xref: /linux/drivers/net/ipa/ipa_main.c (revision 021bc4b9)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2018-2023 Linaro Ltd.
5  */
6 
7 #include <linux/types.h>
8 #include <linux/atomic.h>
9 #include <linux/bitfield.h>
10 #include <linux/device.h>
11 #include <linux/bug.h>
12 #include <linux/io.h>
13 #include <linux/firmware.h>
14 #include <linux/module.h>
15 #include <linux/of.h>
16 #include <linux/of_address.h>
17 #include <linux/platform_device.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/firmware/qcom/qcom_scm.h>
20 #include <linux/soc/qcom/mdt_loader.h>
21 
22 #include "ipa.h"
23 #include "ipa_power.h"
24 #include "ipa_data.h"
25 #include "ipa_endpoint.h"
26 #include "ipa_resource.h"
27 #include "ipa_cmd.h"
28 #include "ipa_reg.h"
29 #include "ipa_mem.h"
30 #include "ipa_table.h"
31 #include "ipa_smp2p.h"
32 #include "ipa_modem.h"
33 #include "ipa_uc.h"
34 #include "ipa_interrupt.h"
35 #include "gsi_trans.h"
36 #include "ipa_sysfs.h"
37 
38 /**
39  * DOC: The IP Accelerator
40  *
41  * This driver supports the Qualcomm IP Accelerator (IPA), which is a
42  * networking component found in many Qualcomm SoCs.  The IPA is connected
43  * to the application processor (AP), but is also connected (and partially
44  * controlled by) other "execution environments" (EEs), such as a modem.
45  *
46  * The IPA is the conduit between the AP and the modem that carries network
47  * traffic.  This driver presents a network interface representing the
48  * connection of the modem to external (e.g. LTE) networks.
49  *
50  * The IPA provides protocol checksum calculation, offloading this work
51  * from the AP.  The IPA offers additional functionality, including routing,
52  * filtering, and NAT support, but that more advanced functionality is not
53  * currently supported.  Despite that, some resources--including routing
54  * tables and filter tables--are defined in this driver because they must
55  * be initialized even when the advanced hardware features are not used.
56  *
57  * There are two distinct layers that implement the IPA hardware, and this
58  * is reflected in the organization of the driver.  The generic software
59  * interface (GSI) is an integral component of the IPA, providing a
60  * well-defined communication layer between the AP subsystem and the IPA
61  * core.  The GSI implements a set of "channels" used for communication
62  * between the AP and the IPA.
63  *
64  * The IPA layer uses GSI channels to implement its "endpoints".  And while
65  * a GSI channel carries data between the AP and the IPA, a pair of IPA
66  * endpoints is used to carry traffic between two EEs.  Specifically, the main
67  * modem network interface is implemented by two pairs of endpoints:  a TX
68  * endpoint on the AP coupled with an RX endpoint on the modem; and another
69  * RX endpoint on the AP receiving data from a TX endpoint on the modem.
70  */
71 
72 /* The name of the GSI firmware file relative to /lib/firmware */
73 #define IPA_FW_PATH_DEFAULT	"ipa_fws.mdt"
74 #define IPA_PAS_ID		15
75 
76 /* Shift of 19.2 MHz timestamp to achieve lower resolution timestamps */
77 /* IPA v5.5+ does not specify Qtime timestamp config for DPL */
78 #define DPL_TIMESTAMP_SHIFT	14	/* ~1.172 kHz, ~853 usec per tick */
79 #define TAG_TIMESTAMP_SHIFT	14
80 #define NAT_TIMESTAMP_SHIFT	24	/* ~1.144 Hz, ~874 msec per tick */
81 
82 /* Divider for 19.2 MHz crystal oscillator clock to get common timer clock */
83 #define IPA_XO_CLOCK_DIVIDER	192	/* 1 is subtracted where used */
84 
85 /**
86  * enum ipa_firmware_loader: How GSI firmware gets loaded
87  *
88  * @IPA_LOADER_DEFER:		System not ready; try again later
89  * @IPA_LOADER_SELF:		AP loads GSI firmware
90  * @IPA_LOADER_MODEM:		Modem loads GSI firmware, signals when done
91  * @IPA_LOADER_SKIP:		Neither AP nor modem need to load GSI firmware
92  * @IPA_LOADER_INVALID:	GSI firmware loader specification is invalid
93  */
94 enum ipa_firmware_loader {
95 	IPA_LOADER_DEFER,
96 	IPA_LOADER_SELF,
97 	IPA_LOADER_MODEM,
98 	IPA_LOADER_SKIP,
99 	IPA_LOADER_INVALID,
100 };
101 
102 /**
103  * ipa_setup() - Set up IPA hardware
104  * @ipa:	IPA pointer
105  *
106  * Perform initialization that requires issuing immediate commands on
107  * the command TX endpoint.  If the modem is doing GSI firmware load
108  * and initialization, this function will be called when an SMP2P
109  * interrupt has been signaled by the modem.  Otherwise it will be
110  * called from ipa_probe() after GSI firmware has been successfully
111  * loaded, authenticated, and started by Trust Zone.
112  */
113 int ipa_setup(struct ipa *ipa)
114 {
115 	struct ipa_endpoint *exception_endpoint;
116 	struct ipa_endpoint *command_endpoint;
117 	struct device *dev = &ipa->pdev->dev;
118 	int ret;
119 
120 	ret = gsi_setup(&ipa->gsi);
121 	if (ret)
122 		return ret;
123 
124 	ret = ipa_power_setup(ipa);
125 	if (ret)
126 		goto err_gsi_teardown;
127 
128 	ipa_endpoint_setup(ipa);
129 
130 	/* We need to use the AP command TX endpoint to perform other
131 	 * initialization, so we enable first.
132 	 */
133 	command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
134 	ret = ipa_endpoint_enable_one(command_endpoint);
135 	if (ret)
136 		goto err_endpoint_teardown;
137 
138 	ret = ipa_mem_setup(ipa);	/* No matching teardown required */
139 	if (ret)
140 		goto err_command_disable;
141 
142 	ret = ipa_table_setup(ipa);	/* No matching teardown required */
143 	if (ret)
144 		goto err_command_disable;
145 
146 	/* Enable the exception handling endpoint, and tell the hardware
147 	 * to use it by default.
148 	 */
149 	exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX];
150 	ret = ipa_endpoint_enable_one(exception_endpoint);
151 	if (ret)
152 		goto err_command_disable;
153 
154 	ipa_endpoint_default_route_set(ipa, exception_endpoint->endpoint_id);
155 
156 	/* We're all set.  Now prepare for communication with the modem */
157 	ret = ipa_qmi_setup(ipa);
158 	if (ret)
159 		goto err_default_route_clear;
160 
161 	ipa->setup_complete = true;
162 
163 	dev_info(dev, "IPA driver setup completed successfully\n");
164 
165 	return 0;
166 
167 err_default_route_clear:
168 	ipa_endpoint_default_route_clear(ipa);
169 	ipa_endpoint_disable_one(exception_endpoint);
170 err_command_disable:
171 	ipa_endpoint_disable_one(command_endpoint);
172 err_endpoint_teardown:
173 	ipa_endpoint_teardown(ipa);
174 	ipa_power_teardown(ipa);
175 err_gsi_teardown:
176 	gsi_teardown(&ipa->gsi);
177 
178 	return ret;
179 }
180 
181 /**
182  * ipa_teardown() - Inverse of ipa_setup()
183  * @ipa:	IPA pointer
184  */
185 static void ipa_teardown(struct ipa *ipa)
186 {
187 	struct ipa_endpoint *exception_endpoint;
188 	struct ipa_endpoint *command_endpoint;
189 
190 	/* We're going to tear everything down, as if setup never completed */
191 	ipa->setup_complete = false;
192 
193 	ipa_qmi_teardown(ipa);
194 	ipa_endpoint_default_route_clear(ipa);
195 	exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX];
196 	ipa_endpoint_disable_one(exception_endpoint);
197 	command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
198 	ipa_endpoint_disable_one(command_endpoint);
199 	ipa_endpoint_teardown(ipa);
200 	ipa_power_teardown(ipa);
201 	gsi_teardown(&ipa->gsi);
202 }
203 
204 static void
205 ipa_hardware_config_bcr(struct ipa *ipa, const struct ipa_data *data)
206 {
207 	const struct reg *reg;
208 	u32 val;
209 
210 	/* IPA v4.5+ has no backward compatibility register */
211 	if (ipa->version >= IPA_VERSION_4_5)
212 		return;
213 
214 	reg = ipa_reg(ipa, IPA_BCR);
215 	val = data->backward_compat;
216 	iowrite32(val, ipa->reg_virt + reg_offset(reg));
217 }
218 
219 static void ipa_hardware_config_tx(struct ipa *ipa)
220 {
221 	enum ipa_version version = ipa->version;
222 	const struct reg *reg;
223 	u32 offset;
224 	u32 val;
225 
226 	if (version <= IPA_VERSION_4_0 || version >= IPA_VERSION_4_5)
227 		return;
228 
229 	/* Disable PA mask to allow HOLB drop */
230 	reg = ipa_reg(ipa, IPA_TX_CFG);
231 	offset = reg_offset(reg);
232 
233 	val = ioread32(ipa->reg_virt + offset);
234 
235 	val &= ~reg_bit(reg, PA_MASK_EN);
236 
237 	iowrite32(val, ipa->reg_virt + offset);
238 }
239 
240 static void ipa_hardware_config_clkon(struct ipa *ipa)
241 {
242 	enum ipa_version version = ipa->version;
243 	const struct reg *reg;
244 	u32 val;
245 
246 	if (version >= IPA_VERSION_4_5)
247 		return;
248 
249 	if (version < IPA_VERSION_4_0 && version != IPA_VERSION_3_1)
250 		return;
251 
252 	/* Implement some hardware workarounds */
253 	reg = ipa_reg(ipa, CLKON_CFG);
254 	if (version == IPA_VERSION_3_1) {
255 		/* Disable MISC clock gating */
256 		val = reg_bit(reg, CLKON_MISC);
257 	} else {	/* IPA v4.0+ */
258 		/* Enable open global clocks in the CLKON configuration */
259 		val = reg_bit(reg, CLKON_GLOBAL);
260 		val |= reg_bit(reg, GLOBAL_2X_CLK);
261 	}
262 
263 	iowrite32(val, ipa->reg_virt + reg_offset(reg));
264 }
265 
266 /* Configure bus access behavior for IPA components */
267 static void ipa_hardware_config_comp(struct ipa *ipa)
268 {
269 	const struct reg *reg;
270 	u32 offset;
271 	u32 val;
272 
273 	/* Nothing to configure prior to IPA v4.0 */
274 	if (ipa->version < IPA_VERSION_4_0)
275 		return;
276 
277 	reg = ipa_reg(ipa, COMP_CFG);
278 	offset = reg_offset(reg);
279 
280 	val = ioread32(ipa->reg_virt + offset);
281 
282 	if (ipa->version == IPA_VERSION_4_0) {
283 		val &= ~reg_bit(reg, IPA_QMB_SELECT_CONS_EN);
284 		val &= ~reg_bit(reg, IPA_QMB_SELECT_PROD_EN);
285 		val &= ~reg_bit(reg, IPA_QMB_SELECT_GLOBAL_EN);
286 	} else if (ipa->version < IPA_VERSION_4_5) {
287 		val |= reg_bit(reg, GSI_MULTI_AXI_MASTERS_DIS);
288 	} else {
289 		/* For IPA v4.5+ FULL_FLUSH_WAIT_RS_CLOSURE_EN is 0 */
290 	}
291 
292 	val |= reg_bit(reg, GSI_MULTI_INORDER_RD_DIS);
293 	val |= reg_bit(reg, GSI_MULTI_INORDER_WR_DIS);
294 
295 	iowrite32(val, ipa->reg_virt + offset);
296 }
297 
298 /* Configure DDR and (possibly) PCIe max read/write QSB values */
299 static void
300 ipa_hardware_config_qsb(struct ipa *ipa, const struct ipa_data *data)
301 {
302 	const struct ipa_qsb_data *data0;
303 	const struct ipa_qsb_data *data1;
304 	const struct reg *reg;
305 	u32 val;
306 
307 	/* QMB 0 represents DDR; QMB 1 (if present) represents PCIe */
308 	data0 = &data->qsb_data[IPA_QSB_MASTER_DDR];
309 	if (data->qsb_count > 1)
310 		data1 = &data->qsb_data[IPA_QSB_MASTER_PCIE];
311 
312 	/* Max outstanding write accesses for QSB masters */
313 	reg = ipa_reg(ipa, QSB_MAX_WRITES);
314 
315 	val = reg_encode(reg, GEN_QMB_0_MAX_WRITES, data0->max_writes);
316 	if (data->qsb_count > 1)
317 		val |= reg_encode(reg, GEN_QMB_1_MAX_WRITES, data1->max_writes);
318 
319 	iowrite32(val, ipa->reg_virt + reg_offset(reg));
320 
321 	/* Max outstanding read accesses for QSB masters */
322 	reg = ipa_reg(ipa, QSB_MAX_READS);
323 
324 	val = reg_encode(reg, GEN_QMB_0_MAX_READS, data0->max_reads);
325 	if (ipa->version >= IPA_VERSION_4_0)
326 		val |= reg_encode(reg, GEN_QMB_0_MAX_READS_BEATS,
327 				  data0->max_reads_beats);
328 	if (data->qsb_count > 1) {
329 		val = reg_encode(reg, GEN_QMB_1_MAX_READS, data1->max_reads);
330 		if (ipa->version >= IPA_VERSION_4_0)
331 			val |= reg_encode(reg, GEN_QMB_1_MAX_READS_BEATS,
332 					  data1->max_reads_beats);
333 	}
334 
335 	iowrite32(val, ipa->reg_virt + reg_offset(reg));
336 }
337 
338 /* The internal inactivity timer clock is used for the aggregation timer */
339 #define TIMER_FREQUENCY	32000		/* 32 KHz inactivity timer clock */
340 
341 /* Compute the value to use in the COUNTER_CFG register AGGR_GRANULARITY
342  * field to represent the given number of microseconds.  The value is one
343  * less than the number of timer ticks in the requested period.  0 is not
344  * a valid granularity value (so for example @usec must be at least 16 for
345  * a TIMER_FREQUENCY of 32000).
346  */
347 static __always_inline u32 ipa_aggr_granularity_val(u32 usec)
348 {
349 	return DIV_ROUND_CLOSEST(usec * TIMER_FREQUENCY, USEC_PER_SEC) - 1;
350 }
351 
352 /* IPA uses unified Qtime starting at IPA v4.5, implementing various
353  * timestamps and timers independent of the IPA core clock rate.  The
354  * Qtimer is based on a 56-bit timestamp incremented at each tick of
355  * a 19.2 MHz SoC crystal oscillator (XO clock).
356  *
357  * For IPA timestamps (tag, NAT, data path logging) a lower resolution
358  * timestamp is achieved by shifting the Qtimer timestamp value right
359  * some number of bits to produce the low-order bits of the coarser
360  * granularity timestamp.
361  *
362  * For timers, a common timer clock is derived from the XO clock using
363  * a divider (we use 192, to produce a 100kHz timer clock).  From
364  * this common clock, three "pulse generators" are used to produce
365  * timer ticks at a configurable frequency.  IPA timers (such as
366  * those used for aggregation or head-of-line block handling) now
367  * define their period based on one of these pulse generators.
368  */
369 static void ipa_qtime_config(struct ipa *ipa)
370 {
371 	const struct reg *reg;
372 	u32 offset;
373 	u32 val;
374 
375 	/* Timer clock divider must be disabled when we change the rate */
376 	reg = ipa_reg(ipa, TIMERS_XO_CLK_DIV_CFG);
377 	iowrite32(0, ipa->reg_virt + reg_offset(reg));
378 
379 	reg = ipa_reg(ipa, QTIME_TIMESTAMP_CFG);
380 	if (ipa->version < IPA_VERSION_5_5) {
381 		/* Set DPL time stamp resolution to use Qtime (not 1 msec) */
382 		val = reg_encode(reg, DPL_TIMESTAMP_LSB, DPL_TIMESTAMP_SHIFT);
383 		val |= reg_bit(reg, DPL_TIMESTAMP_SEL);
384 	}
385 	/* Configure tag and NAT Qtime timestamp resolution as well */
386 	val = reg_encode(reg, TAG_TIMESTAMP_LSB, TAG_TIMESTAMP_SHIFT);
387 	val = reg_encode(reg, NAT_TIMESTAMP_LSB, NAT_TIMESTAMP_SHIFT);
388 
389 	iowrite32(val, ipa->reg_virt + reg_offset(reg));
390 
391 	/* Set granularity of pulse generators used for other timers */
392 	reg = ipa_reg(ipa, TIMERS_PULSE_GRAN_CFG);
393 	val = reg_encode(reg, PULSE_GRAN_0, IPA_GRAN_100_US);
394 	val |= reg_encode(reg, PULSE_GRAN_1, IPA_GRAN_1_MS);
395 	if (ipa->version >= IPA_VERSION_5_0) {
396 		val |= reg_encode(reg, PULSE_GRAN_2, IPA_GRAN_10_MS);
397 		val |= reg_encode(reg, PULSE_GRAN_3, IPA_GRAN_10_MS);
398 	} else {
399 		val |= reg_encode(reg, PULSE_GRAN_2, IPA_GRAN_1_MS);
400 	}
401 
402 	iowrite32(val, ipa->reg_virt + reg_offset(reg));
403 
404 	/* Actual divider is 1 more than value supplied here */
405 	reg = ipa_reg(ipa, TIMERS_XO_CLK_DIV_CFG);
406 	offset = reg_offset(reg);
407 
408 	val = reg_encode(reg, DIV_VALUE, IPA_XO_CLOCK_DIVIDER - 1);
409 
410 	iowrite32(val, ipa->reg_virt + offset);
411 
412 	/* Divider value is set; re-enable the common timer clock divider */
413 	val |= reg_bit(reg, DIV_ENABLE);
414 
415 	iowrite32(val, ipa->reg_virt + offset);
416 }
417 
418 /* Before IPA v4.5 timing is controlled by a counter register */
419 static void ipa_hardware_config_counter(struct ipa *ipa)
420 {
421 	u32 granularity = ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY);
422 	const struct reg *reg;
423 	u32 val;
424 
425 	reg = ipa_reg(ipa, COUNTER_CFG);
426 	/* If defined, EOT_COAL_GRANULARITY is 0 */
427 	val = reg_encode(reg, AGGR_GRANULARITY, granularity);
428 	iowrite32(val, ipa->reg_virt + reg_offset(reg));
429 }
430 
431 static void ipa_hardware_config_timing(struct ipa *ipa)
432 {
433 	if (ipa->version < IPA_VERSION_4_5)
434 		ipa_hardware_config_counter(ipa);
435 	else
436 		ipa_qtime_config(ipa);
437 }
438 
439 static void ipa_hardware_config_hashing(struct ipa *ipa)
440 {
441 	const struct reg *reg;
442 
443 	/* Other than IPA v4.2, all versions enable "hashing".  Starting
444 	 * with IPA v5.0, the filter and router tables are implemented
445 	 * differently, but the default configuration enables this feature
446 	 * (now referred to as "cacheing"), so there's nothing to do here.
447 	 */
448 	if (ipa->version != IPA_VERSION_4_2)
449 		return;
450 
451 	/* IPA v4.2 does not support hashed tables, so disable them */
452 	reg = ipa_reg(ipa, FILT_ROUT_HASH_EN);
453 
454 	/* IPV6_ROUTER_HASH, IPV6_FILTER_HASH, IPV4_ROUTER_HASH,
455 	 * IPV4_FILTER_HASH are all zero.
456 	 */
457 	iowrite32(0, ipa->reg_virt + reg_offset(reg));
458 }
459 
460 static void ipa_idle_indication_cfg(struct ipa *ipa,
461 				    u32 enter_idle_debounce_thresh,
462 				    bool const_non_idle_enable)
463 {
464 	const struct reg *reg;
465 	u32 val;
466 
467 	if (ipa->version < IPA_VERSION_3_5_1)
468 		return;
469 
470 	reg = ipa_reg(ipa, IDLE_INDICATION_CFG);
471 	val = reg_encode(reg, ENTER_IDLE_DEBOUNCE_THRESH,
472 			 enter_idle_debounce_thresh);
473 	if (const_non_idle_enable)
474 		val |= reg_bit(reg, CONST_NON_IDLE_ENABLE);
475 
476 	iowrite32(val, ipa->reg_virt + reg_offset(reg));
477 }
478 
479 /**
480  * ipa_hardware_dcd_config() - Enable dynamic clock division on IPA
481  * @ipa:	IPA pointer
482  *
483  * Configures when the IPA signals it is idle to the global clock
484  * controller, which can respond by scaling down the clock to save
485  * power.
486  */
487 static void ipa_hardware_dcd_config(struct ipa *ipa)
488 {
489 	/* Recommended values for IPA 3.5 and later according to IPA HPG */
490 	ipa_idle_indication_cfg(ipa, 256, false);
491 }
492 
493 static void ipa_hardware_dcd_deconfig(struct ipa *ipa)
494 {
495 	/* Power-on reset values */
496 	ipa_idle_indication_cfg(ipa, 0, true);
497 }
498 
499 /**
500  * ipa_hardware_config() - Primitive hardware initialization
501  * @ipa:	IPA pointer
502  * @data:	IPA configuration data
503  */
504 static void ipa_hardware_config(struct ipa *ipa, const struct ipa_data *data)
505 {
506 	ipa_hardware_config_bcr(ipa, data);
507 	ipa_hardware_config_tx(ipa);
508 	ipa_hardware_config_clkon(ipa);
509 	ipa_hardware_config_comp(ipa);
510 	ipa_hardware_config_qsb(ipa, data);
511 	ipa_hardware_config_timing(ipa);
512 	ipa_hardware_config_hashing(ipa);
513 	ipa_hardware_dcd_config(ipa);
514 }
515 
516 /**
517  * ipa_hardware_deconfig() - Inverse of ipa_hardware_config()
518  * @ipa:	IPA pointer
519  *
520  * This restores the power-on reset values (even if they aren't different)
521  */
522 static void ipa_hardware_deconfig(struct ipa *ipa)
523 {
524 	/* Mostly we just leave things as we set them. */
525 	ipa_hardware_dcd_deconfig(ipa);
526 }
527 
528 /**
529  * ipa_config() - Configure IPA hardware
530  * @ipa:	IPA pointer
531  * @data:	IPA configuration data
532  *
533  * Perform initialization requiring IPA power to be enabled.
534  */
535 static int ipa_config(struct ipa *ipa, const struct ipa_data *data)
536 {
537 	int ret;
538 
539 	ipa_hardware_config(ipa, data);
540 
541 	ret = ipa_mem_config(ipa);
542 	if (ret)
543 		goto err_hardware_deconfig;
544 
545 	ipa->interrupt = ipa_interrupt_config(ipa);
546 	if (IS_ERR(ipa->interrupt)) {
547 		ret = PTR_ERR(ipa->interrupt);
548 		ipa->interrupt = NULL;
549 		goto err_mem_deconfig;
550 	}
551 
552 	ipa_uc_config(ipa);
553 
554 	ret = ipa_endpoint_config(ipa);
555 	if (ret)
556 		goto err_uc_deconfig;
557 
558 	ipa_table_config(ipa);		/* No deconfig required */
559 
560 	/* Assign resource limitation to each group; no deconfig required */
561 	ret = ipa_resource_config(ipa, data->resource_data);
562 	if (ret)
563 		goto err_endpoint_deconfig;
564 
565 	ret = ipa_modem_config(ipa);
566 	if (ret)
567 		goto err_endpoint_deconfig;
568 
569 	return 0;
570 
571 err_endpoint_deconfig:
572 	ipa_endpoint_deconfig(ipa);
573 err_uc_deconfig:
574 	ipa_uc_deconfig(ipa);
575 	ipa_interrupt_deconfig(ipa->interrupt);
576 	ipa->interrupt = NULL;
577 err_mem_deconfig:
578 	ipa_mem_deconfig(ipa);
579 err_hardware_deconfig:
580 	ipa_hardware_deconfig(ipa);
581 
582 	return ret;
583 }
584 
585 /**
586  * ipa_deconfig() - Inverse of ipa_config()
587  * @ipa:	IPA pointer
588  */
589 static void ipa_deconfig(struct ipa *ipa)
590 {
591 	ipa_modem_deconfig(ipa);
592 	ipa_endpoint_deconfig(ipa);
593 	ipa_uc_deconfig(ipa);
594 	ipa_interrupt_deconfig(ipa->interrupt);
595 	ipa->interrupt = NULL;
596 	ipa_mem_deconfig(ipa);
597 	ipa_hardware_deconfig(ipa);
598 }
599 
600 static int ipa_firmware_load(struct device *dev)
601 {
602 	const struct firmware *fw;
603 	struct device_node *node;
604 	struct resource res;
605 	phys_addr_t phys;
606 	const char *path;
607 	ssize_t size;
608 	void *virt;
609 	int ret;
610 
611 	node = of_parse_phandle(dev->of_node, "memory-region", 0);
612 	if (!node) {
613 		dev_err(dev, "DT error getting \"memory-region\" property\n");
614 		return -EINVAL;
615 	}
616 
617 	ret = of_address_to_resource(node, 0, &res);
618 	of_node_put(node);
619 	if (ret) {
620 		dev_err(dev, "error %d getting \"memory-region\" resource\n",
621 			ret);
622 		return ret;
623 	}
624 
625 	/* Use name from DTB if specified; use default for *any* error */
626 	ret = of_property_read_string(dev->of_node, "firmware-name", &path);
627 	if (ret) {
628 		dev_dbg(dev, "error %d getting \"firmware-name\" resource\n",
629 			ret);
630 		path = IPA_FW_PATH_DEFAULT;
631 	}
632 
633 	ret = request_firmware(&fw, path, dev);
634 	if (ret) {
635 		dev_err(dev, "error %d requesting \"%s\"\n", ret, path);
636 		return ret;
637 	}
638 
639 	phys = res.start;
640 	size = (size_t)resource_size(&res);
641 	virt = memremap(phys, size, MEMREMAP_WC);
642 	if (!virt) {
643 		dev_err(dev, "unable to remap firmware memory\n");
644 		ret = -ENOMEM;
645 		goto out_release_firmware;
646 	}
647 
648 	ret = qcom_mdt_load(dev, fw, path, IPA_PAS_ID, virt, phys, size, NULL);
649 	if (ret)
650 		dev_err(dev, "error %d loading \"%s\"\n", ret, path);
651 	else if ((ret = qcom_scm_pas_auth_and_reset(IPA_PAS_ID)))
652 		dev_err(dev, "error %d authenticating \"%s\"\n", ret, path);
653 
654 	memunmap(virt);
655 out_release_firmware:
656 	release_firmware(fw);
657 
658 	return ret;
659 }
660 
661 static const struct of_device_id ipa_match[] = {
662 	{
663 		.compatible	= "qcom,msm8998-ipa",
664 		.data		= &ipa_data_v3_1,
665 	},
666 	{
667 		.compatible	= "qcom,sdm845-ipa",
668 		.data		= &ipa_data_v3_5_1,
669 	},
670 	{
671 		.compatible	= "qcom,sc7180-ipa",
672 		.data		= &ipa_data_v4_2,
673 	},
674 	{
675 		.compatible	= "qcom,sdx55-ipa",
676 		.data		= &ipa_data_v4_5,
677 	},
678 	{
679 		.compatible	= "qcom,sm6350-ipa",
680 		.data		= &ipa_data_v4_7,
681 	},
682 	{
683 		.compatible	= "qcom,sm8350-ipa",
684 		.data		= &ipa_data_v4_9,
685 	},
686 	{
687 		.compatible	= "qcom,sc7280-ipa",
688 		.data		= &ipa_data_v4_11,
689 	},
690 	{
691 		.compatible	= "qcom,sdx65-ipa",
692 		.data		= &ipa_data_v5_0,
693 	},
694 	{
695 		.compatible	= "qcom,sm8550-ipa",
696 		.data		= &ipa_data_v5_5,
697 	},
698 	{ },
699 };
700 MODULE_DEVICE_TABLE(of, ipa_match);
701 
702 /* Check things that can be validated at build time.  This just
703  * groups these things BUILD_BUG_ON() calls don't clutter the rest
704  * of the code.
705  * */
706 static void ipa_validate_build(void)
707 {
708 	/* At one time we assumed a 64-bit build, allowing some do_div()
709 	 * calls to be replaced by simple division or modulo operations.
710 	 * We currently only perform divide and modulo operations on u32,
711 	 * u16, or size_t objects, and of those only size_t has any chance
712 	 * of being a 64-bit value.  (It should be guaranteed 32 bits wide
713 	 * on a 32-bit build, but there is no harm in verifying that.)
714 	 */
715 	BUILD_BUG_ON(!IS_ENABLED(CONFIG_64BIT) && sizeof(size_t) != 4);
716 
717 	/* Code assumes the EE ID for the AP is 0 (zeroed structure field) */
718 	BUILD_BUG_ON(GSI_EE_AP != 0);
719 
720 	/* There's no point if we have no channels or event rings */
721 	BUILD_BUG_ON(!GSI_CHANNEL_COUNT_MAX);
722 	BUILD_BUG_ON(!GSI_EVT_RING_COUNT_MAX);
723 
724 	/* GSI hardware design limits */
725 	BUILD_BUG_ON(GSI_CHANNEL_COUNT_MAX > 32);
726 	BUILD_BUG_ON(GSI_EVT_RING_COUNT_MAX > 31);
727 
728 	/* The number of TREs in a transaction is limited by the channel's
729 	 * TLV FIFO size.  A transaction structure uses 8-bit fields
730 	 * to represents the number of TREs it has allocated and used.
731 	 */
732 	BUILD_BUG_ON(GSI_TLV_MAX > U8_MAX);
733 
734 	/* This is used as a divisor */
735 	BUILD_BUG_ON(!IPA_AGGR_GRANULARITY);
736 
737 	/* Aggregation granularity value can't be 0, and must fit */
738 	BUILD_BUG_ON(!ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY));
739 }
740 
741 static enum ipa_firmware_loader ipa_firmware_loader(struct device *dev)
742 {
743 	bool modem_init;
744 	const char *str;
745 	int ret;
746 
747 	/* Look up the old and new properties by name */
748 	modem_init = of_property_read_bool(dev->of_node, "modem-init");
749 	ret = of_property_read_string(dev->of_node, "qcom,gsi-loader", &str);
750 
751 	/* If the new property doesn't exist, it's legacy behavior */
752 	if (ret == -EINVAL) {
753 		if (modem_init)
754 			return IPA_LOADER_MODEM;
755 		goto out_self;
756 	}
757 
758 	/* Any other error on the new property means it's poorly defined */
759 	if (ret)
760 		return IPA_LOADER_INVALID;
761 
762 	/* New property value exists; if old one does too, that's invalid */
763 	if (modem_init)
764 		return IPA_LOADER_INVALID;
765 
766 	/* Modem loads GSI firmware for "modem" */
767 	if (!strcmp(str, "modem"))
768 		return IPA_LOADER_MODEM;
769 
770 	/* No GSI firmware load is needed for "skip" */
771 	if (!strcmp(str, "skip"))
772 		return IPA_LOADER_SKIP;
773 
774 	/* Any value other than "self" is an error */
775 	if (strcmp(str, "self"))
776 		return IPA_LOADER_INVALID;
777 out_self:
778 	/* We need Trust Zone to load firmware; make sure it's available */
779 	if (qcom_scm_is_available())
780 		return IPA_LOADER_SELF;
781 
782 	return IPA_LOADER_DEFER;
783 }
784 
785 /**
786  * ipa_probe() - IPA platform driver probe function
787  * @pdev:	Platform device pointer
788  *
789  * Return:	0 if successful, or a negative error code (possibly
790  *		EPROBE_DEFER)
791  *
792  * This is the main entry point for the IPA driver.  Initialization proceeds
793  * in several stages:
794  *   - The "init" stage involves activities that can be initialized without
795  *     access to the IPA hardware.
796  *   - The "config" stage requires IPA power to be active so IPA registers
797  *     can be accessed, but does not require the use of IPA immediate commands.
798  *   - The "setup" stage uses IPA immediate commands, and so requires the GSI
799  *     layer to be initialized.
800  *
801  * A Boolean Device Tree "modem-init" property determines whether GSI
802  * initialization will be performed by the AP (Trust Zone) or the modem.
803  * If the AP does GSI initialization, the setup phase is entered after
804  * this has completed successfully.  Otherwise the modem initializes
805  * the GSI layer and signals it has finished by sending an SMP2P interrupt
806  * to the AP; this triggers the start if IPA setup.
807  */
808 static int ipa_probe(struct platform_device *pdev)
809 {
810 	struct device *dev = &pdev->dev;
811 	enum ipa_firmware_loader loader;
812 	const struct ipa_data *data;
813 	struct ipa_power *power;
814 	struct ipa *ipa;
815 	int ret;
816 
817 	ipa_validate_build();
818 
819 	/* Get configuration data early; needed for power initialization */
820 	data = of_device_get_match_data(dev);
821 	if (!data) {
822 		dev_err(dev, "matched hardware not supported\n");
823 		return -ENODEV;
824 	}
825 
826 	if (!ipa_version_supported(data->version)) {
827 		dev_err(dev, "unsupported IPA version %u\n", data->version);
828 		return -EINVAL;
829 	}
830 
831 	if (!data->modem_route_count) {
832 		dev_err(dev, "modem_route_count cannot be zero\n");
833 		return -EINVAL;
834 	}
835 
836 	loader = ipa_firmware_loader(dev);
837 	if (loader == IPA_LOADER_INVALID)
838 		return -EINVAL;
839 	if (loader == IPA_LOADER_DEFER)
840 		return -EPROBE_DEFER;
841 
842 	/* The clock and interconnects might not be ready when we're
843 	 * probed, so might return -EPROBE_DEFER.
844 	 */
845 	power = ipa_power_init(dev, data->power_data);
846 	if (IS_ERR(power))
847 		return PTR_ERR(power);
848 
849 	/* No more EPROBE_DEFER.  Allocate and initialize the IPA structure */
850 	ipa = kzalloc(sizeof(*ipa), GFP_KERNEL);
851 	if (!ipa) {
852 		ret = -ENOMEM;
853 		goto err_power_exit;
854 	}
855 
856 	ipa->pdev = pdev;
857 	dev_set_drvdata(dev, ipa);
858 	ipa->power = power;
859 	ipa->version = data->version;
860 	ipa->modem_route_count = data->modem_route_count;
861 	init_completion(&ipa->completion);
862 
863 	ret = ipa_reg_init(ipa);
864 	if (ret)
865 		goto err_kfree_ipa;
866 
867 	ret = ipa_mem_init(ipa, data->mem_data);
868 	if (ret)
869 		goto err_reg_exit;
870 
871 	ret = gsi_init(&ipa->gsi, pdev, ipa->version, data->endpoint_count,
872 		       data->endpoint_data);
873 	if (ret)
874 		goto err_mem_exit;
875 
876 	/* Result is a non-zero mask of endpoints that support filtering */
877 	ret = ipa_endpoint_init(ipa, data->endpoint_count, data->endpoint_data);
878 	if (ret)
879 		goto err_gsi_exit;
880 
881 	ret = ipa_table_init(ipa);
882 	if (ret)
883 		goto err_endpoint_exit;
884 
885 	ret = ipa_smp2p_init(ipa, loader == IPA_LOADER_MODEM);
886 	if (ret)
887 		goto err_table_exit;
888 
889 	/* Power needs to be active for config and setup */
890 	ret = pm_runtime_get_sync(dev);
891 	if (WARN_ON(ret < 0))
892 		goto err_power_put;
893 
894 	ret = ipa_config(ipa, data);
895 	if (ret)
896 		goto err_power_put;
897 
898 	dev_info(dev, "IPA driver initialized");
899 
900 	/* If the modem is loading GSI firmware, it will trigger a call to
901 	 * ipa_setup() when it has finished.  In that case we're done here.
902 	 */
903 	if (loader == IPA_LOADER_MODEM)
904 		goto done;
905 
906 	if (loader == IPA_LOADER_SELF) {
907 		/* The AP is loading GSI firmware; do so now */
908 		ret = ipa_firmware_load(dev);
909 		if (ret)
910 			goto err_deconfig;
911 	} /* Otherwise loader == IPA_LOADER_SKIP */
912 
913 	/* GSI firmware is loaded; proceed to setup */
914 	ret = ipa_setup(ipa);
915 	if (ret)
916 		goto err_deconfig;
917 done:
918 	pm_runtime_mark_last_busy(dev);
919 	(void)pm_runtime_put_autosuspend(dev);
920 
921 	return 0;
922 
923 err_deconfig:
924 	ipa_deconfig(ipa);
925 err_power_put:
926 	pm_runtime_put_noidle(dev);
927 	ipa_smp2p_exit(ipa);
928 err_table_exit:
929 	ipa_table_exit(ipa);
930 err_endpoint_exit:
931 	ipa_endpoint_exit(ipa);
932 err_gsi_exit:
933 	gsi_exit(&ipa->gsi);
934 err_mem_exit:
935 	ipa_mem_exit(ipa);
936 err_reg_exit:
937 	ipa_reg_exit(ipa);
938 err_kfree_ipa:
939 	kfree(ipa);
940 err_power_exit:
941 	ipa_power_exit(power);
942 
943 	return ret;
944 }
945 
946 static void ipa_remove(struct platform_device *pdev)
947 {
948 	struct ipa *ipa = dev_get_drvdata(&pdev->dev);
949 	struct ipa_power *power = ipa->power;
950 	struct device *dev = &pdev->dev;
951 	int ret;
952 
953 	/* Prevent the modem from triggering a call to ipa_setup().  This
954 	 * also ensures a modem-initiated setup that's underway completes.
955 	 */
956 	ipa_smp2p_irq_disable_setup(ipa);
957 
958 	ret = pm_runtime_get_sync(dev);
959 	if (WARN_ON(ret < 0))
960 		goto out_power_put;
961 
962 	if (ipa->setup_complete) {
963 		ret = ipa_modem_stop(ipa);
964 		/* If starting or stopping is in progress, try once more */
965 		if (ret == -EBUSY) {
966 			usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
967 			ret = ipa_modem_stop(ipa);
968 		}
969 		if (ret) {
970 			/*
971 			 * Not cleaning up here properly might also yield a
972 			 * crash later on. As the device is still unregistered
973 			 * in this case, this might even yield a crash later on.
974 			 */
975 			dev_err(dev, "Failed to stop modem (%pe), leaking resources\n",
976 				ERR_PTR(ret));
977 			return;
978 		}
979 
980 		ipa_teardown(ipa);
981 	}
982 
983 	ipa_deconfig(ipa);
984 out_power_put:
985 	pm_runtime_put_noidle(dev);
986 	ipa_smp2p_exit(ipa);
987 	ipa_table_exit(ipa);
988 	ipa_endpoint_exit(ipa);
989 	gsi_exit(&ipa->gsi);
990 	ipa_mem_exit(ipa);
991 	ipa_reg_exit(ipa);
992 	kfree(ipa);
993 	ipa_power_exit(power);
994 
995 	dev_info(dev, "IPA driver removed");
996 }
997 
998 static const struct attribute_group *ipa_attribute_groups[] = {
999 	&ipa_attribute_group,
1000 	&ipa_feature_attribute_group,
1001 	&ipa_endpoint_id_attribute_group,
1002 	&ipa_modem_attribute_group,
1003 	NULL,
1004 };
1005 
1006 static struct platform_driver ipa_driver = {
1007 	.probe		= ipa_probe,
1008 	.remove_new	= ipa_remove,
1009 	.shutdown	= ipa_remove,
1010 	.driver	= {
1011 		.name		= "ipa",
1012 		.pm		= &ipa_pm_ops,
1013 		.of_match_table	= ipa_match,
1014 		.dev_groups	= ipa_attribute_groups,
1015 	},
1016 };
1017 
1018 module_platform_driver(ipa_driver);
1019 
1020 MODULE_LICENSE("GPL v2");
1021 MODULE_DESCRIPTION("Qualcomm IP Accelerator device driver");
1022