1 /*
2  * Copyright (c) 2010 Broadcom Corporation
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
11  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
13  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
14  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/types.h>
18 #include <net/cfg80211.h>
19 #include <net/mac80211.h>
20 #include <net/regulatory.h>
21 
22 #include <defs.h>
23 #include "pub.h"
24 #include "phy/phy_hal.h"
25 #include "main.h"
26 #include "stf.h"
27 #include "channel.h"
28 #include "mac80211_if.h"
29 #include "debug.h"
30 
31 /* QDB() macro takes a dB value and converts to a quarter dB value */
32 #define QDB(n) ((n) * BRCMS_TXPWR_DB_FACTOR)
33 
34 #define LOCALE_MIMO_IDX_bn		0
35 #define LOCALE_MIMO_IDX_11n		0
36 
37 /* max of BAND_5G_PWR_LVLS and 14 for 2.4 GHz */
38 #define BRCMS_MAXPWR_MIMO_TBL_SIZE	14
39 
40 /* maxpwr mapping to 5GHz band channels:
41  * maxpwr[0] - channels [34-48]
42  * maxpwr[1] - channels [52-60]
43  * maxpwr[2] - channels [62-64]
44  * maxpwr[3] - channels [100-140]
45  * maxpwr[4] - channels [149-165]
46  */
47 #define BAND_5G_PWR_LVLS	5	/* 5 power levels for 5G */
48 
49 #define LC(id)	LOCALE_MIMO_IDX_ ## id
50 
51 #define LOCALES(mimo2, mimo5) \
52 		{LC(mimo2), LC(mimo5)}
53 
54 /* macro to get 5 GHz channel group index for tx power */
55 #define CHANNEL_POWER_IDX_5G(c) (((c) < 52) ? 0 : \
56 				 (((c) < 62) ? 1 : \
57 				 (((c) < 100) ? 2 : \
58 				 (((c) < 149) ? 3 : 4))))
59 
60 #define BRCM_2GHZ_2412_2462	REG_RULE(2412-10, 2462+10, 40, 0, 19, 0)
61 #define BRCM_2GHZ_2467_2472	REG_RULE(2467-10, 2472+10, 20, 0, 19, \
62 					 NL80211_RRF_NO_IR)
63 
64 #define BRCM_5GHZ_5180_5240	REG_RULE(5180-10, 5240+10, 40, 0, 21, \
65 					 NL80211_RRF_NO_IR)
66 #define BRCM_5GHZ_5260_5320	REG_RULE(5260-10, 5320+10, 40, 0, 21, \
67 					 NL80211_RRF_DFS | \
68 					 NL80211_RRF_NO_IR)
69 #define BRCM_5GHZ_5500_5700	REG_RULE(5500-10, 5700+10, 40, 0, 21, \
70 					 NL80211_RRF_DFS | \
71 					 NL80211_RRF_NO_IR)
72 #define BRCM_5GHZ_5745_5825	REG_RULE(5745-10, 5825+10, 40, 0, 21, \
73 					 NL80211_RRF_NO_IR)
74 
75 static const struct ieee80211_regdomain brcms_regdom_x2 = {
76 	.n_reg_rules = 6,
77 	.alpha2 = "X2",
78 	.reg_rules = {
79 		BRCM_2GHZ_2412_2462,
80 		BRCM_2GHZ_2467_2472,
81 		BRCM_5GHZ_5180_5240,
82 		BRCM_5GHZ_5260_5320,
83 		BRCM_5GHZ_5500_5700,
84 		BRCM_5GHZ_5745_5825,
85 	}
86 };
87 
88  /* locale per-channel tx power limits for MIMO frames
89   * maxpwr arrays are index by channel for 2.4 GHz limits, and
90   * by sub-band for 5 GHz limits using CHANNEL_POWER_IDX_5G(channel)
91   */
92 struct locale_mimo_info {
93 	/* tx 20 MHz power limits, qdBm units */
94 	s8 maxpwr20[BRCMS_MAXPWR_MIMO_TBL_SIZE];
95 	/* tx 40 MHz power limits, qdBm units */
96 	s8 maxpwr40[BRCMS_MAXPWR_MIMO_TBL_SIZE];
97 };
98 
99 /* Country names and abbreviations with locale defined from ISO 3166 */
100 struct country_info {
101 	const u8 locale_mimo_2G;	/* 2.4G mimo info */
102 	const u8 locale_mimo_5G;	/* 5G mimo info */
103 };
104 
105 struct brcms_regd {
106 	struct country_info country;
107 	const struct ieee80211_regdomain *regdomain;
108 };
109 
110 struct brcms_cm_info {
111 	struct brcms_pub *pub;
112 	struct brcms_c_info *wlc;
113 	const struct brcms_regd *world_regd;
114 };
115 
116 /*
117  * MIMO Locale Definitions - 2.4 GHz
118  */
119 static const struct locale_mimo_info locale_bn = {
120 	{QDB(13), QDB(13), QDB(13), QDB(13), QDB(13),
121 	 QDB(13), QDB(13), QDB(13), QDB(13), QDB(13),
122 	 QDB(13), QDB(13), QDB(13)},
123 	{0, 0, QDB(13), QDB(13), QDB(13),
124 	 QDB(13), QDB(13), QDB(13), QDB(13), QDB(13),
125 	 QDB(13), 0, 0},
126 };
127 
128 static const struct locale_mimo_info *g_mimo_2g_table[] = {
129 	&locale_bn
130 };
131 
132 /*
133  * MIMO Locale Definitions - 5 GHz
134  */
135 static const struct locale_mimo_info locale_11n = {
136 	{ /* 12.5 dBm */ 50, 50, 50, QDB(15), QDB(15)},
137 	{QDB(14), QDB(15), QDB(15), QDB(15), QDB(15)},
138 };
139 
140 static const struct locale_mimo_info *g_mimo_5g_table[] = {
141 	&locale_11n
142 };
143 
144 static const struct brcms_regd cntry_locales[] = {
145 	/* Worldwide RoW 2, must always be at index 0 */
146 	{
147 		.country = LOCALES(bn, 11n),
148 		.regdomain = &brcms_regdom_x2,
149 	},
150 };
151 
152 static const struct locale_mimo_info *brcms_c_get_mimo_2g(u8 locale_idx)
153 {
154 	if (locale_idx >= ARRAY_SIZE(g_mimo_2g_table))
155 		return NULL;
156 
157 	return g_mimo_2g_table[locale_idx];
158 }
159 
160 static const struct locale_mimo_info *brcms_c_get_mimo_5g(u8 locale_idx)
161 {
162 	if (locale_idx >= ARRAY_SIZE(g_mimo_5g_table))
163 		return NULL;
164 
165 	return g_mimo_5g_table[locale_idx];
166 }
167 
168 /*
169  * Indicates whether the country provided is valid to pass
170  * to cfg80211 or not.
171  *
172  * returns true if valid; false if not.
173  */
174 static bool brcms_c_country_valid(const char *ccode)
175 {
176 	/*
177 	 * only allow ascii alpha uppercase for the first 2
178 	 * chars.
179 	 */
180 	if (!((ccode[0] & 0x80) == 0 && ccode[0] >= 0x41 && ccode[0] <= 0x5A &&
181 	      (ccode[1] & 0x80) == 0 && ccode[1] >= 0x41 && ccode[1] <= 0x5A))
182 		return false;
183 
184 	/*
185 	 * do not match ISO 3166-1 user assigned country codes
186 	 * that may be in the driver table
187 	 */
188 	if (!strcmp("AA", ccode) ||        /* AA */
189 	    !strcmp("ZZ", ccode) ||        /* ZZ */
190 	    ccode[0] == 'X' ||             /* XA - XZ */
191 	    (ccode[0] == 'Q' &&            /* QM - QZ */
192 	     (ccode[1] >= 'M' && ccode[1] <= 'Z')))
193 		return false;
194 
195 	if (!strcmp("NA", ccode))
196 		return false;
197 
198 	return true;
199 }
200 
201 static const struct brcms_regd *brcms_world_regd(const char *regdom, int len)
202 {
203 	const struct brcms_regd *regd = NULL;
204 	int i;
205 
206 	for (i = 0; i < ARRAY_SIZE(cntry_locales); i++) {
207 		if (!strncmp(regdom, cntry_locales[i].regdomain->alpha2, len)) {
208 			regd = &cntry_locales[i];
209 			break;
210 		}
211 	}
212 
213 	return regd;
214 }
215 
216 static const struct brcms_regd *brcms_default_world_regd(void)
217 {
218 	return &cntry_locales[0];
219 }
220 
221 /* JP, J1 - J10 are Japan ccodes */
222 static bool brcms_c_japan_ccode(const char *ccode)
223 {
224 	return (ccode[0] == 'J' &&
225 		(ccode[1] == 'P' || (ccode[1] >= '1' && ccode[1] <= '9')));
226 }
227 
228 static void
229 brcms_c_channel_min_txpower_limits_with_local_constraint(
230 		struct brcms_cm_info *wlc_cm, struct txpwr_limits *txpwr,
231 		u8 local_constraint_qdbm)
232 {
233 	int j;
234 
235 	/* CCK Rates */
236 	for (j = 0; j < WL_TX_POWER_CCK_NUM; j++)
237 		txpwr->cck[j] = min(txpwr->cck[j], local_constraint_qdbm);
238 
239 	/* 20 MHz Legacy OFDM SISO */
240 	for (j = 0; j < WL_TX_POWER_OFDM_NUM; j++)
241 		txpwr->ofdm[j] = min(txpwr->ofdm[j], local_constraint_qdbm);
242 
243 	/* 20 MHz Legacy OFDM CDD */
244 	for (j = 0; j < BRCMS_NUM_RATES_OFDM; j++)
245 		txpwr->ofdm_cdd[j] =
246 		    min(txpwr->ofdm_cdd[j], local_constraint_qdbm);
247 
248 	/* 40 MHz Legacy OFDM SISO */
249 	for (j = 0; j < BRCMS_NUM_RATES_OFDM; j++)
250 		txpwr->ofdm_40_siso[j] =
251 		    min(txpwr->ofdm_40_siso[j], local_constraint_qdbm);
252 
253 	/* 40 MHz Legacy OFDM CDD */
254 	for (j = 0; j < BRCMS_NUM_RATES_OFDM; j++)
255 		txpwr->ofdm_40_cdd[j] =
256 		    min(txpwr->ofdm_40_cdd[j], local_constraint_qdbm);
257 
258 	/* 20MHz MCS 0-7 SISO */
259 	for (j = 0; j < BRCMS_NUM_RATES_MCS_1_STREAM; j++)
260 		txpwr->mcs_20_siso[j] =
261 		    min(txpwr->mcs_20_siso[j], local_constraint_qdbm);
262 
263 	/* 20MHz MCS 0-7 CDD */
264 	for (j = 0; j < BRCMS_NUM_RATES_MCS_1_STREAM; j++)
265 		txpwr->mcs_20_cdd[j] =
266 		    min(txpwr->mcs_20_cdd[j], local_constraint_qdbm);
267 
268 	/* 20MHz MCS 0-7 STBC */
269 	for (j = 0; j < BRCMS_NUM_RATES_MCS_1_STREAM; j++)
270 		txpwr->mcs_20_stbc[j] =
271 		    min(txpwr->mcs_20_stbc[j], local_constraint_qdbm);
272 
273 	/* 20MHz MCS 8-15 MIMO */
274 	for (j = 0; j < BRCMS_NUM_RATES_MCS_2_STREAM; j++)
275 		txpwr->mcs_20_mimo[j] =
276 		    min(txpwr->mcs_20_mimo[j], local_constraint_qdbm);
277 
278 	/* 40MHz MCS 0-7 SISO */
279 	for (j = 0; j < BRCMS_NUM_RATES_MCS_1_STREAM; j++)
280 		txpwr->mcs_40_siso[j] =
281 		    min(txpwr->mcs_40_siso[j], local_constraint_qdbm);
282 
283 	/* 40MHz MCS 0-7 CDD */
284 	for (j = 0; j < BRCMS_NUM_RATES_MCS_1_STREAM; j++)
285 		txpwr->mcs_40_cdd[j] =
286 		    min(txpwr->mcs_40_cdd[j], local_constraint_qdbm);
287 
288 	/* 40MHz MCS 0-7 STBC */
289 	for (j = 0; j < BRCMS_NUM_RATES_MCS_1_STREAM; j++)
290 		txpwr->mcs_40_stbc[j] =
291 		    min(txpwr->mcs_40_stbc[j], local_constraint_qdbm);
292 
293 	/* 40MHz MCS 8-15 MIMO */
294 	for (j = 0; j < BRCMS_NUM_RATES_MCS_2_STREAM; j++)
295 		txpwr->mcs_40_mimo[j] =
296 		    min(txpwr->mcs_40_mimo[j], local_constraint_qdbm);
297 
298 	/* 40MHz MCS 32 */
299 	txpwr->mcs32 = min(txpwr->mcs32, local_constraint_qdbm);
300 
301 }
302 
303 /*
304  * set the driver's current country and regulatory information
305  * using a country code as the source. Look up built in country
306  * information found with the country code.
307  */
308 static void
309 brcms_c_set_country(struct brcms_cm_info *wlc_cm,
310 		    const struct brcms_regd *regd)
311 {
312 	struct brcms_c_info *wlc = wlc_cm->wlc;
313 
314 	if ((wlc->pub->_n_enab & SUPPORT_11N) !=
315 	    wlc->protection->nmode_user)
316 		brcms_c_set_nmode(wlc);
317 
318 	brcms_c_stf_ss_update(wlc, wlc->bandstate[BAND_2G_INDEX]);
319 	brcms_c_stf_ss_update(wlc, wlc->bandstate[BAND_5G_INDEX]);
320 
321 	brcms_c_set_gmode(wlc, wlc->protection->gmode_user, false);
322 
323 	return;
324 }
325 
326 struct brcms_cm_info *brcms_c_channel_mgr_attach(struct brcms_c_info *wlc)
327 {
328 	struct brcms_cm_info *wlc_cm;
329 	struct brcms_pub *pub = wlc->pub;
330 	struct ssb_sprom *sprom = &wlc->hw->d11core->bus->sprom;
331 	const char *ccode = sprom->alpha2;
332 	int ccode_len = sizeof(sprom->alpha2);
333 
334 	wlc_cm = kzalloc(sizeof(struct brcms_cm_info), GFP_ATOMIC);
335 	if (wlc_cm == NULL)
336 		return NULL;
337 	wlc_cm->pub = pub;
338 	wlc_cm->wlc = wlc;
339 	wlc->cmi = wlc_cm;
340 
341 	/* store the country code for passing up as a regulatory hint */
342 	wlc_cm->world_regd = brcms_world_regd(ccode, ccode_len);
343 	if (brcms_c_country_valid(ccode))
344 		strncpy(wlc->pub->srom_ccode, ccode, ccode_len);
345 
346 	/*
347 	 * If no custom world domain is found in the SROM, use the
348 	 * default "X2" domain.
349 	 */
350 	if (!wlc_cm->world_regd) {
351 		wlc_cm->world_regd = brcms_default_world_regd();
352 		ccode = wlc_cm->world_regd->regdomain->alpha2;
353 		ccode_len = BRCM_CNTRY_BUF_SZ - 1;
354 	}
355 
356 	/* save default country for exiting 11d regulatory mode */
357 	strncpy(wlc->country_default, ccode, ccode_len);
358 
359 	/* initialize autocountry_default to driver default */
360 	strncpy(wlc->autocountry_default, ccode, ccode_len);
361 
362 	brcms_c_set_country(wlc_cm, wlc_cm->world_regd);
363 
364 	return wlc_cm;
365 }
366 
367 void brcms_c_channel_mgr_detach(struct brcms_cm_info *wlc_cm)
368 {
369 	kfree(wlc_cm);
370 }
371 
372 void
373 brcms_c_channel_set_chanspec(struct brcms_cm_info *wlc_cm, u16 chanspec,
374 			 u8 local_constraint_qdbm)
375 {
376 	struct brcms_c_info *wlc = wlc_cm->wlc;
377 	struct ieee80211_channel *ch = wlc->pub->ieee_hw->conf.chandef.chan;
378 	struct txpwr_limits txpwr;
379 
380 	brcms_c_channel_reg_limits(wlc_cm, chanspec, &txpwr);
381 
382 	brcms_c_channel_min_txpower_limits_with_local_constraint(
383 		wlc_cm, &txpwr, local_constraint_qdbm
384 	);
385 
386 	/* set or restore gmode as required by regulatory */
387 	if (ch->flags & IEEE80211_CHAN_NO_OFDM)
388 		brcms_c_set_gmode(wlc, GMODE_LEGACY_B, false);
389 	else
390 		brcms_c_set_gmode(wlc, wlc->protection->gmode_user, false);
391 
392 	brcms_b_set_chanspec(wlc->hw, chanspec,
393 			      !!(ch->flags & IEEE80211_CHAN_NO_IR),
394 			      &txpwr);
395 }
396 
397 void
398 brcms_c_channel_reg_limits(struct brcms_cm_info *wlc_cm, u16 chanspec,
399 		       struct txpwr_limits *txpwr)
400 {
401 	struct brcms_c_info *wlc = wlc_cm->wlc;
402 	struct ieee80211_channel *ch = wlc->pub->ieee_hw->conf.chandef.chan;
403 	uint i;
404 	uint chan;
405 	int maxpwr;
406 	int delta;
407 	const struct country_info *country;
408 	struct brcms_band *band;
409 	int conducted_max = BRCMS_TXPWR_MAX;
410 	const struct locale_mimo_info *li_mimo;
411 	int maxpwr20, maxpwr40;
412 	int maxpwr_idx;
413 	uint j;
414 
415 	memset(txpwr, 0, sizeof(struct txpwr_limits));
416 
417 	if (WARN_ON(!ch))
418 		return;
419 
420 	country = &wlc_cm->world_regd->country;
421 
422 	chan = CHSPEC_CHANNEL(chanspec);
423 	band = wlc->bandstate[chspec_bandunit(chanspec)];
424 	li_mimo = (band->bandtype == BRCM_BAND_5G) ?
425 	    brcms_c_get_mimo_5g(country->locale_mimo_5G) :
426 	    brcms_c_get_mimo_2g(country->locale_mimo_2G);
427 
428 	delta = band->antgain;
429 
430 	if (band->bandtype == BRCM_BAND_2G)
431 		conducted_max = QDB(22);
432 
433 	maxpwr = QDB(ch->max_power) - delta;
434 	maxpwr = max(maxpwr, 0);
435 	maxpwr = min(maxpwr, conducted_max);
436 
437 	/* CCK txpwr limits for 2.4G band */
438 	if (band->bandtype == BRCM_BAND_2G) {
439 		for (i = 0; i < BRCMS_NUM_RATES_CCK; i++)
440 			txpwr->cck[i] = (u8) maxpwr;
441 	}
442 
443 	for (i = 0; i < BRCMS_NUM_RATES_OFDM; i++) {
444 		txpwr->ofdm[i] = (u8) maxpwr;
445 
446 		/*
447 		 * OFDM 40 MHz SISO has the same power as the corresponding
448 		 * MCS0-7 rate unless overriden by the locale specific code.
449 		 * We set this value to 0 as a flag (presumably 0 dBm isn't
450 		 * a possibility) and then copy the MCS0-7 value to the 40 MHz
451 		 * value if it wasn't explicitly set.
452 		 */
453 		txpwr->ofdm_40_siso[i] = 0;
454 
455 		txpwr->ofdm_cdd[i] = (u8) maxpwr;
456 
457 		txpwr->ofdm_40_cdd[i] = 0;
458 	}
459 
460 	delta = 0;
461 	if (band->antgain > QDB(6))
462 		delta = band->antgain - QDB(6);	/* Excess over 6 dB */
463 
464 	if (band->bandtype == BRCM_BAND_2G)
465 		maxpwr_idx = (chan - 1);
466 	else
467 		maxpwr_idx = CHANNEL_POWER_IDX_5G(chan);
468 
469 	maxpwr20 = li_mimo->maxpwr20[maxpwr_idx];
470 	maxpwr40 = li_mimo->maxpwr40[maxpwr_idx];
471 
472 	maxpwr20 = maxpwr20 - delta;
473 	maxpwr20 = max(maxpwr20, 0);
474 	maxpwr40 = maxpwr40 - delta;
475 	maxpwr40 = max(maxpwr40, 0);
476 
477 	/* Fill in the MCS 0-7 (SISO) rates */
478 	for (i = 0; i < BRCMS_NUM_RATES_MCS_1_STREAM; i++) {
479 
480 		/*
481 		 * 20 MHz has the same power as the corresponding OFDM rate
482 		 * unless overriden by the locale specific code.
483 		 */
484 		txpwr->mcs_20_siso[i] = txpwr->ofdm[i];
485 		txpwr->mcs_40_siso[i] = 0;
486 	}
487 
488 	/* Fill in the MCS 0-7 CDD rates */
489 	for (i = 0; i < BRCMS_NUM_RATES_MCS_1_STREAM; i++) {
490 		txpwr->mcs_20_cdd[i] = (u8) maxpwr20;
491 		txpwr->mcs_40_cdd[i] = (u8) maxpwr40;
492 	}
493 
494 	/*
495 	 * These locales have SISO expressed in the
496 	 * table and override CDD later
497 	 */
498 	if (li_mimo == &locale_bn) {
499 		if (li_mimo == &locale_bn) {
500 			maxpwr20 = QDB(16);
501 			maxpwr40 = 0;
502 
503 			if (chan >= 3 && chan <= 11)
504 				maxpwr40 = QDB(16);
505 		}
506 
507 		for (i = 0; i < BRCMS_NUM_RATES_MCS_1_STREAM; i++) {
508 			txpwr->mcs_20_siso[i] = (u8) maxpwr20;
509 			txpwr->mcs_40_siso[i] = (u8) maxpwr40;
510 		}
511 	}
512 
513 	/* Fill in the MCS 0-7 STBC rates */
514 	for (i = 0; i < BRCMS_NUM_RATES_MCS_1_STREAM; i++) {
515 		txpwr->mcs_20_stbc[i] = 0;
516 		txpwr->mcs_40_stbc[i] = 0;
517 	}
518 
519 	/* Fill in the MCS 8-15 SDM rates */
520 	for (i = 0; i < BRCMS_NUM_RATES_MCS_2_STREAM; i++) {
521 		txpwr->mcs_20_mimo[i] = (u8) maxpwr20;
522 		txpwr->mcs_40_mimo[i] = (u8) maxpwr40;
523 	}
524 
525 	/* Fill in MCS32 */
526 	txpwr->mcs32 = (u8) maxpwr40;
527 
528 	for (i = 0, j = 0; i < BRCMS_NUM_RATES_OFDM; i++, j++) {
529 		if (txpwr->ofdm_40_cdd[i] == 0)
530 			txpwr->ofdm_40_cdd[i] = txpwr->mcs_40_cdd[j];
531 		if (i == 0) {
532 			i = i + 1;
533 			if (txpwr->ofdm_40_cdd[i] == 0)
534 				txpwr->ofdm_40_cdd[i] = txpwr->mcs_40_cdd[j];
535 		}
536 	}
537 
538 	/*
539 	 * Copy the 40 MHZ MCS 0-7 CDD value to the 40 MHZ MCS 0-7 SISO
540 	 * value if it wasn't provided explicitly.
541 	 */
542 	for (i = 0; i < BRCMS_NUM_RATES_MCS_1_STREAM; i++) {
543 		if (txpwr->mcs_40_siso[i] == 0)
544 			txpwr->mcs_40_siso[i] = txpwr->mcs_40_cdd[i];
545 	}
546 
547 	for (i = 0, j = 0; i < BRCMS_NUM_RATES_OFDM; i++, j++) {
548 		if (txpwr->ofdm_40_siso[i] == 0)
549 			txpwr->ofdm_40_siso[i] = txpwr->mcs_40_siso[j];
550 		if (i == 0) {
551 			i = i + 1;
552 			if (txpwr->ofdm_40_siso[i] == 0)
553 				txpwr->ofdm_40_siso[i] = txpwr->mcs_40_siso[j];
554 		}
555 	}
556 
557 	/*
558 	 * Copy the 20 and 40 MHz MCS0-7 CDD values to the corresponding
559 	 * STBC values if they weren't provided explicitly.
560 	 */
561 	for (i = 0; i < BRCMS_NUM_RATES_MCS_1_STREAM; i++) {
562 		if (txpwr->mcs_20_stbc[i] == 0)
563 			txpwr->mcs_20_stbc[i] = txpwr->mcs_20_cdd[i];
564 
565 		if (txpwr->mcs_40_stbc[i] == 0)
566 			txpwr->mcs_40_stbc[i] = txpwr->mcs_40_cdd[i];
567 	}
568 
569 	return;
570 }
571 
572 /*
573  * Verify the chanspec is using a legal set of parameters, i.e. that the
574  * chanspec specified a band, bw, ctl_sb and channel and that the
575  * combination could be legal given any set of circumstances.
576  * RETURNS: true is the chanspec is malformed, false if it looks good.
577  */
578 static bool brcms_c_chspec_malformed(u16 chanspec)
579 {
580 	/* must be 2G or 5G band */
581 	if (!CHSPEC_IS5G(chanspec) && !CHSPEC_IS2G(chanspec))
582 		return true;
583 	/* must be 20 or 40 bandwidth */
584 	if (!CHSPEC_IS40(chanspec) && !CHSPEC_IS20(chanspec))
585 		return true;
586 
587 	/* 20MHZ b/w must have no ctl sb, 40 must have a ctl sb */
588 	if (CHSPEC_IS20(chanspec)) {
589 		if (!CHSPEC_SB_NONE(chanspec))
590 			return true;
591 	} else if (!CHSPEC_SB_UPPER(chanspec) && !CHSPEC_SB_LOWER(chanspec)) {
592 		return true;
593 	}
594 
595 	return false;
596 }
597 
598 /*
599  * Validate the chanspec for this locale, for 40MHZ we need to also
600  * check that the sidebands are valid 20MZH channels in this locale
601  * and they are also a legal HT combination
602  */
603 static bool
604 brcms_c_valid_chanspec_ext(struct brcms_cm_info *wlc_cm, u16 chspec)
605 {
606 	struct brcms_c_info *wlc = wlc_cm->wlc;
607 	u8 channel = CHSPEC_CHANNEL(chspec);
608 
609 	/* check the chanspec */
610 	if (brcms_c_chspec_malformed(chspec)) {
611 		brcms_err(wlc->hw->d11core, "wl%d: malformed chanspec 0x%x\n",
612 			  wlc->pub->unit, chspec);
613 		return false;
614 	}
615 
616 	if (CHANNEL_BANDUNIT(wlc_cm->wlc, channel) !=
617 	    chspec_bandunit(chspec))
618 		return false;
619 
620 	return true;
621 }
622 
623 bool brcms_c_valid_chanspec_db(struct brcms_cm_info *wlc_cm, u16 chspec)
624 {
625 	return brcms_c_valid_chanspec_ext(wlc_cm, chspec);
626 }
627 
628 static bool brcms_is_radar_freq(u16 center_freq)
629 {
630 	return center_freq >= 5260 && center_freq <= 5700;
631 }
632 
633 static void brcms_reg_apply_radar_flags(struct wiphy *wiphy)
634 {
635 	struct ieee80211_supported_band *sband;
636 	struct ieee80211_channel *ch;
637 	int i;
638 
639 	sband = wiphy->bands[NL80211_BAND_5GHZ];
640 	if (!sband)
641 		return;
642 
643 	for (i = 0; i < sband->n_channels; i++) {
644 		ch = &sband->channels[i];
645 
646 		if (!brcms_is_radar_freq(ch->center_freq))
647 			continue;
648 
649 		/*
650 		 * All channels in this range should be passive and have
651 		 * DFS enabled.
652 		 */
653 		if (!(ch->flags & IEEE80211_CHAN_DISABLED))
654 			ch->flags |= IEEE80211_CHAN_RADAR |
655 				     IEEE80211_CHAN_NO_IR;
656 	}
657 }
658 
659 static void
660 brcms_reg_apply_beaconing_flags(struct wiphy *wiphy,
661 				enum nl80211_reg_initiator initiator)
662 {
663 	struct ieee80211_supported_band *sband;
664 	struct ieee80211_channel *ch;
665 	const struct ieee80211_reg_rule *rule;
666 	int band, i;
667 
668 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
669 		sband = wiphy->bands[band];
670 		if (!sband)
671 			continue;
672 
673 		for (i = 0; i < sband->n_channels; i++) {
674 			ch = &sband->channels[i];
675 
676 			if (ch->flags &
677 			    (IEEE80211_CHAN_DISABLED | IEEE80211_CHAN_RADAR))
678 				continue;
679 
680 			if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
681 				rule = freq_reg_info(wiphy,
682 						     MHZ_TO_KHZ(ch->center_freq));
683 				if (IS_ERR(rule))
684 					continue;
685 
686 				if (!(rule->flags & NL80211_RRF_NO_IR))
687 					ch->flags &= ~IEEE80211_CHAN_NO_IR;
688 			} else if (ch->beacon_found) {
689 				ch->flags &= ~IEEE80211_CHAN_NO_IR;
690 			}
691 		}
692 	}
693 }
694 
695 static void brcms_reg_notifier(struct wiphy *wiphy,
696 			       struct regulatory_request *request)
697 {
698 	struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
699 	struct brcms_info *wl = hw->priv;
700 	struct brcms_c_info *wlc = wl->wlc;
701 	struct ieee80211_supported_band *sband;
702 	struct ieee80211_channel *ch;
703 	int band, i;
704 	bool ch_found = false;
705 
706 	brcms_reg_apply_radar_flags(wiphy);
707 
708 	if (request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
709 		brcms_reg_apply_beaconing_flags(wiphy, request->initiator);
710 
711 	/* Disable radio if all channels disallowed by regulatory */
712 	for (band = 0; !ch_found && band < NUM_NL80211_BANDS; band++) {
713 		sband = wiphy->bands[band];
714 		if (!sband)
715 			continue;
716 
717 		for (i = 0; !ch_found && i < sband->n_channels; i++) {
718 			ch = &sband->channels[i];
719 
720 			if (!(ch->flags & IEEE80211_CHAN_DISABLED))
721 				ch_found = true;
722 		}
723 	}
724 
725 	if (ch_found) {
726 		mboolclr(wlc->pub->radio_disabled, WL_RADIO_COUNTRY_DISABLE);
727 	} else {
728 		mboolset(wlc->pub->radio_disabled, WL_RADIO_COUNTRY_DISABLE);
729 		brcms_err(wlc->hw->d11core,
730 			  "wl%d: %s: no valid channel for \"%s\"\n",
731 			  wlc->pub->unit, __func__, request->alpha2);
732 	}
733 
734 	if (wlc->pub->_nbands > 1 || wlc->band->bandtype == BRCM_BAND_2G)
735 		wlc_phy_chanspec_ch14_widefilter_set(wlc->band->pi,
736 					brcms_c_japan_ccode(request->alpha2));
737 }
738 
739 void brcms_c_regd_init(struct brcms_c_info *wlc)
740 {
741 	struct wiphy *wiphy = wlc->wiphy;
742 	const struct brcms_regd *regd = wlc->cmi->world_regd;
743 	struct ieee80211_supported_band *sband;
744 	struct ieee80211_channel *ch;
745 	struct brcms_chanvec sup_chan;
746 	struct brcms_band *band;
747 	int band_idx, i;
748 
749 	/* Disable any channels not supported by the phy */
750 	for (band_idx = 0; band_idx < wlc->pub->_nbands; band_idx++) {
751 		band = wlc->bandstate[band_idx];
752 
753 		wlc_phy_chanspec_band_validch(band->pi, band->bandtype,
754 					      &sup_chan);
755 
756 		if (band_idx == BAND_2G_INDEX)
757 			sband = wiphy->bands[NL80211_BAND_2GHZ];
758 		else
759 			sband = wiphy->bands[NL80211_BAND_5GHZ];
760 
761 		for (i = 0; i < sband->n_channels; i++) {
762 			ch = &sband->channels[i];
763 			if (!isset(sup_chan.vec, ch->hw_value))
764 				ch->flags |= IEEE80211_CHAN_DISABLED;
765 		}
766 	}
767 
768 	wlc->wiphy->reg_notifier = brcms_reg_notifier;
769 	wlc->wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG |
770 					REGULATORY_STRICT_REG;
771 	wiphy_apply_custom_regulatory(wlc->wiphy, regd->regdomain);
772 	brcms_reg_apply_beaconing_flags(wiphy, NL80211_REGDOM_SET_BY_DRIVER);
773 }
774