1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Xilinx TEMAC Ethernet device
4  *
5  * Copyright (c) 2008 Nissin Systems Co., Ltd.,  Yoshio Kashiwagi
6  * Copyright (c) 2005-2008 DLA Systems,  David H. Lynch Jr. <dhlii@dlasys.net>
7  * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
8  *
9  * This is a driver for the Xilinx ll_temac ipcore which is often used
10  * in the Virtex and Spartan series of chips.
11  *
12  * Notes:
13  * - The ll_temac hardware uses indirect access for many of the TEMAC
14  *   registers, include the MDIO bus.  However, indirect access to MDIO
15  *   registers take considerably more clock cycles than to TEMAC registers.
16  *   MDIO accesses are long, so threads doing them should probably sleep
17  *   rather than busywait.  However, since only one indirect access can be
18  *   in progress at any given time, that means that *all* indirect accesses
19  *   could end up sleeping (to wait for an MDIO access to complete).
20  *   Fortunately none of the indirect accesses are on the 'hot' path for tx
21  *   or rx, so this should be okay.
22  *
23  * TODO:
24  * - Factor out locallink DMA code into separate driver
25  * - Fix support for hardware checksumming.
26  * - Testing.  Lots and lots of testing.
27  *
28  */
29 
30 #include <linux/delay.h>
31 #include <linux/etherdevice.h>
32 #include <linux/mii.h>
33 #include <linux/module.h>
34 #include <linux/mutex.h>
35 #include <linux/netdevice.h>
36 #include <linux/if_ether.h>
37 #include <linux/of.h>
38 #include <linux/of_device.h>
39 #include <linux/of_irq.h>
40 #include <linux/of_mdio.h>
41 #include <linux/of_net.h>
42 #include <linux/of_platform.h>
43 #include <linux/of_address.h>
44 #include <linux/skbuff.h>
45 #include <linux/spinlock.h>
46 #include <linux/tcp.h>      /* needed for sizeof(tcphdr) */
47 #include <linux/udp.h>      /* needed for sizeof(udphdr) */
48 #include <linux/phy.h>
49 #include <linux/in.h>
50 #include <linux/io.h>
51 #include <linux/ip.h>
52 #include <linux/slab.h>
53 #include <linux/interrupt.h>
54 #include <linux/workqueue.h>
55 #include <linux/dma-mapping.h>
56 #include <linux/processor.h>
57 #include <linux/platform_data/xilinx-ll-temac.h>
58 
59 #include "ll_temac.h"
60 
61 /* Descriptors defines for Tx and Rx DMA */
62 #define TX_BD_NUM_DEFAULT		64
63 #define RX_BD_NUM_DEFAULT		1024
64 #define TX_BD_NUM_MAX			4096
65 #define RX_BD_NUM_MAX			4096
66 
67 /* ---------------------------------------------------------------------
68  * Low level register access functions
69  */
70 
71 static u32 _temac_ior_be(struct temac_local *lp, int offset)
72 {
73 	return ioread32be(lp->regs + offset);
74 }
75 
76 static void _temac_iow_be(struct temac_local *lp, int offset, u32 value)
77 {
78 	return iowrite32be(value, lp->regs + offset);
79 }
80 
81 static u32 _temac_ior_le(struct temac_local *lp, int offset)
82 {
83 	return ioread32(lp->regs + offset);
84 }
85 
86 static void _temac_iow_le(struct temac_local *lp, int offset, u32 value)
87 {
88 	return iowrite32(value, lp->regs + offset);
89 }
90 
91 static bool hard_acs_rdy(struct temac_local *lp)
92 {
93 	return temac_ior(lp, XTE_RDY0_OFFSET) & XTE_RDY0_HARD_ACS_RDY_MASK;
94 }
95 
96 static bool hard_acs_rdy_or_timeout(struct temac_local *lp, ktime_t timeout)
97 {
98 	ktime_t cur = ktime_get();
99 
100 	return hard_acs_rdy(lp) || ktime_after(cur, timeout);
101 }
102 
103 /* Poll for maximum 20 ms.  This is similar to the 2 jiffies @ 100 Hz
104  * that was used before, and should cover MDIO bus speed down to 3200
105  * Hz.
106  */
107 #define HARD_ACS_RDY_POLL_NS (20 * NSEC_PER_MSEC)
108 
109 /*
110  * temac_indirect_busywait - Wait for current indirect register access
111  * to complete.
112  */
113 int temac_indirect_busywait(struct temac_local *lp)
114 {
115 	ktime_t timeout = ktime_add_ns(ktime_get(), HARD_ACS_RDY_POLL_NS);
116 
117 	spin_until_cond(hard_acs_rdy_or_timeout(lp, timeout));
118 	if (WARN_ON(!hard_acs_rdy(lp)))
119 		return -ETIMEDOUT;
120 	else
121 		return 0;
122 }
123 
124 /*
125  * temac_indirect_in32 - Indirect register read access.  This function
126  * must be called without lp->indirect_lock being held.
127  */
128 u32 temac_indirect_in32(struct temac_local *lp, int reg)
129 {
130 	unsigned long flags;
131 	int val;
132 
133 	spin_lock_irqsave(lp->indirect_lock, flags);
134 	val = temac_indirect_in32_locked(lp, reg);
135 	spin_unlock_irqrestore(lp->indirect_lock, flags);
136 	return val;
137 }
138 
139 /*
140  * temac_indirect_in32_locked - Indirect register read access.  This
141  * function must be called with lp->indirect_lock being held.  Use
142  * this together with spin_lock_irqsave/spin_lock_irqrestore to avoid
143  * repeated lock/unlock and to ensure uninterrupted access to indirect
144  * registers.
145  */
146 u32 temac_indirect_in32_locked(struct temac_local *lp, int reg)
147 {
148 	/* This initial wait should normally not spin, as we always
149 	 * try to wait for indirect access to complete before
150 	 * releasing the indirect_lock.
151 	 */
152 	if (WARN_ON(temac_indirect_busywait(lp)))
153 		return -ETIMEDOUT;
154 	/* Initiate read from indirect register */
155 	temac_iow(lp, XTE_CTL0_OFFSET, reg);
156 	/* Wait for indirect register access to complete.  We really
157 	 * should not see timeouts, and could even end up causing
158 	 * problem for following indirect access, so let's make a bit
159 	 * of WARN noise.
160 	 */
161 	if (WARN_ON(temac_indirect_busywait(lp)))
162 		return -ETIMEDOUT;
163 	/* Value is ready now */
164 	return temac_ior(lp, XTE_LSW0_OFFSET);
165 }
166 
167 /*
168  * temac_indirect_out32 - Indirect register write access.  This function
169  * must be called without lp->indirect_lock being held.
170  */
171 void temac_indirect_out32(struct temac_local *lp, int reg, u32 value)
172 {
173 	unsigned long flags;
174 
175 	spin_lock_irqsave(lp->indirect_lock, flags);
176 	temac_indirect_out32_locked(lp, reg, value);
177 	spin_unlock_irqrestore(lp->indirect_lock, flags);
178 }
179 
180 /*
181  * temac_indirect_out32_locked - Indirect register write access.  This
182  * function must be called with lp->indirect_lock being held.  Use
183  * this together with spin_lock_irqsave/spin_lock_irqrestore to avoid
184  * repeated lock/unlock and to ensure uninterrupted access to indirect
185  * registers.
186  */
187 void temac_indirect_out32_locked(struct temac_local *lp, int reg, u32 value)
188 {
189 	/* As in temac_indirect_in32_locked(), we should normally not
190 	 * spin here.  And if it happens, we actually end up silently
191 	 * ignoring the write request.  Ouch.
192 	 */
193 	if (WARN_ON(temac_indirect_busywait(lp)))
194 		return;
195 	/* Initiate write to indirect register */
196 	temac_iow(lp, XTE_LSW0_OFFSET, value);
197 	temac_iow(lp, XTE_CTL0_OFFSET, CNTLREG_WRITE_ENABLE_MASK | reg);
198 	/* As in temac_indirect_in32_locked(), we should not see timeouts
199 	 * here.  And if it happens, we continue before the write has
200 	 * completed.  Not good.
201 	 */
202 	WARN_ON(temac_indirect_busywait(lp));
203 }
204 
205 /*
206  * temac_dma_in32_* - Memory mapped DMA read, these function expects a
207  * register input that is based on DCR word addresses which are then
208  * converted to memory mapped byte addresses.  To be assigned to
209  * lp->dma_in32.
210  */
211 static u32 temac_dma_in32_be(struct temac_local *lp, int reg)
212 {
213 	return ioread32be(lp->sdma_regs + (reg << 2));
214 }
215 
216 static u32 temac_dma_in32_le(struct temac_local *lp, int reg)
217 {
218 	return ioread32(lp->sdma_regs + (reg << 2));
219 }
220 
221 /*
222  * temac_dma_out32_* - Memory mapped DMA read, these function expects
223  * a register input that is based on DCR word addresses which are then
224  * converted to memory mapped byte addresses.  To be assigned to
225  * lp->dma_out32.
226  */
227 static void temac_dma_out32_be(struct temac_local *lp, int reg, u32 value)
228 {
229 	iowrite32be(value, lp->sdma_regs + (reg << 2));
230 }
231 
232 static void temac_dma_out32_le(struct temac_local *lp, int reg, u32 value)
233 {
234 	iowrite32(value, lp->sdma_regs + (reg << 2));
235 }
236 
237 /* DMA register access functions can be DCR based or memory mapped.
238  * The PowerPC 440 is DCR based, the PowerPC 405 and MicroBlaze are both
239  * memory mapped.
240  */
241 #ifdef CONFIG_PPC_DCR
242 
243 /*
244  * temac_dma_dcr_in32 - DCR based DMA read
245  */
246 static u32 temac_dma_dcr_in(struct temac_local *lp, int reg)
247 {
248 	return dcr_read(lp->sdma_dcrs, reg);
249 }
250 
251 /*
252  * temac_dma_dcr_out32 - DCR based DMA write
253  */
254 static void temac_dma_dcr_out(struct temac_local *lp, int reg, u32 value)
255 {
256 	dcr_write(lp->sdma_dcrs, reg, value);
257 }
258 
259 /*
260  * temac_dcr_setup - If the DMA is DCR based, then setup the address and
261  * I/O  functions
262  */
263 static int temac_dcr_setup(struct temac_local *lp, struct platform_device *op,
264 				struct device_node *np)
265 {
266 	unsigned int dcrs;
267 
268 	/* setup the dcr address mapping if it's in the device tree */
269 
270 	dcrs = dcr_resource_start(np, 0);
271 	if (dcrs != 0) {
272 		lp->sdma_dcrs = dcr_map(np, dcrs, dcr_resource_len(np, 0));
273 		lp->dma_in = temac_dma_dcr_in;
274 		lp->dma_out = temac_dma_dcr_out;
275 		dev_dbg(&op->dev, "DCR base: %x\n", dcrs);
276 		return 0;
277 	}
278 	/* no DCR in the device tree, indicate a failure */
279 	return -1;
280 }
281 
282 #else
283 
284 /*
285  * temac_dcr_setup - This is a stub for when DCR is not supported,
286  * such as with MicroBlaze and x86
287  */
288 static int temac_dcr_setup(struct temac_local *lp, struct platform_device *op,
289 				struct device_node *np)
290 {
291 	return -1;
292 }
293 
294 #endif
295 
296 /*
297  * temac_dma_bd_release - Release buffer descriptor rings
298  */
299 static void temac_dma_bd_release(struct net_device *ndev)
300 {
301 	struct temac_local *lp = netdev_priv(ndev);
302 	int i;
303 
304 	/* Reset Local Link (DMA) */
305 	lp->dma_out(lp, DMA_CONTROL_REG, DMA_CONTROL_RST);
306 
307 	for (i = 0; i < lp->rx_bd_num; i++) {
308 		if (!lp->rx_skb[i])
309 			break;
310 		else {
311 			dma_unmap_single(ndev->dev.parent, lp->rx_bd_v[i].phys,
312 					XTE_MAX_JUMBO_FRAME_SIZE, DMA_FROM_DEVICE);
313 			dev_kfree_skb(lp->rx_skb[i]);
314 		}
315 	}
316 	if (lp->rx_bd_v)
317 		dma_free_coherent(ndev->dev.parent,
318 				  sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
319 				  lp->rx_bd_v, lp->rx_bd_p);
320 	if (lp->tx_bd_v)
321 		dma_free_coherent(ndev->dev.parent,
322 				  sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
323 				  lp->tx_bd_v, lp->tx_bd_p);
324 }
325 
326 /*
327  * temac_dma_bd_init - Setup buffer descriptor rings
328  */
329 static int temac_dma_bd_init(struct net_device *ndev)
330 {
331 	struct temac_local *lp = netdev_priv(ndev);
332 	struct sk_buff *skb;
333 	dma_addr_t skb_dma_addr;
334 	int i;
335 
336 	lp->rx_skb = devm_kcalloc(&ndev->dev, lp->rx_bd_num,
337 				  sizeof(*lp->rx_skb), GFP_KERNEL);
338 	if (!lp->rx_skb)
339 		goto out;
340 
341 	/* allocate the tx and rx ring buffer descriptors. */
342 	/* returns a virtual address and a physical address. */
343 	lp->tx_bd_v = dma_alloc_coherent(ndev->dev.parent,
344 					 sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
345 					 &lp->tx_bd_p, GFP_KERNEL);
346 	if (!lp->tx_bd_v)
347 		goto out;
348 
349 	lp->rx_bd_v = dma_alloc_coherent(ndev->dev.parent,
350 					 sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
351 					 &lp->rx_bd_p, GFP_KERNEL);
352 	if (!lp->rx_bd_v)
353 		goto out;
354 
355 	for (i = 0; i < lp->tx_bd_num; i++) {
356 		lp->tx_bd_v[i].next = cpu_to_be32(lp->tx_bd_p
357 			+ sizeof(*lp->tx_bd_v) * ((i + 1) % lp->tx_bd_num));
358 	}
359 
360 	for (i = 0; i < lp->rx_bd_num; i++) {
361 		lp->rx_bd_v[i].next = cpu_to_be32(lp->rx_bd_p
362 			+ sizeof(*lp->rx_bd_v) * ((i + 1) % lp->rx_bd_num));
363 
364 		skb = __netdev_alloc_skb_ip_align(ndev,
365 						  XTE_MAX_JUMBO_FRAME_SIZE,
366 						  GFP_KERNEL);
367 		if (!skb)
368 			goto out;
369 
370 		lp->rx_skb[i] = skb;
371 		/* returns physical address of skb->data */
372 		skb_dma_addr = dma_map_single(ndev->dev.parent, skb->data,
373 					      XTE_MAX_JUMBO_FRAME_SIZE,
374 					      DMA_FROM_DEVICE);
375 		if (dma_mapping_error(ndev->dev.parent, skb_dma_addr))
376 			goto out;
377 		lp->rx_bd_v[i].phys = cpu_to_be32(skb_dma_addr);
378 		lp->rx_bd_v[i].len = cpu_to_be32(XTE_MAX_JUMBO_FRAME_SIZE);
379 		lp->rx_bd_v[i].app0 = cpu_to_be32(STS_CTRL_APP0_IRQONEND);
380 	}
381 
382 	/* Configure DMA channel (irq setup) */
383 	lp->dma_out(lp, TX_CHNL_CTRL,
384 		    lp->coalesce_delay_tx << 24 | lp->coalesce_count_tx << 16 |
385 		    0x00000400 | // Use 1 Bit Wide Counters. Currently Not Used!
386 		    CHNL_CTRL_IRQ_EN | CHNL_CTRL_IRQ_ERR_EN |
387 		    CHNL_CTRL_IRQ_DLY_EN | CHNL_CTRL_IRQ_COAL_EN);
388 	lp->dma_out(lp, RX_CHNL_CTRL,
389 		    lp->coalesce_delay_rx << 24 | lp->coalesce_count_rx << 16 |
390 		    CHNL_CTRL_IRQ_IOE |
391 		    CHNL_CTRL_IRQ_EN | CHNL_CTRL_IRQ_ERR_EN |
392 		    CHNL_CTRL_IRQ_DLY_EN | CHNL_CTRL_IRQ_COAL_EN);
393 
394 	/* Init descriptor indexes */
395 	lp->tx_bd_ci = 0;
396 	lp->tx_bd_tail = 0;
397 	lp->rx_bd_ci = 0;
398 	lp->rx_bd_tail = lp->rx_bd_num - 1;
399 
400 	/* Enable RX DMA transfers */
401 	wmb();
402 	lp->dma_out(lp, RX_CURDESC_PTR,  lp->rx_bd_p);
403 	lp->dma_out(lp, RX_TAILDESC_PTR,
404 		       lp->rx_bd_p + (sizeof(*lp->rx_bd_v) * lp->rx_bd_tail));
405 
406 	/* Prepare for TX DMA transfer */
407 	lp->dma_out(lp, TX_CURDESC_PTR, lp->tx_bd_p);
408 
409 	return 0;
410 
411 out:
412 	temac_dma_bd_release(ndev);
413 	return -ENOMEM;
414 }
415 
416 /* ---------------------------------------------------------------------
417  * net_device_ops
418  */
419 
420 static void temac_do_set_mac_address(struct net_device *ndev)
421 {
422 	struct temac_local *lp = netdev_priv(ndev);
423 	unsigned long flags;
424 
425 	/* set up unicast MAC address filter set its mac address */
426 	spin_lock_irqsave(lp->indirect_lock, flags);
427 	temac_indirect_out32_locked(lp, XTE_UAW0_OFFSET,
428 				    (ndev->dev_addr[0]) |
429 				    (ndev->dev_addr[1] << 8) |
430 				    (ndev->dev_addr[2] << 16) |
431 				    (ndev->dev_addr[3] << 24));
432 	/* There are reserved bits in EUAW1
433 	 * so don't affect them Set MAC bits [47:32] in EUAW1 */
434 	temac_indirect_out32_locked(lp, XTE_UAW1_OFFSET,
435 				    (ndev->dev_addr[4] & 0x000000ff) |
436 				    (ndev->dev_addr[5] << 8));
437 	spin_unlock_irqrestore(lp->indirect_lock, flags);
438 }
439 
440 static int temac_init_mac_address(struct net_device *ndev, const void *address)
441 {
442 	eth_hw_addr_set(ndev, address);
443 	if (!is_valid_ether_addr(ndev->dev_addr))
444 		eth_hw_addr_random(ndev);
445 	temac_do_set_mac_address(ndev);
446 	return 0;
447 }
448 
449 static int temac_set_mac_address(struct net_device *ndev, void *p)
450 {
451 	struct sockaddr *addr = p;
452 
453 	if (!is_valid_ether_addr(addr->sa_data))
454 		return -EADDRNOTAVAIL;
455 	eth_hw_addr_set(ndev, addr->sa_data);
456 	temac_do_set_mac_address(ndev);
457 	return 0;
458 }
459 
460 static void temac_set_multicast_list(struct net_device *ndev)
461 {
462 	struct temac_local *lp = netdev_priv(ndev);
463 	u32 multi_addr_msw, multi_addr_lsw;
464 	int i = 0;
465 	unsigned long flags;
466 	bool promisc_mode_disabled = false;
467 
468 	if (ndev->flags & (IFF_PROMISC | IFF_ALLMULTI) ||
469 	    (netdev_mc_count(ndev) > MULTICAST_CAM_TABLE_NUM)) {
470 		temac_indirect_out32(lp, XTE_AFM_OFFSET, XTE_AFM_EPPRM_MASK);
471 		dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
472 		return;
473 	}
474 
475 	spin_lock_irqsave(lp->indirect_lock, flags);
476 
477 	if (!netdev_mc_empty(ndev)) {
478 		struct netdev_hw_addr *ha;
479 
480 		netdev_for_each_mc_addr(ha, ndev) {
481 			if (WARN_ON(i >= MULTICAST_CAM_TABLE_NUM))
482 				break;
483 			multi_addr_msw = ((ha->addr[3] << 24) |
484 					  (ha->addr[2] << 16) |
485 					  (ha->addr[1] << 8) |
486 					  (ha->addr[0]));
487 			temac_indirect_out32_locked(lp, XTE_MAW0_OFFSET,
488 						    multi_addr_msw);
489 			multi_addr_lsw = ((ha->addr[5] << 8) |
490 					  (ha->addr[4]) | (i << 16));
491 			temac_indirect_out32_locked(lp, XTE_MAW1_OFFSET,
492 						    multi_addr_lsw);
493 			i++;
494 		}
495 	}
496 
497 	/* Clear all or remaining/unused address table entries */
498 	while (i < MULTICAST_CAM_TABLE_NUM) {
499 		temac_indirect_out32_locked(lp, XTE_MAW0_OFFSET, 0);
500 		temac_indirect_out32_locked(lp, XTE_MAW1_OFFSET, i << 16);
501 		i++;
502 	}
503 
504 	/* Enable address filter block if currently disabled */
505 	if (temac_indirect_in32_locked(lp, XTE_AFM_OFFSET)
506 	    & XTE_AFM_EPPRM_MASK) {
507 		temac_indirect_out32_locked(lp, XTE_AFM_OFFSET, 0);
508 		promisc_mode_disabled = true;
509 	}
510 
511 	spin_unlock_irqrestore(lp->indirect_lock, flags);
512 
513 	if (promisc_mode_disabled)
514 		dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
515 }
516 
517 static struct temac_option {
518 	int flg;
519 	u32 opt;
520 	u32 reg;
521 	u32 m_or;
522 	u32 m_and;
523 } temac_options[] = {
524 	/* Turn on jumbo packet support for both Rx and Tx */
525 	{
526 		.opt = XTE_OPTION_JUMBO,
527 		.reg = XTE_TXC_OFFSET,
528 		.m_or = XTE_TXC_TXJMBO_MASK,
529 	},
530 	{
531 		.opt = XTE_OPTION_JUMBO,
532 		.reg = XTE_RXC1_OFFSET,
533 		.m_or =XTE_RXC1_RXJMBO_MASK,
534 	},
535 	/* Turn on VLAN packet support for both Rx and Tx */
536 	{
537 		.opt = XTE_OPTION_VLAN,
538 		.reg = XTE_TXC_OFFSET,
539 		.m_or =XTE_TXC_TXVLAN_MASK,
540 	},
541 	{
542 		.opt = XTE_OPTION_VLAN,
543 		.reg = XTE_RXC1_OFFSET,
544 		.m_or =XTE_RXC1_RXVLAN_MASK,
545 	},
546 	/* Turn on FCS stripping on receive packets */
547 	{
548 		.opt = XTE_OPTION_FCS_STRIP,
549 		.reg = XTE_RXC1_OFFSET,
550 		.m_or =XTE_RXC1_RXFCS_MASK,
551 	},
552 	/* Turn on FCS insertion on transmit packets */
553 	{
554 		.opt = XTE_OPTION_FCS_INSERT,
555 		.reg = XTE_TXC_OFFSET,
556 		.m_or =XTE_TXC_TXFCS_MASK,
557 	},
558 	/* Turn on length/type field checking on receive packets */
559 	{
560 		.opt = XTE_OPTION_LENTYPE_ERR,
561 		.reg = XTE_RXC1_OFFSET,
562 		.m_or =XTE_RXC1_RXLT_MASK,
563 	},
564 	/* Turn on flow control */
565 	{
566 		.opt = XTE_OPTION_FLOW_CONTROL,
567 		.reg = XTE_FCC_OFFSET,
568 		.m_or =XTE_FCC_RXFLO_MASK,
569 	},
570 	/* Turn on flow control */
571 	{
572 		.opt = XTE_OPTION_FLOW_CONTROL,
573 		.reg = XTE_FCC_OFFSET,
574 		.m_or =XTE_FCC_TXFLO_MASK,
575 	},
576 	/* Turn on promiscuous frame filtering (all frames are received ) */
577 	{
578 		.opt = XTE_OPTION_PROMISC,
579 		.reg = XTE_AFM_OFFSET,
580 		.m_or =XTE_AFM_EPPRM_MASK,
581 	},
582 	/* Enable transmitter if not already enabled */
583 	{
584 		.opt = XTE_OPTION_TXEN,
585 		.reg = XTE_TXC_OFFSET,
586 		.m_or =XTE_TXC_TXEN_MASK,
587 	},
588 	/* Enable receiver? */
589 	{
590 		.opt = XTE_OPTION_RXEN,
591 		.reg = XTE_RXC1_OFFSET,
592 		.m_or =XTE_RXC1_RXEN_MASK,
593 	},
594 	{}
595 };
596 
597 /*
598  * temac_setoptions
599  */
600 static u32 temac_setoptions(struct net_device *ndev, u32 options)
601 {
602 	struct temac_local *lp = netdev_priv(ndev);
603 	struct temac_option *tp = &temac_options[0];
604 	int reg;
605 	unsigned long flags;
606 
607 	spin_lock_irqsave(lp->indirect_lock, flags);
608 	while (tp->opt) {
609 		reg = temac_indirect_in32_locked(lp, tp->reg) & ~tp->m_or;
610 		if (options & tp->opt) {
611 			reg |= tp->m_or;
612 			temac_indirect_out32_locked(lp, tp->reg, reg);
613 		}
614 		tp++;
615 	}
616 	spin_unlock_irqrestore(lp->indirect_lock, flags);
617 	lp->options |= options;
618 
619 	return 0;
620 }
621 
622 /* Initialize temac */
623 static void temac_device_reset(struct net_device *ndev)
624 {
625 	struct temac_local *lp = netdev_priv(ndev);
626 	u32 timeout;
627 	u32 val;
628 	unsigned long flags;
629 
630 	/* Perform a software reset */
631 
632 	/* 0x300 host enable bit ? */
633 	/* reset PHY through control register ?:1 */
634 
635 	dev_dbg(&ndev->dev, "%s()\n", __func__);
636 
637 	/* Reset the receiver and wait for it to finish reset */
638 	temac_indirect_out32(lp, XTE_RXC1_OFFSET, XTE_RXC1_RXRST_MASK);
639 	timeout = 1000;
640 	while (temac_indirect_in32(lp, XTE_RXC1_OFFSET) & XTE_RXC1_RXRST_MASK) {
641 		udelay(1);
642 		if (--timeout == 0) {
643 			dev_err(&ndev->dev,
644 				"temac_device_reset RX reset timeout!!\n");
645 			break;
646 		}
647 	}
648 
649 	/* Reset the transmitter and wait for it to finish reset */
650 	temac_indirect_out32(lp, XTE_TXC_OFFSET, XTE_TXC_TXRST_MASK);
651 	timeout = 1000;
652 	while (temac_indirect_in32(lp, XTE_TXC_OFFSET) & XTE_TXC_TXRST_MASK) {
653 		udelay(1);
654 		if (--timeout == 0) {
655 			dev_err(&ndev->dev,
656 				"temac_device_reset TX reset timeout!!\n");
657 			break;
658 		}
659 	}
660 
661 	/* Disable the receiver */
662 	spin_lock_irqsave(lp->indirect_lock, flags);
663 	val = temac_indirect_in32_locked(lp, XTE_RXC1_OFFSET);
664 	temac_indirect_out32_locked(lp, XTE_RXC1_OFFSET,
665 				    val & ~XTE_RXC1_RXEN_MASK);
666 	spin_unlock_irqrestore(lp->indirect_lock, flags);
667 
668 	/* Reset Local Link (DMA) */
669 	lp->dma_out(lp, DMA_CONTROL_REG, DMA_CONTROL_RST);
670 	timeout = 1000;
671 	while (lp->dma_in(lp, DMA_CONTROL_REG) & DMA_CONTROL_RST) {
672 		udelay(1);
673 		if (--timeout == 0) {
674 			dev_err(&ndev->dev,
675 				"temac_device_reset DMA reset timeout!!\n");
676 			break;
677 		}
678 	}
679 	lp->dma_out(lp, DMA_CONTROL_REG, DMA_TAIL_ENABLE);
680 
681 	if (temac_dma_bd_init(ndev)) {
682 		dev_err(&ndev->dev,
683 				"temac_device_reset descriptor allocation failed\n");
684 	}
685 
686 	spin_lock_irqsave(lp->indirect_lock, flags);
687 	temac_indirect_out32_locked(lp, XTE_RXC0_OFFSET, 0);
688 	temac_indirect_out32_locked(lp, XTE_RXC1_OFFSET, 0);
689 	temac_indirect_out32_locked(lp, XTE_TXC_OFFSET, 0);
690 	temac_indirect_out32_locked(lp, XTE_FCC_OFFSET, XTE_FCC_RXFLO_MASK);
691 	spin_unlock_irqrestore(lp->indirect_lock, flags);
692 
693 	/* Sync default options with HW
694 	 * but leave receiver and transmitter disabled.  */
695 	temac_setoptions(ndev,
696 			 lp->options & ~(XTE_OPTION_TXEN | XTE_OPTION_RXEN));
697 
698 	temac_do_set_mac_address(ndev);
699 
700 	/* Set address filter table */
701 	temac_set_multicast_list(ndev);
702 	if (temac_setoptions(ndev, lp->options))
703 		dev_err(&ndev->dev, "Error setting TEMAC options\n");
704 
705 	/* Init Driver variable */
706 	netif_trans_update(ndev); /* prevent tx timeout */
707 }
708 
709 static void temac_adjust_link(struct net_device *ndev)
710 {
711 	struct temac_local *lp = netdev_priv(ndev);
712 	struct phy_device *phy = ndev->phydev;
713 	u32 mii_speed;
714 	int link_state;
715 	unsigned long flags;
716 
717 	/* hash together the state values to decide if something has changed */
718 	link_state = phy->speed | (phy->duplex << 1) | phy->link;
719 
720 	if (lp->last_link != link_state) {
721 		spin_lock_irqsave(lp->indirect_lock, flags);
722 		mii_speed = temac_indirect_in32_locked(lp, XTE_EMCFG_OFFSET);
723 		mii_speed &= ~XTE_EMCFG_LINKSPD_MASK;
724 
725 		switch (phy->speed) {
726 		case SPEED_1000: mii_speed |= XTE_EMCFG_LINKSPD_1000; break;
727 		case SPEED_100: mii_speed |= XTE_EMCFG_LINKSPD_100; break;
728 		case SPEED_10: mii_speed |= XTE_EMCFG_LINKSPD_10; break;
729 		}
730 
731 		/* Write new speed setting out to TEMAC */
732 		temac_indirect_out32_locked(lp, XTE_EMCFG_OFFSET, mii_speed);
733 		spin_unlock_irqrestore(lp->indirect_lock, flags);
734 
735 		lp->last_link = link_state;
736 		phy_print_status(phy);
737 	}
738 }
739 
740 #ifdef CONFIG_64BIT
741 
742 static void ptr_to_txbd(void *p, struct cdmac_bd *bd)
743 {
744 	bd->app3 = (u32)(((u64)p) >> 32);
745 	bd->app4 = (u32)((u64)p & 0xFFFFFFFF);
746 }
747 
748 static void *ptr_from_txbd(struct cdmac_bd *bd)
749 {
750 	return (void *)(((u64)(bd->app3) << 32) | bd->app4);
751 }
752 
753 #else
754 
755 static void ptr_to_txbd(void *p, struct cdmac_bd *bd)
756 {
757 	bd->app4 = (u32)p;
758 }
759 
760 static void *ptr_from_txbd(struct cdmac_bd *bd)
761 {
762 	return (void *)(bd->app4);
763 }
764 
765 #endif
766 
767 static void temac_start_xmit_done(struct net_device *ndev)
768 {
769 	struct temac_local *lp = netdev_priv(ndev);
770 	struct cdmac_bd *cur_p;
771 	unsigned int stat = 0;
772 	struct sk_buff *skb;
773 
774 	cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
775 	stat = be32_to_cpu(cur_p->app0);
776 
777 	while (stat & STS_CTRL_APP0_CMPLT) {
778 		/* Make sure that the other fields are read after bd is
779 		 * released by dma
780 		 */
781 		rmb();
782 		dma_unmap_single(ndev->dev.parent, be32_to_cpu(cur_p->phys),
783 				 be32_to_cpu(cur_p->len), DMA_TO_DEVICE);
784 		skb = (struct sk_buff *)ptr_from_txbd(cur_p);
785 		if (skb)
786 			dev_consume_skb_irq(skb);
787 		cur_p->app1 = 0;
788 		cur_p->app2 = 0;
789 		cur_p->app3 = 0;
790 		cur_p->app4 = 0;
791 
792 		ndev->stats.tx_packets++;
793 		ndev->stats.tx_bytes += be32_to_cpu(cur_p->len);
794 
795 		/* app0 must be visible last, as it is used to flag
796 		 * availability of the bd
797 		 */
798 		smp_mb();
799 		cur_p->app0 = 0;
800 
801 		lp->tx_bd_ci++;
802 		if (lp->tx_bd_ci >= lp->tx_bd_num)
803 			lp->tx_bd_ci = 0;
804 
805 		cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
806 		stat = be32_to_cpu(cur_p->app0);
807 	}
808 
809 	/* Matches barrier in temac_start_xmit */
810 	smp_mb();
811 
812 	netif_wake_queue(ndev);
813 }
814 
815 static inline int temac_check_tx_bd_space(struct temac_local *lp, int num_frag)
816 {
817 	struct cdmac_bd *cur_p;
818 	int tail;
819 
820 	tail = lp->tx_bd_tail;
821 	cur_p = &lp->tx_bd_v[tail];
822 
823 	do {
824 		if (cur_p->app0)
825 			return NETDEV_TX_BUSY;
826 
827 		/* Make sure to read next bd app0 after this one */
828 		rmb();
829 
830 		tail++;
831 		if (tail >= lp->tx_bd_num)
832 			tail = 0;
833 
834 		cur_p = &lp->tx_bd_v[tail];
835 		num_frag--;
836 	} while (num_frag >= 0);
837 
838 	return 0;
839 }
840 
841 static netdev_tx_t
842 temac_start_xmit(struct sk_buff *skb, struct net_device *ndev)
843 {
844 	struct temac_local *lp = netdev_priv(ndev);
845 	struct cdmac_bd *cur_p;
846 	dma_addr_t tail_p, skb_dma_addr;
847 	int ii;
848 	unsigned long num_frag;
849 	skb_frag_t *frag;
850 
851 	num_frag = skb_shinfo(skb)->nr_frags;
852 	frag = &skb_shinfo(skb)->frags[0];
853 	cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
854 
855 	if (temac_check_tx_bd_space(lp, num_frag + 1)) {
856 		if (netif_queue_stopped(ndev))
857 			return NETDEV_TX_BUSY;
858 
859 		netif_stop_queue(ndev);
860 
861 		/* Matches barrier in temac_start_xmit_done */
862 		smp_mb();
863 
864 		/* Space might have just been freed - check again */
865 		if (temac_check_tx_bd_space(lp, num_frag + 1))
866 			return NETDEV_TX_BUSY;
867 
868 		netif_wake_queue(ndev);
869 	}
870 
871 	cur_p->app0 = 0;
872 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
873 		unsigned int csum_start_off = skb_checksum_start_offset(skb);
874 		unsigned int csum_index_off = csum_start_off + skb->csum_offset;
875 
876 		cur_p->app0 |= cpu_to_be32(0x000001); /* TX Checksum Enabled */
877 		cur_p->app1 = cpu_to_be32((csum_start_off << 16)
878 					  | csum_index_off);
879 		cur_p->app2 = 0;  /* initial checksum seed */
880 	}
881 
882 	cur_p->app0 |= cpu_to_be32(STS_CTRL_APP0_SOP);
883 	skb_dma_addr = dma_map_single(ndev->dev.parent, skb->data,
884 				      skb_headlen(skb), DMA_TO_DEVICE);
885 	cur_p->len = cpu_to_be32(skb_headlen(skb));
886 	if (WARN_ON_ONCE(dma_mapping_error(ndev->dev.parent, skb_dma_addr))) {
887 		dev_kfree_skb_any(skb);
888 		ndev->stats.tx_dropped++;
889 		return NETDEV_TX_OK;
890 	}
891 	cur_p->phys = cpu_to_be32(skb_dma_addr);
892 
893 	for (ii = 0; ii < num_frag; ii++) {
894 		if (++lp->tx_bd_tail >= lp->tx_bd_num)
895 			lp->tx_bd_tail = 0;
896 
897 		cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
898 		skb_dma_addr = dma_map_single(ndev->dev.parent,
899 					      skb_frag_address(frag),
900 					      skb_frag_size(frag),
901 					      DMA_TO_DEVICE);
902 		if (dma_mapping_error(ndev->dev.parent, skb_dma_addr)) {
903 			if (--lp->tx_bd_tail < 0)
904 				lp->tx_bd_tail = lp->tx_bd_num - 1;
905 			cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
906 			while (--ii >= 0) {
907 				--frag;
908 				dma_unmap_single(ndev->dev.parent,
909 						 be32_to_cpu(cur_p->phys),
910 						 skb_frag_size(frag),
911 						 DMA_TO_DEVICE);
912 				if (--lp->tx_bd_tail < 0)
913 					lp->tx_bd_tail = lp->tx_bd_num - 1;
914 				cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
915 			}
916 			dma_unmap_single(ndev->dev.parent,
917 					 be32_to_cpu(cur_p->phys),
918 					 skb_headlen(skb), DMA_TO_DEVICE);
919 			dev_kfree_skb_any(skb);
920 			ndev->stats.tx_dropped++;
921 			return NETDEV_TX_OK;
922 		}
923 		cur_p->phys = cpu_to_be32(skb_dma_addr);
924 		cur_p->len = cpu_to_be32(skb_frag_size(frag));
925 		cur_p->app0 = 0;
926 		frag++;
927 	}
928 	cur_p->app0 |= cpu_to_be32(STS_CTRL_APP0_EOP);
929 
930 	/* Mark last fragment with skb address, so it can be consumed
931 	 * in temac_start_xmit_done()
932 	 */
933 	ptr_to_txbd((void *)skb, cur_p);
934 
935 	tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail;
936 	lp->tx_bd_tail++;
937 	if (lp->tx_bd_tail >= lp->tx_bd_num)
938 		lp->tx_bd_tail = 0;
939 
940 	skb_tx_timestamp(skb);
941 
942 	/* Kick off the transfer */
943 	wmb();
944 	lp->dma_out(lp, TX_TAILDESC_PTR, tail_p); /* DMA start */
945 
946 	if (temac_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1))
947 		netif_stop_queue(ndev);
948 
949 	return NETDEV_TX_OK;
950 }
951 
952 static int ll_temac_recv_buffers_available(struct temac_local *lp)
953 {
954 	int available;
955 
956 	if (!lp->rx_skb[lp->rx_bd_ci])
957 		return 0;
958 	available = 1 + lp->rx_bd_tail - lp->rx_bd_ci;
959 	if (available <= 0)
960 		available += lp->rx_bd_num;
961 	return available;
962 }
963 
964 static void ll_temac_recv(struct net_device *ndev)
965 {
966 	struct temac_local *lp = netdev_priv(ndev);
967 	unsigned long flags;
968 	int rx_bd;
969 	bool update_tail = false;
970 
971 	spin_lock_irqsave(&lp->rx_lock, flags);
972 
973 	/* Process all received buffers, passing them on network
974 	 * stack.  After this, the buffer descriptors will be in an
975 	 * un-allocated stage, where no skb is allocated for it, and
976 	 * they are therefore not available for TEMAC/DMA.
977 	 */
978 	do {
979 		struct cdmac_bd *bd = &lp->rx_bd_v[lp->rx_bd_ci];
980 		struct sk_buff *skb = lp->rx_skb[lp->rx_bd_ci];
981 		unsigned int bdstat = be32_to_cpu(bd->app0);
982 		int length;
983 
984 		/* While this should not normally happen, we can end
985 		 * here when GFP_ATOMIC allocations fail, and we
986 		 * therefore have un-allocated buffers.
987 		 */
988 		if (!skb)
989 			break;
990 
991 		/* Loop over all completed buffer descriptors */
992 		if (!(bdstat & STS_CTRL_APP0_CMPLT))
993 			break;
994 
995 		dma_unmap_single(ndev->dev.parent, be32_to_cpu(bd->phys),
996 				 XTE_MAX_JUMBO_FRAME_SIZE, DMA_FROM_DEVICE);
997 		/* The buffer is not valid for DMA anymore */
998 		bd->phys = 0;
999 		bd->len = 0;
1000 
1001 		length = be32_to_cpu(bd->app4) & 0x3FFF;
1002 		skb_put(skb, length);
1003 		skb->protocol = eth_type_trans(skb, ndev);
1004 		skb_checksum_none_assert(skb);
1005 
1006 		/* if we're doing rx csum offload, set it up */
1007 		if (((lp->temac_features & TEMAC_FEATURE_RX_CSUM) != 0) &&
1008 		    (skb->protocol == htons(ETH_P_IP)) &&
1009 		    (skb->len > 64)) {
1010 
1011 			/* Convert from device endianness (be32) to cpu
1012 			 * endianness, and if necessary swap the bytes
1013 			 * (back) for proper IP checksum byte order
1014 			 * (be16).
1015 			 */
1016 			skb->csum = htons(be32_to_cpu(bd->app3) & 0xFFFF);
1017 			skb->ip_summed = CHECKSUM_COMPLETE;
1018 		}
1019 
1020 		if (!skb_defer_rx_timestamp(skb))
1021 			netif_rx(skb);
1022 		/* The skb buffer is now owned by network stack above */
1023 		lp->rx_skb[lp->rx_bd_ci] = NULL;
1024 
1025 		ndev->stats.rx_packets++;
1026 		ndev->stats.rx_bytes += length;
1027 
1028 		rx_bd = lp->rx_bd_ci;
1029 		if (++lp->rx_bd_ci >= lp->rx_bd_num)
1030 			lp->rx_bd_ci = 0;
1031 	} while (rx_bd != lp->rx_bd_tail);
1032 
1033 	/* DMA operations will halt when the last buffer descriptor is
1034 	 * processed (ie. the one pointed to by RX_TAILDESC_PTR).
1035 	 * When that happens, no more interrupt events will be
1036 	 * generated.  No IRQ_COAL or IRQ_DLY, and not even an
1037 	 * IRQ_ERR.  To avoid stalling, we schedule a delayed work
1038 	 * when there is a potential risk of that happening.  The work
1039 	 * will call this function, and thus re-schedule itself until
1040 	 * enough buffers are available again.
1041 	 */
1042 	if (ll_temac_recv_buffers_available(lp) < lp->coalesce_count_rx)
1043 		schedule_delayed_work(&lp->restart_work, HZ / 1000);
1044 
1045 	/* Allocate new buffers for those buffer descriptors that were
1046 	 * passed to network stack.  Note that GFP_ATOMIC allocations
1047 	 * can fail (e.g. when a larger burst of GFP_ATOMIC
1048 	 * allocations occurs), so while we try to allocate all
1049 	 * buffers in the same interrupt where they were processed, we
1050 	 * continue with what we could get in case of allocation
1051 	 * failure.  Allocation of remaining buffers will be retried
1052 	 * in following calls.
1053 	 */
1054 	while (1) {
1055 		struct sk_buff *skb;
1056 		struct cdmac_bd *bd;
1057 		dma_addr_t skb_dma_addr;
1058 
1059 		rx_bd = lp->rx_bd_tail + 1;
1060 		if (rx_bd >= lp->rx_bd_num)
1061 			rx_bd = 0;
1062 		bd = &lp->rx_bd_v[rx_bd];
1063 
1064 		if (bd->phys)
1065 			break;	/* All skb's allocated */
1066 
1067 		skb = netdev_alloc_skb_ip_align(ndev, XTE_MAX_JUMBO_FRAME_SIZE);
1068 		if (!skb) {
1069 			dev_warn(&ndev->dev, "skb alloc failed\n");
1070 			break;
1071 		}
1072 
1073 		skb_dma_addr = dma_map_single(ndev->dev.parent, skb->data,
1074 					      XTE_MAX_JUMBO_FRAME_SIZE,
1075 					      DMA_FROM_DEVICE);
1076 		if (WARN_ON_ONCE(dma_mapping_error(ndev->dev.parent,
1077 						   skb_dma_addr))) {
1078 			dev_kfree_skb_any(skb);
1079 			break;
1080 		}
1081 
1082 		bd->phys = cpu_to_be32(skb_dma_addr);
1083 		bd->len = cpu_to_be32(XTE_MAX_JUMBO_FRAME_SIZE);
1084 		bd->app0 = cpu_to_be32(STS_CTRL_APP0_IRQONEND);
1085 		lp->rx_skb[rx_bd] = skb;
1086 
1087 		lp->rx_bd_tail = rx_bd;
1088 		update_tail = true;
1089 	}
1090 
1091 	/* Move tail pointer when buffers have been allocated */
1092 	if (update_tail) {
1093 		lp->dma_out(lp, RX_TAILDESC_PTR,
1094 			lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_tail);
1095 	}
1096 
1097 	spin_unlock_irqrestore(&lp->rx_lock, flags);
1098 }
1099 
1100 /* Function scheduled to ensure a restart in case of DMA halt
1101  * condition caused by running out of buffer descriptors.
1102  */
1103 static void ll_temac_restart_work_func(struct work_struct *work)
1104 {
1105 	struct temac_local *lp = container_of(work, struct temac_local,
1106 					      restart_work.work);
1107 	struct net_device *ndev = lp->ndev;
1108 
1109 	ll_temac_recv(ndev);
1110 }
1111 
1112 static irqreturn_t ll_temac_tx_irq(int irq, void *_ndev)
1113 {
1114 	struct net_device *ndev = _ndev;
1115 	struct temac_local *lp = netdev_priv(ndev);
1116 	unsigned int status;
1117 
1118 	status = lp->dma_in(lp, TX_IRQ_REG);
1119 	lp->dma_out(lp, TX_IRQ_REG, status);
1120 
1121 	if (status & (IRQ_COAL | IRQ_DLY))
1122 		temac_start_xmit_done(lp->ndev);
1123 	if (status & (IRQ_ERR | IRQ_DMAERR))
1124 		dev_err_ratelimited(&ndev->dev,
1125 				    "TX error 0x%x TX_CHNL_STS=0x%08x\n",
1126 				    status, lp->dma_in(lp, TX_CHNL_STS));
1127 
1128 	return IRQ_HANDLED;
1129 }
1130 
1131 static irqreturn_t ll_temac_rx_irq(int irq, void *_ndev)
1132 {
1133 	struct net_device *ndev = _ndev;
1134 	struct temac_local *lp = netdev_priv(ndev);
1135 	unsigned int status;
1136 
1137 	/* Read and clear the status registers */
1138 	status = lp->dma_in(lp, RX_IRQ_REG);
1139 	lp->dma_out(lp, RX_IRQ_REG, status);
1140 
1141 	if (status & (IRQ_COAL | IRQ_DLY))
1142 		ll_temac_recv(lp->ndev);
1143 	if (status & (IRQ_ERR | IRQ_DMAERR))
1144 		dev_err_ratelimited(&ndev->dev,
1145 				    "RX error 0x%x RX_CHNL_STS=0x%08x\n",
1146 				    status, lp->dma_in(lp, RX_CHNL_STS));
1147 
1148 	return IRQ_HANDLED;
1149 }
1150 
1151 static int temac_open(struct net_device *ndev)
1152 {
1153 	struct temac_local *lp = netdev_priv(ndev);
1154 	struct phy_device *phydev = NULL;
1155 	int rc;
1156 
1157 	dev_dbg(&ndev->dev, "temac_open()\n");
1158 
1159 	if (lp->phy_node) {
1160 		phydev = of_phy_connect(lp->ndev, lp->phy_node,
1161 					temac_adjust_link, 0, 0);
1162 		if (!phydev) {
1163 			dev_err(lp->dev, "of_phy_connect() failed\n");
1164 			return -ENODEV;
1165 		}
1166 		phy_start(phydev);
1167 	} else if (strlen(lp->phy_name) > 0) {
1168 		phydev = phy_connect(lp->ndev, lp->phy_name, temac_adjust_link,
1169 				     lp->phy_interface);
1170 		if (IS_ERR(phydev)) {
1171 			dev_err(lp->dev, "phy_connect() failed\n");
1172 			return PTR_ERR(phydev);
1173 		}
1174 		phy_start(phydev);
1175 	}
1176 
1177 	temac_device_reset(ndev);
1178 
1179 	rc = request_irq(lp->tx_irq, ll_temac_tx_irq, 0, ndev->name, ndev);
1180 	if (rc)
1181 		goto err_tx_irq;
1182 	rc = request_irq(lp->rx_irq, ll_temac_rx_irq, 0, ndev->name, ndev);
1183 	if (rc)
1184 		goto err_rx_irq;
1185 
1186 	return 0;
1187 
1188  err_rx_irq:
1189 	free_irq(lp->tx_irq, ndev);
1190  err_tx_irq:
1191 	if (phydev)
1192 		phy_disconnect(phydev);
1193 	dev_err(lp->dev, "request_irq() failed\n");
1194 	return rc;
1195 }
1196 
1197 static int temac_stop(struct net_device *ndev)
1198 {
1199 	struct temac_local *lp = netdev_priv(ndev);
1200 	struct phy_device *phydev = ndev->phydev;
1201 
1202 	dev_dbg(&ndev->dev, "temac_close()\n");
1203 
1204 	cancel_delayed_work_sync(&lp->restart_work);
1205 
1206 	free_irq(lp->tx_irq, ndev);
1207 	free_irq(lp->rx_irq, ndev);
1208 
1209 	if (phydev)
1210 		phy_disconnect(phydev);
1211 
1212 	temac_dma_bd_release(ndev);
1213 
1214 	return 0;
1215 }
1216 
1217 #ifdef CONFIG_NET_POLL_CONTROLLER
1218 static void
1219 temac_poll_controller(struct net_device *ndev)
1220 {
1221 	struct temac_local *lp = netdev_priv(ndev);
1222 
1223 	disable_irq(lp->tx_irq);
1224 	disable_irq(lp->rx_irq);
1225 
1226 	ll_temac_rx_irq(lp->tx_irq, ndev);
1227 	ll_temac_tx_irq(lp->rx_irq, ndev);
1228 
1229 	enable_irq(lp->tx_irq);
1230 	enable_irq(lp->rx_irq);
1231 }
1232 #endif
1233 
1234 static const struct net_device_ops temac_netdev_ops = {
1235 	.ndo_open = temac_open,
1236 	.ndo_stop = temac_stop,
1237 	.ndo_start_xmit = temac_start_xmit,
1238 	.ndo_set_rx_mode = temac_set_multicast_list,
1239 	.ndo_set_mac_address = temac_set_mac_address,
1240 	.ndo_validate_addr = eth_validate_addr,
1241 	.ndo_eth_ioctl = phy_do_ioctl_running,
1242 #ifdef CONFIG_NET_POLL_CONTROLLER
1243 	.ndo_poll_controller = temac_poll_controller,
1244 #endif
1245 };
1246 
1247 /* ---------------------------------------------------------------------
1248  * SYSFS device attributes
1249  */
1250 static ssize_t temac_show_llink_regs(struct device *dev,
1251 				     struct device_attribute *attr, char *buf)
1252 {
1253 	struct net_device *ndev = dev_get_drvdata(dev);
1254 	struct temac_local *lp = netdev_priv(ndev);
1255 	int i, len = 0;
1256 
1257 	for (i = 0; i < 0x11; i++)
1258 		len += sprintf(buf + len, "%.8x%s", lp->dma_in(lp, i),
1259 			       (i % 8) == 7 ? "\n" : " ");
1260 	len += sprintf(buf + len, "\n");
1261 
1262 	return len;
1263 }
1264 
1265 static DEVICE_ATTR(llink_regs, 0440, temac_show_llink_regs, NULL);
1266 
1267 static struct attribute *temac_device_attrs[] = {
1268 	&dev_attr_llink_regs.attr,
1269 	NULL,
1270 };
1271 
1272 static const struct attribute_group temac_attr_group = {
1273 	.attrs = temac_device_attrs,
1274 };
1275 
1276 /* ---------------------------------------------------------------------
1277  * ethtool support
1278  */
1279 
1280 static void
1281 ll_temac_ethtools_get_ringparam(struct net_device *ndev,
1282 				struct ethtool_ringparam *ering,
1283 				struct kernel_ethtool_ringparam *kernel_ering,
1284 				struct netlink_ext_ack *extack)
1285 {
1286 	struct temac_local *lp = netdev_priv(ndev);
1287 
1288 	ering->rx_max_pending = RX_BD_NUM_MAX;
1289 	ering->rx_mini_max_pending = 0;
1290 	ering->rx_jumbo_max_pending = 0;
1291 	ering->tx_max_pending = TX_BD_NUM_MAX;
1292 	ering->rx_pending = lp->rx_bd_num;
1293 	ering->rx_mini_pending = 0;
1294 	ering->rx_jumbo_pending = 0;
1295 	ering->tx_pending = lp->tx_bd_num;
1296 }
1297 
1298 static int
1299 ll_temac_ethtools_set_ringparam(struct net_device *ndev,
1300 				struct ethtool_ringparam *ering,
1301 				struct kernel_ethtool_ringparam *kernel_ering,
1302 				struct netlink_ext_ack *extack)
1303 {
1304 	struct temac_local *lp = netdev_priv(ndev);
1305 
1306 	if (ering->rx_pending > RX_BD_NUM_MAX ||
1307 	    ering->rx_mini_pending ||
1308 	    ering->rx_jumbo_pending ||
1309 	    ering->rx_pending > TX_BD_NUM_MAX)
1310 		return -EINVAL;
1311 
1312 	if (netif_running(ndev))
1313 		return -EBUSY;
1314 
1315 	lp->rx_bd_num = ering->rx_pending;
1316 	lp->tx_bd_num = ering->tx_pending;
1317 	return 0;
1318 }
1319 
1320 static int
1321 ll_temac_ethtools_get_coalesce(struct net_device *ndev,
1322 			       struct ethtool_coalesce *ec,
1323 			       struct kernel_ethtool_coalesce *kernel_coal,
1324 			       struct netlink_ext_ack *extack)
1325 {
1326 	struct temac_local *lp = netdev_priv(ndev);
1327 
1328 	ec->rx_max_coalesced_frames = lp->coalesce_count_rx;
1329 	ec->tx_max_coalesced_frames = lp->coalesce_count_tx;
1330 	ec->rx_coalesce_usecs = (lp->coalesce_delay_rx * 512) / 100;
1331 	ec->tx_coalesce_usecs = (lp->coalesce_delay_tx * 512) / 100;
1332 	return 0;
1333 }
1334 
1335 static int
1336 ll_temac_ethtools_set_coalesce(struct net_device *ndev,
1337 			       struct ethtool_coalesce *ec,
1338 			       struct kernel_ethtool_coalesce *kernel_coal,
1339 			       struct netlink_ext_ack *extack)
1340 {
1341 	struct temac_local *lp = netdev_priv(ndev);
1342 
1343 	if (netif_running(ndev)) {
1344 		netdev_err(ndev,
1345 			   "Please stop netif before applying configuration\n");
1346 		return -EFAULT;
1347 	}
1348 
1349 	if (ec->rx_max_coalesced_frames)
1350 		lp->coalesce_count_rx = ec->rx_max_coalesced_frames;
1351 	if (ec->tx_max_coalesced_frames)
1352 		lp->coalesce_count_tx = ec->tx_max_coalesced_frames;
1353 	/* With typical LocalLink clock speed of 200 MHz and
1354 	 * C_PRESCALAR=1023, each delay count corresponds to 5.12 us.
1355 	 */
1356 	if (ec->rx_coalesce_usecs)
1357 		lp->coalesce_delay_rx =
1358 			min(255U, (ec->rx_coalesce_usecs * 100) / 512);
1359 	if (ec->tx_coalesce_usecs)
1360 		lp->coalesce_delay_tx =
1361 			min(255U, (ec->tx_coalesce_usecs * 100) / 512);
1362 
1363 	return 0;
1364 }
1365 
1366 static const struct ethtool_ops temac_ethtool_ops = {
1367 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
1368 				     ETHTOOL_COALESCE_MAX_FRAMES,
1369 	.nway_reset = phy_ethtool_nway_reset,
1370 	.get_link = ethtool_op_get_link,
1371 	.get_ts_info = ethtool_op_get_ts_info,
1372 	.get_link_ksettings = phy_ethtool_get_link_ksettings,
1373 	.set_link_ksettings = phy_ethtool_set_link_ksettings,
1374 	.get_ringparam	= ll_temac_ethtools_get_ringparam,
1375 	.set_ringparam	= ll_temac_ethtools_set_ringparam,
1376 	.get_coalesce	= ll_temac_ethtools_get_coalesce,
1377 	.set_coalesce	= ll_temac_ethtools_set_coalesce,
1378 };
1379 
1380 static int temac_probe(struct platform_device *pdev)
1381 {
1382 	struct ll_temac_platform_data *pdata = dev_get_platdata(&pdev->dev);
1383 	struct device_node *temac_np = dev_of_node(&pdev->dev), *dma_np;
1384 	struct temac_local *lp;
1385 	struct net_device *ndev;
1386 	u8 addr[ETH_ALEN];
1387 	__be32 *p;
1388 	bool little_endian;
1389 	int rc = 0;
1390 
1391 	/* Init network device structure */
1392 	ndev = devm_alloc_etherdev(&pdev->dev, sizeof(*lp));
1393 	if (!ndev)
1394 		return -ENOMEM;
1395 
1396 	platform_set_drvdata(pdev, ndev);
1397 	SET_NETDEV_DEV(ndev, &pdev->dev);
1398 	ndev->features = NETIF_F_SG;
1399 	ndev->netdev_ops = &temac_netdev_ops;
1400 	ndev->ethtool_ops = &temac_ethtool_ops;
1401 #if 0
1402 	ndev->features |= NETIF_F_IP_CSUM; /* Can checksum TCP/UDP over IPv4. */
1403 	ndev->features |= NETIF_F_HW_CSUM; /* Can checksum all the packets. */
1404 	ndev->features |= NETIF_F_IPV6_CSUM; /* Can checksum IPV6 TCP/UDP */
1405 	ndev->features |= NETIF_F_HIGHDMA; /* Can DMA to high memory. */
1406 	ndev->features |= NETIF_F_HW_VLAN_CTAG_TX; /* Transmit VLAN hw accel */
1407 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; /* Receive VLAN hw acceleration */
1408 	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; /* Receive VLAN filtering */
1409 	ndev->features |= NETIF_F_VLAN_CHALLENGED; /* cannot handle VLAN pkts */
1410 	ndev->features |= NETIF_F_GSO; /* Enable software GSO. */
1411 	ndev->features |= NETIF_F_MULTI_QUEUE; /* Has multiple TX/RX queues */
1412 	ndev->features |= NETIF_F_LRO; /* large receive offload */
1413 #endif
1414 
1415 	/* setup temac private info structure */
1416 	lp = netdev_priv(ndev);
1417 	lp->ndev = ndev;
1418 	lp->dev = &pdev->dev;
1419 	lp->options = XTE_OPTION_DEFAULTS;
1420 	lp->rx_bd_num = RX_BD_NUM_DEFAULT;
1421 	lp->tx_bd_num = TX_BD_NUM_DEFAULT;
1422 	spin_lock_init(&lp->rx_lock);
1423 	INIT_DELAYED_WORK(&lp->restart_work, ll_temac_restart_work_func);
1424 
1425 	/* Setup mutex for synchronization of indirect register access */
1426 	if (pdata) {
1427 		if (!pdata->indirect_lock) {
1428 			dev_err(&pdev->dev,
1429 				"indirect_lock missing in platform_data\n");
1430 			return -EINVAL;
1431 		}
1432 		lp->indirect_lock = pdata->indirect_lock;
1433 	} else {
1434 		lp->indirect_lock = devm_kmalloc(&pdev->dev,
1435 						 sizeof(*lp->indirect_lock),
1436 						 GFP_KERNEL);
1437 		if (!lp->indirect_lock)
1438 			return -ENOMEM;
1439 		spin_lock_init(lp->indirect_lock);
1440 	}
1441 
1442 	/* map device registers */
1443 	lp->regs = devm_platform_ioremap_resource_byname(pdev, 0);
1444 	if (IS_ERR(lp->regs)) {
1445 		dev_err(&pdev->dev, "could not map TEMAC registers\n");
1446 		return -ENOMEM;
1447 	}
1448 
1449 	/* Select register access functions with the specified
1450 	 * endianness mode.  Default for OF devices is big-endian.
1451 	 */
1452 	little_endian = false;
1453 	if (temac_np) {
1454 		if (of_get_property(temac_np, "little-endian", NULL))
1455 			little_endian = true;
1456 	} else if (pdata) {
1457 		little_endian = pdata->reg_little_endian;
1458 	}
1459 	if (little_endian) {
1460 		lp->temac_ior = _temac_ior_le;
1461 		lp->temac_iow = _temac_iow_le;
1462 	} else {
1463 		lp->temac_ior = _temac_ior_be;
1464 		lp->temac_iow = _temac_iow_be;
1465 	}
1466 
1467 	/* Setup checksum offload, but default to off if not specified */
1468 	lp->temac_features = 0;
1469 	if (temac_np) {
1470 		p = (__be32 *)of_get_property(temac_np, "xlnx,txcsum", NULL);
1471 		if (p && be32_to_cpu(*p))
1472 			lp->temac_features |= TEMAC_FEATURE_TX_CSUM;
1473 		p = (__be32 *)of_get_property(temac_np, "xlnx,rxcsum", NULL);
1474 		if (p && be32_to_cpu(*p))
1475 			lp->temac_features |= TEMAC_FEATURE_RX_CSUM;
1476 	} else if (pdata) {
1477 		if (pdata->txcsum)
1478 			lp->temac_features |= TEMAC_FEATURE_TX_CSUM;
1479 		if (pdata->rxcsum)
1480 			lp->temac_features |= TEMAC_FEATURE_RX_CSUM;
1481 	}
1482 	if (lp->temac_features & TEMAC_FEATURE_TX_CSUM)
1483 		/* Can checksum TCP/UDP over IPv4. */
1484 		ndev->features |= NETIF_F_IP_CSUM;
1485 
1486 	/* Defaults for IRQ delay/coalescing setup.  These are
1487 	 * configuration values, so does not belong in device-tree.
1488 	 */
1489 	lp->coalesce_delay_tx = 0x10;
1490 	lp->coalesce_count_tx = 0x22;
1491 	lp->coalesce_delay_rx = 0xff;
1492 	lp->coalesce_count_rx = 0x07;
1493 
1494 	/* Setup LocalLink DMA */
1495 	if (temac_np) {
1496 		/* Find the DMA node, map the DMA registers, and
1497 		 * decode the DMA IRQs.
1498 		 */
1499 		dma_np = of_parse_phandle(temac_np, "llink-connected", 0);
1500 		if (!dma_np) {
1501 			dev_err(&pdev->dev, "could not find DMA node\n");
1502 			return -ENODEV;
1503 		}
1504 
1505 		/* Setup the DMA register accesses, could be DCR or
1506 		 * memory mapped.
1507 		 */
1508 		if (temac_dcr_setup(lp, pdev, dma_np)) {
1509 			/* no DCR in the device tree, try non-DCR */
1510 			lp->sdma_regs = devm_of_iomap(&pdev->dev, dma_np, 0,
1511 						      NULL);
1512 			if (IS_ERR(lp->sdma_regs)) {
1513 				dev_err(&pdev->dev,
1514 					"unable to map DMA registers\n");
1515 				of_node_put(dma_np);
1516 				return PTR_ERR(lp->sdma_regs);
1517 			}
1518 			if (of_property_read_bool(dma_np, "little-endian")) {
1519 				lp->dma_in = temac_dma_in32_le;
1520 				lp->dma_out = temac_dma_out32_le;
1521 			} else {
1522 				lp->dma_in = temac_dma_in32_be;
1523 				lp->dma_out = temac_dma_out32_be;
1524 			}
1525 			dev_dbg(&pdev->dev, "MEM base: %p\n", lp->sdma_regs);
1526 		}
1527 
1528 		/* Get DMA RX and TX interrupts */
1529 		lp->rx_irq = irq_of_parse_and_map(dma_np, 0);
1530 		lp->tx_irq = irq_of_parse_and_map(dma_np, 1);
1531 
1532 		/* Finished with the DMA node; drop the reference */
1533 		of_node_put(dma_np);
1534 	} else if (pdata) {
1535 		/* 2nd memory resource specifies DMA registers */
1536 		lp->sdma_regs = devm_platform_ioremap_resource(pdev, 1);
1537 		if (IS_ERR(lp->sdma_regs)) {
1538 			dev_err(&pdev->dev,
1539 				"could not map DMA registers\n");
1540 			return PTR_ERR(lp->sdma_regs);
1541 		}
1542 		if (pdata->dma_little_endian) {
1543 			lp->dma_in = temac_dma_in32_le;
1544 			lp->dma_out = temac_dma_out32_le;
1545 		} else {
1546 			lp->dma_in = temac_dma_in32_be;
1547 			lp->dma_out = temac_dma_out32_be;
1548 		}
1549 
1550 		/* Get DMA RX and TX interrupts */
1551 		lp->rx_irq = platform_get_irq(pdev, 0);
1552 		lp->tx_irq = platform_get_irq(pdev, 1);
1553 
1554 		/* IRQ delay/coalescing setup */
1555 		if (pdata->tx_irq_timeout || pdata->tx_irq_count) {
1556 			lp->coalesce_delay_tx = pdata->tx_irq_timeout;
1557 			lp->coalesce_count_tx = pdata->tx_irq_count;
1558 		}
1559 		if (pdata->rx_irq_timeout || pdata->rx_irq_count) {
1560 			lp->coalesce_delay_rx = pdata->rx_irq_timeout;
1561 			lp->coalesce_count_rx = pdata->rx_irq_count;
1562 		}
1563 	}
1564 
1565 	/* Error handle returned DMA RX and TX interrupts */
1566 	if (lp->rx_irq < 0) {
1567 		if (lp->rx_irq != -EPROBE_DEFER)
1568 			dev_err(&pdev->dev, "could not get DMA RX irq\n");
1569 		return lp->rx_irq;
1570 	}
1571 	if (lp->tx_irq < 0) {
1572 		if (lp->tx_irq != -EPROBE_DEFER)
1573 			dev_err(&pdev->dev, "could not get DMA TX irq\n");
1574 		return lp->tx_irq;
1575 	}
1576 
1577 	if (temac_np) {
1578 		/* Retrieve the MAC address */
1579 		rc = of_get_mac_address(temac_np, addr);
1580 		if (rc) {
1581 			dev_err(&pdev->dev, "could not find MAC address\n");
1582 			return -ENODEV;
1583 		}
1584 		temac_init_mac_address(ndev, addr);
1585 	} else if (pdata) {
1586 		temac_init_mac_address(ndev, pdata->mac_addr);
1587 	}
1588 
1589 	rc = temac_mdio_setup(lp, pdev);
1590 	if (rc)
1591 		dev_warn(&pdev->dev, "error registering MDIO bus\n");
1592 
1593 	if (temac_np) {
1594 		lp->phy_node = of_parse_phandle(temac_np, "phy-handle", 0);
1595 		if (lp->phy_node)
1596 			dev_dbg(lp->dev, "using PHY node %pOF\n", temac_np);
1597 	} else if (pdata) {
1598 		snprintf(lp->phy_name, sizeof(lp->phy_name),
1599 			 PHY_ID_FMT, lp->mii_bus->id, pdata->phy_addr);
1600 		lp->phy_interface = pdata->phy_interface;
1601 	}
1602 
1603 	/* Add the device attributes */
1604 	rc = sysfs_create_group(&lp->dev->kobj, &temac_attr_group);
1605 	if (rc) {
1606 		dev_err(lp->dev, "Error creating sysfs files\n");
1607 		goto err_sysfs_create;
1608 	}
1609 
1610 	rc = register_netdev(lp->ndev);
1611 	if (rc) {
1612 		dev_err(lp->dev, "register_netdev() error (%i)\n", rc);
1613 		goto err_register_ndev;
1614 	}
1615 
1616 	return 0;
1617 
1618 err_register_ndev:
1619 	sysfs_remove_group(&lp->dev->kobj, &temac_attr_group);
1620 err_sysfs_create:
1621 	if (lp->phy_node)
1622 		of_node_put(lp->phy_node);
1623 	temac_mdio_teardown(lp);
1624 	return rc;
1625 }
1626 
1627 static int temac_remove(struct platform_device *pdev)
1628 {
1629 	struct net_device *ndev = platform_get_drvdata(pdev);
1630 	struct temac_local *lp = netdev_priv(ndev);
1631 
1632 	unregister_netdev(ndev);
1633 	sysfs_remove_group(&lp->dev->kobj, &temac_attr_group);
1634 	if (lp->phy_node)
1635 		of_node_put(lp->phy_node);
1636 	temac_mdio_teardown(lp);
1637 	return 0;
1638 }
1639 
1640 static const struct of_device_id temac_of_match[] = {
1641 	{ .compatible = "xlnx,xps-ll-temac-1.01.b", },
1642 	{ .compatible = "xlnx,xps-ll-temac-2.00.a", },
1643 	{ .compatible = "xlnx,xps-ll-temac-2.02.a", },
1644 	{ .compatible = "xlnx,xps-ll-temac-2.03.a", },
1645 	{},
1646 };
1647 MODULE_DEVICE_TABLE(of, temac_of_match);
1648 
1649 static struct platform_driver temac_driver = {
1650 	.probe = temac_probe,
1651 	.remove = temac_remove,
1652 	.driver = {
1653 		.name = "xilinx_temac",
1654 		.of_match_table = temac_of_match,
1655 	},
1656 };
1657 
1658 module_platform_driver(temac_driver);
1659 
1660 MODULE_DESCRIPTION("Xilinx LL_TEMAC Ethernet driver");
1661 MODULE_AUTHOR("Yoshio Kashiwagi");
1662 MODULE_LICENSE("GPL");
1663