 	iowrite8(0x20, ioaddr + MIICmd);		/* Trigger write */
1652 	rhine_wait_bit_low(rp, MIICmd, 0x20);
1653 
1654 	rhine_enable_linkmon(rp);
1655 }
1656 
1657 static void rhine_task_disable(struct rhine_private *rp)
1658 {
1659 	mutex_lock(&rp->task_lock);
1660 	rp->task_enable = false;
1661 	mutex_unlock(&rp->task_lock);
1662 
1663 	cancel_work_sync(&rp->slow_event_task);
1664 	cancel_work_sync(&rp->reset_task);
1665 }
1666 
1667 static void rhine_task_enable(struct rhine_private *rp)
1668 {
1669 	mutex_lock(&rp->task_lock);
1670 	rp->task_enable = true;
1671 	mutex_unlock(&rp->task_lock);
1672 }
1673 
1674 static int rhine_open(struct net_device *dev)
1675 {
1676 	struct rhine_private *rp = netdev_priv(dev);
1677 	void __iomem *ioaddr = rp->base;
1678 	int rc;
1679 
1680 	rc = request_irq(rp->irq, rhine_interrupt, IRQF_SHARED, dev->name, dev);
1681 	if (rc)
1682 		goto out;
1683 
1684 	netif_dbg(rp, ifup, dev, "%s() irq %d\n", __func__, rp->irq);
1685 
1686 	rc = alloc_ring(dev);
1687 	if (rc < 0)
1688 		goto out_free_irq;
1689 
1690 	rc = alloc_rbufs(dev);
1691 	if (rc < 0)
1692 		goto out_free_ring;
1693 
1694 	alloc_tbufs(dev);
1695 	enable_mmio(rp->pioaddr, rp->quirks);
1696 	rhine_power_init(dev);
1697 	rhine_chip_reset(dev);
1698 	rhine_task_enable(rp);
1699 	init_registers(dev);
1700 
1701 	netif_dbg(rp, ifup, dev, "%s() Done - status %04x MII status: %04x\n",
1702 		  __func__, ioread16(ioaddr + ChipCmd),
1703 		  mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1704 
1705 	netif_start_queue(dev);
1706 
1707 out:
1708 	return rc;
1709 
1710 out_free_ring:
1711 	free_ring(dev);
1712 out_free_irq:
1713 	free_irq(rp->irq, dev);
1714 	goto out;
1715 }
1716 
1717 static void rhine_reset_task(struct work_struct *work)
1718 {
1719 	struct rhine_private *rp = container_of(work, struct rhine_private,
1720 						reset_task);
1721 	struct net_device *dev = rp->dev;
1722 
1723 	mutex_lock(&rp->task_lock);
1724 
1725 	if (!rp->task_enable)
1726 		goto out_unlock;
1727 
1728 	napi_disable(&rp->napi);
1729 	netif_tx_disable(dev);
1730 	spin_lock_bh(&rp->lock);
1731 
1732 	/* clear all descriptors */
1733 	free_tbufs(dev);
1734 	alloc_tbufs(dev);
1735 
1736 	rhine_reset_rbufs(rp);
1737 
1738 	/* Reinitialize the hardware. */
1739 	rhine_chip_reset(dev);
1740 	init_registers(dev);
1741 
1742 	spin_unlock_bh(&rp->lock);
1743 
1744 	netif_trans_update(dev); /* prevent tx timeout */
1745 	dev->stats.tx_errors++;
1746 	netif_wake_queue(dev);
1747 
1748 out_unlock:
1749 	mutex_unlock(&rp->task_lock);
1750 }
1751 
1752 static void rhine_tx_timeout(struct net_device *dev, unsigned int txqueue)
1753 {
1754 	struct rhine_private *rp = netdev_priv(dev);
1755 	void __iomem *ioaddr = rp->base;
1756 
1757 	netdev_warn(dev, "Transmit timed out, status %04x, PHY status %04x, resetting...\n",
1758 		    ioread16(ioaddr + IntrStatus),
1759 		    mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1760 
1761 	schedule_work(&rp->reset_task);
1762 }
1763 
1764 static inline bool rhine_tx_queue_full(struct rhine_private *rp)
1765 {
1766 	return (rp->cur_tx - rp->dirty_tx) >= TX_QUEUE_LEN;
1767 }
1768 
1769 static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
1770 				  struct net_device *dev)
1771 {
1772 	struct rhine_private *rp = netdev_priv(dev);
1773 	struct device *hwdev = dev->dev.parent;
1774 	void __iomem *ioaddr = rp->base;
1775 	unsigned entry;
1776 
1777 	/* Caution: the write order is important here, set the field
1778 	   with the "ownership" bits last. */
1779 
1780 	/* Calculate the next Tx descriptor entry. */
1781 	entry = rp->cur_tx % TX_RING_SIZE;
1782 
1783 	if (skb_padto(skb, ETH_ZLEN))
1784 		return NETDEV_TX_OK;
1785 
1786 	rp->tx_skbuff[entry] = skb;
1787 
1788 	if ((rp->quirks & rqRhineI) &&
1789 	    (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) {
1790 		/* Must use alignment buffer. */
1791 		if (skb->len > PKT_BUF_SZ) {
1792 			/* packet too long, drop it */
1793 			dev_kfree_skb_any(skb);
1794 			rp->tx_skbuff[entry] = NULL;
1795 			dev->stats.tx_dropped++;
1796 			return NETDEV_TX_OK;
1797 		}
1798 
1799 		/* Padding is not copied and so must be redone. */
1800 		skb_copy_and_csum_dev(skb, rp->tx_buf[entry]);
1801 		if (skb->len < ETH_ZLEN)
1802 			memset(rp->tx_buf[entry] + skb->len, 0,
1803 			       ETH_ZLEN - skb->len);
1804 		rp->tx_skbuff_dma[entry] = 0;
1805 		rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma +
1806 						      (rp->tx_buf[entry] -
1807 						       rp->tx_bufs));
1808 	} else {
1809 		rp->tx_skbuff_dma[entry] =
1810 			dma_map_single(hwdev, skb->data, skb->len,
1811 				       DMA_TO_DEVICE);
1812 		if (dma_mapping_error(hwdev, rp->tx_skbuff_dma[entry])) {
1813 			dev_kfree_skb_any(skb);
1814 			rp->tx_skbuff_dma[entry] = 0;
1815 			dev->stats.tx_dropped++;
1816 			return NETDEV_TX_OK;
1817 		}
1818 		rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]);
1819 	}
1820 
1821 	rp->tx_ring[entry].desc_length =
1822 		cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN));
1823 
1824 	if (unlikely(skb_vlan_tag_present(skb))) {
1825 		u16 vid_pcp = skb_vlan_tag_get(skb);
1826 
1827 		/* drop CFI/DEI bit, register needs VID and PCP */
1828 		vid_pcp = (vid_pcp & VLAN_VID_MASK) |
1829 			  ((vid_pcp & VLAN_PRIO_MASK) >> 1);
1830 		rp->tx_ring[entry].tx_status = cpu_to_le32((vid_pcp) << 16);
1831 		/* request tagging */
1832 		rp->tx_ring[entry].desc_length |= cpu_to_le32(0x020000);
1833 	}
1834 	else
1835 		rp->tx_ring[entry].tx_status = 0;
1836 
1837 	netdev_sent_queue(dev, skb->len);
1838 	/* lock eth irq */
1839 	dma_wmb();
1840 	rp->tx_ring[entry].tx_status |= cpu_to_le32(DescOwn);
1841 	wmb();
1842 
1843 	rp->cur_tx++;
1844 	/*
1845 	 * Nobody wants cur_tx write to rot for ages after the NIC will have
1846 	 * seen the transmit request, especially as the transmit completion
1847 	 * handler could miss it.
1848 	 */
1849 	smp_wmb();
1850 
1851 	/* Non-x86 Todo: explicitly flush cache lines here. */
1852 
1853 	if (skb_vlan_tag_present(skb))
1854 		/* Tx queues are bits 7-0 (first Tx queue: bit 7) */
1855 		BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);
1856 
1857 	/* Wake the potentially-idle transmit channel */
1858 	iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1859 	       ioaddr + ChipCmd1);
1860 	IOSYNC;
1861 
1862 	/* dirty_tx may be pessimistically out-of-sync. See rhine_tx. */
1863 	if (rhine_tx_queue_full(rp)) {
1864 		netif_stop_queue(dev);
1865 		smp_rmb();
1866 		/* Rejuvenate. */
1867 		if (!rhine_tx_queue_full(rp))
1868 			netif_wake_queue(dev);
1869 	}
1870 
1871 	netif_dbg(rp, tx_queued, dev, "Transmit frame #%d queued in slot %d\n",
1872 		  rp->cur_tx - 1, entry);
1873 
1874 	return NETDEV_TX_OK;
1875 }
1876 
1877 static void rhine_irq_disable(struct rhine_private *rp)
1878 {
1879 	iowrite16(0x0000, rp->base + IntrEnable);
1880 }
1881 
1882 /* The interrupt handler does all of the Rx thread work and cleans up
1883    after the Tx thread. */
1884 static irqreturn_t rhine_interrupt(int irq, void *dev_instance)
1885 {
1886 	struct net_device *dev = dev_instance;
1887 	struct rhine_private *rp = netdev_priv(dev);
1888 	u32 status;
1889 	int handled = 0;
1890 
1891 	status = rhine_get_events(rp);
1892 
1893 	netif_dbg(rp, intr, dev, "Interrupt, status %08x\n", status);
1894 
1895 	if (status & RHINE_EVENT) {
1896 		handled = 1;
1897 
1898 		rhine_irq_disable(rp);
1899 		napi_schedule(&rp->napi);
1900 	}
1901 
1902 	if (status & ~(IntrLinkChange | IntrStatsMax | RHINE_EVENT_NAPI)) {
1903 		netif_err(rp, intr, dev, "Something Wicked happened! %08x\n",
1904 			  status);
1905 	}
1906 
1907 	return IRQ_RETVAL(handled);
1908 }
1909 
1910 /* This routine is logically part of the interrupt handler, but isolated
1911    for clarity. */
1912 static void rhine_tx(struct net_device *dev)
1913 {
1914 	struct rhine_private *rp = netdev_priv(dev);
1915 	struct device *hwdev = dev->dev.parent;
1916 	unsigned int pkts_compl = 0, bytes_compl = 0;
1917 	unsigned int dirty_tx = rp->dirty_tx;
1918 	unsigned int cur_tx;
1919 	struct sk_buff *skb;
1920 
1921 	/*
1922 	 * The race with rhine_start_tx does not matter here as long as the
1923 	 * driver enforces a value of cur_tx that was relevant when the
1924 	 * packet was scheduled to the network chipset.
1925 	 * Executive summary: smp_rmb() balances smp_wmb() in rhine_start_tx.
1926 	 */
1927 	smp_rmb();
1928 	cur_tx = rp->cur_tx;
1929 	/* find and cleanup dirty tx descriptors */
1930 	while (dirty_tx != cur_tx) {
1931 		unsigned int entry = dirty_tx % TX_RING_SIZE;
1932 		u32 txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status);
1933 
1934 		netif_dbg(rp, tx_done, dev, "Tx scavenge %d status %08x\n",
1935 			  entry, txstatus);
1936 		if (txstatus & DescOwn)
1937 			break;
1938 		skb = rp->tx_skbuff[entry];
1939 		if (txstatus & 0x8000) {
1940 			netif_dbg(rp, tx_done, dev,
1941 				  "Transmit error, Tx status %08x\n", txstatus);
1942 			dev->stats.tx_errors++;
1943 			if (txstatus & 0x0400)
1944 				dev->stats.tx_carrier_errors++;
1945 			if (txstatus & 0x0200)
1946 				dev->stats.tx_window_errors++;
1947 			if (txstatus & 0x0100)
1948 				dev->stats.tx_aborted_errors++;
1949 			if (txstatus & 0x0080)
1950 				dev->stats.tx_heartbeat_errors++;
1951 			if (((rp->quirks & rqRhineI) && txstatus & 0x0002) ||
1952 			    (txstatus & 0x0800) || (txstatus & 0x1000)) {
1953 				dev->stats.tx_fifo_errors++;
1954 				rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1955 				break; /* Keep the skb - we try again */
1956 			}
1957 			/* Transmitter restarted in 'abnormal' handler. */
1958 		} else {
1959 			if (rp->quirks & rqRhineI)
1960 				dev->stats.collisions += (txstatus >> 3) & 0x0F;
1961 			else
1962 				dev->stats.collisions += txstatus & 0x0F;
1963 			netif_dbg(rp, tx_done, dev, "collisions: %1.1x:%1.1x\n",
1964 				  (txstatus >> 3) & 0xF, txstatus & 0xF);
1965 
1966 			u64_stats_update_begin(&rp->tx_stats.syncp);
1967 			rp->tx_stats.bytes += skb->len;
1968 			rp->tx_stats.packets++;
1969 			u64_stats_update_end(&rp->tx_stats.syncp);
1970 		}
1971 		/* Free the original skb. */
1972 		if (rp->tx_skbuff_dma[entry]) {
1973 			dma_unmap_single(hwdev,
1974 					 rp->tx_skbuff_dma[entry],
1975 					 skb->len,
1976 					 DMA_TO_DEVICE);
1977 		}
1978 		bytes_compl += skb->len;
1979 		pkts_compl++;
1980 		dev_consume_skb_any(skb);
1981 		rp->tx_skbuff[entry] = NULL;
1982 		dirty_tx++;
1983 	}
1984 
1985 	rp->dirty_tx = dirty_tx;
1986 	/* Pity we can't rely on the nearby BQL completion implicit barrier. */
1987 	smp_wmb();
1988 
1989 	netdev_completed_queue(dev, pkts_compl, bytes_compl);
1990 
1991 	/* cur_tx may be optimistically out-of-sync. See rhine_start_tx. */
1992 	if (!rhine_tx_queue_full(rp) && netif_queue_stopped(dev)) {
1993 		netif_wake_queue(dev);
1994 		smp_rmb();
1995 		/* Rejuvenate. */
1996 		if (rhine_tx_queue_full(rp))
1997 			netif_stop_queue(dev);
1998 	}
1999 }
2000 
2001 /**
2002  * rhine_get_vlan_tci - extract TCI from Rx data buffer
2003  * @skb: pointer to sk_buff
2004  * @data_size: used data area of the buffer including CRC
2005  *
2006  * If hardware VLAN tag extraction is enabled and the chip indicates a 802.1Q
2007  * packet, the extracted 802.1Q header (2 bytes TPID + 2 bytes TCI) is 4-byte
2008  * aligned following the CRC.
2009  */
2010 static inline u16 rhine_get_vlan_tci(struct sk_buff *skb, int data_size)
2011 {
2012 	u8 *trailer = (u8 *)skb->data + ((data_size + 3) & ~3) + 2;
2013 	return be16_to_cpup((__be16 *)trailer);
2014 }
2015 
2016 static inline void rhine_rx_vlan_tag(struct sk_buff *skb, struct rx_desc *desc,
2017 				     int data_size)
2018 {
2019 	dma_rmb();
2020 	if (unlikely(desc->desc_length & cpu_to_le32(DescTag))) {
2021 		u16 vlan_tci;
2022 
2023 		vlan_tci = rhine_get_vlan_tci(skb, data_size);
2024 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
2025 	}
2026 }
2027 
2028 /* Process up to limit frames from receive ring */
2029 static int rhine_rx(struct net_device *dev, int limit)
2030 {
2031 	struct rhine_private *rp = netdev_priv(dev);
2032 	struct device *hwdev = dev->dev.parent;
2033 	int entry = rp->cur_rx % RX_RING_SIZE;
2034 	int count;
2035 
2036 	netif_dbg(rp, rx_status, dev, "%s(), entry %d status %08x\n", __func__,
2037 		  entry, le32_to_cpu(rp->rx_ring[entry].rx_status));
2038 
2039 	/* If EOP is set on the next entry, it's a new packet. Send it up. */
2040 	for (count = 0; count < limit; ++count) {
2041 		struct rx_desc *desc = rp->rx_ring + entry;
2042 		u32 desc_status = le32_to_cpu(desc->rx_status);
2043 		int data_size = desc_status >> 16;
2044 
2045 		if (desc_status & DescOwn)
2046 			break;
2047 
2048 		netif_dbg(rp, rx_status, dev, "%s() status %08x\n", __func__,
2049 			  desc_status);
2050 
2051 		if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) {
2052 			if ((desc_status & RxWholePkt) != RxWholePkt) {
2053 				netdev_warn(dev,
2054 	"Oversized Ethernet frame spanned multiple buffers, "
2055 	"entry %#x length %d status %08x!\n",
2056 					    entry, data_size,
2057 					    desc_status);
2058 				dev->stats.rx_length_errors++;
2059 			} else if (desc_status & RxErr) {
2060 				/* There was a error. */
2061 				netif_dbg(rp, rx_err, dev,
2062 					  "%s() Rx error %08x\n", __func__,
2063 					  desc_status);
2064 				dev->stats.rx_errors++;
2065 				if (desc_status & 0x0030)
2066 					dev->stats.rx_length_errors++;
2067 				if (desc_status & 0x0048)
2068 					dev->stats.rx_fifo_errors++;
2069 				if (desc_status & 0x0004)
2070 					dev->stats.rx_frame_errors++;
2071 				if (desc_status & 0x0002) {
2072 					/* this can also be updated outside the interrupt handler */
2073 					spin_lock(&rp->lock);
2074 					dev->stats.rx_crc_errors++;
2075 					spin_unlock(&rp->lock);
2076 				}
2077 			}
2078 		} else {
2079 			/* Length should omit the CRC */
2080 			int pkt_len = data_size - 4;
2081 			struct sk_buff *skb;
2082 
2083 			/* Check if the packet is long enough to accept without
2084 			   copying to a minimally-sized skbuff. */
2085 			if (pkt_len < rx_copybreak) {
2086 				skb = netdev_alloc_skb_ip_align(dev, pkt_len);
2087 				if (unlikely(!skb))
2088 					goto drop;
2089 
2090 				dma_sync_single_for_cpu(hwdev,
2091 							rp->rx_skbuff_dma[entry],
2092 							rp->rx_buf_sz,
2093 							DMA_FROM_DEVICE);
2094 
2095 				skb_copy_to_linear_data(skb,
2096 						 rp->rx_skbuff[entry]->data,
2097 						 pkt_len);
2098 
2099 				dma_sync_single_for_device(hwdev,
2100 							   rp->rx_skbuff_dma[entry],
2101 							   rp->rx_buf_sz,
2102 							   DMA_FROM_DEVICE);
2103 			} else {
2104 				struct rhine_skb_dma sd;
2105 
2106 				if (unlikely(rhine_skb_dma_init(dev, &sd) < 0))
2107 					goto drop;
2108 
2109 				skb = rp->rx_skbuff[entry];
2110 
2111 				dma_unmap_single(hwdev,
2112 						 rp->rx_skbuff_dma[entry],
2113 						 rp->rx_buf_sz,
2114 						 DMA_FROM_DEVICE);
2115 				rhine_skb_dma_nic_store(rp, &sd, entry);
2116 			}
2117 
2118 			skb_put(skb, pkt_len);
2119 
2120 			rhine_rx_vlan_tag(skb, desc, data_size);
2121 
2122 			skb->protocol = eth_type_trans(skb, dev);
2123 
2124 			netif_receive_skb(skb);
2125 
2126 			u64_stats_update_begin(&rp->rx_stats.syncp);
2127 			rp->rx_stats.bytes += pkt_len;
2128 			rp->rx_stats.packets++;
2129 			u64_stats_update_end(&rp->rx_stats.syncp);
2130 		}
2131 give_descriptor_to_nic:
2132 		desc->rx_status = cpu_to_le32(DescOwn);
2133 		entry = (++rp->cur_rx) % RX_RING_SIZE;
2134 	}
2135 
2136 	return count;
2137 
2138 drop:
2139 	dev->stats.rx_dropped++;
2140 	goto give_descriptor_to_nic;
2141 }
2142 
2143 static void rhine_restart_tx(struct net_device *dev) {
2144 	struct rhine_private *rp = netdev_priv(dev);
2145 	void __iomem *ioaddr = rp->base;
2146 	int entry = rp->dirty_tx % TX_RING_SIZE;
2147 	u32 intr_status;
2148 
2149 	/*
2150 	 * If new errors occurred, we need to sort them out before doing Tx.
2151 	 * In that case the ISR will be back here RSN anyway.
2152 	 */
2153 	intr_status = rhine_get_events(rp);
2154 
2155 	if ((intr_status & IntrTxErrSummary) == 0) {
2156 
2157 		/* We know better than the chip where it should continue. */
2158 		iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc),
2159 		       ioaddr + TxRingPtr);
2160 
2161 		iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn,
2162 		       ioaddr + ChipCmd);
2163 
2164 		if (rp->tx_ring[entry].desc_length & cpu_to_le32(0x020000))
2165 			/* Tx queues are bits 7-0 (first Tx queue: bit 7) */
2166 			BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);
2167 
2168 		iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
2169 		       ioaddr + ChipCmd1);
2170 		IOSYNC;
2171 	}
2172 	else {
2173 		/* This should never happen */
2174 		netif_warn(rp, tx_err, dev, "another error occurred %08x\n",
2175 			   intr_status);
2176 	}
2177 
2178 }
2179 
2180 static void rhine_slow_event_task(struct work_struct *work)
2181 {
2182 	struct rhine_private *rp =
2183 		container_of(work, struct rhine_private, slow_event_task);
2184 	struct net_device *dev = rp->dev;
2185 	u32 intr_status;
2186 
2187 	mutex_lock(&rp->task_lock);
2188 
2189 	if (!rp->task_enable)
2190 		goto out_unlock;
2191 
2192 	intr_status = rhine_get_events(rp);
2193 	rhine_ack_events(rp, intr_status & RHINE_EVENT_SLOW);
2194 
2195 	if (intr_status & IntrLinkChange)
2196 		rhine_check_media(dev, 0);
2197 
2198 	if (intr_status & IntrPCIErr)
2199 		netif_warn(rp, hw, dev, "PCI error\n");
2200 
2201 	iowrite16(RHINE_EVENT & 0xffff, rp->base + IntrEnable);
2202 
2203 out_unlock:
2204 	mutex_unlock(&rp->task_lock);
2205 }
2206 
2207 static void
2208 rhine_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
2209 {
2210 	struct rhine_private *rp = netdev_priv(dev);
2211 	unsigned int start;
2212 
2213 	spin_lock_bh(&rp->lock);
2214 	rhine_update_rx_crc_and_missed_errord(rp);
2215 	spin_unlock_bh(&rp->lock);
2216 
2217 	netdev_stats_to_stats64(stats, &dev->stats);
2218 
2219 	do {
2220 		start = u64_stats_fetch_begin_irq(&rp->rx_stats.syncp);
2221 		stats->rx_packets = rp->rx_stats.packets;
2222 		stats->rx_bytes = rp->rx_stats.bytes;
2223 	} while (u64_stats_fetch_retry_irq(&rp->rx_stats.syncp, start));
2224 
2225 	do {
2226 		start = u64_stats_fetch_begin_irq(&rp->tx_stats.syncp);
2227 		stats->tx_packets = rp->tx_stats.packets;
2228 		stats->tx_bytes = rp->tx_stats.bytes;
2229 	} while (u64_stats_fetch_retry_irq(&rp->tx_stats.syncp, start));
2230 }
2231 
2232 static void rhine_set_rx_mode(struct net_device *dev)
2233 {
2234 	struct rhine_private *rp = netdev_priv(dev);
2235 	void __iomem *ioaddr = rp->base;
2236 	u32 mc_filter[2];	/* Multicast hash filter */
2237 	u8 rx_mode = 0x0C;	/* Note: 0x02=accept runt, 0x01=accept errs */
2238 	struct netdev_hw_addr *ha;
2239 
2240 	if (dev->flags & IFF_PROMISC) {		/* Set promiscuous. */
2241 		rx_mode = 0x1C;
2242 		iowrite32(0xffffffff, ioaddr + MulticastFilter0);
2243 		iowrite32(0xffffffff, ioaddr + MulticastFilter1);
2244 	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
2245 		   (dev->flags & IFF_ALLMULTI)) {
2246 		/* Too many to match, or accept all multicasts. */
2247 		iowrite32(0xffffffff, ioaddr + MulticastFilter0);
2248 		iowrite32(0xffffffff, ioaddr + MulticastFilter1);
2249 	} else if (rp->quirks & rqMgmt) {
2250 		int i = 0;
2251 		u32 mCAMmask = 0;	/* 32 mCAMs (6105M and better) */
2252 		netdev_for_each_mc_addr(ha, dev) {
2253 			if (i == MCAM_SIZE)
2254 				break;
2255 			rhine_set_cam(ioaddr, i, ha->addr);
2256 			mCAMmask |= 1 << i;
2257 			i++;
2258 		}
2259 		rhine_set_cam_mask(ioaddr, mCAMmask);
2260 	} else {
2261 		memset(mc_filter, 0, sizeof(mc_filter));
2262 		netdev_for_each_mc_addr(ha, dev) {
2263 			int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
2264 
2265 			mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
2266 		}
2267 		iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
2268 		iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
2269 	}
2270 	/* enable/disable VLAN receive filtering */
2271 	if (rp->quirks & rqMgmt) {
2272 		if (dev->flags & IFF_PROMISC)
2273 			BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
2274 		else
2275 			BYTE_REG_BITS_ON(BCR1_VIDFR, ioaddr + PCIBusConfig1);
2276 	}
2277 	BYTE_REG_BITS_ON(rx_mode, ioaddr + RxConfig);
2278 }
2279 
2280 static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2281 {
2282 	struct device *hwdev = dev->dev.parent;
2283 
2284 	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
2285 	strscpy(info->bus_info, dev_name(hwdev), sizeof(info->bus_info));
2286 }
2287 
2288 static int netdev_get_link_ksettings(struct net_device *dev,
2289 				     struct ethtool_link_ksettings *cmd)
2290 {
2291 	struct rhine_private *rp = netdev_priv(dev);
2292 
2293 	mutex_lock(&rp->task_lock);
2294 	mii_ethtool_get_link_ksettings(&rp->mii_if, cmd);
2295 	mutex_unlock(&rp->task_lock);
2296 
2297 	return 0;
2298 }
2299 
2300 static int netdev_set_link_ksettings(struct net_device *dev,
2301 				     const struct ethtool_link_ksettings *cmd)
2302 {
2303 	struct rhine_private *rp = netdev_priv(dev);
2304 	int rc;
2305 
2306 	mutex_lock(&rp->task_lock);
2307 	rc = mii_ethtool_set_link_ksettings(&rp->mii_if, cmd);
2308 	rhine_set_carrier(&rp->mii_if);
2309 	mutex_unlock(&rp->task_lock);
2310 
2311 	return rc;
2312 }
2313 
2314 static int netdev_nway_reset(struct net_device *dev)
2315 {
2316 	struct rhine_private *rp = netdev_priv(dev);
2317 
2318 	return mii_nway_restart(&rp->mii_if);
2319 }
2320 
2321 static u32 netdev_get_link(struct net_device *dev)
2322 {
2323 	struct rhine_private *rp = netdev_priv(dev);
2324 
2325 	return mii_link_ok(&rp->mii_if);
2326 }
2327 
2328 static u32 netdev_get_msglevel(struct net_device *dev)
2329 {
2330 	struct rhine_private *rp = netdev_priv(dev);
2331 
2332 	return rp->msg_enable;
2333 }
2334 
2335 static void netdev_set_msglevel(struct net_device *dev, u32 value)
2336 {
2337 	struct rhine_private *rp = netdev_priv(dev);
2338 
2339 	rp->msg_enable = value;
2340 }
2341 
2342 static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2343 {
2344 	struct rhine_private *rp = netdev_priv(dev);
2345 
2346 	if (!(rp->quirks & rqWOL))
2347 		return;
2348 
2349 	spin_lock_irq(&rp->lock);
2350 	wol->supported = WAKE_PHY | WAKE_MAGIC |
2351 			 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST;	/* Untested */
2352 	wol->wolopts = rp->wolopts;
2353 	spin_unlock_irq(&rp->lock);
2354 }
2355 
2356 static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2357 {
2358 	struct rhine_private *rp = netdev_priv(dev);
2359 	u32 support = WAKE_PHY | WAKE_MAGIC |
2360 		      WAKE_UCAST | WAKE_MCAST | WAKE_BCAST;	/* Untested */
2361 
2362 	if (!(rp->quirks & rqWOL))
2363 		return -EINVAL;
2364 
2365 	if (wol->wolopts & ~support)
2366 		return -EINVAL;
2367 
2368 	spin_lock_irq(&rp->lock);
2369 	rp->wolopts = wol->wolopts;
2370 	spin_unlock_irq(&rp->lock);
2371 
2372 	return 0;
2373 }
2374 
2375 static const struct ethtool_ops netdev_ethtool_ops = {
2376 	.get_drvinfo		= netdev_get_drvinfo,
2377 	.nway_reset		= netdev_nway_reset,
2378 	.get_link		= netdev_get_link,
2379 	.get_msglevel		= netdev_get_msglevel,
2380 	.set_msglevel		= netdev_set_msglevel,
2381 	.get_wol		= rhine_get_wol,
2382 	.set_wol		= rhine_set_wol,
2383 	.get_link_ksettings	= netdev_get_link_ksettings,
2384 	.set_link_ksettings	= netdev_set_link_ksettings,
2385 };
2386 
2387 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2388 {
2389 	struct rhine_private *rp = netdev_priv(dev);
2390 	int rc;
2391 
2392 	if (!netif_running(dev))
2393 		return -EINVAL;
2394 
2395 	mutex_lock(&rp->task_lock);
2396 	rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL);
2397 	rhine_set_carrier(&rp->mii_if);
2398 	mutex_unlock(&rp->task_lock);
2399 
2400 	return rc;
2401 }
2402 
2403 static int rhine_close(struct net_device *dev)
2404 {
2405 	struct rhine_private *rp = netdev_priv(dev);
2406 	void __iomem *ioaddr = rp->base;
2407 
2408 	rhine_task_disable(rp);
2409 	napi_disable(&rp->napi);
2410 	netif_stop_queue(dev);
2411 
2412 	netif_dbg(rp, ifdown, dev, "Shutting down ethercard, status was %04x\n",
2413 		  ioread16(ioaddr + ChipCmd));
2414 
2415 	/* Switch to loopback mode to avoid hardware races. */
2416 	iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig);
2417 
2418 	rhine_irq_disable(rp);
2419 
2420 	/* Stop the chip's Tx and Rx processes. */
2421 	iowrite16(CmdStop, ioaddr + ChipCmd);
2422 
2423 	free_irq(rp->irq, dev);
2424 	free_rbufs(dev);
2425 	free_tbufs(dev);
2426 	free_ring(dev);
2427 
2428 	return 0;
2429 }
2430 
2431 
2432 static void rhine_remove_one_pci(struct pci_dev *pdev)
2433 {
2434 	struct net_device *dev = pci_get_drvdata(pdev);
2435 	struct rhine_private *rp = netdev_priv(dev);
2436 
2437 	unregister_netdev(dev);
2438 
2439 	pci_iounmap(pdev, rp->base);
2440 	pci_release_regions(pdev);
2441 
2442 	free_netdev(dev);
2443 	pci_disable_device(pdev);
2444 }
2445 
2446 static int rhine_remove_one_platform(struct platform_device *pdev)
2447 {
2448 	struct net_device *dev = platform_get_drvdata(pdev);
2449 	struct rhine_private *rp = netdev_priv(dev);
2450 
2451 	unregister_netdev(dev);
2452 
2453 	iounmap(rp->base);
2454 
2455 	free_netdev(dev);
2456 
2457 	return 0;
2458 }
2459 
2460 static void rhine_shutdown_pci(struct pci_dev *pdev)
2461 {
2462 	struct net_device *dev = pci_get_drvdata(pdev);
2463 	struct rhine_private *rp = netdev_priv(dev);
2464 	void __iomem *ioaddr = rp->base;
2465 
2466 	if (!(rp->quirks & rqWOL))
2467 		return; /* Nothing to do for non-WOL adapters */
2468 
2469 	rhine_power_init(dev);
2470 
2471 	/* Make sure we use pattern 0, 1 and not 4, 5 */
2472 	if (rp->quirks & rq6patterns)
2473 		iowrite8(0x04, ioaddr + WOLcgClr);
2474 
2475 	spin_lock(&rp->lock);
2476 
2477 	if (rp->wolopts & WAKE_MAGIC) {
2478 		iowrite8(WOLmagic, ioaddr + WOLcrSet);
2479 		/*
2480 		 * Turn EEPROM-controlled wake-up back on -- some hardware may
2481 		 * not cooperate otherwise.
2482 		 */
2483 		iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA);
2484 	}
2485 
2486 	if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST))
2487 		iowrite8(WOLbmcast, ioaddr + WOLcgSet);
2488 
2489 	if (rp->wolopts & WAKE_PHY)
2490 		iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet);
2491 
2492 	if (rp->wolopts & WAKE_UCAST)
2493 		iowrite8(WOLucast, ioaddr + WOLcrSet);
2494 
2495 	if (rp->wolopts) {
2496 		/* Enable legacy WOL (for old motherboards) */
2497 		iowrite8(0x01, ioaddr + PwcfgSet);
2498 		iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW);
2499 	}
2500 
2501 	spin_unlock(&rp->lock);
2502 
2503 	if (system_state == SYSTEM_POWER_OFF && !avoid_D3) {
2504 		iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW);
2505 
2506 		pci_wake_from_d3(pdev, true);
2507 		pci_set_power_state(pdev, PCI_D3hot);
2508 	}
2509 }
2510 
2511 #ifdef CONFIG_PM_SLEEP
2512 static int rhine_suspend(struct device *device)
2513 {
2514 	struct net_device *dev = dev_get_drvdata(device);
2515 	struct rhine_private *rp = netdev_priv(dev);
2516 
2517 	if (!netif_running(dev))
2518 		return 0;
2519 
2520 	rhine_task_disable(rp);
2521 	rhine_irq_disable(rp);
2522 	napi_disable(&rp->napi);
2523 
2524 	netif_device_detach(dev);
2525 
2526 	if (dev_is_pci(device))
2527 		rhine_shutdown_pci(to_pci_dev(device));
2528 
2529 	return 0;
2530 }
2531 
2532 static int rhine_resume(struct device *device)
2533 {
2534 	struct net_device *dev = dev_get_drvdata(device);
2535 	struct rhine_private *rp = netdev_priv(dev);
2536 
2537 	if (!netif_running(dev))
2538 		return 0;
2539 
2540 	enable_mmio(rp->pioaddr, rp->quirks);
2541 	rhine_power_init(dev);
2542 	free_tbufs(dev);
2543 	alloc_tbufs(dev);
2544 	rhine_reset_rbufs(rp);
2545 	rhine_task_enable(rp);
2546 	spin_lock_bh(&rp->lock);
2547 	init_registers(dev);
2548 	spin_unlock_bh(&rp->lock);
2549 
2550 	netif_device_attach(dev);
2551 
2552 	return 0;
2553 }
2554 
2555 static SIMPLE_DEV_PM_OPS(rhine_pm_ops, rhine_suspend, rhine_resume);
2556 #define RHINE_PM_OPS	(&rhine_pm_ops)
2557 
2558 #else
2559 
2560 #define RHINE_PM_OPS	NULL
2561 
2562 #endif /* !CONFIG_PM_SLEEP */
2563 
2564 static struct pci_driver rhine_driver_pci = {
2565 	.name		= DRV_NAME,
2566 	.id_table	= rhine_pci_tbl,
2567 	.probe		= rhine_init_one_pci,
2568 	.remove		= rhine_remove_one_pci,
2569 	.shutdown	= rhine_shutdown_pci,
2570 	.driver.pm	= RHINE_PM_OPS,
2571 };
2572 
2573 static struct platform_driver rhine_driver_platform = {
2574 	.probe		= rhine_init_one_platform,
2575 	.remove		= rhine_remove_one_platform,
2576 	.driver = {
2577 		.name	= DRV_NAME,
2578 		.of_match_table	= rhine_of_tbl,
2579 		.pm		= RHINE_PM_OPS,
2580 	}
2581 };
2582 
2583 static const struct dmi_system_id rhine_dmi_table[] __initconst = {
2584 	{
2585 		.ident = "EPIA-M",
2586 		.matches = {
2587 			DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."),
2588 			DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2589 		},
2590 	},
2591 	{
2592 		.ident = "KV7",
2593 		.matches = {
2594 			DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"),
2595 			DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2596 		},
2597 	},
2598 	{ NULL }
2599 };
2600 
2601 static int __init rhine_init(void)
2602 {
2603 	int ret_pci, ret_platform;
2604 
2605 /* when a module, this is printed whether or not devices are found in probe */
2606 	if (dmi_check_system(rhine_dmi_table)) {
2607 		/* these BIOSes fail at PXE boot if chip is in D3 */
2608 		avoid_D3 = true;
2609 		pr_warn("Broken BIOS detected, avoid_D3 enabled\n");
2610 	}
2611 	else if (avoid_D3)
2612 		pr_info("avoid_D3 set\n");
2613 
2614 	ret_pci = pci_register_driver(&rhine_driver_pci);
2615 	ret_platform = platform_driver_register(&rhine_driver_platform);
2616 	if ((ret_pci < 0) && (ret_platform < 0))
2617 		return ret_pci;
2618 
2619 	return 0;
2620 }
2621 
2622 
2623 static void __exit rhine_cleanup(void)
2624 {
2625 	platform_driver_unregister(&rhine_driver_platform);
2626 	pci_unregister_driver(&rhine_driver_pci);
2627 }
2628 
2629 
2630 module_init(rhine_init);
2631 module_exit(rhine_cleanup);
2632