xref: /linux/drivers/net/wireless/ath/ath10k/pci.c (revision 44f57d78)
1 // SPDX-License-Identifier: ISC
2 /*
3  * Copyright (c) 2005-2011 Atheros Communications Inc.
4  * Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
5  */
6 
7 #include <linux/pci.h>
8 #include <linux/module.h>
9 #include <linux/interrupt.h>
10 #include <linux/spinlock.h>
11 #include <linux/bitops.h>
12 
13 #include "core.h"
14 #include "debug.h"
15 #include "coredump.h"
16 
17 #include "targaddrs.h"
18 #include "bmi.h"
19 
20 #include "hif.h"
21 #include "htc.h"
22 
23 #include "ce.h"
24 #include "pci.h"
25 
26 enum ath10k_pci_reset_mode {
27 	ATH10K_PCI_RESET_AUTO = 0,
28 	ATH10K_PCI_RESET_WARM_ONLY = 1,
29 };
30 
31 static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO;
32 static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO;
33 
34 module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644);
35 MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)");
36 
37 module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644);
38 MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)");
39 
40 /* how long wait to wait for target to initialise, in ms */
41 #define ATH10K_PCI_TARGET_WAIT 3000
42 #define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3
43 
44 /* Maximum number of bytes that can be handled atomically by
45  * diag read and write.
46  */
47 #define ATH10K_DIAG_TRANSFER_LIMIT	0x5000
48 
49 #define QCA99X0_PCIE_BAR0_START_REG    0x81030
50 #define QCA99X0_CPU_MEM_ADDR_REG       0x4d00c
51 #define QCA99X0_CPU_MEM_DATA_REG       0x4d010
52 
53 static const struct pci_device_id ath10k_pci_id_table[] = {
54 	/* PCI-E QCA988X V2 (Ubiquiti branded) */
55 	{ PCI_VDEVICE(UBIQUITI, QCA988X_2_0_DEVICE_ID_UBNT) },
56 
57 	{ PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
58 	{ PCI_VDEVICE(ATHEROS, QCA6164_2_1_DEVICE_ID) }, /* PCI-E QCA6164 V2.1 */
59 	{ PCI_VDEVICE(ATHEROS, QCA6174_2_1_DEVICE_ID) }, /* PCI-E QCA6174 V2.1 */
60 	{ PCI_VDEVICE(ATHEROS, QCA99X0_2_0_DEVICE_ID) }, /* PCI-E QCA99X0 V2 */
61 	{ PCI_VDEVICE(ATHEROS, QCA9888_2_0_DEVICE_ID) }, /* PCI-E QCA9888 V2 */
62 	{ PCI_VDEVICE(ATHEROS, QCA9984_1_0_DEVICE_ID) }, /* PCI-E QCA9984 V1 */
63 	{ PCI_VDEVICE(ATHEROS, QCA9377_1_0_DEVICE_ID) }, /* PCI-E QCA9377 V1 */
64 	{ PCI_VDEVICE(ATHEROS, QCA9887_1_0_DEVICE_ID) }, /* PCI-E QCA9887 */
65 	{0}
66 };
67 
68 static const struct ath10k_pci_supp_chip ath10k_pci_supp_chips[] = {
69 	/* QCA988X pre 2.0 chips are not supported because they need some nasty
70 	 * hacks. ath10k doesn't have them and these devices crash horribly
71 	 * because of that.
72 	 */
73 	{ QCA988X_2_0_DEVICE_ID_UBNT, QCA988X_HW_2_0_CHIP_ID_REV },
74 	{ QCA988X_2_0_DEVICE_ID, QCA988X_HW_2_0_CHIP_ID_REV },
75 
76 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
77 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
78 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
79 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
80 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
81 
82 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
83 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
84 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
85 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
86 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
87 
88 	{ QCA99X0_2_0_DEVICE_ID, QCA99X0_HW_2_0_CHIP_ID_REV },
89 
90 	{ QCA9984_1_0_DEVICE_ID, QCA9984_HW_1_0_CHIP_ID_REV },
91 
92 	{ QCA9888_2_0_DEVICE_ID, QCA9888_HW_2_0_CHIP_ID_REV },
93 
94 	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_0_CHIP_ID_REV },
95 	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_1_CHIP_ID_REV },
96 
97 	{ QCA9887_1_0_DEVICE_ID, QCA9887_HW_1_0_CHIP_ID_REV },
98 };
99 
100 static void ath10k_pci_buffer_cleanup(struct ath10k *ar);
101 static int ath10k_pci_cold_reset(struct ath10k *ar);
102 static int ath10k_pci_safe_chip_reset(struct ath10k *ar);
103 static int ath10k_pci_init_irq(struct ath10k *ar);
104 static int ath10k_pci_deinit_irq(struct ath10k *ar);
105 static int ath10k_pci_request_irq(struct ath10k *ar);
106 static void ath10k_pci_free_irq(struct ath10k *ar);
107 static int ath10k_pci_bmi_wait(struct ath10k *ar,
108 			       struct ath10k_ce_pipe *tx_pipe,
109 			       struct ath10k_ce_pipe *rx_pipe,
110 			       struct bmi_xfer *xfer);
111 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar);
112 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state);
113 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
114 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state);
115 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state);
116 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
117 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state);
118 
119 static struct ce_attr host_ce_config_wlan[] = {
120 	/* CE0: host->target HTC control and raw streams */
121 	{
122 		.flags = CE_ATTR_FLAGS,
123 		.src_nentries = 16,
124 		.src_sz_max = 256,
125 		.dest_nentries = 0,
126 		.send_cb = ath10k_pci_htc_tx_cb,
127 	},
128 
129 	/* CE1: target->host HTT + HTC control */
130 	{
131 		.flags = CE_ATTR_FLAGS,
132 		.src_nentries = 0,
133 		.src_sz_max = 2048,
134 		.dest_nentries = 512,
135 		.recv_cb = ath10k_pci_htt_htc_rx_cb,
136 	},
137 
138 	/* CE2: target->host WMI */
139 	{
140 		.flags = CE_ATTR_FLAGS,
141 		.src_nentries = 0,
142 		.src_sz_max = 2048,
143 		.dest_nentries = 128,
144 		.recv_cb = ath10k_pci_htc_rx_cb,
145 	},
146 
147 	/* CE3: host->target WMI */
148 	{
149 		.flags = CE_ATTR_FLAGS,
150 		.src_nentries = 32,
151 		.src_sz_max = 2048,
152 		.dest_nentries = 0,
153 		.send_cb = ath10k_pci_htc_tx_cb,
154 	},
155 
156 	/* CE4: host->target HTT */
157 	{
158 		.flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
159 		.src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
160 		.src_sz_max = 256,
161 		.dest_nentries = 0,
162 		.send_cb = ath10k_pci_htt_tx_cb,
163 	},
164 
165 	/* CE5: target->host HTT (HIF->HTT) */
166 	{
167 		.flags = CE_ATTR_FLAGS,
168 		.src_nentries = 0,
169 		.src_sz_max = 512,
170 		.dest_nentries = 512,
171 		.recv_cb = ath10k_pci_htt_rx_cb,
172 	},
173 
174 	/* CE6: target autonomous hif_memcpy */
175 	{
176 		.flags = CE_ATTR_FLAGS,
177 		.src_nentries = 0,
178 		.src_sz_max = 0,
179 		.dest_nentries = 0,
180 	},
181 
182 	/* CE7: ce_diag, the Diagnostic Window */
183 	{
184 		.flags = CE_ATTR_FLAGS | CE_ATTR_POLL,
185 		.src_nentries = 2,
186 		.src_sz_max = DIAG_TRANSFER_LIMIT,
187 		.dest_nentries = 2,
188 	},
189 
190 	/* CE8: target->host pktlog */
191 	{
192 		.flags = CE_ATTR_FLAGS,
193 		.src_nentries = 0,
194 		.src_sz_max = 2048,
195 		.dest_nentries = 128,
196 		.recv_cb = ath10k_pci_pktlog_rx_cb,
197 	},
198 
199 	/* CE9 target autonomous qcache memcpy */
200 	{
201 		.flags = CE_ATTR_FLAGS,
202 		.src_nentries = 0,
203 		.src_sz_max = 0,
204 		.dest_nentries = 0,
205 	},
206 
207 	/* CE10: target autonomous hif memcpy */
208 	{
209 		.flags = CE_ATTR_FLAGS,
210 		.src_nentries = 0,
211 		.src_sz_max = 0,
212 		.dest_nentries = 0,
213 	},
214 
215 	/* CE11: target autonomous hif memcpy */
216 	{
217 		.flags = CE_ATTR_FLAGS,
218 		.src_nentries = 0,
219 		.src_sz_max = 0,
220 		.dest_nentries = 0,
221 	},
222 };
223 
224 /* Target firmware's Copy Engine configuration. */
225 static struct ce_pipe_config target_ce_config_wlan[] = {
226 	/* CE0: host->target HTC control and raw streams */
227 	{
228 		.pipenum = __cpu_to_le32(0),
229 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
230 		.nentries = __cpu_to_le32(32),
231 		.nbytes_max = __cpu_to_le32(256),
232 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
233 		.reserved = __cpu_to_le32(0),
234 	},
235 
236 	/* CE1: target->host HTT + HTC control */
237 	{
238 		.pipenum = __cpu_to_le32(1),
239 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
240 		.nentries = __cpu_to_le32(32),
241 		.nbytes_max = __cpu_to_le32(2048),
242 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
243 		.reserved = __cpu_to_le32(0),
244 	},
245 
246 	/* CE2: target->host WMI */
247 	{
248 		.pipenum = __cpu_to_le32(2),
249 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
250 		.nentries = __cpu_to_le32(64),
251 		.nbytes_max = __cpu_to_le32(2048),
252 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
253 		.reserved = __cpu_to_le32(0),
254 	},
255 
256 	/* CE3: host->target WMI */
257 	{
258 		.pipenum = __cpu_to_le32(3),
259 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
260 		.nentries = __cpu_to_le32(32),
261 		.nbytes_max = __cpu_to_le32(2048),
262 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
263 		.reserved = __cpu_to_le32(0),
264 	},
265 
266 	/* CE4: host->target HTT */
267 	{
268 		.pipenum = __cpu_to_le32(4),
269 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
270 		.nentries = __cpu_to_le32(256),
271 		.nbytes_max = __cpu_to_le32(256),
272 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
273 		.reserved = __cpu_to_le32(0),
274 	},
275 
276 	/* NB: 50% of src nentries, since tx has 2 frags */
277 
278 	/* CE5: target->host HTT (HIF->HTT) */
279 	{
280 		.pipenum = __cpu_to_le32(5),
281 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
282 		.nentries = __cpu_to_le32(32),
283 		.nbytes_max = __cpu_to_le32(512),
284 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
285 		.reserved = __cpu_to_le32(0),
286 	},
287 
288 	/* CE6: Reserved for target autonomous hif_memcpy */
289 	{
290 		.pipenum = __cpu_to_le32(6),
291 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
292 		.nentries = __cpu_to_le32(32),
293 		.nbytes_max = __cpu_to_le32(4096),
294 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
295 		.reserved = __cpu_to_le32(0),
296 	},
297 
298 	/* CE7 used only by Host */
299 	{
300 		.pipenum = __cpu_to_le32(7),
301 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
302 		.nentries = __cpu_to_le32(0),
303 		.nbytes_max = __cpu_to_le32(0),
304 		.flags = __cpu_to_le32(0),
305 		.reserved = __cpu_to_le32(0),
306 	},
307 
308 	/* CE8 target->host packtlog */
309 	{
310 		.pipenum = __cpu_to_le32(8),
311 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
312 		.nentries = __cpu_to_le32(64),
313 		.nbytes_max = __cpu_to_le32(2048),
314 		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
315 		.reserved = __cpu_to_le32(0),
316 	},
317 
318 	/* CE9 target autonomous qcache memcpy */
319 	{
320 		.pipenum = __cpu_to_le32(9),
321 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
322 		.nentries = __cpu_to_le32(32),
323 		.nbytes_max = __cpu_to_le32(2048),
324 		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
325 		.reserved = __cpu_to_le32(0),
326 	},
327 
328 	/* It not necessary to send target wlan configuration for CE10 & CE11
329 	 * as these CEs are not actively used in target.
330 	 */
331 };
332 
333 /*
334  * Map from service/endpoint to Copy Engine.
335  * This table is derived from the CE_PCI TABLE, above.
336  * It is passed to the Target at startup for use by firmware.
337  */
338 static struct service_to_pipe target_service_to_ce_map_wlan[] = {
339 	{
340 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
341 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
342 		__cpu_to_le32(3),
343 	},
344 	{
345 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
346 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
347 		__cpu_to_le32(2),
348 	},
349 	{
350 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
351 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
352 		__cpu_to_le32(3),
353 	},
354 	{
355 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
356 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
357 		__cpu_to_le32(2),
358 	},
359 	{
360 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
361 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
362 		__cpu_to_le32(3),
363 	},
364 	{
365 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
366 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
367 		__cpu_to_le32(2),
368 	},
369 	{
370 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
371 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
372 		__cpu_to_le32(3),
373 	},
374 	{
375 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
376 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
377 		__cpu_to_le32(2),
378 	},
379 	{
380 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
381 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
382 		__cpu_to_le32(3),
383 	},
384 	{
385 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
386 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
387 		__cpu_to_le32(2),
388 	},
389 	{
390 		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
391 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
392 		__cpu_to_le32(0),
393 	},
394 	{
395 		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
396 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
397 		__cpu_to_le32(1),
398 	},
399 	{ /* not used */
400 		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
401 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
402 		__cpu_to_le32(0),
403 	},
404 	{ /* not used */
405 		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
406 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
407 		__cpu_to_le32(1),
408 	},
409 	{
410 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
411 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
412 		__cpu_to_le32(4),
413 	},
414 	{
415 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
416 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
417 		__cpu_to_le32(5),
418 	},
419 
420 	/* (Additions here) */
421 
422 	{ /* must be last */
423 		__cpu_to_le32(0),
424 		__cpu_to_le32(0),
425 		__cpu_to_le32(0),
426 	},
427 };
428 
429 static bool ath10k_pci_is_awake(struct ath10k *ar)
430 {
431 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
432 	u32 val = ioread32(ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
433 			   RTC_STATE_ADDRESS);
434 
435 	return RTC_STATE_V_GET(val) == RTC_STATE_V_ON;
436 }
437 
438 static void __ath10k_pci_wake(struct ath10k *ar)
439 {
440 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
441 
442 	lockdep_assert_held(&ar_pci->ps_lock);
443 
444 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake reg refcount %lu awake %d\n",
445 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
446 
447 	iowrite32(PCIE_SOC_WAKE_V_MASK,
448 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
449 		  PCIE_SOC_WAKE_ADDRESS);
450 }
451 
452 static void __ath10k_pci_sleep(struct ath10k *ar)
453 {
454 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
455 
456 	lockdep_assert_held(&ar_pci->ps_lock);
457 
458 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep reg refcount %lu awake %d\n",
459 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
460 
461 	iowrite32(PCIE_SOC_WAKE_RESET,
462 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
463 		  PCIE_SOC_WAKE_ADDRESS);
464 	ar_pci->ps_awake = false;
465 }
466 
467 static int ath10k_pci_wake_wait(struct ath10k *ar)
468 {
469 	int tot_delay = 0;
470 	int curr_delay = 5;
471 
472 	while (tot_delay < PCIE_WAKE_TIMEOUT) {
473 		if (ath10k_pci_is_awake(ar)) {
474 			if (tot_delay > PCIE_WAKE_LATE_US)
475 				ath10k_warn(ar, "device wakeup took %d ms which is unusually long, otherwise it works normally.\n",
476 					    tot_delay / 1000);
477 			return 0;
478 		}
479 
480 		udelay(curr_delay);
481 		tot_delay += curr_delay;
482 
483 		if (curr_delay < 50)
484 			curr_delay += 5;
485 	}
486 
487 	return -ETIMEDOUT;
488 }
489 
490 static int ath10k_pci_force_wake(struct ath10k *ar)
491 {
492 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
493 	unsigned long flags;
494 	int ret = 0;
495 
496 	if (ar_pci->pci_ps)
497 		return ret;
498 
499 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
500 
501 	if (!ar_pci->ps_awake) {
502 		iowrite32(PCIE_SOC_WAKE_V_MASK,
503 			  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
504 			  PCIE_SOC_WAKE_ADDRESS);
505 
506 		ret = ath10k_pci_wake_wait(ar);
507 		if (ret == 0)
508 			ar_pci->ps_awake = true;
509 	}
510 
511 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
512 
513 	return ret;
514 }
515 
516 static void ath10k_pci_force_sleep(struct ath10k *ar)
517 {
518 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
519 	unsigned long flags;
520 
521 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
522 
523 	iowrite32(PCIE_SOC_WAKE_RESET,
524 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
525 		  PCIE_SOC_WAKE_ADDRESS);
526 	ar_pci->ps_awake = false;
527 
528 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
529 }
530 
531 static int ath10k_pci_wake(struct ath10k *ar)
532 {
533 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
534 	unsigned long flags;
535 	int ret = 0;
536 
537 	if (ar_pci->pci_ps == 0)
538 		return ret;
539 
540 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
541 
542 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake refcount %lu awake %d\n",
543 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
544 
545 	/* This function can be called very frequently. To avoid excessive
546 	 * CPU stalls for MMIO reads use a cache var to hold the device state.
547 	 */
548 	if (!ar_pci->ps_awake) {
549 		__ath10k_pci_wake(ar);
550 
551 		ret = ath10k_pci_wake_wait(ar);
552 		if (ret == 0)
553 			ar_pci->ps_awake = true;
554 	}
555 
556 	if (ret == 0) {
557 		ar_pci->ps_wake_refcount++;
558 		WARN_ON(ar_pci->ps_wake_refcount == 0);
559 	}
560 
561 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
562 
563 	return ret;
564 }
565 
566 static void ath10k_pci_sleep(struct ath10k *ar)
567 {
568 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
569 	unsigned long flags;
570 
571 	if (ar_pci->pci_ps == 0)
572 		return;
573 
574 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
575 
576 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep refcount %lu awake %d\n",
577 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
578 
579 	if (WARN_ON(ar_pci->ps_wake_refcount == 0))
580 		goto skip;
581 
582 	ar_pci->ps_wake_refcount--;
583 
584 	mod_timer(&ar_pci->ps_timer, jiffies +
585 		  msecs_to_jiffies(ATH10K_PCI_SLEEP_GRACE_PERIOD_MSEC));
586 
587 skip:
588 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
589 }
590 
591 static void ath10k_pci_ps_timer(struct timer_list *t)
592 {
593 	struct ath10k_pci *ar_pci = from_timer(ar_pci, t, ps_timer);
594 	struct ath10k *ar = ar_pci->ar;
595 	unsigned long flags;
596 
597 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
598 
599 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps timer refcount %lu awake %d\n",
600 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
601 
602 	if (ar_pci->ps_wake_refcount > 0)
603 		goto skip;
604 
605 	__ath10k_pci_sleep(ar);
606 
607 skip:
608 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
609 }
610 
611 static void ath10k_pci_sleep_sync(struct ath10k *ar)
612 {
613 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
614 	unsigned long flags;
615 
616 	if (ar_pci->pci_ps == 0) {
617 		ath10k_pci_force_sleep(ar);
618 		return;
619 	}
620 
621 	del_timer_sync(&ar_pci->ps_timer);
622 
623 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
624 	WARN_ON(ar_pci->ps_wake_refcount > 0);
625 	__ath10k_pci_sleep(ar);
626 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
627 }
628 
629 static void ath10k_bus_pci_write32(struct ath10k *ar, u32 offset, u32 value)
630 {
631 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
632 	int ret;
633 
634 	if (unlikely(offset + sizeof(value) > ar_pci->mem_len)) {
635 		ath10k_warn(ar, "refusing to write mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
636 			    offset, offset + sizeof(value), ar_pci->mem_len);
637 		return;
638 	}
639 
640 	ret = ath10k_pci_wake(ar);
641 	if (ret) {
642 		ath10k_warn(ar, "failed to wake target for write32 of 0x%08x at 0x%08x: %d\n",
643 			    value, offset, ret);
644 		return;
645 	}
646 
647 	iowrite32(value, ar_pci->mem + offset);
648 	ath10k_pci_sleep(ar);
649 }
650 
651 static u32 ath10k_bus_pci_read32(struct ath10k *ar, u32 offset)
652 {
653 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
654 	u32 val;
655 	int ret;
656 
657 	if (unlikely(offset + sizeof(val) > ar_pci->mem_len)) {
658 		ath10k_warn(ar, "refusing to read mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
659 			    offset, offset + sizeof(val), ar_pci->mem_len);
660 		return 0;
661 	}
662 
663 	ret = ath10k_pci_wake(ar);
664 	if (ret) {
665 		ath10k_warn(ar, "failed to wake target for read32 at 0x%08x: %d\n",
666 			    offset, ret);
667 		return 0xffffffff;
668 	}
669 
670 	val = ioread32(ar_pci->mem + offset);
671 	ath10k_pci_sleep(ar);
672 
673 	return val;
674 }
675 
676 inline void ath10k_pci_write32(struct ath10k *ar, u32 offset, u32 value)
677 {
678 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
679 
680 	ce->bus_ops->write32(ar, offset, value);
681 }
682 
683 inline u32 ath10k_pci_read32(struct ath10k *ar, u32 offset)
684 {
685 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
686 
687 	return ce->bus_ops->read32(ar, offset);
688 }
689 
690 u32 ath10k_pci_soc_read32(struct ath10k *ar, u32 addr)
691 {
692 	return ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + addr);
693 }
694 
695 void ath10k_pci_soc_write32(struct ath10k *ar, u32 addr, u32 val)
696 {
697 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + addr, val);
698 }
699 
700 u32 ath10k_pci_reg_read32(struct ath10k *ar, u32 addr)
701 {
702 	return ath10k_pci_read32(ar, PCIE_LOCAL_BASE_ADDRESS + addr);
703 }
704 
705 void ath10k_pci_reg_write32(struct ath10k *ar, u32 addr, u32 val)
706 {
707 	ath10k_pci_write32(ar, PCIE_LOCAL_BASE_ADDRESS + addr, val);
708 }
709 
710 bool ath10k_pci_irq_pending(struct ath10k *ar)
711 {
712 	u32 cause;
713 
714 	/* Check if the shared legacy irq is for us */
715 	cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
716 				  PCIE_INTR_CAUSE_ADDRESS);
717 	if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL))
718 		return true;
719 
720 	return false;
721 }
722 
723 void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar)
724 {
725 	/* IMPORTANT: INTR_CLR register has to be set after
726 	 * INTR_ENABLE is set to 0, otherwise interrupt can not be
727 	 * really cleared.
728 	 */
729 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
730 			   0);
731 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS,
732 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
733 
734 	/* IMPORTANT: this extra read transaction is required to
735 	 * flush the posted write buffer.
736 	 */
737 	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
738 				PCIE_INTR_ENABLE_ADDRESS);
739 }
740 
741 void ath10k_pci_enable_legacy_irq(struct ath10k *ar)
742 {
743 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
744 			   PCIE_INTR_ENABLE_ADDRESS,
745 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
746 
747 	/* IMPORTANT: this extra read transaction is required to
748 	 * flush the posted write buffer.
749 	 */
750 	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
751 				PCIE_INTR_ENABLE_ADDRESS);
752 }
753 
754 static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar)
755 {
756 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
757 
758 	if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_MSI)
759 		return "msi";
760 
761 	return "legacy";
762 }
763 
764 static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe)
765 {
766 	struct ath10k *ar = pipe->hif_ce_state;
767 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
768 	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
769 	struct sk_buff *skb;
770 	dma_addr_t paddr;
771 	int ret;
772 
773 	skb = dev_alloc_skb(pipe->buf_sz);
774 	if (!skb)
775 		return -ENOMEM;
776 
777 	WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
778 
779 	paddr = dma_map_single(ar->dev, skb->data,
780 			       skb->len + skb_tailroom(skb),
781 			       DMA_FROM_DEVICE);
782 	if (unlikely(dma_mapping_error(ar->dev, paddr))) {
783 		ath10k_warn(ar, "failed to dma map pci rx buf\n");
784 		dev_kfree_skb_any(skb);
785 		return -EIO;
786 	}
787 
788 	ATH10K_SKB_RXCB(skb)->paddr = paddr;
789 
790 	spin_lock_bh(&ce->ce_lock);
791 	ret = ce_pipe->ops->ce_rx_post_buf(ce_pipe, skb, paddr);
792 	spin_unlock_bh(&ce->ce_lock);
793 	if (ret) {
794 		dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
795 				 DMA_FROM_DEVICE);
796 		dev_kfree_skb_any(skb);
797 		return ret;
798 	}
799 
800 	return 0;
801 }
802 
803 static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
804 {
805 	struct ath10k *ar = pipe->hif_ce_state;
806 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
807 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
808 	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
809 	int ret, num;
810 
811 	if (pipe->buf_sz == 0)
812 		return;
813 
814 	if (!ce_pipe->dest_ring)
815 		return;
816 
817 	spin_lock_bh(&ce->ce_lock);
818 	num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
819 	spin_unlock_bh(&ce->ce_lock);
820 
821 	while (num >= 0) {
822 		ret = __ath10k_pci_rx_post_buf(pipe);
823 		if (ret) {
824 			if (ret == -ENOSPC)
825 				break;
826 			ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
827 			mod_timer(&ar_pci->rx_post_retry, jiffies +
828 				  ATH10K_PCI_RX_POST_RETRY_MS);
829 			break;
830 		}
831 		num--;
832 	}
833 }
834 
835 void ath10k_pci_rx_post(struct ath10k *ar)
836 {
837 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
838 	int i;
839 
840 	for (i = 0; i < CE_COUNT; i++)
841 		ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]);
842 }
843 
844 void ath10k_pci_rx_replenish_retry(struct timer_list *t)
845 {
846 	struct ath10k_pci *ar_pci = from_timer(ar_pci, t, rx_post_retry);
847 	struct ath10k *ar = ar_pci->ar;
848 
849 	ath10k_pci_rx_post(ar);
850 }
851 
852 static u32 ath10k_pci_qca988x_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
853 {
854 	u32 val = 0, region = addr & 0xfffff;
855 
856 	val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
857 				 & 0x7ff) << 21;
858 	val |= 0x100000 | region;
859 	return val;
860 }
861 
862 /* Refactor from ath10k_pci_qca988x_targ_cpu_to_ce_addr.
863  * Support to access target space below 1M for qca6174 and qca9377.
864  * If target space is below 1M, the bit[20] of converted CE addr is 0.
865  * Otherwise bit[20] of converted CE addr is 1.
866  */
867 static u32 ath10k_pci_qca6174_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
868 {
869 	u32 val = 0, region = addr & 0xfffff;
870 
871 	val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
872 				 & 0x7ff) << 21;
873 	val |= ((addr >= 0x100000) ? 0x100000 : 0) | region;
874 	return val;
875 }
876 
877 static u32 ath10k_pci_qca99x0_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
878 {
879 	u32 val = 0, region = addr & 0xfffff;
880 
881 	val = ath10k_pci_read32(ar, PCIE_BAR_REG_ADDRESS);
882 	val |= 0x100000 | region;
883 	return val;
884 }
885 
886 static u32 ath10k_pci_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
887 {
888 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
889 
890 	if (WARN_ON_ONCE(!ar_pci->targ_cpu_to_ce_addr))
891 		return -ENOTSUPP;
892 
893 	return ar_pci->targ_cpu_to_ce_addr(ar, addr);
894 }
895 
896 /*
897  * Diagnostic read/write access is provided for startup/config/debug usage.
898  * Caller must guarantee proper alignment, when applicable, and single user
899  * at any moment.
900  */
901 static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
902 				    int nbytes)
903 {
904 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
905 	int ret = 0;
906 	u32 *buf;
907 	unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
908 	struct ath10k_ce_pipe *ce_diag;
909 	/* Host buffer address in CE space */
910 	u32 ce_data;
911 	dma_addr_t ce_data_base = 0;
912 	void *data_buf = NULL;
913 	int i;
914 
915 	mutex_lock(&ar_pci->ce_diag_mutex);
916 	ce_diag = ar_pci->ce_diag;
917 
918 	/*
919 	 * Allocate a temporary bounce buffer to hold caller's data
920 	 * to be DMA'ed from Target. This guarantees
921 	 *   1) 4-byte alignment
922 	 *   2) Buffer in DMA-able space
923 	 */
924 	alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
925 
926 	data_buf = (unsigned char *)dma_alloc_coherent(ar->dev, alloc_nbytes,
927 						       &ce_data_base,
928 						       GFP_ATOMIC);
929 
930 	if (!data_buf) {
931 		ret = -ENOMEM;
932 		goto done;
933 	}
934 
935 	/* The address supplied by the caller is in the
936 	 * Target CPU virtual address space.
937 	 *
938 	 * In order to use this address with the diagnostic CE,
939 	 * convert it from Target CPU virtual address space
940 	 * to CE address space
941 	 */
942 	address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
943 
944 	remaining_bytes = nbytes;
945 	ce_data = ce_data_base;
946 	while (remaining_bytes) {
947 		nbytes = min_t(unsigned int, remaining_bytes,
948 			       DIAG_TRANSFER_LIMIT);
949 
950 		ret = ath10k_ce_rx_post_buf(ce_diag, &ce_data, ce_data);
951 		if (ret != 0)
952 			goto done;
953 
954 		/* Request CE to send from Target(!) address to Host buffer */
955 		ret = ath10k_ce_send(ce_diag, NULL, (u32)address, nbytes, 0, 0);
956 		if (ret)
957 			goto done;
958 
959 		i = 0;
960 		while (ath10k_ce_completed_send_next(ce_diag, NULL) != 0) {
961 			udelay(DIAG_ACCESS_CE_WAIT_US);
962 			i += DIAG_ACCESS_CE_WAIT_US;
963 
964 			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
965 				ret = -EBUSY;
966 				goto done;
967 			}
968 		}
969 
970 		i = 0;
971 		while (ath10k_ce_completed_recv_next(ce_diag, (void **)&buf,
972 						     &completed_nbytes) != 0) {
973 			udelay(DIAG_ACCESS_CE_WAIT_US);
974 			i += DIAG_ACCESS_CE_WAIT_US;
975 
976 			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
977 				ret = -EBUSY;
978 				goto done;
979 			}
980 		}
981 
982 		if (nbytes != completed_nbytes) {
983 			ret = -EIO;
984 			goto done;
985 		}
986 
987 		if (*buf != ce_data) {
988 			ret = -EIO;
989 			goto done;
990 		}
991 
992 		remaining_bytes -= nbytes;
993 		memcpy(data, data_buf, nbytes);
994 
995 		address += nbytes;
996 		data += nbytes;
997 	}
998 
999 done:
1000 
1001 	if (data_buf)
1002 		dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
1003 				  ce_data_base);
1004 
1005 	mutex_unlock(&ar_pci->ce_diag_mutex);
1006 
1007 	return ret;
1008 }
1009 
1010 static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value)
1011 {
1012 	__le32 val = 0;
1013 	int ret;
1014 
1015 	ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val));
1016 	*value = __le32_to_cpu(val);
1017 
1018 	return ret;
1019 }
1020 
1021 static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest,
1022 				     u32 src, u32 len)
1023 {
1024 	u32 host_addr, addr;
1025 	int ret;
1026 
1027 	host_addr = host_interest_item_address(src);
1028 
1029 	ret = ath10k_pci_diag_read32(ar, host_addr, &addr);
1030 	if (ret != 0) {
1031 		ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n",
1032 			    src, ret);
1033 		return ret;
1034 	}
1035 
1036 	ret = ath10k_pci_diag_read_mem(ar, addr, dest, len);
1037 	if (ret != 0) {
1038 		ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n",
1039 			    addr, len, ret);
1040 		return ret;
1041 	}
1042 
1043 	return 0;
1044 }
1045 
1046 #define ath10k_pci_diag_read_hi(ar, dest, src, len)		\
1047 	__ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len)
1048 
1049 int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
1050 			      const void *data, int nbytes)
1051 {
1052 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1053 	int ret = 0;
1054 	u32 *buf;
1055 	unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
1056 	struct ath10k_ce_pipe *ce_diag;
1057 	void *data_buf = NULL;
1058 	dma_addr_t ce_data_base = 0;
1059 	int i;
1060 
1061 	mutex_lock(&ar_pci->ce_diag_mutex);
1062 	ce_diag = ar_pci->ce_diag;
1063 
1064 	/*
1065 	 * Allocate a temporary bounce buffer to hold caller's data
1066 	 * to be DMA'ed to Target. This guarantees
1067 	 *   1) 4-byte alignment
1068 	 *   2) Buffer in DMA-able space
1069 	 */
1070 	alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
1071 
1072 	data_buf = (unsigned char *)dma_alloc_coherent(ar->dev,
1073 						       alloc_nbytes,
1074 						       &ce_data_base,
1075 						       GFP_ATOMIC);
1076 	if (!data_buf) {
1077 		ret = -ENOMEM;
1078 		goto done;
1079 	}
1080 
1081 	/*
1082 	 * The address supplied by the caller is in the
1083 	 * Target CPU virtual address space.
1084 	 *
1085 	 * In order to use this address with the diagnostic CE,
1086 	 * convert it from
1087 	 *    Target CPU virtual address space
1088 	 * to
1089 	 *    CE address space
1090 	 */
1091 	address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
1092 
1093 	remaining_bytes = nbytes;
1094 	while (remaining_bytes) {
1095 		/* FIXME: check cast */
1096 		nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
1097 
1098 		/* Copy caller's data to allocated DMA buf */
1099 		memcpy(data_buf, data, nbytes);
1100 
1101 		/* Set up to receive directly into Target(!) address */
1102 		ret = ath10k_ce_rx_post_buf(ce_diag, &address, address);
1103 		if (ret != 0)
1104 			goto done;
1105 
1106 		/*
1107 		 * Request CE to send caller-supplied data that
1108 		 * was copied to bounce buffer to Target(!) address.
1109 		 */
1110 		ret = ath10k_ce_send(ce_diag, NULL, ce_data_base, nbytes, 0, 0);
1111 		if (ret != 0)
1112 			goto done;
1113 
1114 		i = 0;
1115 		while (ath10k_ce_completed_send_next(ce_diag, NULL) != 0) {
1116 			udelay(DIAG_ACCESS_CE_WAIT_US);
1117 			i += DIAG_ACCESS_CE_WAIT_US;
1118 
1119 			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
1120 				ret = -EBUSY;
1121 				goto done;
1122 			}
1123 		}
1124 
1125 		i = 0;
1126 		while (ath10k_ce_completed_recv_next(ce_diag, (void **)&buf,
1127 						     &completed_nbytes) != 0) {
1128 			udelay(DIAG_ACCESS_CE_WAIT_US);
1129 			i += DIAG_ACCESS_CE_WAIT_US;
1130 
1131 			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
1132 				ret = -EBUSY;
1133 				goto done;
1134 			}
1135 		}
1136 
1137 		if (nbytes != completed_nbytes) {
1138 			ret = -EIO;
1139 			goto done;
1140 		}
1141 
1142 		if (*buf != address) {
1143 			ret = -EIO;
1144 			goto done;
1145 		}
1146 
1147 		remaining_bytes -= nbytes;
1148 		address += nbytes;
1149 		data += nbytes;
1150 	}
1151 
1152 done:
1153 	if (data_buf) {
1154 		dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
1155 				  ce_data_base);
1156 	}
1157 
1158 	if (ret != 0)
1159 		ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n",
1160 			    address, ret);
1161 
1162 	mutex_unlock(&ar_pci->ce_diag_mutex);
1163 
1164 	return ret;
1165 }
1166 
1167 static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value)
1168 {
1169 	__le32 val = __cpu_to_le32(value);
1170 
1171 	return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val));
1172 }
1173 
1174 /* Called by lower (CE) layer when a send to Target completes. */
1175 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state)
1176 {
1177 	struct ath10k *ar = ce_state->ar;
1178 	struct sk_buff_head list;
1179 	struct sk_buff *skb;
1180 
1181 	__skb_queue_head_init(&list);
1182 	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1183 		/* no need to call tx completion for NULL pointers */
1184 		if (skb == NULL)
1185 			continue;
1186 
1187 		__skb_queue_tail(&list, skb);
1188 	}
1189 
1190 	while ((skb = __skb_dequeue(&list)))
1191 		ath10k_htc_tx_completion_handler(ar, skb);
1192 }
1193 
1194 static void ath10k_pci_process_rx_cb(struct ath10k_ce_pipe *ce_state,
1195 				     void (*callback)(struct ath10k *ar,
1196 						      struct sk_buff *skb))
1197 {
1198 	struct ath10k *ar = ce_state->ar;
1199 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1200 	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1201 	struct sk_buff *skb;
1202 	struct sk_buff_head list;
1203 	void *transfer_context;
1204 	unsigned int nbytes, max_nbytes;
1205 
1206 	__skb_queue_head_init(&list);
1207 	while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
1208 					     &nbytes) == 0) {
1209 		skb = transfer_context;
1210 		max_nbytes = skb->len + skb_tailroom(skb);
1211 		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1212 				 max_nbytes, DMA_FROM_DEVICE);
1213 
1214 		if (unlikely(max_nbytes < nbytes)) {
1215 			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1216 				    nbytes, max_nbytes);
1217 			dev_kfree_skb_any(skb);
1218 			continue;
1219 		}
1220 
1221 		skb_put(skb, nbytes);
1222 		__skb_queue_tail(&list, skb);
1223 	}
1224 
1225 	while ((skb = __skb_dequeue(&list))) {
1226 		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1227 			   ce_state->id, skb->len);
1228 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1229 				skb->data, skb->len);
1230 
1231 		callback(ar, skb);
1232 	}
1233 
1234 	ath10k_pci_rx_post_pipe(pipe_info);
1235 }
1236 
1237 static void ath10k_pci_process_htt_rx_cb(struct ath10k_ce_pipe *ce_state,
1238 					 void (*callback)(struct ath10k *ar,
1239 							  struct sk_buff *skb))
1240 {
1241 	struct ath10k *ar = ce_state->ar;
1242 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1243 	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1244 	struct ath10k_ce_pipe *ce_pipe = pipe_info->ce_hdl;
1245 	struct sk_buff *skb;
1246 	struct sk_buff_head list;
1247 	void *transfer_context;
1248 	unsigned int nbytes, max_nbytes, nentries;
1249 	int orig_len;
1250 
1251 	/* No need to aquire ce_lock for CE5, since this is the only place CE5
1252 	 * is processed other than init and deinit. Before releasing CE5
1253 	 * buffers, interrupts are disabled. Thus CE5 access is serialized.
1254 	 */
1255 	__skb_queue_head_init(&list);
1256 	while (ath10k_ce_completed_recv_next_nolock(ce_state, &transfer_context,
1257 						    &nbytes) == 0) {
1258 		skb = transfer_context;
1259 		max_nbytes = skb->len + skb_tailroom(skb);
1260 
1261 		if (unlikely(max_nbytes < nbytes)) {
1262 			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1263 				    nbytes, max_nbytes);
1264 			continue;
1265 		}
1266 
1267 		dma_sync_single_for_cpu(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1268 					max_nbytes, DMA_FROM_DEVICE);
1269 		skb_put(skb, nbytes);
1270 		__skb_queue_tail(&list, skb);
1271 	}
1272 
1273 	nentries = skb_queue_len(&list);
1274 	while ((skb = __skb_dequeue(&list))) {
1275 		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1276 			   ce_state->id, skb->len);
1277 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1278 				skb->data, skb->len);
1279 
1280 		orig_len = skb->len;
1281 		callback(ar, skb);
1282 		skb_push(skb, orig_len - skb->len);
1283 		skb_reset_tail_pointer(skb);
1284 		skb_trim(skb, 0);
1285 
1286 		/*let device gain the buffer again*/
1287 		dma_sync_single_for_device(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1288 					   skb->len + skb_tailroom(skb),
1289 					   DMA_FROM_DEVICE);
1290 	}
1291 	ath10k_ce_rx_update_write_idx(ce_pipe, nentries);
1292 }
1293 
1294 /* Called by lower (CE) layer when data is received from the Target. */
1295 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1296 {
1297 	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1298 }
1299 
1300 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1301 {
1302 	/* CE4 polling needs to be done whenever CE pipe which transports
1303 	 * HTT Rx (target->host) is processed.
1304 	 */
1305 	ath10k_ce_per_engine_service(ce_state->ar, 4);
1306 
1307 	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1308 }
1309 
1310 /* Called by lower (CE) layer when data is received from the Target.
1311  * Only 10.4 firmware uses separate CE to transfer pktlog data.
1312  */
1313 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state)
1314 {
1315 	ath10k_pci_process_rx_cb(ce_state,
1316 				 ath10k_htt_rx_pktlog_completion_handler);
1317 }
1318 
1319 /* Called by lower (CE) layer when a send to HTT Target completes. */
1320 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state)
1321 {
1322 	struct ath10k *ar = ce_state->ar;
1323 	struct sk_buff *skb;
1324 
1325 	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1326 		/* no need to call tx completion for NULL pointers */
1327 		if (!skb)
1328 			continue;
1329 
1330 		dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
1331 				 skb->len, DMA_TO_DEVICE);
1332 		ath10k_htt_hif_tx_complete(ar, skb);
1333 	}
1334 }
1335 
1336 static void ath10k_pci_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb)
1337 {
1338 	skb_pull(skb, sizeof(struct ath10k_htc_hdr));
1339 	ath10k_htt_t2h_msg_handler(ar, skb);
1340 }
1341 
1342 /* Called by lower (CE) layer when HTT data is received from the Target. */
1343 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state)
1344 {
1345 	/* CE4 polling needs to be done whenever CE pipe which transports
1346 	 * HTT Rx (target->host) is processed.
1347 	 */
1348 	ath10k_ce_per_engine_service(ce_state->ar, 4);
1349 
1350 	ath10k_pci_process_htt_rx_cb(ce_state, ath10k_pci_htt_rx_deliver);
1351 }
1352 
1353 int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
1354 			 struct ath10k_hif_sg_item *items, int n_items)
1355 {
1356 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1357 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1358 	struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id];
1359 	struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl;
1360 	struct ath10k_ce_ring *src_ring = ce_pipe->src_ring;
1361 	unsigned int nentries_mask;
1362 	unsigned int sw_index;
1363 	unsigned int write_index;
1364 	int err, i = 0;
1365 
1366 	spin_lock_bh(&ce->ce_lock);
1367 
1368 	nentries_mask = src_ring->nentries_mask;
1369 	sw_index = src_ring->sw_index;
1370 	write_index = src_ring->write_index;
1371 
1372 	if (unlikely(CE_RING_DELTA(nentries_mask,
1373 				   write_index, sw_index - 1) < n_items)) {
1374 		err = -ENOBUFS;
1375 		goto err;
1376 	}
1377 
1378 	for (i = 0; i < n_items - 1; i++) {
1379 		ath10k_dbg(ar, ATH10K_DBG_PCI,
1380 			   "pci tx item %d paddr %pad len %d n_items %d\n",
1381 			   i, &items[i].paddr, items[i].len, n_items);
1382 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1383 				items[i].vaddr, items[i].len);
1384 
1385 		err = ath10k_ce_send_nolock(ce_pipe,
1386 					    items[i].transfer_context,
1387 					    items[i].paddr,
1388 					    items[i].len,
1389 					    items[i].transfer_id,
1390 					    CE_SEND_FLAG_GATHER);
1391 		if (err)
1392 			goto err;
1393 	}
1394 
1395 	/* `i` is equal to `n_items -1` after for() */
1396 
1397 	ath10k_dbg(ar, ATH10K_DBG_PCI,
1398 		   "pci tx item %d paddr %pad len %d n_items %d\n",
1399 		   i, &items[i].paddr, items[i].len, n_items);
1400 	ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1401 			items[i].vaddr, items[i].len);
1402 
1403 	err = ath10k_ce_send_nolock(ce_pipe,
1404 				    items[i].transfer_context,
1405 				    items[i].paddr,
1406 				    items[i].len,
1407 				    items[i].transfer_id,
1408 				    0);
1409 	if (err)
1410 		goto err;
1411 
1412 	spin_unlock_bh(&ce->ce_lock);
1413 	return 0;
1414 
1415 err:
1416 	for (; i > 0; i--)
1417 		__ath10k_ce_send_revert(ce_pipe);
1418 
1419 	spin_unlock_bh(&ce->ce_lock);
1420 	return err;
1421 }
1422 
1423 int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
1424 			     size_t buf_len)
1425 {
1426 	return ath10k_pci_diag_read_mem(ar, address, buf, buf_len);
1427 }
1428 
1429 u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
1430 {
1431 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1432 
1433 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n");
1434 
1435 	return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl);
1436 }
1437 
1438 static void ath10k_pci_dump_registers(struct ath10k *ar,
1439 				      struct ath10k_fw_crash_data *crash_data)
1440 {
1441 	__le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
1442 	int i, ret;
1443 
1444 	lockdep_assert_held(&ar->dump_mutex);
1445 
1446 	ret = ath10k_pci_diag_read_hi(ar, &reg_dump_values[0],
1447 				      hi_failure_state,
1448 				      REG_DUMP_COUNT_QCA988X * sizeof(__le32));
1449 	if (ret) {
1450 		ath10k_err(ar, "failed to read firmware dump area: %d\n", ret);
1451 		return;
1452 	}
1453 
1454 	BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
1455 
1456 	ath10k_err(ar, "firmware register dump:\n");
1457 	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
1458 		ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
1459 			   i,
1460 			   __le32_to_cpu(reg_dump_values[i]),
1461 			   __le32_to_cpu(reg_dump_values[i + 1]),
1462 			   __le32_to_cpu(reg_dump_values[i + 2]),
1463 			   __le32_to_cpu(reg_dump_values[i + 3]));
1464 
1465 	if (!crash_data)
1466 		return;
1467 
1468 	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++)
1469 		crash_data->registers[i] = reg_dump_values[i];
1470 }
1471 
1472 static int ath10k_pci_dump_memory_section(struct ath10k *ar,
1473 					  const struct ath10k_mem_region *mem_region,
1474 					  u8 *buf, size_t buf_len)
1475 {
1476 	const struct ath10k_mem_section *cur_section, *next_section;
1477 	unsigned int count, section_size, skip_size;
1478 	int ret, i, j;
1479 
1480 	if (!mem_region || !buf)
1481 		return 0;
1482 
1483 	cur_section = &mem_region->section_table.sections[0];
1484 
1485 	if (mem_region->start > cur_section->start) {
1486 		ath10k_warn(ar, "incorrect memdump region 0x%x with section start address 0x%x.\n",
1487 			    mem_region->start, cur_section->start);
1488 		return 0;
1489 	}
1490 
1491 	skip_size = cur_section->start - mem_region->start;
1492 
1493 	/* fill the gap between the first register section and register
1494 	 * start address
1495 	 */
1496 	for (i = 0; i < skip_size; i++) {
1497 		*buf = ATH10K_MAGIC_NOT_COPIED;
1498 		buf++;
1499 	}
1500 
1501 	count = 0;
1502 
1503 	for (i = 0; cur_section != NULL; i++) {
1504 		section_size = cur_section->end - cur_section->start;
1505 
1506 		if (section_size <= 0) {
1507 			ath10k_warn(ar, "incorrect ramdump format with start address 0x%x and stop address 0x%x\n",
1508 				    cur_section->start,
1509 				    cur_section->end);
1510 			break;
1511 		}
1512 
1513 		if ((i + 1) == mem_region->section_table.size) {
1514 			/* last section */
1515 			next_section = NULL;
1516 			skip_size = 0;
1517 		} else {
1518 			next_section = cur_section + 1;
1519 
1520 			if (cur_section->end > next_section->start) {
1521 				ath10k_warn(ar, "next ramdump section 0x%x is smaller than current end address 0x%x\n",
1522 					    next_section->start,
1523 					    cur_section->end);
1524 				break;
1525 			}
1526 
1527 			skip_size = next_section->start - cur_section->end;
1528 		}
1529 
1530 		if (buf_len < (skip_size + section_size)) {
1531 			ath10k_warn(ar, "ramdump buffer is too small: %zu\n", buf_len);
1532 			break;
1533 		}
1534 
1535 		buf_len -= skip_size + section_size;
1536 
1537 		/* read section to dest memory */
1538 		ret = ath10k_pci_diag_read_mem(ar, cur_section->start,
1539 					       buf, section_size);
1540 		if (ret) {
1541 			ath10k_warn(ar, "failed to read ramdump from section 0x%x: %d\n",
1542 				    cur_section->start, ret);
1543 			break;
1544 		}
1545 
1546 		buf += section_size;
1547 		count += section_size;
1548 
1549 		/* fill in the gap between this section and the next */
1550 		for (j = 0; j < skip_size; j++) {
1551 			*buf = ATH10K_MAGIC_NOT_COPIED;
1552 			buf++;
1553 		}
1554 
1555 		count += skip_size;
1556 
1557 		if (!next_section)
1558 			/* this was the last section */
1559 			break;
1560 
1561 		cur_section = next_section;
1562 	}
1563 
1564 	return count;
1565 }
1566 
1567 static int ath10k_pci_set_ram_config(struct ath10k *ar, u32 config)
1568 {
1569 	u32 val;
1570 
1571 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1572 			   FW_RAM_CONFIG_ADDRESS, config);
1573 
1574 	val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1575 				FW_RAM_CONFIG_ADDRESS);
1576 	if (val != config) {
1577 		ath10k_warn(ar, "failed to set RAM config from 0x%x to 0x%x\n",
1578 			    val, config);
1579 		return -EIO;
1580 	}
1581 
1582 	return 0;
1583 }
1584 
1585 /* if an error happened returns < 0, otherwise the length */
1586 static int ath10k_pci_dump_memory_sram(struct ath10k *ar,
1587 				       const struct ath10k_mem_region *region,
1588 				       u8 *buf)
1589 {
1590 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1591 	u32 base_addr, i;
1592 
1593 	base_addr = ioread32(ar_pci->mem + QCA99X0_PCIE_BAR0_START_REG);
1594 	base_addr += region->start;
1595 
1596 	for (i = 0; i < region->len; i += 4) {
1597 		iowrite32(base_addr + i, ar_pci->mem + QCA99X0_CPU_MEM_ADDR_REG);
1598 		*(u32 *)(buf + i) = ioread32(ar_pci->mem + QCA99X0_CPU_MEM_DATA_REG);
1599 	}
1600 
1601 	return region->len;
1602 }
1603 
1604 /* if an error happened returns < 0, otherwise the length */
1605 static int ath10k_pci_dump_memory_reg(struct ath10k *ar,
1606 				      const struct ath10k_mem_region *region,
1607 				      u8 *buf)
1608 {
1609 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1610 	u32 i;
1611 
1612 	for (i = 0; i < region->len; i += 4)
1613 		*(u32 *)(buf + i) = ioread32(ar_pci->mem + region->start + i);
1614 
1615 	return region->len;
1616 }
1617 
1618 /* if an error happened returns < 0, otherwise the length */
1619 static int ath10k_pci_dump_memory_generic(struct ath10k *ar,
1620 					  const struct ath10k_mem_region *current_region,
1621 					  u8 *buf)
1622 {
1623 	int ret;
1624 
1625 	if (current_region->section_table.size > 0)
1626 		/* Copy each section individually. */
1627 		return ath10k_pci_dump_memory_section(ar,
1628 						      current_region,
1629 						      buf,
1630 						      current_region->len);
1631 
1632 	/* No individiual memory sections defined so we can
1633 	 * copy the entire memory region.
1634 	 */
1635 	ret = ath10k_pci_diag_read_mem(ar,
1636 				       current_region->start,
1637 				       buf,
1638 				       current_region->len);
1639 	if (ret) {
1640 		ath10k_warn(ar, "failed to copy ramdump region %s: %d\n",
1641 			    current_region->name, ret);
1642 		return ret;
1643 	}
1644 
1645 	return current_region->len;
1646 }
1647 
1648 static void ath10k_pci_dump_memory(struct ath10k *ar,
1649 				   struct ath10k_fw_crash_data *crash_data)
1650 {
1651 	const struct ath10k_hw_mem_layout *mem_layout;
1652 	const struct ath10k_mem_region *current_region;
1653 	struct ath10k_dump_ram_data_hdr *hdr;
1654 	u32 count, shift;
1655 	size_t buf_len;
1656 	int ret, i;
1657 	u8 *buf;
1658 
1659 	lockdep_assert_held(&ar->dump_mutex);
1660 
1661 	if (!crash_data)
1662 		return;
1663 
1664 	mem_layout = ath10k_coredump_get_mem_layout(ar);
1665 	if (!mem_layout)
1666 		return;
1667 
1668 	current_region = &mem_layout->region_table.regions[0];
1669 
1670 	buf = crash_data->ramdump_buf;
1671 	buf_len = crash_data->ramdump_buf_len;
1672 
1673 	memset(buf, 0, buf_len);
1674 
1675 	for (i = 0; i < mem_layout->region_table.size; i++) {
1676 		count = 0;
1677 
1678 		if (current_region->len > buf_len) {
1679 			ath10k_warn(ar, "memory region %s size %d is larger that remaining ramdump buffer size %zu\n",
1680 				    current_region->name,
1681 				    current_region->len,
1682 				    buf_len);
1683 			break;
1684 		}
1685 
1686 		/* To get IRAM dump, the host driver needs to switch target
1687 		 * ram config from DRAM to IRAM.
1688 		 */
1689 		if (current_region->type == ATH10K_MEM_REGION_TYPE_IRAM1 ||
1690 		    current_region->type == ATH10K_MEM_REGION_TYPE_IRAM2) {
1691 			shift = current_region->start >> 20;
1692 
1693 			ret = ath10k_pci_set_ram_config(ar, shift);
1694 			if (ret) {
1695 				ath10k_warn(ar, "failed to switch ram config to IRAM for section %s: %d\n",
1696 					    current_region->name, ret);
1697 				break;
1698 			}
1699 		}
1700 
1701 		/* Reserve space for the header. */
1702 		hdr = (void *)buf;
1703 		buf += sizeof(*hdr);
1704 		buf_len -= sizeof(*hdr);
1705 
1706 		switch (current_region->type) {
1707 		case ATH10K_MEM_REGION_TYPE_IOSRAM:
1708 			count = ath10k_pci_dump_memory_sram(ar, current_region, buf);
1709 			break;
1710 		case ATH10K_MEM_REGION_TYPE_IOREG:
1711 			count = ath10k_pci_dump_memory_reg(ar, current_region, buf);
1712 			break;
1713 		default:
1714 			ret = ath10k_pci_dump_memory_generic(ar, current_region, buf);
1715 			if (ret < 0)
1716 				break;
1717 
1718 			count = ret;
1719 			break;
1720 		}
1721 
1722 		hdr->region_type = cpu_to_le32(current_region->type);
1723 		hdr->start = cpu_to_le32(current_region->start);
1724 		hdr->length = cpu_to_le32(count);
1725 
1726 		if (count == 0)
1727 			/* Note: the header remains, just with zero length. */
1728 			break;
1729 
1730 		buf += count;
1731 		buf_len -= count;
1732 
1733 		current_region++;
1734 	}
1735 }
1736 
1737 static void ath10k_pci_fw_dump_work(struct work_struct *work)
1738 {
1739 	struct ath10k_pci *ar_pci = container_of(work, struct ath10k_pci,
1740 						 dump_work);
1741 	struct ath10k_fw_crash_data *crash_data;
1742 	struct ath10k *ar = ar_pci->ar;
1743 	char guid[UUID_STRING_LEN + 1];
1744 
1745 	mutex_lock(&ar->dump_mutex);
1746 
1747 	spin_lock_bh(&ar->data_lock);
1748 	ar->stats.fw_crash_counter++;
1749 	spin_unlock_bh(&ar->data_lock);
1750 
1751 	crash_data = ath10k_coredump_new(ar);
1752 
1753 	if (crash_data)
1754 		scnprintf(guid, sizeof(guid), "%pUl", &crash_data->guid);
1755 	else
1756 		scnprintf(guid, sizeof(guid), "n/a");
1757 
1758 	ath10k_err(ar, "firmware crashed! (guid %s)\n", guid);
1759 	ath10k_print_driver_info(ar);
1760 	ath10k_pci_dump_registers(ar, crash_data);
1761 	ath10k_ce_dump_registers(ar, crash_data);
1762 	ath10k_pci_dump_memory(ar, crash_data);
1763 
1764 	mutex_unlock(&ar->dump_mutex);
1765 
1766 	queue_work(ar->workqueue, &ar->restart_work);
1767 }
1768 
1769 static void ath10k_pci_fw_crashed_dump(struct ath10k *ar)
1770 {
1771 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1772 
1773 	queue_work(ar->workqueue, &ar_pci->dump_work);
1774 }
1775 
1776 void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
1777 					int force)
1778 {
1779 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n");
1780 
1781 	if (!force) {
1782 		int resources;
1783 		/*
1784 		 * Decide whether to actually poll for completions, or just
1785 		 * wait for a later chance.
1786 		 * If there seem to be plenty of resources left, then just wait
1787 		 * since checking involves reading a CE register, which is a
1788 		 * relatively expensive operation.
1789 		 */
1790 		resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
1791 
1792 		/*
1793 		 * If at least 50% of the total resources are still available,
1794 		 * don't bother checking again yet.
1795 		 */
1796 		if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1))
1797 			return;
1798 	}
1799 	ath10k_ce_per_engine_service(ar, pipe);
1800 }
1801 
1802 static void ath10k_pci_rx_retry_sync(struct ath10k *ar)
1803 {
1804 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1805 
1806 	del_timer_sync(&ar_pci->rx_post_retry);
1807 }
1808 
1809 int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id,
1810 				       u8 *ul_pipe, u8 *dl_pipe)
1811 {
1812 	const struct service_to_pipe *entry;
1813 	bool ul_set = false, dl_set = false;
1814 	int i;
1815 
1816 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n");
1817 
1818 	for (i = 0; i < ARRAY_SIZE(target_service_to_ce_map_wlan); i++) {
1819 		entry = &target_service_to_ce_map_wlan[i];
1820 
1821 		if (__le32_to_cpu(entry->service_id) != service_id)
1822 			continue;
1823 
1824 		switch (__le32_to_cpu(entry->pipedir)) {
1825 		case PIPEDIR_NONE:
1826 			break;
1827 		case PIPEDIR_IN:
1828 			WARN_ON(dl_set);
1829 			*dl_pipe = __le32_to_cpu(entry->pipenum);
1830 			dl_set = true;
1831 			break;
1832 		case PIPEDIR_OUT:
1833 			WARN_ON(ul_set);
1834 			*ul_pipe = __le32_to_cpu(entry->pipenum);
1835 			ul_set = true;
1836 			break;
1837 		case PIPEDIR_INOUT:
1838 			WARN_ON(dl_set);
1839 			WARN_ON(ul_set);
1840 			*dl_pipe = __le32_to_cpu(entry->pipenum);
1841 			*ul_pipe = __le32_to_cpu(entry->pipenum);
1842 			dl_set = true;
1843 			ul_set = true;
1844 			break;
1845 		}
1846 	}
1847 
1848 	if (!ul_set || !dl_set)
1849 		return -ENOENT;
1850 
1851 	return 0;
1852 }
1853 
1854 void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
1855 				     u8 *ul_pipe, u8 *dl_pipe)
1856 {
1857 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n");
1858 
1859 	(void)ath10k_pci_hif_map_service_to_pipe(ar,
1860 						 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1861 						 ul_pipe, dl_pipe);
1862 }
1863 
1864 void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar)
1865 {
1866 	u32 val;
1867 
1868 	switch (ar->hw_rev) {
1869 	case ATH10K_HW_QCA988X:
1870 	case ATH10K_HW_QCA9887:
1871 	case ATH10K_HW_QCA6174:
1872 	case ATH10K_HW_QCA9377:
1873 		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1874 					CORE_CTRL_ADDRESS);
1875 		val &= ~CORE_CTRL_PCIE_REG_31_MASK;
1876 		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1877 				   CORE_CTRL_ADDRESS, val);
1878 		break;
1879 	case ATH10K_HW_QCA99X0:
1880 	case ATH10K_HW_QCA9984:
1881 	case ATH10K_HW_QCA9888:
1882 	case ATH10K_HW_QCA4019:
1883 		/* TODO: Find appropriate register configuration for QCA99X0
1884 		 *  to mask irq/MSI.
1885 		 */
1886 		break;
1887 	case ATH10K_HW_WCN3990:
1888 		break;
1889 	}
1890 }
1891 
1892 static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar)
1893 {
1894 	u32 val;
1895 
1896 	switch (ar->hw_rev) {
1897 	case ATH10K_HW_QCA988X:
1898 	case ATH10K_HW_QCA9887:
1899 	case ATH10K_HW_QCA6174:
1900 	case ATH10K_HW_QCA9377:
1901 		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1902 					CORE_CTRL_ADDRESS);
1903 		val |= CORE_CTRL_PCIE_REG_31_MASK;
1904 		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1905 				   CORE_CTRL_ADDRESS, val);
1906 		break;
1907 	case ATH10K_HW_QCA99X0:
1908 	case ATH10K_HW_QCA9984:
1909 	case ATH10K_HW_QCA9888:
1910 	case ATH10K_HW_QCA4019:
1911 		/* TODO: Find appropriate register configuration for QCA99X0
1912 		 *  to unmask irq/MSI.
1913 		 */
1914 		break;
1915 	case ATH10K_HW_WCN3990:
1916 		break;
1917 	}
1918 }
1919 
1920 static void ath10k_pci_irq_disable(struct ath10k *ar)
1921 {
1922 	ath10k_ce_disable_interrupts(ar);
1923 	ath10k_pci_disable_and_clear_legacy_irq(ar);
1924 	ath10k_pci_irq_msi_fw_mask(ar);
1925 }
1926 
1927 static void ath10k_pci_irq_sync(struct ath10k *ar)
1928 {
1929 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1930 
1931 	synchronize_irq(ar_pci->pdev->irq);
1932 }
1933 
1934 static void ath10k_pci_irq_enable(struct ath10k *ar)
1935 {
1936 	ath10k_ce_enable_interrupts(ar);
1937 	ath10k_pci_enable_legacy_irq(ar);
1938 	ath10k_pci_irq_msi_fw_unmask(ar);
1939 }
1940 
1941 static int ath10k_pci_hif_start(struct ath10k *ar)
1942 {
1943 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1944 
1945 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
1946 
1947 	napi_enable(&ar->napi);
1948 
1949 	ath10k_pci_irq_enable(ar);
1950 	ath10k_pci_rx_post(ar);
1951 
1952 	pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
1953 				   ar_pci->link_ctl);
1954 
1955 	return 0;
1956 }
1957 
1958 static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1959 {
1960 	struct ath10k *ar;
1961 	struct ath10k_ce_pipe *ce_pipe;
1962 	struct ath10k_ce_ring *ce_ring;
1963 	struct sk_buff *skb;
1964 	int i;
1965 
1966 	ar = pci_pipe->hif_ce_state;
1967 	ce_pipe = pci_pipe->ce_hdl;
1968 	ce_ring = ce_pipe->dest_ring;
1969 
1970 	if (!ce_ring)
1971 		return;
1972 
1973 	if (!pci_pipe->buf_sz)
1974 		return;
1975 
1976 	for (i = 0; i < ce_ring->nentries; i++) {
1977 		skb = ce_ring->per_transfer_context[i];
1978 		if (!skb)
1979 			continue;
1980 
1981 		ce_ring->per_transfer_context[i] = NULL;
1982 
1983 		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1984 				 skb->len + skb_tailroom(skb),
1985 				 DMA_FROM_DEVICE);
1986 		dev_kfree_skb_any(skb);
1987 	}
1988 }
1989 
1990 static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1991 {
1992 	struct ath10k *ar;
1993 	struct ath10k_ce_pipe *ce_pipe;
1994 	struct ath10k_ce_ring *ce_ring;
1995 	struct sk_buff *skb;
1996 	int i;
1997 
1998 	ar = pci_pipe->hif_ce_state;
1999 	ce_pipe = pci_pipe->ce_hdl;
2000 	ce_ring = ce_pipe->src_ring;
2001 
2002 	if (!ce_ring)
2003 		return;
2004 
2005 	if (!pci_pipe->buf_sz)
2006 		return;
2007 
2008 	for (i = 0; i < ce_ring->nentries; i++) {
2009 		skb = ce_ring->per_transfer_context[i];
2010 		if (!skb)
2011 			continue;
2012 
2013 		ce_ring->per_transfer_context[i] = NULL;
2014 
2015 		ath10k_htc_tx_completion_handler(ar, skb);
2016 	}
2017 }
2018 
2019 /*
2020  * Cleanup residual buffers for device shutdown:
2021  *    buffers that were enqueued for receive
2022  *    buffers that were to be sent
2023  * Note: Buffers that had completed but which were
2024  * not yet processed are on a completion queue. They
2025  * are handled when the completion thread shuts down.
2026  */
2027 static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
2028 {
2029 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2030 	int pipe_num;
2031 
2032 	for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
2033 		struct ath10k_pci_pipe *pipe_info;
2034 
2035 		pipe_info = &ar_pci->pipe_info[pipe_num];
2036 		ath10k_pci_rx_pipe_cleanup(pipe_info);
2037 		ath10k_pci_tx_pipe_cleanup(pipe_info);
2038 	}
2039 }
2040 
2041 void ath10k_pci_ce_deinit(struct ath10k *ar)
2042 {
2043 	int i;
2044 
2045 	for (i = 0; i < CE_COUNT; i++)
2046 		ath10k_ce_deinit_pipe(ar, i);
2047 }
2048 
2049 void ath10k_pci_flush(struct ath10k *ar)
2050 {
2051 	ath10k_pci_rx_retry_sync(ar);
2052 	ath10k_pci_buffer_cleanup(ar);
2053 }
2054 
2055 static void ath10k_pci_hif_stop(struct ath10k *ar)
2056 {
2057 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2058 	unsigned long flags;
2059 
2060 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
2061 
2062 	/* Most likely the device has HTT Rx ring configured. The only way to
2063 	 * prevent the device from accessing (and possible corrupting) host
2064 	 * memory is to reset the chip now.
2065 	 *
2066 	 * There's also no known way of masking MSI interrupts on the device.
2067 	 * For ranged MSI the CE-related interrupts can be masked. However
2068 	 * regardless how many MSI interrupts are assigned the first one
2069 	 * is always used for firmware indications (crashes) and cannot be
2070 	 * masked. To prevent the device from asserting the interrupt reset it
2071 	 * before proceeding with cleanup.
2072 	 */
2073 	ath10k_pci_safe_chip_reset(ar);
2074 
2075 	ath10k_pci_irq_disable(ar);
2076 	ath10k_pci_irq_sync(ar);
2077 	napi_synchronize(&ar->napi);
2078 	napi_disable(&ar->napi);
2079 	ath10k_pci_flush(ar);
2080 
2081 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
2082 	WARN_ON(ar_pci->ps_wake_refcount > 0);
2083 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
2084 }
2085 
2086 int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
2087 				    void *req, u32 req_len,
2088 				    void *resp, u32 *resp_len)
2089 {
2090 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2091 	struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
2092 	struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
2093 	struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
2094 	struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
2095 	dma_addr_t req_paddr = 0;
2096 	dma_addr_t resp_paddr = 0;
2097 	struct bmi_xfer xfer = {};
2098 	void *treq, *tresp = NULL;
2099 	int ret = 0;
2100 
2101 	might_sleep();
2102 
2103 	if (resp && !resp_len)
2104 		return -EINVAL;
2105 
2106 	if (resp && resp_len && *resp_len == 0)
2107 		return -EINVAL;
2108 
2109 	treq = kmemdup(req, req_len, GFP_KERNEL);
2110 	if (!treq)
2111 		return -ENOMEM;
2112 
2113 	req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
2114 	ret = dma_mapping_error(ar->dev, req_paddr);
2115 	if (ret) {
2116 		ret = -EIO;
2117 		goto err_dma;
2118 	}
2119 
2120 	if (resp && resp_len) {
2121 		tresp = kzalloc(*resp_len, GFP_KERNEL);
2122 		if (!tresp) {
2123 			ret = -ENOMEM;
2124 			goto err_req;
2125 		}
2126 
2127 		resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
2128 					    DMA_FROM_DEVICE);
2129 		ret = dma_mapping_error(ar->dev, resp_paddr);
2130 		if (ret) {
2131 			ret = -EIO;
2132 			goto err_req;
2133 		}
2134 
2135 		xfer.wait_for_resp = true;
2136 		xfer.resp_len = 0;
2137 
2138 		ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr);
2139 	}
2140 
2141 	ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
2142 	if (ret)
2143 		goto err_resp;
2144 
2145 	ret = ath10k_pci_bmi_wait(ar, ce_tx, ce_rx, &xfer);
2146 	if (ret) {
2147 		dma_addr_t unused_buffer;
2148 		unsigned int unused_nbytes;
2149 		unsigned int unused_id;
2150 
2151 		ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
2152 					   &unused_nbytes, &unused_id);
2153 	} else {
2154 		/* non-zero means we did not time out */
2155 		ret = 0;
2156 	}
2157 
2158 err_resp:
2159 	if (resp) {
2160 		dma_addr_t unused_buffer;
2161 
2162 		ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
2163 		dma_unmap_single(ar->dev, resp_paddr,
2164 				 *resp_len, DMA_FROM_DEVICE);
2165 	}
2166 err_req:
2167 	dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
2168 
2169 	if (ret == 0 && resp_len) {
2170 		*resp_len = min(*resp_len, xfer.resp_len);
2171 		memcpy(resp, tresp, xfer.resp_len);
2172 	}
2173 err_dma:
2174 	kfree(treq);
2175 	kfree(tresp);
2176 
2177 	return ret;
2178 }
2179 
2180 static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
2181 {
2182 	struct bmi_xfer *xfer;
2183 
2184 	if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer))
2185 		return;
2186 
2187 	xfer->tx_done = true;
2188 }
2189 
2190 static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
2191 {
2192 	struct ath10k *ar = ce_state->ar;
2193 	struct bmi_xfer *xfer;
2194 	unsigned int nbytes;
2195 
2196 	if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer,
2197 					  &nbytes))
2198 		return;
2199 
2200 	if (WARN_ON_ONCE(!xfer))
2201 		return;
2202 
2203 	if (!xfer->wait_for_resp) {
2204 		ath10k_warn(ar, "unexpected: BMI data received; ignoring\n");
2205 		return;
2206 	}
2207 
2208 	xfer->resp_len = nbytes;
2209 	xfer->rx_done = true;
2210 }
2211 
2212 static int ath10k_pci_bmi_wait(struct ath10k *ar,
2213 			       struct ath10k_ce_pipe *tx_pipe,
2214 			       struct ath10k_ce_pipe *rx_pipe,
2215 			       struct bmi_xfer *xfer)
2216 {
2217 	unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
2218 	unsigned long started = jiffies;
2219 	unsigned long dur;
2220 	int ret;
2221 
2222 	while (time_before_eq(jiffies, timeout)) {
2223 		ath10k_pci_bmi_send_done(tx_pipe);
2224 		ath10k_pci_bmi_recv_data(rx_pipe);
2225 
2226 		if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp)) {
2227 			ret = 0;
2228 			goto out;
2229 		}
2230 
2231 		schedule();
2232 	}
2233 
2234 	ret = -ETIMEDOUT;
2235 
2236 out:
2237 	dur = jiffies - started;
2238 	if (dur > HZ)
2239 		ath10k_dbg(ar, ATH10K_DBG_BMI,
2240 			   "bmi cmd took %lu jiffies hz %d ret %d\n",
2241 			   dur, HZ, ret);
2242 	return ret;
2243 }
2244 
2245 /*
2246  * Send an interrupt to the device to wake up the Target CPU
2247  * so it has an opportunity to notice any changed state.
2248  */
2249 static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
2250 {
2251 	u32 addr, val;
2252 
2253 	addr = SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS;
2254 	val = ath10k_pci_read32(ar, addr);
2255 	val |= CORE_CTRL_CPU_INTR_MASK;
2256 	ath10k_pci_write32(ar, addr, val);
2257 
2258 	return 0;
2259 }
2260 
2261 static int ath10k_pci_get_num_banks(struct ath10k *ar)
2262 {
2263 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2264 
2265 	switch (ar_pci->pdev->device) {
2266 	case QCA988X_2_0_DEVICE_ID_UBNT:
2267 	case QCA988X_2_0_DEVICE_ID:
2268 	case QCA99X0_2_0_DEVICE_ID:
2269 	case QCA9888_2_0_DEVICE_ID:
2270 	case QCA9984_1_0_DEVICE_ID:
2271 	case QCA9887_1_0_DEVICE_ID:
2272 		return 1;
2273 	case QCA6164_2_1_DEVICE_ID:
2274 	case QCA6174_2_1_DEVICE_ID:
2275 		switch (MS(ar->bus_param.chip_id, SOC_CHIP_ID_REV)) {
2276 		case QCA6174_HW_1_0_CHIP_ID_REV:
2277 		case QCA6174_HW_1_1_CHIP_ID_REV:
2278 		case QCA6174_HW_2_1_CHIP_ID_REV:
2279 		case QCA6174_HW_2_2_CHIP_ID_REV:
2280 			return 3;
2281 		case QCA6174_HW_1_3_CHIP_ID_REV:
2282 			return 2;
2283 		case QCA6174_HW_3_0_CHIP_ID_REV:
2284 		case QCA6174_HW_3_1_CHIP_ID_REV:
2285 		case QCA6174_HW_3_2_CHIP_ID_REV:
2286 			return 9;
2287 		}
2288 		break;
2289 	case QCA9377_1_0_DEVICE_ID:
2290 		return 9;
2291 	}
2292 
2293 	ath10k_warn(ar, "unknown number of banks, assuming 1\n");
2294 	return 1;
2295 }
2296 
2297 static int ath10k_bus_get_num_banks(struct ath10k *ar)
2298 {
2299 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
2300 
2301 	return ce->bus_ops->get_num_banks(ar);
2302 }
2303 
2304 int ath10k_pci_init_config(struct ath10k *ar)
2305 {
2306 	u32 interconnect_targ_addr;
2307 	u32 pcie_state_targ_addr = 0;
2308 	u32 pipe_cfg_targ_addr = 0;
2309 	u32 svc_to_pipe_map = 0;
2310 	u32 pcie_config_flags = 0;
2311 	u32 ealloc_value;
2312 	u32 ealloc_targ_addr;
2313 	u32 flag2_value;
2314 	u32 flag2_targ_addr;
2315 	int ret = 0;
2316 
2317 	/* Download to Target the CE Config and the service-to-CE map */
2318 	interconnect_targ_addr =
2319 		host_interest_item_address(HI_ITEM(hi_interconnect_state));
2320 
2321 	/* Supply Target-side CE configuration */
2322 	ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr,
2323 				     &pcie_state_targ_addr);
2324 	if (ret != 0) {
2325 		ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret);
2326 		return ret;
2327 	}
2328 
2329 	if (pcie_state_targ_addr == 0) {
2330 		ret = -EIO;
2331 		ath10k_err(ar, "Invalid pcie state addr\n");
2332 		return ret;
2333 	}
2334 
2335 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2336 					  offsetof(struct pcie_state,
2337 						   pipe_cfg_addr)),
2338 				     &pipe_cfg_targ_addr);
2339 	if (ret != 0) {
2340 		ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret);
2341 		return ret;
2342 	}
2343 
2344 	if (pipe_cfg_targ_addr == 0) {
2345 		ret = -EIO;
2346 		ath10k_err(ar, "Invalid pipe cfg addr\n");
2347 		return ret;
2348 	}
2349 
2350 	ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
2351 					target_ce_config_wlan,
2352 					sizeof(struct ce_pipe_config) *
2353 					NUM_TARGET_CE_CONFIG_WLAN);
2354 
2355 	if (ret != 0) {
2356 		ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret);
2357 		return ret;
2358 	}
2359 
2360 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2361 					  offsetof(struct pcie_state,
2362 						   svc_to_pipe_map)),
2363 				     &svc_to_pipe_map);
2364 	if (ret != 0) {
2365 		ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret);
2366 		return ret;
2367 	}
2368 
2369 	if (svc_to_pipe_map == 0) {
2370 		ret = -EIO;
2371 		ath10k_err(ar, "Invalid svc_to_pipe map\n");
2372 		return ret;
2373 	}
2374 
2375 	ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
2376 					target_service_to_ce_map_wlan,
2377 					sizeof(target_service_to_ce_map_wlan));
2378 	if (ret != 0) {
2379 		ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret);
2380 		return ret;
2381 	}
2382 
2383 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2384 					  offsetof(struct pcie_state,
2385 						   config_flags)),
2386 				     &pcie_config_flags);
2387 	if (ret != 0) {
2388 		ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret);
2389 		return ret;
2390 	}
2391 
2392 	pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
2393 
2394 	ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr +
2395 					   offsetof(struct pcie_state,
2396 						    config_flags)),
2397 				      pcie_config_flags);
2398 	if (ret != 0) {
2399 		ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret);
2400 		return ret;
2401 	}
2402 
2403 	/* configure early allocation */
2404 	ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
2405 
2406 	ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value);
2407 	if (ret != 0) {
2408 		ath10k_err(ar, "Failed to get early alloc val: %d\n", ret);
2409 		return ret;
2410 	}
2411 
2412 	/* first bank is switched to IRAM */
2413 	ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
2414 			 HI_EARLY_ALLOC_MAGIC_MASK);
2415 	ealloc_value |= ((ath10k_bus_get_num_banks(ar) <<
2416 			  HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
2417 			 HI_EARLY_ALLOC_IRAM_BANKS_MASK);
2418 
2419 	ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value);
2420 	if (ret != 0) {
2421 		ath10k_err(ar, "Failed to set early alloc val: %d\n", ret);
2422 		return ret;
2423 	}
2424 
2425 	/* Tell Target to proceed with initialization */
2426 	flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
2427 
2428 	ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value);
2429 	if (ret != 0) {
2430 		ath10k_err(ar, "Failed to get option val: %d\n", ret);
2431 		return ret;
2432 	}
2433 
2434 	flag2_value |= HI_OPTION_EARLY_CFG_DONE;
2435 
2436 	ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value);
2437 	if (ret != 0) {
2438 		ath10k_err(ar, "Failed to set option val: %d\n", ret);
2439 		return ret;
2440 	}
2441 
2442 	return 0;
2443 }
2444 
2445 static void ath10k_pci_override_ce_config(struct ath10k *ar)
2446 {
2447 	struct ce_attr *attr;
2448 	struct ce_pipe_config *config;
2449 
2450 	/* For QCA6174 we're overriding the Copy Engine 5 configuration,
2451 	 * since it is currently used for other feature.
2452 	 */
2453 
2454 	/* Override Host's Copy Engine 5 configuration */
2455 	attr = &host_ce_config_wlan[5];
2456 	attr->src_sz_max = 0;
2457 	attr->dest_nentries = 0;
2458 
2459 	/* Override Target firmware's Copy Engine configuration */
2460 	config = &target_ce_config_wlan[5];
2461 	config->pipedir = __cpu_to_le32(PIPEDIR_OUT);
2462 	config->nbytes_max = __cpu_to_le32(2048);
2463 
2464 	/* Map from service/endpoint to Copy Engine */
2465 	target_service_to_ce_map_wlan[15].pipenum = __cpu_to_le32(1);
2466 }
2467 
2468 int ath10k_pci_alloc_pipes(struct ath10k *ar)
2469 {
2470 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2471 	struct ath10k_pci_pipe *pipe;
2472 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
2473 	int i, ret;
2474 
2475 	for (i = 0; i < CE_COUNT; i++) {
2476 		pipe = &ar_pci->pipe_info[i];
2477 		pipe->ce_hdl = &ce->ce_states[i];
2478 		pipe->pipe_num = i;
2479 		pipe->hif_ce_state = ar;
2480 
2481 		ret = ath10k_ce_alloc_pipe(ar, i, &host_ce_config_wlan[i]);
2482 		if (ret) {
2483 			ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
2484 				   i, ret);
2485 			return ret;
2486 		}
2487 
2488 		/* Last CE is Diagnostic Window */
2489 		if (i == CE_DIAG_PIPE) {
2490 			ar_pci->ce_diag = pipe->ce_hdl;
2491 			continue;
2492 		}
2493 
2494 		pipe->buf_sz = (size_t)(host_ce_config_wlan[i].src_sz_max);
2495 	}
2496 
2497 	return 0;
2498 }
2499 
2500 void ath10k_pci_free_pipes(struct ath10k *ar)
2501 {
2502 	int i;
2503 
2504 	for (i = 0; i < CE_COUNT; i++)
2505 		ath10k_ce_free_pipe(ar, i);
2506 }
2507 
2508 int ath10k_pci_init_pipes(struct ath10k *ar)
2509 {
2510 	int i, ret;
2511 
2512 	for (i = 0; i < CE_COUNT; i++) {
2513 		ret = ath10k_ce_init_pipe(ar, i, &host_ce_config_wlan[i]);
2514 		if (ret) {
2515 			ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
2516 				   i, ret);
2517 			return ret;
2518 		}
2519 	}
2520 
2521 	return 0;
2522 }
2523 
2524 static bool ath10k_pci_has_fw_crashed(struct ath10k *ar)
2525 {
2526 	return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) &
2527 	       FW_IND_EVENT_PENDING;
2528 }
2529 
2530 static void ath10k_pci_fw_crashed_clear(struct ath10k *ar)
2531 {
2532 	u32 val;
2533 
2534 	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2535 	val &= ~FW_IND_EVENT_PENDING;
2536 	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val);
2537 }
2538 
2539 static bool ath10k_pci_has_device_gone(struct ath10k *ar)
2540 {
2541 	u32 val;
2542 
2543 	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2544 	return (val == 0xffffffff);
2545 }
2546 
2547 /* this function effectively clears target memory controller assert line */
2548 static void ath10k_pci_warm_reset_si0(struct ath10k *ar)
2549 {
2550 	u32 val;
2551 
2552 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2553 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2554 			       val | SOC_RESET_CONTROL_SI0_RST_MASK);
2555 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2556 
2557 	msleep(10);
2558 
2559 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2560 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2561 			       val & ~SOC_RESET_CONTROL_SI0_RST_MASK);
2562 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2563 
2564 	msleep(10);
2565 }
2566 
2567 static void ath10k_pci_warm_reset_cpu(struct ath10k *ar)
2568 {
2569 	u32 val;
2570 
2571 	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0);
2572 
2573 	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2574 				SOC_RESET_CONTROL_ADDRESS);
2575 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2576 			   val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK);
2577 }
2578 
2579 static void ath10k_pci_warm_reset_ce(struct ath10k *ar)
2580 {
2581 	u32 val;
2582 
2583 	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2584 				SOC_RESET_CONTROL_ADDRESS);
2585 
2586 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2587 			   val | SOC_RESET_CONTROL_CE_RST_MASK);
2588 	msleep(10);
2589 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2590 			   val & ~SOC_RESET_CONTROL_CE_RST_MASK);
2591 }
2592 
2593 static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar)
2594 {
2595 	u32 val;
2596 
2597 	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2598 				SOC_LF_TIMER_CONTROL0_ADDRESS);
2599 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS +
2600 			   SOC_LF_TIMER_CONTROL0_ADDRESS,
2601 			   val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK);
2602 }
2603 
2604 static int ath10k_pci_warm_reset(struct ath10k *ar)
2605 {
2606 	int ret;
2607 
2608 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n");
2609 
2610 	spin_lock_bh(&ar->data_lock);
2611 	ar->stats.fw_warm_reset_counter++;
2612 	spin_unlock_bh(&ar->data_lock);
2613 
2614 	ath10k_pci_irq_disable(ar);
2615 
2616 	/* Make sure the target CPU is not doing anything dangerous, e.g. if it
2617 	 * were to access copy engine while host performs copy engine reset
2618 	 * then it is possible for the device to confuse pci-e controller to
2619 	 * the point of bringing host system to a complete stop (i.e. hang).
2620 	 */
2621 	ath10k_pci_warm_reset_si0(ar);
2622 	ath10k_pci_warm_reset_cpu(ar);
2623 	ath10k_pci_init_pipes(ar);
2624 	ath10k_pci_wait_for_target_init(ar);
2625 
2626 	ath10k_pci_warm_reset_clear_lf(ar);
2627 	ath10k_pci_warm_reset_ce(ar);
2628 	ath10k_pci_warm_reset_cpu(ar);
2629 	ath10k_pci_init_pipes(ar);
2630 
2631 	ret = ath10k_pci_wait_for_target_init(ar);
2632 	if (ret) {
2633 		ath10k_warn(ar, "failed to wait for target init: %d\n", ret);
2634 		return ret;
2635 	}
2636 
2637 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n");
2638 
2639 	return 0;
2640 }
2641 
2642 static int ath10k_pci_qca99x0_soft_chip_reset(struct ath10k *ar)
2643 {
2644 	ath10k_pci_irq_disable(ar);
2645 	return ath10k_pci_qca99x0_chip_reset(ar);
2646 }
2647 
2648 static int ath10k_pci_safe_chip_reset(struct ath10k *ar)
2649 {
2650 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2651 
2652 	if (!ar_pci->pci_soft_reset)
2653 		return -ENOTSUPP;
2654 
2655 	return ar_pci->pci_soft_reset(ar);
2656 }
2657 
2658 static int ath10k_pci_qca988x_chip_reset(struct ath10k *ar)
2659 {
2660 	int i, ret;
2661 	u32 val;
2662 
2663 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot 988x chip reset\n");
2664 
2665 	/* Some hardware revisions (e.g. CUS223v2) has issues with cold reset.
2666 	 * It is thus preferred to use warm reset which is safer but may not be
2667 	 * able to recover the device from all possible fail scenarios.
2668 	 *
2669 	 * Warm reset doesn't always work on first try so attempt it a few
2670 	 * times before giving up.
2671 	 */
2672 	for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) {
2673 		ret = ath10k_pci_warm_reset(ar);
2674 		if (ret) {
2675 			ath10k_warn(ar, "failed to warm reset attempt %d of %d: %d\n",
2676 				    i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS,
2677 				    ret);
2678 			continue;
2679 		}
2680 
2681 		/* FIXME: Sometimes copy engine doesn't recover after warm
2682 		 * reset. In most cases this needs cold reset. In some of these
2683 		 * cases the device is in such a state that a cold reset may
2684 		 * lock up the host.
2685 		 *
2686 		 * Reading any host interest register via copy engine is
2687 		 * sufficient to verify if device is capable of booting
2688 		 * firmware blob.
2689 		 */
2690 		ret = ath10k_pci_init_pipes(ar);
2691 		if (ret) {
2692 			ath10k_warn(ar, "failed to init copy engine: %d\n",
2693 				    ret);
2694 			continue;
2695 		}
2696 
2697 		ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS,
2698 					     &val);
2699 		if (ret) {
2700 			ath10k_warn(ar, "failed to poke copy engine: %d\n",
2701 				    ret);
2702 			continue;
2703 		}
2704 
2705 		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n");
2706 		return 0;
2707 	}
2708 
2709 	if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) {
2710 		ath10k_warn(ar, "refusing cold reset as requested\n");
2711 		return -EPERM;
2712 	}
2713 
2714 	ret = ath10k_pci_cold_reset(ar);
2715 	if (ret) {
2716 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2717 		return ret;
2718 	}
2719 
2720 	ret = ath10k_pci_wait_for_target_init(ar);
2721 	if (ret) {
2722 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2723 			    ret);
2724 		return ret;
2725 	}
2726 
2727 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca988x chip reset complete (cold)\n");
2728 
2729 	return 0;
2730 }
2731 
2732 static int ath10k_pci_qca6174_chip_reset(struct ath10k *ar)
2733 {
2734 	int ret;
2735 
2736 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset\n");
2737 
2738 	/* FIXME: QCA6174 requires cold + warm reset to work. */
2739 
2740 	ret = ath10k_pci_cold_reset(ar);
2741 	if (ret) {
2742 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2743 		return ret;
2744 	}
2745 
2746 	ret = ath10k_pci_wait_for_target_init(ar);
2747 	if (ret) {
2748 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2749 			    ret);
2750 		return ret;
2751 	}
2752 
2753 	ret = ath10k_pci_warm_reset(ar);
2754 	if (ret) {
2755 		ath10k_warn(ar, "failed to warm reset: %d\n", ret);
2756 		return ret;
2757 	}
2758 
2759 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset complete (cold)\n");
2760 
2761 	return 0;
2762 }
2763 
2764 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar)
2765 {
2766 	int ret;
2767 
2768 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset\n");
2769 
2770 	ret = ath10k_pci_cold_reset(ar);
2771 	if (ret) {
2772 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2773 		return ret;
2774 	}
2775 
2776 	ret = ath10k_pci_wait_for_target_init(ar);
2777 	if (ret) {
2778 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2779 			    ret);
2780 		return ret;
2781 	}
2782 
2783 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset complete (cold)\n");
2784 
2785 	return 0;
2786 }
2787 
2788 static int ath10k_pci_chip_reset(struct ath10k *ar)
2789 {
2790 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2791 
2792 	if (WARN_ON(!ar_pci->pci_hard_reset))
2793 		return -ENOTSUPP;
2794 
2795 	return ar_pci->pci_hard_reset(ar);
2796 }
2797 
2798 static int ath10k_pci_hif_power_up(struct ath10k *ar,
2799 				   enum ath10k_firmware_mode fw_mode)
2800 {
2801 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2802 	int ret;
2803 
2804 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n");
2805 
2806 	pcie_capability_read_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2807 				  &ar_pci->link_ctl);
2808 	pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2809 				   ar_pci->link_ctl & ~PCI_EXP_LNKCTL_ASPMC);
2810 
2811 	/*
2812 	 * Bring the target up cleanly.
2813 	 *
2814 	 * The target may be in an undefined state with an AUX-powered Target
2815 	 * and a Host in WoW mode. If the Host crashes, loses power, or is
2816 	 * restarted (without unloading the driver) then the Target is left
2817 	 * (aux) powered and running. On a subsequent driver load, the Target
2818 	 * is in an unexpected state. We try to catch that here in order to
2819 	 * reset the Target and retry the probe.
2820 	 */
2821 	ret = ath10k_pci_chip_reset(ar);
2822 	if (ret) {
2823 		if (ath10k_pci_has_fw_crashed(ar)) {
2824 			ath10k_warn(ar, "firmware crashed during chip reset\n");
2825 			ath10k_pci_fw_crashed_clear(ar);
2826 			ath10k_pci_fw_crashed_dump(ar);
2827 		}
2828 
2829 		ath10k_err(ar, "failed to reset chip: %d\n", ret);
2830 		goto err_sleep;
2831 	}
2832 
2833 	ret = ath10k_pci_init_pipes(ar);
2834 	if (ret) {
2835 		ath10k_err(ar, "failed to initialize CE: %d\n", ret);
2836 		goto err_sleep;
2837 	}
2838 
2839 	ret = ath10k_pci_init_config(ar);
2840 	if (ret) {
2841 		ath10k_err(ar, "failed to setup init config: %d\n", ret);
2842 		goto err_ce;
2843 	}
2844 
2845 	ret = ath10k_pci_wake_target_cpu(ar);
2846 	if (ret) {
2847 		ath10k_err(ar, "could not wake up target CPU: %d\n", ret);
2848 		goto err_ce;
2849 	}
2850 
2851 	return 0;
2852 
2853 err_ce:
2854 	ath10k_pci_ce_deinit(ar);
2855 
2856 err_sleep:
2857 	return ret;
2858 }
2859 
2860 void ath10k_pci_hif_power_down(struct ath10k *ar)
2861 {
2862 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
2863 
2864 	/* Currently hif_power_up performs effectively a reset and hif_stop
2865 	 * resets the chip as well so there's no point in resetting here.
2866 	 */
2867 }
2868 
2869 static int ath10k_pci_hif_suspend(struct ath10k *ar)
2870 {
2871 	/* Nothing to do; the important stuff is in the driver suspend. */
2872 	return 0;
2873 }
2874 
2875 static int ath10k_pci_suspend(struct ath10k *ar)
2876 {
2877 	/* The grace timer can still be counting down and ar->ps_awake be true.
2878 	 * It is known that the device may be asleep after resuming regardless
2879 	 * of the SoC powersave state before suspending. Hence make sure the
2880 	 * device is asleep before proceeding.
2881 	 */
2882 	ath10k_pci_sleep_sync(ar);
2883 
2884 	return 0;
2885 }
2886 
2887 static int ath10k_pci_hif_resume(struct ath10k *ar)
2888 {
2889 	/* Nothing to do; the important stuff is in the driver resume. */
2890 	return 0;
2891 }
2892 
2893 static int ath10k_pci_resume(struct ath10k *ar)
2894 {
2895 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2896 	struct pci_dev *pdev = ar_pci->pdev;
2897 	u32 val;
2898 	int ret = 0;
2899 
2900 	ret = ath10k_pci_force_wake(ar);
2901 	if (ret) {
2902 		ath10k_err(ar, "failed to wake up target: %d\n", ret);
2903 		return ret;
2904 	}
2905 
2906 	/* Suspend/Resume resets the PCI configuration space, so we have to
2907 	 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
2908 	 * from interfering with C3 CPU state. pci_restore_state won't help
2909 	 * here since it only restores the first 64 bytes pci config header.
2910 	 */
2911 	pci_read_config_dword(pdev, 0x40, &val);
2912 	if ((val & 0x0000ff00) != 0)
2913 		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2914 
2915 	return ret;
2916 }
2917 
2918 static bool ath10k_pci_validate_cal(void *data, size_t size)
2919 {
2920 	__le16 *cal_words = data;
2921 	u16 checksum = 0;
2922 	size_t i;
2923 
2924 	if (size % 2 != 0)
2925 		return false;
2926 
2927 	for (i = 0; i < size / 2; i++)
2928 		checksum ^= le16_to_cpu(cal_words[i]);
2929 
2930 	return checksum == 0xffff;
2931 }
2932 
2933 static void ath10k_pci_enable_eeprom(struct ath10k *ar)
2934 {
2935 	/* Enable SI clock */
2936 	ath10k_pci_soc_write32(ar, CLOCK_CONTROL_OFFSET, 0x0);
2937 
2938 	/* Configure GPIOs for I2C operation */
2939 	ath10k_pci_write32(ar,
2940 			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2941 			   4 * QCA9887_1_0_I2C_SDA_GPIO_PIN,
2942 			   SM(QCA9887_1_0_I2C_SDA_PIN_CONFIG,
2943 			      GPIO_PIN0_CONFIG) |
2944 			   SM(1, GPIO_PIN0_PAD_PULL));
2945 
2946 	ath10k_pci_write32(ar,
2947 			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2948 			   4 * QCA9887_1_0_SI_CLK_GPIO_PIN,
2949 			   SM(QCA9887_1_0_SI_CLK_PIN_CONFIG, GPIO_PIN0_CONFIG) |
2950 			   SM(1, GPIO_PIN0_PAD_PULL));
2951 
2952 	ath10k_pci_write32(ar,
2953 			   GPIO_BASE_ADDRESS +
2954 			   QCA9887_1_0_GPIO_ENABLE_W1TS_LOW_ADDRESS,
2955 			   1u << QCA9887_1_0_SI_CLK_GPIO_PIN);
2956 
2957 	/* In Swift ASIC - EEPROM clock will be (110MHz/512) = 214KHz */
2958 	ath10k_pci_write32(ar,
2959 			   SI_BASE_ADDRESS + SI_CONFIG_OFFSET,
2960 			   SM(1, SI_CONFIG_ERR_INT) |
2961 			   SM(1, SI_CONFIG_BIDIR_OD_DATA) |
2962 			   SM(1, SI_CONFIG_I2C) |
2963 			   SM(1, SI_CONFIG_POS_SAMPLE) |
2964 			   SM(1, SI_CONFIG_INACTIVE_DATA) |
2965 			   SM(1, SI_CONFIG_INACTIVE_CLK) |
2966 			   SM(8, SI_CONFIG_DIVIDER));
2967 }
2968 
2969 static int ath10k_pci_read_eeprom(struct ath10k *ar, u16 addr, u8 *out)
2970 {
2971 	u32 reg;
2972 	int wait_limit;
2973 
2974 	/* set device select byte and for the read operation */
2975 	reg = QCA9887_EEPROM_SELECT_READ |
2976 	      SM(addr, QCA9887_EEPROM_ADDR_LO) |
2977 	      SM(addr >> 8, QCA9887_EEPROM_ADDR_HI);
2978 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_TX_DATA0_OFFSET, reg);
2979 
2980 	/* write transmit data, transfer length, and START bit */
2981 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET,
2982 			   SM(1, SI_CS_START) | SM(1, SI_CS_RX_CNT) |
2983 			   SM(4, SI_CS_TX_CNT));
2984 
2985 	/* wait max 1 sec */
2986 	wait_limit = 100000;
2987 
2988 	/* wait for SI_CS_DONE_INT */
2989 	do {
2990 		reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET);
2991 		if (MS(reg, SI_CS_DONE_INT))
2992 			break;
2993 
2994 		wait_limit--;
2995 		udelay(10);
2996 	} while (wait_limit > 0);
2997 
2998 	if (!MS(reg, SI_CS_DONE_INT)) {
2999 		ath10k_err(ar, "timeout while reading device EEPROM at %04x\n",
3000 			   addr);
3001 		return -ETIMEDOUT;
3002 	}
3003 
3004 	/* clear SI_CS_DONE_INT */
3005 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET, reg);
3006 
3007 	if (MS(reg, SI_CS_DONE_ERR)) {
3008 		ath10k_err(ar, "failed to read device EEPROM at %04x\n", addr);
3009 		return -EIO;
3010 	}
3011 
3012 	/* extract receive data */
3013 	reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_RX_DATA0_OFFSET);
3014 	*out = reg;
3015 
3016 	return 0;
3017 }
3018 
3019 static int ath10k_pci_hif_fetch_cal_eeprom(struct ath10k *ar, void **data,
3020 					   size_t *data_len)
3021 {
3022 	u8 *caldata = NULL;
3023 	size_t calsize, i;
3024 	int ret;
3025 
3026 	if (!QCA_REV_9887(ar))
3027 		return -EOPNOTSUPP;
3028 
3029 	calsize = ar->hw_params.cal_data_len;
3030 	caldata = kmalloc(calsize, GFP_KERNEL);
3031 	if (!caldata)
3032 		return -ENOMEM;
3033 
3034 	ath10k_pci_enable_eeprom(ar);
3035 
3036 	for (i = 0; i < calsize; i++) {
3037 		ret = ath10k_pci_read_eeprom(ar, i, &caldata[i]);
3038 		if (ret)
3039 			goto err_free;
3040 	}
3041 
3042 	if (!ath10k_pci_validate_cal(caldata, calsize))
3043 		goto err_free;
3044 
3045 	*data = caldata;
3046 	*data_len = calsize;
3047 
3048 	return 0;
3049 
3050 err_free:
3051 	kfree(caldata);
3052 
3053 	return -EINVAL;
3054 }
3055 
3056 static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
3057 	.tx_sg			= ath10k_pci_hif_tx_sg,
3058 	.diag_read		= ath10k_pci_hif_diag_read,
3059 	.diag_write		= ath10k_pci_diag_write_mem,
3060 	.exchange_bmi_msg	= ath10k_pci_hif_exchange_bmi_msg,
3061 	.start			= ath10k_pci_hif_start,
3062 	.stop			= ath10k_pci_hif_stop,
3063 	.map_service_to_pipe	= ath10k_pci_hif_map_service_to_pipe,
3064 	.get_default_pipe	= ath10k_pci_hif_get_default_pipe,
3065 	.send_complete_check	= ath10k_pci_hif_send_complete_check,
3066 	.get_free_queue_number	= ath10k_pci_hif_get_free_queue_number,
3067 	.power_up		= ath10k_pci_hif_power_up,
3068 	.power_down		= ath10k_pci_hif_power_down,
3069 	.read32			= ath10k_pci_read32,
3070 	.write32		= ath10k_pci_write32,
3071 	.suspend		= ath10k_pci_hif_suspend,
3072 	.resume			= ath10k_pci_hif_resume,
3073 	.fetch_cal_eeprom	= ath10k_pci_hif_fetch_cal_eeprom,
3074 };
3075 
3076 /*
3077  * Top-level interrupt handler for all PCI interrupts from a Target.
3078  * When a block of MSI interrupts is allocated, this top-level handler
3079  * is not used; instead, we directly call the correct sub-handler.
3080  */
3081 static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
3082 {
3083 	struct ath10k *ar = arg;
3084 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3085 	int ret;
3086 
3087 	if (ath10k_pci_has_device_gone(ar))
3088 		return IRQ_NONE;
3089 
3090 	ret = ath10k_pci_force_wake(ar);
3091 	if (ret) {
3092 		ath10k_warn(ar, "failed to wake device up on irq: %d\n", ret);
3093 		return IRQ_NONE;
3094 	}
3095 
3096 	if ((ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY) &&
3097 	    !ath10k_pci_irq_pending(ar))
3098 		return IRQ_NONE;
3099 
3100 	ath10k_pci_disable_and_clear_legacy_irq(ar);
3101 	ath10k_pci_irq_msi_fw_mask(ar);
3102 	napi_schedule(&ar->napi);
3103 
3104 	return IRQ_HANDLED;
3105 }
3106 
3107 static int ath10k_pci_napi_poll(struct napi_struct *ctx, int budget)
3108 {
3109 	struct ath10k *ar = container_of(ctx, struct ath10k, napi);
3110 	int done = 0;
3111 
3112 	if (ath10k_pci_has_fw_crashed(ar)) {
3113 		ath10k_pci_fw_crashed_clear(ar);
3114 		ath10k_pci_fw_crashed_dump(ar);
3115 		napi_complete(ctx);
3116 		return done;
3117 	}
3118 
3119 	ath10k_ce_per_engine_service_any(ar);
3120 
3121 	done = ath10k_htt_txrx_compl_task(ar, budget);
3122 
3123 	if (done < budget) {
3124 		napi_complete_done(ctx, done);
3125 		/* In case of MSI, it is possible that interrupts are received
3126 		 * while NAPI poll is inprogress. So pending interrupts that are
3127 		 * received after processing all copy engine pipes by NAPI poll
3128 		 * will not be handled again. This is causing failure to
3129 		 * complete boot sequence in x86 platform. So before enabling
3130 		 * interrupts safer to check for pending interrupts for
3131 		 * immediate servicing.
3132 		 */
3133 		if (ath10k_ce_interrupt_summary(ar)) {
3134 			napi_reschedule(ctx);
3135 			goto out;
3136 		}
3137 		ath10k_pci_enable_legacy_irq(ar);
3138 		ath10k_pci_irq_msi_fw_unmask(ar);
3139 	}
3140 
3141 out:
3142 	return done;
3143 }
3144 
3145 static int ath10k_pci_request_irq_msi(struct ath10k *ar)
3146 {
3147 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3148 	int ret;
3149 
3150 	ret = request_irq(ar_pci->pdev->irq,
3151 			  ath10k_pci_interrupt_handler,
3152 			  IRQF_SHARED, "ath10k_pci", ar);
3153 	if (ret) {
3154 		ath10k_warn(ar, "failed to request MSI irq %d: %d\n",
3155 			    ar_pci->pdev->irq, ret);
3156 		return ret;
3157 	}
3158 
3159 	return 0;
3160 }
3161 
3162 static int ath10k_pci_request_irq_legacy(struct ath10k *ar)
3163 {
3164 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3165 	int ret;
3166 
3167 	ret = request_irq(ar_pci->pdev->irq,
3168 			  ath10k_pci_interrupt_handler,
3169 			  IRQF_SHARED, "ath10k_pci", ar);
3170 	if (ret) {
3171 		ath10k_warn(ar, "failed to request legacy irq %d: %d\n",
3172 			    ar_pci->pdev->irq, ret);
3173 		return ret;
3174 	}
3175 
3176 	return 0;
3177 }
3178 
3179 static int ath10k_pci_request_irq(struct ath10k *ar)
3180 {
3181 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3182 
3183 	switch (ar_pci->oper_irq_mode) {
3184 	case ATH10K_PCI_IRQ_LEGACY:
3185 		return ath10k_pci_request_irq_legacy(ar);
3186 	case ATH10K_PCI_IRQ_MSI:
3187 		return ath10k_pci_request_irq_msi(ar);
3188 	default:
3189 		return -EINVAL;
3190 	}
3191 }
3192 
3193 static void ath10k_pci_free_irq(struct ath10k *ar)
3194 {
3195 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3196 
3197 	free_irq(ar_pci->pdev->irq, ar);
3198 }
3199 
3200 void ath10k_pci_init_napi(struct ath10k *ar)
3201 {
3202 	netif_napi_add(&ar->napi_dev, &ar->napi, ath10k_pci_napi_poll,
3203 		       ATH10K_NAPI_BUDGET);
3204 }
3205 
3206 static int ath10k_pci_init_irq(struct ath10k *ar)
3207 {
3208 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3209 	int ret;
3210 
3211 	ath10k_pci_init_napi(ar);
3212 
3213 	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO)
3214 		ath10k_info(ar, "limiting irq mode to: %d\n",
3215 			    ath10k_pci_irq_mode);
3216 
3217 	/* Try MSI */
3218 	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) {
3219 		ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_MSI;
3220 		ret = pci_enable_msi(ar_pci->pdev);
3221 		if (ret == 0)
3222 			return 0;
3223 
3224 		/* fall-through */
3225 	}
3226 
3227 	/* Try legacy irq
3228 	 *
3229 	 * A potential race occurs here: The CORE_BASE write
3230 	 * depends on target correctly decoding AXI address but
3231 	 * host won't know when target writes BAR to CORE_CTRL.
3232 	 * This write might get lost if target has NOT written BAR.
3233 	 * For now, fix the race by repeating the write in below
3234 	 * synchronization checking.
3235 	 */
3236 	ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_LEGACY;
3237 
3238 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
3239 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
3240 
3241 	return 0;
3242 }
3243 
3244 static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar)
3245 {
3246 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
3247 			   0);
3248 }
3249 
3250 static int ath10k_pci_deinit_irq(struct ath10k *ar)
3251 {
3252 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3253 
3254 	switch (ar_pci->oper_irq_mode) {
3255 	case ATH10K_PCI_IRQ_LEGACY:
3256 		ath10k_pci_deinit_irq_legacy(ar);
3257 		break;
3258 	default:
3259 		pci_disable_msi(ar_pci->pdev);
3260 		break;
3261 	}
3262 
3263 	return 0;
3264 }
3265 
3266 int ath10k_pci_wait_for_target_init(struct ath10k *ar)
3267 {
3268 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3269 	unsigned long timeout;
3270 	u32 val;
3271 
3272 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n");
3273 
3274 	timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT);
3275 
3276 	do {
3277 		val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
3278 
3279 		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n",
3280 			   val);
3281 
3282 		/* target should never return this */
3283 		if (val == 0xffffffff)
3284 			continue;
3285 
3286 		/* the device has crashed so don't bother trying anymore */
3287 		if (val & FW_IND_EVENT_PENDING)
3288 			break;
3289 
3290 		if (val & FW_IND_INITIALIZED)
3291 			break;
3292 
3293 		if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY)
3294 			/* Fix potential race by repeating CORE_BASE writes */
3295 			ath10k_pci_enable_legacy_irq(ar);
3296 
3297 		mdelay(10);
3298 	} while (time_before(jiffies, timeout));
3299 
3300 	ath10k_pci_disable_and_clear_legacy_irq(ar);
3301 	ath10k_pci_irq_msi_fw_mask(ar);
3302 
3303 	if (val == 0xffffffff) {
3304 		ath10k_err(ar, "failed to read device register, device is gone\n");
3305 		return -EIO;
3306 	}
3307 
3308 	if (val & FW_IND_EVENT_PENDING) {
3309 		ath10k_warn(ar, "device has crashed during init\n");
3310 		return -ECOMM;
3311 	}
3312 
3313 	if (!(val & FW_IND_INITIALIZED)) {
3314 		ath10k_err(ar, "failed to receive initialized event from target: %08x\n",
3315 			   val);
3316 		return -ETIMEDOUT;
3317 	}
3318 
3319 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n");
3320 	return 0;
3321 }
3322 
3323 static int ath10k_pci_cold_reset(struct ath10k *ar)
3324 {
3325 	u32 val;
3326 
3327 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n");
3328 
3329 	spin_lock_bh(&ar->data_lock);
3330 
3331 	ar->stats.fw_cold_reset_counter++;
3332 
3333 	spin_unlock_bh(&ar->data_lock);
3334 
3335 	/* Put Target, including PCIe, into RESET. */
3336 	val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
3337 	val |= 1;
3338 	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3339 
3340 	/* After writing into SOC_GLOBAL_RESET to put device into
3341 	 * reset and pulling out of reset pcie may not be stable
3342 	 * for any immediate pcie register access and cause bus error,
3343 	 * add delay before any pcie access request to fix this issue.
3344 	 */
3345 	msleep(20);
3346 
3347 	/* Pull Target, including PCIe, out of RESET. */
3348 	val &= ~1;
3349 	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3350 
3351 	msleep(20);
3352 
3353 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n");
3354 
3355 	return 0;
3356 }
3357 
3358 static int ath10k_pci_claim(struct ath10k *ar)
3359 {
3360 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3361 	struct pci_dev *pdev = ar_pci->pdev;
3362 	int ret;
3363 
3364 	pci_set_drvdata(pdev, ar);
3365 
3366 	ret = pci_enable_device(pdev);
3367 	if (ret) {
3368 		ath10k_err(ar, "failed to enable pci device: %d\n", ret);
3369 		return ret;
3370 	}
3371 
3372 	ret = pci_request_region(pdev, BAR_NUM, "ath");
3373 	if (ret) {
3374 		ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM,
3375 			   ret);
3376 		goto err_device;
3377 	}
3378 
3379 	/* Target expects 32 bit DMA. Enforce it. */
3380 	ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3381 	if (ret) {
3382 		ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret);
3383 		goto err_region;
3384 	}
3385 
3386 	ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3387 	if (ret) {
3388 		ath10k_err(ar, "failed to set consistent dma mask to 32-bit: %d\n",
3389 			   ret);
3390 		goto err_region;
3391 	}
3392 
3393 	pci_set_master(pdev);
3394 
3395 	/* Arrange for access to Target SoC registers. */
3396 	ar_pci->mem_len = pci_resource_len(pdev, BAR_NUM);
3397 	ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0);
3398 	if (!ar_pci->mem) {
3399 		ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM);
3400 		ret = -EIO;
3401 		goto err_master;
3402 	}
3403 
3404 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%pK\n", ar_pci->mem);
3405 	return 0;
3406 
3407 err_master:
3408 	pci_clear_master(pdev);
3409 
3410 err_region:
3411 	pci_release_region(pdev, BAR_NUM);
3412 
3413 err_device:
3414 	pci_disable_device(pdev);
3415 
3416 	return ret;
3417 }
3418 
3419 static void ath10k_pci_release(struct ath10k *ar)
3420 {
3421 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3422 	struct pci_dev *pdev = ar_pci->pdev;
3423 
3424 	pci_iounmap(pdev, ar_pci->mem);
3425 	pci_release_region(pdev, BAR_NUM);
3426 	pci_clear_master(pdev);
3427 	pci_disable_device(pdev);
3428 }
3429 
3430 static bool ath10k_pci_chip_is_supported(u32 dev_id, u32 chip_id)
3431 {
3432 	const struct ath10k_pci_supp_chip *supp_chip;
3433 	int i;
3434 	u32 rev_id = MS(chip_id, SOC_CHIP_ID_REV);
3435 
3436 	for (i = 0; i < ARRAY_SIZE(ath10k_pci_supp_chips); i++) {
3437 		supp_chip = &ath10k_pci_supp_chips[i];
3438 
3439 		if (supp_chip->dev_id == dev_id &&
3440 		    supp_chip->rev_id == rev_id)
3441 			return true;
3442 	}
3443 
3444 	return false;
3445 }
3446 
3447 int ath10k_pci_setup_resource(struct ath10k *ar)
3448 {
3449 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3450 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
3451 	int ret;
3452 
3453 	spin_lock_init(&ce->ce_lock);
3454 	spin_lock_init(&ar_pci->ps_lock);
3455 	mutex_init(&ar_pci->ce_diag_mutex);
3456 
3457 	INIT_WORK(&ar_pci->dump_work, ath10k_pci_fw_dump_work);
3458 
3459 	timer_setup(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry, 0);
3460 
3461 	if (QCA_REV_6174(ar) || QCA_REV_9377(ar))
3462 		ath10k_pci_override_ce_config(ar);
3463 
3464 	ret = ath10k_pci_alloc_pipes(ar);
3465 	if (ret) {
3466 		ath10k_err(ar, "failed to allocate copy engine pipes: %d\n",
3467 			   ret);
3468 		return ret;
3469 	}
3470 
3471 	return 0;
3472 }
3473 
3474 void ath10k_pci_release_resource(struct ath10k *ar)
3475 {
3476 	ath10k_pci_rx_retry_sync(ar);
3477 	netif_napi_del(&ar->napi);
3478 	ath10k_pci_ce_deinit(ar);
3479 	ath10k_pci_free_pipes(ar);
3480 }
3481 
3482 static const struct ath10k_bus_ops ath10k_pci_bus_ops = {
3483 	.read32		= ath10k_bus_pci_read32,
3484 	.write32	= ath10k_bus_pci_write32,
3485 	.get_num_banks	= ath10k_pci_get_num_banks,
3486 };
3487 
3488 static int ath10k_pci_probe(struct pci_dev *pdev,
3489 			    const struct pci_device_id *pci_dev)
3490 {
3491 	int ret = 0;
3492 	struct ath10k *ar;
3493 	struct ath10k_pci *ar_pci;
3494 	enum ath10k_hw_rev hw_rev;
3495 	struct ath10k_bus_params bus_params;
3496 	bool pci_ps;
3497 	int (*pci_soft_reset)(struct ath10k *ar);
3498 	int (*pci_hard_reset)(struct ath10k *ar);
3499 	u32 (*targ_cpu_to_ce_addr)(struct ath10k *ar, u32 addr);
3500 
3501 	switch (pci_dev->device) {
3502 	case QCA988X_2_0_DEVICE_ID_UBNT:
3503 	case QCA988X_2_0_DEVICE_ID:
3504 		hw_rev = ATH10K_HW_QCA988X;
3505 		pci_ps = false;
3506 		pci_soft_reset = ath10k_pci_warm_reset;
3507 		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3508 		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3509 		break;
3510 	case QCA9887_1_0_DEVICE_ID:
3511 		hw_rev = ATH10K_HW_QCA9887;
3512 		pci_ps = false;
3513 		pci_soft_reset = ath10k_pci_warm_reset;
3514 		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3515 		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3516 		break;
3517 	case QCA6164_2_1_DEVICE_ID:
3518 	case QCA6174_2_1_DEVICE_ID:
3519 		hw_rev = ATH10K_HW_QCA6174;
3520 		pci_ps = true;
3521 		pci_soft_reset = ath10k_pci_warm_reset;
3522 		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3523 		targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr;
3524 		break;
3525 	case QCA99X0_2_0_DEVICE_ID:
3526 		hw_rev = ATH10K_HW_QCA99X0;
3527 		pci_ps = false;
3528 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3529 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3530 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3531 		break;
3532 	case QCA9984_1_0_DEVICE_ID:
3533 		hw_rev = ATH10K_HW_QCA9984;
3534 		pci_ps = false;
3535 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3536 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3537 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3538 		break;
3539 	case QCA9888_2_0_DEVICE_ID:
3540 		hw_rev = ATH10K_HW_QCA9888;
3541 		pci_ps = false;
3542 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3543 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3544 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3545 		break;
3546 	case QCA9377_1_0_DEVICE_ID:
3547 		hw_rev = ATH10K_HW_QCA9377;
3548 		pci_ps = true;
3549 		pci_soft_reset = ath10k_pci_warm_reset;
3550 		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3551 		targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr;
3552 		break;
3553 	default:
3554 		WARN_ON(1);
3555 		return -ENOTSUPP;
3556 	}
3557 
3558 	ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, ATH10K_BUS_PCI,
3559 				hw_rev, &ath10k_pci_hif_ops);
3560 	if (!ar) {
3561 		dev_err(&pdev->dev, "failed to allocate core\n");
3562 		return -ENOMEM;
3563 	}
3564 
3565 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "pci probe %04x:%04x %04x:%04x\n",
3566 		   pdev->vendor, pdev->device,
3567 		   pdev->subsystem_vendor, pdev->subsystem_device);
3568 
3569 	ar_pci = ath10k_pci_priv(ar);
3570 	ar_pci->pdev = pdev;
3571 	ar_pci->dev = &pdev->dev;
3572 	ar_pci->ar = ar;
3573 	ar->dev_id = pci_dev->device;
3574 	ar_pci->pci_ps = pci_ps;
3575 	ar_pci->ce.bus_ops = &ath10k_pci_bus_ops;
3576 	ar_pci->pci_soft_reset = pci_soft_reset;
3577 	ar_pci->pci_hard_reset = pci_hard_reset;
3578 	ar_pci->targ_cpu_to_ce_addr = targ_cpu_to_ce_addr;
3579 	ar->ce_priv = &ar_pci->ce;
3580 
3581 	ar->id.vendor = pdev->vendor;
3582 	ar->id.device = pdev->device;
3583 	ar->id.subsystem_vendor = pdev->subsystem_vendor;
3584 	ar->id.subsystem_device = pdev->subsystem_device;
3585 
3586 	timer_setup(&ar_pci->ps_timer, ath10k_pci_ps_timer, 0);
3587 
3588 	ret = ath10k_pci_setup_resource(ar);
3589 	if (ret) {
3590 		ath10k_err(ar, "failed to setup resource: %d\n", ret);
3591 		goto err_core_destroy;
3592 	}
3593 
3594 	ret = ath10k_pci_claim(ar);
3595 	if (ret) {
3596 		ath10k_err(ar, "failed to claim device: %d\n", ret);
3597 		goto err_free_pipes;
3598 	}
3599 
3600 	ret = ath10k_pci_force_wake(ar);
3601 	if (ret) {
3602 		ath10k_warn(ar, "failed to wake up device : %d\n", ret);
3603 		goto err_sleep;
3604 	}
3605 
3606 	ath10k_pci_ce_deinit(ar);
3607 	ath10k_pci_irq_disable(ar);
3608 
3609 	ret = ath10k_pci_init_irq(ar);
3610 	if (ret) {
3611 		ath10k_err(ar, "failed to init irqs: %d\n", ret);
3612 		goto err_sleep;
3613 	}
3614 
3615 	ath10k_info(ar, "pci irq %s oper_irq_mode %d irq_mode %d reset_mode %d\n",
3616 		    ath10k_pci_get_irq_method(ar), ar_pci->oper_irq_mode,
3617 		    ath10k_pci_irq_mode, ath10k_pci_reset_mode);
3618 
3619 	ret = ath10k_pci_request_irq(ar);
3620 	if (ret) {
3621 		ath10k_warn(ar, "failed to request irqs: %d\n", ret);
3622 		goto err_deinit_irq;
3623 	}
3624 
3625 	ret = ath10k_pci_chip_reset(ar);
3626 	if (ret) {
3627 		ath10k_err(ar, "failed to reset chip: %d\n", ret);
3628 		goto err_free_irq;
3629 	}
3630 
3631 	bus_params.dev_type = ATH10K_DEV_TYPE_LL;
3632 	bus_params.link_can_suspend = true;
3633 	bus_params.chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3634 	if (bus_params.chip_id == 0xffffffff) {
3635 		ath10k_err(ar, "failed to get chip id\n");
3636 		goto err_free_irq;
3637 	}
3638 
3639 	if (!ath10k_pci_chip_is_supported(pdev->device, bus_params.chip_id)) {
3640 		ath10k_err(ar, "device %04x with chip_id %08x isn't supported\n",
3641 			   pdev->device, bus_params.chip_id);
3642 		goto err_free_irq;
3643 	}
3644 
3645 	ret = ath10k_core_register(ar, &bus_params);
3646 	if (ret) {
3647 		ath10k_err(ar, "failed to register driver core: %d\n", ret);
3648 		goto err_free_irq;
3649 	}
3650 
3651 	return 0;
3652 
3653 err_free_irq:
3654 	ath10k_pci_free_irq(ar);
3655 	ath10k_pci_rx_retry_sync(ar);
3656 
3657 err_deinit_irq:
3658 	ath10k_pci_deinit_irq(ar);
3659 
3660 err_sleep:
3661 	ath10k_pci_sleep_sync(ar);
3662 	ath10k_pci_release(ar);
3663 
3664 err_free_pipes:
3665 	ath10k_pci_free_pipes(ar);
3666 
3667 err_core_destroy:
3668 	ath10k_core_destroy(ar);
3669 
3670 	return ret;
3671 }
3672 
3673 static void ath10k_pci_remove(struct pci_dev *pdev)
3674 {
3675 	struct ath10k *ar = pci_get_drvdata(pdev);
3676 	struct ath10k_pci *ar_pci;
3677 
3678 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n");
3679 
3680 	if (!ar)
3681 		return;
3682 
3683 	ar_pci = ath10k_pci_priv(ar);
3684 
3685 	if (!ar_pci)
3686 		return;
3687 
3688 	ath10k_core_unregister(ar);
3689 	ath10k_pci_free_irq(ar);
3690 	ath10k_pci_deinit_irq(ar);
3691 	ath10k_pci_release_resource(ar);
3692 	ath10k_pci_sleep_sync(ar);
3693 	ath10k_pci_release(ar);
3694 	ath10k_core_destroy(ar);
3695 }
3696 
3697 MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
3698 
3699 static __maybe_unused int ath10k_pci_pm_suspend(struct device *dev)
3700 {
3701 	struct ath10k *ar = dev_get_drvdata(dev);
3702 	int ret;
3703 
3704 	ret = ath10k_pci_suspend(ar);
3705 	if (ret)
3706 		ath10k_warn(ar, "failed to suspend hif: %d\n", ret);
3707 
3708 	return ret;
3709 }
3710 
3711 static __maybe_unused int ath10k_pci_pm_resume(struct device *dev)
3712 {
3713 	struct ath10k *ar = dev_get_drvdata(dev);
3714 	int ret;
3715 
3716 	ret = ath10k_pci_resume(ar);
3717 	if (ret)
3718 		ath10k_warn(ar, "failed to resume hif: %d\n", ret);
3719 
3720 	return ret;
3721 }
3722 
3723 static SIMPLE_DEV_PM_OPS(ath10k_pci_pm_ops,
3724 			 ath10k_pci_pm_suspend,
3725 			 ath10k_pci_pm_resume);
3726 
3727 static struct pci_driver ath10k_pci_driver = {
3728 	.name = "ath10k_pci",
3729 	.id_table = ath10k_pci_id_table,
3730 	.probe = ath10k_pci_probe,
3731 	.remove = ath10k_pci_remove,
3732 #ifdef CONFIG_PM
3733 	.driver.pm = &ath10k_pci_pm_ops,
3734 #endif
3735 };
3736 
3737 static int __init ath10k_pci_init(void)
3738 {
3739 	int ret;
3740 
3741 	ret = pci_register_driver(&ath10k_pci_driver);
3742 	if (ret)
3743 		printk(KERN_ERR "failed to register ath10k pci driver: %d\n",
3744 		       ret);
3745 
3746 	ret = ath10k_ahb_init();
3747 	if (ret)
3748 		printk(KERN_ERR "ahb init failed: %d\n", ret);
3749 
3750 	return ret;
3751 }
3752 module_init(ath10k_pci_init);
3753 
3754 static void __exit ath10k_pci_exit(void)
3755 {
3756 	pci_unregister_driver(&ath10k_pci_driver);
3757 	ath10k_ahb_exit();
3758 }
3759 
3760 module_exit(ath10k_pci_exit);
3761 
3762 MODULE_AUTHOR("Qualcomm Atheros");
3763 MODULE_DESCRIPTION("Driver support for Qualcomm Atheros 802.11ac WLAN PCIe/AHB devices");
3764 MODULE_LICENSE("Dual BSD/GPL");
3765 
3766 /* QCA988x 2.0 firmware files */
3767 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE);
3768 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE);
3769 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3770 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3771 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);
3772 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3773 
3774 /* QCA9887 1.0 firmware files */
3775 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3776 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" QCA9887_HW_1_0_BOARD_DATA_FILE);
3777 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3778 
3779 /* QCA6174 2.1 firmware files */
3780 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API4_FILE);
3781 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API5_FILE);
3782 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" QCA6174_HW_2_1_BOARD_DATA_FILE);
3783 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3784 
3785 /* QCA6174 3.1 firmware files */
3786 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3787 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3788 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3789 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" QCA6174_HW_3_0_BOARD_DATA_FILE);
3790 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3791 
3792 /* QCA9377 1.0 firmware files */
3793 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3794 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3795 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" QCA9377_HW_1_0_BOARD_DATA_FILE);
3796