xref: /linux/drivers/net/wireless/ath/ath9k/recv.c (revision 2da68a77)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20 
21 #define SKB_CB_ATHBUF(__skb)	(*((struct ath_rxbuf **)__skb->cb))
22 
23 static inline bool ath9k_check_auto_sleep(struct ath_softc *sc)
24 {
25 	return sc->ps_enabled &&
26 	       (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP);
27 }
28 
29 /*
30  * Setup and link descriptors.
31  *
32  * 11N: we can no longer afford to self link the last descriptor.
33  * MAC acknowledges BA status as long as it copies frames to host
34  * buffer (or rx fifo). This can incorrectly acknowledge packets
35  * to a sender if last desc is self-linked.
36  */
37 static void ath_rx_buf_link(struct ath_softc *sc, struct ath_rxbuf *bf,
38 			    bool flush)
39 {
40 	struct ath_hw *ah = sc->sc_ah;
41 	struct ath_common *common = ath9k_hw_common(ah);
42 	struct ath_desc *ds;
43 	struct sk_buff *skb;
44 
45 	ds = bf->bf_desc;
46 	ds->ds_link = 0; /* link to null */
47 	ds->ds_data = bf->bf_buf_addr;
48 
49 	/* virtual addr of the beginning of the buffer. */
50 	skb = bf->bf_mpdu;
51 	BUG_ON(skb == NULL);
52 	ds->ds_vdata = skb->data;
53 
54 	/*
55 	 * setup rx descriptors. The rx_bufsize here tells the hardware
56 	 * how much data it can DMA to us and that we are prepared
57 	 * to process
58 	 */
59 	ath9k_hw_setuprxdesc(ah, ds,
60 			     common->rx_bufsize,
61 			     0);
62 
63 	if (sc->rx.rxlink)
64 		*sc->rx.rxlink = bf->bf_daddr;
65 	else if (!flush)
66 		ath9k_hw_putrxbuf(ah, bf->bf_daddr);
67 
68 	sc->rx.rxlink = &ds->ds_link;
69 }
70 
71 static void ath_rx_buf_relink(struct ath_softc *sc, struct ath_rxbuf *bf,
72 			      bool flush)
73 {
74 	if (sc->rx.buf_hold)
75 		ath_rx_buf_link(sc, sc->rx.buf_hold, flush);
76 
77 	sc->rx.buf_hold = bf;
78 }
79 
80 static void ath_setdefantenna(struct ath_softc *sc, u32 antenna)
81 {
82 	/* XXX block beacon interrupts */
83 	ath9k_hw_setantenna(sc->sc_ah, antenna);
84 	sc->rx.defant = antenna;
85 	sc->rx.rxotherant = 0;
86 }
87 
88 static void ath_opmode_init(struct ath_softc *sc)
89 {
90 	struct ath_hw *ah = sc->sc_ah;
91 	struct ath_common *common = ath9k_hw_common(ah);
92 
93 	u32 rfilt, mfilt[2];
94 
95 	/* configure rx filter */
96 	rfilt = ath_calcrxfilter(sc);
97 	ath9k_hw_setrxfilter(ah, rfilt);
98 
99 	/* configure bssid mask */
100 	ath_hw_setbssidmask(common);
101 
102 	/* configure operational mode */
103 	ath9k_hw_setopmode(ah);
104 
105 	/* calculate and install multicast filter */
106 	mfilt[0] = mfilt[1] = ~0;
107 	ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]);
108 }
109 
110 static bool ath_rx_edma_buf_link(struct ath_softc *sc,
111 				 enum ath9k_rx_qtype qtype)
112 {
113 	struct ath_hw *ah = sc->sc_ah;
114 	struct ath_rx_edma *rx_edma;
115 	struct sk_buff *skb;
116 	struct ath_rxbuf *bf;
117 
118 	rx_edma = &sc->rx.rx_edma[qtype];
119 	if (skb_queue_len(&rx_edma->rx_fifo) >= rx_edma->rx_fifo_hwsize)
120 		return false;
121 
122 	bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list);
123 	list_del_init(&bf->list);
124 
125 	skb = bf->bf_mpdu;
126 
127 	memset(skb->data, 0, ah->caps.rx_status_len);
128 	dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
129 				ah->caps.rx_status_len, DMA_TO_DEVICE);
130 
131 	SKB_CB_ATHBUF(skb) = bf;
132 	ath9k_hw_addrxbuf_edma(ah, bf->bf_buf_addr, qtype);
133 	__skb_queue_tail(&rx_edma->rx_fifo, skb);
134 
135 	return true;
136 }
137 
138 static void ath_rx_addbuffer_edma(struct ath_softc *sc,
139 				  enum ath9k_rx_qtype qtype)
140 {
141 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
142 	struct ath_rxbuf *bf, *tbf;
143 
144 	if (list_empty(&sc->rx.rxbuf)) {
145 		ath_dbg(common, QUEUE, "No free rx buf available\n");
146 		return;
147 	}
148 
149 	list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list)
150 		if (!ath_rx_edma_buf_link(sc, qtype))
151 			break;
152 
153 }
154 
155 static void ath_rx_remove_buffer(struct ath_softc *sc,
156 				 enum ath9k_rx_qtype qtype)
157 {
158 	struct ath_rxbuf *bf;
159 	struct ath_rx_edma *rx_edma;
160 	struct sk_buff *skb;
161 
162 	rx_edma = &sc->rx.rx_edma[qtype];
163 
164 	while ((skb = __skb_dequeue(&rx_edma->rx_fifo)) != NULL) {
165 		bf = SKB_CB_ATHBUF(skb);
166 		BUG_ON(!bf);
167 		list_add_tail(&bf->list, &sc->rx.rxbuf);
168 	}
169 }
170 
171 static void ath_rx_edma_cleanup(struct ath_softc *sc)
172 {
173 	struct ath_hw *ah = sc->sc_ah;
174 	struct ath_common *common = ath9k_hw_common(ah);
175 	struct ath_rxbuf *bf;
176 
177 	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
178 	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
179 
180 	list_for_each_entry(bf, &sc->rx.rxbuf, list) {
181 		if (bf->bf_mpdu) {
182 			dma_unmap_single(sc->dev, bf->bf_buf_addr,
183 					common->rx_bufsize,
184 					DMA_BIDIRECTIONAL);
185 			dev_kfree_skb_any(bf->bf_mpdu);
186 			bf->bf_buf_addr = 0;
187 			bf->bf_mpdu = NULL;
188 		}
189 	}
190 }
191 
192 static void ath_rx_edma_init_queue(struct ath_rx_edma *rx_edma, int size)
193 {
194 	__skb_queue_head_init(&rx_edma->rx_fifo);
195 	rx_edma->rx_fifo_hwsize = size;
196 }
197 
198 static int ath_rx_edma_init(struct ath_softc *sc, int nbufs)
199 {
200 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
201 	struct ath_hw *ah = sc->sc_ah;
202 	struct sk_buff *skb;
203 	struct ath_rxbuf *bf;
204 	int error = 0, i;
205 	u32 size;
206 
207 	ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
208 				    ah->caps.rx_status_len);
209 
210 	ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_LP],
211 			       ah->caps.rx_lp_qdepth);
212 	ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_HP],
213 			       ah->caps.rx_hp_qdepth);
214 
215 	size = sizeof(struct ath_rxbuf) * nbufs;
216 	bf = devm_kzalloc(sc->dev, size, GFP_KERNEL);
217 	if (!bf)
218 		return -ENOMEM;
219 
220 	INIT_LIST_HEAD(&sc->rx.rxbuf);
221 
222 	for (i = 0; i < nbufs; i++, bf++) {
223 		skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_KERNEL);
224 		if (!skb) {
225 			error = -ENOMEM;
226 			goto rx_init_fail;
227 		}
228 
229 		memset(skb->data, 0, common->rx_bufsize);
230 		bf->bf_mpdu = skb;
231 
232 		bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
233 						 common->rx_bufsize,
234 						 DMA_BIDIRECTIONAL);
235 		if (unlikely(dma_mapping_error(sc->dev,
236 						bf->bf_buf_addr))) {
237 				dev_kfree_skb_any(skb);
238 				bf->bf_mpdu = NULL;
239 				bf->bf_buf_addr = 0;
240 				ath_err(common,
241 					"dma_mapping_error() on RX init\n");
242 				error = -ENOMEM;
243 				goto rx_init_fail;
244 		}
245 
246 		list_add_tail(&bf->list, &sc->rx.rxbuf);
247 	}
248 
249 	return 0;
250 
251 rx_init_fail:
252 	ath_rx_edma_cleanup(sc);
253 	return error;
254 }
255 
256 static void ath_edma_start_recv(struct ath_softc *sc)
257 {
258 	ath9k_hw_rxena(sc->sc_ah);
259 	ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_HP);
260 	ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_LP);
261 	ath_opmode_init(sc);
262 	ath9k_hw_startpcureceive(sc->sc_ah, sc->cur_chan->offchannel);
263 }
264 
265 static void ath_edma_stop_recv(struct ath_softc *sc)
266 {
267 	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
268 	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
269 }
270 
271 int ath_rx_init(struct ath_softc *sc, int nbufs)
272 {
273 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
274 	struct sk_buff *skb;
275 	struct ath_rxbuf *bf;
276 	int error = 0;
277 
278 	spin_lock_init(&sc->sc_pcu_lock);
279 
280 	common->rx_bufsize = IEEE80211_MAX_MPDU_LEN / 2 +
281 			     sc->sc_ah->caps.rx_status_len;
282 
283 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
284 		return ath_rx_edma_init(sc, nbufs);
285 
286 	ath_dbg(common, CONFIG, "cachelsz %u rxbufsize %u\n",
287 		common->cachelsz, common->rx_bufsize);
288 
289 	/* Initialize rx descriptors */
290 
291 	error = ath_descdma_setup(sc, &sc->rx.rxdma, &sc->rx.rxbuf,
292 				  "rx", nbufs, 1, 0);
293 	if (error != 0) {
294 		ath_err(common,
295 			"failed to allocate rx descriptors: %d\n",
296 			error);
297 		goto err;
298 	}
299 
300 	list_for_each_entry(bf, &sc->rx.rxbuf, list) {
301 		skb = ath_rxbuf_alloc(common, common->rx_bufsize,
302 				      GFP_KERNEL);
303 		if (skb == NULL) {
304 			error = -ENOMEM;
305 			goto err;
306 		}
307 
308 		bf->bf_mpdu = skb;
309 		bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
310 						 common->rx_bufsize,
311 						 DMA_FROM_DEVICE);
312 		if (unlikely(dma_mapping_error(sc->dev,
313 					       bf->bf_buf_addr))) {
314 			dev_kfree_skb_any(skb);
315 			bf->bf_mpdu = NULL;
316 			bf->bf_buf_addr = 0;
317 			ath_err(common,
318 				"dma_mapping_error() on RX init\n");
319 			error = -ENOMEM;
320 			goto err;
321 		}
322 	}
323 	sc->rx.rxlink = NULL;
324 err:
325 	if (error)
326 		ath_rx_cleanup(sc);
327 
328 	return error;
329 }
330 
331 void ath_rx_cleanup(struct ath_softc *sc)
332 {
333 	struct ath_hw *ah = sc->sc_ah;
334 	struct ath_common *common = ath9k_hw_common(ah);
335 	struct sk_buff *skb;
336 	struct ath_rxbuf *bf;
337 
338 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
339 		ath_rx_edma_cleanup(sc);
340 		return;
341 	}
342 
343 	list_for_each_entry(bf, &sc->rx.rxbuf, list) {
344 		skb = bf->bf_mpdu;
345 		if (skb) {
346 			dma_unmap_single(sc->dev, bf->bf_buf_addr,
347 					 common->rx_bufsize,
348 					 DMA_FROM_DEVICE);
349 			dev_kfree_skb(skb);
350 			bf->bf_buf_addr = 0;
351 			bf->bf_mpdu = NULL;
352 		}
353 	}
354 }
355 
356 /*
357  * Calculate the receive filter according to the
358  * operating mode and state:
359  *
360  * o always accept unicast, broadcast, and multicast traffic
361  * o maintain current state of phy error reception (the hal
362  *   may enable phy error frames for noise immunity work)
363  * o probe request frames are accepted only when operating in
364  *   hostap, adhoc, or monitor modes
365  * o enable promiscuous mode according to the interface state
366  * o accept beacons:
367  *   - when operating in adhoc mode so the 802.11 layer creates
368  *     node table entries for peers,
369  *   - when operating in station mode for collecting rssi data when
370  *     the station is otherwise quiet, or
371  *   - when operating as a repeater so we see repeater-sta beacons
372  *   - when scanning
373  */
374 
375 u32 ath_calcrxfilter(struct ath_softc *sc)
376 {
377 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
378 	u32 rfilt;
379 
380 	if (IS_ENABLED(CONFIG_ATH9K_TX99))
381 		return 0;
382 
383 	rfilt = ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST
384 		| ATH9K_RX_FILTER_MCAST;
385 
386 	/* if operating on a DFS channel, enable radar pulse detection */
387 	if (sc->hw->conf.radar_enabled)
388 		rfilt |= ATH9K_RX_FILTER_PHYRADAR | ATH9K_RX_FILTER_PHYERR;
389 
390 	spin_lock_bh(&sc->chan_lock);
391 
392 	if (sc->cur_chan->rxfilter & FIF_PROBE_REQ)
393 		rfilt |= ATH9K_RX_FILTER_PROBEREQ;
394 
395 	if (sc->sc_ah->is_monitoring)
396 		rfilt |= ATH9K_RX_FILTER_PROM;
397 
398 	if ((sc->cur_chan->rxfilter & FIF_CONTROL) ||
399 	    sc->sc_ah->dynack.enabled)
400 		rfilt |= ATH9K_RX_FILTER_CONTROL;
401 
402 	if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) &&
403 	    (sc->cur_chan->nvifs <= 1) &&
404 	    !(sc->cur_chan->rxfilter & FIF_BCN_PRBRESP_PROMISC))
405 		rfilt |= ATH9K_RX_FILTER_MYBEACON;
406 	else if (sc->sc_ah->opmode != NL80211_IFTYPE_OCB)
407 		rfilt |= ATH9K_RX_FILTER_BEACON;
408 
409 	if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
410 	    (sc->cur_chan->rxfilter & FIF_PSPOLL))
411 		rfilt |= ATH9K_RX_FILTER_PSPOLL;
412 
413 	if (sc->cur_chandef.width != NL80211_CHAN_WIDTH_20_NOHT)
414 		rfilt |= ATH9K_RX_FILTER_COMP_BAR;
415 
416 	if (sc->cur_chan->nvifs > 1 ||
417 	    (sc->cur_chan->rxfilter & (FIF_OTHER_BSS | FIF_MCAST_ACTION))) {
418 		/* This is needed for older chips */
419 		if (sc->sc_ah->hw_version.macVersion <= AR_SREV_VERSION_9160)
420 			rfilt |= ATH9K_RX_FILTER_PROM;
421 		rfilt |= ATH9K_RX_FILTER_MCAST_BCAST_ALL;
422 	}
423 
424 	if (AR_SREV_9550(sc->sc_ah) || AR_SREV_9531(sc->sc_ah) ||
425 	    AR_SREV_9561(sc->sc_ah))
426 		rfilt |= ATH9K_RX_FILTER_4ADDRESS;
427 
428 	if (AR_SREV_9462(sc->sc_ah) || AR_SREV_9565(sc->sc_ah))
429 		rfilt |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
430 
431 	if (ath9k_is_chanctx_enabled() &&
432 	    test_bit(ATH_OP_SCANNING, &common->op_flags))
433 		rfilt |= ATH9K_RX_FILTER_BEACON;
434 
435 	spin_unlock_bh(&sc->chan_lock);
436 
437 	return rfilt;
438 
439 }
440 
441 void ath_startrecv(struct ath_softc *sc)
442 {
443 	struct ath_hw *ah = sc->sc_ah;
444 	struct ath_rxbuf *bf, *tbf;
445 
446 	if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
447 		ath_edma_start_recv(sc);
448 		return;
449 	}
450 
451 	if (list_empty(&sc->rx.rxbuf))
452 		goto start_recv;
453 
454 	sc->rx.buf_hold = NULL;
455 	sc->rx.rxlink = NULL;
456 	list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) {
457 		ath_rx_buf_link(sc, bf, false);
458 	}
459 
460 	/* We could have deleted elements so the list may be empty now */
461 	if (list_empty(&sc->rx.rxbuf))
462 		goto start_recv;
463 
464 	bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list);
465 	ath9k_hw_putrxbuf(ah, bf->bf_daddr);
466 	ath9k_hw_rxena(ah);
467 
468 start_recv:
469 	ath_opmode_init(sc);
470 	ath9k_hw_startpcureceive(ah, sc->cur_chan->offchannel);
471 }
472 
473 static void ath_flushrecv(struct ath_softc *sc)
474 {
475 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
476 		ath_rx_tasklet(sc, 1, true);
477 	ath_rx_tasklet(sc, 1, false);
478 }
479 
480 bool ath_stoprecv(struct ath_softc *sc)
481 {
482 	struct ath_hw *ah = sc->sc_ah;
483 	bool stopped, reset = false;
484 
485 	ath9k_hw_abortpcurecv(ah);
486 	ath9k_hw_setrxfilter(ah, 0);
487 	stopped = ath9k_hw_stopdmarecv(ah, &reset);
488 
489 	ath_flushrecv(sc);
490 
491 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
492 		ath_edma_stop_recv(sc);
493 	else
494 		sc->rx.rxlink = NULL;
495 
496 	if (!(ah->ah_flags & AH_UNPLUGGED) &&
497 	    unlikely(!stopped)) {
498 		ath_dbg(ath9k_hw_common(sc->sc_ah), RESET,
499 			"Failed to stop Rx DMA\n");
500 		RESET_STAT_INC(sc, RESET_RX_DMA_ERROR);
501 	}
502 	return stopped && !reset;
503 }
504 
505 static bool ath_beacon_dtim_pending_cab(struct sk_buff *skb)
506 {
507 	/* Check whether the Beacon frame has DTIM indicating buffered bc/mc */
508 	struct ieee80211_mgmt *mgmt;
509 	u8 *pos, *end, id, elen;
510 	struct ieee80211_tim_ie *tim;
511 
512 	mgmt = (struct ieee80211_mgmt *)skb->data;
513 	pos = mgmt->u.beacon.variable;
514 	end = skb->data + skb->len;
515 
516 	while (pos + 2 < end) {
517 		id = *pos++;
518 		elen = *pos++;
519 		if (pos + elen > end)
520 			break;
521 
522 		if (id == WLAN_EID_TIM) {
523 			if (elen < sizeof(*tim))
524 				break;
525 			tim = (struct ieee80211_tim_ie *) pos;
526 			if (tim->dtim_count != 0)
527 				break;
528 			return tim->bitmap_ctrl & 0x01;
529 		}
530 
531 		pos += elen;
532 	}
533 
534 	return false;
535 }
536 
537 static void ath_rx_ps_beacon(struct ath_softc *sc, struct sk_buff *skb)
538 {
539 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
540 	bool skip_beacon = false;
541 
542 	if (skb->len < 24 + 8 + 2 + 2)
543 		return;
544 
545 	sc->ps_flags &= ~PS_WAIT_FOR_BEACON;
546 
547 	if (sc->ps_flags & PS_BEACON_SYNC) {
548 		sc->ps_flags &= ~PS_BEACON_SYNC;
549 		ath_dbg(common, PS,
550 			"Reconfigure beacon timers based on synchronized timestamp\n");
551 
552 #ifdef CONFIG_ATH9K_CHANNEL_CONTEXT
553 		if (ath9k_is_chanctx_enabled()) {
554 			if (sc->cur_chan == &sc->offchannel.chan)
555 				skip_beacon = true;
556 		}
557 #endif
558 
559 		if (!skip_beacon &&
560 		    !(WARN_ON_ONCE(sc->cur_chan->beacon.beacon_interval == 0)))
561 			ath9k_set_beacon(sc);
562 
563 		ath9k_p2p_beacon_sync(sc);
564 	}
565 
566 	if (ath_beacon_dtim_pending_cab(skb)) {
567 		/*
568 		 * Remain awake waiting for buffered broadcast/multicast
569 		 * frames. If the last broadcast/multicast frame is not
570 		 * received properly, the next beacon frame will work as
571 		 * a backup trigger for returning into NETWORK SLEEP state,
572 		 * so we are waiting for it as well.
573 		 */
574 		ath_dbg(common, PS,
575 			"Received DTIM beacon indicating buffered broadcast/multicast frame(s)\n");
576 		sc->ps_flags |= PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON;
577 		return;
578 	}
579 
580 	if (sc->ps_flags & PS_WAIT_FOR_CAB) {
581 		/*
582 		 * This can happen if a broadcast frame is dropped or the AP
583 		 * fails to send a frame indicating that all CAB frames have
584 		 * been delivered.
585 		 */
586 		sc->ps_flags &= ~PS_WAIT_FOR_CAB;
587 		ath_dbg(common, PS, "PS wait for CAB frames timed out\n");
588 	}
589 }
590 
591 static void ath_rx_ps(struct ath_softc *sc, struct sk_buff *skb, bool mybeacon)
592 {
593 	struct ieee80211_hdr *hdr;
594 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
595 
596 	hdr = (struct ieee80211_hdr *)skb->data;
597 
598 	/* Process Beacon and CAB receive in PS state */
599 	if (((sc->ps_flags & PS_WAIT_FOR_BEACON) || ath9k_check_auto_sleep(sc))
600 	    && mybeacon) {
601 		ath_rx_ps_beacon(sc, skb);
602 	} else if ((sc->ps_flags & PS_WAIT_FOR_CAB) &&
603 		   (ieee80211_is_data(hdr->frame_control) ||
604 		    ieee80211_is_action(hdr->frame_control)) &&
605 		   is_multicast_ether_addr(hdr->addr1) &&
606 		   !ieee80211_has_moredata(hdr->frame_control)) {
607 		/*
608 		 * No more broadcast/multicast frames to be received at this
609 		 * point.
610 		 */
611 		sc->ps_flags &= ~(PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON);
612 		ath_dbg(common, PS,
613 			"All PS CAB frames received, back to sleep\n");
614 	} else if ((sc->ps_flags & PS_WAIT_FOR_PSPOLL_DATA) &&
615 		   !is_multicast_ether_addr(hdr->addr1) &&
616 		   !ieee80211_has_morefrags(hdr->frame_control)) {
617 		sc->ps_flags &= ~PS_WAIT_FOR_PSPOLL_DATA;
618 		ath_dbg(common, PS,
619 			"Going back to sleep after having received PS-Poll data (0x%lx)\n",
620 			sc->ps_flags & (PS_WAIT_FOR_BEACON |
621 					PS_WAIT_FOR_CAB |
622 					PS_WAIT_FOR_PSPOLL_DATA |
623 					PS_WAIT_FOR_TX_ACK));
624 	}
625 }
626 
627 static bool ath_edma_get_buffers(struct ath_softc *sc,
628 				 enum ath9k_rx_qtype qtype,
629 				 struct ath_rx_status *rs,
630 				 struct ath_rxbuf **dest)
631 {
632 	struct ath_rx_edma *rx_edma = &sc->rx.rx_edma[qtype];
633 	struct ath_hw *ah = sc->sc_ah;
634 	struct ath_common *common = ath9k_hw_common(ah);
635 	struct sk_buff *skb;
636 	struct ath_rxbuf *bf;
637 	int ret;
638 
639 	skb = skb_peek(&rx_edma->rx_fifo);
640 	if (!skb)
641 		return false;
642 
643 	bf = SKB_CB_ATHBUF(skb);
644 	BUG_ON(!bf);
645 
646 	dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
647 				common->rx_bufsize, DMA_FROM_DEVICE);
648 
649 	ret = ath9k_hw_process_rxdesc_edma(ah, rs, skb->data);
650 	if (ret == -EINPROGRESS) {
651 		/*let device gain the buffer again*/
652 		dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
653 				common->rx_bufsize, DMA_FROM_DEVICE);
654 		return false;
655 	}
656 
657 	__skb_unlink(skb, &rx_edma->rx_fifo);
658 	if (ret == -EINVAL) {
659 		/* corrupt descriptor, skip this one and the following one */
660 		list_add_tail(&bf->list, &sc->rx.rxbuf);
661 		ath_rx_edma_buf_link(sc, qtype);
662 
663 		skb = skb_peek(&rx_edma->rx_fifo);
664 		if (skb) {
665 			bf = SKB_CB_ATHBUF(skb);
666 			BUG_ON(!bf);
667 
668 			__skb_unlink(skb, &rx_edma->rx_fifo);
669 			list_add_tail(&bf->list, &sc->rx.rxbuf);
670 			ath_rx_edma_buf_link(sc, qtype);
671 		}
672 
673 		bf = NULL;
674 	}
675 
676 	*dest = bf;
677 	return true;
678 }
679 
680 static struct ath_rxbuf *ath_edma_get_next_rx_buf(struct ath_softc *sc,
681 						struct ath_rx_status *rs,
682 						enum ath9k_rx_qtype qtype)
683 {
684 	struct ath_rxbuf *bf = NULL;
685 
686 	while (ath_edma_get_buffers(sc, qtype, rs, &bf)) {
687 		if (!bf)
688 			continue;
689 
690 		return bf;
691 	}
692 	return NULL;
693 }
694 
695 static struct ath_rxbuf *ath_get_next_rx_buf(struct ath_softc *sc,
696 					   struct ath_rx_status *rs)
697 {
698 	struct ath_hw *ah = sc->sc_ah;
699 	struct ath_common *common = ath9k_hw_common(ah);
700 	struct ath_desc *ds;
701 	struct ath_rxbuf *bf;
702 	int ret;
703 
704 	if (list_empty(&sc->rx.rxbuf)) {
705 		sc->rx.rxlink = NULL;
706 		return NULL;
707 	}
708 
709 	bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list);
710 	if (bf == sc->rx.buf_hold)
711 		return NULL;
712 
713 	ds = bf->bf_desc;
714 
715 	/*
716 	 * Must provide the virtual address of the current
717 	 * descriptor, the physical address, and the virtual
718 	 * address of the next descriptor in the h/w chain.
719 	 * This allows the HAL to look ahead to see if the
720 	 * hardware is done with a descriptor by checking the
721 	 * done bit in the following descriptor and the address
722 	 * of the current descriptor the DMA engine is working
723 	 * on.  All this is necessary because of our use of
724 	 * a self-linked list to avoid rx overruns.
725 	 */
726 	ret = ath9k_hw_rxprocdesc(ah, ds, rs);
727 	if (ret == -EINPROGRESS) {
728 		struct ath_rx_status trs;
729 		struct ath_rxbuf *tbf;
730 		struct ath_desc *tds;
731 
732 		memset(&trs, 0, sizeof(trs));
733 		if (list_is_last(&bf->list, &sc->rx.rxbuf)) {
734 			sc->rx.rxlink = NULL;
735 			return NULL;
736 		}
737 
738 		tbf = list_entry(bf->list.next, struct ath_rxbuf, list);
739 
740 		/*
741 		 * On some hardware the descriptor status words could
742 		 * get corrupted, including the done bit. Because of
743 		 * this, check if the next descriptor's done bit is
744 		 * set or not.
745 		 *
746 		 * If the next descriptor's done bit is set, the current
747 		 * descriptor has been corrupted. Force s/w to discard
748 		 * this descriptor and continue...
749 		 */
750 
751 		tds = tbf->bf_desc;
752 		ret = ath9k_hw_rxprocdesc(ah, tds, &trs);
753 		if (ret == -EINPROGRESS)
754 			return NULL;
755 
756 		/*
757 		 * Re-check previous descriptor, in case it has been filled
758 		 * in the mean time.
759 		 */
760 		ret = ath9k_hw_rxprocdesc(ah, ds, rs);
761 		if (ret == -EINPROGRESS) {
762 			/*
763 			 * mark descriptor as zero-length and set the 'more'
764 			 * flag to ensure that both buffers get discarded
765 			 */
766 			rs->rs_datalen = 0;
767 			rs->rs_more = true;
768 		}
769 	}
770 
771 	list_del(&bf->list);
772 	if (!bf->bf_mpdu)
773 		return bf;
774 
775 	/*
776 	 * Synchronize the DMA transfer with CPU before
777 	 * 1. accessing the frame
778 	 * 2. requeueing the same buffer to h/w
779 	 */
780 	dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
781 			common->rx_bufsize,
782 			DMA_FROM_DEVICE);
783 
784 	return bf;
785 }
786 
787 static void ath9k_process_tsf(struct ath_rx_status *rs,
788 			      struct ieee80211_rx_status *rxs,
789 			      u64 tsf)
790 {
791 	u32 tsf_lower = tsf & 0xffffffff;
792 
793 	rxs->mactime = (tsf & ~0xffffffffULL) | rs->rs_tstamp;
794 	if (rs->rs_tstamp > tsf_lower &&
795 	    unlikely(rs->rs_tstamp - tsf_lower > 0x10000000))
796 		rxs->mactime -= 0x100000000ULL;
797 
798 	if (rs->rs_tstamp < tsf_lower &&
799 	    unlikely(tsf_lower - rs->rs_tstamp > 0x10000000))
800 		rxs->mactime += 0x100000000ULL;
801 }
802 
803 /*
804  * For Decrypt or Demic errors, we only mark packet status here and always push
805  * up the frame up to let mac80211 handle the actual error case, be it no
806  * decryption key or real decryption error. This let us keep statistics there.
807  */
808 static int ath9k_rx_skb_preprocess(struct ath_softc *sc,
809 				   struct sk_buff *skb,
810 				   struct ath_rx_status *rx_stats,
811 				   struct ieee80211_rx_status *rx_status,
812 				   bool *decrypt_error, u64 tsf)
813 {
814 	struct ieee80211_hw *hw = sc->hw;
815 	struct ath_hw *ah = sc->sc_ah;
816 	struct ath_common *common = ath9k_hw_common(ah);
817 	struct ieee80211_hdr *hdr;
818 	bool discard_current = sc->rx.discard_next;
819 	bool is_phyerr;
820 
821 	/*
822 	 * Discard corrupt descriptors which are marked in
823 	 * ath_get_next_rx_buf().
824 	 */
825 	if (discard_current)
826 		goto corrupt;
827 
828 	sc->rx.discard_next = false;
829 
830 	/*
831 	 * Discard zero-length packets and packets smaller than an ACK
832 	 * which are not PHY_ERROR (short radar pulses have a length of 3)
833 	 */
834 	is_phyerr = rx_stats->rs_status & ATH9K_RXERR_PHY;
835 	if (!rx_stats->rs_datalen ||
836 	    (rx_stats->rs_datalen < 10 && !is_phyerr)) {
837 		RX_STAT_INC(sc, rx_len_err);
838 		goto corrupt;
839 	}
840 
841 	/*
842 	 * rs_status follows rs_datalen so if rs_datalen is too large
843 	 * we can take a hint that hardware corrupted it, so ignore
844 	 * those frames.
845 	 */
846 	if (rx_stats->rs_datalen > (common->rx_bufsize - ah->caps.rx_status_len)) {
847 		RX_STAT_INC(sc, rx_len_err);
848 		goto corrupt;
849 	}
850 
851 	/* Only use status info from the last fragment */
852 	if (rx_stats->rs_more)
853 		return 0;
854 
855 	/*
856 	 * Return immediately if the RX descriptor has been marked
857 	 * as corrupt based on the various error bits.
858 	 *
859 	 * This is different from the other corrupt descriptor
860 	 * condition handled above.
861 	 */
862 	if (rx_stats->rs_status & ATH9K_RXERR_CORRUPT_DESC)
863 		goto corrupt;
864 
865 	hdr = (struct ieee80211_hdr *) (skb->data + ah->caps.rx_status_len);
866 
867 	ath9k_process_tsf(rx_stats, rx_status, tsf);
868 	ath_debug_stat_rx(sc, rx_stats);
869 
870 	/*
871 	 * Process PHY errors and return so that the packet
872 	 * can be dropped.
873 	 */
874 	if (rx_stats->rs_status & ATH9K_RXERR_PHY) {
875 		/*
876 		 * DFS and spectral are mutually exclusive
877 		 *
878 		 * Since some chips use PHYERR_RADAR as indication for both, we
879 		 * need to double check which feature is enabled to prevent
880 		 * feeding spectral or dfs-detector with wrong frames.
881 		 */
882 		if (hw->conf.radar_enabled) {
883 			ath9k_dfs_process_phyerr(sc, hdr, rx_stats,
884 						 rx_status->mactime);
885 		} else if (sc->spec_priv.spectral_mode != SPECTRAL_DISABLED &&
886 			   ath_cmn_process_fft(&sc->spec_priv, hdr, rx_stats,
887 					       rx_status->mactime)) {
888 			RX_STAT_INC(sc, rx_spectral);
889 		}
890 		return -EINVAL;
891 	}
892 
893 	/*
894 	 * everything but the rate is checked here, the rate check is done
895 	 * separately to avoid doing two lookups for a rate for each frame.
896 	 */
897 	spin_lock_bh(&sc->chan_lock);
898 	if (!ath9k_cmn_rx_accept(common, hdr, rx_status, rx_stats, decrypt_error,
899 				 sc->cur_chan->rxfilter)) {
900 		spin_unlock_bh(&sc->chan_lock);
901 		return -EINVAL;
902 	}
903 	spin_unlock_bh(&sc->chan_lock);
904 
905 	if (ath_is_mybeacon(common, hdr)) {
906 		RX_STAT_INC(sc, rx_beacons);
907 		rx_stats->is_mybeacon = true;
908 	}
909 
910 	/*
911 	 * This shouldn't happen, but have a safety check anyway.
912 	 */
913 	if (WARN_ON(!ah->curchan))
914 		return -EINVAL;
915 
916 	if (ath9k_cmn_process_rate(common, hw, rx_stats, rx_status)) {
917 		/*
918 		 * No valid hardware bitrate found -- we should not get here
919 		 * because hardware has already validated this frame as OK.
920 		 */
921 		ath_dbg(common, ANY, "unsupported hw bitrate detected 0x%02x using 1 Mbit\n",
922 			rx_stats->rs_rate);
923 		RX_STAT_INC(sc, rx_rate_err);
924 		return -EINVAL;
925 	}
926 
927 	if (ath9k_is_chanctx_enabled()) {
928 		if (rx_stats->is_mybeacon)
929 			ath_chanctx_beacon_recv_ev(sc,
930 					   ATH_CHANCTX_EVENT_BEACON_RECEIVED);
931 	}
932 
933 	ath9k_cmn_process_rssi(common, hw, rx_stats, rx_status);
934 
935 	rx_status->band = ah->curchan->chan->band;
936 	rx_status->freq = ah->curchan->chan->center_freq;
937 	rx_status->antenna = rx_stats->rs_antenna;
938 	rx_status->flag |= RX_FLAG_MACTIME_END;
939 
940 #ifdef CONFIG_ATH9K_BTCOEX_SUPPORT
941 	if (ieee80211_is_data_present(hdr->frame_control) &&
942 	    !ieee80211_is_qos_nullfunc(hdr->frame_control))
943 		sc->rx.num_pkts++;
944 #endif
945 
946 	return 0;
947 
948 corrupt:
949 	sc->rx.discard_next = rx_stats->rs_more;
950 	return -EINVAL;
951 }
952 
953 /*
954  * Run the LNA combining algorithm only in these cases:
955  *
956  * Standalone WLAN cards with both LNA/Antenna diversity
957  * enabled in the EEPROM.
958  *
959  * WLAN+BT cards which are in the supported card list
960  * in ath_pci_id_table and the user has loaded the
961  * driver with "bt_ant_diversity" set to true.
962  */
963 static void ath9k_antenna_check(struct ath_softc *sc,
964 				struct ath_rx_status *rs)
965 {
966 	struct ath_hw *ah = sc->sc_ah;
967 	struct ath9k_hw_capabilities *pCap = &ah->caps;
968 	struct ath_common *common = ath9k_hw_common(ah);
969 
970 	if (!(ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB))
971 		return;
972 
973 	/*
974 	 * Change the default rx antenna if rx diversity
975 	 * chooses the other antenna 3 times in a row.
976 	 */
977 	if (sc->rx.defant != rs->rs_antenna) {
978 		if (++sc->rx.rxotherant >= 3)
979 			ath_setdefantenna(sc, rs->rs_antenna);
980 	} else {
981 		sc->rx.rxotherant = 0;
982 	}
983 
984 	if (pCap->hw_caps & ATH9K_HW_CAP_BT_ANT_DIV) {
985 		if (common->bt_ant_diversity)
986 			ath_ant_comb_scan(sc, rs);
987 	} else {
988 		ath_ant_comb_scan(sc, rs);
989 	}
990 }
991 
992 static void ath9k_apply_ampdu_details(struct ath_softc *sc,
993 	struct ath_rx_status *rs, struct ieee80211_rx_status *rxs)
994 {
995 	if (rs->rs_isaggr) {
996 		rxs->flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN;
997 
998 		rxs->ampdu_reference = sc->rx.ampdu_ref;
999 
1000 		if (!rs->rs_moreaggr) {
1001 			rxs->flag |= RX_FLAG_AMPDU_IS_LAST;
1002 			sc->rx.ampdu_ref++;
1003 		}
1004 
1005 		if (rs->rs_flags & ATH9K_RX_DELIM_CRC_PRE)
1006 			rxs->flag |= RX_FLAG_AMPDU_DELIM_CRC_ERROR;
1007 	}
1008 }
1009 
1010 static void ath_rx_count_airtime(struct ath_softc *sc,
1011 				 struct ath_rx_status *rs,
1012 				 struct sk_buff *skb)
1013 {
1014 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1015 	struct ath_hw *ah = sc->sc_ah;
1016 	struct ath_common *common = ath9k_hw_common(ah);
1017 	struct ieee80211_sta *sta;
1018 	struct ieee80211_rx_status *rxs;
1019 	const struct ieee80211_rate *rate;
1020 	bool is_sgi, is_40, is_sp;
1021 	int phy;
1022 	u16 len = rs->rs_datalen;
1023 	u32 airtime = 0;
1024 	u8 tidno;
1025 
1026 	if (!ieee80211_is_data(hdr->frame_control))
1027 		return;
1028 
1029 	rcu_read_lock();
1030 
1031 	sta = ieee80211_find_sta_by_ifaddr(sc->hw, hdr->addr2, NULL);
1032 	if (!sta)
1033 		goto exit;
1034 	tidno = skb->priority & IEEE80211_QOS_CTL_TID_MASK;
1035 
1036 	rxs = IEEE80211_SKB_RXCB(skb);
1037 
1038 	is_sgi = !!(rxs->enc_flags & RX_ENC_FLAG_SHORT_GI);
1039 	is_40 = !!(rxs->bw == RATE_INFO_BW_40);
1040 	is_sp = !!(rxs->enc_flags & RX_ENC_FLAG_SHORTPRE);
1041 
1042 	if (!!(rxs->encoding == RX_ENC_HT)) {
1043 		/* MCS rates */
1044 
1045 		airtime += ath_pkt_duration(sc, rxs->rate_idx, len,
1046 					is_40, is_sgi, is_sp);
1047 	} else {
1048 
1049 		phy = IS_CCK_RATE(rs->rs_rate) ? WLAN_RC_PHY_CCK : WLAN_RC_PHY_OFDM;
1050 		rate = &common->sbands[rxs->band].bitrates[rxs->rate_idx];
1051 		airtime += ath9k_hw_computetxtime(ah, phy, rate->bitrate * 100,
1052 						len, rxs->rate_idx, is_sp);
1053 	}
1054 
1055 	ieee80211_sta_register_airtime(sta, tidno, 0, airtime);
1056 exit:
1057 	rcu_read_unlock();
1058 }
1059 
1060 int ath_rx_tasklet(struct ath_softc *sc, int flush, bool hp)
1061 {
1062 	struct ath_rxbuf *bf;
1063 	struct sk_buff *skb = NULL, *requeue_skb, *hdr_skb;
1064 	struct ieee80211_rx_status *rxs;
1065 	struct ath_hw *ah = sc->sc_ah;
1066 	struct ath_common *common = ath9k_hw_common(ah);
1067 	struct ieee80211_hw *hw = sc->hw;
1068 	int retval;
1069 	struct ath_rx_status rs;
1070 	enum ath9k_rx_qtype qtype;
1071 	bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1072 	int dma_type;
1073 	u64 tsf = 0;
1074 	unsigned long flags;
1075 	dma_addr_t new_buf_addr;
1076 	unsigned int budget = 512;
1077 	struct ieee80211_hdr *hdr;
1078 
1079 	if (edma)
1080 		dma_type = DMA_BIDIRECTIONAL;
1081 	else
1082 		dma_type = DMA_FROM_DEVICE;
1083 
1084 	qtype = hp ? ATH9K_RX_QUEUE_HP : ATH9K_RX_QUEUE_LP;
1085 
1086 	tsf = ath9k_hw_gettsf64(ah);
1087 
1088 	do {
1089 		bool decrypt_error = false;
1090 
1091 		memset(&rs, 0, sizeof(rs));
1092 		if (edma)
1093 			bf = ath_edma_get_next_rx_buf(sc, &rs, qtype);
1094 		else
1095 			bf = ath_get_next_rx_buf(sc, &rs);
1096 
1097 		if (!bf)
1098 			break;
1099 
1100 		skb = bf->bf_mpdu;
1101 		if (!skb)
1102 			continue;
1103 
1104 		/*
1105 		 * Take frame header from the first fragment and RX status from
1106 		 * the last one.
1107 		 */
1108 		if (sc->rx.frag)
1109 			hdr_skb = sc->rx.frag;
1110 		else
1111 			hdr_skb = skb;
1112 
1113 		rxs = IEEE80211_SKB_RXCB(hdr_skb);
1114 		memset(rxs, 0, sizeof(struct ieee80211_rx_status));
1115 
1116 		retval = ath9k_rx_skb_preprocess(sc, hdr_skb, &rs, rxs,
1117 						 &decrypt_error, tsf);
1118 		if (retval)
1119 			goto requeue_drop_frag;
1120 
1121 		/* Ensure we always have an skb to requeue once we are done
1122 		 * processing the current buffer's skb */
1123 		requeue_skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_ATOMIC);
1124 
1125 		/* If there is no memory we ignore the current RX'd frame,
1126 		 * tell hardware it can give us a new frame using the old
1127 		 * skb and put it at the tail of the sc->rx.rxbuf list for
1128 		 * processing. */
1129 		if (!requeue_skb) {
1130 			RX_STAT_INC(sc, rx_oom_err);
1131 			goto requeue_drop_frag;
1132 		}
1133 
1134 		/* We will now give hardware our shiny new allocated skb */
1135 		new_buf_addr = dma_map_single(sc->dev, requeue_skb->data,
1136 					      common->rx_bufsize, dma_type);
1137 		if (unlikely(dma_mapping_error(sc->dev, new_buf_addr))) {
1138 			dev_kfree_skb_any(requeue_skb);
1139 			goto requeue_drop_frag;
1140 		}
1141 
1142 		/* Unmap the frame */
1143 		dma_unmap_single(sc->dev, bf->bf_buf_addr,
1144 				 common->rx_bufsize, dma_type);
1145 
1146 		bf->bf_mpdu = requeue_skb;
1147 		bf->bf_buf_addr = new_buf_addr;
1148 
1149 		skb_put(skb, rs.rs_datalen + ah->caps.rx_status_len);
1150 		if (ah->caps.rx_status_len)
1151 			skb_pull(skb, ah->caps.rx_status_len);
1152 
1153 		if (!rs.rs_more)
1154 			ath9k_cmn_rx_skb_postprocess(common, hdr_skb, &rs,
1155 						     rxs, decrypt_error);
1156 
1157 		if (rs.rs_more) {
1158 			RX_STAT_INC(sc, rx_frags);
1159 			/*
1160 			 * rs_more indicates chained descriptors which can be
1161 			 * used to link buffers together for a sort of
1162 			 * scatter-gather operation.
1163 			 */
1164 			if (sc->rx.frag) {
1165 				/* too many fragments - cannot handle frame */
1166 				dev_kfree_skb_any(sc->rx.frag);
1167 				dev_kfree_skb_any(skb);
1168 				RX_STAT_INC(sc, rx_too_many_frags_err);
1169 				skb = NULL;
1170 			}
1171 			sc->rx.frag = skb;
1172 			goto requeue;
1173 		}
1174 
1175 		if (sc->rx.frag) {
1176 			int space = skb->len - skb_tailroom(hdr_skb);
1177 
1178 			if (pskb_expand_head(hdr_skb, 0, space, GFP_ATOMIC) < 0) {
1179 				dev_kfree_skb(skb);
1180 				RX_STAT_INC(sc, rx_oom_err);
1181 				goto requeue_drop_frag;
1182 			}
1183 
1184 			sc->rx.frag = NULL;
1185 
1186 			skb_copy_from_linear_data(skb, skb_put(hdr_skb, skb->len),
1187 						  skb->len);
1188 			dev_kfree_skb_any(skb);
1189 			skb = hdr_skb;
1190 		}
1191 
1192 		if (rxs->flag & RX_FLAG_MMIC_STRIPPED)
1193 			skb_trim(skb, skb->len - 8);
1194 
1195 		spin_lock_irqsave(&sc->sc_pm_lock, flags);
1196 		if ((sc->ps_flags & (PS_WAIT_FOR_BEACON |
1197 				     PS_WAIT_FOR_CAB |
1198 				     PS_WAIT_FOR_PSPOLL_DATA)) ||
1199 		    ath9k_check_auto_sleep(sc))
1200 			ath_rx_ps(sc, skb, rs.is_mybeacon);
1201 		spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
1202 
1203 		ath9k_antenna_check(sc, &rs);
1204 		ath9k_apply_ampdu_details(sc, &rs, rxs);
1205 		ath_debug_rate_stats(sc, &rs, skb);
1206 		ath_rx_count_airtime(sc, &rs, skb);
1207 
1208 		hdr = (struct ieee80211_hdr *)skb->data;
1209 		if (ieee80211_is_ack(hdr->frame_control))
1210 			ath_dynack_sample_ack_ts(sc->sc_ah, skb, rs.rs_tstamp);
1211 
1212 		ieee80211_rx(hw, skb);
1213 
1214 requeue_drop_frag:
1215 		if (sc->rx.frag) {
1216 			dev_kfree_skb_any(sc->rx.frag);
1217 			sc->rx.frag = NULL;
1218 		}
1219 requeue:
1220 		list_add_tail(&bf->list, &sc->rx.rxbuf);
1221 
1222 		if (!edma) {
1223 			ath_rx_buf_relink(sc, bf, flush);
1224 			if (!flush)
1225 				ath9k_hw_rxena(ah);
1226 		} else if (!flush) {
1227 			ath_rx_edma_buf_link(sc, qtype);
1228 		}
1229 
1230 		if (!budget--)
1231 			break;
1232 	} while (1);
1233 
1234 	if (!(ah->imask & ATH9K_INT_RXEOL)) {
1235 		ah->imask |= (ATH9K_INT_RXEOL | ATH9K_INT_RXORN);
1236 		ath9k_hw_set_interrupts(ah);
1237 	}
1238 
1239 	return 0;
1240 }
1241