1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 - 2022 Beijing WangXun Technology Co., Ltd. */
3 
4 #include <linux/etherdevice.h>
5 #include <net/ip6_checksum.h>
6 #include <net/page_pool/helpers.h>
7 #include <net/inet_ecn.h>
8 #include <linux/iopoll.h>
9 #include <linux/sctp.h>
10 #include <linux/pci.h>
11 #include <net/tcp.h>
12 #include <net/ip.h>
13 
14 #include "wx_type.h"
15 #include "wx_lib.h"
16 #include "wx_hw.h"
17 
18 /* Lookup table mapping the HW PTYPE to the bit field for decoding */
19 static struct wx_dec_ptype wx_ptype_lookup[256] = {
20 	/* L2: mac */
21 	[0x11] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
22 	[0x12] = WX_PTT(L2, NONE, NONE, NONE, TS,   PAY2),
23 	[0x13] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
24 	[0x14] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
25 	[0x15] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE),
26 	[0x16] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
27 	[0x17] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE),
28 
29 	/* L2: ethertype filter */
30 	[0x18 ... 0x1F] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE),
31 
32 	/* L3: ip non-tunnel */
33 	[0x21] = WX_PTT(IP, FGV4, NONE, NONE, NONE, PAY3),
34 	[0x22] = WX_PTT(IP, IPV4, NONE, NONE, NONE, PAY3),
35 	[0x23] = WX_PTT(IP, IPV4, NONE, NONE, UDP,  PAY4),
36 	[0x24] = WX_PTT(IP, IPV4, NONE, NONE, TCP,  PAY4),
37 	[0x25] = WX_PTT(IP, IPV4, NONE, NONE, SCTP, PAY4),
38 	[0x29] = WX_PTT(IP, FGV6, NONE, NONE, NONE, PAY3),
39 	[0x2A] = WX_PTT(IP, IPV6, NONE, NONE, NONE, PAY3),
40 	[0x2B] = WX_PTT(IP, IPV6, NONE, NONE, UDP,  PAY3),
41 	[0x2C] = WX_PTT(IP, IPV6, NONE, NONE, TCP,  PAY4),
42 	[0x2D] = WX_PTT(IP, IPV6, NONE, NONE, SCTP, PAY4),
43 
44 	/* L2: fcoe */
45 	[0x30 ... 0x34] = WX_PTT(FCOE, NONE, NONE, NONE, NONE, PAY3),
46 	[0x38 ... 0x3C] = WX_PTT(FCOE, NONE, NONE, NONE, NONE, PAY3),
47 
48 	/* IPv4 --> IPv4/IPv6 */
49 	[0x81] = WX_PTT(IP, IPV4, IPIP, FGV4, NONE, PAY3),
50 	[0x82] = WX_PTT(IP, IPV4, IPIP, IPV4, NONE, PAY3),
51 	[0x83] = WX_PTT(IP, IPV4, IPIP, IPV4, UDP,  PAY4),
52 	[0x84] = WX_PTT(IP, IPV4, IPIP, IPV4, TCP,  PAY4),
53 	[0x85] = WX_PTT(IP, IPV4, IPIP, IPV4, SCTP, PAY4),
54 	[0x89] = WX_PTT(IP, IPV4, IPIP, FGV6, NONE, PAY3),
55 	[0x8A] = WX_PTT(IP, IPV4, IPIP, IPV6, NONE, PAY3),
56 	[0x8B] = WX_PTT(IP, IPV4, IPIP, IPV6, UDP,  PAY4),
57 	[0x8C] = WX_PTT(IP, IPV4, IPIP, IPV6, TCP,  PAY4),
58 	[0x8D] = WX_PTT(IP, IPV4, IPIP, IPV6, SCTP, PAY4),
59 
60 	/* IPv4 --> GRE/NAT --> NONE/IPv4/IPv6 */
61 	[0x90] = WX_PTT(IP, IPV4, IG, NONE, NONE, PAY3),
62 	[0x91] = WX_PTT(IP, IPV4, IG, FGV4, NONE, PAY3),
63 	[0x92] = WX_PTT(IP, IPV4, IG, IPV4, NONE, PAY3),
64 	[0x93] = WX_PTT(IP, IPV4, IG, IPV4, UDP,  PAY4),
65 	[0x94] = WX_PTT(IP, IPV4, IG, IPV4, TCP,  PAY4),
66 	[0x95] = WX_PTT(IP, IPV4, IG, IPV4, SCTP, PAY4),
67 	[0x99] = WX_PTT(IP, IPV4, IG, FGV6, NONE, PAY3),
68 	[0x9A] = WX_PTT(IP, IPV4, IG, IPV6, NONE, PAY3),
69 	[0x9B] = WX_PTT(IP, IPV4, IG, IPV6, UDP,  PAY4),
70 	[0x9C] = WX_PTT(IP, IPV4, IG, IPV6, TCP,  PAY4),
71 	[0x9D] = WX_PTT(IP, IPV4, IG, IPV6, SCTP, PAY4),
72 
73 	/* IPv4 --> GRE/NAT --> MAC --> NONE/IPv4/IPv6 */
74 	[0xA0] = WX_PTT(IP, IPV4, IGM, NONE, NONE, PAY3),
75 	[0xA1] = WX_PTT(IP, IPV4, IGM, FGV4, NONE, PAY3),
76 	[0xA2] = WX_PTT(IP, IPV4, IGM, IPV4, NONE, PAY3),
77 	[0xA3] = WX_PTT(IP, IPV4, IGM, IPV4, UDP,  PAY4),
78 	[0xA4] = WX_PTT(IP, IPV4, IGM, IPV4, TCP,  PAY4),
79 	[0xA5] = WX_PTT(IP, IPV4, IGM, IPV4, SCTP, PAY4),
80 	[0xA9] = WX_PTT(IP, IPV4, IGM, FGV6, NONE, PAY3),
81 	[0xAA] = WX_PTT(IP, IPV4, IGM, IPV6, NONE, PAY3),
82 	[0xAB] = WX_PTT(IP, IPV4, IGM, IPV6, UDP,  PAY4),
83 	[0xAC] = WX_PTT(IP, IPV4, IGM, IPV6, TCP,  PAY4),
84 	[0xAD] = WX_PTT(IP, IPV4, IGM, IPV6, SCTP, PAY4),
85 
86 	/* IPv4 --> GRE/NAT --> MAC+VLAN --> NONE/IPv4/IPv6 */
87 	[0xB0] = WX_PTT(IP, IPV4, IGMV, NONE, NONE, PAY3),
88 	[0xB1] = WX_PTT(IP, IPV4, IGMV, FGV4, NONE, PAY3),
89 	[0xB2] = WX_PTT(IP, IPV4, IGMV, IPV4, NONE, PAY3),
90 	[0xB3] = WX_PTT(IP, IPV4, IGMV, IPV4, UDP,  PAY4),
91 	[0xB4] = WX_PTT(IP, IPV4, IGMV, IPV4, TCP,  PAY4),
92 	[0xB5] = WX_PTT(IP, IPV4, IGMV, IPV4, SCTP, PAY4),
93 	[0xB9] = WX_PTT(IP, IPV4, IGMV, FGV6, NONE, PAY3),
94 	[0xBA] = WX_PTT(IP, IPV4, IGMV, IPV6, NONE, PAY3),
95 	[0xBB] = WX_PTT(IP, IPV4, IGMV, IPV6, UDP,  PAY4),
96 	[0xBC] = WX_PTT(IP, IPV4, IGMV, IPV6, TCP,  PAY4),
97 	[0xBD] = WX_PTT(IP, IPV4, IGMV, IPV6, SCTP, PAY4),
98 
99 	/* IPv6 --> IPv4/IPv6 */
100 	[0xC1] = WX_PTT(IP, IPV6, IPIP, FGV4, NONE, PAY3),
101 	[0xC2] = WX_PTT(IP, IPV6, IPIP, IPV4, NONE, PAY3),
102 	[0xC3] = WX_PTT(IP, IPV6, IPIP, IPV4, UDP,  PAY4),
103 	[0xC4] = WX_PTT(IP, IPV6, IPIP, IPV4, TCP,  PAY4),
104 	[0xC5] = WX_PTT(IP, IPV6, IPIP, IPV4, SCTP, PAY4),
105 	[0xC9] = WX_PTT(IP, IPV6, IPIP, FGV6, NONE, PAY3),
106 	[0xCA] = WX_PTT(IP, IPV6, IPIP, IPV6, NONE, PAY3),
107 	[0xCB] = WX_PTT(IP, IPV6, IPIP, IPV6, UDP,  PAY4),
108 	[0xCC] = WX_PTT(IP, IPV6, IPIP, IPV6, TCP,  PAY4),
109 	[0xCD] = WX_PTT(IP, IPV6, IPIP, IPV6, SCTP, PAY4),
110 
111 	/* IPv6 --> GRE/NAT -> NONE/IPv4/IPv6 */
112 	[0xD0] = WX_PTT(IP, IPV6, IG, NONE, NONE, PAY3),
113 	[0xD1] = WX_PTT(IP, IPV6, IG, FGV4, NONE, PAY3),
114 	[0xD2] = WX_PTT(IP, IPV6, IG, IPV4, NONE, PAY3),
115 	[0xD3] = WX_PTT(IP, IPV6, IG, IPV4, UDP,  PAY4),
116 	[0xD4] = WX_PTT(IP, IPV6, IG, IPV4, TCP,  PAY4),
117 	[0xD5] = WX_PTT(IP, IPV6, IG, IPV4, SCTP, PAY4),
118 	[0xD9] = WX_PTT(IP, IPV6, IG, FGV6, NONE, PAY3),
119 	[0xDA] = WX_PTT(IP, IPV6, IG, IPV6, NONE, PAY3),
120 	[0xDB] = WX_PTT(IP, IPV6, IG, IPV6, UDP,  PAY4),
121 	[0xDC] = WX_PTT(IP, IPV6, IG, IPV6, TCP,  PAY4),
122 	[0xDD] = WX_PTT(IP, IPV6, IG, IPV6, SCTP, PAY4),
123 
124 	/* IPv6 --> GRE/NAT -> MAC -> NONE/IPv4/IPv6 */
125 	[0xE0] = WX_PTT(IP, IPV6, IGM, NONE, NONE, PAY3),
126 	[0xE1] = WX_PTT(IP, IPV6, IGM, FGV4, NONE, PAY3),
127 	[0xE2] = WX_PTT(IP, IPV6, IGM, IPV4, NONE, PAY3),
128 	[0xE3] = WX_PTT(IP, IPV6, IGM, IPV4, UDP,  PAY4),
129 	[0xE4] = WX_PTT(IP, IPV6, IGM, IPV4, TCP,  PAY4),
130 	[0xE5] = WX_PTT(IP, IPV6, IGM, IPV4, SCTP, PAY4),
131 	[0xE9] = WX_PTT(IP, IPV6, IGM, FGV6, NONE, PAY3),
132 	[0xEA] = WX_PTT(IP, IPV6, IGM, IPV6, NONE, PAY3),
133 	[0xEB] = WX_PTT(IP, IPV6, IGM, IPV6, UDP,  PAY4),
134 	[0xEC] = WX_PTT(IP, IPV6, IGM, IPV6, TCP,  PAY4),
135 	[0xED] = WX_PTT(IP, IPV6, IGM, IPV6, SCTP, PAY4),
136 
137 	/* IPv6 --> GRE/NAT -> MAC--> NONE/IPv */
138 	[0xF0] = WX_PTT(IP, IPV6, IGMV, NONE, NONE, PAY3),
139 	[0xF1] = WX_PTT(IP, IPV6, IGMV, FGV4, NONE, PAY3),
140 	[0xF2] = WX_PTT(IP, IPV6, IGMV, IPV4, NONE, PAY3),
141 	[0xF3] = WX_PTT(IP, IPV6, IGMV, IPV4, UDP,  PAY4),
142 	[0xF4] = WX_PTT(IP, IPV6, IGMV, IPV4, TCP,  PAY4),
143 	[0xF5] = WX_PTT(IP, IPV6, IGMV, IPV4, SCTP, PAY4),
144 	[0xF9] = WX_PTT(IP, IPV6, IGMV, FGV6, NONE, PAY3),
145 	[0xFA] = WX_PTT(IP, IPV6, IGMV, IPV6, NONE, PAY3),
146 	[0xFB] = WX_PTT(IP, IPV6, IGMV, IPV6, UDP,  PAY4),
147 	[0xFC] = WX_PTT(IP, IPV6, IGMV, IPV6, TCP,  PAY4),
148 	[0xFD] = WX_PTT(IP, IPV6, IGMV, IPV6, SCTP, PAY4),
149 };
150 
151 static struct wx_dec_ptype wx_decode_ptype(const u8 ptype)
152 {
153 	return wx_ptype_lookup[ptype];
154 }
155 
156 /* wx_test_staterr - tests bits in Rx descriptor status and error fields */
157 static __le32 wx_test_staterr(union wx_rx_desc *rx_desc,
158 			      const u32 stat_err_bits)
159 {
160 	return rx_desc->wb.upper.status_error & cpu_to_le32(stat_err_bits);
161 }
162 
163 static bool wx_can_reuse_rx_page(struct wx_rx_buffer *rx_buffer,
164 				 int rx_buffer_pgcnt)
165 {
166 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
167 	struct page *page = rx_buffer->page;
168 
169 	/* avoid re-using remote and pfmemalloc pages */
170 	if (!dev_page_is_reusable(page))
171 		return false;
172 
173 #if (PAGE_SIZE < 8192)
174 	/* if we are only owner of page we can reuse it */
175 	if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
176 		return false;
177 #endif
178 
179 	/* If we have drained the page fragment pool we need to update
180 	 * the pagecnt_bias and page count so that we fully restock the
181 	 * number of references the driver holds.
182 	 */
183 	if (unlikely(pagecnt_bias == 1)) {
184 		page_ref_add(page, USHRT_MAX - 1);
185 		rx_buffer->pagecnt_bias = USHRT_MAX;
186 	}
187 
188 	return true;
189 }
190 
191 /**
192  * wx_reuse_rx_page - page flip buffer and store it back on the ring
193  * @rx_ring: rx descriptor ring to store buffers on
194  * @old_buff: donor buffer to have page reused
195  *
196  * Synchronizes page for reuse by the adapter
197  **/
198 static void wx_reuse_rx_page(struct wx_ring *rx_ring,
199 			     struct wx_rx_buffer *old_buff)
200 {
201 	u16 nta = rx_ring->next_to_alloc;
202 	struct wx_rx_buffer *new_buff;
203 
204 	new_buff = &rx_ring->rx_buffer_info[nta];
205 
206 	/* update, and store next to alloc */
207 	nta++;
208 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
209 
210 	/* transfer page from old buffer to new buffer */
211 	new_buff->page = old_buff->page;
212 	new_buff->page_dma = old_buff->page_dma;
213 	new_buff->page_offset = old_buff->page_offset;
214 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
215 }
216 
217 static void wx_dma_sync_frag(struct wx_ring *rx_ring,
218 			     struct wx_rx_buffer *rx_buffer)
219 {
220 	struct sk_buff *skb = rx_buffer->skb;
221 	skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
222 
223 	dma_sync_single_range_for_cpu(rx_ring->dev,
224 				      WX_CB(skb)->dma,
225 				      skb_frag_off(frag),
226 				      skb_frag_size(frag),
227 				      DMA_FROM_DEVICE);
228 
229 	/* If the page was released, just unmap it. */
230 	if (unlikely(WX_CB(skb)->page_released))
231 		page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false);
232 }
233 
234 static struct wx_rx_buffer *wx_get_rx_buffer(struct wx_ring *rx_ring,
235 					     union wx_rx_desc *rx_desc,
236 					     struct sk_buff **skb,
237 					     int *rx_buffer_pgcnt)
238 {
239 	struct wx_rx_buffer *rx_buffer;
240 	unsigned int size;
241 
242 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
243 	size = le16_to_cpu(rx_desc->wb.upper.length);
244 
245 #if (PAGE_SIZE < 8192)
246 	*rx_buffer_pgcnt = page_count(rx_buffer->page);
247 #else
248 	*rx_buffer_pgcnt = 0;
249 #endif
250 
251 	prefetchw(rx_buffer->page);
252 	*skb = rx_buffer->skb;
253 
254 	/* Delay unmapping of the first packet. It carries the header
255 	 * information, HW may still access the header after the writeback.
256 	 * Only unmap it when EOP is reached
257 	 */
258 	if (!wx_test_staterr(rx_desc, WX_RXD_STAT_EOP)) {
259 		if (!*skb)
260 			goto skip_sync;
261 	} else {
262 		if (*skb)
263 			wx_dma_sync_frag(rx_ring, rx_buffer);
264 	}
265 
266 	/* we are reusing so sync this buffer for CPU use */
267 	dma_sync_single_range_for_cpu(rx_ring->dev,
268 				      rx_buffer->dma,
269 				      rx_buffer->page_offset,
270 				      size,
271 				      DMA_FROM_DEVICE);
272 skip_sync:
273 	rx_buffer->pagecnt_bias--;
274 
275 	return rx_buffer;
276 }
277 
278 static void wx_put_rx_buffer(struct wx_ring *rx_ring,
279 			     struct wx_rx_buffer *rx_buffer,
280 			     struct sk_buff *skb,
281 			     int rx_buffer_pgcnt)
282 {
283 	if (wx_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
284 		/* hand second half of page back to the ring */
285 		wx_reuse_rx_page(rx_ring, rx_buffer);
286 	} else {
287 		if (!IS_ERR(skb) && WX_CB(skb)->dma == rx_buffer->dma)
288 			/* the page has been released from the ring */
289 			WX_CB(skb)->page_released = true;
290 		else
291 			page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false);
292 
293 		__page_frag_cache_drain(rx_buffer->page,
294 					rx_buffer->pagecnt_bias);
295 	}
296 
297 	/* clear contents of rx_buffer */
298 	rx_buffer->page = NULL;
299 	rx_buffer->skb = NULL;
300 }
301 
302 static struct sk_buff *wx_build_skb(struct wx_ring *rx_ring,
303 				    struct wx_rx_buffer *rx_buffer,
304 				    union wx_rx_desc *rx_desc)
305 {
306 	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
307 #if (PAGE_SIZE < 8192)
308 	unsigned int truesize = WX_RX_BUFSZ;
309 #else
310 	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
311 #endif
312 	struct sk_buff *skb = rx_buffer->skb;
313 
314 	if (!skb) {
315 		void *page_addr = page_address(rx_buffer->page) +
316 				  rx_buffer->page_offset;
317 
318 		/* prefetch first cache line of first page */
319 		prefetch(page_addr);
320 #if L1_CACHE_BYTES < 128
321 		prefetch(page_addr + L1_CACHE_BYTES);
322 #endif
323 
324 		/* allocate a skb to store the frags */
325 		skb = napi_alloc_skb(&rx_ring->q_vector->napi, WX_RXBUFFER_256);
326 		if (unlikely(!skb))
327 			return NULL;
328 
329 		/* we will be copying header into skb->data in
330 		 * pskb_may_pull so it is in our interest to prefetch
331 		 * it now to avoid a possible cache miss
332 		 */
333 		prefetchw(skb->data);
334 
335 		if (size <= WX_RXBUFFER_256) {
336 			memcpy(__skb_put(skb, size), page_addr,
337 			       ALIGN(size, sizeof(long)));
338 			rx_buffer->pagecnt_bias++;
339 
340 			return skb;
341 		}
342 
343 		if (!wx_test_staterr(rx_desc, WX_RXD_STAT_EOP))
344 			WX_CB(skb)->dma = rx_buffer->dma;
345 
346 		skb_add_rx_frag(skb, 0, rx_buffer->page,
347 				rx_buffer->page_offset,
348 				size, truesize);
349 		goto out;
350 
351 	} else {
352 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
353 				rx_buffer->page_offset, size, truesize);
354 	}
355 
356 out:
357 #if (PAGE_SIZE < 8192)
358 	/* flip page offset to other buffer */
359 	rx_buffer->page_offset ^= truesize;
360 #else
361 	/* move offset up to the next cache line */
362 	rx_buffer->page_offset += truesize;
363 #endif
364 
365 	return skb;
366 }
367 
368 static bool wx_alloc_mapped_page(struct wx_ring *rx_ring,
369 				 struct wx_rx_buffer *bi)
370 {
371 	struct page *page = bi->page;
372 	dma_addr_t dma;
373 
374 	/* since we are recycling buffers we should seldom need to alloc */
375 	if (likely(page))
376 		return true;
377 
378 	page = page_pool_dev_alloc_pages(rx_ring->page_pool);
379 	WARN_ON(!page);
380 	dma = page_pool_get_dma_addr(page);
381 
382 	bi->page_dma = dma;
383 	bi->page = page;
384 	bi->page_offset = 0;
385 	page_ref_add(page, USHRT_MAX - 1);
386 	bi->pagecnt_bias = USHRT_MAX;
387 
388 	return true;
389 }
390 
391 /**
392  * wx_alloc_rx_buffers - Replace used receive buffers
393  * @rx_ring: ring to place buffers on
394  * @cleaned_count: number of buffers to replace
395  **/
396 void wx_alloc_rx_buffers(struct wx_ring *rx_ring, u16 cleaned_count)
397 {
398 	u16 i = rx_ring->next_to_use;
399 	union wx_rx_desc *rx_desc;
400 	struct wx_rx_buffer *bi;
401 
402 	/* nothing to do */
403 	if (!cleaned_count)
404 		return;
405 
406 	rx_desc = WX_RX_DESC(rx_ring, i);
407 	bi = &rx_ring->rx_buffer_info[i];
408 	i -= rx_ring->count;
409 
410 	do {
411 		if (!wx_alloc_mapped_page(rx_ring, bi))
412 			break;
413 
414 		/* sync the buffer for use by the device */
415 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
416 						 bi->page_offset,
417 						 WX_RX_BUFSZ,
418 						 DMA_FROM_DEVICE);
419 
420 		rx_desc->read.pkt_addr =
421 			cpu_to_le64(bi->page_dma + bi->page_offset);
422 
423 		rx_desc++;
424 		bi++;
425 		i++;
426 		if (unlikely(!i)) {
427 			rx_desc = WX_RX_DESC(rx_ring, 0);
428 			bi = rx_ring->rx_buffer_info;
429 			i -= rx_ring->count;
430 		}
431 
432 		/* clear the status bits for the next_to_use descriptor */
433 		rx_desc->wb.upper.status_error = 0;
434 
435 		cleaned_count--;
436 	} while (cleaned_count);
437 
438 	i += rx_ring->count;
439 
440 	if (rx_ring->next_to_use != i) {
441 		rx_ring->next_to_use = i;
442 		/* update next to alloc since we have filled the ring */
443 		rx_ring->next_to_alloc = i;
444 
445 		/* Force memory writes to complete before letting h/w
446 		 * know there are new descriptors to fetch.  (Only
447 		 * applicable for weak-ordered memory model archs,
448 		 * such as IA-64).
449 		 */
450 		wmb();
451 		writel(i, rx_ring->tail);
452 	}
453 }
454 
455 u16 wx_desc_unused(struct wx_ring *ring)
456 {
457 	u16 ntc = ring->next_to_clean;
458 	u16 ntu = ring->next_to_use;
459 
460 	return ((ntc > ntu) ? 0 : ring->count) + ntc - ntu - 1;
461 }
462 
463 /**
464  * wx_is_non_eop - process handling of non-EOP buffers
465  * @rx_ring: Rx ring being processed
466  * @rx_desc: Rx descriptor for current buffer
467  * @skb: Current socket buffer containing buffer in progress
468  *
469  * This function updates next to clean. If the buffer is an EOP buffer
470  * this function exits returning false, otherwise it will place the
471  * sk_buff in the next buffer to be chained and return true indicating
472  * that this is in fact a non-EOP buffer.
473  **/
474 static bool wx_is_non_eop(struct wx_ring *rx_ring,
475 			  union wx_rx_desc *rx_desc,
476 			  struct sk_buff *skb)
477 {
478 	u32 ntc = rx_ring->next_to_clean + 1;
479 
480 	/* fetch, update, and store next to clean */
481 	ntc = (ntc < rx_ring->count) ? ntc : 0;
482 	rx_ring->next_to_clean = ntc;
483 
484 	prefetch(WX_RX_DESC(rx_ring, ntc));
485 
486 	/* if we are the last buffer then there is nothing else to do */
487 	if (likely(wx_test_staterr(rx_desc, WX_RXD_STAT_EOP)))
488 		return false;
489 
490 	rx_ring->rx_buffer_info[ntc].skb = skb;
491 	rx_ring->rx_stats.non_eop_descs++;
492 
493 	return true;
494 }
495 
496 static void wx_pull_tail(struct sk_buff *skb)
497 {
498 	skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
499 	unsigned int pull_len;
500 	unsigned char *va;
501 
502 	/* it is valid to use page_address instead of kmap since we are
503 	 * working with pages allocated out of the lomem pool per
504 	 * alloc_page(GFP_ATOMIC)
505 	 */
506 	va = skb_frag_address(frag);
507 
508 	/* we need the header to contain the greater of either ETH_HLEN or
509 	 * 60 bytes if the skb->len is less than 60 for skb_pad.
510 	 */
511 	pull_len = eth_get_headlen(skb->dev, va, WX_RXBUFFER_256);
512 
513 	/* align pull length to size of long to optimize memcpy performance */
514 	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
515 
516 	/* update all of the pointers */
517 	skb_frag_size_sub(frag, pull_len);
518 	skb_frag_off_add(frag, pull_len);
519 	skb->data_len -= pull_len;
520 	skb->tail += pull_len;
521 }
522 
523 /**
524  * wx_cleanup_headers - Correct corrupted or empty headers
525  * @rx_ring: rx descriptor ring packet is being transacted on
526  * @rx_desc: pointer to the EOP Rx descriptor
527  * @skb: pointer to current skb being fixed
528  *
529  * Check for corrupted packet headers caused by senders on the local L2
530  * embedded NIC switch not setting up their Tx Descriptors right.  These
531  * should be very rare.
532  *
533  * Also address the case where we are pulling data in on pages only
534  * and as such no data is present in the skb header.
535  *
536  * In addition if skb is not at least 60 bytes we need to pad it so that
537  * it is large enough to qualify as a valid Ethernet frame.
538  *
539  * Returns true if an error was encountered and skb was freed.
540  **/
541 static bool wx_cleanup_headers(struct wx_ring *rx_ring,
542 			       union wx_rx_desc *rx_desc,
543 			       struct sk_buff *skb)
544 {
545 	struct net_device *netdev = rx_ring->netdev;
546 
547 	/* verify that the packet does not have any known errors */
548 	if (!netdev ||
549 	    unlikely(wx_test_staterr(rx_desc, WX_RXD_ERR_RXE) &&
550 		     !(netdev->features & NETIF_F_RXALL))) {
551 		dev_kfree_skb_any(skb);
552 		return true;
553 	}
554 
555 	/* place header in linear portion of buffer */
556 	if (!skb_headlen(skb))
557 		wx_pull_tail(skb);
558 
559 	/* if eth_skb_pad returns an error the skb was freed */
560 	if (eth_skb_pad(skb))
561 		return true;
562 
563 	return false;
564 }
565 
566 static void wx_rx_hash(struct wx_ring *ring,
567 		       union wx_rx_desc *rx_desc,
568 		       struct sk_buff *skb)
569 {
570 	u16 rss_type;
571 
572 	if (!(ring->netdev->features & NETIF_F_RXHASH))
573 		return;
574 
575 	rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) &
576 			       WX_RXD_RSSTYPE_MASK;
577 
578 	if (!rss_type)
579 		return;
580 
581 	skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
582 		     (WX_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
583 		     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
584 }
585 
586 /**
587  * wx_rx_checksum - indicate in skb if hw indicated a good cksum
588  * @ring: structure containing ring specific data
589  * @rx_desc: current Rx descriptor being processed
590  * @skb: skb currently being received and modified
591  **/
592 static void wx_rx_checksum(struct wx_ring *ring,
593 			   union wx_rx_desc *rx_desc,
594 			   struct sk_buff *skb)
595 {
596 	struct wx_dec_ptype dptype = wx_decode_ptype(WX_RXD_PKTTYPE(rx_desc));
597 
598 	skb_checksum_none_assert(skb);
599 	/* Rx csum disabled */
600 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
601 		return;
602 
603 	/* if IPv4 header checksum error */
604 	if ((wx_test_staterr(rx_desc, WX_RXD_STAT_IPCS) &&
605 	     wx_test_staterr(rx_desc, WX_RXD_ERR_IPE)) ||
606 	    (wx_test_staterr(rx_desc, WX_RXD_STAT_OUTERIPCS) &&
607 	     wx_test_staterr(rx_desc, WX_RXD_ERR_OUTERIPER))) {
608 		ring->rx_stats.csum_err++;
609 		return;
610 	}
611 
612 	/* L4 checksum offload flag must set for the below code to work */
613 	if (!wx_test_staterr(rx_desc, WX_RXD_STAT_L4CS))
614 		return;
615 
616 	/* Hardware can't guarantee csum if IPv6 Dest Header found */
617 	if (dptype.prot != WX_DEC_PTYPE_PROT_SCTP && WX_RXD_IPV6EX(rx_desc))
618 		return;
619 
620 	/* if L4 checksum error */
621 	if (wx_test_staterr(rx_desc, WX_RXD_ERR_TCPE)) {
622 		ring->rx_stats.csum_err++;
623 		return;
624 	}
625 
626 	/* It must be a TCP or UDP or SCTP packet with a valid checksum */
627 	skb->ip_summed = CHECKSUM_UNNECESSARY;
628 
629 	/* If there is an outer header present that might contain a checksum
630 	 * we need to bump the checksum level by 1 to reflect the fact that
631 	 * we are indicating we validated the inner checksum.
632 	 */
633 	if (dptype.etype >= WX_DEC_PTYPE_ETYPE_IG)
634 		__skb_incr_checksum_unnecessary(skb);
635 	ring->rx_stats.csum_good_cnt++;
636 }
637 
638 static void wx_rx_vlan(struct wx_ring *ring, union wx_rx_desc *rx_desc,
639 		       struct sk_buff *skb)
640 {
641 	u16 ethertype;
642 	u8 idx = 0;
643 
644 	if ((ring->netdev->features &
645 	     (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) &&
646 	    wx_test_staterr(rx_desc, WX_RXD_STAT_VP)) {
647 		idx = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) &
648 		       0x1c0) >> 6;
649 		ethertype = ring->q_vector->wx->tpid[idx];
650 		__vlan_hwaccel_put_tag(skb, htons(ethertype),
651 				       le16_to_cpu(rx_desc->wb.upper.vlan));
652 	}
653 }
654 
655 /**
656  * wx_process_skb_fields - Populate skb header fields from Rx descriptor
657  * @rx_ring: rx descriptor ring packet is being transacted on
658  * @rx_desc: pointer to the EOP Rx descriptor
659  * @skb: pointer to current skb being populated
660  *
661  * This function checks the ring, descriptor, and packet information in
662  * order to populate the hash, checksum, protocol, and
663  * other fields within the skb.
664  **/
665 static void wx_process_skb_fields(struct wx_ring *rx_ring,
666 				  union wx_rx_desc *rx_desc,
667 				  struct sk_buff *skb)
668 {
669 	wx_rx_hash(rx_ring, rx_desc, skb);
670 	wx_rx_checksum(rx_ring, rx_desc, skb);
671 	wx_rx_vlan(rx_ring, rx_desc, skb);
672 	skb_record_rx_queue(skb, rx_ring->queue_index);
673 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
674 }
675 
676 /**
677  * wx_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
678  * @q_vector: structure containing interrupt and ring information
679  * @rx_ring: rx descriptor ring to transact packets on
680  * @budget: Total limit on number of packets to process
681  *
682  * This function provides a "bounce buffer" approach to Rx interrupt
683  * processing.  The advantage to this is that on systems that have
684  * expensive overhead for IOMMU access this provides a means of avoiding
685  * it by maintaining the mapping of the page to the system.
686  *
687  * Returns amount of work completed.
688  **/
689 static int wx_clean_rx_irq(struct wx_q_vector *q_vector,
690 			   struct wx_ring *rx_ring,
691 			   int budget)
692 {
693 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
694 	u16 cleaned_count = wx_desc_unused(rx_ring);
695 
696 	do {
697 		struct wx_rx_buffer *rx_buffer;
698 		union wx_rx_desc *rx_desc;
699 		struct sk_buff *skb;
700 		int rx_buffer_pgcnt;
701 
702 		/* return some buffers to hardware, one at a time is too slow */
703 		if (cleaned_count >= WX_RX_BUFFER_WRITE) {
704 			wx_alloc_rx_buffers(rx_ring, cleaned_count);
705 			cleaned_count = 0;
706 		}
707 
708 		rx_desc = WX_RX_DESC(rx_ring, rx_ring->next_to_clean);
709 		if (!wx_test_staterr(rx_desc, WX_RXD_STAT_DD))
710 			break;
711 
712 		/* This memory barrier is needed to keep us from reading
713 		 * any other fields out of the rx_desc until we know the
714 		 * descriptor has been written back
715 		 */
716 		dma_rmb();
717 
718 		rx_buffer = wx_get_rx_buffer(rx_ring, rx_desc, &skb, &rx_buffer_pgcnt);
719 
720 		/* retrieve a buffer from the ring */
721 		skb = wx_build_skb(rx_ring, rx_buffer, rx_desc);
722 
723 		/* exit if we failed to retrieve a buffer */
724 		if (!skb) {
725 			rx_ring->rx_stats.alloc_rx_buff_failed++;
726 			rx_buffer->pagecnt_bias++;
727 			break;
728 		}
729 
730 		wx_put_rx_buffer(rx_ring, rx_buffer, skb, rx_buffer_pgcnt);
731 		cleaned_count++;
732 
733 		/* place incomplete frames back on ring for completion */
734 		if (wx_is_non_eop(rx_ring, rx_desc, skb))
735 			continue;
736 
737 		/* verify the packet layout is correct */
738 		if (wx_cleanup_headers(rx_ring, rx_desc, skb))
739 			continue;
740 
741 		/* probably a little skewed due to removing CRC */
742 		total_rx_bytes += skb->len;
743 
744 		/* populate checksum, timestamp, VLAN, and protocol */
745 		wx_process_skb_fields(rx_ring, rx_desc, skb);
746 		napi_gro_receive(&q_vector->napi, skb);
747 
748 		/* update budget accounting */
749 		total_rx_packets++;
750 	} while (likely(total_rx_packets < budget));
751 
752 	u64_stats_update_begin(&rx_ring->syncp);
753 	rx_ring->stats.packets += total_rx_packets;
754 	rx_ring->stats.bytes += total_rx_bytes;
755 	u64_stats_update_end(&rx_ring->syncp);
756 	q_vector->rx.total_packets += total_rx_packets;
757 	q_vector->rx.total_bytes += total_rx_bytes;
758 
759 	return total_rx_packets;
760 }
761 
762 static struct netdev_queue *wx_txring_txq(const struct wx_ring *ring)
763 {
764 	return netdev_get_tx_queue(ring->netdev, ring->queue_index);
765 }
766 
767 /**
768  * wx_clean_tx_irq - Reclaim resources after transmit completes
769  * @q_vector: structure containing interrupt and ring information
770  * @tx_ring: tx ring to clean
771  * @napi_budget: Used to determine if we are in netpoll
772  **/
773 static bool wx_clean_tx_irq(struct wx_q_vector *q_vector,
774 			    struct wx_ring *tx_ring, int napi_budget)
775 {
776 	unsigned int budget = q_vector->wx->tx_work_limit;
777 	unsigned int total_bytes = 0, total_packets = 0;
778 	unsigned int i = tx_ring->next_to_clean;
779 	struct wx_tx_buffer *tx_buffer;
780 	union wx_tx_desc *tx_desc;
781 
782 	if (!netif_carrier_ok(tx_ring->netdev))
783 		return true;
784 
785 	tx_buffer = &tx_ring->tx_buffer_info[i];
786 	tx_desc = WX_TX_DESC(tx_ring, i);
787 	i -= tx_ring->count;
788 
789 	do {
790 		union wx_tx_desc *eop_desc = tx_buffer->next_to_watch;
791 
792 		/* if next_to_watch is not set then there is no work pending */
793 		if (!eop_desc)
794 			break;
795 
796 		/* prevent any other reads prior to eop_desc */
797 		smp_rmb();
798 
799 		/* if DD is not set pending work has not been completed */
800 		if (!(eop_desc->wb.status & cpu_to_le32(WX_TXD_STAT_DD)))
801 			break;
802 
803 		/* clear next_to_watch to prevent false hangs */
804 		tx_buffer->next_to_watch = NULL;
805 
806 		/* update the statistics for this packet */
807 		total_bytes += tx_buffer->bytecount;
808 		total_packets += tx_buffer->gso_segs;
809 
810 		/* free the skb */
811 		napi_consume_skb(tx_buffer->skb, napi_budget);
812 
813 		/* unmap skb header data */
814 		dma_unmap_single(tx_ring->dev,
815 				 dma_unmap_addr(tx_buffer, dma),
816 				 dma_unmap_len(tx_buffer, len),
817 				 DMA_TO_DEVICE);
818 
819 		/* clear tx_buffer data */
820 		dma_unmap_len_set(tx_buffer, len, 0);
821 
822 		/* unmap remaining buffers */
823 		while (tx_desc != eop_desc) {
824 			tx_buffer++;
825 			tx_desc++;
826 			i++;
827 			if (unlikely(!i)) {
828 				i -= tx_ring->count;
829 				tx_buffer = tx_ring->tx_buffer_info;
830 				tx_desc = WX_TX_DESC(tx_ring, 0);
831 			}
832 
833 			/* unmap any remaining paged data */
834 			if (dma_unmap_len(tx_buffer, len)) {
835 				dma_unmap_page(tx_ring->dev,
836 					       dma_unmap_addr(tx_buffer, dma),
837 					       dma_unmap_len(tx_buffer, len),
838 					       DMA_TO_DEVICE);
839 				dma_unmap_len_set(tx_buffer, len, 0);
840 			}
841 		}
842 
843 		/* move us one more past the eop_desc for start of next pkt */
844 		tx_buffer++;
845 		tx_desc++;
846 		i++;
847 		if (unlikely(!i)) {
848 			i -= tx_ring->count;
849 			tx_buffer = tx_ring->tx_buffer_info;
850 			tx_desc = WX_TX_DESC(tx_ring, 0);
851 		}
852 
853 		/* issue prefetch for next Tx descriptor */
854 		prefetch(tx_desc);
855 
856 		/* update budget accounting */
857 		budget--;
858 	} while (likely(budget));
859 
860 	i += tx_ring->count;
861 	tx_ring->next_to_clean = i;
862 	u64_stats_update_begin(&tx_ring->syncp);
863 	tx_ring->stats.bytes += total_bytes;
864 	tx_ring->stats.packets += total_packets;
865 	u64_stats_update_end(&tx_ring->syncp);
866 	q_vector->tx.total_bytes += total_bytes;
867 	q_vector->tx.total_packets += total_packets;
868 
869 	netdev_tx_completed_queue(wx_txring_txq(tx_ring),
870 				  total_packets, total_bytes);
871 
872 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
873 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
874 		     (wx_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
875 		/* Make sure that anybody stopping the queue after this
876 		 * sees the new next_to_clean.
877 		 */
878 		smp_mb();
879 
880 		if (__netif_subqueue_stopped(tx_ring->netdev,
881 					     tx_ring->queue_index) &&
882 		    netif_running(tx_ring->netdev)) {
883 			netif_wake_subqueue(tx_ring->netdev,
884 					    tx_ring->queue_index);
885 			++tx_ring->tx_stats.restart_queue;
886 		}
887 	}
888 
889 	return !!budget;
890 }
891 
892 /**
893  * wx_poll - NAPI polling RX/TX cleanup routine
894  * @napi: napi struct with our devices info in it
895  * @budget: amount of work driver is allowed to do this pass, in packets
896  *
897  * This function will clean all queues associated with a q_vector.
898  **/
899 static int wx_poll(struct napi_struct *napi, int budget)
900 {
901 	struct wx_q_vector *q_vector = container_of(napi, struct wx_q_vector, napi);
902 	int per_ring_budget, work_done = 0;
903 	struct wx *wx = q_vector->wx;
904 	bool clean_complete = true;
905 	struct wx_ring *ring;
906 
907 	wx_for_each_ring(ring, q_vector->tx) {
908 		if (!wx_clean_tx_irq(q_vector, ring, budget))
909 			clean_complete = false;
910 	}
911 
912 	/* Exit if we are called by netpoll */
913 	if (budget <= 0)
914 		return budget;
915 
916 	/* attempt to distribute budget to each queue fairly, but don't allow
917 	 * the budget to go below 1 because we'll exit polling
918 	 */
919 	if (q_vector->rx.count > 1)
920 		per_ring_budget = max(budget / q_vector->rx.count, 1);
921 	else
922 		per_ring_budget = budget;
923 
924 	wx_for_each_ring(ring, q_vector->rx) {
925 		int cleaned = wx_clean_rx_irq(q_vector, ring, per_ring_budget);
926 
927 		work_done += cleaned;
928 		if (cleaned >= per_ring_budget)
929 			clean_complete = false;
930 	}
931 
932 	/* If all work not completed, return budget and keep polling */
933 	if (!clean_complete)
934 		return budget;
935 
936 	/* all work done, exit the polling mode */
937 	if (likely(napi_complete_done(napi, work_done))) {
938 		if (netif_running(wx->netdev))
939 			wx_intr_enable(wx, WX_INTR_Q(q_vector->v_idx));
940 	}
941 
942 	return min(work_done, budget - 1);
943 }
944 
945 static int wx_maybe_stop_tx(struct wx_ring *tx_ring, u16 size)
946 {
947 	if (likely(wx_desc_unused(tx_ring) >= size))
948 		return 0;
949 
950 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
951 
952 	/* For the next check */
953 	smp_mb();
954 
955 	/* We need to check again in a case another CPU has just
956 	 * made room available.
957 	 */
958 	if (likely(wx_desc_unused(tx_ring) < size))
959 		return -EBUSY;
960 
961 	/* A reprieve! - use start_queue because it doesn't call schedule */
962 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
963 	++tx_ring->tx_stats.restart_queue;
964 
965 	return 0;
966 }
967 
968 static u32 wx_tx_cmd_type(u32 tx_flags)
969 {
970 	/* set type for advanced descriptor with frame checksum insertion */
971 	u32 cmd_type = WX_TXD_DTYP_DATA | WX_TXD_IFCS;
972 
973 	/* set HW vlan bit if vlan is present */
974 	cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_HW_VLAN, WX_TXD_VLE);
975 	/* set segmentation enable bits for TSO/FSO */
976 	cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_TSO, WX_TXD_TSE);
977 	/* set timestamp bit if present */
978 	cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_TSTAMP, WX_TXD_MAC_TSTAMP);
979 	cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_LINKSEC, WX_TXD_LINKSEC);
980 
981 	return cmd_type;
982 }
983 
984 static void wx_tx_olinfo_status(union wx_tx_desc *tx_desc,
985 				u32 tx_flags, unsigned int paylen)
986 {
987 	u32 olinfo_status = paylen << WX_TXD_PAYLEN_SHIFT;
988 
989 	/* enable L4 checksum for TSO and TX checksum offload */
990 	olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_CSUM, WX_TXD_L4CS);
991 	/* enable IPv4 checksum for TSO */
992 	olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_IPV4, WX_TXD_IIPCS);
993 	/* enable outer IPv4 checksum for TSO */
994 	olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_OUTER_IPV4,
995 				     WX_TXD_EIPCS);
996 	/* Check Context must be set if Tx switch is enabled, which it
997 	 * always is for case where virtual functions are running
998 	 */
999 	olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_CC, WX_TXD_CC);
1000 	olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_IPSEC,
1001 				     WX_TXD_IPSEC);
1002 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1003 }
1004 
1005 static void wx_tx_map(struct wx_ring *tx_ring,
1006 		      struct wx_tx_buffer *first,
1007 		      const u8 hdr_len)
1008 {
1009 	struct sk_buff *skb = first->skb;
1010 	struct wx_tx_buffer *tx_buffer;
1011 	u32 tx_flags = first->tx_flags;
1012 	u16 i = tx_ring->next_to_use;
1013 	unsigned int data_len, size;
1014 	union wx_tx_desc *tx_desc;
1015 	skb_frag_t *frag;
1016 	dma_addr_t dma;
1017 	u32 cmd_type;
1018 
1019 	cmd_type = wx_tx_cmd_type(tx_flags);
1020 	tx_desc = WX_TX_DESC(tx_ring, i);
1021 	wx_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len);
1022 
1023 	size = skb_headlen(skb);
1024 	data_len = skb->data_len;
1025 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1026 
1027 	tx_buffer = first;
1028 
1029 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1030 		if (dma_mapping_error(tx_ring->dev, dma))
1031 			goto dma_error;
1032 
1033 		/* record length, and DMA address */
1034 		dma_unmap_len_set(tx_buffer, len, size);
1035 		dma_unmap_addr_set(tx_buffer, dma, dma);
1036 
1037 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
1038 
1039 		while (unlikely(size > WX_MAX_DATA_PER_TXD)) {
1040 			tx_desc->read.cmd_type_len =
1041 				cpu_to_le32(cmd_type ^ WX_MAX_DATA_PER_TXD);
1042 
1043 			i++;
1044 			tx_desc++;
1045 			if (i == tx_ring->count) {
1046 				tx_desc = WX_TX_DESC(tx_ring, 0);
1047 				i = 0;
1048 			}
1049 			tx_desc->read.olinfo_status = 0;
1050 
1051 			dma += WX_MAX_DATA_PER_TXD;
1052 			size -= WX_MAX_DATA_PER_TXD;
1053 
1054 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
1055 		}
1056 
1057 		if (likely(!data_len))
1058 			break;
1059 
1060 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1061 
1062 		i++;
1063 		tx_desc++;
1064 		if (i == tx_ring->count) {
1065 			tx_desc = WX_TX_DESC(tx_ring, 0);
1066 			i = 0;
1067 		}
1068 		tx_desc->read.olinfo_status = 0;
1069 
1070 		size = skb_frag_size(frag);
1071 
1072 		data_len -= size;
1073 
1074 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1075 				       DMA_TO_DEVICE);
1076 
1077 		tx_buffer = &tx_ring->tx_buffer_info[i];
1078 	}
1079 
1080 	/* write last descriptor with RS and EOP bits */
1081 	cmd_type |= size | WX_TXD_EOP | WX_TXD_RS;
1082 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1083 
1084 	netdev_tx_sent_queue(wx_txring_txq(tx_ring), first->bytecount);
1085 
1086 	skb_tx_timestamp(skb);
1087 
1088 	/* Force memory writes to complete before letting h/w know there
1089 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1090 	 * memory model archs, such as IA-64).
1091 	 *
1092 	 * We also need this memory barrier to make certain all of the
1093 	 * status bits have been updated before next_to_watch is written.
1094 	 */
1095 	wmb();
1096 
1097 	/* set next_to_watch value indicating a packet is present */
1098 	first->next_to_watch = tx_desc;
1099 
1100 	i++;
1101 	if (i == tx_ring->count)
1102 		i = 0;
1103 
1104 	tx_ring->next_to_use = i;
1105 
1106 	wx_maybe_stop_tx(tx_ring, DESC_NEEDED);
1107 
1108 	if (netif_xmit_stopped(wx_txring_txq(tx_ring)) || !netdev_xmit_more())
1109 		writel(i, tx_ring->tail);
1110 
1111 	return;
1112 dma_error:
1113 	dev_err(tx_ring->dev, "TX DMA map failed\n");
1114 
1115 	/* clear dma mappings for failed tx_buffer_info map */
1116 	for (;;) {
1117 		tx_buffer = &tx_ring->tx_buffer_info[i];
1118 		if (dma_unmap_len(tx_buffer, len))
1119 			dma_unmap_page(tx_ring->dev,
1120 				       dma_unmap_addr(tx_buffer, dma),
1121 				       dma_unmap_len(tx_buffer, len),
1122 				       DMA_TO_DEVICE);
1123 		dma_unmap_len_set(tx_buffer, len, 0);
1124 		if (tx_buffer == first)
1125 			break;
1126 		if (i == 0)
1127 			i += tx_ring->count;
1128 		i--;
1129 	}
1130 
1131 	dev_kfree_skb_any(first->skb);
1132 	first->skb = NULL;
1133 
1134 	tx_ring->next_to_use = i;
1135 }
1136 
1137 static void wx_tx_ctxtdesc(struct wx_ring *tx_ring, u32 vlan_macip_lens,
1138 			   u32 fcoe_sof_eof, u32 type_tucmd, u32 mss_l4len_idx)
1139 {
1140 	struct wx_tx_context_desc *context_desc;
1141 	u16 i = tx_ring->next_to_use;
1142 
1143 	context_desc = WX_TX_CTXTDESC(tx_ring, i);
1144 	i++;
1145 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1146 
1147 	/* set bits to identify this as an advanced context descriptor */
1148 	type_tucmd |= WX_TXD_DTYP_CTXT;
1149 	context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
1150 	context_desc->seqnum_seed       = cpu_to_le32(fcoe_sof_eof);
1151 	context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
1152 	context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
1153 }
1154 
1155 static void wx_get_ipv6_proto(struct sk_buff *skb, int offset, u8 *nexthdr)
1156 {
1157 	struct ipv6hdr *hdr = (struct ipv6hdr *)(skb->data + offset);
1158 
1159 	*nexthdr = hdr->nexthdr;
1160 	offset += sizeof(struct ipv6hdr);
1161 	while (ipv6_ext_hdr(*nexthdr)) {
1162 		struct ipv6_opt_hdr _hdr, *hp;
1163 
1164 		if (*nexthdr == NEXTHDR_NONE)
1165 			return;
1166 		hp = skb_header_pointer(skb, offset, sizeof(_hdr), &_hdr);
1167 		if (!hp)
1168 			return;
1169 		if (*nexthdr == NEXTHDR_FRAGMENT)
1170 			break;
1171 		*nexthdr = hp->nexthdr;
1172 	}
1173 }
1174 
1175 union network_header {
1176 	struct iphdr *ipv4;
1177 	struct ipv6hdr *ipv6;
1178 	void *raw;
1179 };
1180 
1181 static u8 wx_encode_tx_desc_ptype(const struct wx_tx_buffer *first)
1182 {
1183 	u8 tun_prot = 0, l4_prot = 0, ptype = 0;
1184 	struct sk_buff *skb = first->skb;
1185 
1186 	if (skb->encapsulation) {
1187 		union network_header hdr;
1188 
1189 		switch (first->protocol) {
1190 		case htons(ETH_P_IP):
1191 			tun_prot = ip_hdr(skb)->protocol;
1192 			ptype = WX_PTYPE_TUN_IPV4;
1193 			break;
1194 		case htons(ETH_P_IPV6):
1195 			wx_get_ipv6_proto(skb, skb_network_offset(skb), &tun_prot);
1196 			ptype = WX_PTYPE_TUN_IPV6;
1197 			break;
1198 		default:
1199 			return ptype;
1200 		}
1201 
1202 		if (tun_prot == IPPROTO_IPIP) {
1203 			hdr.raw = (void *)inner_ip_hdr(skb);
1204 			ptype |= WX_PTYPE_PKT_IPIP;
1205 		} else if (tun_prot == IPPROTO_UDP) {
1206 			hdr.raw = (void *)inner_ip_hdr(skb);
1207 			if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
1208 			    skb->inner_protocol != htons(ETH_P_TEB)) {
1209 				ptype |= WX_PTYPE_PKT_IG;
1210 			} else {
1211 				if (((struct ethhdr *)skb_inner_mac_header(skb))->h_proto
1212 				     == htons(ETH_P_8021Q))
1213 					ptype |= WX_PTYPE_PKT_IGMV;
1214 				else
1215 					ptype |= WX_PTYPE_PKT_IGM;
1216 			}
1217 
1218 		} else if (tun_prot == IPPROTO_GRE) {
1219 			hdr.raw = (void *)inner_ip_hdr(skb);
1220 			if (skb->inner_protocol ==  htons(ETH_P_IP) ||
1221 			    skb->inner_protocol ==  htons(ETH_P_IPV6)) {
1222 				ptype |= WX_PTYPE_PKT_IG;
1223 			} else {
1224 				if (((struct ethhdr *)skb_inner_mac_header(skb))->h_proto
1225 				    == htons(ETH_P_8021Q))
1226 					ptype |= WX_PTYPE_PKT_IGMV;
1227 				else
1228 					ptype |= WX_PTYPE_PKT_IGM;
1229 			}
1230 		} else {
1231 			return ptype;
1232 		}
1233 
1234 		switch (hdr.ipv4->version) {
1235 		case IPVERSION:
1236 			l4_prot = hdr.ipv4->protocol;
1237 			break;
1238 		case 6:
1239 			wx_get_ipv6_proto(skb, skb_inner_network_offset(skb), &l4_prot);
1240 			ptype |= WX_PTYPE_PKT_IPV6;
1241 			break;
1242 		default:
1243 			return ptype;
1244 		}
1245 	} else {
1246 		switch (first->protocol) {
1247 		case htons(ETH_P_IP):
1248 			l4_prot = ip_hdr(skb)->protocol;
1249 			ptype = WX_PTYPE_PKT_IP;
1250 			break;
1251 		case htons(ETH_P_IPV6):
1252 			wx_get_ipv6_proto(skb, skb_network_offset(skb), &l4_prot);
1253 			ptype = WX_PTYPE_PKT_IP | WX_PTYPE_PKT_IPV6;
1254 			break;
1255 		default:
1256 			return WX_PTYPE_PKT_MAC | WX_PTYPE_TYP_MAC;
1257 		}
1258 	}
1259 	switch (l4_prot) {
1260 	case IPPROTO_TCP:
1261 		ptype |= WX_PTYPE_TYP_TCP;
1262 		break;
1263 	case IPPROTO_UDP:
1264 		ptype |= WX_PTYPE_TYP_UDP;
1265 		break;
1266 	case IPPROTO_SCTP:
1267 		ptype |= WX_PTYPE_TYP_SCTP;
1268 		break;
1269 	default:
1270 		ptype |= WX_PTYPE_TYP_IP;
1271 		break;
1272 	}
1273 
1274 	return ptype;
1275 }
1276 
1277 static int wx_tso(struct wx_ring *tx_ring, struct wx_tx_buffer *first,
1278 		  u8 *hdr_len, u8 ptype)
1279 {
1280 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1281 	struct net_device *netdev = tx_ring->netdev;
1282 	u32 l4len, tunhdr_eiplen_tunlen = 0;
1283 	struct sk_buff *skb = first->skb;
1284 	bool enc = skb->encapsulation;
1285 	struct ipv6hdr *ipv6h;
1286 	struct tcphdr *tcph;
1287 	struct iphdr *iph;
1288 	u8 tun_prot = 0;
1289 	int err;
1290 
1291 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1292 		return 0;
1293 
1294 	if (!skb_is_gso(skb))
1295 		return 0;
1296 
1297 	err = skb_cow_head(skb, 0);
1298 	if (err < 0)
1299 		return err;
1300 
1301 	/* indicates the inner headers in the skbuff are valid. */
1302 	iph = enc ? inner_ip_hdr(skb) : ip_hdr(skb);
1303 	if (iph->version == 4) {
1304 		tcph = enc ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1305 		iph->tot_len = 0;
1306 		iph->check = 0;
1307 		tcph->check = ~csum_tcpudp_magic(iph->saddr,
1308 						 iph->daddr, 0,
1309 						 IPPROTO_TCP, 0);
1310 		first->tx_flags |= WX_TX_FLAGS_TSO |
1311 				   WX_TX_FLAGS_CSUM |
1312 				   WX_TX_FLAGS_IPV4 |
1313 				   WX_TX_FLAGS_CC;
1314 	} else if (iph->version == 6 && skb_is_gso_v6(skb)) {
1315 		ipv6h = enc ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
1316 		tcph = enc ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1317 		ipv6h->payload_len = 0;
1318 		tcph->check = ~csum_ipv6_magic(&ipv6h->saddr,
1319 					       &ipv6h->daddr, 0,
1320 					       IPPROTO_TCP, 0);
1321 		first->tx_flags |= WX_TX_FLAGS_TSO |
1322 				   WX_TX_FLAGS_CSUM |
1323 				   WX_TX_FLAGS_CC;
1324 	}
1325 
1326 	/* compute header lengths */
1327 	l4len = enc ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
1328 	*hdr_len = enc ? (skb_inner_transport_header(skb) - skb->data) :
1329 			 skb_transport_offset(skb);
1330 	*hdr_len += l4len;
1331 
1332 	/* update gso size and bytecount with header size */
1333 	first->gso_segs = skb_shinfo(skb)->gso_segs;
1334 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
1335 
1336 	/* mss_l4len_id: use 0 as index for TSO */
1337 	mss_l4len_idx = l4len << WX_TXD_L4LEN_SHIFT;
1338 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << WX_TXD_MSS_SHIFT;
1339 
1340 	/* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */
1341 	if (enc) {
1342 		switch (first->protocol) {
1343 		case htons(ETH_P_IP):
1344 			tun_prot = ip_hdr(skb)->protocol;
1345 			first->tx_flags |= WX_TX_FLAGS_OUTER_IPV4;
1346 			break;
1347 		case htons(ETH_P_IPV6):
1348 			tun_prot = ipv6_hdr(skb)->nexthdr;
1349 			break;
1350 		default:
1351 			break;
1352 		}
1353 		switch (tun_prot) {
1354 		case IPPROTO_UDP:
1355 			tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_UDP;
1356 			tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) <<
1357 						 WX_TXD_OUTER_IPLEN_SHIFT) |
1358 						(((skb_inner_mac_header(skb) -
1359 						skb_transport_header(skb)) >> 1) <<
1360 						WX_TXD_TUNNEL_LEN_SHIFT);
1361 			break;
1362 		case IPPROTO_GRE:
1363 			tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_GRE;
1364 			tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) <<
1365 						 WX_TXD_OUTER_IPLEN_SHIFT) |
1366 						(((skb_inner_mac_header(skb) -
1367 						skb_transport_header(skb)) >> 1) <<
1368 						WX_TXD_TUNNEL_LEN_SHIFT);
1369 			break;
1370 		case IPPROTO_IPIP:
1371 			tunhdr_eiplen_tunlen = (((char *)inner_ip_hdr(skb) -
1372 						(char *)ip_hdr(skb)) >> 2) <<
1373 						WX_TXD_OUTER_IPLEN_SHIFT;
1374 			break;
1375 		default:
1376 			break;
1377 		}
1378 		vlan_macip_lens = skb_inner_network_header_len(skb) >> 1;
1379 	} else {
1380 		vlan_macip_lens = skb_network_header_len(skb) >> 1;
1381 	}
1382 
1383 	vlan_macip_lens |= skb_network_offset(skb) << WX_TXD_MACLEN_SHIFT;
1384 	vlan_macip_lens |= first->tx_flags & WX_TX_FLAGS_VLAN_MASK;
1385 
1386 	type_tucmd = ptype << 24;
1387 	if (skb->vlan_proto == htons(ETH_P_8021AD) &&
1388 	    netdev->features & NETIF_F_HW_VLAN_STAG_TX)
1389 		type_tucmd |= WX_SET_FLAG(first->tx_flags,
1390 					  WX_TX_FLAGS_HW_VLAN,
1391 					  0x1 << WX_TXD_TAG_TPID_SEL_SHIFT);
1392 	wx_tx_ctxtdesc(tx_ring, vlan_macip_lens, tunhdr_eiplen_tunlen,
1393 		       type_tucmd, mss_l4len_idx);
1394 
1395 	return 1;
1396 }
1397 
1398 static void wx_tx_csum(struct wx_ring *tx_ring, struct wx_tx_buffer *first,
1399 		       u8 ptype)
1400 {
1401 	u32 tunhdr_eiplen_tunlen = 0, vlan_macip_lens = 0;
1402 	struct net_device *netdev = tx_ring->netdev;
1403 	u32 mss_l4len_idx = 0, type_tucmd;
1404 	struct sk_buff *skb = first->skb;
1405 	u8 tun_prot = 0;
1406 
1407 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
1408 		if (!(first->tx_flags & WX_TX_FLAGS_HW_VLAN) &&
1409 		    !(first->tx_flags & WX_TX_FLAGS_CC))
1410 			return;
1411 		vlan_macip_lens = skb_network_offset(skb) <<
1412 				  WX_TXD_MACLEN_SHIFT;
1413 	} else {
1414 		u8 l4_prot = 0;
1415 		union {
1416 			struct iphdr *ipv4;
1417 			struct ipv6hdr *ipv6;
1418 			u8 *raw;
1419 		} network_hdr;
1420 		union {
1421 			struct tcphdr *tcphdr;
1422 			u8 *raw;
1423 		} transport_hdr;
1424 
1425 		if (skb->encapsulation) {
1426 			network_hdr.raw = skb_inner_network_header(skb);
1427 			transport_hdr.raw = skb_inner_transport_header(skb);
1428 			vlan_macip_lens = skb_network_offset(skb) <<
1429 					  WX_TXD_MACLEN_SHIFT;
1430 			switch (first->protocol) {
1431 			case htons(ETH_P_IP):
1432 				tun_prot = ip_hdr(skb)->protocol;
1433 				break;
1434 			case htons(ETH_P_IPV6):
1435 				tun_prot = ipv6_hdr(skb)->nexthdr;
1436 				break;
1437 			default:
1438 				return;
1439 			}
1440 			switch (tun_prot) {
1441 			case IPPROTO_UDP:
1442 				tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_UDP;
1443 				tunhdr_eiplen_tunlen |=
1444 					((skb_network_header_len(skb) >> 2) <<
1445 					WX_TXD_OUTER_IPLEN_SHIFT) |
1446 					(((skb_inner_mac_header(skb) -
1447 					skb_transport_header(skb)) >> 1) <<
1448 					WX_TXD_TUNNEL_LEN_SHIFT);
1449 				break;
1450 			case IPPROTO_GRE:
1451 				tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_GRE;
1452 				tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) <<
1453 							 WX_TXD_OUTER_IPLEN_SHIFT) |
1454 							 (((skb_inner_mac_header(skb) -
1455 							    skb_transport_header(skb)) >> 1) <<
1456 							  WX_TXD_TUNNEL_LEN_SHIFT);
1457 				break;
1458 			case IPPROTO_IPIP:
1459 				tunhdr_eiplen_tunlen = (((char *)inner_ip_hdr(skb) -
1460 							(char *)ip_hdr(skb)) >> 2) <<
1461 							WX_TXD_OUTER_IPLEN_SHIFT;
1462 				break;
1463 			default:
1464 				break;
1465 			}
1466 
1467 		} else {
1468 			network_hdr.raw = skb_network_header(skb);
1469 			transport_hdr.raw = skb_transport_header(skb);
1470 			vlan_macip_lens = skb_network_offset(skb) <<
1471 					  WX_TXD_MACLEN_SHIFT;
1472 		}
1473 
1474 		switch (network_hdr.ipv4->version) {
1475 		case IPVERSION:
1476 			vlan_macip_lens |= (transport_hdr.raw - network_hdr.raw) >> 1;
1477 			l4_prot = network_hdr.ipv4->protocol;
1478 			break;
1479 		case 6:
1480 			vlan_macip_lens |= (transport_hdr.raw - network_hdr.raw) >> 1;
1481 			l4_prot = network_hdr.ipv6->nexthdr;
1482 			break;
1483 		default:
1484 			break;
1485 		}
1486 
1487 		switch (l4_prot) {
1488 		case IPPROTO_TCP:
1489 		mss_l4len_idx = (transport_hdr.tcphdr->doff * 4) <<
1490 				WX_TXD_L4LEN_SHIFT;
1491 			break;
1492 		case IPPROTO_SCTP:
1493 			mss_l4len_idx = sizeof(struct sctphdr) <<
1494 					WX_TXD_L4LEN_SHIFT;
1495 			break;
1496 		case IPPROTO_UDP:
1497 			mss_l4len_idx = sizeof(struct udphdr) <<
1498 					WX_TXD_L4LEN_SHIFT;
1499 			break;
1500 		default:
1501 			break;
1502 		}
1503 
1504 		/* update TX checksum flag */
1505 		first->tx_flags |= WX_TX_FLAGS_CSUM;
1506 	}
1507 	first->tx_flags |= WX_TX_FLAGS_CC;
1508 	/* vlan_macip_lens: MACLEN, VLAN tag */
1509 	vlan_macip_lens |= first->tx_flags & WX_TX_FLAGS_VLAN_MASK;
1510 
1511 	type_tucmd = ptype << 24;
1512 	if (skb->vlan_proto == htons(ETH_P_8021AD) &&
1513 	    netdev->features & NETIF_F_HW_VLAN_STAG_TX)
1514 		type_tucmd |= WX_SET_FLAG(first->tx_flags,
1515 					  WX_TX_FLAGS_HW_VLAN,
1516 					  0x1 << WX_TXD_TAG_TPID_SEL_SHIFT);
1517 	wx_tx_ctxtdesc(tx_ring, vlan_macip_lens, tunhdr_eiplen_tunlen,
1518 		       type_tucmd, mss_l4len_idx);
1519 }
1520 
1521 static netdev_tx_t wx_xmit_frame_ring(struct sk_buff *skb,
1522 				      struct wx_ring *tx_ring)
1523 {
1524 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1525 	struct wx_tx_buffer *first;
1526 	u8 hdr_len = 0, ptype;
1527 	unsigned short f;
1528 	u32 tx_flags = 0;
1529 	int tso;
1530 
1531 	/* need: 1 descriptor per page * PAGE_SIZE/WX_MAX_DATA_PER_TXD,
1532 	 *       + 1 desc for skb_headlen/WX_MAX_DATA_PER_TXD,
1533 	 *       + 2 desc gap to keep tail from touching head,
1534 	 *       + 1 desc for context descriptor,
1535 	 * otherwise try next time
1536 	 */
1537 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1538 		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->
1539 						     frags[f]));
1540 
1541 	if (wx_maybe_stop_tx(tx_ring, count + 3)) {
1542 		tx_ring->tx_stats.tx_busy++;
1543 		return NETDEV_TX_BUSY;
1544 	}
1545 
1546 	/* record the location of the first descriptor for this packet */
1547 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1548 	first->skb = skb;
1549 	first->bytecount = skb->len;
1550 	first->gso_segs = 1;
1551 
1552 	/* if we have a HW VLAN tag being added default to the HW one */
1553 	if (skb_vlan_tag_present(skb)) {
1554 		tx_flags |= skb_vlan_tag_get(skb) << WX_TX_FLAGS_VLAN_SHIFT;
1555 		tx_flags |= WX_TX_FLAGS_HW_VLAN;
1556 	}
1557 
1558 	/* record initial flags and protocol */
1559 	first->tx_flags = tx_flags;
1560 	first->protocol = vlan_get_protocol(skb);
1561 
1562 	ptype = wx_encode_tx_desc_ptype(first);
1563 
1564 	tso = wx_tso(tx_ring, first, &hdr_len, ptype);
1565 	if (tso < 0)
1566 		goto out_drop;
1567 	else if (!tso)
1568 		wx_tx_csum(tx_ring, first, ptype);
1569 	wx_tx_map(tx_ring, first, hdr_len);
1570 
1571 	return NETDEV_TX_OK;
1572 out_drop:
1573 	dev_kfree_skb_any(first->skb);
1574 	first->skb = NULL;
1575 
1576 	return NETDEV_TX_OK;
1577 }
1578 
1579 netdev_tx_t wx_xmit_frame(struct sk_buff *skb,
1580 			  struct net_device *netdev)
1581 {
1582 	unsigned int r_idx = skb->queue_mapping;
1583 	struct wx *wx = netdev_priv(netdev);
1584 	struct wx_ring *tx_ring;
1585 
1586 	if (!netif_carrier_ok(netdev)) {
1587 		dev_kfree_skb_any(skb);
1588 		return NETDEV_TX_OK;
1589 	}
1590 
1591 	/* The minimum packet size for olinfo paylen is 17 so pad the skb
1592 	 * in order to meet this minimum size requirement.
1593 	 */
1594 	if (skb_put_padto(skb, 17))
1595 		return NETDEV_TX_OK;
1596 
1597 	if (r_idx >= wx->num_tx_queues)
1598 		r_idx = r_idx % wx->num_tx_queues;
1599 	tx_ring = wx->tx_ring[r_idx];
1600 
1601 	return wx_xmit_frame_ring(skb, tx_ring);
1602 }
1603 EXPORT_SYMBOL(wx_xmit_frame);
1604 
1605 void wx_napi_enable_all(struct wx *wx)
1606 {
1607 	struct wx_q_vector *q_vector;
1608 	int q_idx;
1609 
1610 	for (q_idx = 0; q_idx < wx->num_q_vectors; q_idx++) {
1611 		q_vector = wx->q_vector[q_idx];
1612 		napi_enable(&q_vector->napi);
1613 	}
1614 }
1615 EXPORT_SYMBOL(wx_napi_enable_all);
1616 
1617 void wx_napi_disable_all(struct wx *wx)
1618 {
1619 	struct wx_q_vector *q_vector;
1620 	int q_idx;
1621 
1622 	for (q_idx = 0; q_idx < wx->num_q_vectors; q_idx++) {
1623 		q_vector = wx->q_vector[q_idx];
1624 		napi_disable(&q_vector->napi);
1625 	}
1626 }
1627 EXPORT_SYMBOL(wx_napi_disable_all);
1628 
1629 /**
1630  * wx_set_rss_queues: Allocate queues for RSS
1631  * @wx: board private structure to initialize
1632  *
1633  * This is our "base" multiqueue mode.  RSS (Receive Side Scaling) will try
1634  * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1635  *
1636  **/
1637 static void wx_set_rss_queues(struct wx *wx)
1638 {
1639 	wx->num_rx_queues = wx->mac.max_rx_queues;
1640 	wx->num_tx_queues = wx->mac.max_tx_queues;
1641 }
1642 
1643 static void wx_set_num_queues(struct wx *wx)
1644 {
1645 	/* Start with base case */
1646 	wx->num_rx_queues = 1;
1647 	wx->num_tx_queues = 1;
1648 	wx->queues_per_pool = 1;
1649 
1650 	wx_set_rss_queues(wx);
1651 }
1652 
1653 /**
1654  * wx_acquire_msix_vectors - acquire MSI-X vectors
1655  * @wx: board private structure
1656  *
1657  * Attempts to acquire a suitable range of MSI-X vector interrupts. Will
1658  * return a negative error code if unable to acquire MSI-X vectors for any
1659  * reason.
1660  */
1661 static int wx_acquire_msix_vectors(struct wx *wx)
1662 {
1663 	struct irq_affinity affd = {0, };
1664 	int nvecs, i;
1665 
1666 	nvecs = min_t(int, num_online_cpus(), wx->mac.max_msix_vectors);
1667 
1668 	wx->msix_entries = kcalloc(nvecs,
1669 				   sizeof(struct msix_entry),
1670 				   GFP_KERNEL);
1671 	if (!wx->msix_entries)
1672 		return -ENOMEM;
1673 
1674 	nvecs = pci_alloc_irq_vectors_affinity(wx->pdev, nvecs,
1675 					       nvecs,
1676 					       PCI_IRQ_MSIX | PCI_IRQ_AFFINITY,
1677 					       &affd);
1678 	if (nvecs < 0) {
1679 		wx_err(wx, "Failed to allocate MSI-X interrupts. Err: %d\n", nvecs);
1680 		kfree(wx->msix_entries);
1681 		wx->msix_entries = NULL;
1682 		return nvecs;
1683 	}
1684 
1685 	for (i = 0; i < nvecs; i++) {
1686 		wx->msix_entries[i].entry = i;
1687 		wx->msix_entries[i].vector = pci_irq_vector(wx->pdev, i);
1688 	}
1689 
1690 	/* one for msix_other */
1691 	nvecs -= 1;
1692 	wx->num_q_vectors = nvecs;
1693 	wx->num_rx_queues = nvecs;
1694 	wx->num_tx_queues = nvecs;
1695 
1696 	return 0;
1697 }
1698 
1699 /**
1700  * wx_set_interrupt_capability - set MSI-X or MSI if supported
1701  * @wx: board private structure to initialize
1702  *
1703  * Attempt to configure the interrupts using the best available
1704  * capabilities of the hardware and the kernel.
1705  **/
1706 static int wx_set_interrupt_capability(struct wx *wx)
1707 {
1708 	struct pci_dev *pdev = wx->pdev;
1709 	int nvecs, ret;
1710 
1711 	/* We will try to get MSI-X interrupts first */
1712 	ret = wx_acquire_msix_vectors(wx);
1713 	if (ret == 0 || (ret == -ENOMEM))
1714 		return ret;
1715 
1716 	wx->num_rx_queues = 1;
1717 	wx->num_tx_queues = 1;
1718 	wx->num_q_vectors = 1;
1719 
1720 	/* minmum one for queue, one for misc*/
1721 	nvecs = 1;
1722 	nvecs = pci_alloc_irq_vectors(pdev, nvecs,
1723 				      nvecs, PCI_IRQ_MSI | PCI_IRQ_LEGACY);
1724 	if (nvecs == 1) {
1725 		if (pdev->msi_enabled)
1726 			wx_err(wx, "Fallback to MSI.\n");
1727 		else
1728 			wx_err(wx, "Fallback to LEGACY.\n");
1729 	} else {
1730 		wx_err(wx, "Failed to allocate MSI/LEGACY interrupts. Error: %d\n", nvecs);
1731 		return nvecs;
1732 	}
1733 
1734 	pdev->irq = pci_irq_vector(pdev, 0);
1735 
1736 	return 0;
1737 }
1738 
1739 /**
1740  * wx_cache_ring_rss - Descriptor ring to register mapping for RSS
1741  * @wx: board private structure to initialize
1742  *
1743  * Cache the descriptor ring offsets for RSS, ATR, FCoE, and SR-IOV.
1744  *
1745  **/
1746 static void wx_cache_ring_rss(struct wx *wx)
1747 {
1748 	u16 i;
1749 
1750 	for (i = 0; i < wx->num_rx_queues; i++)
1751 		wx->rx_ring[i]->reg_idx = i;
1752 
1753 	for (i = 0; i < wx->num_tx_queues; i++)
1754 		wx->tx_ring[i]->reg_idx = i;
1755 }
1756 
1757 static void wx_add_ring(struct wx_ring *ring, struct wx_ring_container *head)
1758 {
1759 	ring->next = head->ring;
1760 	head->ring = ring;
1761 	head->count++;
1762 }
1763 
1764 /**
1765  * wx_alloc_q_vector - Allocate memory for a single interrupt vector
1766  * @wx: board private structure to initialize
1767  * @v_count: q_vectors allocated on wx, used for ring interleaving
1768  * @v_idx: index of vector in wx struct
1769  * @txr_count: total number of Tx rings to allocate
1770  * @txr_idx: index of first Tx ring to allocate
1771  * @rxr_count: total number of Rx rings to allocate
1772  * @rxr_idx: index of first Rx ring to allocate
1773  *
1774  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1775  **/
1776 static int wx_alloc_q_vector(struct wx *wx,
1777 			     unsigned int v_count, unsigned int v_idx,
1778 			     unsigned int txr_count, unsigned int txr_idx,
1779 			     unsigned int rxr_count, unsigned int rxr_idx)
1780 {
1781 	struct wx_q_vector *q_vector;
1782 	int ring_count, default_itr;
1783 	struct wx_ring *ring;
1784 
1785 	/* note this will allocate space for the ring structure as well! */
1786 	ring_count = txr_count + rxr_count;
1787 
1788 	q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
1789 			   GFP_KERNEL);
1790 	if (!q_vector)
1791 		return -ENOMEM;
1792 
1793 	/* initialize NAPI */
1794 	netif_napi_add(wx->netdev, &q_vector->napi,
1795 		       wx_poll);
1796 
1797 	/* tie q_vector and wx together */
1798 	wx->q_vector[v_idx] = q_vector;
1799 	q_vector->wx = wx;
1800 	q_vector->v_idx = v_idx;
1801 	if (cpu_online(v_idx))
1802 		q_vector->numa_node = cpu_to_node(v_idx);
1803 
1804 	/* initialize pointer to rings */
1805 	ring = q_vector->ring;
1806 
1807 	if (wx->mac.type == wx_mac_sp)
1808 		default_itr = WX_12K_ITR;
1809 	else
1810 		default_itr = WX_7K_ITR;
1811 	/* initialize ITR */
1812 	if (txr_count && !rxr_count)
1813 		/* tx only vector */
1814 		q_vector->itr = wx->tx_itr_setting ?
1815 				default_itr : wx->tx_itr_setting;
1816 	else
1817 		/* rx or rx/tx vector */
1818 		q_vector->itr = wx->rx_itr_setting ?
1819 				default_itr : wx->rx_itr_setting;
1820 
1821 	while (txr_count) {
1822 		/* assign generic ring traits */
1823 		ring->dev = &wx->pdev->dev;
1824 		ring->netdev = wx->netdev;
1825 
1826 		/* configure backlink on ring */
1827 		ring->q_vector = q_vector;
1828 
1829 		/* update q_vector Tx values */
1830 		wx_add_ring(ring, &q_vector->tx);
1831 
1832 		/* apply Tx specific ring traits */
1833 		ring->count = wx->tx_ring_count;
1834 
1835 		ring->queue_index = txr_idx;
1836 
1837 		/* assign ring to wx */
1838 		wx->tx_ring[txr_idx] = ring;
1839 
1840 		/* update count and index */
1841 		txr_count--;
1842 		txr_idx += v_count;
1843 
1844 		/* push pointer to next ring */
1845 		ring++;
1846 	}
1847 
1848 	while (rxr_count) {
1849 		/* assign generic ring traits */
1850 		ring->dev = &wx->pdev->dev;
1851 		ring->netdev = wx->netdev;
1852 
1853 		/* configure backlink on ring */
1854 		ring->q_vector = q_vector;
1855 
1856 		/* update q_vector Rx values */
1857 		wx_add_ring(ring, &q_vector->rx);
1858 
1859 		/* apply Rx specific ring traits */
1860 		ring->count = wx->rx_ring_count;
1861 		ring->queue_index = rxr_idx;
1862 
1863 		/* assign ring to wx */
1864 		wx->rx_ring[rxr_idx] = ring;
1865 
1866 		/* update count and index */
1867 		rxr_count--;
1868 		rxr_idx += v_count;
1869 
1870 		/* push pointer to next ring */
1871 		ring++;
1872 	}
1873 
1874 	return 0;
1875 }
1876 
1877 /**
1878  * wx_free_q_vector - Free memory allocated for specific interrupt vector
1879  * @wx: board private structure to initialize
1880  * @v_idx: Index of vector to be freed
1881  *
1882  * This function frees the memory allocated to the q_vector.  In addition if
1883  * NAPI is enabled it will delete any references to the NAPI struct prior
1884  * to freeing the q_vector.
1885  **/
1886 static void wx_free_q_vector(struct wx *wx, int v_idx)
1887 {
1888 	struct wx_q_vector *q_vector = wx->q_vector[v_idx];
1889 	struct wx_ring *ring;
1890 
1891 	wx_for_each_ring(ring, q_vector->tx)
1892 		wx->tx_ring[ring->queue_index] = NULL;
1893 
1894 	wx_for_each_ring(ring, q_vector->rx)
1895 		wx->rx_ring[ring->queue_index] = NULL;
1896 
1897 	wx->q_vector[v_idx] = NULL;
1898 	netif_napi_del(&q_vector->napi);
1899 	kfree_rcu(q_vector, rcu);
1900 }
1901 
1902 /**
1903  * wx_alloc_q_vectors - Allocate memory for interrupt vectors
1904  * @wx: board private structure to initialize
1905  *
1906  * We allocate one q_vector per queue interrupt.  If allocation fails we
1907  * return -ENOMEM.
1908  **/
1909 static int wx_alloc_q_vectors(struct wx *wx)
1910 {
1911 	unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1912 	unsigned int rxr_remaining = wx->num_rx_queues;
1913 	unsigned int txr_remaining = wx->num_tx_queues;
1914 	unsigned int q_vectors = wx->num_q_vectors;
1915 	int rqpv, tqpv;
1916 	int err;
1917 
1918 	for (; v_idx < q_vectors; v_idx++) {
1919 		rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1920 		tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1921 		err = wx_alloc_q_vector(wx, q_vectors, v_idx,
1922 					tqpv, txr_idx,
1923 					rqpv, rxr_idx);
1924 
1925 		if (err)
1926 			goto err_out;
1927 
1928 		/* update counts and index */
1929 		rxr_remaining -= rqpv;
1930 		txr_remaining -= tqpv;
1931 		rxr_idx++;
1932 		txr_idx++;
1933 	}
1934 
1935 	return 0;
1936 
1937 err_out:
1938 	wx->num_tx_queues = 0;
1939 	wx->num_rx_queues = 0;
1940 	wx->num_q_vectors = 0;
1941 
1942 	while (v_idx--)
1943 		wx_free_q_vector(wx, v_idx);
1944 
1945 	return -ENOMEM;
1946 }
1947 
1948 /**
1949  * wx_free_q_vectors - Free memory allocated for interrupt vectors
1950  * @wx: board private structure to initialize
1951  *
1952  * This function frees the memory allocated to the q_vectors.  In addition if
1953  * NAPI is enabled it will delete any references to the NAPI struct prior
1954  * to freeing the q_vector.
1955  **/
1956 static void wx_free_q_vectors(struct wx *wx)
1957 {
1958 	int v_idx = wx->num_q_vectors;
1959 
1960 	wx->num_tx_queues = 0;
1961 	wx->num_rx_queues = 0;
1962 	wx->num_q_vectors = 0;
1963 
1964 	while (v_idx--)
1965 		wx_free_q_vector(wx, v_idx);
1966 }
1967 
1968 void wx_reset_interrupt_capability(struct wx *wx)
1969 {
1970 	struct pci_dev *pdev = wx->pdev;
1971 
1972 	if (!pdev->msi_enabled && !pdev->msix_enabled)
1973 		return;
1974 
1975 	if (pdev->msix_enabled) {
1976 		kfree(wx->msix_entries);
1977 		wx->msix_entries = NULL;
1978 	}
1979 	pci_free_irq_vectors(wx->pdev);
1980 }
1981 EXPORT_SYMBOL(wx_reset_interrupt_capability);
1982 
1983 /**
1984  * wx_clear_interrupt_scheme - Clear the current interrupt scheme settings
1985  * @wx: board private structure to clear interrupt scheme on
1986  *
1987  * We go through and clear interrupt specific resources and reset the structure
1988  * to pre-load conditions
1989  **/
1990 void wx_clear_interrupt_scheme(struct wx *wx)
1991 {
1992 	wx_free_q_vectors(wx);
1993 	wx_reset_interrupt_capability(wx);
1994 }
1995 EXPORT_SYMBOL(wx_clear_interrupt_scheme);
1996 
1997 int wx_init_interrupt_scheme(struct wx *wx)
1998 {
1999 	int ret;
2000 
2001 	/* Number of supported queues */
2002 	wx_set_num_queues(wx);
2003 
2004 	/* Set interrupt mode */
2005 	ret = wx_set_interrupt_capability(wx);
2006 	if (ret) {
2007 		wx_err(wx, "Allocate irq vectors for failed.\n");
2008 		return ret;
2009 	}
2010 
2011 	/* Allocate memory for queues */
2012 	ret = wx_alloc_q_vectors(wx);
2013 	if (ret) {
2014 		wx_err(wx, "Unable to allocate memory for queue vectors.\n");
2015 		wx_reset_interrupt_capability(wx);
2016 		return ret;
2017 	}
2018 
2019 	wx_cache_ring_rss(wx);
2020 
2021 	return 0;
2022 }
2023 EXPORT_SYMBOL(wx_init_interrupt_scheme);
2024 
2025 irqreturn_t wx_msix_clean_rings(int __always_unused irq, void *data)
2026 {
2027 	struct wx_q_vector *q_vector = data;
2028 
2029 	/* EIAM disabled interrupts (on this vector) for us */
2030 	if (q_vector->rx.ring || q_vector->tx.ring)
2031 		napi_schedule_irqoff(&q_vector->napi);
2032 
2033 	return IRQ_HANDLED;
2034 }
2035 EXPORT_SYMBOL(wx_msix_clean_rings);
2036 
2037 void wx_free_irq(struct wx *wx)
2038 {
2039 	struct pci_dev *pdev = wx->pdev;
2040 	int vector;
2041 
2042 	if (!(pdev->msix_enabled)) {
2043 		free_irq(pdev->irq, wx);
2044 		return;
2045 	}
2046 
2047 	for (vector = 0; vector < wx->num_q_vectors; vector++) {
2048 		struct wx_q_vector *q_vector = wx->q_vector[vector];
2049 		struct msix_entry *entry = &wx->msix_entries[vector];
2050 
2051 		/* free only the irqs that were actually requested */
2052 		if (!q_vector->rx.ring && !q_vector->tx.ring)
2053 			continue;
2054 
2055 		free_irq(entry->vector, q_vector);
2056 	}
2057 
2058 	if (wx->mac.type == wx_mac_em)
2059 		free_irq(wx->msix_entries[vector].vector, wx);
2060 }
2061 EXPORT_SYMBOL(wx_free_irq);
2062 
2063 /**
2064  * wx_setup_isb_resources - allocate interrupt status resources
2065  * @wx: board private structure
2066  *
2067  * Return 0 on success, negative on failure
2068  **/
2069 int wx_setup_isb_resources(struct wx *wx)
2070 {
2071 	struct pci_dev *pdev = wx->pdev;
2072 
2073 	wx->isb_mem = dma_alloc_coherent(&pdev->dev,
2074 					 sizeof(u32) * 4,
2075 					 &wx->isb_dma,
2076 					 GFP_KERNEL);
2077 	if (!wx->isb_mem) {
2078 		wx_err(wx, "Alloc isb_mem failed\n");
2079 		return -ENOMEM;
2080 	}
2081 
2082 	return 0;
2083 }
2084 EXPORT_SYMBOL(wx_setup_isb_resources);
2085 
2086 /**
2087  * wx_free_isb_resources - allocate all queues Rx resources
2088  * @wx: board private structure
2089  *
2090  * Return 0 on success, negative on failure
2091  **/
2092 void wx_free_isb_resources(struct wx *wx)
2093 {
2094 	struct pci_dev *pdev = wx->pdev;
2095 
2096 	dma_free_coherent(&pdev->dev, sizeof(u32) * 4,
2097 			  wx->isb_mem, wx->isb_dma);
2098 	wx->isb_mem = NULL;
2099 }
2100 EXPORT_SYMBOL(wx_free_isb_resources);
2101 
2102 u32 wx_misc_isb(struct wx *wx, enum wx_isb_idx idx)
2103 {
2104 	u32 cur_tag = 0;
2105 
2106 	cur_tag = wx->isb_mem[WX_ISB_HEADER];
2107 	wx->isb_tag[idx] = cur_tag;
2108 
2109 	return (__force u32)cpu_to_le32(wx->isb_mem[idx]);
2110 }
2111 EXPORT_SYMBOL(wx_misc_isb);
2112 
2113 /**
2114  * wx_set_ivar - set the IVAR registers, mapping interrupt causes to vectors
2115  * @wx: pointer to wx struct
2116  * @direction: 0 for Rx, 1 for Tx, -1 for other causes
2117  * @queue: queue to map the corresponding interrupt to
2118  * @msix_vector: the vector to map to the corresponding queue
2119  *
2120  **/
2121 static void wx_set_ivar(struct wx *wx, s8 direction,
2122 			u16 queue, u16 msix_vector)
2123 {
2124 	u32 ivar, index;
2125 
2126 	if (direction == -1) {
2127 		/* other causes */
2128 		msix_vector |= WX_PX_IVAR_ALLOC_VAL;
2129 		index = 0;
2130 		ivar = rd32(wx, WX_PX_MISC_IVAR);
2131 		ivar &= ~(0xFF << index);
2132 		ivar |= (msix_vector << index);
2133 		wr32(wx, WX_PX_MISC_IVAR, ivar);
2134 	} else {
2135 		/* tx or rx causes */
2136 		msix_vector |= WX_PX_IVAR_ALLOC_VAL;
2137 		index = ((16 * (queue & 1)) + (8 * direction));
2138 		ivar = rd32(wx, WX_PX_IVAR(queue >> 1));
2139 		ivar &= ~(0xFF << index);
2140 		ivar |= (msix_vector << index);
2141 		wr32(wx, WX_PX_IVAR(queue >> 1), ivar);
2142 	}
2143 }
2144 
2145 /**
2146  * wx_write_eitr - write EITR register in hardware specific way
2147  * @q_vector: structure containing interrupt and ring information
2148  *
2149  * This function is made to be called by ethtool and by the driver
2150  * when it needs to update EITR registers at runtime.  Hardware
2151  * specific quirks/differences are taken care of here.
2152  */
2153 static void wx_write_eitr(struct wx_q_vector *q_vector)
2154 {
2155 	struct wx *wx = q_vector->wx;
2156 	int v_idx = q_vector->v_idx;
2157 	u32 itr_reg;
2158 
2159 	if (wx->mac.type == wx_mac_sp)
2160 		itr_reg = q_vector->itr & WX_SP_MAX_EITR;
2161 	else
2162 		itr_reg = q_vector->itr & WX_EM_MAX_EITR;
2163 
2164 	itr_reg |= WX_PX_ITR_CNT_WDIS;
2165 
2166 	wr32(wx, WX_PX_ITR(v_idx), itr_reg);
2167 }
2168 
2169 /**
2170  * wx_configure_vectors - Configure vectors for hardware
2171  * @wx: board private structure
2172  *
2173  * wx_configure_vectors sets up the hardware to properly generate MSI-X/MSI/LEGACY
2174  * interrupts.
2175  **/
2176 void wx_configure_vectors(struct wx *wx)
2177 {
2178 	struct pci_dev *pdev = wx->pdev;
2179 	u32 eitrsel = 0;
2180 	u16 v_idx;
2181 
2182 	if (pdev->msix_enabled) {
2183 		/* Populate MSIX to EITR Select */
2184 		wr32(wx, WX_PX_ITRSEL, eitrsel);
2185 		/* use EIAM to auto-mask when MSI-X interrupt is asserted
2186 		 * this saves a register write for every interrupt
2187 		 */
2188 		wr32(wx, WX_PX_GPIE, WX_PX_GPIE_MODEL);
2189 	} else {
2190 		/* legacy interrupts, use EIAM to auto-mask when reading EICR,
2191 		 * specifically only auto mask tx and rx interrupts.
2192 		 */
2193 		wr32(wx, WX_PX_GPIE, 0);
2194 	}
2195 
2196 	/* Populate the IVAR table and set the ITR values to the
2197 	 * corresponding register.
2198 	 */
2199 	for (v_idx = 0; v_idx < wx->num_q_vectors; v_idx++) {
2200 		struct wx_q_vector *q_vector = wx->q_vector[v_idx];
2201 		struct wx_ring *ring;
2202 
2203 		wx_for_each_ring(ring, q_vector->rx)
2204 			wx_set_ivar(wx, 0, ring->reg_idx, v_idx);
2205 
2206 		wx_for_each_ring(ring, q_vector->tx)
2207 			wx_set_ivar(wx, 1, ring->reg_idx, v_idx);
2208 
2209 		wx_write_eitr(q_vector);
2210 	}
2211 
2212 	wx_set_ivar(wx, -1, 0, v_idx);
2213 	if (pdev->msix_enabled)
2214 		wr32(wx, WX_PX_ITR(v_idx), 1950);
2215 }
2216 EXPORT_SYMBOL(wx_configure_vectors);
2217 
2218 /**
2219  * wx_clean_rx_ring - Free Rx Buffers per Queue
2220  * @rx_ring: ring to free buffers from
2221  **/
2222 static void wx_clean_rx_ring(struct wx_ring *rx_ring)
2223 {
2224 	struct wx_rx_buffer *rx_buffer;
2225 	u16 i = rx_ring->next_to_clean;
2226 
2227 	rx_buffer = &rx_ring->rx_buffer_info[i];
2228 
2229 	/* Free all the Rx ring sk_buffs */
2230 	while (i != rx_ring->next_to_alloc) {
2231 		if (rx_buffer->skb) {
2232 			struct sk_buff *skb = rx_buffer->skb;
2233 
2234 			if (WX_CB(skb)->page_released)
2235 				page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false);
2236 
2237 			dev_kfree_skb(skb);
2238 		}
2239 
2240 		/* Invalidate cache lines that may have been written to by
2241 		 * device so that we avoid corrupting memory.
2242 		 */
2243 		dma_sync_single_range_for_cpu(rx_ring->dev,
2244 					      rx_buffer->dma,
2245 					      rx_buffer->page_offset,
2246 					      WX_RX_BUFSZ,
2247 					      DMA_FROM_DEVICE);
2248 
2249 		/* free resources associated with mapping */
2250 		page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false);
2251 		__page_frag_cache_drain(rx_buffer->page,
2252 					rx_buffer->pagecnt_bias);
2253 
2254 		i++;
2255 		rx_buffer++;
2256 		if (i == rx_ring->count) {
2257 			i = 0;
2258 			rx_buffer = rx_ring->rx_buffer_info;
2259 		}
2260 	}
2261 
2262 	rx_ring->next_to_alloc = 0;
2263 	rx_ring->next_to_clean = 0;
2264 	rx_ring->next_to_use = 0;
2265 }
2266 
2267 /**
2268  * wx_clean_all_rx_rings - Free Rx Buffers for all queues
2269  * @wx: board private structure
2270  **/
2271 void wx_clean_all_rx_rings(struct wx *wx)
2272 {
2273 	int i;
2274 
2275 	for (i = 0; i < wx->num_rx_queues; i++)
2276 		wx_clean_rx_ring(wx->rx_ring[i]);
2277 }
2278 EXPORT_SYMBOL(wx_clean_all_rx_rings);
2279 
2280 /**
2281  * wx_free_rx_resources - Free Rx Resources
2282  * @rx_ring: ring to clean the resources from
2283  *
2284  * Free all receive software resources
2285  **/
2286 static void wx_free_rx_resources(struct wx_ring *rx_ring)
2287 {
2288 	wx_clean_rx_ring(rx_ring);
2289 	kvfree(rx_ring->rx_buffer_info);
2290 	rx_ring->rx_buffer_info = NULL;
2291 
2292 	/* if not set, then don't free */
2293 	if (!rx_ring->desc)
2294 		return;
2295 
2296 	dma_free_coherent(rx_ring->dev, rx_ring->size,
2297 			  rx_ring->desc, rx_ring->dma);
2298 
2299 	rx_ring->desc = NULL;
2300 
2301 	if (rx_ring->page_pool) {
2302 		page_pool_destroy(rx_ring->page_pool);
2303 		rx_ring->page_pool = NULL;
2304 	}
2305 }
2306 
2307 /**
2308  * wx_free_all_rx_resources - Free Rx Resources for All Queues
2309  * @wx: pointer to hardware structure
2310  *
2311  * Free all receive software resources
2312  **/
2313 static void wx_free_all_rx_resources(struct wx *wx)
2314 {
2315 	int i;
2316 
2317 	for (i = 0; i < wx->num_rx_queues; i++)
2318 		wx_free_rx_resources(wx->rx_ring[i]);
2319 }
2320 
2321 /**
2322  * wx_clean_tx_ring - Free Tx Buffers
2323  * @tx_ring: ring to be cleaned
2324  **/
2325 static void wx_clean_tx_ring(struct wx_ring *tx_ring)
2326 {
2327 	struct wx_tx_buffer *tx_buffer;
2328 	u16 i = tx_ring->next_to_clean;
2329 
2330 	tx_buffer = &tx_ring->tx_buffer_info[i];
2331 
2332 	while (i != tx_ring->next_to_use) {
2333 		union wx_tx_desc *eop_desc, *tx_desc;
2334 
2335 		/* Free all the Tx ring sk_buffs */
2336 		dev_kfree_skb_any(tx_buffer->skb);
2337 
2338 		/* unmap skb header data */
2339 		dma_unmap_single(tx_ring->dev,
2340 				 dma_unmap_addr(tx_buffer, dma),
2341 				 dma_unmap_len(tx_buffer, len),
2342 				 DMA_TO_DEVICE);
2343 
2344 		/* check for eop_desc to determine the end of the packet */
2345 		eop_desc = tx_buffer->next_to_watch;
2346 		tx_desc = WX_TX_DESC(tx_ring, i);
2347 
2348 		/* unmap remaining buffers */
2349 		while (tx_desc != eop_desc) {
2350 			tx_buffer++;
2351 			tx_desc++;
2352 			i++;
2353 			if (unlikely(i == tx_ring->count)) {
2354 				i = 0;
2355 				tx_buffer = tx_ring->tx_buffer_info;
2356 				tx_desc = WX_TX_DESC(tx_ring, 0);
2357 			}
2358 
2359 			/* unmap any remaining paged data */
2360 			if (dma_unmap_len(tx_buffer, len))
2361 				dma_unmap_page(tx_ring->dev,
2362 					       dma_unmap_addr(tx_buffer, dma),
2363 					       dma_unmap_len(tx_buffer, len),
2364 					       DMA_TO_DEVICE);
2365 		}
2366 
2367 		/* move us one more past the eop_desc for start of next pkt */
2368 		tx_buffer++;
2369 		i++;
2370 		if (unlikely(i == tx_ring->count)) {
2371 			i = 0;
2372 			tx_buffer = tx_ring->tx_buffer_info;
2373 		}
2374 	}
2375 
2376 	netdev_tx_reset_queue(wx_txring_txq(tx_ring));
2377 
2378 	/* reset next_to_use and next_to_clean */
2379 	tx_ring->next_to_use = 0;
2380 	tx_ring->next_to_clean = 0;
2381 }
2382 
2383 /**
2384  * wx_clean_all_tx_rings - Free Tx Buffers for all queues
2385  * @wx: board private structure
2386  **/
2387 void wx_clean_all_tx_rings(struct wx *wx)
2388 {
2389 	int i;
2390 
2391 	for (i = 0; i < wx->num_tx_queues; i++)
2392 		wx_clean_tx_ring(wx->tx_ring[i]);
2393 }
2394 EXPORT_SYMBOL(wx_clean_all_tx_rings);
2395 
2396 /**
2397  * wx_free_tx_resources - Free Tx Resources per Queue
2398  * @tx_ring: Tx descriptor ring for a specific queue
2399  *
2400  * Free all transmit software resources
2401  **/
2402 static void wx_free_tx_resources(struct wx_ring *tx_ring)
2403 {
2404 	wx_clean_tx_ring(tx_ring);
2405 	kvfree(tx_ring->tx_buffer_info);
2406 	tx_ring->tx_buffer_info = NULL;
2407 
2408 	/* if not set, then don't free */
2409 	if (!tx_ring->desc)
2410 		return;
2411 
2412 	dma_free_coherent(tx_ring->dev, tx_ring->size,
2413 			  tx_ring->desc, tx_ring->dma);
2414 	tx_ring->desc = NULL;
2415 }
2416 
2417 /**
2418  * wx_free_all_tx_resources - Free Tx Resources for All Queues
2419  * @wx: pointer to hardware structure
2420  *
2421  * Free all transmit software resources
2422  **/
2423 static void wx_free_all_tx_resources(struct wx *wx)
2424 {
2425 	int i;
2426 
2427 	for (i = 0; i < wx->num_tx_queues; i++)
2428 		wx_free_tx_resources(wx->tx_ring[i]);
2429 }
2430 
2431 void wx_free_resources(struct wx *wx)
2432 {
2433 	wx_free_isb_resources(wx);
2434 	wx_free_all_rx_resources(wx);
2435 	wx_free_all_tx_resources(wx);
2436 }
2437 EXPORT_SYMBOL(wx_free_resources);
2438 
2439 static int wx_alloc_page_pool(struct wx_ring *rx_ring)
2440 {
2441 	int ret = 0;
2442 
2443 	struct page_pool_params pp_params = {
2444 		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
2445 		.order = 0,
2446 		.pool_size = rx_ring->size,
2447 		.nid = dev_to_node(rx_ring->dev),
2448 		.dev = rx_ring->dev,
2449 		.dma_dir = DMA_FROM_DEVICE,
2450 		.offset = 0,
2451 		.max_len = PAGE_SIZE,
2452 	};
2453 
2454 	rx_ring->page_pool = page_pool_create(&pp_params);
2455 	if (IS_ERR(rx_ring->page_pool)) {
2456 		ret = PTR_ERR(rx_ring->page_pool);
2457 		rx_ring->page_pool = NULL;
2458 	}
2459 
2460 	return ret;
2461 }
2462 
2463 /**
2464  * wx_setup_rx_resources - allocate Rx resources (Descriptors)
2465  * @rx_ring: rx descriptor ring (for a specific queue) to setup
2466  *
2467  * Returns 0 on success, negative on failure
2468  **/
2469 static int wx_setup_rx_resources(struct wx_ring *rx_ring)
2470 {
2471 	struct device *dev = rx_ring->dev;
2472 	int orig_node = dev_to_node(dev);
2473 	int numa_node = NUMA_NO_NODE;
2474 	int size, ret;
2475 
2476 	size = sizeof(struct wx_rx_buffer) * rx_ring->count;
2477 
2478 	if (rx_ring->q_vector)
2479 		numa_node = rx_ring->q_vector->numa_node;
2480 
2481 	rx_ring->rx_buffer_info = kvmalloc_node(size, GFP_KERNEL, numa_node);
2482 	if (!rx_ring->rx_buffer_info)
2483 		rx_ring->rx_buffer_info = kvmalloc(size, GFP_KERNEL);
2484 	if (!rx_ring->rx_buffer_info)
2485 		goto err;
2486 
2487 	/* Round up to nearest 4K */
2488 	rx_ring->size = rx_ring->count * sizeof(union wx_rx_desc);
2489 	rx_ring->size = ALIGN(rx_ring->size, 4096);
2490 
2491 	set_dev_node(dev, numa_node);
2492 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
2493 					   &rx_ring->dma, GFP_KERNEL);
2494 	if (!rx_ring->desc) {
2495 		set_dev_node(dev, orig_node);
2496 		rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
2497 						   &rx_ring->dma, GFP_KERNEL);
2498 	}
2499 
2500 	if (!rx_ring->desc)
2501 		goto err;
2502 
2503 	rx_ring->next_to_clean = 0;
2504 	rx_ring->next_to_use = 0;
2505 
2506 	ret = wx_alloc_page_pool(rx_ring);
2507 	if (ret < 0) {
2508 		dev_err(rx_ring->dev, "Page pool creation failed: %d\n", ret);
2509 		goto err_desc;
2510 	}
2511 
2512 	return 0;
2513 
2514 err_desc:
2515 	dma_free_coherent(dev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2516 err:
2517 	kvfree(rx_ring->rx_buffer_info);
2518 	rx_ring->rx_buffer_info = NULL;
2519 	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
2520 	return -ENOMEM;
2521 }
2522 
2523 /**
2524  * wx_setup_all_rx_resources - allocate all queues Rx resources
2525  * @wx: pointer to hardware structure
2526  *
2527  * If this function returns with an error, then it's possible one or
2528  * more of the rings is populated (while the rest are not).  It is the
2529  * callers duty to clean those orphaned rings.
2530  *
2531  * Return 0 on success, negative on failure
2532  **/
2533 static int wx_setup_all_rx_resources(struct wx *wx)
2534 {
2535 	int i, err = 0;
2536 
2537 	for (i = 0; i < wx->num_rx_queues; i++) {
2538 		err = wx_setup_rx_resources(wx->rx_ring[i]);
2539 		if (!err)
2540 			continue;
2541 
2542 		wx_err(wx, "Allocation for Rx Queue %u failed\n", i);
2543 		goto err_setup_rx;
2544 	}
2545 
2546 	return 0;
2547 err_setup_rx:
2548 	/* rewind the index freeing the rings as we go */
2549 	while (i--)
2550 		wx_free_rx_resources(wx->rx_ring[i]);
2551 	return err;
2552 }
2553 
2554 /**
2555  * wx_setup_tx_resources - allocate Tx resources (Descriptors)
2556  * @tx_ring: tx descriptor ring (for a specific queue) to setup
2557  *
2558  * Return 0 on success, negative on failure
2559  **/
2560 static int wx_setup_tx_resources(struct wx_ring *tx_ring)
2561 {
2562 	struct device *dev = tx_ring->dev;
2563 	int orig_node = dev_to_node(dev);
2564 	int numa_node = NUMA_NO_NODE;
2565 	int size;
2566 
2567 	size = sizeof(struct wx_tx_buffer) * tx_ring->count;
2568 
2569 	if (tx_ring->q_vector)
2570 		numa_node = tx_ring->q_vector->numa_node;
2571 
2572 	tx_ring->tx_buffer_info = kvmalloc_node(size, GFP_KERNEL, numa_node);
2573 	if (!tx_ring->tx_buffer_info)
2574 		tx_ring->tx_buffer_info = kvmalloc(size, GFP_KERNEL);
2575 	if (!tx_ring->tx_buffer_info)
2576 		goto err;
2577 
2578 	/* round up to nearest 4K */
2579 	tx_ring->size = tx_ring->count * sizeof(union wx_tx_desc);
2580 	tx_ring->size = ALIGN(tx_ring->size, 4096);
2581 
2582 	set_dev_node(dev, numa_node);
2583 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2584 					   &tx_ring->dma, GFP_KERNEL);
2585 	if (!tx_ring->desc) {
2586 		set_dev_node(dev, orig_node);
2587 		tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2588 						   &tx_ring->dma, GFP_KERNEL);
2589 	}
2590 
2591 	if (!tx_ring->desc)
2592 		goto err;
2593 
2594 	tx_ring->next_to_use = 0;
2595 	tx_ring->next_to_clean = 0;
2596 
2597 	return 0;
2598 
2599 err:
2600 	kvfree(tx_ring->tx_buffer_info);
2601 	tx_ring->tx_buffer_info = NULL;
2602 	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2603 	return -ENOMEM;
2604 }
2605 
2606 /**
2607  * wx_setup_all_tx_resources - allocate all queues Tx resources
2608  * @wx: pointer to private structure
2609  *
2610  * If this function returns with an error, then it's possible one or
2611  * more of the rings is populated (while the rest are not).  It is the
2612  * callers duty to clean those orphaned rings.
2613  *
2614  * Return 0 on success, negative on failure
2615  **/
2616 static int wx_setup_all_tx_resources(struct wx *wx)
2617 {
2618 	int i, err = 0;
2619 
2620 	for (i = 0; i < wx->num_tx_queues; i++) {
2621 		err = wx_setup_tx_resources(wx->tx_ring[i]);
2622 		if (!err)
2623 			continue;
2624 
2625 		wx_err(wx, "Allocation for Tx Queue %u failed\n", i);
2626 		goto err_setup_tx;
2627 	}
2628 
2629 	return 0;
2630 err_setup_tx:
2631 	/* rewind the index freeing the rings as we go */
2632 	while (i--)
2633 		wx_free_tx_resources(wx->tx_ring[i]);
2634 	return err;
2635 }
2636 
2637 int wx_setup_resources(struct wx *wx)
2638 {
2639 	int err;
2640 
2641 	/* allocate transmit descriptors */
2642 	err = wx_setup_all_tx_resources(wx);
2643 	if (err)
2644 		return err;
2645 
2646 	/* allocate receive descriptors */
2647 	err = wx_setup_all_rx_resources(wx);
2648 	if (err)
2649 		goto err_free_tx;
2650 
2651 	err = wx_setup_isb_resources(wx);
2652 	if (err)
2653 		goto err_free_rx;
2654 
2655 	return 0;
2656 
2657 err_free_rx:
2658 	wx_free_all_rx_resources(wx);
2659 err_free_tx:
2660 	wx_free_all_tx_resources(wx);
2661 
2662 	return err;
2663 }
2664 EXPORT_SYMBOL(wx_setup_resources);
2665 
2666 /**
2667  * wx_get_stats64 - Get System Network Statistics
2668  * @netdev: network interface device structure
2669  * @stats: storage space for 64bit statistics
2670  */
2671 void wx_get_stats64(struct net_device *netdev,
2672 		    struct rtnl_link_stats64 *stats)
2673 {
2674 	struct wx *wx = netdev_priv(netdev);
2675 	struct wx_hw_stats *hwstats;
2676 	int i;
2677 
2678 	wx_update_stats(wx);
2679 
2680 	rcu_read_lock();
2681 	for (i = 0; i < wx->num_rx_queues; i++) {
2682 		struct wx_ring *ring = READ_ONCE(wx->rx_ring[i]);
2683 		u64 bytes, packets;
2684 		unsigned int start;
2685 
2686 		if (ring) {
2687 			do {
2688 				start = u64_stats_fetch_begin(&ring->syncp);
2689 				packets = ring->stats.packets;
2690 				bytes   = ring->stats.bytes;
2691 			} while (u64_stats_fetch_retry(&ring->syncp, start));
2692 			stats->rx_packets += packets;
2693 			stats->rx_bytes   += bytes;
2694 		}
2695 	}
2696 
2697 	for (i = 0; i < wx->num_tx_queues; i++) {
2698 		struct wx_ring *ring = READ_ONCE(wx->tx_ring[i]);
2699 		u64 bytes, packets;
2700 		unsigned int start;
2701 
2702 		if (ring) {
2703 			do {
2704 				start = u64_stats_fetch_begin(&ring->syncp);
2705 				packets = ring->stats.packets;
2706 				bytes   = ring->stats.bytes;
2707 			} while (u64_stats_fetch_retry(&ring->syncp,
2708 							   start));
2709 			stats->tx_packets += packets;
2710 			stats->tx_bytes   += bytes;
2711 		}
2712 	}
2713 
2714 	rcu_read_unlock();
2715 
2716 	hwstats = &wx->stats;
2717 	stats->rx_errors = hwstats->crcerrs + hwstats->rlec;
2718 	stats->multicast = hwstats->qmprc;
2719 	stats->rx_length_errors = hwstats->rlec;
2720 	stats->rx_crc_errors = hwstats->crcerrs;
2721 }
2722 EXPORT_SYMBOL(wx_get_stats64);
2723 
2724 int wx_set_features(struct net_device *netdev, netdev_features_t features)
2725 {
2726 	netdev_features_t changed = netdev->features ^ features;
2727 	struct wx *wx = netdev_priv(netdev);
2728 
2729 	if (changed & NETIF_F_RXHASH)
2730 		wr32m(wx, WX_RDB_RA_CTL, WX_RDB_RA_CTL_RSS_EN,
2731 		      WX_RDB_RA_CTL_RSS_EN);
2732 	else
2733 		wr32m(wx, WX_RDB_RA_CTL, WX_RDB_RA_CTL_RSS_EN, 0);
2734 
2735 	if (changed &
2736 	    (NETIF_F_HW_VLAN_CTAG_RX |
2737 	     NETIF_F_HW_VLAN_STAG_RX))
2738 		wx_set_rx_mode(netdev);
2739 
2740 	return 1;
2741 }
2742 EXPORT_SYMBOL(wx_set_features);
2743 
2744 MODULE_LICENSE("GPL");
2745