xref: /linux/drivers/net/wireless/marvell/mwifiex/wmm.c (revision 2da68a77)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * NXP Wireless LAN device driver: WMM
4  *
5  * Copyright 2011-2020 NXP
6  */
7 
8 #include "decl.h"
9 #include "ioctl.h"
10 #include "util.h"
11 #include "fw.h"
12 #include "main.h"
13 #include "wmm.h"
14 #include "11n.h"
15 
16 
17 /* Maximum value FW can accept for driver delay in packet transmission */
18 #define DRV_PKT_DELAY_TO_FW_MAX   512
19 
20 
21 #define WMM_QUEUED_PACKET_LOWER_LIMIT   180
22 
23 #define WMM_QUEUED_PACKET_UPPER_LIMIT   200
24 
25 /* Offset for TOS field in the IP header */
26 #define IPTOS_OFFSET 5
27 
28 static bool disable_tx_amsdu;
29 module_param(disable_tx_amsdu, bool, 0644);
30 
31 /* This table inverses the tos_to_tid operation to get a priority
32  * which is in sequential order, and can be compared.
33  * Use this to compare the priority of two different TIDs.
34  */
35 const u8 tos_to_tid_inv[] = {
36 	0x02,  /* from tos_to_tid[2] = 0 */
37 	0x00,  /* from tos_to_tid[0] = 1 */
38 	0x01,  /* from tos_to_tid[1] = 2 */
39 	0x03,
40 	0x04,
41 	0x05,
42 	0x06,
43 	0x07
44 };
45 
46 /* WMM information IE */
47 static const u8 wmm_info_ie[] = { WLAN_EID_VENDOR_SPECIFIC, 0x07,
48 	0x00, 0x50, 0xf2, 0x02,
49 	0x00, 0x01, 0x00
50 };
51 
52 static const u8 wmm_aci_to_qidx_map[] = { WMM_AC_BE,
53 	WMM_AC_BK,
54 	WMM_AC_VI,
55 	WMM_AC_VO
56 };
57 
58 static u8 tos_to_tid[] = {
59 	/* TID DSCP_P2 DSCP_P1 DSCP_P0 WMM_AC */
60 	0x01,			/* 0 1 0 AC_BK */
61 	0x02,			/* 0 0 0 AC_BK */
62 	0x00,			/* 0 0 1 AC_BE */
63 	0x03,			/* 0 1 1 AC_BE */
64 	0x04,			/* 1 0 0 AC_VI */
65 	0x05,			/* 1 0 1 AC_VI */
66 	0x06,			/* 1 1 0 AC_VO */
67 	0x07			/* 1 1 1 AC_VO */
68 };
69 
70 static u8 ac_to_tid[4][2] = { {1, 2}, {0, 3}, {4, 5}, {6, 7} };
71 
72 /*
73  * This function debug prints the priority parameters for a WMM AC.
74  */
75 static void
76 mwifiex_wmm_ac_debug_print(const struct ieee_types_wmm_ac_parameters *ac_param)
77 {
78 	const char *ac_str[] = { "BK", "BE", "VI", "VO" };
79 
80 	pr_debug("info: WMM AC_%s: ACI=%d, ACM=%d, Aifsn=%d, "
81 		 "EcwMin=%d, EcwMax=%d, TxopLimit=%d\n",
82 		 ac_str[wmm_aci_to_qidx_map[(ac_param->aci_aifsn_bitmap
83 					     & MWIFIEX_ACI) >> 5]],
84 		 (ac_param->aci_aifsn_bitmap & MWIFIEX_ACI) >> 5,
85 		 (ac_param->aci_aifsn_bitmap & MWIFIEX_ACM) >> 4,
86 		 ac_param->aci_aifsn_bitmap & MWIFIEX_AIFSN,
87 		 ac_param->ecw_bitmap & MWIFIEX_ECW_MIN,
88 		 (ac_param->ecw_bitmap & MWIFIEX_ECW_MAX) >> 4,
89 		 le16_to_cpu(ac_param->tx_op_limit));
90 }
91 
92 /*
93  * This function allocates a route address list.
94  *
95  * The function also initializes the list with the provided RA.
96  */
97 static struct mwifiex_ra_list_tbl *
98 mwifiex_wmm_allocate_ralist_node(struct mwifiex_adapter *adapter, const u8 *ra)
99 {
100 	struct mwifiex_ra_list_tbl *ra_list;
101 
102 	ra_list = kzalloc(sizeof(struct mwifiex_ra_list_tbl), GFP_ATOMIC);
103 	if (!ra_list)
104 		return NULL;
105 
106 	INIT_LIST_HEAD(&ra_list->list);
107 	skb_queue_head_init(&ra_list->skb_head);
108 
109 	memcpy(ra_list->ra, ra, ETH_ALEN);
110 
111 	ra_list->total_pkt_count = 0;
112 
113 	mwifiex_dbg(adapter, INFO, "info: allocated ra_list %p\n", ra_list);
114 
115 	return ra_list;
116 }
117 
118 /* This function returns random no between 16 and 32 to be used as threshold
119  * for no of packets after which BA setup is initiated.
120  */
121 static u8 mwifiex_get_random_ba_threshold(void)
122 {
123 	u64 ns;
124 	/* setup ba_packet_threshold here random number between
125 	 * [BA_SETUP_PACKET_OFFSET,
126 	 * BA_SETUP_PACKET_OFFSET+BA_SETUP_MAX_PACKET_THRESHOLD-1]
127 	 */
128 	ns = ktime_get_ns();
129 	ns += (ns >> 32) + (ns >> 16);
130 
131 	return ((u8)ns % BA_SETUP_MAX_PACKET_THRESHOLD) + BA_SETUP_PACKET_OFFSET;
132 }
133 
134 /*
135  * This function allocates and adds a RA list for all TIDs
136  * with the given RA.
137  */
138 void mwifiex_ralist_add(struct mwifiex_private *priv, const u8 *ra)
139 {
140 	int i;
141 	struct mwifiex_ra_list_tbl *ra_list;
142 	struct mwifiex_adapter *adapter = priv->adapter;
143 	struct mwifiex_sta_node *node;
144 
145 
146 	for (i = 0; i < MAX_NUM_TID; ++i) {
147 		ra_list = mwifiex_wmm_allocate_ralist_node(adapter, ra);
148 		mwifiex_dbg(adapter, INFO,
149 			    "info: created ra_list %p\n", ra_list);
150 
151 		if (!ra_list)
152 			break;
153 
154 		ra_list->is_11n_enabled = 0;
155 		ra_list->tdls_link = false;
156 		ra_list->ba_status = BA_SETUP_NONE;
157 		ra_list->amsdu_in_ampdu = false;
158 		if (!mwifiex_queuing_ra_based(priv)) {
159 			if (mwifiex_is_tdls_link_setup
160 				(mwifiex_get_tdls_link_status(priv, ra))) {
161 				ra_list->tdls_link = true;
162 				ra_list->is_11n_enabled =
163 					mwifiex_tdls_peer_11n_enabled(priv, ra);
164 			} else {
165 				ra_list->is_11n_enabled = IS_11N_ENABLED(priv);
166 			}
167 		} else {
168 			spin_lock_bh(&priv->sta_list_spinlock);
169 			node = mwifiex_get_sta_entry(priv, ra);
170 			if (node)
171 				ra_list->tx_paused = node->tx_pause;
172 			ra_list->is_11n_enabled =
173 				      mwifiex_is_sta_11n_enabled(priv, node);
174 			if (ra_list->is_11n_enabled)
175 				ra_list->max_amsdu = node->max_amsdu;
176 			spin_unlock_bh(&priv->sta_list_spinlock);
177 		}
178 
179 		mwifiex_dbg(adapter, DATA, "data: ralist %p: is_11n_enabled=%d\n",
180 			    ra_list, ra_list->is_11n_enabled);
181 
182 		if (ra_list->is_11n_enabled) {
183 			ra_list->ba_pkt_count = 0;
184 			ra_list->ba_packet_thr =
185 					      mwifiex_get_random_ba_threshold();
186 		}
187 		list_add_tail(&ra_list->list,
188 			      &priv->wmm.tid_tbl_ptr[i].ra_list);
189 	}
190 }
191 
192 /*
193  * This function sets the WMM queue priorities to their default values.
194  */
195 static void mwifiex_wmm_default_queue_priorities(struct mwifiex_private *priv)
196 {
197 	/* Default queue priorities: VO->VI->BE->BK */
198 	priv->wmm.queue_priority[0] = WMM_AC_VO;
199 	priv->wmm.queue_priority[1] = WMM_AC_VI;
200 	priv->wmm.queue_priority[2] = WMM_AC_BE;
201 	priv->wmm.queue_priority[3] = WMM_AC_BK;
202 }
203 
204 /*
205  * This function map ACs to TIDs.
206  */
207 static void
208 mwifiex_wmm_queue_priorities_tid(struct mwifiex_private *priv)
209 {
210 	struct mwifiex_wmm_desc *wmm = &priv->wmm;
211 	u8 *queue_priority = wmm->queue_priority;
212 	int i;
213 
214 	for (i = 0; i < 4; ++i) {
215 		tos_to_tid[7 - (i * 2)] = ac_to_tid[queue_priority[i]][1];
216 		tos_to_tid[6 - (i * 2)] = ac_to_tid[queue_priority[i]][0];
217 	}
218 
219 	for (i = 0; i < MAX_NUM_TID; ++i)
220 		priv->tos_to_tid_inv[tos_to_tid[i]] = (u8)i;
221 
222 	atomic_set(&wmm->highest_queued_prio, HIGH_PRIO_TID);
223 }
224 
225 /*
226  * This function initializes WMM priority queues.
227  */
228 void
229 mwifiex_wmm_setup_queue_priorities(struct mwifiex_private *priv,
230 				   struct ieee_types_wmm_parameter *wmm_ie)
231 {
232 	u16 cw_min, avg_back_off, tmp[4];
233 	u32 i, j, num_ac;
234 	u8 ac_idx;
235 
236 	if (!wmm_ie || !priv->wmm_enabled) {
237 		/* WMM is not enabled, just set the defaults and return */
238 		mwifiex_wmm_default_queue_priorities(priv);
239 		return;
240 	}
241 
242 	mwifiex_dbg(priv->adapter, INFO,
243 		    "info: WMM Parameter IE: version=%d,\t"
244 		    "qos_info Parameter Set Count=%d, Reserved=%#x\n",
245 		    wmm_ie->version, wmm_ie->qos_info_bitmap &
246 		    IEEE80211_WMM_IE_AP_QOSINFO_PARAM_SET_CNT_MASK,
247 		    wmm_ie->reserved);
248 
249 	for (num_ac = 0; num_ac < ARRAY_SIZE(wmm_ie->ac_params); num_ac++) {
250 		u8 ecw = wmm_ie->ac_params[num_ac].ecw_bitmap;
251 		u8 aci_aifsn = wmm_ie->ac_params[num_ac].aci_aifsn_bitmap;
252 		cw_min = (1 << (ecw & MWIFIEX_ECW_MIN)) - 1;
253 		avg_back_off = (cw_min >> 1) + (aci_aifsn & MWIFIEX_AIFSN);
254 
255 		ac_idx = wmm_aci_to_qidx_map[(aci_aifsn & MWIFIEX_ACI) >> 5];
256 		priv->wmm.queue_priority[ac_idx] = ac_idx;
257 		tmp[ac_idx] = avg_back_off;
258 
259 		mwifiex_dbg(priv->adapter, INFO,
260 			    "info: WMM: CWmax=%d CWmin=%d Avg Back-off=%d\n",
261 			    (1 << ((ecw & MWIFIEX_ECW_MAX) >> 4)) - 1,
262 			    cw_min, avg_back_off);
263 		mwifiex_wmm_ac_debug_print(&wmm_ie->ac_params[num_ac]);
264 	}
265 
266 	/* Bubble sort */
267 	for (i = 0; i < num_ac; i++) {
268 		for (j = 1; j < num_ac - i; j++) {
269 			if (tmp[j - 1] > tmp[j]) {
270 				swap(tmp[j - 1], tmp[j]);
271 				swap(priv->wmm.queue_priority[j - 1],
272 				     priv->wmm.queue_priority[j]);
273 			} else if (tmp[j - 1] == tmp[j]) {
274 				if (priv->wmm.queue_priority[j - 1]
275 				    < priv->wmm.queue_priority[j])
276 					swap(priv->wmm.queue_priority[j - 1],
277 					     priv->wmm.queue_priority[j]);
278 			}
279 		}
280 	}
281 
282 	mwifiex_wmm_queue_priorities_tid(priv);
283 }
284 
285 /*
286  * This function evaluates whether or not an AC is to be downgraded.
287  *
288  * In case the AC is not enabled, the highest AC is returned that is
289  * enabled and does not require admission control.
290  */
291 static enum mwifiex_wmm_ac_e
292 mwifiex_wmm_eval_downgrade_ac(struct mwifiex_private *priv,
293 			      enum mwifiex_wmm_ac_e eval_ac)
294 {
295 	int down_ac;
296 	enum mwifiex_wmm_ac_e ret_ac;
297 	struct mwifiex_wmm_ac_status *ac_status;
298 
299 	ac_status = &priv->wmm.ac_status[eval_ac];
300 
301 	if (!ac_status->disabled)
302 		/* Okay to use this AC, its enabled */
303 		return eval_ac;
304 
305 	/* Setup a default return value of the lowest priority */
306 	ret_ac = WMM_AC_BK;
307 
308 	/*
309 	 *  Find the highest AC that is enabled and does not require
310 	 *  admission control. The spec disallows downgrading to an AC,
311 	 *  which is enabled due to a completed admission control.
312 	 *  Unadmitted traffic is not to be sent on an AC with admitted
313 	 *  traffic.
314 	 */
315 	for (down_ac = WMM_AC_BK; down_ac < eval_ac; down_ac++) {
316 		ac_status = &priv->wmm.ac_status[down_ac];
317 
318 		if (!ac_status->disabled && !ac_status->flow_required)
319 			/* AC is enabled and does not require admission
320 			   control */
321 			ret_ac = (enum mwifiex_wmm_ac_e) down_ac;
322 	}
323 
324 	return ret_ac;
325 }
326 
327 /*
328  * This function downgrades WMM priority queue.
329  */
330 void
331 mwifiex_wmm_setup_ac_downgrade(struct mwifiex_private *priv)
332 {
333 	int ac_val;
334 
335 	mwifiex_dbg(priv->adapter, INFO, "info: WMM: AC Priorities:\t"
336 		    "BK(0), BE(1), VI(2), VO(3)\n");
337 
338 	if (!priv->wmm_enabled) {
339 		/* WMM is not enabled, default priorities */
340 		for (ac_val = WMM_AC_BK; ac_val <= WMM_AC_VO; ac_val++)
341 			priv->wmm.ac_down_graded_vals[ac_val] =
342 						(enum mwifiex_wmm_ac_e) ac_val;
343 	} else {
344 		for (ac_val = WMM_AC_BK; ac_val <= WMM_AC_VO; ac_val++) {
345 			priv->wmm.ac_down_graded_vals[ac_val]
346 				= mwifiex_wmm_eval_downgrade_ac(priv,
347 						(enum mwifiex_wmm_ac_e) ac_val);
348 			mwifiex_dbg(priv->adapter, INFO,
349 				    "info: WMM: AC PRIO %d maps to %d\n",
350 				    ac_val,
351 				    priv->wmm.ac_down_graded_vals[ac_val]);
352 		}
353 	}
354 }
355 
356 /*
357  * This function converts the IP TOS field to an WMM AC
358  * Queue assignment.
359  */
360 static enum mwifiex_wmm_ac_e
361 mwifiex_wmm_convert_tos_to_ac(struct mwifiex_adapter *adapter, u32 tos)
362 {
363 	/* Map of TOS UP values to WMM AC */
364 	static const enum mwifiex_wmm_ac_e tos_to_ac[] = {
365 		WMM_AC_BE,
366 		WMM_AC_BK,
367 		WMM_AC_BK,
368 		WMM_AC_BE,
369 		WMM_AC_VI,
370 		WMM_AC_VI,
371 		WMM_AC_VO,
372 		WMM_AC_VO
373 	};
374 
375 	if (tos >= ARRAY_SIZE(tos_to_ac))
376 		return WMM_AC_BE;
377 
378 	return tos_to_ac[tos];
379 }
380 
381 /*
382  * This function evaluates a given TID and downgrades it to a lower
383  * TID if the WMM Parameter IE received from the AP indicates that the
384  * AP is disabled (due to call admission control (ACM bit). Mapping
385  * of TID to AC is taken care of internally.
386  */
387 u8 mwifiex_wmm_downgrade_tid(struct mwifiex_private *priv, u32 tid)
388 {
389 	enum mwifiex_wmm_ac_e ac, ac_down;
390 	u8 new_tid;
391 
392 	ac = mwifiex_wmm_convert_tos_to_ac(priv->adapter, tid);
393 	ac_down = priv->wmm.ac_down_graded_vals[ac];
394 
395 	/* Send the index to tid array, picking from the array will be
396 	 * taken care by dequeuing function
397 	 */
398 	new_tid = ac_to_tid[ac_down][tid % 2];
399 
400 	return new_tid;
401 }
402 
403 /*
404  * This function initializes the WMM state information and the
405  * WMM data path queues.
406  */
407 void
408 mwifiex_wmm_init(struct mwifiex_adapter *adapter)
409 {
410 	int i, j;
411 	struct mwifiex_private *priv;
412 
413 	for (j = 0; j < adapter->priv_num; ++j) {
414 		priv = adapter->priv[j];
415 		if (!priv)
416 			continue;
417 
418 		for (i = 0; i < MAX_NUM_TID; ++i) {
419 			if (!disable_tx_amsdu &&
420 			    adapter->tx_buf_size > MWIFIEX_TX_DATA_BUF_SIZE_2K)
421 				priv->aggr_prio_tbl[i].amsdu =
422 							priv->tos_to_tid_inv[i];
423 			else
424 				priv->aggr_prio_tbl[i].amsdu =
425 							BA_STREAM_NOT_ALLOWED;
426 			priv->aggr_prio_tbl[i].ampdu_ap =
427 							priv->tos_to_tid_inv[i];
428 			priv->aggr_prio_tbl[i].ampdu_user =
429 							priv->tos_to_tid_inv[i];
430 		}
431 
432 		priv->aggr_prio_tbl[6].amsdu
433 					= priv->aggr_prio_tbl[6].ampdu_ap
434 					= priv->aggr_prio_tbl[6].ampdu_user
435 					= BA_STREAM_NOT_ALLOWED;
436 
437 		priv->aggr_prio_tbl[7].amsdu = priv->aggr_prio_tbl[7].ampdu_ap
438 					= priv->aggr_prio_tbl[7].ampdu_user
439 					= BA_STREAM_NOT_ALLOWED;
440 
441 		mwifiex_set_ba_params(priv);
442 		mwifiex_reset_11n_rx_seq_num(priv);
443 
444 		priv->wmm.drv_pkt_delay_max = MWIFIEX_WMM_DRV_DELAY_MAX;
445 		atomic_set(&priv->wmm.tx_pkts_queued, 0);
446 		atomic_set(&priv->wmm.highest_queued_prio, HIGH_PRIO_TID);
447 	}
448 }
449 
450 int mwifiex_bypass_txlist_empty(struct mwifiex_adapter *adapter)
451 {
452 	struct mwifiex_private *priv;
453 	int i;
454 
455 	for (i = 0; i < adapter->priv_num; i++) {
456 		priv = adapter->priv[i];
457 		if (!priv)
458 			continue;
459 		if (adapter->if_ops.is_port_ready &&
460 		    !adapter->if_ops.is_port_ready(priv))
461 			continue;
462 		if (!skb_queue_empty(&priv->bypass_txq))
463 			return false;
464 	}
465 
466 	return true;
467 }
468 
469 /*
470  * This function checks if WMM Tx queue is empty.
471  */
472 int
473 mwifiex_wmm_lists_empty(struct mwifiex_adapter *adapter)
474 {
475 	int i;
476 	struct mwifiex_private *priv;
477 
478 	for (i = 0; i < adapter->priv_num; ++i) {
479 		priv = adapter->priv[i];
480 		if (!priv)
481 			continue;
482 		if (!priv->port_open &&
483 		    (priv->bss_mode != NL80211_IFTYPE_ADHOC))
484 			continue;
485 		if (adapter->if_ops.is_port_ready &&
486 		    !adapter->if_ops.is_port_ready(priv))
487 			continue;
488 		if (atomic_read(&priv->wmm.tx_pkts_queued))
489 			return false;
490 	}
491 
492 	return true;
493 }
494 
495 /*
496  * This function deletes all packets in an RA list node.
497  *
498  * The packet sent completion callback handler are called with
499  * status failure, after they are dequeued to ensure proper
500  * cleanup. The RA list node itself is freed at the end.
501  */
502 static void
503 mwifiex_wmm_del_pkts_in_ralist_node(struct mwifiex_private *priv,
504 				    struct mwifiex_ra_list_tbl *ra_list)
505 {
506 	struct mwifiex_adapter *adapter = priv->adapter;
507 	struct sk_buff *skb, *tmp;
508 
509 	skb_queue_walk_safe(&ra_list->skb_head, skb, tmp) {
510 		skb_unlink(skb, &ra_list->skb_head);
511 		mwifiex_write_data_complete(adapter, skb, 0, -1);
512 	}
513 }
514 
515 /*
516  * This function deletes all packets in an RA list.
517  *
518  * Each nodes in the RA list are freed individually first, and then
519  * the RA list itself is freed.
520  */
521 static void
522 mwifiex_wmm_del_pkts_in_ralist(struct mwifiex_private *priv,
523 			       struct list_head *ra_list_head)
524 {
525 	struct mwifiex_ra_list_tbl *ra_list;
526 
527 	list_for_each_entry(ra_list, ra_list_head, list)
528 		mwifiex_wmm_del_pkts_in_ralist_node(priv, ra_list);
529 }
530 
531 /*
532  * This function deletes all packets in all RA lists.
533  */
534 static void mwifiex_wmm_cleanup_queues(struct mwifiex_private *priv)
535 {
536 	int i;
537 
538 	for (i = 0; i < MAX_NUM_TID; i++)
539 		mwifiex_wmm_del_pkts_in_ralist(priv, &priv->wmm.tid_tbl_ptr[i].
540 								       ra_list);
541 
542 	atomic_set(&priv->wmm.tx_pkts_queued, 0);
543 	atomic_set(&priv->wmm.highest_queued_prio, HIGH_PRIO_TID);
544 }
545 
546 /*
547  * This function deletes all route addresses from all RA lists.
548  */
549 static void mwifiex_wmm_delete_all_ralist(struct mwifiex_private *priv)
550 {
551 	struct mwifiex_ra_list_tbl *ra_list, *tmp_node;
552 	int i;
553 
554 	for (i = 0; i < MAX_NUM_TID; ++i) {
555 		mwifiex_dbg(priv->adapter, INFO,
556 			    "info: ra_list: freeing buf for tid %d\n", i);
557 		list_for_each_entry_safe(ra_list, tmp_node,
558 					 &priv->wmm.tid_tbl_ptr[i].ra_list,
559 					 list) {
560 			list_del(&ra_list->list);
561 			kfree(ra_list);
562 		}
563 
564 		INIT_LIST_HEAD(&priv->wmm.tid_tbl_ptr[i].ra_list);
565 	}
566 }
567 
568 static int mwifiex_free_ack_frame(int id, void *p, void *data)
569 {
570 	pr_warn("Have pending ack frames!\n");
571 	kfree_skb(p);
572 	return 0;
573 }
574 
575 /*
576  * This function cleans up the Tx and Rx queues.
577  *
578  * Cleanup includes -
579  *      - All packets in RA lists
580  *      - All entries in Rx reorder table
581  *      - All entries in Tx BA stream table
582  *      - MPA buffer (if required)
583  *      - All RA lists
584  */
585 void
586 mwifiex_clean_txrx(struct mwifiex_private *priv)
587 {
588 	struct sk_buff *skb, *tmp;
589 
590 	mwifiex_11n_cleanup_reorder_tbl(priv);
591 	spin_lock_bh(&priv->wmm.ra_list_spinlock);
592 
593 	mwifiex_wmm_cleanup_queues(priv);
594 	mwifiex_11n_delete_all_tx_ba_stream_tbl(priv);
595 
596 	if (priv->adapter->if_ops.cleanup_mpa_buf)
597 		priv->adapter->if_ops.cleanup_mpa_buf(priv->adapter);
598 
599 	mwifiex_wmm_delete_all_ralist(priv);
600 	memcpy(tos_to_tid, ac_to_tid, sizeof(tos_to_tid));
601 
602 	if (priv->adapter->if_ops.clean_pcie_ring &&
603 	    !test_bit(MWIFIEX_SURPRISE_REMOVED, &priv->adapter->work_flags))
604 		priv->adapter->if_ops.clean_pcie_ring(priv->adapter);
605 	spin_unlock_bh(&priv->wmm.ra_list_spinlock);
606 
607 	skb_queue_walk_safe(&priv->tdls_txq, skb, tmp) {
608 		skb_unlink(skb, &priv->tdls_txq);
609 		mwifiex_write_data_complete(priv->adapter, skb, 0, -1);
610 	}
611 
612 	skb_queue_walk_safe(&priv->bypass_txq, skb, tmp) {
613 		skb_unlink(skb, &priv->bypass_txq);
614 		mwifiex_write_data_complete(priv->adapter, skb, 0, -1);
615 	}
616 	atomic_set(&priv->adapter->bypass_tx_pending, 0);
617 
618 	idr_for_each(&priv->ack_status_frames, mwifiex_free_ack_frame, NULL);
619 	idr_destroy(&priv->ack_status_frames);
620 }
621 
622 /*
623  * This function retrieves a particular RA list node, matching with the
624  * given TID and RA address.
625  */
626 struct mwifiex_ra_list_tbl *
627 mwifiex_wmm_get_ralist_node(struct mwifiex_private *priv, u8 tid,
628 			    const u8 *ra_addr)
629 {
630 	struct mwifiex_ra_list_tbl *ra_list;
631 
632 	list_for_each_entry(ra_list, &priv->wmm.tid_tbl_ptr[tid].ra_list,
633 			    list) {
634 		if (!memcmp(ra_list->ra, ra_addr, ETH_ALEN))
635 			return ra_list;
636 	}
637 
638 	return NULL;
639 }
640 
641 void mwifiex_update_ralist_tx_pause(struct mwifiex_private *priv, u8 *mac,
642 				    u8 tx_pause)
643 {
644 	struct mwifiex_ra_list_tbl *ra_list;
645 	u32 pkt_cnt = 0, tx_pkts_queued;
646 	int i;
647 
648 	spin_lock_bh(&priv->wmm.ra_list_spinlock);
649 
650 	for (i = 0; i < MAX_NUM_TID; ++i) {
651 		ra_list = mwifiex_wmm_get_ralist_node(priv, i, mac);
652 		if (ra_list && ra_list->tx_paused != tx_pause) {
653 			pkt_cnt += ra_list->total_pkt_count;
654 			ra_list->tx_paused = tx_pause;
655 			if (tx_pause)
656 				priv->wmm.pkts_paused[i] +=
657 					ra_list->total_pkt_count;
658 			else
659 				priv->wmm.pkts_paused[i] -=
660 					ra_list->total_pkt_count;
661 		}
662 	}
663 
664 	if (pkt_cnt) {
665 		tx_pkts_queued = atomic_read(&priv->wmm.tx_pkts_queued);
666 		if (tx_pause)
667 			tx_pkts_queued -= pkt_cnt;
668 		else
669 			tx_pkts_queued += pkt_cnt;
670 
671 		atomic_set(&priv->wmm.tx_pkts_queued, tx_pkts_queued);
672 		atomic_set(&priv->wmm.highest_queued_prio, HIGH_PRIO_TID);
673 	}
674 	spin_unlock_bh(&priv->wmm.ra_list_spinlock);
675 }
676 
677 /* This function updates non-tdls peer ralist tx_pause while
678  * tdls channel switching
679  */
680 void mwifiex_update_ralist_tx_pause_in_tdls_cs(struct mwifiex_private *priv,
681 					       u8 *mac, u8 tx_pause)
682 {
683 	struct mwifiex_ra_list_tbl *ra_list;
684 	u32 pkt_cnt = 0, tx_pkts_queued;
685 	int i;
686 
687 	spin_lock_bh(&priv->wmm.ra_list_spinlock);
688 
689 	for (i = 0; i < MAX_NUM_TID; ++i) {
690 		list_for_each_entry(ra_list, &priv->wmm.tid_tbl_ptr[i].ra_list,
691 				    list) {
692 			if (!memcmp(ra_list->ra, mac, ETH_ALEN))
693 				continue;
694 
695 			if (ra_list->tx_paused != tx_pause) {
696 				pkt_cnt += ra_list->total_pkt_count;
697 				ra_list->tx_paused = tx_pause;
698 				if (tx_pause)
699 					priv->wmm.pkts_paused[i] +=
700 						ra_list->total_pkt_count;
701 				else
702 					priv->wmm.pkts_paused[i] -=
703 						ra_list->total_pkt_count;
704 			}
705 		}
706 	}
707 
708 	if (pkt_cnt) {
709 		tx_pkts_queued = atomic_read(&priv->wmm.tx_pkts_queued);
710 		if (tx_pause)
711 			tx_pkts_queued -= pkt_cnt;
712 		else
713 			tx_pkts_queued += pkt_cnt;
714 
715 		atomic_set(&priv->wmm.tx_pkts_queued, tx_pkts_queued);
716 		atomic_set(&priv->wmm.highest_queued_prio, HIGH_PRIO_TID);
717 	}
718 	spin_unlock_bh(&priv->wmm.ra_list_spinlock);
719 }
720 
721 /*
722  * This function retrieves an RA list node for a given TID and
723  * RA address pair.
724  *
725  * If no such node is found, a new node is added first and then
726  * retrieved.
727  */
728 struct mwifiex_ra_list_tbl *
729 mwifiex_wmm_get_queue_raptr(struct mwifiex_private *priv, u8 tid,
730 			    const u8 *ra_addr)
731 {
732 	struct mwifiex_ra_list_tbl *ra_list;
733 
734 	ra_list = mwifiex_wmm_get_ralist_node(priv, tid, ra_addr);
735 	if (ra_list)
736 		return ra_list;
737 	mwifiex_ralist_add(priv, ra_addr);
738 
739 	return mwifiex_wmm_get_ralist_node(priv, tid, ra_addr);
740 }
741 
742 /*
743  * This function deletes RA list nodes for given mac for all TIDs.
744  * Function also decrements TX pending count accordingly.
745  */
746 void
747 mwifiex_wmm_del_peer_ra_list(struct mwifiex_private *priv, const u8 *ra_addr)
748 {
749 	struct mwifiex_ra_list_tbl *ra_list;
750 	int i;
751 
752 	spin_lock_bh(&priv->wmm.ra_list_spinlock);
753 
754 	for (i = 0; i < MAX_NUM_TID; ++i) {
755 		ra_list = mwifiex_wmm_get_ralist_node(priv, i, ra_addr);
756 
757 		if (!ra_list)
758 			continue;
759 		mwifiex_wmm_del_pkts_in_ralist_node(priv, ra_list);
760 		if (ra_list->tx_paused)
761 			priv->wmm.pkts_paused[i] -= ra_list->total_pkt_count;
762 		else
763 			atomic_sub(ra_list->total_pkt_count,
764 				   &priv->wmm.tx_pkts_queued);
765 		list_del(&ra_list->list);
766 		kfree(ra_list);
767 	}
768 	spin_unlock_bh(&priv->wmm.ra_list_spinlock);
769 }
770 
771 /*
772  * This function checks if a particular RA list node exists in a given TID
773  * table index.
774  */
775 int
776 mwifiex_is_ralist_valid(struct mwifiex_private *priv,
777 			struct mwifiex_ra_list_tbl *ra_list, int ptr_index)
778 {
779 	struct mwifiex_ra_list_tbl *rlist;
780 
781 	list_for_each_entry(rlist, &priv->wmm.tid_tbl_ptr[ptr_index].ra_list,
782 			    list) {
783 		if (rlist == ra_list)
784 			return true;
785 	}
786 
787 	return false;
788 }
789 
790 /*
791  * This function adds a packet to bypass TX queue.
792  * This is special TX queue for packets which can be sent even when port_open
793  * is false.
794  */
795 void
796 mwifiex_wmm_add_buf_bypass_txqueue(struct mwifiex_private *priv,
797 				   struct sk_buff *skb)
798 {
799 	skb_queue_tail(&priv->bypass_txq, skb);
800 }
801 
802 /*
803  * This function adds a packet to WMM queue.
804  *
805  * In disconnected state the packet is immediately dropped and the
806  * packet send completion callback is called with status failure.
807  *
808  * Otherwise, the correct RA list node is located and the packet
809  * is queued at the list tail.
810  */
811 void
812 mwifiex_wmm_add_buf_txqueue(struct mwifiex_private *priv,
813 			    struct sk_buff *skb)
814 {
815 	struct mwifiex_adapter *adapter = priv->adapter;
816 	u32 tid;
817 	struct mwifiex_ra_list_tbl *ra_list;
818 	u8 ra[ETH_ALEN], tid_down;
819 	struct list_head list_head;
820 	int tdls_status = TDLS_NOT_SETUP;
821 	struct ethhdr *eth_hdr = (struct ethhdr *)skb->data;
822 	struct mwifiex_txinfo *tx_info = MWIFIEX_SKB_TXCB(skb);
823 
824 	memcpy(ra, eth_hdr->h_dest, ETH_ALEN);
825 
826 	if (GET_BSS_ROLE(priv) == MWIFIEX_BSS_ROLE_STA &&
827 	    ISSUPP_TDLS_ENABLED(adapter->fw_cap_info)) {
828 		if (ntohs(eth_hdr->h_proto) == ETH_P_TDLS)
829 			mwifiex_dbg(adapter, DATA,
830 				    "TDLS setup packet for %pM.\t"
831 				    "Don't block\n", ra);
832 		else if (memcmp(priv->cfg_bssid, ra, ETH_ALEN))
833 			tdls_status = mwifiex_get_tdls_link_status(priv, ra);
834 	}
835 
836 	if (!priv->media_connected && !mwifiex_is_skb_mgmt_frame(skb)) {
837 		mwifiex_dbg(adapter, DATA, "data: drop packet in disconnect\n");
838 		mwifiex_write_data_complete(adapter, skb, 0, -1);
839 		return;
840 	}
841 
842 	tid = skb->priority;
843 
844 	spin_lock_bh(&priv->wmm.ra_list_spinlock);
845 
846 	tid_down = mwifiex_wmm_downgrade_tid(priv, tid);
847 
848 	/* In case of infra as we have already created the list during
849 	   association we just don't have to call get_queue_raptr, we will
850 	   have only 1 raptr for a tid in case of infra */
851 	if (!mwifiex_queuing_ra_based(priv) &&
852 	    !mwifiex_is_skb_mgmt_frame(skb)) {
853 		switch (tdls_status) {
854 		case TDLS_SETUP_COMPLETE:
855 		case TDLS_CHAN_SWITCHING:
856 		case TDLS_IN_BASE_CHAN:
857 		case TDLS_IN_OFF_CHAN:
858 			ra_list = mwifiex_wmm_get_queue_raptr(priv, tid_down,
859 							      ra);
860 			tx_info->flags |= MWIFIEX_BUF_FLAG_TDLS_PKT;
861 			break;
862 		case TDLS_SETUP_INPROGRESS:
863 			skb_queue_tail(&priv->tdls_txq, skb);
864 			spin_unlock_bh(&priv->wmm.ra_list_spinlock);
865 			return;
866 		default:
867 			list_head = priv->wmm.tid_tbl_ptr[tid_down].ra_list;
868 			ra_list = list_first_entry_or_null(&list_head,
869 					struct mwifiex_ra_list_tbl, list);
870 			break;
871 		}
872 	} else {
873 		memcpy(ra, skb->data, ETH_ALEN);
874 		if (ra[0] & 0x01 || mwifiex_is_skb_mgmt_frame(skb))
875 			eth_broadcast_addr(ra);
876 		ra_list = mwifiex_wmm_get_queue_raptr(priv, tid_down, ra);
877 	}
878 
879 	if (!ra_list) {
880 		spin_unlock_bh(&priv->wmm.ra_list_spinlock);
881 		mwifiex_write_data_complete(adapter, skb, 0, -1);
882 		return;
883 	}
884 
885 	skb_queue_tail(&ra_list->skb_head, skb);
886 
887 	ra_list->ba_pkt_count++;
888 	ra_list->total_pkt_count++;
889 
890 	if (atomic_read(&priv->wmm.highest_queued_prio) <
891 						priv->tos_to_tid_inv[tid_down])
892 		atomic_set(&priv->wmm.highest_queued_prio,
893 			   priv->tos_to_tid_inv[tid_down]);
894 
895 	if (ra_list->tx_paused)
896 		priv->wmm.pkts_paused[tid_down]++;
897 	else
898 		atomic_inc(&priv->wmm.tx_pkts_queued);
899 
900 	spin_unlock_bh(&priv->wmm.ra_list_spinlock);
901 }
902 
903 /*
904  * This function processes the get WMM status command response from firmware.
905  *
906  * The response may contain multiple TLVs -
907  *      - AC Queue status TLVs
908  *      - Current WMM Parameter IE TLV
909  *      - Admission Control action frame TLVs
910  *
911  * This function parses the TLVs and then calls further specific functions
912  * to process any changes in the queue prioritize or state.
913  */
914 int mwifiex_ret_wmm_get_status(struct mwifiex_private *priv,
915 			       const struct host_cmd_ds_command *resp)
916 {
917 	u8 *curr = (u8 *) &resp->params.get_wmm_status;
918 	uint16_t resp_len = le16_to_cpu(resp->size), tlv_len;
919 	int mask = IEEE80211_WMM_IE_AP_QOSINFO_PARAM_SET_CNT_MASK;
920 	bool valid = true;
921 
922 	struct mwifiex_ie_types_data *tlv_hdr;
923 	struct mwifiex_ie_types_wmm_queue_status *tlv_wmm_qstatus;
924 	struct ieee_types_wmm_parameter *wmm_param_ie = NULL;
925 	struct mwifiex_wmm_ac_status *ac_status;
926 
927 	mwifiex_dbg(priv->adapter, INFO,
928 		    "info: WMM: WMM_GET_STATUS cmdresp received: %d\n",
929 		    resp_len);
930 
931 	while ((resp_len >= sizeof(tlv_hdr->header)) && valid) {
932 		tlv_hdr = (struct mwifiex_ie_types_data *) curr;
933 		tlv_len = le16_to_cpu(tlv_hdr->header.len);
934 
935 		if (resp_len < tlv_len + sizeof(tlv_hdr->header))
936 			break;
937 
938 		switch (le16_to_cpu(tlv_hdr->header.type)) {
939 		case TLV_TYPE_WMMQSTATUS:
940 			tlv_wmm_qstatus =
941 				(struct mwifiex_ie_types_wmm_queue_status *)
942 				tlv_hdr;
943 			mwifiex_dbg(priv->adapter, CMD,
944 				    "info: CMD_RESP: WMM_GET_STATUS:\t"
945 				    "QSTATUS TLV: %d, %d, %d\n",
946 				    tlv_wmm_qstatus->queue_index,
947 				    tlv_wmm_qstatus->flow_required,
948 				    tlv_wmm_qstatus->disabled);
949 
950 			ac_status = &priv->wmm.ac_status[tlv_wmm_qstatus->
951 							 queue_index];
952 			ac_status->disabled = tlv_wmm_qstatus->disabled;
953 			ac_status->flow_required =
954 						tlv_wmm_qstatus->flow_required;
955 			ac_status->flow_created = tlv_wmm_qstatus->flow_created;
956 			break;
957 
958 		case WLAN_EID_VENDOR_SPECIFIC:
959 			/*
960 			 * Point the regular IEEE IE 2 bytes into the Marvell IE
961 			 *   and setup the IEEE IE type and length byte fields
962 			 */
963 
964 			wmm_param_ie =
965 				(struct ieee_types_wmm_parameter *) (curr +
966 								    2);
967 			wmm_param_ie->vend_hdr.len = (u8) tlv_len;
968 			wmm_param_ie->vend_hdr.element_id =
969 						WLAN_EID_VENDOR_SPECIFIC;
970 
971 			mwifiex_dbg(priv->adapter, CMD,
972 				    "info: CMD_RESP: WMM_GET_STATUS:\t"
973 				    "WMM Parameter Set Count: %d\n",
974 				    wmm_param_ie->qos_info_bitmap & mask);
975 
976 			if (wmm_param_ie->vend_hdr.len + 2 >
977 				sizeof(struct ieee_types_wmm_parameter))
978 				break;
979 
980 			memcpy((u8 *) &priv->curr_bss_params.bss_descriptor.
981 			       wmm_ie, wmm_param_ie,
982 			       wmm_param_ie->vend_hdr.len + 2);
983 
984 			break;
985 
986 		default:
987 			valid = false;
988 			break;
989 		}
990 
991 		curr += (tlv_len + sizeof(tlv_hdr->header));
992 		resp_len -= (tlv_len + sizeof(tlv_hdr->header));
993 	}
994 
995 	mwifiex_wmm_setup_queue_priorities(priv, wmm_param_ie);
996 	mwifiex_wmm_setup_ac_downgrade(priv);
997 
998 	return 0;
999 }
1000 
1001 /*
1002  * Callback handler from the command module to allow insertion of a WMM TLV.
1003  *
1004  * If the BSS we are associating to supports WMM, this function adds the
1005  * required WMM Information IE to the association request command buffer in
1006  * the form of a Marvell extended IEEE IE.
1007  */
1008 u32
1009 mwifiex_wmm_process_association_req(struct mwifiex_private *priv,
1010 				    u8 **assoc_buf,
1011 				    struct ieee_types_wmm_parameter *wmm_ie,
1012 				    struct ieee80211_ht_cap *ht_cap)
1013 {
1014 	struct mwifiex_ie_types_wmm_param_set *wmm_tlv;
1015 	u32 ret_len = 0;
1016 
1017 	/* Null checks */
1018 	if (!assoc_buf)
1019 		return 0;
1020 	if (!(*assoc_buf))
1021 		return 0;
1022 
1023 	if (!wmm_ie)
1024 		return 0;
1025 
1026 	mwifiex_dbg(priv->adapter, INFO,
1027 		    "info: WMM: process assoc req: bss->wmm_ie=%#x\n",
1028 		    wmm_ie->vend_hdr.element_id);
1029 
1030 	if ((priv->wmm_required ||
1031 	     (ht_cap && (priv->adapter->config_bands & BAND_GN ||
1032 	     priv->adapter->config_bands & BAND_AN))) &&
1033 	    wmm_ie->vend_hdr.element_id == WLAN_EID_VENDOR_SPECIFIC) {
1034 		wmm_tlv = (struct mwifiex_ie_types_wmm_param_set *) *assoc_buf;
1035 		wmm_tlv->header.type = cpu_to_le16((u16) wmm_info_ie[0]);
1036 		wmm_tlv->header.len = cpu_to_le16((u16) wmm_info_ie[1]);
1037 		memcpy(wmm_tlv->wmm_ie, &wmm_info_ie[2],
1038 		       le16_to_cpu(wmm_tlv->header.len));
1039 		if (wmm_ie->qos_info_bitmap & IEEE80211_WMM_IE_AP_QOSINFO_UAPSD)
1040 			memcpy((u8 *) (wmm_tlv->wmm_ie
1041 				       + le16_to_cpu(wmm_tlv->header.len)
1042 				       - sizeof(priv->wmm_qosinfo)),
1043 			       &priv->wmm_qosinfo, sizeof(priv->wmm_qosinfo));
1044 
1045 		ret_len = sizeof(wmm_tlv->header)
1046 			  + le16_to_cpu(wmm_tlv->header.len);
1047 
1048 		*assoc_buf += ret_len;
1049 	}
1050 
1051 	return ret_len;
1052 }
1053 
1054 /*
1055  * This function computes the time delay in the driver queues for a
1056  * given packet.
1057  *
1058  * When the packet is received at the OS/Driver interface, the current
1059  * time is set in the packet structure. The difference between the present
1060  * time and that received time is computed in this function and limited
1061  * based on pre-compiled limits in the driver.
1062  */
1063 u8
1064 mwifiex_wmm_compute_drv_pkt_delay(struct mwifiex_private *priv,
1065 				  const struct sk_buff *skb)
1066 {
1067 	u32 queue_delay = ktime_to_ms(net_timedelta(skb->tstamp));
1068 	u8 ret_val;
1069 
1070 	/*
1071 	 * Queue delay is passed as a uint8 in units of 2ms (ms shifted
1072 	 *  by 1). Min value (other than 0) is therefore 2ms, max is 510ms.
1073 	 *
1074 	 * Pass max value if queue_delay is beyond the uint8 range
1075 	 */
1076 	ret_val = (u8) (min(queue_delay, priv->wmm.drv_pkt_delay_max) >> 1);
1077 
1078 	mwifiex_dbg(priv->adapter, DATA, "data: WMM: Pkt Delay: %d ms,\t"
1079 		    "%d ms sent to FW\n", queue_delay, ret_val);
1080 
1081 	return ret_val;
1082 }
1083 
1084 /*
1085  * This function retrieves the highest priority RA list table pointer.
1086  */
1087 static struct mwifiex_ra_list_tbl *
1088 mwifiex_wmm_get_highest_priolist_ptr(struct mwifiex_adapter *adapter,
1089 				     struct mwifiex_private **priv, int *tid)
1090 {
1091 	struct mwifiex_private *priv_tmp;
1092 	struct mwifiex_ra_list_tbl *ptr;
1093 	struct mwifiex_tid_tbl *tid_ptr;
1094 	atomic_t *hqp;
1095 	int i, j;
1096 
1097 	/* check the BSS with highest priority first */
1098 	for (j = adapter->priv_num - 1; j >= 0; --j) {
1099 		/* iterate over BSS with the equal priority */
1100 		list_for_each_entry(adapter->bss_prio_tbl[j].bss_prio_cur,
1101 				    &adapter->bss_prio_tbl[j].bss_prio_head,
1102 				    list) {
1103 
1104 try_again:
1105 			priv_tmp = adapter->bss_prio_tbl[j].bss_prio_cur->priv;
1106 
1107 			if (((priv_tmp->bss_mode != NL80211_IFTYPE_ADHOC) &&
1108 			     !priv_tmp->port_open) ||
1109 			    (atomic_read(&priv_tmp->wmm.tx_pkts_queued) == 0))
1110 				continue;
1111 
1112 			if (adapter->if_ops.is_port_ready &&
1113 			    !adapter->if_ops.is_port_ready(priv_tmp))
1114 				continue;
1115 
1116 			/* iterate over the WMM queues of the BSS */
1117 			hqp = &priv_tmp->wmm.highest_queued_prio;
1118 			for (i = atomic_read(hqp); i >= LOW_PRIO_TID; --i) {
1119 
1120 				spin_lock_bh(&priv_tmp->wmm.ra_list_spinlock);
1121 
1122 				tid_ptr = &(priv_tmp)->wmm.
1123 					tid_tbl_ptr[tos_to_tid[i]];
1124 
1125 				/* iterate over receiver addresses */
1126 				list_for_each_entry(ptr, &tid_ptr->ra_list,
1127 						    list) {
1128 
1129 					if (!ptr->tx_paused &&
1130 					    !skb_queue_empty(&ptr->skb_head))
1131 						/* holds both locks */
1132 						goto found;
1133 				}
1134 
1135 				spin_unlock_bh(&priv_tmp->wmm.ra_list_spinlock);
1136 			}
1137 
1138 			if (atomic_read(&priv_tmp->wmm.tx_pkts_queued) != 0) {
1139 				atomic_set(&priv_tmp->wmm.highest_queued_prio,
1140 					   HIGH_PRIO_TID);
1141 				/* Iterate current private once more, since
1142 				 * there still exist packets in data queue
1143 				 */
1144 				goto try_again;
1145 			} else
1146 				atomic_set(&priv_tmp->wmm.highest_queued_prio,
1147 					   NO_PKT_PRIO_TID);
1148 		}
1149 	}
1150 
1151 	return NULL;
1152 
1153 found:
1154 	/* holds ra_list_spinlock */
1155 	if (atomic_read(hqp) > i)
1156 		atomic_set(hqp, i);
1157 	spin_unlock_bh(&priv_tmp->wmm.ra_list_spinlock);
1158 
1159 	*priv = priv_tmp;
1160 	*tid = tos_to_tid[i];
1161 
1162 	return ptr;
1163 }
1164 
1165 /* This functions rotates ra and bss lists so packets are picked round robin.
1166  *
1167  * After a packet is successfully transmitted, rotate the ra list, so the ra
1168  * next to the one transmitted, will come first in the list. This way we pick
1169  * the ra' in a round robin fashion. Same applies to bss nodes of equal
1170  * priority.
1171  *
1172  * Function also increments wmm.packets_out counter.
1173  */
1174 void mwifiex_rotate_priolists(struct mwifiex_private *priv,
1175 				 struct mwifiex_ra_list_tbl *ra,
1176 				 int tid)
1177 {
1178 	struct mwifiex_adapter *adapter = priv->adapter;
1179 	struct mwifiex_bss_prio_tbl *tbl = adapter->bss_prio_tbl;
1180 	struct mwifiex_tid_tbl *tid_ptr = &priv->wmm.tid_tbl_ptr[tid];
1181 
1182 	spin_lock_bh(&tbl[priv->bss_priority].bss_prio_lock);
1183 	/*
1184 	 * dirty trick: we remove 'head' temporarily and reinsert it after
1185 	 * curr bss node. imagine list to stay fixed while head is moved
1186 	 */
1187 	list_move(&tbl[priv->bss_priority].bss_prio_head,
1188 		  &tbl[priv->bss_priority].bss_prio_cur->list);
1189 	spin_unlock_bh(&tbl[priv->bss_priority].bss_prio_lock);
1190 
1191 	spin_lock_bh(&priv->wmm.ra_list_spinlock);
1192 	if (mwifiex_is_ralist_valid(priv, ra, tid)) {
1193 		priv->wmm.packets_out[tid]++;
1194 		/* same as above */
1195 		list_move(&tid_ptr->ra_list, &ra->list);
1196 	}
1197 	spin_unlock_bh(&priv->wmm.ra_list_spinlock);
1198 }
1199 
1200 /*
1201  * This function checks if 11n aggregation is possible.
1202  */
1203 static int
1204 mwifiex_is_11n_aggragation_possible(struct mwifiex_private *priv,
1205 				    struct mwifiex_ra_list_tbl *ptr,
1206 				    int max_buf_size)
1207 {
1208 	int count = 0, total_size = 0;
1209 	struct sk_buff *skb, *tmp;
1210 	int max_amsdu_size;
1211 
1212 	if (priv->bss_role == MWIFIEX_BSS_ROLE_UAP && priv->ap_11n_enabled &&
1213 	    ptr->is_11n_enabled)
1214 		max_amsdu_size = min_t(int, ptr->max_amsdu, max_buf_size);
1215 	else
1216 		max_amsdu_size = max_buf_size;
1217 
1218 	skb_queue_walk_safe(&ptr->skb_head, skb, tmp) {
1219 		total_size += skb->len;
1220 		if (total_size >= max_amsdu_size)
1221 			break;
1222 		if (++count >= MIN_NUM_AMSDU)
1223 			return true;
1224 	}
1225 
1226 	return false;
1227 }
1228 
1229 /*
1230  * This function sends a single packet to firmware for transmission.
1231  */
1232 static void
1233 mwifiex_send_single_packet(struct mwifiex_private *priv,
1234 			   struct mwifiex_ra_list_tbl *ptr, int ptr_index)
1235 			   __releases(&priv->wmm.ra_list_spinlock)
1236 {
1237 	struct sk_buff *skb, *skb_next;
1238 	struct mwifiex_tx_param tx_param;
1239 	struct mwifiex_adapter *adapter = priv->adapter;
1240 	struct mwifiex_txinfo *tx_info;
1241 
1242 	if (skb_queue_empty(&ptr->skb_head)) {
1243 		spin_unlock_bh(&priv->wmm.ra_list_spinlock);
1244 		mwifiex_dbg(adapter, DATA, "data: nothing to send\n");
1245 		return;
1246 	}
1247 
1248 	skb = skb_dequeue(&ptr->skb_head);
1249 
1250 	tx_info = MWIFIEX_SKB_TXCB(skb);
1251 	mwifiex_dbg(adapter, DATA,
1252 		    "data: dequeuing the packet %p %p\n", ptr, skb);
1253 
1254 	ptr->total_pkt_count--;
1255 
1256 	if (!skb_queue_empty(&ptr->skb_head))
1257 		skb_next = skb_peek(&ptr->skb_head);
1258 	else
1259 		skb_next = NULL;
1260 
1261 	spin_unlock_bh(&priv->wmm.ra_list_spinlock);
1262 
1263 	tx_param.next_pkt_len = ((skb_next) ? skb_next->len +
1264 				sizeof(struct txpd) : 0);
1265 
1266 	if (mwifiex_process_tx(priv, skb, &tx_param) == -EBUSY) {
1267 		/* Queue the packet back at the head */
1268 		spin_lock_bh(&priv->wmm.ra_list_spinlock);
1269 
1270 		if (!mwifiex_is_ralist_valid(priv, ptr, ptr_index)) {
1271 			spin_unlock_bh(&priv->wmm.ra_list_spinlock);
1272 			mwifiex_write_data_complete(adapter, skb, 0, -1);
1273 			return;
1274 		}
1275 
1276 		skb_queue_tail(&ptr->skb_head, skb);
1277 
1278 		ptr->total_pkt_count++;
1279 		ptr->ba_pkt_count++;
1280 		tx_info->flags |= MWIFIEX_BUF_FLAG_REQUEUED_PKT;
1281 		spin_unlock_bh(&priv->wmm.ra_list_spinlock);
1282 	} else {
1283 		mwifiex_rotate_priolists(priv, ptr, ptr_index);
1284 		atomic_dec(&priv->wmm.tx_pkts_queued);
1285 	}
1286 }
1287 
1288 /*
1289  * This function checks if the first packet in the given RA list
1290  * is already processed or not.
1291  */
1292 static int
1293 mwifiex_is_ptr_processed(struct mwifiex_private *priv,
1294 			 struct mwifiex_ra_list_tbl *ptr)
1295 {
1296 	struct sk_buff *skb;
1297 	struct mwifiex_txinfo *tx_info;
1298 
1299 	if (skb_queue_empty(&ptr->skb_head))
1300 		return false;
1301 
1302 	skb = skb_peek(&ptr->skb_head);
1303 
1304 	tx_info = MWIFIEX_SKB_TXCB(skb);
1305 	if (tx_info->flags & MWIFIEX_BUF_FLAG_REQUEUED_PKT)
1306 		return true;
1307 
1308 	return false;
1309 }
1310 
1311 /*
1312  * This function sends a single processed packet to firmware for
1313  * transmission.
1314  */
1315 static void
1316 mwifiex_send_processed_packet(struct mwifiex_private *priv,
1317 			      struct mwifiex_ra_list_tbl *ptr, int ptr_index)
1318 				__releases(&priv->wmm.ra_list_spinlock)
1319 {
1320 	struct mwifiex_tx_param tx_param;
1321 	struct mwifiex_adapter *adapter = priv->adapter;
1322 	int ret = -1;
1323 	struct sk_buff *skb, *skb_next;
1324 	struct mwifiex_txinfo *tx_info;
1325 
1326 	if (skb_queue_empty(&ptr->skb_head)) {
1327 		spin_unlock_bh(&priv->wmm.ra_list_spinlock);
1328 		return;
1329 	}
1330 
1331 	skb = skb_dequeue(&ptr->skb_head);
1332 
1333 	if (adapter->data_sent || adapter->tx_lock_flag) {
1334 		ptr->total_pkt_count--;
1335 		spin_unlock_bh(&priv->wmm.ra_list_spinlock);
1336 		skb_queue_tail(&adapter->tx_data_q, skb);
1337 		atomic_dec(&priv->wmm.tx_pkts_queued);
1338 		atomic_inc(&adapter->tx_queued);
1339 		return;
1340 	}
1341 
1342 	if (!skb_queue_empty(&ptr->skb_head))
1343 		skb_next = skb_peek(&ptr->skb_head);
1344 	else
1345 		skb_next = NULL;
1346 
1347 	tx_info = MWIFIEX_SKB_TXCB(skb);
1348 
1349 	spin_unlock_bh(&priv->wmm.ra_list_spinlock);
1350 
1351 	tx_param.next_pkt_len =
1352 		((skb_next) ? skb_next->len +
1353 		 sizeof(struct txpd) : 0);
1354 	if (adapter->iface_type == MWIFIEX_USB) {
1355 		ret = adapter->if_ops.host_to_card(adapter, priv->usb_port,
1356 						   skb, &tx_param);
1357 	} else {
1358 		ret = adapter->if_ops.host_to_card(adapter, MWIFIEX_TYPE_DATA,
1359 						   skb, &tx_param);
1360 	}
1361 
1362 	switch (ret) {
1363 	case -EBUSY:
1364 		mwifiex_dbg(adapter, ERROR, "data: -EBUSY is returned\n");
1365 		spin_lock_bh(&priv->wmm.ra_list_spinlock);
1366 
1367 		if (!mwifiex_is_ralist_valid(priv, ptr, ptr_index)) {
1368 			spin_unlock_bh(&priv->wmm.ra_list_spinlock);
1369 			mwifiex_write_data_complete(adapter, skb, 0, -1);
1370 			return;
1371 		}
1372 
1373 		skb_queue_tail(&ptr->skb_head, skb);
1374 
1375 		tx_info->flags |= MWIFIEX_BUF_FLAG_REQUEUED_PKT;
1376 		spin_unlock_bh(&priv->wmm.ra_list_spinlock);
1377 		break;
1378 	case -1:
1379 		mwifiex_dbg(adapter, ERROR, "host_to_card failed: %#x\n", ret);
1380 		adapter->dbg.num_tx_host_to_card_failure++;
1381 		mwifiex_write_data_complete(adapter, skb, 0, ret);
1382 		break;
1383 	case -EINPROGRESS:
1384 		break;
1385 	case 0:
1386 		mwifiex_write_data_complete(adapter, skb, 0, ret);
1387 		break;
1388 	default:
1389 		break;
1390 	}
1391 	if (ret != -EBUSY) {
1392 		mwifiex_rotate_priolists(priv, ptr, ptr_index);
1393 		atomic_dec(&priv->wmm.tx_pkts_queued);
1394 		spin_lock_bh(&priv->wmm.ra_list_spinlock);
1395 		ptr->total_pkt_count--;
1396 		spin_unlock_bh(&priv->wmm.ra_list_spinlock);
1397 	}
1398 }
1399 
1400 /*
1401  * This function dequeues a packet from the highest priority list
1402  * and transmits it.
1403  */
1404 static int
1405 mwifiex_dequeue_tx_packet(struct mwifiex_adapter *adapter)
1406 {
1407 	struct mwifiex_ra_list_tbl *ptr;
1408 	struct mwifiex_private *priv = NULL;
1409 	int ptr_index = 0;
1410 	u8 ra[ETH_ALEN];
1411 	int tid_del = 0, tid = 0;
1412 
1413 	ptr = mwifiex_wmm_get_highest_priolist_ptr(adapter, &priv, &ptr_index);
1414 	if (!ptr)
1415 		return -1;
1416 
1417 	tid = mwifiex_get_tid(ptr);
1418 
1419 	mwifiex_dbg(adapter, DATA, "data: tid=%d\n", tid);
1420 
1421 	spin_lock_bh(&priv->wmm.ra_list_spinlock);
1422 	if (!mwifiex_is_ralist_valid(priv, ptr, ptr_index)) {
1423 		spin_unlock_bh(&priv->wmm.ra_list_spinlock);
1424 		return -1;
1425 	}
1426 
1427 	if (mwifiex_is_ptr_processed(priv, ptr)) {
1428 		mwifiex_send_processed_packet(priv, ptr, ptr_index);
1429 		/* ra_list_spinlock has been freed in
1430 		   mwifiex_send_processed_packet() */
1431 		return 0;
1432 	}
1433 
1434 	if (!ptr->is_11n_enabled ||
1435 		ptr->ba_status ||
1436 		priv->wps.session_enable) {
1437 		if (ptr->is_11n_enabled &&
1438 			ptr->ba_status &&
1439 			ptr->amsdu_in_ampdu &&
1440 			mwifiex_is_amsdu_allowed(priv, tid) &&
1441 			mwifiex_is_11n_aggragation_possible(priv, ptr,
1442 							adapter->tx_buf_size))
1443 			mwifiex_11n_aggregate_pkt(priv, ptr, ptr_index);
1444 			/* ra_list_spinlock has been freed in
1445 			 * mwifiex_11n_aggregate_pkt()
1446 			 */
1447 		else
1448 			mwifiex_send_single_packet(priv, ptr, ptr_index);
1449 			/* ra_list_spinlock has been freed in
1450 			 * mwifiex_send_single_packet()
1451 			 */
1452 	} else {
1453 		if (mwifiex_is_ampdu_allowed(priv, ptr, tid) &&
1454 		    ptr->ba_pkt_count > ptr->ba_packet_thr) {
1455 			if (mwifiex_space_avail_for_new_ba_stream(adapter)) {
1456 				mwifiex_create_ba_tbl(priv, ptr->ra, tid,
1457 						      BA_SETUP_INPROGRESS);
1458 				mwifiex_send_addba(priv, tid, ptr->ra);
1459 			} else if (mwifiex_find_stream_to_delete
1460 				   (priv, tid, &tid_del, ra)) {
1461 				mwifiex_create_ba_tbl(priv, ptr->ra, tid,
1462 						      BA_SETUP_INPROGRESS);
1463 				mwifiex_send_delba(priv, tid_del, ra, 1);
1464 			}
1465 		}
1466 		if (mwifiex_is_amsdu_allowed(priv, tid) &&
1467 		    mwifiex_is_11n_aggragation_possible(priv, ptr,
1468 							adapter->tx_buf_size))
1469 			mwifiex_11n_aggregate_pkt(priv, ptr, ptr_index);
1470 			/* ra_list_spinlock has been freed in
1471 			   mwifiex_11n_aggregate_pkt() */
1472 		else
1473 			mwifiex_send_single_packet(priv, ptr, ptr_index);
1474 			/* ra_list_spinlock has been freed in
1475 			   mwifiex_send_single_packet() */
1476 	}
1477 	return 0;
1478 }
1479 
1480 void mwifiex_process_bypass_tx(struct mwifiex_adapter *adapter)
1481 {
1482 	struct mwifiex_tx_param tx_param;
1483 	struct sk_buff *skb;
1484 	struct mwifiex_txinfo *tx_info;
1485 	struct mwifiex_private *priv;
1486 	int i;
1487 
1488 	if (adapter->data_sent || adapter->tx_lock_flag)
1489 		return;
1490 
1491 	for (i = 0; i < adapter->priv_num; ++i) {
1492 		priv = adapter->priv[i];
1493 
1494 		if (!priv)
1495 			continue;
1496 
1497 		if (adapter->if_ops.is_port_ready &&
1498 		    !adapter->if_ops.is_port_ready(priv))
1499 			continue;
1500 
1501 		if (skb_queue_empty(&priv->bypass_txq))
1502 			continue;
1503 
1504 		skb = skb_dequeue(&priv->bypass_txq);
1505 		tx_info = MWIFIEX_SKB_TXCB(skb);
1506 
1507 		/* no aggregation for bypass packets */
1508 		tx_param.next_pkt_len = 0;
1509 
1510 		if (mwifiex_process_tx(priv, skb, &tx_param) == -EBUSY) {
1511 			skb_queue_head(&priv->bypass_txq, skb);
1512 			tx_info->flags |= MWIFIEX_BUF_FLAG_REQUEUED_PKT;
1513 		} else {
1514 			atomic_dec(&adapter->bypass_tx_pending);
1515 		}
1516 	}
1517 }
1518 
1519 /*
1520  * This function transmits the highest priority packet awaiting in the
1521  * WMM Queues.
1522  */
1523 void
1524 mwifiex_wmm_process_tx(struct mwifiex_adapter *adapter)
1525 {
1526 	do {
1527 		if (mwifiex_dequeue_tx_packet(adapter))
1528 			break;
1529 		if (adapter->iface_type != MWIFIEX_SDIO) {
1530 			if (adapter->data_sent ||
1531 			    adapter->tx_lock_flag)
1532 				break;
1533 		} else {
1534 			if (atomic_read(&adapter->tx_queued) >=
1535 			    MWIFIEX_MAX_PKTS_TXQ)
1536 				break;
1537 		}
1538 	} while (!mwifiex_wmm_lists_empty(adapter));
1539 }
1540