xref: /linux/drivers/net/fddi/skfp/hwmtm.c (revision 44f57d78)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /******************************************************************************
3  *
4  *	(C)Copyright 1998,1999 SysKonnect,
5  *	a business unit of Schneider & Koch & Co. Datensysteme GmbH.
6  *
7  *	See the file "skfddi.c" for further information.
8  *
9  *	The information in this file is provided "AS IS" without warranty.
10  *
11  ******************************************************************************/
12 
13 #ifndef	lint
14 static char const ID_sccs[] = "@(#)hwmtm.c	1.40 99/05/31 (C) SK" ;
15 #endif
16 
17 #define	HWMTM
18 
19 #ifndef FDDI
20 #define	FDDI
21 #endif
22 
23 #include "h/types.h"
24 #include "h/fddi.h"
25 #include "h/smc.h"
26 #include "h/supern_2.h"
27 #include "h/skfbiinc.h"
28 
29 /*
30 	-------------------------------------------------------------
31 	DOCUMENTATION
32 	-------------------------------------------------------------
33 	BEGIN_MANUAL_ENTRY(DOCUMENTATION)
34 
35 			T B D
36 
37 	END_MANUAL_ENTRY
38 */
39 /*
40 	-------------------------------------------------------------
41 	LOCAL VARIABLES:
42 	-------------------------------------------------------------
43 */
44 #ifdef COMMON_MB_POOL
45 static	SMbuf *mb_start = 0 ;
46 static	SMbuf *mb_free = 0 ;
47 static	int mb_init = FALSE ;
48 static	int call_count = 0 ;
49 #endif
50 
51 /*
52 	-------------------------------------------------------------
53 	EXTERNE VARIABLES:
54 	-------------------------------------------------------------
55 */
56 
57 #ifdef	DEBUG
58 #ifndef	DEBUG_BRD
59 extern	struct smt_debug	debug ;
60 #endif
61 #endif
62 
63 #ifdef	NDIS_OS2
64 extern	u_char	offDepth ;
65 extern	u_char	force_irq_pending ;
66 #endif
67 
68 /*
69 	-------------------------------------------------------------
70 	LOCAL FUNCTIONS:
71 	-------------------------------------------------------------
72 */
73 
74 static void queue_llc_rx(struct s_smc *smc, SMbuf *mb);
75 static void smt_to_llc(struct s_smc *smc, SMbuf *mb);
76 static void init_txd_ring(struct s_smc *smc);
77 static void init_rxd_ring(struct s_smc *smc);
78 static void queue_txd_mb(struct s_smc *smc, SMbuf *mb);
79 static u_long init_descr_ring(struct s_smc *smc, union s_fp_descr volatile *start,
80 			      int count);
81 static u_long repair_txd_ring(struct s_smc *smc, struct s_smt_tx_queue *queue);
82 static u_long repair_rxd_ring(struct s_smc *smc, struct s_smt_rx_queue *queue);
83 static SMbuf* get_llc_rx(struct s_smc *smc);
84 static SMbuf* get_txd_mb(struct s_smc *smc);
85 static void mac_drv_clear_txd(struct s_smc *smc);
86 
87 /*
88 	-------------------------------------------------------------
89 	EXTERNAL FUNCTIONS:
90 	-------------------------------------------------------------
91 */
92 /*	The external SMT functions are listed in cmtdef.h */
93 
94 extern void* mac_drv_get_space(struct s_smc *smc, unsigned int size);
95 extern void* mac_drv_get_desc_mem(struct s_smc *smc, unsigned int size);
96 extern void mac_drv_fill_rxd(struct s_smc *smc);
97 extern void mac_drv_tx_complete(struct s_smc *smc,
98 				volatile struct s_smt_fp_txd *txd);
99 extern void mac_drv_rx_complete(struct s_smc *smc,
100 				volatile struct s_smt_fp_rxd *rxd,
101 				int frag_count, int len);
102 extern void mac_drv_requeue_rxd(struct s_smc *smc,
103 				volatile struct s_smt_fp_rxd *rxd,
104 				int frag_count);
105 extern void mac_drv_clear_rxd(struct s_smc *smc,
106 			      volatile struct s_smt_fp_rxd *rxd, int frag_count);
107 
108 #ifdef	USE_OS_CPY
109 extern void hwm_cpy_rxd2mb(void);
110 extern void hwm_cpy_txd2mb(void);
111 #endif
112 
113 #ifdef	ALL_RX_COMPLETE
114 extern void mac_drv_all_receives_complete(void);
115 #endif
116 
117 extern u_long mac_drv_virt2phys(struct s_smc *smc, void *virt);
118 extern u_long dma_master(struct s_smc *smc, void *virt, int len, int flag);
119 
120 #ifdef	NDIS_OS2
121 extern void post_proc(void);
122 #else
123 extern void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr,
124 			 int flag);
125 #endif
126 
127 extern int mac_drv_rx_init(struct s_smc *smc, int len, int fc, char *look_ahead,
128 			   int la_len);
129 
130 /*
131 	-------------------------------------------------------------
132 	PUBLIC FUNCTIONS:
133 	-------------------------------------------------------------
134 */
135 void process_receive(struct s_smc *smc);
136 void fddi_isr(struct s_smc *smc);
137 void smt_free_mbuf(struct s_smc *smc, SMbuf *mb);
138 void init_driver_fplus(struct s_smc *smc);
139 void mac_drv_rx_mode(struct s_smc *smc, int mode);
140 void init_fddi_driver(struct s_smc *smc, u_char *mac_addr);
141 void mac_drv_clear_tx_queue(struct s_smc *smc);
142 void mac_drv_clear_rx_queue(struct s_smc *smc);
143 void hwm_tx_frag(struct s_smc *smc, char far *virt, u_long phys, int len,
144 		 int frame_status);
145 void hwm_rx_frag(struct s_smc *smc, char far *virt, u_long phys, int len,
146 		 int frame_status);
147 
148 int mac_drv_init(struct s_smc *smc);
149 int hwm_tx_init(struct s_smc *smc, u_char fc, int frag_count, int frame_len,
150 		int frame_status);
151 
152 u_int mac_drv_check_space(void);
153 
154 SMbuf* smt_get_mbuf(struct s_smc *smc);
155 
156 #ifdef DEBUG
157 	void mac_drv_debug_lev(struct s_smc *smc, int flag, int lev);
158 #endif
159 
160 /*
161 	-------------------------------------------------------------
162 	MACROS:
163 	-------------------------------------------------------------
164 */
165 #ifndef	UNUSED
166 #ifdef	lint
167 #define UNUSED(x)	(x) = (x)
168 #else
169 #define UNUSED(x)
170 #endif
171 #endif
172 
173 #ifdef	USE_CAN_ADDR
174 #define MA		smc->hw.fddi_canon_addr.a
175 #define	GROUP_ADDR_BIT	0x01
176 #else
177 #define	MA		smc->hw.fddi_home_addr.a
178 #define	GROUP_ADDR_BIT	0x80
179 #endif
180 
181 #define RXD_TXD_COUNT	(HWM_ASYNC_TXD_COUNT+HWM_SYNC_TXD_COUNT+\
182 			SMT_R1_RXD_COUNT+SMT_R2_RXD_COUNT)
183 
184 #ifdef	MB_OUTSIDE_SMC
185 #define	EXT_VIRT_MEM	((RXD_TXD_COUNT+1)*sizeof(struct s_smt_fp_txd) +\
186 			MAX_MBUF*sizeof(SMbuf))
187 #define	EXT_VIRT_MEM_2	((RXD_TXD_COUNT+1)*sizeof(struct s_smt_fp_txd))
188 #else
189 #define	EXT_VIRT_MEM	((RXD_TXD_COUNT+1)*sizeof(struct s_smt_fp_txd))
190 #endif
191 
192 	/*
193 	 * define critical read for 16 Bit drivers
194 	 */
195 #if	defined(NDIS_OS2) || defined(ODI2)
196 #define CR_READ(var)	((var) & 0xffff0000 | ((var) & 0xffff))
197 #else
198 #define CR_READ(var)	(__le32)(var)
199 #endif
200 
201 #define IMASK_SLOW	(IS_PLINT1 | IS_PLINT2 | IS_TIMINT | IS_TOKEN | \
202 			 IS_MINTR1 | IS_MINTR2 | IS_MINTR3 | IS_R1_P | \
203 			 IS_R1_C | IS_XA_C | IS_XS_C)
204 
205 /*
206 	-------------------------------------------------------------
207 	INIT- AND SMT FUNCTIONS:
208 	-------------------------------------------------------------
209 */
210 
211 
212 /*
213  *	BEGIN_MANUAL_ENTRY(mac_drv_check_space)
214  *	u_int mac_drv_check_space()
215  *
216  *	function	DOWNCALL	(drvsr.c)
217  *			This function calculates the needed non virtual
218  *			memory for MBufs, RxD and TxD descriptors etc.
219  *			needed by the driver.
220  *
221  *	return		u_int	memory in bytes
222  *
223  *	END_MANUAL_ENTRY
224  */
225 u_int mac_drv_check_space(void)
226 {
227 #ifdef	MB_OUTSIDE_SMC
228 #ifdef	COMMON_MB_POOL
229 	call_count++ ;
230 	if (call_count == 1) {
231 		return EXT_VIRT_MEM;
232 	}
233 	else {
234 		return EXT_VIRT_MEM_2;
235 	}
236 #else
237 	return EXT_VIRT_MEM;
238 #endif
239 #else
240 	return 0;
241 #endif
242 }
243 
244 /*
245  *	BEGIN_MANUAL_ENTRY(mac_drv_init)
246  *	void mac_drv_init(smc)
247  *
248  *	function	DOWNCALL	(drvsr.c)
249  *			In this function the hardware module allocates it's
250  *			memory.
251  *			The operating system dependent module should call
252  *			mac_drv_init once, after the adatper is detected.
253  *	END_MANUAL_ENTRY
254  */
255 int mac_drv_init(struct s_smc *smc)
256 {
257 	if (sizeof(struct s_smt_fp_rxd) % 16) {
258 		SMT_PANIC(smc,HWM_E0001,HWM_E0001_MSG) ;
259 	}
260 	if (sizeof(struct s_smt_fp_txd) % 16) {
261 		SMT_PANIC(smc,HWM_E0002,HWM_E0002_MSG) ;
262 	}
263 
264 	/*
265 	 * get the required memory for the RxDs and TxDs
266 	 */
267 	if (!(smc->os.hwm.descr_p = (union s_fp_descr volatile *)
268 		mac_drv_get_desc_mem(smc,(u_int)
269 		(RXD_TXD_COUNT+1)*sizeof(struct s_smt_fp_txd)))) {
270 		return 1;	/* no space the hwm modul can't work */
271 	}
272 
273 	/*
274 	 * get the memory for the SMT MBufs
275 	 */
276 #ifndef	MB_OUTSIDE_SMC
277 	smc->os.hwm.mbuf_pool.mb_start=(SMbuf *)(&smc->os.hwm.mbuf_pool.mb[0]) ;
278 #else
279 #ifndef	COMMON_MB_POOL
280 	if (!(smc->os.hwm.mbuf_pool.mb_start = (SMbuf *) mac_drv_get_space(smc,
281 		MAX_MBUF*sizeof(SMbuf)))) {
282 		return 1;	/* no space the hwm modul can't work */
283 	}
284 #else
285 	if (!mb_start) {
286 		if (!(mb_start = (SMbuf *) mac_drv_get_space(smc,
287 			MAX_MBUF*sizeof(SMbuf)))) {
288 			return 1;	/* no space the hwm modul can't work */
289 		}
290 	}
291 #endif
292 #endif
293 	return 0;
294 }
295 
296 /*
297  *	BEGIN_MANUAL_ENTRY(init_driver_fplus)
298  *	init_driver_fplus(smc)
299  *
300  * Sets hardware modul specific values for the mode register 2
301  * (e.g. the byte alignment for the received frames, the position of the
302  *	 least significant byte etc.)
303  *	END_MANUAL_ENTRY
304  */
305 void init_driver_fplus(struct s_smc *smc)
306 {
307 	smc->hw.fp.mdr2init = FM_LSB | FM_BMMODE | FM_ENNPRQ | FM_ENHSRQ | 3 ;
308 
309 #ifdef	PCI
310 	smc->hw.fp.mdr2init |= FM_CHKPAR | FM_PARITY ;
311 #endif
312 	smc->hw.fp.mdr3init = FM_MENRQAUNLCK | FM_MENRS ;
313 
314 #ifdef	USE_CAN_ADDR
315 	/* enable address bit swapping */
316 	smc->hw.fp.frselreg_init = FM_ENXMTADSWAP | FM_ENRCVADSWAP ;
317 #endif
318 }
319 
320 static u_long init_descr_ring(struct s_smc *smc,
321 			      union s_fp_descr volatile *start,
322 			      int count)
323 {
324 	int i ;
325 	union s_fp_descr volatile *d1 ;
326 	union s_fp_descr volatile *d2 ;
327 	u_long	phys ;
328 
329 	DB_GEN(3, "descr ring starts at = %p", start);
330 	for (i=count-1, d1=start; i ; i--) {
331 		d2 = d1 ;
332 		d1++ ;		/* descr is owned by the host */
333 		d2->r.rxd_rbctrl = cpu_to_le32(BMU_CHECK) ;
334 		d2->r.rxd_next = &d1->r ;
335 		phys = mac_drv_virt2phys(smc,(void *)d1) ;
336 		d2->r.rxd_nrdadr = cpu_to_le32(phys) ;
337 	}
338 	DB_GEN(3, "descr ring ends at = %p", d1);
339 	d1->r.rxd_rbctrl = cpu_to_le32(BMU_CHECK) ;
340 	d1->r.rxd_next = &start->r ;
341 	phys = mac_drv_virt2phys(smc,(void *)start) ;
342 	d1->r.rxd_nrdadr = cpu_to_le32(phys) ;
343 
344 	for (i=count, d1=start; i ; i--) {
345 		DRV_BUF_FLUSH(&d1->r,DDI_DMA_SYNC_FORDEV) ;
346 		d1++;
347 	}
348 	return phys;
349 }
350 
351 static void init_txd_ring(struct s_smc *smc)
352 {
353 	struct s_smt_fp_txd volatile *ds ;
354 	struct s_smt_tx_queue *queue ;
355 	u_long	phys ;
356 
357 	/*
358 	 * initialize the transmit descriptors
359 	 */
360 	ds = (struct s_smt_fp_txd volatile *) ((char *)smc->os.hwm.descr_p +
361 		SMT_R1_RXD_COUNT*sizeof(struct s_smt_fp_rxd)) ;
362 	queue = smc->hw.fp.tx[QUEUE_A0] ;
363 	DB_GEN(3, "Init async TxD ring, %d TxDs", HWM_ASYNC_TXD_COUNT);
364 	(void)init_descr_ring(smc,(union s_fp_descr volatile *)ds,
365 		HWM_ASYNC_TXD_COUNT) ;
366 	phys = le32_to_cpu(ds->txd_ntdadr) ;
367 	ds++ ;
368 	queue->tx_curr_put = queue->tx_curr_get = ds ;
369 	ds-- ;
370 	queue->tx_free = HWM_ASYNC_TXD_COUNT ;
371 	queue->tx_used = 0 ;
372 	outpd(ADDR(B5_XA_DA),phys) ;
373 
374 	ds = (struct s_smt_fp_txd volatile *) ((char *)ds +
375 		HWM_ASYNC_TXD_COUNT*sizeof(struct s_smt_fp_txd)) ;
376 	queue = smc->hw.fp.tx[QUEUE_S] ;
377 	DB_GEN(3, "Init sync TxD ring, %d TxDs", HWM_SYNC_TXD_COUNT);
378 	(void)init_descr_ring(smc,(union s_fp_descr volatile *)ds,
379 		HWM_SYNC_TXD_COUNT) ;
380 	phys = le32_to_cpu(ds->txd_ntdadr) ;
381 	ds++ ;
382 	queue->tx_curr_put = queue->tx_curr_get = ds ;
383 	queue->tx_free = HWM_SYNC_TXD_COUNT ;
384 	queue->tx_used = 0 ;
385 	outpd(ADDR(B5_XS_DA),phys) ;
386 }
387 
388 static void init_rxd_ring(struct s_smc *smc)
389 {
390 	struct s_smt_fp_rxd volatile *ds ;
391 	struct s_smt_rx_queue *queue ;
392 	u_long	phys ;
393 
394 	/*
395 	 * initialize the receive descriptors
396 	 */
397 	ds = (struct s_smt_fp_rxd volatile *) smc->os.hwm.descr_p ;
398 	queue = smc->hw.fp.rx[QUEUE_R1] ;
399 	DB_GEN(3, "Init RxD ring, %d RxDs", SMT_R1_RXD_COUNT);
400 	(void)init_descr_ring(smc,(union s_fp_descr volatile *)ds,
401 		SMT_R1_RXD_COUNT) ;
402 	phys = le32_to_cpu(ds->rxd_nrdadr) ;
403 	ds++ ;
404 	queue->rx_curr_put = queue->rx_curr_get = ds ;
405 	queue->rx_free = SMT_R1_RXD_COUNT ;
406 	queue->rx_used = 0 ;
407 	outpd(ADDR(B4_R1_DA),phys) ;
408 }
409 
410 /*
411  *	BEGIN_MANUAL_ENTRY(init_fddi_driver)
412  *	void init_fddi_driver(smc,mac_addr)
413  *
414  * initializes the driver and it's variables
415  *
416  *	END_MANUAL_ENTRY
417  */
418 void init_fddi_driver(struct s_smc *smc, u_char *mac_addr)
419 {
420 	SMbuf	*mb ;
421 	int	i ;
422 
423 	init_board(smc,mac_addr) ;
424 	(void)init_fplus(smc) ;
425 
426 	/*
427 	 * initialize the SMbufs for the SMT
428 	 */
429 #ifndef	COMMON_MB_POOL
430 	mb = smc->os.hwm.mbuf_pool.mb_start ;
431 	smc->os.hwm.mbuf_pool.mb_free = (SMbuf *)NULL ;
432 	for (i = 0; i < MAX_MBUF; i++) {
433 		mb->sm_use_count = 1 ;
434 		smt_free_mbuf(smc,mb)	;
435 		mb++ ;
436 	}
437 #else
438 	mb = mb_start ;
439 	if (!mb_init) {
440 		mb_free = 0 ;
441 		for (i = 0; i < MAX_MBUF; i++) {
442 			mb->sm_use_count = 1 ;
443 			smt_free_mbuf(smc,mb)	;
444 			mb++ ;
445 		}
446 		mb_init = TRUE ;
447 	}
448 #endif
449 
450 	/*
451 	 * initialize the other variables
452 	 */
453 	smc->os.hwm.llc_rx_pipe = smc->os.hwm.llc_rx_tail = (SMbuf *)NULL ;
454 	smc->os.hwm.txd_tx_pipe = smc->os.hwm.txd_tx_tail = NULL ;
455 	smc->os.hwm.pass_SMT = smc->os.hwm.pass_NSA = smc->os.hwm.pass_DB = 0 ;
456 	smc->os.hwm.pass_llc_promisc = TRUE ;
457 	smc->os.hwm.queued_rx_frames = smc->os.hwm.queued_txd_mb = 0 ;
458 	smc->os.hwm.detec_count = 0 ;
459 	smc->os.hwm.rx_break = 0 ;
460 	smc->os.hwm.rx_len_error = 0 ;
461 	smc->os.hwm.isr_flag = FALSE ;
462 
463 	/*
464 	 * make sure that the start pointer is 16 byte aligned
465 	 */
466 	i = 16 - ((long)smc->os.hwm.descr_p & 0xf) ;
467 	if (i != 16) {
468 		DB_GEN(3, "i = %d", i);
469 		smc->os.hwm.descr_p = (union s_fp_descr volatile *)
470 			((char *)smc->os.hwm.descr_p+i) ;
471 	}
472 	DB_GEN(3, "pt to descr area = %p", smc->os.hwm.descr_p);
473 
474 	init_txd_ring(smc) ;
475 	init_rxd_ring(smc) ;
476 	mac_drv_fill_rxd(smc) ;
477 
478 	init_plc(smc) ;
479 }
480 
481 
482 SMbuf *smt_get_mbuf(struct s_smc *smc)
483 {
484 	register SMbuf	*mb ;
485 
486 #ifndef	COMMON_MB_POOL
487 	mb = smc->os.hwm.mbuf_pool.mb_free ;
488 #else
489 	mb = mb_free ;
490 #endif
491 	if (mb) {
492 #ifndef	COMMON_MB_POOL
493 		smc->os.hwm.mbuf_pool.mb_free = mb->sm_next ;
494 #else
495 		mb_free = mb->sm_next ;
496 #endif
497 		mb->sm_off = 8 ;
498 		mb->sm_use_count = 1 ;
499 	}
500 	DB_GEN(3, "get SMbuf: mb = %p", mb);
501 	return mb;	/* May be NULL */
502 }
503 
504 void smt_free_mbuf(struct s_smc *smc, SMbuf *mb)
505 {
506 
507 	if (mb) {
508 		mb->sm_use_count-- ;
509 		DB_GEN(3, "free_mbuf: sm_use_count = %d", mb->sm_use_count);
510 		/*
511 		 * If the use_count is != zero the MBuf is queued
512 		 * more than once and must not queued into the
513 		 * free MBuf queue
514 		 */
515 		if (!mb->sm_use_count) {
516 			DB_GEN(3, "free SMbuf: mb = %p", mb);
517 #ifndef	COMMON_MB_POOL
518 			mb->sm_next = smc->os.hwm.mbuf_pool.mb_free ;
519 			smc->os.hwm.mbuf_pool.mb_free = mb ;
520 #else
521 			mb->sm_next = mb_free ;
522 			mb_free = mb ;
523 #endif
524 		}
525 	}
526 	else
527 		SMT_PANIC(smc,HWM_E0003,HWM_E0003_MSG) ;
528 }
529 
530 
531 /*
532  *	BEGIN_MANUAL_ENTRY(mac_drv_repair_descr)
533  *	void mac_drv_repair_descr(smc)
534  *
535  * function	called from SMT	(HWM / hwmtm.c)
536  *		The BMU is idle when this function is called.
537  *		Mac_drv_repair_descr sets up the physical address
538  *		for all receive and transmit queues where the BMU
539  *		should continue.
540  *		It may be that the BMU was reseted during a fragmented
541  *		transfer. In this case there are some fragments which will
542  *		never completed by the BMU. The OWN bit of this fragments
543  *		must be switched to be owned by the host.
544  *
545  *		Give a start command to the receive BMU.
546  *		Start the transmit BMUs if transmit frames pending.
547  *
548  *	END_MANUAL_ENTRY
549  */
550 void mac_drv_repair_descr(struct s_smc *smc)
551 {
552 	u_long	phys ;
553 
554 	if (smc->hw.hw_state != STOPPED) {
555 		SK_BREAK() ;
556 		SMT_PANIC(smc,HWM_E0013,HWM_E0013_MSG) ;
557 		return ;
558 	}
559 
560 	/*
561 	 * repair tx queues: don't start
562 	 */
563 	phys = repair_txd_ring(smc,smc->hw.fp.tx[QUEUE_A0]) ;
564 	outpd(ADDR(B5_XA_DA),phys) ;
565 	if (smc->hw.fp.tx_q[QUEUE_A0].tx_used) {
566 		outpd(ADDR(B0_XA_CSR),CSR_START) ;
567 	}
568 	phys = repair_txd_ring(smc,smc->hw.fp.tx[QUEUE_S]) ;
569 	outpd(ADDR(B5_XS_DA),phys) ;
570 	if (smc->hw.fp.tx_q[QUEUE_S].tx_used) {
571 		outpd(ADDR(B0_XS_CSR),CSR_START) ;
572 	}
573 
574 	/*
575 	 * repair rx queues
576 	 */
577 	phys = repair_rxd_ring(smc,smc->hw.fp.rx[QUEUE_R1]) ;
578 	outpd(ADDR(B4_R1_DA),phys) ;
579 	outpd(ADDR(B0_R1_CSR),CSR_START) ;
580 }
581 
582 static u_long repair_txd_ring(struct s_smc *smc, struct s_smt_tx_queue *queue)
583 {
584 	int i ;
585 	int tx_used ;
586 	u_long phys ;
587 	u_long tbctrl ;
588 	struct s_smt_fp_txd volatile *t ;
589 
590 	SK_UNUSED(smc) ;
591 
592 	t = queue->tx_curr_get ;
593 	tx_used = queue->tx_used ;
594 	for (i = tx_used+queue->tx_free-1 ; i ; i-- ) {
595 		t = t->txd_next ;
596 	}
597 	phys = le32_to_cpu(t->txd_ntdadr) ;
598 
599 	t = queue->tx_curr_get ;
600 	while (tx_used) {
601 		DRV_BUF_FLUSH(t,DDI_DMA_SYNC_FORCPU) ;
602 		tbctrl = le32_to_cpu(t->txd_tbctrl) ;
603 
604 		if (tbctrl & BMU_OWN) {
605 			if (tbctrl & BMU_STF) {
606 				break ;		/* exit the loop */
607 			}
608 			else {
609 				/*
610 				 * repair the descriptor
611 				 */
612 				t->txd_tbctrl &= ~cpu_to_le32(BMU_OWN) ;
613 			}
614 		}
615 		phys = le32_to_cpu(t->txd_ntdadr) ;
616 		DRV_BUF_FLUSH(t,DDI_DMA_SYNC_FORDEV) ;
617 		t = t->txd_next ;
618 		tx_used-- ;
619 	}
620 	return phys;
621 }
622 
623 /*
624  * Repairs the receive descriptor ring and returns the physical address
625  * where the BMU should continue working.
626  *
627  *	o The physical address where the BMU was stopped has to be
628  *	  determined. This is the next RxD after rx_curr_get with an OWN
629  *	  bit set.
630  *	o The BMU should start working at beginning of the next frame.
631  *	  RxDs with an OWN bit set but with a reset STF bit should be
632  *	  skipped and owned by the driver (OWN = 0).
633  */
634 static u_long repair_rxd_ring(struct s_smc *smc, struct s_smt_rx_queue *queue)
635 {
636 	int i ;
637 	int rx_used ;
638 	u_long phys ;
639 	u_long rbctrl ;
640 	struct s_smt_fp_rxd volatile *r ;
641 
642 	SK_UNUSED(smc) ;
643 
644 	r = queue->rx_curr_get ;
645 	rx_used = queue->rx_used ;
646 	for (i = SMT_R1_RXD_COUNT-1 ; i ; i-- ) {
647 		r = r->rxd_next ;
648 	}
649 	phys = le32_to_cpu(r->rxd_nrdadr) ;
650 
651 	r = queue->rx_curr_get ;
652 	while (rx_used) {
653 		DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORCPU) ;
654 		rbctrl = le32_to_cpu(r->rxd_rbctrl) ;
655 
656 		if (rbctrl & BMU_OWN) {
657 			if (rbctrl & BMU_STF) {
658 				break ;		/* exit the loop */
659 			}
660 			else {
661 				/*
662 				 * repair the descriptor
663 				 */
664 				r->rxd_rbctrl &= ~cpu_to_le32(BMU_OWN) ;
665 			}
666 		}
667 		phys = le32_to_cpu(r->rxd_nrdadr) ;
668 		DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORDEV) ;
669 		r = r->rxd_next ;
670 		rx_used-- ;
671 	}
672 	return phys;
673 }
674 
675 
676 /*
677 	-------------------------------------------------------------
678 	INTERRUPT SERVICE ROUTINE:
679 	-------------------------------------------------------------
680 */
681 
682 /*
683  *	BEGIN_MANUAL_ENTRY(fddi_isr)
684  *	void fddi_isr(smc)
685  *
686  * function	DOWNCALL	(drvsr.c)
687  *		interrupt service routine, handles the interrupt requests
688  *		generated by the FDDI adapter.
689  *
690  * NOTE:	The operating system dependent module must guarantee that the
691  *		interrupts of the adapter are disabled when it calls fddi_isr.
692  *
693  *	About the USE_BREAK_ISR mechanismn:
694  *
695  *	The main requirement of this mechanismn is to force an timer IRQ when
696  *	leaving process_receive() with leave_isr set. process_receive() may
697  *	be called at any time from anywhere!
698  *	To be sure we don't miss such event we set 'force_irq' per default.
699  *	We have to force and Timer IRQ if 'smc->os.hwm.leave_isr' AND
700  *	'force_irq' are set. 'force_irq' may be reset if a receive complete
701  *	IRQ is pending.
702  *
703  *	END_MANUAL_ENTRY
704  */
705 void fddi_isr(struct s_smc *smc)
706 {
707 	u_long		is ;		/* ISR source */
708 	u_short		stu, stl ;
709 	SMbuf		*mb ;
710 
711 #ifdef	USE_BREAK_ISR
712 	int	force_irq ;
713 #endif
714 
715 #ifdef	ODI2
716 	if (smc->os.hwm.rx_break) {
717 		mac_drv_fill_rxd(smc) ;
718 		if (smc->hw.fp.rx_q[QUEUE_R1].rx_used > 0) {
719 			smc->os.hwm.rx_break = 0 ;
720 			process_receive(smc) ;
721 		}
722 		else {
723 			smc->os.hwm.detec_count = 0 ;
724 			smt_force_irq(smc) ;
725 		}
726 	}
727 #endif
728 	smc->os.hwm.isr_flag = TRUE ;
729 
730 #ifdef	USE_BREAK_ISR
731 	force_irq = TRUE ;
732 	if (smc->os.hwm.leave_isr) {
733 		smc->os.hwm.leave_isr = FALSE ;
734 		process_receive(smc) ;
735 	}
736 #endif
737 
738 	while ((is = GET_ISR() & ISR_MASK)) {
739 		NDD_TRACE("CH0B",is,0,0) ;
740 		DB_GEN(7, "ISA = 0x%lx", is);
741 
742 		if (is & IMASK_SLOW) {
743 			NDD_TRACE("CH1b",is,0,0) ;
744 			if (is & IS_PLINT1) {	/* PLC1 */
745 				plc1_irq(smc) ;
746 			}
747 			if (is & IS_PLINT2) {	/* PLC2 */
748 				plc2_irq(smc) ;
749 			}
750 			if (is & IS_MINTR1) {	/* FORMAC+ STU1(U/L) */
751 				stu = inpw(FM_A(FM_ST1U)) ;
752 				stl = inpw(FM_A(FM_ST1L)) ;
753 				DB_GEN(6, "Slow transmit complete");
754 				mac1_irq(smc,stu,stl) ;
755 			}
756 			if (is & IS_MINTR2) {	/* FORMAC+ STU2(U/L) */
757 				stu= inpw(FM_A(FM_ST2U)) ;
758 				stl= inpw(FM_A(FM_ST2L)) ;
759 				DB_GEN(6, "Slow receive complete");
760 				DB_GEN(7, "stl = %x : stu = %x", stl, stu);
761 				mac2_irq(smc,stu,stl) ;
762 			}
763 			if (is & IS_MINTR3) {	/* FORMAC+ STU3(U/L) */
764 				stu= inpw(FM_A(FM_ST3U)) ;
765 				stl= inpw(FM_A(FM_ST3L)) ;
766 				DB_GEN(6, "FORMAC Mode Register 3");
767 				mac3_irq(smc,stu,stl) ;
768 			}
769 			if (is & IS_TIMINT) {	/* Timer 82C54-2 */
770 				timer_irq(smc) ;
771 #ifdef	NDIS_OS2
772 				force_irq_pending = 0 ;
773 #endif
774 				/*
775 				 * out of RxD detection
776 				 */
777 				if (++smc->os.hwm.detec_count > 4) {
778 					/*
779 					 * check out of RxD condition
780 					 */
781 					 process_receive(smc) ;
782 				}
783 			}
784 			if (is & IS_TOKEN) {	/* Restricted Token Monitor */
785 				rtm_irq(smc) ;
786 			}
787 			if (is & IS_R1_P) {	/* Parity error rx queue 1 */
788 				/* clear IRQ */
789 				outpd(ADDR(B4_R1_CSR),CSR_IRQ_CL_P) ;
790 				SMT_PANIC(smc,HWM_E0004,HWM_E0004_MSG) ;
791 			}
792 			if (is & IS_R1_C) {	/* Encoding error rx queue 1 */
793 				/* clear IRQ */
794 				outpd(ADDR(B4_R1_CSR),CSR_IRQ_CL_C) ;
795 				SMT_PANIC(smc,HWM_E0005,HWM_E0005_MSG) ;
796 			}
797 			if (is & IS_XA_C) {	/* Encoding error async tx q */
798 				/* clear IRQ */
799 				outpd(ADDR(B5_XA_CSR),CSR_IRQ_CL_C) ;
800 				SMT_PANIC(smc,HWM_E0006,HWM_E0006_MSG) ;
801 			}
802 			if (is & IS_XS_C) {	/* Encoding error sync tx q */
803 				/* clear IRQ */
804 				outpd(ADDR(B5_XS_CSR),CSR_IRQ_CL_C) ;
805 				SMT_PANIC(smc,HWM_E0007,HWM_E0007_MSG) ;
806 			}
807 		}
808 
809 		/*
810 		 *	Fast Tx complete Async/Sync Queue (BMU service)
811 		 */
812 		if (is & (IS_XS_F|IS_XA_F)) {
813 			DB_GEN(6, "Fast tx complete queue");
814 			/*
815 			 * clear IRQ, Note: no IRQ is lost, because
816 			 * 	we always service both queues
817 			 */
818 			outpd(ADDR(B5_XS_CSR),CSR_IRQ_CL_F) ;
819 			outpd(ADDR(B5_XA_CSR),CSR_IRQ_CL_F) ;
820 			mac_drv_clear_txd(smc) ;
821 			llc_restart_tx(smc) ;
822 		}
823 
824 		/*
825 		 *	Fast Rx Complete (BMU service)
826 		 */
827 		if (is & IS_R1_F) {
828 			DB_GEN(6, "Fast receive complete");
829 			/* clear IRQ */
830 #ifndef USE_BREAK_ISR
831 			outpd(ADDR(B4_R1_CSR),CSR_IRQ_CL_F) ;
832 			process_receive(smc) ;
833 #else
834 			process_receive(smc) ;
835 			if (smc->os.hwm.leave_isr) {
836 				force_irq = FALSE ;
837 			} else {
838 				outpd(ADDR(B4_R1_CSR),CSR_IRQ_CL_F) ;
839 				process_receive(smc) ;
840 			}
841 #endif
842 		}
843 
844 #ifndef	NDIS_OS2
845 		while ((mb = get_llc_rx(smc))) {
846 			smt_to_llc(smc,mb) ;
847 		}
848 #else
849 		if (offDepth)
850 			post_proc() ;
851 
852 		while (!offDepth && (mb = get_llc_rx(smc))) {
853 			smt_to_llc(smc,mb) ;
854 		}
855 
856 		if (!offDepth && smc->os.hwm.rx_break) {
857 			process_receive(smc) ;
858 		}
859 #endif
860 		if (smc->q.ev_get != smc->q.ev_put) {
861 			NDD_TRACE("CH2a",0,0,0) ;
862 			ev_dispatcher(smc) ;
863 		}
864 #ifdef	NDIS_OS2
865 		post_proc() ;
866 		if (offDepth) {		/* leave fddi_isr because */
867 			break ;		/* indications not allowed */
868 		}
869 #endif
870 #ifdef	USE_BREAK_ISR
871 		if (smc->os.hwm.leave_isr) {
872 			break ;		/* leave fddi_isr */
873 		}
874 #endif
875 
876 		/* NOTE: when the isr is left, no rx is pending */
877 	}	/* end of interrupt source polling loop */
878 
879 #ifdef	USE_BREAK_ISR
880 	if (smc->os.hwm.leave_isr && force_irq) {
881 		smt_force_irq(smc) ;
882 	}
883 #endif
884 	smc->os.hwm.isr_flag = FALSE ;
885 	NDD_TRACE("CH0E",0,0,0) ;
886 }
887 
888 
889 /*
890 	-------------------------------------------------------------
891 	RECEIVE FUNCTIONS:
892 	-------------------------------------------------------------
893 */
894 
895 #ifndef	NDIS_OS2
896 /*
897  *	BEGIN_MANUAL_ENTRY(mac_drv_rx_mode)
898  *	void mac_drv_rx_mode(smc,mode)
899  *
900  * function	DOWNCALL	(fplus.c)
901  *		Corresponding to the parameter mode, the operating system
902  *		dependent module can activate several receive modes.
903  *
904  * para	mode	= 1:	RX_ENABLE_ALLMULTI	enable all multicasts
905  *		= 2:	RX_DISABLE_ALLMULTI	disable "enable all multicasts"
906  *		= 3:	RX_ENABLE_PROMISC	enable promiscuous
907  *		= 4:	RX_DISABLE_PROMISC	disable promiscuous
908  *		= 5:	RX_ENABLE_NSA		enable rec. of all NSA frames
909  *			(disabled after 'driver reset' & 'set station address')
910  *		= 6:	RX_DISABLE_NSA		disable rec. of all NSA frames
911  *
912  *		= 21:	RX_ENABLE_PASS_SMT	( see description )
913  *		= 22:	RX_DISABLE_PASS_SMT	(  "	   "	  )
914  *		= 23:	RX_ENABLE_PASS_NSA	(  "	   "	  )
915  *		= 24:	RX_DISABLE_PASS_NSA	(  "	   "	  )
916  *		= 25:	RX_ENABLE_PASS_DB	(  "	   "	  )
917  *		= 26:	RX_DISABLE_PASS_DB	(  "	   "	  )
918  *		= 27:	RX_DISABLE_PASS_ALL	(  "	   "	  )
919  *		= 28:	RX_DISABLE_LLC_PROMISC	(  "	   "	  )
920  *		= 29:	RX_ENABLE_LLC_PROMISC	(  "	   "	  )
921  *
922  *
923  *		RX_ENABLE_PASS_SMT / RX_DISABLE_PASS_SMT
924  *
925  *		If the operating system dependent module activates the
926  *		mode RX_ENABLE_PASS_SMT, the hardware module
927  *		duplicates all SMT frames with the frame control
928  *		FC_SMT_INFO and passes them to the LLC receive channel
929  *		by calling mac_drv_rx_init.
930  *		The SMT Frames which are sent by the local SMT and the NSA
931  *		frames whose A- and C-Indicator is not set are also duplicated
932  *		and passed.
933  *		The receive mode RX_DISABLE_PASS_SMT disables the passing
934  *		of SMT frames.
935  *
936  *		RX_ENABLE_PASS_NSA / RX_DISABLE_PASS_NSA
937  *
938  *		If the operating system dependent module activates the
939  *		mode RX_ENABLE_PASS_NSA, the hardware module
940  *		duplicates all NSA frames with frame control FC_SMT_NSA
941  *		and a set A-Indicator and passed them to the LLC
942  *		receive channel by calling mac_drv_rx_init.
943  *		All NSA Frames which are sent by the local SMT
944  *		are also duplicated and passed.
945  *		The receive mode RX_DISABLE_PASS_NSA disables the passing
946  *		of NSA frames with the A- or C-Indicator set.
947  *
948  * NOTE:	For fear that the hardware module receives NSA frames with
949  *		a reset A-Indicator, the operating system dependent module
950  *		has to call mac_drv_rx_mode with the mode RX_ENABLE_NSA
951  *		before activate the RX_ENABLE_PASS_NSA mode and after every
952  *		'driver reset' and 'set station address'.
953  *
954  *		RX_ENABLE_PASS_DB / RX_DISABLE_PASS_DB
955  *
956  *		If the operating system dependent module activates the
957  *		mode RX_ENABLE_PASS_DB, direct BEACON frames
958  *		(FC_BEACON frame control) are passed to the LLC receive
959  *		channel by mac_drv_rx_init.
960  *		The receive mode RX_DISABLE_PASS_DB disables the passing
961  *		of direct BEACON frames.
962  *
963  *		RX_DISABLE_PASS_ALL
964  *
965  *		Disables all special receives modes. It is equal to
966  *		call mac_drv_set_rx_mode successively with the
967  *		parameters RX_DISABLE_NSA, RX_DISABLE_PASS_SMT,
968  *		RX_DISABLE_PASS_NSA and RX_DISABLE_PASS_DB.
969  *
970  *		RX_ENABLE_LLC_PROMISC
971  *
972  *		(default) all received LLC frames and all SMT/NSA/DBEACON
973  *		frames depending on the attitude of the flags
974  *		PASS_SMT/PASS_NSA/PASS_DBEACON will be delivered to the
975  *		LLC layer
976  *
977  *		RX_DISABLE_LLC_PROMISC
978  *
979  *		all received SMT/NSA/DBEACON frames depending on the
980  *		attitude of the flags PASS_SMT/PASS_NSA/PASS_DBEACON
981  *		will be delivered to the LLC layer.
982  *		all received LLC frames with a directed address, Multicast
983  *		or Broadcast address will be delivered to the LLC
984  *		layer too.
985  *
986  *	END_MANUAL_ENTRY
987  */
988 void mac_drv_rx_mode(struct s_smc *smc, int mode)
989 {
990 	switch(mode) {
991 	case RX_ENABLE_PASS_SMT:
992 		smc->os.hwm.pass_SMT = TRUE ;
993 		break ;
994 	case RX_DISABLE_PASS_SMT:
995 		smc->os.hwm.pass_SMT = FALSE ;
996 		break ;
997 	case RX_ENABLE_PASS_NSA:
998 		smc->os.hwm.pass_NSA = TRUE ;
999 		break ;
1000 	case RX_DISABLE_PASS_NSA:
1001 		smc->os.hwm.pass_NSA = FALSE ;
1002 		break ;
1003 	case RX_ENABLE_PASS_DB:
1004 		smc->os.hwm.pass_DB = TRUE ;
1005 		break ;
1006 	case RX_DISABLE_PASS_DB:
1007 		smc->os.hwm.pass_DB = FALSE ;
1008 		break ;
1009 	case RX_DISABLE_PASS_ALL:
1010 		smc->os.hwm.pass_SMT = smc->os.hwm.pass_NSA = FALSE ;
1011 		smc->os.hwm.pass_DB = FALSE ;
1012 		smc->os.hwm.pass_llc_promisc = TRUE ;
1013 		mac_set_rx_mode(smc,RX_DISABLE_NSA) ;
1014 		break ;
1015 	case RX_DISABLE_LLC_PROMISC:
1016 		smc->os.hwm.pass_llc_promisc = FALSE ;
1017 		break ;
1018 	case RX_ENABLE_LLC_PROMISC:
1019 		smc->os.hwm.pass_llc_promisc = TRUE ;
1020 		break ;
1021 	case RX_ENABLE_ALLMULTI:
1022 	case RX_DISABLE_ALLMULTI:
1023 	case RX_ENABLE_PROMISC:
1024 	case RX_DISABLE_PROMISC:
1025 	case RX_ENABLE_NSA:
1026 	case RX_DISABLE_NSA:
1027 	default:
1028 		mac_set_rx_mode(smc,mode) ;
1029 		break ;
1030 	}
1031 }
1032 #endif	/* ifndef NDIS_OS2 */
1033 
1034 /*
1035  * process receive queue
1036  */
1037 void process_receive(struct s_smc *smc)
1038 {
1039 	int i ;
1040 	int n ;
1041 	int frag_count ;		/* number of RxDs of the curr rx buf */
1042 	int used_frags ;		/* number of RxDs of the curr frame */
1043 	struct s_smt_rx_queue *queue ;	/* points to the queue ctl struct */
1044 	struct s_smt_fp_rxd volatile *r ;	/* rxd pointer */
1045 	struct s_smt_fp_rxd volatile *rxd ;	/* first rxd of rx frame */
1046 	u_long rbctrl ;			/* receive buffer control word */
1047 	u_long rfsw ;			/* receive frame status word */
1048 	u_short rx_used ;
1049 	u_char far *virt ;
1050 	char far *data ;
1051 	SMbuf *mb ;
1052 	u_char fc ;			/* Frame control */
1053 	int len ;			/* Frame length */
1054 
1055 	smc->os.hwm.detec_count = 0 ;
1056 	queue = smc->hw.fp.rx[QUEUE_R1] ;
1057 	NDD_TRACE("RHxB",0,0,0) ;
1058 	for ( ; ; ) {
1059 		r = queue->rx_curr_get ;
1060 		rx_used = queue->rx_used ;
1061 		frag_count = 0 ;
1062 
1063 #ifdef	USE_BREAK_ISR
1064 		if (smc->os.hwm.leave_isr) {
1065 			goto rx_end ;
1066 		}
1067 #endif
1068 #ifdef	NDIS_OS2
1069 		if (offDepth) {
1070 			smc->os.hwm.rx_break = 1 ;
1071 			goto rx_end ;
1072 		}
1073 		smc->os.hwm.rx_break = 0 ;
1074 #endif
1075 #ifdef	ODI2
1076 		if (smc->os.hwm.rx_break) {
1077 			goto rx_end ;
1078 		}
1079 #endif
1080 		n = 0 ;
1081 		do {
1082 			DB_RX(5, "Check RxD %p for OWN and EOF", r);
1083 			DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORCPU) ;
1084 			rbctrl = le32_to_cpu(CR_READ(r->rxd_rbctrl));
1085 
1086 			if (rbctrl & BMU_OWN) {
1087 				NDD_TRACE("RHxE",r,rfsw,rbctrl) ;
1088 				DB_RX(4, "End of RxDs");
1089 				goto rx_end ;
1090 			}
1091 			/*
1092 			 * out of RxD detection
1093 			 */
1094 			if (!rx_used) {
1095 				SK_BREAK() ;
1096 				SMT_PANIC(smc,HWM_E0009,HWM_E0009_MSG) ;
1097 				/* Either we don't have an RxD or all
1098 				 * RxDs are filled. Therefore it's allowed
1099 				 * for to set the STOPPED flag */
1100 				smc->hw.hw_state = STOPPED ;
1101 				mac_drv_clear_rx_queue(smc) ;
1102 				smc->hw.hw_state = STARTED ;
1103 				mac_drv_fill_rxd(smc) ;
1104 				smc->os.hwm.detec_count = 0 ;
1105 				goto rx_end ;
1106 			}
1107 			rfsw = le32_to_cpu(r->rxd_rfsw) ;
1108 			if ((rbctrl & BMU_STF) != ((rbctrl & BMU_ST_BUF) <<5)) {
1109 				/*
1110 				 * The BMU_STF bit is deleted, 1 frame is
1111 				 * placed into more than 1 rx buffer
1112 				 *
1113 				 * skip frame by setting the rx len to 0
1114 				 *
1115 				 * if fragment count == 0
1116 				 *	The missing STF bit belongs to the
1117 				 *	current frame, search for the
1118 				 *	EOF bit to complete the frame
1119 				 * else
1120 				 *	the fragment belongs to the next frame,
1121 				 *	exit the loop and process the frame
1122 				 */
1123 				SK_BREAK() ;
1124 				rfsw = 0 ;
1125 				if (frag_count) {
1126 					break ;
1127 				}
1128 			}
1129 			n += rbctrl & 0xffff ;
1130 			r = r->rxd_next ;
1131 			frag_count++ ;
1132 			rx_used-- ;
1133 		} while (!(rbctrl & BMU_EOF)) ;
1134 		used_frags = frag_count ;
1135 		DB_RX(5, "EOF set in RxD, used_frags = %d", used_frags);
1136 
1137 		/* may be next 2 DRV_BUF_FLUSH() can be skipped, because */
1138 		/* BMU_ST_BUF will not be changed by the ASIC */
1139 		DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORCPU) ;
1140 		while (rx_used && !(r->rxd_rbctrl & cpu_to_le32(BMU_ST_BUF))) {
1141 			DB_RX(5, "Check STF bit in %p", r);
1142 			r = r->rxd_next ;
1143 			DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORCPU) ;
1144 			frag_count++ ;
1145 			rx_used-- ;
1146 		}
1147 		DB_RX(5, "STF bit found");
1148 
1149 		/*
1150 		 * The received frame is finished for the process receive
1151 		 */
1152 		rxd = queue->rx_curr_get ;
1153 		queue->rx_curr_get = r ;
1154 		queue->rx_free += frag_count ;
1155 		queue->rx_used = rx_used ;
1156 
1157 		/*
1158 		 * ASIC Errata no. 7 (STF - Bit Bug)
1159 		 */
1160 		rxd->rxd_rbctrl &= cpu_to_le32(~BMU_STF) ;
1161 
1162 		for (r=rxd, i=frag_count ; i ; r=r->rxd_next, i--){
1163 			DB_RX(5, "dma_complete for RxD %p", r);
1164 			dma_complete(smc,(union s_fp_descr volatile *)r,DMA_WR);
1165 		}
1166 		smc->hw.fp.err_stats.err_valid++ ;
1167 		smc->mib.m[MAC0].fddiMACCopied_Ct++ ;
1168 
1169 		/* the length of the data including the FC */
1170 		len = (rfsw & RD_LENGTH) - 4 ;
1171 
1172 		DB_RX(4, "frame length = %d", len);
1173 		/*
1174 		 * check the frame_length and all error flags
1175 		 */
1176 		if (rfsw & (RX_MSRABT|RX_FS_E|RX_FS_CRC|RX_FS_IMPL)){
1177 			if (rfsw & RD_S_MSRABT) {
1178 				DB_RX(2, "Frame aborted by the FORMAC");
1179 				smc->hw.fp.err_stats.err_abort++ ;
1180 			}
1181 			/*
1182 			 * check frame status
1183 			 */
1184 			if (rfsw & RD_S_SEAC2) {
1185 				DB_RX(2, "E-Indicator set");
1186 				smc->hw.fp.err_stats.err_e_indicator++ ;
1187 			}
1188 			if (rfsw & RD_S_SFRMERR) {
1189 				DB_RX(2, "CRC error");
1190 				smc->hw.fp.err_stats.err_crc++ ;
1191 			}
1192 			if (rfsw & RX_FS_IMPL) {
1193 				DB_RX(2, "Implementer frame");
1194 				smc->hw.fp.err_stats.err_imp_frame++ ;
1195 			}
1196 			goto abort_frame ;
1197 		}
1198 		if (len > FDDI_RAW_MTU-4) {
1199 			DB_RX(2, "Frame too long error");
1200 			smc->hw.fp.err_stats.err_too_long++ ;
1201 			goto abort_frame ;
1202 		}
1203 		/*
1204 		 * SUPERNET 3 Bug: FORMAC delivers status words
1205 		 * of aborted frames to the BMU
1206 		 */
1207 		if (len <= 4) {
1208 			DB_RX(2, "Frame length = 0");
1209 			goto abort_frame ;
1210 		}
1211 
1212 		if (len != (n-4)) {
1213 			DB_RX(4, "BMU: rx len differs: [%d:%d]", len, n);
1214 			smc->os.hwm.rx_len_error++ ;
1215 			goto abort_frame ;
1216 		}
1217 
1218 		/*
1219 		 * Check SA == MA
1220 		 */
1221 		virt = (u_char far *) rxd->rxd_virt ;
1222 		DB_RX(2, "FC = %x", *virt);
1223 		if (virt[12] == MA[5] &&
1224 		    virt[11] == MA[4] &&
1225 		    virt[10] == MA[3] &&
1226 		    virt[9] == MA[2] &&
1227 		    virt[8] == MA[1] &&
1228 		    (virt[7] & ~GROUP_ADDR_BIT) == MA[0]) {
1229 			goto abort_frame ;
1230 		}
1231 
1232 		/*
1233 		 * test if LLC frame
1234 		 */
1235 		if (rfsw & RX_FS_LLC) {
1236 			/*
1237 			 * if pass_llc_promisc is disable
1238 			 *	if DA != Multicast or Broadcast or DA!=MA
1239 			 *		abort the frame
1240 			 */
1241 			if (!smc->os.hwm.pass_llc_promisc) {
1242 				if(!(virt[1] & GROUP_ADDR_BIT)) {
1243 					if (virt[6] != MA[5] ||
1244 					    virt[5] != MA[4] ||
1245 					    virt[4] != MA[3] ||
1246 					    virt[3] != MA[2] ||
1247 					    virt[2] != MA[1] ||
1248 					    virt[1] != MA[0]) {
1249 						DB_RX(2, "DA != MA and not multi- or broadcast");
1250 						goto abort_frame ;
1251 					}
1252 				}
1253 			}
1254 
1255 			/*
1256 			 * LLC frame received
1257 			 */
1258 			DB_RX(4, "LLC - receive");
1259 			mac_drv_rx_complete(smc,rxd,frag_count,len) ;
1260 		}
1261 		else {
1262 			if (!(mb = smt_get_mbuf(smc))) {
1263 				smc->hw.fp.err_stats.err_no_buf++ ;
1264 				DB_RX(4, "No SMbuf; receive terminated");
1265 				goto abort_frame ;
1266 			}
1267 			data = smtod(mb,char *) - 1 ;
1268 
1269 			/*
1270 			 * copy the frame into a SMT_MBuf
1271 			 */
1272 #ifdef USE_OS_CPY
1273 			hwm_cpy_rxd2mb(rxd,data,len) ;
1274 #else
1275 			for (r=rxd, i=used_frags ; i ; r=r->rxd_next, i--){
1276 				n = le32_to_cpu(r->rxd_rbctrl) & RD_LENGTH ;
1277 				DB_RX(6, "cp SMT frame to mb: len = %d", n);
1278 				memcpy(data,r->rxd_virt,n) ;
1279 				data += n ;
1280 			}
1281 			data = smtod(mb,char *) - 1 ;
1282 #endif
1283 			fc = *(char *)mb->sm_data = *data ;
1284 			mb->sm_len = len - 1 ;		/* len - fc */
1285 			data++ ;
1286 
1287 			/*
1288 			 * SMT frame received
1289 			 */
1290 			switch(fc) {
1291 			case FC_SMT_INFO :
1292 				smc->hw.fp.err_stats.err_smt_frame++ ;
1293 				DB_RX(5, "SMT frame received");
1294 
1295 				if (smc->os.hwm.pass_SMT) {
1296 					DB_RX(5, "pass SMT frame");
1297 					mac_drv_rx_complete(smc, rxd,
1298 						frag_count,len) ;
1299 				}
1300 				else {
1301 					DB_RX(5, "requeue RxD");
1302 					mac_drv_requeue_rxd(smc,rxd,frag_count);
1303 				}
1304 
1305 				smt_received_pack(smc,mb,(int)(rfsw>>25)) ;
1306 				break ;
1307 			case FC_SMT_NSA :
1308 				smc->hw.fp.err_stats.err_smt_frame++ ;
1309 				DB_RX(5, "SMT frame received");
1310 
1311 				/* if pass_NSA set pass the NSA frame or */
1312 				/* pass_SMT set and the A-Indicator */
1313 				/* is not set, pass the NSA frame */
1314 				if (smc->os.hwm.pass_NSA ||
1315 					(smc->os.hwm.pass_SMT &&
1316 					!(rfsw & A_INDIC))) {
1317 					DB_RX(5, "pass SMT frame");
1318 					mac_drv_rx_complete(smc, rxd,
1319 						frag_count,len) ;
1320 				}
1321 				else {
1322 					DB_RX(5, "requeue RxD");
1323 					mac_drv_requeue_rxd(smc,rxd,frag_count);
1324 				}
1325 
1326 				smt_received_pack(smc,mb,(int)(rfsw>>25)) ;
1327 				break ;
1328 			case FC_BEACON :
1329 				if (smc->os.hwm.pass_DB) {
1330 					DB_RX(5, "pass DB frame");
1331 					mac_drv_rx_complete(smc, rxd,
1332 						frag_count,len) ;
1333 				}
1334 				else {
1335 					DB_RX(5, "requeue RxD");
1336 					mac_drv_requeue_rxd(smc,rxd,frag_count);
1337 				}
1338 				smt_free_mbuf(smc,mb) ;
1339 				break ;
1340 			default :
1341 				/*
1342 				 * unknown FC abort the frame
1343 				 */
1344 				DB_RX(2, "unknown FC error");
1345 				smt_free_mbuf(smc,mb) ;
1346 				DB_RX(5, "requeue RxD");
1347 				mac_drv_requeue_rxd(smc,rxd,frag_count) ;
1348 				if ((fc & 0xf0) == FC_MAC)
1349 					smc->hw.fp.err_stats.err_mac_frame++ ;
1350 				else
1351 					smc->hw.fp.err_stats.err_imp_frame++ ;
1352 
1353 				break ;
1354 			}
1355 		}
1356 
1357 		DB_RX(3, "next RxD is %p", queue->rx_curr_get);
1358 		NDD_TRACE("RHx1",queue->rx_curr_get,0,0) ;
1359 
1360 		continue ;
1361 	/*--------------------------------------------------------------------*/
1362 abort_frame:
1363 		DB_RX(5, "requeue RxD");
1364 		mac_drv_requeue_rxd(smc,rxd,frag_count) ;
1365 
1366 		DB_RX(3, "next RxD is %p", queue->rx_curr_get);
1367 		NDD_TRACE("RHx2",queue->rx_curr_get,0,0) ;
1368 	}
1369 rx_end:
1370 #ifdef	ALL_RX_COMPLETE
1371 	mac_drv_all_receives_complete(smc) ;
1372 #endif
1373 	return ;	/* lint bug: needs return detect end of function */
1374 }
1375 
1376 static void smt_to_llc(struct s_smc *smc, SMbuf *mb)
1377 {
1378 	u_char	fc ;
1379 
1380 	DB_RX(4, "send a queued frame to the llc layer");
1381 	smc->os.hwm.r.len = mb->sm_len ;
1382 	smc->os.hwm.r.mb_pos = smtod(mb,char *) ;
1383 	fc = *smc->os.hwm.r.mb_pos ;
1384 	(void)mac_drv_rx_init(smc,(int)mb->sm_len,(int)fc,
1385 		smc->os.hwm.r.mb_pos,(int)mb->sm_len) ;
1386 	smt_free_mbuf(smc,mb) ;
1387 }
1388 
1389 /*
1390  *	BEGIN_MANUAL_ENTRY(hwm_rx_frag)
1391  *	void hwm_rx_frag(smc,virt,phys,len,frame_status)
1392  *
1393  * function	MACRO		(hardware module, hwmtm.h)
1394  *		This function calls dma_master for preparing the
1395  *		system hardware for the DMA transfer and initializes
1396  *		the current RxD with the length and the physical and
1397  *		virtual address of the fragment. Furthermore, it sets the
1398  *		STF and EOF bits depending on the frame status byte,
1399  *		switches the OWN flag of the RxD, so that it is owned by the
1400  *		adapter and issues an rx_start.
1401  *
1402  * para	virt	virtual pointer to the fragment
1403  *	len	the length of the fragment
1404  *	frame_status	status of the frame, see design description
1405  *
1406  * NOTE:	It is possible to call this function with a fragment length
1407  *		of zero.
1408  *
1409  *	END_MANUAL_ENTRY
1410  */
1411 void hwm_rx_frag(struct s_smc *smc, char far *virt, u_long phys, int len,
1412 		 int frame_status)
1413 {
1414 	struct s_smt_fp_rxd volatile *r ;
1415 	__le32	rbctrl;
1416 
1417 	NDD_TRACE("RHfB",virt,len,frame_status) ;
1418 	DB_RX(2, "hwm_rx_frag: len = %d, frame_status = %x", len, frame_status);
1419 	r = smc->hw.fp.rx_q[QUEUE_R1].rx_curr_put ;
1420 	r->rxd_virt = virt ;
1421 	r->rxd_rbadr = cpu_to_le32(phys) ;
1422 	rbctrl = cpu_to_le32( (((__u32)frame_status &
1423 		(FIRST_FRAG|LAST_FRAG))<<26) |
1424 		(((u_long) frame_status & FIRST_FRAG) << 21) |
1425 		BMU_OWN | BMU_CHECK | BMU_EN_IRQ_EOF | len) ;
1426 	r->rxd_rbctrl = rbctrl ;
1427 
1428 	DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORDEV) ;
1429 	outpd(ADDR(B0_R1_CSR),CSR_START) ;
1430 	smc->hw.fp.rx_q[QUEUE_R1].rx_free-- ;
1431 	smc->hw.fp.rx_q[QUEUE_R1].rx_used++ ;
1432 	smc->hw.fp.rx_q[QUEUE_R1].rx_curr_put = r->rxd_next ;
1433 	NDD_TRACE("RHfE",r,le32_to_cpu(r->rxd_rbadr),0) ;
1434 }
1435 
1436 /*
1437  *	BEGINN_MANUAL_ENTRY(mac_drv_clear_rx_queue)
1438  *
1439  * void mac_drv_clear_rx_queue(smc)
1440  * struct s_smc *smc ;
1441  *
1442  * function	DOWNCALL	(hardware module, hwmtm.c)
1443  *		mac_drv_clear_rx_queue is called by the OS-specific module
1444  *		after it has issued a card_stop.
1445  *		In this case, the frames in the receive queue are obsolete and
1446  *		should be removed. For removing mac_drv_clear_rx_queue
1447  *		calls dma_master for each RxD and mac_drv_clear_rxd for each
1448  *		receive buffer.
1449  *
1450  * NOTE:	calling sequence card_stop:
1451  *		CLI_FBI(), card_stop(),
1452  *		mac_drv_clear_tx_queue(), mac_drv_clear_rx_queue(),
1453  *
1454  * NOTE:	The caller is responsible that the BMUs are idle
1455  *		when this function is called.
1456  *
1457  *	END_MANUAL_ENTRY
1458  */
1459 void mac_drv_clear_rx_queue(struct s_smc *smc)
1460 {
1461 	struct s_smt_fp_rxd volatile *r ;
1462 	struct s_smt_fp_rxd volatile *next_rxd ;
1463 	struct s_smt_rx_queue *queue ;
1464 	int frag_count ;
1465 	int i ;
1466 
1467 	if (smc->hw.hw_state != STOPPED) {
1468 		SK_BREAK() ;
1469 		SMT_PANIC(smc,HWM_E0012,HWM_E0012_MSG) ;
1470 		return ;
1471 	}
1472 
1473 	queue = smc->hw.fp.rx[QUEUE_R1] ;
1474 	DB_RX(5, "clear_rx_queue");
1475 
1476 	/*
1477 	 * dma_complete and mac_drv_clear_rxd for all RxDs / receive buffers
1478 	 */
1479 	r = queue->rx_curr_get ;
1480 	while (queue->rx_used) {
1481 		DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORCPU) ;
1482 		DB_RX(5, "switch OWN bit of RxD 0x%p", r);
1483 		r->rxd_rbctrl &= ~cpu_to_le32(BMU_OWN) ;
1484 		frag_count = 1 ;
1485 		DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORDEV) ;
1486 		r = r->rxd_next ;
1487 		DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORCPU) ;
1488 		while (r != queue->rx_curr_put &&
1489 			!(r->rxd_rbctrl & cpu_to_le32(BMU_ST_BUF))) {
1490 			DB_RX(5, "Check STF bit in %p", r);
1491 			r->rxd_rbctrl &= ~cpu_to_le32(BMU_OWN) ;
1492 			DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORDEV) ;
1493 			r = r->rxd_next ;
1494 			DRV_BUF_FLUSH(r,DDI_DMA_SYNC_FORCPU) ;
1495 			frag_count++ ;
1496 		}
1497 		DB_RX(5, "STF bit found");
1498 		next_rxd = r ;
1499 
1500 		for (r=queue->rx_curr_get,i=frag_count; i ; r=r->rxd_next,i--){
1501 			DB_RX(5, "dma_complete for RxD %p", r);
1502 			dma_complete(smc,(union s_fp_descr volatile *)r,DMA_WR);
1503 		}
1504 
1505 		DB_RX(5, "mac_drv_clear_rxd: RxD %p frag_count %d",
1506 		      queue->rx_curr_get, frag_count);
1507 		mac_drv_clear_rxd(smc,queue->rx_curr_get,frag_count) ;
1508 
1509 		queue->rx_curr_get = next_rxd ;
1510 		queue->rx_used -= frag_count ;
1511 		queue->rx_free += frag_count ;
1512 	}
1513 }
1514 
1515 
1516 /*
1517 	-------------------------------------------------------------
1518 	SEND FUNCTIONS:
1519 	-------------------------------------------------------------
1520 */
1521 
1522 /*
1523  *	BEGIN_MANUAL_ENTRY(hwm_tx_init)
1524  *	int hwm_tx_init(smc,fc,frag_count,frame_len,frame_status)
1525  *
1526  * function	DOWN_CALL	(hardware module, hwmtm.c)
1527  *		hwm_tx_init checks if the frame can be sent through the
1528  *		corresponding send queue.
1529  *
1530  * para	fc	the frame control. To determine through which
1531  *		send queue the frame should be transmitted.
1532  *		0x50 - 0x57:	asynchronous LLC frame
1533  *		0xD0 - 0xD7:	synchronous LLC frame
1534  *		0x41, 0x4F:	SMT frame to the network
1535  *		0x42:		SMT frame to the network and to the local SMT
1536  *		0x43:		SMT frame to the local SMT
1537  *	frag_count	count of the fragments for this frame
1538  *	frame_len	length of the frame
1539  *	frame_status	status of the frame, the send queue bit is already
1540  *			specified
1541  *
1542  * return		frame_status
1543  *
1544  *	END_MANUAL_ENTRY
1545  */
1546 int hwm_tx_init(struct s_smc *smc, u_char fc, int frag_count, int frame_len,
1547 		int frame_status)
1548 {
1549 	NDD_TRACE("THiB",fc,frag_count,frame_len) ;
1550 	smc->os.hwm.tx_p = smc->hw.fp.tx[frame_status & QUEUE_A0] ;
1551 	smc->os.hwm.tx_descr = TX_DESCRIPTOR | (((u_long)(frame_len-1)&3)<<27) ;
1552 	smc->os.hwm.tx_len = frame_len ;
1553 	DB_TX(3, "hwm_tx_init: fc = %x, len = %d", fc, frame_len);
1554 	if ((fc & ~(FC_SYNC_BIT|FC_LLC_PRIOR)) == FC_ASYNC_LLC) {
1555 		frame_status |= LAN_TX ;
1556 	}
1557 	else {
1558 		switch (fc) {
1559 		case FC_SMT_INFO :
1560 		case FC_SMT_NSA :
1561 			frame_status |= LAN_TX ;
1562 			break ;
1563 		case FC_SMT_LOC :
1564 			frame_status |= LOC_TX ;
1565 			break ;
1566 		case FC_SMT_LAN_LOC :
1567 			frame_status |= LAN_TX | LOC_TX ;
1568 			break ;
1569 		default :
1570 			SMT_PANIC(smc,HWM_E0010,HWM_E0010_MSG) ;
1571 		}
1572 	}
1573 	if (!smc->hw.mac_ring_is_up) {
1574 		frame_status &= ~LAN_TX ;
1575 		frame_status |= RING_DOWN ;
1576 		DB_TX(2, "Ring is down: terminate LAN_TX");
1577 	}
1578 	if (frag_count > smc->os.hwm.tx_p->tx_free) {
1579 #ifndef	NDIS_OS2
1580 		mac_drv_clear_txd(smc) ;
1581 		if (frag_count > smc->os.hwm.tx_p->tx_free) {
1582 			DB_TX(2, "Out of TxDs, terminate LAN_TX");
1583 			frame_status &= ~LAN_TX ;
1584 			frame_status |= OUT_OF_TXD ;
1585 		}
1586 #else
1587 		DB_TX(2, "Out of TxDs, terminate LAN_TX");
1588 		frame_status &= ~LAN_TX ;
1589 		frame_status |= OUT_OF_TXD ;
1590 #endif
1591 	}
1592 	DB_TX(3, "frame_status = %x", frame_status);
1593 	NDD_TRACE("THiE",frame_status,smc->os.hwm.tx_p->tx_free,0) ;
1594 	return frame_status;
1595 }
1596 
1597 /*
1598  *	BEGIN_MANUAL_ENTRY(hwm_tx_frag)
1599  *	void hwm_tx_frag(smc,virt,phys,len,frame_status)
1600  *
1601  * function	DOWNCALL	(hardware module, hwmtm.c)
1602  *		If the frame should be sent to the LAN, this function calls
1603  *		dma_master, fills the current TxD with the virtual and the
1604  *		physical address, sets the STF and EOF bits dependent on
1605  *		the frame status, and requests the BMU to start the
1606  *		transmit.
1607  *		If the frame should be sent to the local SMT, an SMT_MBuf
1608  *		is allocated if the FIRST_FRAG bit is set in the frame_status.
1609  *		The fragment of the frame is copied into the SMT MBuf.
1610  *		The function smt_received_pack is called if the LAST_FRAG
1611  *		bit is set in the frame_status word.
1612  *
1613  * para	virt	virtual pointer to the fragment
1614  *	len	the length of the fragment
1615  *	frame_status	status of the frame, see design description
1616  *
1617  * return	nothing returned, no parameter is modified
1618  *
1619  * NOTE:	It is possible to invoke this macro with a fragment length
1620  *		of zero.
1621  *
1622  *	END_MANUAL_ENTRY
1623  */
1624 void hwm_tx_frag(struct s_smc *smc, char far *virt, u_long phys, int len,
1625 		 int frame_status)
1626 {
1627 	struct s_smt_fp_txd volatile *t ;
1628 	struct s_smt_tx_queue *queue ;
1629 	__le32	tbctrl ;
1630 
1631 	queue = smc->os.hwm.tx_p ;
1632 
1633 	NDD_TRACE("THfB",virt,len,frame_status) ;
1634 	/* Bug fix: AF / May 31 1999 (#missing)
1635 	 * snmpinfo problem reported by IBM is caused by invalid
1636 	 * t-pointer (txd) if LAN_TX is not set but LOC_TX only.
1637 	 * Set: t = queue->tx_curr_put  here !
1638 	 */
1639 	t = queue->tx_curr_put ;
1640 
1641 	DB_TX(2, "hwm_tx_frag: len = %d, frame_status = %x", len, frame_status);
1642 	if (frame_status & LAN_TX) {
1643 		/* '*t' is already defined */
1644 		DB_TX(3, "LAN_TX: TxD = %p, virt = %p", t, virt);
1645 		t->txd_virt = virt ;
1646 		t->txd_txdscr = cpu_to_le32(smc->os.hwm.tx_descr) ;
1647 		t->txd_tbadr = cpu_to_le32(phys) ;
1648 		tbctrl = cpu_to_le32((((__u32)frame_status &
1649 			(FIRST_FRAG|LAST_FRAG|EN_IRQ_EOF))<< 26) |
1650 			BMU_OWN|BMU_CHECK |len) ;
1651 		t->txd_tbctrl = tbctrl ;
1652 
1653 #ifndef	AIX
1654 		DRV_BUF_FLUSH(t,DDI_DMA_SYNC_FORDEV) ;
1655 		outpd(queue->tx_bmu_ctl,CSR_START) ;
1656 #else	/* ifndef AIX */
1657 		DRV_BUF_FLUSH(t,DDI_DMA_SYNC_FORDEV) ;
1658 		if (frame_status & QUEUE_A0) {
1659 			outpd(ADDR(B0_XA_CSR),CSR_START) ;
1660 		}
1661 		else {
1662 			outpd(ADDR(B0_XS_CSR),CSR_START) ;
1663 		}
1664 #endif
1665 		queue->tx_free-- ;
1666 		queue->tx_used++ ;
1667 		queue->tx_curr_put = t->txd_next ;
1668 		if (frame_status & LAST_FRAG) {
1669 			smc->mib.m[MAC0].fddiMACTransmit_Ct++ ;
1670 		}
1671 	}
1672 	if (frame_status & LOC_TX) {
1673 		DB_TX(3, "LOC_TX:");
1674 		if (frame_status & FIRST_FRAG) {
1675 			if(!(smc->os.hwm.tx_mb = smt_get_mbuf(smc))) {
1676 				smc->hw.fp.err_stats.err_no_buf++ ;
1677 				DB_TX(4, "No SMbuf; transmit terminated");
1678 			}
1679 			else {
1680 				smc->os.hwm.tx_data =
1681 					smtod(smc->os.hwm.tx_mb,char *) - 1 ;
1682 #ifdef USE_OS_CPY
1683 #ifdef PASS_1ST_TXD_2_TX_COMP
1684 				hwm_cpy_txd2mb(t,smc->os.hwm.tx_data,
1685 					smc->os.hwm.tx_len) ;
1686 #endif
1687 #endif
1688 			}
1689 		}
1690 		if (smc->os.hwm.tx_mb) {
1691 #ifndef	USE_OS_CPY
1692 			DB_TX(3, "copy fragment into MBuf");
1693 			memcpy(smc->os.hwm.tx_data,virt,len) ;
1694 			smc->os.hwm.tx_data += len ;
1695 #endif
1696 			if (frame_status & LAST_FRAG) {
1697 #ifdef	USE_OS_CPY
1698 #ifndef PASS_1ST_TXD_2_TX_COMP
1699 				/*
1700 				 * hwm_cpy_txd2mb(txd,data,len) copies 'len'
1701 				 * bytes from the virtual pointer in 'rxd'
1702 				 * to 'data'. The virtual pointer of the
1703 				 * os-specific tx-buffer should be written
1704 				 * in the LAST txd.
1705 				 */
1706 				hwm_cpy_txd2mb(t,smc->os.hwm.tx_data,
1707 					smc->os.hwm.tx_len) ;
1708 #endif	/* nPASS_1ST_TXD_2_TX_COMP */
1709 #endif	/* USE_OS_CPY */
1710 				smc->os.hwm.tx_data =
1711 					smtod(smc->os.hwm.tx_mb,char *) - 1 ;
1712 				*(char *)smc->os.hwm.tx_mb->sm_data =
1713 					*smc->os.hwm.tx_data ;
1714 				smc->os.hwm.tx_data++ ;
1715 				smc->os.hwm.tx_mb->sm_len =
1716 					smc->os.hwm.tx_len - 1 ;
1717 				DB_TX(3, "pass LLC frame to SMT");
1718 				smt_received_pack(smc,smc->os.hwm.tx_mb,
1719 						RD_FS_LOCAL) ;
1720 			}
1721 		}
1722 	}
1723 	NDD_TRACE("THfE",t,queue->tx_free,0) ;
1724 }
1725 
1726 
1727 /*
1728  * queues a receive for later send
1729  */
1730 static void queue_llc_rx(struct s_smc *smc, SMbuf *mb)
1731 {
1732 	DB_GEN(4, "queue_llc_rx: mb = %p", mb);
1733 	smc->os.hwm.queued_rx_frames++ ;
1734 	mb->sm_next = (SMbuf *)NULL ;
1735 	if (smc->os.hwm.llc_rx_pipe == NULL) {
1736 		smc->os.hwm.llc_rx_pipe = mb ;
1737 	}
1738 	else {
1739 		smc->os.hwm.llc_rx_tail->sm_next = mb ;
1740 	}
1741 	smc->os.hwm.llc_rx_tail = mb ;
1742 
1743 	/*
1744 	 * force an timer IRQ to receive the data
1745 	 */
1746 	if (!smc->os.hwm.isr_flag) {
1747 		smt_force_irq(smc) ;
1748 	}
1749 }
1750 
1751 /*
1752  * get a SMbuf from the llc_rx_queue
1753  */
1754 static SMbuf *get_llc_rx(struct s_smc *smc)
1755 {
1756 	SMbuf	*mb ;
1757 
1758 	if ((mb = smc->os.hwm.llc_rx_pipe)) {
1759 		smc->os.hwm.queued_rx_frames-- ;
1760 		smc->os.hwm.llc_rx_pipe = mb->sm_next ;
1761 	}
1762 	DB_GEN(4, "get_llc_rx: mb = 0x%p", mb);
1763 	return mb;
1764 }
1765 
1766 /*
1767  * queues a transmit SMT MBuf during the time were the MBuf is
1768  * queued the TxD ring
1769  */
1770 static void queue_txd_mb(struct s_smc *smc, SMbuf *mb)
1771 {
1772 	DB_GEN(4, "_rx: queue_txd_mb = %p", mb);
1773 	smc->os.hwm.queued_txd_mb++ ;
1774 	mb->sm_next = (SMbuf *)NULL ;
1775 	if (smc->os.hwm.txd_tx_pipe == NULL) {
1776 		smc->os.hwm.txd_tx_pipe = mb ;
1777 	}
1778 	else {
1779 		smc->os.hwm.txd_tx_tail->sm_next = mb ;
1780 	}
1781 	smc->os.hwm.txd_tx_tail = mb ;
1782 }
1783 
1784 /*
1785  * get a SMbuf from the txd_tx_queue
1786  */
1787 static SMbuf *get_txd_mb(struct s_smc *smc)
1788 {
1789 	SMbuf *mb ;
1790 
1791 	if ((mb = smc->os.hwm.txd_tx_pipe)) {
1792 		smc->os.hwm.queued_txd_mb-- ;
1793 		smc->os.hwm.txd_tx_pipe = mb->sm_next ;
1794 	}
1795 	DB_GEN(4, "get_txd_mb: mb = 0x%p", mb);
1796 	return mb;
1797 }
1798 
1799 /*
1800  *	SMT Send function
1801  */
1802 void smt_send_mbuf(struct s_smc *smc, SMbuf *mb, int fc)
1803 {
1804 	char far *data ;
1805 	int	len ;
1806 	int	n ;
1807 	int	i ;
1808 	int	frag_count ;
1809 	int	frame_status ;
1810 	SK_LOC_DECL(char far,*virt[3]) ;
1811 	int	frag_len[3] ;
1812 	struct s_smt_tx_queue *queue ;
1813 	struct s_smt_fp_txd volatile *t ;
1814 	u_long	phys ;
1815 	__le32	tbctrl;
1816 
1817 	NDD_TRACE("THSB",mb,fc,0) ;
1818 	DB_TX(4, "smt_send_mbuf: mb = 0x%p, fc = 0x%x", mb, fc);
1819 
1820 	mb->sm_off-- ;	/* set to fc */
1821 	mb->sm_len++ ;	/* + fc */
1822 	data = smtod(mb,char *) ;
1823 	*data = fc ;
1824 	if (fc == FC_SMT_LOC)
1825 		*data = FC_SMT_INFO ;
1826 
1827 	/*
1828 	 * determine the frag count and the virt addresses of the frags
1829 	 */
1830 	frag_count = 0 ;
1831 	len = mb->sm_len ;
1832 	while (len) {
1833 		n = SMT_PAGESIZE - ((long)data & (SMT_PAGESIZE-1)) ;
1834 		if (n >= len) {
1835 			n = len ;
1836 		}
1837 		DB_TX(5, "frag: virt/len = 0x%p/%d", data, n);
1838 		virt[frag_count] = data ;
1839 		frag_len[frag_count] = n ;
1840 		frag_count++ ;
1841 		len -= n ;
1842 		data += n ;
1843 	}
1844 
1845 	/*
1846 	 * determine the frame status
1847 	 */
1848 	queue = smc->hw.fp.tx[QUEUE_A0] ;
1849 	if (fc == FC_BEACON || fc == FC_SMT_LOC) {
1850 		frame_status = LOC_TX ;
1851 	}
1852 	else {
1853 		frame_status = LAN_TX ;
1854 		if ((smc->os.hwm.pass_NSA &&(fc == FC_SMT_NSA)) ||
1855 		   (smc->os.hwm.pass_SMT &&(fc == FC_SMT_INFO)))
1856 			frame_status |= LOC_TX ;
1857 	}
1858 
1859 	if (!smc->hw.mac_ring_is_up || frag_count > queue->tx_free) {
1860 		frame_status &= ~LAN_TX;
1861 		if (frame_status) {
1862 			DB_TX(2, "Ring is down: terminate LAN_TX");
1863 		}
1864 		else {
1865 			DB_TX(2, "Ring is down: terminate transmission");
1866 			smt_free_mbuf(smc,mb) ;
1867 			return ;
1868 		}
1869 	}
1870 	DB_TX(5, "frame_status = 0x%x", frame_status);
1871 
1872 	if ((frame_status & LAN_TX) && (frame_status & LOC_TX)) {
1873 		mb->sm_use_count = 2 ;
1874 	}
1875 
1876 	if (frame_status & LAN_TX) {
1877 		t = queue->tx_curr_put ;
1878 		frame_status |= FIRST_FRAG ;
1879 		for (i = 0; i < frag_count; i++) {
1880 			DB_TX(5, "init TxD = 0x%p", t);
1881 			if (i == frag_count-1) {
1882 				frame_status |= LAST_FRAG ;
1883 				t->txd_txdscr = cpu_to_le32(TX_DESCRIPTOR |
1884 					(((__u32)(mb->sm_len-1)&3) << 27)) ;
1885 			}
1886 			t->txd_virt = virt[i] ;
1887 			phys = dma_master(smc, (void far *)virt[i],
1888 				frag_len[i], DMA_RD|SMT_BUF) ;
1889 			t->txd_tbadr = cpu_to_le32(phys) ;
1890 			tbctrl = cpu_to_le32((((__u32)frame_status &
1891 				(FIRST_FRAG|LAST_FRAG)) << 26) |
1892 				BMU_OWN | BMU_CHECK | BMU_SMT_TX |frag_len[i]) ;
1893 			t->txd_tbctrl = tbctrl ;
1894 #ifndef	AIX
1895 			DRV_BUF_FLUSH(t,DDI_DMA_SYNC_FORDEV) ;
1896 			outpd(queue->tx_bmu_ctl,CSR_START) ;
1897 #else
1898 			DRV_BUF_FLUSH(t,DDI_DMA_SYNC_FORDEV) ;
1899 			outpd(ADDR(B0_XA_CSR),CSR_START) ;
1900 #endif
1901 			frame_status &= ~FIRST_FRAG ;
1902 			queue->tx_curr_put = t = t->txd_next ;
1903 			queue->tx_free-- ;
1904 			queue->tx_used++ ;
1905 		}
1906 		smc->mib.m[MAC0].fddiMACTransmit_Ct++ ;
1907 		queue_txd_mb(smc,mb) ;
1908 	}
1909 
1910 	if (frame_status & LOC_TX) {
1911 		DB_TX(5, "pass Mbuf to LLC queue");
1912 		queue_llc_rx(smc,mb) ;
1913 	}
1914 
1915 	/*
1916 	 * We need to unqueue the free SMT_MBUFs here, because it may
1917 	 * be that the SMT want's to send more than 1 frame for one down call
1918 	 */
1919 	mac_drv_clear_txd(smc) ;
1920 	NDD_TRACE("THSE",t,queue->tx_free,frag_count) ;
1921 }
1922 
1923 /*	BEGIN_MANUAL_ENTRY(mac_drv_clear_txd)
1924  *	void mac_drv_clear_txd(smc)
1925  *
1926  * function	DOWNCALL	(hardware module, hwmtm.c)
1927  *		mac_drv_clear_txd searches in both send queues for TxD's
1928  *		which were finished by the adapter. It calls dma_complete
1929  *		for each TxD. If the last fragment of an LLC frame is
1930  *		reached, it calls mac_drv_tx_complete to release the
1931  *		send buffer.
1932  *
1933  * return	nothing
1934  *
1935  *	END_MANUAL_ENTRY
1936  */
1937 static void mac_drv_clear_txd(struct s_smc *smc)
1938 {
1939 	struct s_smt_tx_queue *queue ;
1940 	struct s_smt_fp_txd volatile *t1 ;
1941 	struct s_smt_fp_txd volatile *t2 = NULL ;
1942 	SMbuf *mb ;
1943 	u_long	tbctrl ;
1944 	int i ;
1945 	int frag_count ;
1946 	int n ;
1947 
1948 	NDD_TRACE("THcB",0,0,0) ;
1949 	for (i = QUEUE_S; i <= QUEUE_A0; i++) {
1950 		queue = smc->hw.fp.tx[i] ;
1951 		t1 = queue->tx_curr_get ;
1952 		DB_TX(5, "clear_txd: QUEUE = %d (0=sync/1=async)", i);
1953 
1954 		for ( ; ; ) {
1955 			frag_count = 0 ;
1956 
1957 			do {
1958 				DRV_BUF_FLUSH(t1,DDI_DMA_SYNC_FORCPU) ;
1959 				DB_TX(5, "check OWN/EOF bit of TxD 0x%p", t1);
1960 				tbctrl = le32_to_cpu(CR_READ(t1->txd_tbctrl));
1961 
1962 				if (tbctrl & BMU_OWN || !queue->tx_used){
1963 					DB_TX(4, "End of TxDs queue %d", i);
1964 					goto free_next_queue ;	/* next queue */
1965 				}
1966 				t1 = t1->txd_next ;
1967 				frag_count++ ;
1968 			} while (!(tbctrl & BMU_EOF)) ;
1969 
1970 			t1 = queue->tx_curr_get ;
1971 			for (n = frag_count; n; n--) {
1972 				tbctrl = le32_to_cpu(t1->txd_tbctrl) ;
1973 				dma_complete(smc,
1974 					(union s_fp_descr volatile *) t1,
1975 					(int) (DMA_RD |
1976 					((tbctrl & BMU_SMT_TX) >> 18))) ;
1977 				t2 = t1 ;
1978 				t1 = t1->txd_next ;
1979 			}
1980 
1981 			if (tbctrl & BMU_SMT_TX) {
1982 				mb = get_txd_mb(smc) ;
1983 				smt_free_mbuf(smc,mb) ;
1984 			}
1985 			else {
1986 #ifndef PASS_1ST_TXD_2_TX_COMP
1987 				DB_TX(4, "mac_drv_tx_comp for TxD 0x%p", t2);
1988 				mac_drv_tx_complete(smc,t2) ;
1989 #else
1990 				DB_TX(4, "mac_drv_tx_comp for TxD 0x%x",
1991 				      queue->tx_curr_get);
1992 				mac_drv_tx_complete(smc,queue->tx_curr_get) ;
1993 #endif
1994 			}
1995 			queue->tx_curr_get = t1 ;
1996 			queue->tx_free += frag_count ;
1997 			queue->tx_used -= frag_count ;
1998 		}
1999 free_next_queue: ;
2000 	}
2001 	NDD_TRACE("THcE",0,0,0) ;
2002 }
2003 
2004 /*
2005  *	BEGINN_MANUAL_ENTRY(mac_drv_clear_tx_queue)
2006  *
2007  * void mac_drv_clear_tx_queue(smc)
2008  * struct s_smc *smc ;
2009  *
2010  * function	DOWNCALL	(hardware module, hwmtm.c)
2011  *		mac_drv_clear_tx_queue is called from the SMT when
2012  *		the RMT state machine has entered the ISOLATE state.
2013  *		This function is also called by the os-specific module
2014  *		after it has called the function card_stop().
2015  *		In this case, the frames in the send queues are obsolete and
2016  *		should be removed.
2017  *
2018  * note		calling sequence:
2019  *		CLI_FBI(), card_stop(),
2020  *		mac_drv_clear_tx_queue(), mac_drv_clear_rx_queue(),
2021  *
2022  * NOTE:	The caller is responsible that the BMUs are idle
2023  *		when this function is called.
2024  *
2025  *	END_MANUAL_ENTRY
2026  */
2027 void mac_drv_clear_tx_queue(struct s_smc *smc)
2028 {
2029 	struct s_smt_fp_txd volatile *t ;
2030 	struct s_smt_tx_queue *queue ;
2031 	int tx_used ;
2032 	int i ;
2033 
2034 	if (smc->hw.hw_state != STOPPED) {
2035 		SK_BREAK() ;
2036 		SMT_PANIC(smc,HWM_E0011,HWM_E0011_MSG) ;
2037 		return ;
2038 	}
2039 
2040 	for (i = QUEUE_S; i <= QUEUE_A0; i++) {
2041 		queue = smc->hw.fp.tx[i] ;
2042 		DB_TX(5, "clear_tx_queue: QUEUE = %d (0=sync/1=async)", i);
2043 
2044 		/*
2045 		 * switch the OWN bit of all pending frames to the host
2046 		 */
2047 		t = queue->tx_curr_get ;
2048 		tx_used = queue->tx_used ;
2049 		while (tx_used) {
2050 			DRV_BUF_FLUSH(t,DDI_DMA_SYNC_FORCPU) ;
2051 			DB_TX(5, "switch OWN bit of TxD 0x%p", t);
2052 			t->txd_tbctrl &= ~cpu_to_le32(BMU_OWN) ;
2053 			DRV_BUF_FLUSH(t,DDI_DMA_SYNC_FORDEV) ;
2054 			t = t->txd_next ;
2055 			tx_used-- ;
2056 		}
2057 	}
2058 
2059 	/*
2060 	 * release all TxD's for both send queues
2061 	 */
2062 	mac_drv_clear_txd(smc) ;
2063 
2064 	for (i = QUEUE_S; i <= QUEUE_A0; i++) {
2065 		queue = smc->hw.fp.tx[i] ;
2066 		t = queue->tx_curr_get ;
2067 
2068 		/*
2069 		 * write the phys pointer of the NEXT descriptor into the
2070 		 * BMU's current address descriptor pointer and set
2071 		 * tx_curr_get and tx_curr_put to this position
2072 		 */
2073 		if (i == QUEUE_S) {
2074 			outpd(ADDR(B5_XS_DA),le32_to_cpu(t->txd_ntdadr)) ;
2075 		}
2076 		else {
2077 			outpd(ADDR(B5_XA_DA),le32_to_cpu(t->txd_ntdadr)) ;
2078 		}
2079 
2080 		queue->tx_curr_put = queue->tx_curr_get->txd_next ;
2081 		queue->tx_curr_get = queue->tx_curr_put ;
2082 	}
2083 }
2084 
2085 
2086 /*
2087 	-------------------------------------------------------------
2088 	TEST FUNCTIONS:
2089 	-------------------------------------------------------------
2090 */
2091 
2092 #ifdef	DEBUG
2093 /*
2094  *	BEGIN_MANUAL_ENTRY(mac_drv_debug_lev)
2095  *	void mac_drv_debug_lev(smc,flag,lev)
2096  *
2097  * function	DOWNCALL	(drvsr.c)
2098  *		To get a special debug info the user can assign a debug level
2099  *		to any debug flag.
2100  *
2101  * para	flag	debug flag, possible values are:
2102  *			= 0:	reset all debug flags (the defined level is
2103  *				ignored)
2104  *			= 1:	debug.d_smtf
2105  *			= 2:	debug.d_smt
2106  *			= 3:	debug.d_ecm
2107  *			= 4:	debug.d_rmt
2108  *			= 5:	debug.d_cfm
2109  *			= 6:	debug.d_pcm
2110  *
2111  *			= 10:	debug.d_os.hwm_rx (hardware module receive path)
2112  *			= 11:	debug.d_os.hwm_tx(hardware module transmit path)
2113  *			= 12:	debug.d_os.hwm_gen(hardware module general flag)
2114  *
2115  *	lev	debug level
2116  *
2117  *	END_MANUAL_ENTRY
2118  */
2119 void mac_drv_debug_lev(struct s_smc *smc, int flag, int lev)
2120 {
2121 	switch(flag) {
2122 	case (int)NULL:
2123 		DB_P.d_smtf = DB_P.d_smt = DB_P.d_ecm = DB_P.d_rmt = 0 ;
2124 		DB_P.d_cfm = 0 ;
2125 		DB_P.d_os.hwm_rx = DB_P.d_os.hwm_tx = DB_P.d_os.hwm_gen = 0 ;
2126 #ifdef	SBA
2127 		DB_P.d_sba = 0 ;
2128 #endif
2129 #ifdef	ESS
2130 		DB_P.d_ess = 0 ;
2131 #endif
2132 		break ;
2133 	case DEBUG_SMTF:
2134 		DB_P.d_smtf = lev ;
2135 		break ;
2136 	case DEBUG_SMT:
2137 		DB_P.d_smt = lev ;
2138 		break ;
2139 	case DEBUG_ECM:
2140 		DB_P.d_ecm = lev ;
2141 		break ;
2142 	case DEBUG_RMT:
2143 		DB_P.d_rmt = lev ;
2144 		break ;
2145 	case DEBUG_CFM:
2146 		DB_P.d_cfm = lev ;
2147 		break ;
2148 	case DEBUG_PCM:
2149 		DB_P.d_pcm = lev ;
2150 		break ;
2151 	case DEBUG_SBA:
2152 #ifdef	SBA
2153 		DB_P.d_sba = lev ;
2154 #endif
2155 		break ;
2156 	case DEBUG_ESS:
2157 #ifdef	ESS
2158 		DB_P.d_ess = lev ;
2159 #endif
2160 		break ;
2161 	case DB_HWM_RX:
2162 		DB_P.d_os.hwm_rx = lev ;
2163 		break ;
2164 	case DB_HWM_TX:
2165 		DB_P.d_os.hwm_tx = lev ;
2166 		break ;
2167 	case DB_HWM_GEN:
2168 		DB_P.d_os.hwm_gen = lev ;
2169 		break ;
2170 	default:
2171 		break ;
2172 	}
2173 }
2174 #endif
2175