1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2009-2013  Realtek Corporation.*/
3 
4 #include "../wifi.h"
5 #include "../pci.h"
6 #include "../ps.h"
7 #include "reg.h"
8 #include "def.h"
9 #include "phy.h"
10 #include "rf.h"
11 #include "dm.h"
12 #include "table.h"
13 
14 static u32 _rtl88e_phy_rf_serial_read(struct ieee80211_hw *hw,
15 				      enum radio_path rfpath, u32 offset);
16 static void _rtl88e_phy_rf_serial_write(struct ieee80211_hw *hw,
17 					enum radio_path rfpath, u32 offset,
18 					u32 data);
19 static bool _rtl88e_phy_bb8188e_config_parafile(struct ieee80211_hw *hw);
20 static bool _rtl88e_phy_config_mac_with_headerfile(struct ieee80211_hw *hw);
21 static bool phy_config_bb_with_headerfile(struct ieee80211_hw *hw,
22 					  u8 configtype);
23 static bool phy_config_bb_with_pghdr(struct ieee80211_hw *hw,
24 				     u8 configtype);
25 static void _rtl88e_phy_init_bb_rf_register_definition(struct ieee80211_hw *hw);
26 static bool _rtl88e_phy_set_sw_chnl_cmdarray(struct swchnlcmd *cmdtable,
27 					     u32 cmdtableidx, u32 cmdtablesz,
28 					     enum swchnlcmd_id cmdid, u32 para1,
29 					     u32 para2, u32 msdelay);
30 static bool _rtl88e_phy_sw_chnl_step_by_step(struct ieee80211_hw *hw,
31 					     u8 channel, u8 *stage, u8 *step,
32 					     u32 *delay);
33 
34 static long _rtl88e_phy_txpwr_idx_to_dbm(struct ieee80211_hw *hw,
35 					 enum wireless_mode wirelessmode,
36 					 u8 txpwridx);
37 static void rtl88ee_phy_set_rf_on(struct ieee80211_hw *hw);
38 static void rtl88e_phy_set_io(struct ieee80211_hw *hw);
39 
40 u32 rtl88e_phy_query_bb_reg(struct ieee80211_hw *hw, u32 regaddr, u32 bitmask)
41 {
42 	struct rtl_priv *rtlpriv = rtl_priv(hw);
43 	u32 returnvalue, originalvalue, bitshift;
44 
45 	rtl_dbg(rtlpriv, COMP_RF, DBG_TRACE,
46 		"regaddr(%#x), bitmask(%#x)\n", regaddr, bitmask);
47 	originalvalue = rtl_read_dword(rtlpriv, regaddr);
48 	bitshift = calculate_bit_shift(bitmask);
49 	returnvalue = (originalvalue & bitmask) >> bitshift;
50 
51 	rtl_dbg(rtlpriv, COMP_RF, DBG_TRACE,
52 		"BBR MASK=0x%x Addr[0x%x]=0x%x\n", bitmask,
53 		regaddr, originalvalue);
54 
55 	return returnvalue;
56 
57 }
58 
59 void rtl88e_phy_set_bb_reg(struct ieee80211_hw *hw,
60 			   u32 regaddr, u32 bitmask, u32 data)
61 {
62 	struct rtl_priv *rtlpriv = rtl_priv(hw);
63 	u32 originalvalue, bitshift;
64 
65 	rtl_dbg(rtlpriv, COMP_RF, DBG_TRACE,
66 		"regaddr(%#x), bitmask(%#x), data(%#x)\n",
67 		regaddr, bitmask, data);
68 
69 	if (bitmask != MASKDWORD) {
70 		originalvalue = rtl_read_dword(rtlpriv, regaddr);
71 		bitshift = calculate_bit_shift(bitmask);
72 		data = ((originalvalue & (~bitmask)) | (data << bitshift));
73 	}
74 
75 	rtl_write_dword(rtlpriv, regaddr, data);
76 
77 	rtl_dbg(rtlpriv, COMP_RF, DBG_TRACE,
78 		"regaddr(%#x), bitmask(%#x), data(%#x)\n",
79 		regaddr, bitmask, data);
80 }
81 
82 u32 rtl88e_phy_query_rf_reg(struct ieee80211_hw *hw,
83 			    enum radio_path rfpath, u32 regaddr, u32 bitmask)
84 {
85 	struct rtl_priv *rtlpriv = rtl_priv(hw);
86 	u32 original_value, readback_value, bitshift;
87 
88 	rtl_dbg(rtlpriv, COMP_RF, DBG_TRACE,
89 		"regaddr(%#x), rfpath(%#x), bitmask(%#x)\n",
90 		regaddr, rfpath, bitmask);
91 
92 	spin_lock(&rtlpriv->locks.rf_lock);
93 
94 
95 	original_value = _rtl88e_phy_rf_serial_read(hw, rfpath, regaddr);
96 	bitshift = calculate_bit_shift(bitmask);
97 	readback_value = (original_value & bitmask) >> bitshift;
98 
99 	spin_unlock(&rtlpriv->locks.rf_lock);
100 
101 	rtl_dbg(rtlpriv, COMP_RF, DBG_TRACE,
102 		"regaddr(%#x), rfpath(%#x), bitmask(%#x), original_value(%#x)\n",
103 		regaddr, rfpath, bitmask, original_value);
104 	return readback_value;
105 }
106 
107 void rtl88e_phy_set_rf_reg(struct ieee80211_hw *hw,
108 			   enum radio_path rfpath,
109 			   u32 regaddr, u32 bitmask, u32 data)
110 {
111 	struct rtl_priv *rtlpriv = rtl_priv(hw);
112 	u32 original_value, bitshift;
113 
114 	rtl_dbg(rtlpriv, COMP_RF, DBG_TRACE,
115 		"regaddr(%#x), bitmask(%#x), data(%#x), rfpath(%#x)\n",
116 		regaddr, bitmask, data, rfpath);
117 
118 	spin_lock(&rtlpriv->locks.rf_lock);
119 
120 	if (bitmask != RFREG_OFFSET_MASK) {
121 			original_value = _rtl88e_phy_rf_serial_read(hw,
122 								    rfpath,
123 								    regaddr);
124 			bitshift = calculate_bit_shift(bitmask);
125 			data =
126 			    ((original_value & (~bitmask)) |
127 			     (data << bitshift));
128 		}
129 
130 	_rtl88e_phy_rf_serial_write(hw, rfpath, regaddr, data);
131 
132 
133 	spin_unlock(&rtlpriv->locks.rf_lock);
134 
135 	rtl_dbg(rtlpriv, COMP_RF, DBG_TRACE,
136 		"regaddr(%#x), bitmask(%#x), data(%#x), rfpath(%#x)\n",
137 		regaddr, bitmask, data, rfpath);
138 }
139 
140 static u32 _rtl88e_phy_rf_serial_read(struct ieee80211_hw *hw,
141 				      enum radio_path rfpath, u32 offset)
142 {
143 	struct rtl_priv *rtlpriv = rtl_priv(hw);
144 	struct rtl_phy *rtlphy = &rtlpriv->phy;
145 	struct bb_reg_def *pphyreg = &rtlphy->phyreg_def[rfpath];
146 	u32 newoffset;
147 	u32 tmplong, tmplong2;
148 	u8 rfpi_enable = 0;
149 	u32 retvalue;
150 
151 	offset &= 0xff;
152 	newoffset = offset;
153 	if (RT_CANNOT_IO(hw)) {
154 		pr_err("return all one\n");
155 		return 0xFFFFFFFF;
156 	}
157 	tmplong = rtl_get_bbreg(hw, RFPGA0_XA_HSSIPARAMETER2, MASKDWORD);
158 	if (rfpath == RF90_PATH_A)
159 		tmplong2 = tmplong;
160 	else
161 		tmplong2 = rtl_get_bbreg(hw, pphyreg->rfhssi_para2, MASKDWORD);
162 	tmplong2 = (tmplong2 & (~BLSSIREADADDRESS)) |
163 	    (newoffset << 23) | BLSSIREADEDGE;
164 	rtl_set_bbreg(hw, RFPGA0_XA_HSSIPARAMETER2, MASKDWORD,
165 		      tmplong & (~BLSSIREADEDGE));
166 	udelay(10);
167 	rtl_set_bbreg(hw, pphyreg->rfhssi_para2, MASKDWORD, tmplong2);
168 	udelay(120);
169 	if (rfpath == RF90_PATH_A)
170 		rfpi_enable = (u8)rtl_get_bbreg(hw, RFPGA0_XA_HSSIPARAMETER1,
171 						BIT(8));
172 	else if (rfpath == RF90_PATH_B)
173 		rfpi_enable = (u8)rtl_get_bbreg(hw, RFPGA0_XB_HSSIPARAMETER1,
174 						BIT(8));
175 	if (rfpi_enable)
176 		retvalue = rtl_get_bbreg(hw, pphyreg->rf_rbpi,
177 					 BLSSIREADBACKDATA);
178 	else
179 		retvalue = rtl_get_bbreg(hw, pphyreg->rf_rb,
180 					 BLSSIREADBACKDATA);
181 	rtl_dbg(rtlpriv, COMP_RF, DBG_TRACE,
182 		"RFR-%d Addr[0x%x]=0x%x\n",
183 		rfpath, pphyreg->rf_rb, retvalue);
184 	return retvalue;
185 }
186 
187 static void _rtl88e_phy_rf_serial_write(struct ieee80211_hw *hw,
188 					enum radio_path rfpath, u32 offset,
189 					u32 data)
190 {
191 	u32 data_and_addr;
192 	u32 newoffset;
193 	struct rtl_priv *rtlpriv = rtl_priv(hw);
194 	struct rtl_phy *rtlphy = &rtlpriv->phy;
195 	struct bb_reg_def *pphyreg = &rtlphy->phyreg_def[rfpath];
196 
197 	if (RT_CANNOT_IO(hw)) {
198 		pr_err("stop\n");
199 		return;
200 	}
201 	offset &= 0xff;
202 	newoffset = offset;
203 	data_and_addr = ((newoffset << 20) | (data & 0x000fffff)) & 0x0fffffff;
204 	rtl_set_bbreg(hw, pphyreg->rf3wire_offset, MASKDWORD, data_and_addr);
205 	rtl_dbg(rtlpriv, COMP_RF, DBG_TRACE,
206 		"RFW-%d Addr[0x%x]=0x%x\n",
207 		rfpath, pphyreg->rf3wire_offset, data_and_addr);
208 }
209 
210 bool rtl88e_phy_mac_config(struct ieee80211_hw *hw)
211 {
212 	struct rtl_priv *rtlpriv = rtl_priv(hw);
213 	bool rtstatus = _rtl88e_phy_config_mac_with_headerfile(hw);
214 
215 	rtl_write_byte(rtlpriv, 0x04CA, 0x0B);
216 	return rtstatus;
217 }
218 
219 bool rtl88e_phy_bb_config(struct ieee80211_hw *hw)
220 {
221 	bool rtstatus = true;
222 	struct rtl_priv *rtlpriv = rtl_priv(hw);
223 	u16 regval;
224 	u8 b_reg_hwparafile = 1;
225 	u32 tmp;
226 	_rtl88e_phy_init_bb_rf_register_definition(hw);
227 	regval = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
228 	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN,
229 		       regval | BIT(13) | BIT(0) | BIT(1));
230 
231 	rtl_write_byte(rtlpriv, REG_RF_CTRL, RF_EN | RF_RSTB | RF_SDMRSTB);
232 	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN,
233 		       FEN_PPLL | FEN_PCIEA | FEN_DIO_PCIE |
234 		       FEN_BB_GLB_RSTN | FEN_BBRSTB);
235 	tmp = rtl_read_dword(rtlpriv, 0x4c);
236 	rtl_write_dword(rtlpriv, 0x4c, tmp | BIT(23));
237 	if (b_reg_hwparafile == 1)
238 		rtstatus = _rtl88e_phy_bb8188e_config_parafile(hw);
239 	return rtstatus;
240 }
241 
242 bool rtl88e_phy_rf_config(struct ieee80211_hw *hw)
243 {
244 	return rtl88e_phy_rf6052_config(hw);
245 }
246 
247 static bool _rtl88e_check_condition(struct ieee80211_hw *hw,
248 				    const u32  condition)
249 {
250 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
251 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
252 	u32 _board = rtlefuse->board_type; /*need efuse define*/
253 	u32 _interface = rtlhal->interface;
254 	u32 _platform = 0x08;/*SupportPlatform */
255 	u32 cond;
256 
257 	if (condition == 0xCDCDCDCD)
258 		return true;
259 
260 	cond = condition & 0xFF;
261 	if ((_board & cond) == 0 && cond != 0x1F)
262 		return false;
263 
264 	cond = condition & 0xFF00;
265 	cond = cond >> 8;
266 	if ((_interface & cond) == 0 && cond != 0x07)
267 		return false;
268 
269 	cond = condition & 0xFF0000;
270 	cond = cond >> 16;
271 	if ((_platform & cond) == 0 && cond != 0x0F)
272 		return false;
273 	return true;
274 }
275 
276 static void _rtl8188e_config_rf_reg(struct ieee80211_hw *hw, u32 addr,
277 				    u32 data, enum radio_path rfpath,
278 				    u32 regaddr)
279 {
280 	if (addr == 0xffe) {
281 		mdelay(50);
282 	} else if (addr == 0xfd) {
283 		mdelay(5);
284 	} else if (addr == 0xfc) {
285 		mdelay(1);
286 	} else if (addr == 0xfb) {
287 		udelay(50);
288 	} else if (addr == 0xfa) {
289 		udelay(5);
290 	} else if (addr == 0xf9) {
291 		udelay(1);
292 	} else {
293 		rtl_set_rfreg(hw, rfpath, regaddr,
294 			      RFREG_OFFSET_MASK,
295 			      data);
296 		udelay(1);
297 	}
298 }
299 
300 static void _rtl8188e_config_rf_radio_a(struct ieee80211_hw *hw,
301 					u32 addr, u32 data)
302 {
303 	u32 content = 0x1000; /*RF Content: radio_a_txt*/
304 	u32 maskforphyset = (u32)(content & 0xE000);
305 
306 	_rtl8188e_config_rf_reg(hw, addr, data, RF90_PATH_A,
307 		addr | maskforphyset);
308 }
309 
310 static void _rtl8188e_config_bb_reg(struct ieee80211_hw *hw,
311 				    u32 addr, u32 data)
312 {
313 	if (addr == 0xfe) {
314 		mdelay(50);
315 	} else if (addr == 0xfd) {
316 		mdelay(5);
317 	} else if (addr == 0xfc) {
318 		mdelay(1);
319 	} else if (addr == 0xfb) {
320 		udelay(50);
321 	} else if (addr == 0xfa) {
322 		udelay(5);
323 	} else if (addr == 0xf9) {
324 		udelay(1);
325 	} else {
326 		rtl_set_bbreg(hw, addr, MASKDWORD, data);
327 		udelay(1);
328 	}
329 }
330 
331 static bool _rtl88e_phy_bb8188e_config_parafile(struct ieee80211_hw *hw)
332 {
333 	struct rtl_priv *rtlpriv = rtl_priv(hw);
334 	struct rtl_phy *rtlphy = &rtlpriv->phy;
335 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
336 	bool rtstatus;
337 
338 	rtstatus = phy_config_bb_with_headerfile(hw, BASEBAND_CONFIG_PHY_REG);
339 	if (!rtstatus) {
340 		pr_err("Write BB Reg Fail!!\n");
341 		return false;
342 	}
343 
344 	if (!rtlefuse->autoload_failflag) {
345 		rtlphy->pwrgroup_cnt = 0;
346 		rtstatus =
347 		  phy_config_bb_with_pghdr(hw, BASEBAND_CONFIG_PHY_REG);
348 	}
349 	if (!rtstatus) {
350 		pr_err("BB_PG Reg Fail!!\n");
351 		return false;
352 	}
353 	rtstatus =
354 	  phy_config_bb_with_headerfile(hw, BASEBAND_CONFIG_AGC_TAB);
355 	if (!rtstatus) {
356 		pr_err("AGC Table Fail\n");
357 		return false;
358 	}
359 	rtlphy->cck_high_power =
360 	  (bool)(rtl_get_bbreg(hw, RFPGA0_XA_HSSIPARAMETER2, 0x200));
361 
362 	return true;
363 }
364 
365 static bool _rtl88e_phy_config_mac_with_headerfile(struct ieee80211_hw *hw)
366 {
367 	struct rtl_priv *rtlpriv = rtl_priv(hw);
368 	u32 i;
369 	u32 arraylength;
370 	u32 *ptrarray;
371 
372 	rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE, "Read Rtl8188EMACPHY_Array\n");
373 	arraylength = RTL8188EEMAC_1T_ARRAYLEN;
374 	ptrarray = RTL8188EEMAC_1T_ARRAY;
375 	rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
376 		"Img:RTL8188EEMAC_1T_ARRAY LEN %d\n", arraylength);
377 	for (i = 0; i < arraylength; i = i + 2)
378 		rtl_write_byte(rtlpriv, ptrarray[i], (u8)ptrarray[i + 1]);
379 	return true;
380 }
381 
382 #define READ_NEXT_PAIR(v1, v2, i)			\
383 	do {						\
384 		i += 2; v1 = array_table[i];		\
385 		v2 = array_table[i+1];			\
386 	} while (0)
387 
388 static void handle_branch1(struct ieee80211_hw *hw, u16 arraylen,
389 			   u32 *array_table)
390 {
391 	u32 v1;
392 	u32 v2;
393 	int i;
394 
395 	for (i = 0; i < arraylen; i = i + 2) {
396 		v1 = array_table[i];
397 		v2 = array_table[i+1];
398 		if (v1 < 0xcdcdcdcd) {
399 			_rtl8188e_config_bb_reg(hw, v1, v2);
400 		} else { /*This line is the start line of branch.*/
401 			/* to protect READ_NEXT_PAIR not overrun */
402 			if (i >= arraylen - 2)
403 				break;
404 
405 			if (!_rtl88e_check_condition(hw, array_table[i])) {
406 				/*Discard the following (offset, data) pairs*/
407 				READ_NEXT_PAIR(v1, v2, i);
408 				while (v2 != 0xDEAD &&
409 				       v2 != 0xCDEF &&
410 				       v2 != 0xCDCD && i < arraylen - 2)
411 					READ_NEXT_PAIR(v1, v2, i);
412 				i -= 2; /* prevent from for-loop += 2*/
413 			} else { /* Configure matched pairs and skip
414 				  * to end of if-else.
415 				  */
416 				READ_NEXT_PAIR(v1, v2, i);
417 				while (v2 != 0xDEAD &&
418 				       v2 != 0xCDEF &&
419 				       v2 != 0xCDCD && i < arraylen - 2) {
420 					_rtl8188e_config_bb_reg(hw, v1, v2);
421 					READ_NEXT_PAIR(v1, v2, i);
422 				}
423 
424 				while (v2 != 0xDEAD && i < arraylen - 2)
425 					READ_NEXT_PAIR(v1, v2, i);
426 			}
427 		}
428 	}
429 }
430 
431 static void handle_branch2(struct ieee80211_hw *hw, u16 arraylen,
432 			   u32 *array_table)
433 {
434 	struct rtl_priv *rtlpriv = rtl_priv(hw);
435 	u32 v1;
436 	u32 v2;
437 	int i;
438 
439 	for (i = 0; i < arraylen; i = i + 2) {
440 		v1 = array_table[i];
441 		v2 = array_table[i+1];
442 		if (v1 < 0xCDCDCDCD) {
443 			rtl_set_bbreg(hw, array_table[i], MASKDWORD,
444 				      array_table[i + 1]);
445 			udelay(1);
446 			continue;
447 		} else { /*This line is the start line of branch.*/
448 			/* to protect READ_NEXT_PAIR not overrun */
449 			if (i >= arraylen - 2)
450 				break;
451 
452 			if (!_rtl88e_check_condition(hw, array_table[i])) {
453 				/*Discard the following (offset, data) pairs*/
454 				READ_NEXT_PAIR(v1, v2, i);
455 				while (v2 != 0xDEAD &&
456 				       v2 != 0xCDEF &&
457 				       v2 != 0xCDCD && i < arraylen - 2)
458 					READ_NEXT_PAIR(v1, v2, i);
459 				i -= 2; /* prevent from for-loop += 2*/
460 			} else { /* Configure matched pairs and skip
461 				  * to end of if-else.
462 				  */
463 				READ_NEXT_PAIR(v1, v2, i);
464 				while (v2 != 0xDEAD &&
465 				       v2 != 0xCDEF &&
466 				       v2 != 0xCDCD && i < arraylen - 2) {
467 					rtl_set_bbreg(hw, array_table[i],
468 						      MASKDWORD,
469 						      array_table[i + 1]);
470 					udelay(1);
471 					READ_NEXT_PAIR(v1, v2, i);
472 				}
473 
474 				while (v2 != 0xDEAD && i < arraylen - 2)
475 					READ_NEXT_PAIR(v1, v2, i);
476 			}
477 		}
478 		rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
479 			"The agctab_array_table[0] is %x Rtl818EEPHY_REGArray[1] is %x\n",
480 			array_table[i], array_table[i + 1]);
481 	}
482 }
483 
484 static bool phy_config_bb_with_headerfile(struct ieee80211_hw *hw,
485 					  u8 configtype)
486 {
487 	u32 *array_table;
488 	u16 arraylen;
489 
490 	if (configtype == BASEBAND_CONFIG_PHY_REG) {
491 		arraylen = RTL8188EEPHY_REG_1TARRAYLEN;
492 		array_table = RTL8188EEPHY_REG_1TARRAY;
493 		handle_branch1(hw, arraylen, array_table);
494 	} else if (configtype == BASEBAND_CONFIG_AGC_TAB) {
495 		arraylen = RTL8188EEAGCTAB_1TARRAYLEN;
496 		array_table = RTL8188EEAGCTAB_1TARRAY;
497 		handle_branch2(hw, arraylen, array_table);
498 	}
499 	return true;
500 }
501 
502 static void store_pwrindex_rate_offset(struct ieee80211_hw *hw,
503 				       u32 regaddr, u32 bitmask,
504 				       u32 data)
505 {
506 	struct rtl_priv *rtlpriv = rtl_priv(hw);
507 	struct rtl_phy *rtlphy = &rtlpriv->phy;
508 	int count = rtlphy->pwrgroup_cnt;
509 
510 	if (regaddr == RTXAGC_A_RATE18_06) {
511 		rtlphy->mcs_txpwrlevel_origoffset[count][0] = data;
512 		rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
513 			"MCSTxPowerLevelOriginalOffset[%d][0] = 0x%x\n",
514 			count,
515 			rtlphy->mcs_txpwrlevel_origoffset[count][0]);
516 	}
517 	if (regaddr == RTXAGC_A_RATE54_24) {
518 		rtlphy->mcs_txpwrlevel_origoffset[count][1] = data;
519 		rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
520 			"MCSTxPowerLevelOriginalOffset[%d][1] = 0x%x\n",
521 			count,
522 			rtlphy->mcs_txpwrlevel_origoffset[count][1]);
523 	}
524 	if (regaddr == RTXAGC_A_CCK1_MCS32) {
525 		rtlphy->mcs_txpwrlevel_origoffset[count][6] = data;
526 		rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
527 			"MCSTxPowerLevelOriginalOffset[%d][6] = 0x%x\n",
528 			count,
529 			rtlphy->mcs_txpwrlevel_origoffset[count][6]);
530 	}
531 	if (regaddr == RTXAGC_B_CCK11_A_CCK2_11 && bitmask == 0xffffff00) {
532 		rtlphy->mcs_txpwrlevel_origoffset[count][7] = data;
533 		rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
534 			"MCSTxPowerLevelOriginalOffset[%d][7] = 0x%x\n",
535 			count,
536 			rtlphy->mcs_txpwrlevel_origoffset[count][7]);
537 	}
538 	if (regaddr == RTXAGC_A_MCS03_MCS00) {
539 		rtlphy->mcs_txpwrlevel_origoffset[count][2] = data;
540 		rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
541 			"MCSTxPowerLevelOriginalOffset[%d][2] = 0x%x\n",
542 			count,
543 			rtlphy->mcs_txpwrlevel_origoffset[count][2]);
544 	}
545 	if (regaddr == RTXAGC_A_MCS07_MCS04) {
546 		rtlphy->mcs_txpwrlevel_origoffset[count][3] = data;
547 		rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
548 			"MCSTxPowerLevelOriginalOffset[%d][3] = 0x%x\n",
549 			count,
550 			rtlphy->mcs_txpwrlevel_origoffset[count][3]);
551 	}
552 	if (regaddr == RTXAGC_A_MCS11_MCS08) {
553 		rtlphy->mcs_txpwrlevel_origoffset[count][4] = data;
554 		rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
555 			"MCSTxPowerLevelOriginalOffset[%d][4] = 0x%x\n",
556 			count,
557 			rtlphy->mcs_txpwrlevel_origoffset[count][4]);
558 	}
559 	if (regaddr == RTXAGC_A_MCS15_MCS12) {
560 		rtlphy->mcs_txpwrlevel_origoffset[count][5] = data;
561 		if (get_rf_type(rtlphy) == RF_1T1R) {
562 			count++;
563 			rtlphy->pwrgroup_cnt = count;
564 		}
565 		rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
566 			"MCSTxPowerLevelOriginalOffset[%d][5] = 0x%x\n",
567 			count,
568 			rtlphy->mcs_txpwrlevel_origoffset[count][5]);
569 	}
570 	if (regaddr == RTXAGC_B_RATE18_06) {
571 		rtlphy->mcs_txpwrlevel_origoffset[count][8] = data;
572 		rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
573 			"MCSTxPowerLevelOriginalOffset[%d][8] = 0x%x\n",
574 			count,
575 			rtlphy->mcs_txpwrlevel_origoffset[count][8]);
576 	}
577 	if (regaddr == RTXAGC_B_RATE54_24) {
578 		rtlphy->mcs_txpwrlevel_origoffset[count][9] = data;
579 		rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
580 			"MCSTxPowerLevelOriginalOffset[%d][9] = 0x%x\n",
581 			count,
582 			rtlphy->mcs_txpwrlevel_origoffset[count][9]);
583 	}
584 	if (regaddr == RTXAGC_B_CCK1_55_MCS32) {
585 		rtlphy->mcs_txpwrlevel_origoffset[count][14] = data;
586 		rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
587 			"MCSTxPowerLevelOriginalOffset[%d][14] = 0x%x\n",
588 			count,
589 			rtlphy->mcs_txpwrlevel_origoffset[count][14]);
590 	}
591 	if (regaddr == RTXAGC_B_CCK11_A_CCK2_11 && bitmask == 0x000000ff) {
592 		rtlphy->mcs_txpwrlevel_origoffset[count][15] = data;
593 		rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
594 			"MCSTxPowerLevelOriginalOffset[%d][15] = 0x%x\n",
595 			count,
596 			rtlphy->mcs_txpwrlevel_origoffset[count][15]);
597 	}
598 	if (regaddr == RTXAGC_B_MCS03_MCS00) {
599 		rtlphy->mcs_txpwrlevel_origoffset[count][10] = data;
600 		rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
601 			"MCSTxPowerLevelOriginalOffset[%d][10] = 0x%x\n",
602 			count,
603 			rtlphy->mcs_txpwrlevel_origoffset[count][10]);
604 	}
605 	if (regaddr == RTXAGC_B_MCS07_MCS04) {
606 		rtlphy->mcs_txpwrlevel_origoffset[count][11] = data;
607 		rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
608 			"MCSTxPowerLevelOriginalOffset[%d][11] = 0x%x\n",
609 			count,
610 			rtlphy->mcs_txpwrlevel_origoffset[count][11]);
611 	}
612 	if (regaddr == RTXAGC_B_MCS11_MCS08) {
613 		rtlphy->mcs_txpwrlevel_origoffset[count][12] = data;
614 		rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
615 			"MCSTxPowerLevelOriginalOffset[%d][12] = 0x%x\n",
616 			count,
617 			rtlphy->mcs_txpwrlevel_origoffset[count][12]);
618 	}
619 	if (regaddr == RTXAGC_B_MCS15_MCS12) {
620 		rtlphy->mcs_txpwrlevel_origoffset[count][13] = data;
621 		rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
622 			"MCSTxPowerLevelOriginalOffset[%d][13] = 0x%x\n",
623 			count,
624 			rtlphy->mcs_txpwrlevel_origoffset[count][13]);
625 		if (get_rf_type(rtlphy) != RF_1T1R) {
626 			count++;
627 			rtlphy->pwrgroup_cnt = count;
628 		}
629 	}
630 }
631 
632 static bool phy_config_bb_with_pghdr(struct ieee80211_hw *hw, u8 configtype)
633 {
634 	struct rtl_priv *rtlpriv = rtl_priv(hw);
635 	int i;
636 	u32 *phy_reg_page;
637 	u16 phy_reg_page_len;
638 	u32 v1 = 0, v2 = 0;
639 
640 	phy_reg_page_len = RTL8188EEPHY_REG_ARRAY_PGLEN;
641 	phy_reg_page = RTL8188EEPHY_REG_ARRAY_PG;
642 
643 	if (configtype == BASEBAND_CONFIG_PHY_REG) {
644 		for (i = 0; i < phy_reg_page_len; i = i + 3) {
645 			v1 = phy_reg_page[i];
646 			v2 = phy_reg_page[i+1];
647 
648 			if (v1 < 0xcdcdcdcd) {
649 				if (phy_reg_page[i] == 0xfe)
650 					mdelay(50);
651 				else if (phy_reg_page[i] == 0xfd)
652 					mdelay(5);
653 				else if (phy_reg_page[i] == 0xfc)
654 					mdelay(1);
655 				else if (phy_reg_page[i] == 0xfb)
656 					udelay(50);
657 				else if (phy_reg_page[i] == 0xfa)
658 					udelay(5);
659 				else if (phy_reg_page[i] == 0xf9)
660 					udelay(1);
661 
662 				store_pwrindex_rate_offset(hw, phy_reg_page[i],
663 							   phy_reg_page[i + 1],
664 							   phy_reg_page[i + 2]);
665 				continue;
666 			} else {
667 				if (!_rtl88e_check_condition(hw,
668 							     phy_reg_page[i])) {
669 					/*don't need the hw_body*/
670 				    i += 2; /* skip the pair of expression*/
671 				    /* to protect 'i+1' 'i+2' not overrun */
672 				    if (i >= phy_reg_page_len - 2)
673 					break;
674 
675 				    v1 = phy_reg_page[i];
676 				    v2 = phy_reg_page[i+1];
677 				    while (v2 != 0xDEAD &&
678 					   i < phy_reg_page_len - 5) {
679 					i += 3;
680 					v1 = phy_reg_page[i];
681 					v2 = phy_reg_page[i+1];
682 				    }
683 				}
684 			}
685 		}
686 	} else {
687 		rtl_dbg(rtlpriv, COMP_SEND, DBG_TRACE,
688 			"configtype != BaseBand_Config_PHY_REG\n");
689 	}
690 	return true;
691 }
692 
693 #define READ_NEXT_RF_PAIR(v1, v2, i) \
694 do { \
695 	i += 2; \
696 	v1 = radioa_array_table[i]; \
697 	v2 = radioa_array_table[i+1]; \
698 } while (0)
699 
700 static void process_path_a(struct ieee80211_hw *hw,
701 			   u16  radioa_arraylen,
702 			   u32 *radioa_array_table)
703 {
704 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
705 	u32 v1, v2;
706 	int i;
707 
708 	for (i = 0; i < radioa_arraylen; i = i + 2) {
709 		v1 = radioa_array_table[i];
710 		v2 = radioa_array_table[i+1];
711 		if (v1 < 0xcdcdcdcd) {
712 			_rtl8188e_config_rf_radio_a(hw, v1, v2);
713 		} else { /*This line is the start line of branch.*/
714 			/* to protect READ_NEXT_PAIR not overrun */
715 			if (i >= radioa_arraylen - 2)
716 				break;
717 
718 			if (!_rtl88e_check_condition(hw, radioa_array_table[i])) {
719 				/*Discard the following (offset, data) pairs*/
720 				READ_NEXT_RF_PAIR(v1, v2, i);
721 				while (v2 != 0xDEAD &&
722 				       v2 != 0xCDEF &&
723 				       v2 != 0xCDCD &&
724 				       i < radioa_arraylen - 2) {
725 					READ_NEXT_RF_PAIR(v1, v2, i);
726 				}
727 				i -= 2; /* prevent from for-loop += 2*/
728 			} else { /* Configure matched pairs and
729 				  * skip to end of if-else.
730 				  */
731 				READ_NEXT_RF_PAIR(v1, v2, i);
732 				while (v2 != 0xDEAD &&
733 				       v2 != 0xCDEF &&
734 				       v2 != 0xCDCD &&
735 				       i < radioa_arraylen - 2) {
736 					_rtl8188e_config_rf_radio_a(hw, v1, v2);
737 					READ_NEXT_RF_PAIR(v1, v2, i);
738 				}
739 
740 				while (v2 != 0xDEAD &&
741 				       i < radioa_arraylen - 2)
742 					READ_NEXT_RF_PAIR(v1, v2, i);
743 			}
744 		}
745 	}
746 
747 	if (rtlhal->oem_id == RT_CID_819X_HP)
748 		_rtl8188e_config_rf_radio_a(hw, 0x52, 0x7E4BD);
749 }
750 
751 bool rtl88e_phy_config_rf_with_headerfile(struct ieee80211_hw *hw,
752 					  enum radio_path rfpath)
753 {
754 	struct rtl_priv *rtlpriv = rtl_priv(hw);
755 	u32 *radioa_array_table;
756 	u16 radioa_arraylen;
757 
758 	radioa_arraylen = RTL8188EE_RADIOA_1TARRAYLEN;
759 	radioa_array_table = RTL8188EE_RADIOA_1TARRAY;
760 	rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
761 		"Radio_A:RTL8188EE_RADIOA_1TARRAY %d\n", radioa_arraylen);
762 	rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "Radio No %x\n", rfpath);
763 	switch (rfpath) {
764 	case RF90_PATH_A:
765 		process_path_a(hw, radioa_arraylen, radioa_array_table);
766 		break;
767 	case RF90_PATH_B:
768 	case RF90_PATH_C:
769 	case RF90_PATH_D:
770 		break;
771 	}
772 	return true;
773 }
774 
775 void rtl88e_phy_get_hw_reg_originalvalue(struct ieee80211_hw *hw)
776 {
777 	struct rtl_priv *rtlpriv = rtl_priv(hw);
778 	struct rtl_phy *rtlphy = &rtlpriv->phy;
779 
780 	rtlphy->default_initialgain[0] =
781 	    (u8)rtl_get_bbreg(hw, ROFDM0_XAAGCCORE1, MASKBYTE0);
782 	rtlphy->default_initialgain[1] =
783 	    (u8)rtl_get_bbreg(hw, ROFDM0_XBAGCCORE1, MASKBYTE0);
784 	rtlphy->default_initialgain[2] =
785 	    (u8)rtl_get_bbreg(hw, ROFDM0_XCAGCCORE1, MASKBYTE0);
786 	rtlphy->default_initialgain[3] =
787 	    (u8)rtl_get_bbreg(hw, ROFDM0_XDAGCCORE1, MASKBYTE0);
788 
789 	rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
790 		"Default initial gain (c50=0x%x, c58=0x%x, c60=0x%x, c68=0x%x\n",
791 		rtlphy->default_initialgain[0],
792 		rtlphy->default_initialgain[1],
793 		rtlphy->default_initialgain[2],
794 		rtlphy->default_initialgain[3]);
795 
796 	rtlphy->framesync = (u8)rtl_get_bbreg(hw, ROFDM0_RXDETECTOR3,
797 					      MASKBYTE0);
798 	rtlphy->framesync_c34 = rtl_get_bbreg(hw, ROFDM0_RXDETECTOR2,
799 					      MASKDWORD);
800 
801 	rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
802 		"Default framesync (0x%x) = 0x%x\n",
803 		ROFDM0_RXDETECTOR3, rtlphy->framesync);
804 }
805 
806 static void _rtl88e_phy_init_bb_rf_register_definition(struct ieee80211_hw *hw)
807 {
808 	struct rtl_priv *rtlpriv = rtl_priv(hw);
809 	struct rtl_phy *rtlphy = &rtlpriv->phy;
810 
811 	rtlphy->phyreg_def[RF90_PATH_A].rfintfs = RFPGA0_XAB_RFINTERFACESW;
812 	rtlphy->phyreg_def[RF90_PATH_B].rfintfs = RFPGA0_XAB_RFINTERFACESW;
813 	rtlphy->phyreg_def[RF90_PATH_C].rfintfs = RFPGA0_XCD_RFINTERFACESW;
814 	rtlphy->phyreg_def[RF90_PATH_D].rfintfs = RFPGA0_XCD_RFINTERFACESW;
815 
816 	rtlphy->phyreg_def[RF90_PATH_A].rfintfi = RFPGA0_XAB_RFINTERFACERB;
817 	rtlphy->phyreg_def[RF90_PATH_B].rfintfi = RFPGA0_XAB_RFINTERFACERB;
818 	rtlphy->phyreg_def[RF90_PATH_C].rfintfi = RFPGA0_XCD_RFINTERFACERB;
819 	rtlphy->phyreg_def[RF90_PATH_D].rfintfi = RFPGA0_XCD_RFINTERFACERB;
820 
821 	rtlphy->phyreg_def[RF90_PATH_A].rfintfo = RFPGA0_XA_RFINTERFACEOE;
822 	rtlphy->phyreg_def[RF90_PATH_B].rfintfo = RFPGA0_XB_RFINTERFACEOE;
823 
824 	rtlphy->phyreg_def[RF90_PATH_A].rfintfe = RFPGA0_XA_RFINTERFACEOE;
825 	rtlphy->phyreg_def[RF90_PATH_B].rfintfe = RFPGA0_XB_RFINTERFACEOE;
826 
827 	rtlphy->phyreg_def[RF90_PATH_A].rf3wire_offset =
828 	    RFPGA0_XA_LSSIPARAMETER;
829 	rtlphy->phyreg_def[RF90_PATH_B].rf3wire_offset =
830 	    RFPGA0_XB_LSSIPARAMETER;
831 
832 	rtlphy->phyreg_def[RF90_PATH_A].rflssi_select = RFPGA0_XAB_RFPARAMETER;
833 	rtlphy->phyreg_def[RF90_PATH_B].rflssi_select = RFPGA0_XAB_RFPARAMETER;
834 	rtlphy->phyreg_def[RF90_PATH_C].rflssi_select = RFPGA0_XCD_RFPARAMETER;
835 	rtlphy->phyreg_def[RF90_PATH_D].rflssi_select = RFPGA0_XCD_RFPARAMETER;
836 
837 	rtlphy->phyreg_def[RF90_PATH_A].rftxgain_stage = RFPGA0_TXGAINSTAGE;
838 	rtlphy->phyreg_def[RF90_PATH_B].rftxgain_stage = RFPGA0_TXGAINSTAGE;
839 	rtlphy->phyreg_def[RF90_PATH_C].rftxgain_stage = RFPGA0_TXGAINSTAGE;
840 	rtlphy->phyreg_def[RF90_PATH_D].rftxgain_stage = RFPGA0_TXGAINSTAGE;
841 
842 	rtlphy->phyreg_def[RF90_PATH_A].rfhssi_para1 = RFPGA0_XA_HSSIPARAMETER1;
843 	rtlphy->phyreg_def[RF90_PATH_B].rfhssi_para1 = RFPGA0_XB_HSSIPARAMETER1;
844 
845 	rtlphy->phyreg_def[RF90_PATH_A].rfhssi_para2 = RFPGA0_XA_HSSIPARAMETER2;
846 	rtlphy->phyreg_def[RF90_PATH_B].rfhssi_para2 = RFPGA0_XB_HSSIPARAMETER2;
847 
848 	rtlphy->phyreg_def[RF90_PATH_A].rfsw_ctrl =
849 	    RFPGA0_XAB_SWITCHCONTROL;
850 	rtlphy->phyreg_def[RF90_PATH_B].rfsw_ctrl =
851 	    RFPGA0_XAB_SWITCHCONTROL;
852 	rtlphy->phyreg_def[RF90_PATH_C].rfsw_ctrl =
853 	    RFPGA0_XCD_SWITCHCONTROL;
854 	rtlphy->phyreg_def[RF90_PATH_D].rfsw_ctrl =
855 	    RFPGA0_XCD_SWITCHCONTROL;
856 
857 	rtlphy->phyreg_def[RF90_PATH_A].rfagc_control1 = ROFDM0_XAAGCCORE1;
858 	rtlphy->phyreg_def[RF90_PATH_B].rfagc_control1 = ROFDM0_XBAGCCORE1;
859 	rtlphy->phyreg_def[RF90_PATH_C].rfagc_control1 = ROFDM0_XCAGCCORE1;
860 	rtlphy->phyreg_def[RF90_PATH_D].rfagc_control1 = ROFDM0_XDAGCCORE1;
861 
862 	rtlphy->phyreg_def[RF90_PATH_A].rfagc_control2 = ROFDM0_XAAGCCORE2;
863 	rtlphy->phyreg_def[RF90_PATH_B].rfagc_control2 = ROFDM0_XBAGCCORE2;
864 	rtlphy->phyreg_def[RF90_PATH_C].rfagc_control2 = ROFDM0_XCAGCCORE2;
865 	rtlphy->phyreg_def[RF90_PATH_D].rfagc_control2 = ROFDM0_XDAGCCORE2;
866 
867 	rtlphy->phyreg_def[RF90_PATH_A].rfrxiq_imbal = ROFDM0_XARXIQIMBALANCE;
868 	rtlphy->phyreg_def[RF90_PATH_B].rfrxiq_imbal = ROFDM0_XBRXIQIMBALANCE;
869 	rtlphy->phyreg_def[RF90_PATH_C].rfrxiq_imbal = ROFDM0_XCRXIQIMBANLANCE;
870 	rtlphy->phyreg_def[RF90_PATH_D].rfrxiq_imbal = ROFDM0_XDRXIQIMBALANCE;
871 
872 	rtlphy->phyreg_def[RF90_PATH_A].rfrx_afe = ROFDM0_XARXAFE;
873 	rtlphy->phyreg_def[RF90_PATH_B].rfrx_afe = ROFDM0_XBRXAFE;
874 	rtlphy->phyreg_def[RF90_PATH_C].rfrx_afe = ROFDM0_XCRXAFE;
875 	rtlphy->phyreg_def[RF90_PATH_D].rfrx_afe = ROFDM0_XDRXAFE;
876 
877 	rtlphy->phyreg_def[RF90_PATH_A].rftxiq_imbal = ROFDM0_XATXIQIMBALANCE;
878 	rtlphy->phyreg_def[RF90_PATH_B].rftxiq_imbal = ROFDM0_XBTXIQIMBALANCE;
879 	rtlphy->phyreg_def[RF90_PATH_C].rftxiq_imbal = ROFDM0_XCTXIQIMBALANCE;
880 	rtlphy->phyreg_def[RF90_PATH_D].rftxiq_imbal = ROFDM0_XDTXIQIMBALANCE;
881 
882 	rtlphy->phyreg_def[RF90_PATH_A].rftx_afe = ROFDM0_XATXAFE;
883 	rtlphy->phyreg_def[RF90_PATH_B].rftx_afe = ROFDM0_XBTXAFE;
884 
885 	rtlphy->phyreg_def[RF90_PATH_A].rf_rb = RFPGA0_XA_LSSIREADBACK;
886 	rtlphy->phyreg_def[RF90_PATH_B].rf_rb = RFPGA0_XB_LSSIREADBACK;
887 
888 	rtlphy->phyreg_def[RF90_PATH_A].rf_rbpi = TRANSCEIVEA_HSPI_READBACK;
889 	rtlphy->phyreg_def[RF90_PATH_B].rf_rbpi = TRANSCEIVEB_HSPI_READBACK;
890 }
891 
892 void rtl88e_phy_get_txpower_level(struct ieee80211_hw *hw, long *powerlevel)
893 {
894 	struct rtl_priv *rtlpriv = rtl_priv(hw);
895 	struct rtl_phy *rtlphy = &rtlpriv->phy;
896 	u8 txpwr_level;
897 	long txpwr_dbm;
898 
899 	txpwr_level = rtlphy->cur_cck_txpwridx;
900 	txpwr_dbm = _rtl88e_phy_txpwr_idx_to_dbm(hw,
901 						 WIRELESS_MODE_B, txpwr_level);
902 	txpwr_level = rtlphy->cur_ofdm24g_txpwridx;
903 	if (_rtl88e_phy_txpwr_idx_to_dbm(hw,
904 					 WIRELESS_MODE_G,
905 					 txpwr_level) > txpwr_dbm)
906 		txpwr_dbm =
907 		    _rtl88e_phy_txpwr_idx_to_dbm(hw, WIRELESS_MODE_G,
908 						 txpwr_level);
909 	txpwr_level = rtlphy->cur_ofdm24g_txpwridx;
910 	if (_rtl88e_phy_txpwr_idx_to_dbm(hw,
911 					 WIRELESS_MODE_N_24G,
912 					 txpwr_level) > txpwr_dbm)
913 		txpwr_dbm =
914 		    _rtl88e_phy_txpwr_idx_to_dbm(hw, WIRELESS_MODE_N_24G,
915 						 txpwr_level);
916 	*powerlevel = txpwr_dbm;
917 }
918 
919 static void handle_path_a(struct rtl_efuse *rtlefuse, u8 index,
920 			  u8 *cckpowerlevel, u8 *ofdmpowerlevel,
921 			  u8 *bw20powerlevel, u8 *bw40powerlevel)
922 {
923 	cckpowerlevel[RF90_PATH_A] =
924 	    rtlefuse->txpwrlevel_cck[RF90_PATH_A][index];
925 		/*-8~7 */
926 	if (rtlefuse->txpwr_ht20diff[RF90_PATH_A][index] > 0x0f)
927 		bw20powerlevel[RF90_PATH_A] =
928 		  rtlefuse->txpwrlevel_ht40_1s[RF90_PATH_A][index] -
929 		  (~(rtlefuse->txpwr_ht20diff[RF90_PATH_A][index]) + 1);
930 	else
931 		bw20powerlevel[RF90_PATH_A] =
932 		  rtlefuse->txpwrlevel_ht40_1s[RF90_PATH_A][index] +
933 		  rtlefuse->txpwr_ht20diff[RF90_PATH_A][index];
934 	if (rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][index] > 0xf)
935 		ofdmpowerlevel[RF90_PATH_A] =
936 		  rtlefuse->txpwrlevel_ht40_1s[RF90_PATH_A][index] -
937 		  (~(rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][index])+1);
938 	else
939 		ofdmpowerlevel[RF90_PATH_A] =
940 		rtlefuse->txpwrlevel_ht40_1s[RF90_PATH_A][index] +
941 		  rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][index];
942 	bw40powerlevel[RF90_PATH_A] =
943 	  rtlefuse->txpwrlevel_ht40_1s[RF90_PATH_A][index];
944 }
945 
946 static void _rtl88e_get_txpower_index(struct ieee80211_hw *hw, u8 channel,
947 				      u8 *cckpowerlevel, u8 *ofdmpowerlevel,
948 				      u8 *bw20powerlevel, u8 *bw40powerlevel)
949 {
950 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
951 	u8 index = (channel - 1);
952 	u8 rf_path = 0;
953 
954 	for (rf_path = 0; rf_path < 2; rf_path++) {
955 		if (rf_path == RF90_PATH_A) {
956 			handle_path_a(rtlefuse, index, cckpowerlevel,
957 				      ofdmpowerlevel, bw20powerlevel,
958 				      bw40powerlevel);
959 		} else if (rf_path == RF90_PATH_B) {
960 			cckpowerlevel[RF90_PATH_B] =
961 			  rtlefuse->txpwrlevel_cck[RF90_PATH_B][index];
962 			bw20powerlevel[RF90_PATH_B] =
963 			  rtlefuse->txpwrlevel_ht40_1s[RF90_PATH_B][index] +
964 			  rtlefuse->txpwr_ht20diff[RF90_PATH_B][index];
965 			ofdmpowerlevel[RF90_PATH_B] =
966 			  rtlefuse->txpwrlevel_ht40_1s[RF90_PATH_B][index] +
967 			  rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][index];
968 			bw40powerlevel[RF90_PATH_B] =
969 			  rtlefuse->txpwrlevel_ht40_1s[RF90_PATH_B][index];
970 		}
971 	}
972 
973 }
974 
975 static void _rtl88e_ccxpower_index_check(struct ieee80211_hw *hw,
976 					 u8 channel, u8 *cckpowerlevel,
977 					 u8 *ofdmpowerlevel, u8 *bw20powerlevel,
978 					 u8 *bw40powerlevel)
979 {
980 	struct rtl_priv *rtlpriv = rtl_priv(hw);
981 	struct rtl_phy *rtlphy = &rtlpriv->phy;
982 
983 	rtlphy->cur_cck_txpwridx = cckpowerlevel[0];
984 	rtlphy->cur_ofdm24g_txpwridx = ofdmpowerlevel[0];
985 	rtlphy->cur_bw20_txpwridx = bw20powerlevel[0];
986 	rtlphy->cur_bw40_txpwridx = bw40powerlevel[0];
987 
988 }
989 
990 void rtl88e_phy_set_txpower_level(struct ieee80211_hw *hw, u8 channel)
991 {
992 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
993 	u8 cckpowerlevel[MAX_TX_COUNT]  = {0};
994 	u8 ofdmpowerlevel[MAX_TX_COUNT] = {0};
995 	u8 bw20powerlevel[MAX_TX_COUNT] = {0};
996 	u8 bw40powerlevel[MAX_TX_COUNT] = {0};
997 
998 	if (!rtlefuse->txpwr_fromeprom)
999 		return;
1000 	_rtl88e_get_txpower_index(hw, channel,
1001 				  &cckpowerlevel[0], &ofdmpowerlevel[0],
1002 				  &bw20powerlevel[0], &bw40powerlevel[0]);
1003 	_rtl88e_ccxpower_index_check(hw, channel,
1004 				     &cckpowerlevel[0], &ofdmpowerlevel[0],
1005 				     &bw20powerlevel[0], &bw40powerlevel[0]);
1006 	rtl88e_phy_rf6052_set_cck_txpower(hw, &cckpowerlevel[0]);
1007 	rtl88e_phy_rf6052_set_ofdm_txpower(hw, &ofdmpowerlevel[0],
1008 					   &bw20powerlevel[0],
1009 					   &bw40powerlevel[0], channel);
1010 }
1011 
1012 static long _rtl88e_phy_txpwr_idx_to_dbm(struct ieee80211_hw *hw,
1013 					 enum wireless_mode wirelessmode,
1014 					 u8 txpwridx)
1015 {
1016 	long offset;
1017 	long pwrout_dbm;
1018 
1019 	switch (wirelessmode) {
1020 	case WIRELESS_MODE_B:
1021 		offset = -7;
1022 		break;
1023 	case WIRELESS_MODE_G:
1024 	case WIRELESS_MODE_N_24G:
1025 		offset = -8;
1026 		break;
1027 	default:
1028 		offset = -8;
1029 		break;
1030 	}
1031 	pwrout_dbm = txpwridx / 2 + offset;
1032 	return pwrout_dbm;
1033 }
1034 
1035 void rtl88e_phy_scan_operation_backup(struct ieee80211_hw *hw, u8 operation)
1036 {
1037 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1038 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1039 	enum io_type iotype;
1040 
1041 	if (!is_hal_stop(rtlhal)) {
1042 		switch (operation) {
1043 		case SCAN_OPT_BACKUP_BAND0:
1044 			iotype = IO_CMD_PAUSE_BAND0_DM_BY_SCAN;
1045 			rtlpriv->cfg->ops->set_hw_reg(hw,
1046 						      HW_VAR_IO_CMD,
1047 						      (u8 *)&iotype);
1048 
1049 			break;
1050 		case SCAN_OPT_RESTORE:
1051 			iotype = IO_CMD_RESUME_DM_BY_SCAN;
1052 			rtlpriv->cfg->ops->set_hw_reg(hw,
1053 						      HW_VAR_IO_CMD,
1054 						      (u8 *)&iotype);
1055 			break;
1056 		default:
1057 			pr_err("Unknown Scan Backup operation.\n");
1058 			break;
1059 		}
1060 	}
1061 }
1062 
1063 void rtl88e_phy_set_bw_mode_callback(struct ieee80211_hw *hw)
1064 {
1065 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1066 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1067 	struct rtl_phy *rtlphy = &rtlpriv->phy;
1068 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1069 	u8 reg_bw_opmode;
1070 	u8 reg_prsr_rsc;
1071 
1072 	rtl_dbg(rtlpriv, COMP_SCAN, DBG_TRACE,
1073 		"Switch to %s bandwidth\n",
1074 		rtlphy->current_chan_bw == HT_CHANNEL_WIDTH_20 ?
1075 		"20MHz" : "40MHz");
1076 
1077 	if (is_hal_stop(rtlhal)) {
1078 		rtlphy->set_bwmode_inprogress = false;
1079 		return;
1080 	}
1081 
1082 	reg_bw_opmode = rtl_read_byte(rtlpriv, REG_BWOPMODE);
1083 	reg_prsr_rsc = rtl_read_byte(rtlpriv, REG_RRSR + 2);
1084 
1085 	switch (rtlphy->current_chan_bw) {
1086 	case HT_CHANNEL_WIDTH_20:
1087 		reg_bw_opmode |= BW_OPMODE_20MHZ;
1088 		rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode);
1089 		break;
1090 	case HT_CHANNEL_WIDTH_20_40:
1091 		reg_bw_opmode &= ~BW_OPMODE_20MHZ;
1092 		rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode);
1093 		reg_prsr_rsc =
1094 		    (reg_prsr_rsc & 0x90) | (mac->cur_40_prime_sc << 5);
1095 		rtl_write_byte(rtlpriv, REG_RRSR + 2, reg_prsr_rsc);
1096 		break;
1097 	default:
1098 		pr_err("unknown bandwidth: %#X\n",
1099 		       rtlphy->current_chan_bw);
1100 		break;
1101 	}
1102 
1103 	switch (rtlphy->current_chan_bw) {
1104 	case HT_CHANNEL_WIDTH_20:
1105 		rtl_set_bbreg(hw, RFPGA0_RFMOD, BRFMOD, 0x0);
1106 		rtl_set_bbreg(hw, RFPGA1_RFMOD, BRFMOD, 0x0);
1107 	/*	rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10), 1);*/
1108 		break;
1109 	case HT_CHANNEL_WIDTH_20_40:
1110 		rtl_set_bbreg(hw, RFPGA0_RFMOD, BRFMOD, 0x1);
1111 		rtl_set_bbreg(hw, RFPGA1_RFMOD, BRFMOD, 0x1);
1112 
1113 		rtl_set_bbreg(hw, RCCK0_SYSTEM, BCCK_SIDEBAND,
1114 			      (mac->cur_40_prime_sc >> 1));
1115 		rtl_set_bbreg(hw, ROFDM1_LSTF, 0xC00, mac->cur_40_prime_sc);
1116 		/*rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10), 0);*/
1117 
1118 		rtl_set_bbreg(hw, 0x818, (BIT(26) | BIT(27)),
1119 			      (mac->cur_40_prime_sc ==
1120 			       HAL_PRIME_CHNL_OFFSET_LOWER) ? 2 : 1);
1121 		break;
1122 	default:
1123 		pr_err("unknown bandwidth: %#X\n",
1124 		       rtlphy->current_chan_bw);
1125 		break;
1126 	}
1127 	rtl88e_phy_rf6052_set_bandwidth(hw, rtlphy->current_chan_bw);
1128 	rtlphy->set_bwmode_inprogress = false;
1129 	rtl_dbg(rtlpriv, COMP_SCAN, DBG_LOUD, "\n");
1130 }
1131 
1132 void rtl88e_phy_set_bw_mode(struct ieee80211_hw *hw,
1133 			    enum nl80211_channel_type ch_type)
1134 {
1135 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1136 	struct rtl_phy *rtlphy = &rtlpriv->phy;
1137 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1138 	u8 tmp_bw = rtlphy->current_chan_bw;
1139 
1140 	if (rtlphy->set_bwmode_inprogress)
1141 		return;
1142 	rtlphy->set_bwmode_inprogress = true;
1143 	if ((!is_hal_stop(rtlhal)) && !(RT_CANNOT_IO(hw))) {
1144 		rtl88e_phy_set_bw_mode_callback(hw);
1145 	} else {
1146 		rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
1147 			"false driver sleep or unload\n");
1148 		rtlphy->set_bwmode_inprogress = false;
1149 		rtlphy->current_chan_bw = tmp_bw;
1150 	}
1151 }
1152 
1153 void rtl88e_phy_sw_chnl_callback(struct ieee80211_hw *hw)
1154 {
1155 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1156 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1157 	struct rtl_phy *rtlphy = &rtlpriv->phy;
1158 	u32 delay;
1159 
1160 	rtl_dbg(rtlpriv, COMP_SCAN, DBG_TRACE,
1161 		"switch to channel%d\n", rtlphy->current_channel);
1162 	if (is_hal_stop(rtlhal))
1163 		return;
1164 	do {
1165 		if (!rtlphy->sw_chnl_inprogress)
1166 			break;
1167 		if (!_rtl88e_phy_sw_chnl_step_by_step
1168 		    (hw, rtlphy->current_channel, &rtlphy->sw_chnl_stage,
1169 		     &rtlphy->sw_chnl_step, &delay)) {
1170 			if (delay > 0)
1171 				mdelay(delay);
1172 			else
1173 				continue;
1174 		} else {
1175 			rtlphy->sw_chnl_inprogress = false;
1176 		}
1177 		break;
1178 	} while (true);
1179 	rtl_dbg(rtlpriv, COMP_SCAN, DBG_TRACE, "\n");
1180 }
1181 
1182 u8 rtl88e_phy_sw_chnl(struct ieee80211_hw *hw)
1183 {
1184 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1185 	struct rtl_phy *rtlphy = &rtlpriv->phy;
1186 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1187 
1188 	if (rtlphy->sw_chnl_inprogress)
1189 		return 0;
1190 	if (rtlphy->set_bwmode_inprogress)
1191 		return 0;
1192 	WARN_ONCE((rtlphy->current_channel > 14),
1193 		  "rtl8188ee: WIRELESS_MODE_G but channel>14");
1194 	rtlphy->sw_chnl_inprogress = true;
1195 	rtlphy->sw_chnl_stage = 0;
1196 	rtlphy->sw_chnl_step = 0;
1197 	if (!(is_hal_stop(rtlhal)) && !(RT_CANNOT_IO(hw))) {
1198 		rtl88e_phy_sw_chnl_callback(hw);
1199 		rtl_dbg(rtlpriv, COMP_CHAN, DBG_LOUD,
1200 			"sw_chnl_inprogress false schedule workitem current channel %d\n",
1201 			rtlphy->current_channel);
1202 		rtlphy->sw_chnl_inprogress = false;
1203 	} else {
1204 		rtl_dbg(rtlpriv, COMP_CHAN, DBG_LOUD,
1205 			"sw_chnl_inprogress false driver sleep or unload\n");
1206 		rtlphy->sw_chnl_inprogress = false;
1207 	}
1208 	return 1;
1209 }
1210 
1211 static bool _rtl88e_phy_sw_chnl_step_by_step(struct ieee80211_hw *hw,
1212 					     u8 channel, u8 *stage, u8 *step,
1213 					     u32 *delay)
1214 {
1215 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1216 	struct rtl_phy *rtlphy = &rtlpriv->phy;
1217 	struct swchnlcmd precommoncmd[MAX_PRECMD_CNT];
1218 	u32 precommoncmdcnt;
1219 	struct swchnlcmd postcommoncmd[MAX_POSTCMD_CNT];
1220 	u32 postcommoncmdcnt;
1221 	struct swchnlcmd rfdependcmd[MAX_RFDEPENDCMD_CNT];
1222 	u32 rfdependcmdcnt;
1223 	struct swchnlcmd *currentcmd = NULL;
1224 	u8 rfpath;
1225 	u8 num_total_rfpath = rtlphy->num_total_rfpath;
1226 
1227 	precommoncmdcnt = 0;
1228 	_rtl88e_phy_set_sw_chnl_cmdarray(precommoncmd, precommoncmdcnt++,
1229 					 MAX_PRECMD_CNT,
1230 					 CMDID_SET_TXPOWEROWER_LEVEL, 0, 0, 0);
1231 	_rtl88e_phy_set_sw_chnl_cmdarray(precommoncmd, precommoncmdcnt++,
1232 					 MAX_PRECMD_CNT, CMDID_END, 0, 0, 0);
1233 
1234 	postcommoncmdcnt = 0;
1235 
1236 	_rtl88e_phy_set_sw_chnl_cmdarray(postcommoncmd, postcommoncmdcnt++,
1237 					 MAX_POSTCMD_CNT, CMDID_END, 0, 0, 0);
1238 
1239 	rfdependcmdcnt = 0;
1240 
1241 	WARN_ONCE((channel < 1 || channel > 14),
1242 		  "rtl8188ee: illegal channel for Zebra: %d\n", channel);
1243 
1244 	_rtl88e_phy_set_sw_chnl_cmdarray(rfdependcmd, rfdependcmdcnt++,
1245 					 MAX_RFDEPENDCMD_CNT, CMDID_RF_WRITEREG,
1246 					 RF_CHNLBW, channel, 10);
1247 
1248 	_rtl88e_phy_set_sw_chnl_cmdarray(rfdependcmd, rfdependcmdcnt++,
1249 					 MAX_RFDEPENDCMD_CNT, CMDID_END, 0, 0,
1250 					 0);
1251 
1252 	do {
1253 		switch (*stage) {
1254 		case 0:
1255 			currentcmd = &precommoncmd[*step];
1256 			break;
1257 		case 1:
1258 			currentcmd = &rfdependcmd[*step];
1259 			break;
1260 		case 2:
1261 			currentcmd = &postcommoncmd[*step];
1262 			break;
1263 		default:
1264 			pr_err("Invalid 'stage' = %d, Check it!\n",
1265 			       *stage);
1266 			return true;
1267 		}
1268 
1269 		if (currentcmd->cmdid == CMDID_END) {
1270 			if ((*stage) == 2)
1271 				return true;
1272 			(*stage)++;
1273 			(*step) = 0;
1274 			continue;
1275 		}
1276 
1277 		switch (currentcmd->cmdid) {
1278 		case CMDID_SET_TXPOWEROWER_LEVEL:
1279 			rtl88e_phy_set_txpower_level(hw, channel);
1280 			break;
1281 		case CMDID_WRITEPORT_ULONG:
1282 			rtl_write_dword(rtlpriv, currentcmd->para1,
1283 					currentcmd->para2);
1284 			break;
1285 		case CMDID_WRITEPORT_USHORT:
1286 			rtl_write_word(rtlpriv, currentcmd->para1,
1287 				       (u16)currentcmd->para2);
1288 			break;
1289 		case CMDID_WRITEPORT_UCHAR:
1290 			rtl_write_byte(rtlpriv, currentcmd->para1,
1291 				       (u8)currentcmd->para2);
1292 			break;
1293 		case CMDID_RF_WRITEREG:
1294 			for (rfpath = 0; rfpath < num_total_rfpath; rfpath++) {
1295 				rtlphy->rfreg_chnlval[rfpath] =
1296 				    ((rtlphy->rfreg_chnlval[rfpath] &
1297 				      0xfffffc00) | currentcmd->para2);
1298 
1299 				rtl_set_rfreg(hw, (enum radio_path)rfpath,
1300 					      currentcmd->para1,
1301 					      RFREG_OFFSET_MASK,
1302 					      rtlphy->rfreg_chnlval[rfpath]);
1303 			}
1304 			break;
1305 		default:
1306 			rtl_dbg(rtlpriv, COMP_ERR, DBG_LOUD,
1307 				"switch case %#x not processed\n",
1308 				currentcmd->cmdid);
1309 			break;
1310 		}
1311 
1312 		break;
1313 	} while (true);
1314 
1315 	(*delay) = currentcmd->msdelay;
1316 	(*step)++;
1317 	return false;
1318 }
1319 
1320 static bool _rtl88e_phy_set_sw_chnl_cmdarray(struct swchnlcmd *cmdtable,
1321 					     u32 cmdtableidx, u32 cmdtablesz,
1322 					     enum swchnlcmd_id cmdid,
1323 					     u32 para1, u32 para2, u32 msdelay)
1324 {
1325 	struct swchnlcmd *pcmd;
1326 
1327 	if (cmdtable == NULL) {
1328 		WARN_ONCE(true, "rtl8188ee: cmdtable cannot be NULL.\n");
1329 		return false;
1330 	}
1331 
1332 	if (cmdtableidx >= cmdtablesz)
1333 		return false;
1334 
1335 	pcmd = cmdtable + cmdtableidx;
1336 	pcmd->cmdid = cmdid;
1337 	pcmd->para1 = para1;
1338 	pcmd->para2 = para2;
1339 	pcmd->msdelay = msdelay;
1340 	return true;
1341 }
1342 
1343 static u8 _rtl88e_phy_path_a_iqk(struct ieee80211_hw *hw, bool config_pathb)
1344 {
1345 	u32 reg_eac, reg_e94, reg_e9c;
1346 	u8 result = 0x00;
1347 
1348 	rtl_set_bbreg(hw, 0xe30, MASKDWORD, 0x10008c1c);
1349 	rtl_set_bbreg(hw, 0xe34, MASKDWORD, 0x30008c1c);
1350 	rtl_set_bbreg(hw, 0xe38, MASKDWORD, 0x8214032a);
1351 	rtl_set_bbreg(hw, 0xe3c, MASKDWORD, 0x28160000);
1352 
1353 	rtl_set_bbreg(hw, 0xe4c, MASKDWORD, 0x00462911);
1354 	rtl_set_bbreg(hw, 0xe48, MASKDWORD, 0xf9000000);
1355 	rtl_set_bbreg(hw, 0xe48, MASKDWORD, 0xf8000000);
1356 
1357 	mdelay(IQK_DELAY_TIME);
1358 
1359 	reg_eac = rtl_get_bbreg(hw, 0xeac, MASKDWORD);
1360 	reg_e94 = rtl_get_bbreg(hw, 0xe94, MASKDWORD);
1361 	reg_e9c = rtl_get_bbreg(hw, 0xe9c, MASKDWORD);
1362 	rtl_get_bbreg(hw, 0xea4, MASKDWORD);
1363 
1364 	if (!(reg_eac & BIT(28)) &&
1365 	    (((reg_e94 & 0x03FF0000) >> 16) != 0x142) &&
1366 	    (((reg_e9c & 0x03FF0000) >> 16) != 0x42))
1367 		result |= 0x01;
1368 	return result;
1369 }
1370 
1371 static u8 _rtl88e_phy_path_b_iqk(struct ieee80211_hw *hw)
1372 {
1373 	u32 reg_eac, reg_eb4, reg_ebc, reg_ec4, reg_ecc;
1374 	u8 result = 0x00;
1375 
1376 	rtl_set_bbreg(hw, 0xe60, MASKDWORD, 0x00000002);
1377 	rtl_set_bbreg(hw, 0xe60, MASKDWORD, 0x00000000);
1378 	mdelay(IQK_DELAY_TIME);
1379 	reg_eac = rtl_get_bbreg(hw, 0xeac, MASKDWORD);
1380 	reg_eb4 = rtl_get_bbreg(hw, 0xeb4, MASKDWORD);
1381 	reg_ebc = rtl_get_bbreg(hw, 0xebc, MASKDWORD);
1382 	reg_ec4 = rtl_get_bbreg(hw, 0xec4, MASKDWORD);
1383 	reg_ecc = rtl_get_bbreg(hw, 0xecc, MASKDWORD);
1384 
1385 	if (!(reg_eac & BIT(31)) &&
1386 	    (((reg_eb4 & 0x03FF0000) >> 16) != 0x142) &&
1387 	    (((reg_ebc & 0x03FF0000) >> 16) != 0x42))
1388 		result |= 0x01;
1389 	else
1390 		return result;
1391 	if (!(reg_eac & BIT(30)) &&
1392 	    (((reg_ec4 & 0x03FF0000) >> 16) != 0x132) &&
1393 	    (((reg_ecc & 0x03FF0000) >> 16) != 0x36))
1394 		result |= 0x02;
1395 	return result;
1396 }
1397 
1398 static u8 _rtl88e_phy_path_a_rx_iqk(struct ieee80211_hw *hw, bool config_pathb)
1399 {
1400 	u32 reg_eac, reg_e94, reg_e9c, reg_ea4, u32temp;
1401 	u8 result = 0x00;
1402 
1403 	/*Get TXIMR Setting*/
1404 	/*Modify RX IQK mode table*/
1405 	rtl_set_bbreg(hw, RFPGA0_IQK, MASKDWORD, 0x00000000);
1406 	rtl_set_rfreg(hw, RF90_PATH_A, RF_WE_LUT, RFREG_OFFSET_MASK, 0x800a0);
1407 	rtl_set_rfreg(hw, RF90_PATH_A, RF_RCK_OS, RFREG_OFFSET_MASK, 0x30000);
1408 	rtl_set_rfreg(hw, RF90_PATH_A, RF_TXPA_G1, RFREG_OFFSET_MASK, 0x0000f);
1409 	rtl_set_rfreg(hw, RF90_PATH_A, RF_TXPA_G2, RFREG_OFFSET_MASK, 0xf117b);
1410 	rtl_set_bbreg(hw, RFPGA0_IQK, MASKDWORD, 0x80800000);
1411 
1412 	/*IQK Setting*/
1413 	rtl_set_bbreg(hw, RTX_IQK, MASKDWORD, 0x01007c00);
1414 	rtl_set_bbreg(hw, RRX_IQK, MASKDWORD, 0x81004800);
1415 
1416 	/*path a IQK setting*/
1417 	rtl_set_bbreg(hw, RTX_IQK_TONE_A, MASKDWORD, 0x10008c1c);
1418 	rtl_set_bbreg(hw, RRX_IQK_TONE_A, MASKDWORD, 0x30008c1c);
1419 	rtl_set_bbreg(hw, RTX_IQK_PI_A, MASKDWORD, 0x82160804);
1420 	rtl_set_bbreg(hw, RRX_IQK_PI_A, MASKDWORD, 0x28160000);
1421 
1422 	/*LO calibration Setting*/
1423 	rtl_set_bbreg(hw, RIQK_AGC_RSP, MASKDWORD, 0x0046a911);
1424 	/*one shot,path A LOK & iqk*/
1425 	rtl_set_bbreg(hw, RIQK_AGC_PTS, MASKDWORD, 0xf9000000);
1426 	rtl_set_bbreg(hw, RIQK_AGC_PTS, MASKDWORD, 0xf8000000);
1427 
1428 	mdelay(IQK_DELAY_TIME);
1429 
1430 	reg_eac = rtl_get_bbreg(hw, RRX_POWER_AFTER_IQK_A_2, MASKDWORD);
1431 	reg_e94 = rtl_get_bbreg(hw, RTX_POWER_BEFORE_IQK_A, MASKDWORD);
1432 	reg_e9c = rtl_get_bbreg(hw, RTX_POWER_AFTER_IQK_A, MASKDWORD);
1433 
1434 
1435 	if (!(reg_eac & BIT(28)) &&
1436 	    (((reg_e94 & 0x03FF0000) >> 16) != 0x142) &&
1437 	    (((reg_e9c & 0x03FF0000) >> 16) != 0x42))
1438 		result |= 0x01;
1439 	else
1440 		return result;
1441 
1442 	u32temp = 0x80007C00 | (reg_e94&0x3FF0000) |
1443 		  ((reg_e9c&0x3FF0000) >> 16);
1444 	rtl_set_bbreg(hw, RTX_IQK, MASKDWORD, u32temp);
1445 	/*RX IQK*/
1446 	/*Modify RX IQK mode table*/
1447 	rtl_set_bbreg(hw, RFPGA0_IQK, MASKDWORD, 0x00000000);
1448 	rtl_set_rfreg(hw, RF90_PATH_A, RF_WE_LUT, RFREG_OFFSET_MASK, 0x800a0);
1449 	rtl_set_rfreg(hw, RF90_PATH_A, RF_RCK_OS, RFREG_OFFSET_MASK, 0x30000);
1450 	rtl_set_rfreg(hw, RF90_PATH_A, RF_TXPA_G1, RFREG_OFFSET_MASK, 0x0000f);
1451 	rtl_set_rfreg(hw, RF90_PATH_A, RF_TXPA_G2, RFREG_OFFSET_MASK, 0xf7ffa);
1452 	rtl_set_bbreg(hw, RFPGA0_IQK, MASKDWORD, 0x80800000);
1453 
1454 	/*IQK Setting*/
1455 	rtl_set_bbreg(hw, RRX_IQK, MASKDWORD, 0x01004800);
1456 
1457 	/*path a IQK setting*/
1458 	rtl_set_bbreg(hw, RTX_IQK_TONE_A, MASKDWORD, 0x30008c1c);
1459 	rtl_set_bbreg(hw, RRX_IQK_TONE_A, MASKDWORD, 0x10008c1c);
1460 	rtl_set_bbreg(hw, RTX_IQK_PI_A, MASKDWORD, 0x82160c05);
1461 	rtl_set_bbreg(hw, RRX_IQK_PI_A, MASKDWORD, 0x28160c05);
1462 
1463 	/*LO calibration Setting*/
1464 	rtl_set_bbreg(hw, RIQK_AGC_RSP, MASKDWORD, 0x0046a911);
1465 	/*one shot,path A LOK & iqk*/
1466 	rtl_set_bbreg(hw, RIQK_AGC_PTS, MASKDWORD, 0xf9000000);
1467 	rtl_set_bbreg(hw, RIQK_AGC_PTS, MASKDWORD, 0xf8000000);
1468 
1469 	mdelay(IQK_DELAY_TIME);
1470 
1471 	reg_eac = rtl_get_bbreg(hw, RRX_POWER_AFTER_IQK_A_2, MASKDWORD);
1472 	reg_e94 = rtl_get_bbreg(hw, RTX_POWER_BEFORE_IQK_A, MASKDWORD);
1473 	reg_e9c = rtl_get_bbreg(hw, RTX_POWER_AFTER_IQK_A, MASKDWORD);
1474 	reg_ea4 = rtl_get_bbreg(hw, RRX_POWER_BEFORE_IQK_A_2, MASKDWORD);
1475 
1476 	if (!(reg_eac & BIT(27)) &&
1477 	    (((reg_ea4 & 0x03FF0000) >> 16) != 0x132) &&
1478 	    (((reg_eac & 0x03FF0000) >> 16) != 0x36))
1479 		result |= 0x02;
1480 	return result;
1481 }
1482 
1483 static void _rtl88e_phy_path_a_fill_iqk_matrix(struct ieee80211_hw *hw,
1484 					       bool iqk_ok, long result[][8],
1485 					       u8 final_candidate, bool btxonly)
1486 {
1487 	u32 oldval_0, x, tx0_a, reg;
1488 	long y, tx0_c;
1489 
1490 	if (final_candidate == 0xFF) {
1491 		return;
1492 	} else if (iqk_ok) {
1493 		oldval_0 = (rtl_get_bbreg(hw, ROFDM0_XATXIQIMBALANCE,
1494 					  MASKDWORD) >> 22) & 0x3FF;
1495 		x = result[final_candidate][0];
1496 		if ((x & 0x00000200) != 0)
1497 			x = x | 0xFFFFFC00;
1498 		tx0_a = (x * oldval_0) >> 8;
1499 		rtl_set_bbreg(hw, ROFDM0_XATXIQIMBALANCE, 0x3FF, tx0_a);
1500 		rtl_set_bbreg(hw, ROFDM0_ECCATHRESHOLD, BIT(31),
1501 			      ((x * oldval_0 >> 7) & 0x1));
1502 		y = result[final_candidate][1];
1503 		if ((y & 0x00000200) != 0)
1504 			y = y | 0xFFFFFC00;
1505 		tx0_c = (y * oldval_0) >> 8;
1506 		rtl_set_bbreg(hw, ROFDM0_XCTXAFE, 0xF0000000,
1507 			      ((tx0_c & 0x3C0) >> 6));
1508 		rtl_set_bbreg(hw, ROFDM0_XATXIQIMBALANCE, 0x003F0000,
1509 			      (tx0_c & 0x3F));
1510 		rtl_set_bbreg(hw, ROFDM0_ECCATHRESHOLD, BIT(29),
1511 			      ((y * oldval_0 >> 7) & 0x1));
1512 		if (btxonly)
1513 			return;
1514 		reg = result[final_candidate][2];
1515 		rtl_set_bbreg(hw, ROFDM0_XARXIQIMBALANCE, 0x3FF, reg);
1516 		reg = result[final_candidate][3] & 0x3F;
1517 		rtl_set_bbreg(hw, ROFDM0_XARXIQIMBALANCE, 0xFC00, reg);
1518 		reg = (result[final_candidate][3] >> 6) & 0xF;
1519 		rtl_set_bbreg(hw, 0xca0, 0xF0000000, reg);
1520 	}
1521 }
1522 
1523 static void _rtl88e_phy_save_adda_registers(struct ieee80211_hw *hw,
1524 					    u32 *addareg, u32 *addabackup,
1525 					    u32 registernum)
1526 {
1527 	u32 i;
1528 
1529 	for (i = 0; i < registernum; i++)
1530 		addabackup[i] = rtl_get_bbreg(hw, addareg[i], MASKDWORD);
1531 }
1532 
1533 static void _rtl88e_phy_save_mac_registers(struct ieee80211_hw *hw,
1534 					   u32 *macreg, u32 *macbackup)
1535 {
1536 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1537 	u32 i;
1538 
1539 	for (i = 0; i < (IQK_MAC_REG_NUM - 1); i++)
1540 		macbackup[i] = rtl_read_byte(rtlpriv, macreg[i]);
1541 	macbackup[i] = rtl_read_dword(rtlpriv, macreg[i]);
1542 }
1543 
1544 static void _rtl88e_phy_reload_adda_registers(struct ieee80211_hw *hw,
1545 					      u32 *addareg, u32 *addabackup,
1546 					      u32 regiesternum)
1547 {
1548 	u32 i;
1549 
1550 	for (i = 0; i < regiesternum; i++)
1551 		rtl_set_bbreg(hw, addareg[i], MASKDWORD, addabackup[i]);
1552 }
1553 
1554 static void _rtl88e_phy_reload_mac_registers(struct ieee80211_hw *hw,
1555 					     u32 *macreg, u32 *macbackup)
1556 {
1557 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1558 	u32 i;
1559 
1560 	for (i = 0; i < (IQK_MAC_REG_NUM - 1); i++)
1561 		rtl_write_byte(rtlpriv, macreg[i], (u8) macbackup[i]);
1562 	rtl_write_dword(rtlpriv, macreg[i], macbackup[i]);
1563 }
1564 
1565 static void _rtl88e_phy_path_adda_on(struct ieee80211_hw *hw,
1566 				     u32 *addareg, bool is_patha_on, bool is2t)
1567 {
1568 	u32 pathon;
1569 	u32 i;
1570 
1571 	pathon = is_patha_on ? 0x04db25a4 : 0x0b1b25a4;
1572 	if (!is2t) {
1573 		pathon = 0x0bdb25a0;
1574 		rtl_set_bbreg(hw, addareg[0], MASKDWORD, 0x0b1b25a0);
1575 	} else {
1576 		rtl_set_bbreg(hw, addareg[0], MASKDWORD, pathon);
1577 	}
1578 
1579 	for (i = 1; i < IQK_ADDA_REG_NUM; i++)
1580 		rtl_set_bbreg(hw, addareg[i], MASKDWORD, pathon);
1581 }
1582 
1583 static void _rtl88e_phy_mac_setting_calibration(struct ieee80211_hw *hw,
1584 						u32 *macreg, u32 *macbackup)
1585 {
1586 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1587 	u32 i = 0;
1588 
1589 	rtl_write_byte(rtlpriv, macreg[i], 0x3F);
1590 
1591 	for (i = 1; i < (IQK_MAC_REG_NUM - 1); i++)
1592 		rtl_write_byte(rtlpriv, macreg[i],
1593 			       (u8) (macbackup[i] & (~BIT(3))));
1594 	rtl_write_byte(rtlpriv, macreg[i], (u8) (macbackup[i] & (~BIT(5))));
1595 }
1596 
1597 static void _rtl88e_phy_path_a_standby(struct ieee80211_hw *hw)
1598 {
1599 	rtl_set_bbreg(hw, 0xe28, MASKDWORD, 0x0);
1600 	rtl_set_bbreg(hw, 0x840, MASKDWORD, 0x00010000);
1601 	rtl_set_bbreg(hw, 0xe28, MASKDWORD, 0x80800000);
1602 }
1603 
1604 static void _rtl88e_phy_pi_mode_switch(struct ieee80211_hw *hw, bool pi_mode)
1605 {
1606 	u32 mode;
1607 
1608 	mode = pi_mode ? 0x01000100 : 0x01000000;
1609 	rtl_set_bbreg(hw, 0x820, MASKDWORD, mode);
1610 	rtl_set_bbreg(hw, 0x828, MASKDWORD, mode);
1611 }
1612 
1613 static bool _rtl88e_phy_simularity_compare(struct ieee80211_hw *hw,
1614 					   long result[][8], u8 c1, u8 c2)
1615 {
1616 	u32 i, j, diff, simularity_bitmap, bound;
1617 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1618 
1619 	u8 final_candidate[2] = { 0xFF, 0xFF };
1620 	bool bresult = true, is2t = IS_92C_SERIAL(rtlhal->version);
1621 
1622 	if (is2t)
1623 		bound = 8;
1624 	else
1625 		bound = 4;
1626 
1627 	simularity_bitmap = 0;
1628 
1629 	for (i = 0; i < bound; i++) {
1630 		diff = (result[c1][i] > result[c2][i]) ?
1631 		    (result[c1][i] - result[c2][i]) :
1632 		    (result[c2][i] - result[c1][i]);
1633 
1634 		if (diff > MAX_TOLERANCE) {
1635 			if ((i == 2 || i == 6) && !simularity_bitmap) {
1636 				if (result[c1][i] + result[c1][i + 1] == 0)
1637 					final_candidate[(i / 4)] = c2;
1638 				else if (result[c2][i] + result[c2][i + 1] == 0)
1639 					final_candidate[(i / 4)] = c1;
1640 				else
1641 					simularity_bitmap = simularity_bitmap |
1642 					    (1 << i);
1643 			} else
1644 				simularity_bitmap =
1645 				    simularity_bitmap | (1 << i);
1646 		}
1647 	}
1648 
1649 	if (simularity_bitmap == 0) {
1650 		for (i = 0; i < (bound / 4); i++) {
1651 			if (final_candidate[i] != 0xFF) {
1652 				for (j = i * 4; j < (i + 1) * 4 - 2; j++)
1653 					result[3][j] =
1654 					    result[final_candidate[i]][j];
1655 				bresult = false;
1656 			}
1657 		}
1658 		return bresult;
1659 	} else if (!(simularity_bitmap & 0x0F)) {
1660 		for (i = 0; i < 4; i++)
1661 			result[3][i] = result[c1][i];
1662 		return false;
1663 	} else if (!(simularity_bitmap & 0xF0) && is2t) {
1664 		for (i = 4; i < 8; i++)
1665 			result[3][i] = result[c1][i];
1666 		return false;
1667 	} else {
1668 		return false;
1669 	}
1670 
1671 }
1672 
1673 static void _rtl88e_phy_iq_calibrate(struct ieee80211_hw *hw,
1674 				     long result[][8], u8 t, bool is2t)
1675 {
1676 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1677 	struct rtl_phy *rtlphy = &rtlpriv->phy;
1678 	u32 i;
1679 	u8 patha_ok, pathb_ok;
1680 	u32 adda_reg[IQK_ADDA_REG_NUM] = {
1681 		0x85c, 0xe6c, 0xe70, 0xe74,
1682 		0xe78, 0xe7c, 0xe80, 0xe84,
1683 		0xe88, 0xe8c, 0xed0, 0xed4,
1684 		0xed8, 0xedc, 0xee0, 0xeec
1685 	};
1686 	u32 iqk_mac_reg[IQK_MAC_REG_NUM] = {
1687 		0x522, 0x550, 0x551, 0x040
1688 	};
1689 	u32 iqk_bb_reg[IQK_BB_REG_NUM] = {
1690 		ROFDM0_TRXPATHENABLE, ROFDM0_TRMUXPAR,
1691 		RFPGA0_XCD_RFINTERFACESW, 0xb68, 0xb6c,
1692 		0x870, 0x860, 0x864, 0x800
1693 	};
1694 	const u32 retrycount = 2;
1695 
1696 	if (t == 0) {
1697 		_rtl88e_phy_save_adda_registers(hw, adda_reg,
1698 						rtlphy->adda_backup, 16);
1699 		_rtl88e_phy_save_mac_registers(hw, iqk_mac_reg,
1700 					       rtlphy->iqk_mac_backup);
1701 		_rtl88e_phy_save_adda_registers(hw, iqk_bb_reg,
1702 						rtlphy->iqk_bb_backup,
1703 						IQK_BB_REG_NUM);
1704 	}
1705 	_rtl88e_phy_path_adda_on(hw, adda_reg, true, is2t);
1706 	if (t == 0) {
1707 		rtlphy->rfpi_enable =
1708 		  (u8)rtl_get_bbreg(hw, RFPGA0_XA_HSSIPARAMETER1, BIT(8));
1709 	}
1710 
1711 	if (!rtlphy->rfpi_enable)
1712 		_rtl88e_phy_pi_mode_switch(hw, true);
1713 	/*BB Setting*/
1714 	rtl_set_bbreg(hw, 0x800, BIT(24), 0x00);
1715 	rtl_set_bbreg(hw, 0xc04, MASKDWORD, 0x03a05600);
1716 	rtl_set_bbreg(hw, 0xc08, MASKDWORD, 0x000800e4);
1717 	rtl_set_bbreg(hw, 0x874, MASKDWORD, 0x22204000);
1718 
1719 	rtl_set_bbreg(hw, 0x870, BIT(10), 0x01);
1720 	rtl_set_bbreg(hw, 0x870, BIT(26), 0x01);
1721 	rtl_set_bbreg(hw, 0x860, BIT(10), 0x00);
1722 	rtl_set_bbreg(hw, 0x864, BIT(10), 0x00);
1723 
1724 	if (is2t) {
1725 		rtl_set_bbreg(hw, 0x840, MASKDWORD, 0x00010000);
1726 		rtl_set_bbreg(hw, 0x844, MASKDWORD, 0x00010000);
1727 	}
1728 	_rtl88e_phy_mac_setting_calibration(hw, iqk_mac_reg,
1729 					    rtlphy->iqk_mac_backup);
1730 	rtl_set_bbreg(hw, 0xb68, MASKDWORD, 0x0f600000);
1731 	if (is2t)
1732 		rtl_set_bbreg(hw, 0xb6c, MASKDWORD, 0x0f600000);
1733 
1734 	rtl_set_bbreg(hw, 0xe28, MASKDWORD, 0x80800000);
1735 	rtl_set_bbreg(hw, 0xe40, MASKDWORD, 0x01007c00);
1736 	rtl_set_bbreg(hw, 0xe44, MASKDWORD, 0x81004800);
1737 	for (i = 0; i < retrycount; i++) {
1738 		patha_ok = _rtl88e_phy_path_a_iqk(hw, is2t);
1739 		if (patha_ok == 0x01) {
1740 			rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
1741 				"Path A Tx IQK Success!!\n");
1742 			result[t][0] = (rtl_get_bbreg(hw, 0xe94, MASKDWORD) &
1743 					0x3FF0000) >> 16;
1744 			result[t][1] = (rtl_get_bbreg(hw, 0xe9c, MASKDWORD) &
1745 					0x3FF0000) >> 16;
1746 			break;
1747 		}
1748 	}
1749 
1750 	for (i = 0; i < retrycount; i++) {
1751 		patha_ok = _rtl88e_phy_path_a_rx_iqk(hw, is2t);
1752 		if (patha_ok == 0x03) {
1753 			rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
1754 				"Path A Rx IQK Success!!\n");
1755 			result[t][2] = (rtl_get_bbreg(hw, 0xea4, MASKDWORD) &
1756 					0x3FF0000) >> 16;
1757 			result[t][3] = (rtl_get_bbreg(hw, 0xeac, MASKDWORD) &
1758 					0x3FF0000) >> 16;
1759 			break;
1760 		} else {
1761 			rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
1762 				"Path a RX iqk fail!!!\n");
1763 		}
1764 	}
1765 
1766 	if (0 == patha_ok)
1767 		rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
1768 			"Path A IQK Success!!\n");
1769 	if (is2t) {
1770 		_rtl88e_phy_path_a_standby(hw);
1771 		_rtl88e_phy_path_adda_on(hw, adda_reg, false, is2t);
1772 		for (i = 0; i < retrycount; i++) {
1773 			pathb_ok = _rtl88e_phy_path_b_iqk(hw);
1774 			if (pathb_ok == 0x03) {
1775 				result[t][4] = (rtl_get_bbreg(hw,
1776 							      0xeb4,
1777 							      MASKDWORD) &
1778 						0x3FF0000) >> 16;
1779 				result[t][5] =
1780 				    (rtl_get_bbreg(hw, 0xebc, MASKDWORD) &
1781 				     0x3FF0000) >> 16;
1782 				result[t][6] =
1783 				    (rtl_get_bbreg(hw, 0xec4, MASKDWORD) &
1784 				     0x3FF0000) >> 16;
1785 				result[t][7] =
1786 				    (rtl_get_bbreg(hw, 0xecc, MASKDWORD) &
1787 				     0x3FF0000) >> 16;
1788 				break;
1789 			} else if (i == (retrycount - 1) && pathb_ok == 0x01) {
1790 				result[t][4] = (rtl_get_bbreg(hw,
1791 							      0xeb4,
1792 							      MASKDWORD) &
1793 						0x3FF0000) >> 16;
1794 			}
1795 			result[t][5] = (rtl_get_bbreg(hw, 0xebc, MASKDWORD) &
1796 					0x3FF0000) >> 16;
1797 		}
1798 	}
1799 
1800 	rtl_set_bbreg(hw, 0xe28, MASKDWORD, 0);
1801 
1802 	if (t != 0) {
1803 		if (!rtlphy->rfpi_enable)
1804 			_rtl88e_phy_pi_mode_switch(hw, false);
1805 		_rtl88e_phy_reload_adda_registers(hw, adda_reg,
1806 						  rtlphy->adda_backup, 16);
1807 		_rtl88e_phy_reload_mac_registers(hw, iqk_mac_reg,
1808 						 rtlphy->iqk_mac_backup);
1809 		_rtl88e_phy_reload_adda_registers(hw, iqk_bb_reg,
1810 						  rtlphy->iqk_bb_backup,
1811 						  IQK_BB_REG_NUM);
1812 
1813 		rtl_set_bbreg(hw, 0x840, MASKDWORD, 0x00032ed3);
1814 		if (is2t)
1815 			rtl_set_bbreg(hw, 0x844, MASKDWORD, 0x00032ed3);
1816 		rtl_set_bbreg(hw, 0xe30, MASKDWORD, 0x01008c00);
1817 		rtl_set_bbreg(hw, 0xe34, MASKDWORD, 0x01008c00);
1818 	}
1819 	rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "88ee IQK Finish!!\n");
1820 }
1821 
1822 static void _rtl88e_phy_lc_calibrate(struct ieee80211_hw *hw, bool is2t)
1823 {
1824 	u8 tmpreg;
1825 	u32 rf_a_mode = 0, rf_b_mode = 0, lc_cal;
1826 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1827 
1828 	tmpreg = rtl_read_byte(rtlpriv, 0xd03);
1829 
1830 	if ((tmpreg & 0x70) != 0)
1831 		rtl_write_byte(rtlpriv, 0xd03, tmpreg & 0x8F);
1832 	else
1833 		rtl_write_byte(rtlpriv, REG_TXPAUSE, 0xFF);
1834 
1835 	if ((tmpreg & 0x70) != 0) {
1836 		rf_a_mode = rtl_get_rfreg(hw, RF90_PATH_A, 0x00, MASK12BITS);
1837 
1838 		if (is2t)
1839 			rf_b_mode = rtl_get_rfreg(hw, RF90_PATH_B, 0x00,
1840 						  MASK12BITS);
1841 
1842 		rtl_set_rfreg(hw, RF90_PATH_A, 0x00, MASK12BITS,
1843 			      (rf_a_mode & 0x8FFFF) | 0x10000);
1844 
1845 		if (is2t)
1846 			rtl_set_rfreg(hw, RF90_PATH_B, 0x00, MASK12BITS,
1847 				      (rf_b_mode & 0x8FFFF) | 0x10000);
1848 	}
1849 	lc_cal = rtl_get_rfreg(hw, RF90_PATH_A, 0x18, MASK12BITS);
1850 
1851 	rtl_set_rfreg(hw, RF90_PATH_A, 0x18, MASK12BITS, lc_cal | 0x08000);
1852 
1853 	mdelay(100);
1854 
1855 	if ((tmpreg & 0x70) != 0) {
1856 		rtl_write_byte(rtlpriv, 0xd03, tmpreg);
1857 		rtl_set_rfreg(hw, RF90_PATH_A, 0x00, MASK12BITS, rf_a_mode);
1858 
1859 		if (is2t)
1860 			rtl_set_rfreg(hw, RF90_PATH_B, 0x00, MASK12BITS,
1861 				      rf_b_mode);
1862 	} else {
1863 		rtl_write_byte(rtlpriv, REG_TXPAUSE, 0x00);
1864 	}
1865 	rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "\n");
1866 }
1867 
1868 static void _rtl88e_phy_set_rfpath_switch(struct ieee80211_hw *hw,
1869 					  bool bmain, bool is2t)
1870 {
1871 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1872 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1873 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1874 	rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "\n");
1875 
1876 	if (is_hal_stop(rtlhal)) {
1877 		u8 u1btmp;
1878 		u1btmp = rtl_read_byte(rtlpriv, REG_LEDCFG0);
1879 		rtl_write_byte(rtlpriv, REG_LEDCFG0, u1btmp | BIT(7));
1880 		rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(13), 0x01);
1881 	}
1882 	if (is2t) {
1883 		if (bmain)
1884 			rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE,
1885 				      BIT(5) | BIT(6), 0x1);
1886 		else
1887 			rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE,
1888 				      BIT(5) | BIT(6), 0x2);
1889 	} else {
1890 		rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW, BIT(8) | BIT(9), 0);
1891 		rtl_set_bbreg(hw, 0x914, MASKLWORD, 0x0201);
1892 
1893 		/* We use the RF definition of MAIN and AUX,
1894 		 * left antenna and right antenna repectively.
1895 		 * Default output at AUX.
1896 		 */
1897 		if (bmain) {
1898 			rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE,
1899 				      BIT(14) | BIT(13) | BIT(12), 0);
1900 			rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE,
1901 				      BIT(5) | BIT(4) | BIT(3), 0);
1902 			if (rtlefuse->antenna_div_type == CGCS_RX_HW_ANTDIV)
1903 				rtl_set_bbreg(hw, RCONFIG_RAM64x16, BIT(31), 0);
1904 		} else {
1905 			rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE,
1906 				      BIT(14) | BIT(13) | BIT(12), 1);
1907 			rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE,
1908 				      BIT(5) | BIT(4) | BIT(3), 1);
1909 			if (rtlefuse->antenna_div_type == CGCS_RX_HW_ANTDIV)
1910 				rtl_set_bbreg(hw, RCONFIG_RAM64x16, BIT(31), 1);
1911 		}
1912 	}
1913 }
1914 
1915 #undef IQK_ADDA_REG_NUM
1916 #undef IQK_DELAY_TIME
1917 
1918 void rtl88e_phy_iq_calibrate(struct ieee80211_hw *hw, bool b_recovery)
1919 {
1920 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1921 	struct rtl_phy *rtlphy = &rtlpriv->phy;
1922 	long result[4][8];
1923 	u8 i, final_candidate;
1924 	bool b_patha_ok;
1925 	long reg_e94, reg_e9c, reg_ea4, reg_eb4, reg_ebc,
1926 	    reg_tmp = 0;
1927 	bool is12simular, is13simular, is23simular;
1928 	u32 iqk_bb_reg[9] = {
1929 		ROFDM0_XARXIQIMBALANCE,
1930 		ROFDM0_XBRXIQIMBALANCE,
1931 		ROFDM0_ECCATHRESHOLD,
1932 		ROFDM0_AGCRSSITABLE,
1933 		ROFDM0_XATXIQIMBALANCE,
1934 		ROFDM0_XBTXIQIMBALANCE,
1935 		ROFDM0_XCTXAFE,
1936 		ROFDM0_XDTXAFE,
1937 		ROFDM0_RXIQEXTANTA
1938 	};
1939 
1940 	if (b_recovery) {
1941 		_rtl88e_phy_reload_adda_registers(hw,
1942 						  iqk_bb_reg,
1943 						  rtlphy->iqk_bb_backup, 9);
1944 		return;
1945 	}
1946 
1947 	for (i = 0; i < 8; i++) {
1948 		result[0][i] = 0;
1949 		result[1][i] = 0;
1950 		result[2][i] = 0;
1951 		result[3][i] = 0;
1952 	}
1953 	final_candidate = 0xff;
1954 	b_patha_ok = false;
1955 	is12simular = false;
1956 	is23simular = false;
1957 	is13simular = false;
1958 	for (i = 0; i < 3; i++) {
1959 		if (get_rf_type(rtlphy) == RF_2T2R)
1960 			_rtl88e_phy_iq_calibrate(hw, result, i, true);
1961 		else
1962 			_rtl88e_phy_iq_calibrate(hw, result, i, false);
1963 		if (i == 1) {
1964 			is12simular =
1965 			  _rtl88e_phy_simularity_compare(hw, result, 0, 1);
1966 			if (is12simular) {
1967 				final_candidate = 0;
1968 				break;
1969 			}
1970 		}
1971 		if (i == 2) {
1972 			is13simular =
1973 			  _rtl88e_phy_simularity_compare(hw, result, 0, 2);
1974 			if (is13simular) {
1975 				final_candidate = 0;
1976 				break;
1977 			}
1978 			is23simular =
1979 			   _rtl88e_phy_simularity_compare(hw, result, 1, 2);
1980 			if (is23simular) {
1981 				final_candidate = 1;
1982 			} else {
1983 				for (i = 0; i < 8; i++)
1984 					reg_tmp += result[3][i];
1985 
1986 				if (reg_tmp != 0)
1987 					final_candidate = 3;
1988 				else
1989 					final_candidate = 0xFF;
1990 			}
1991 		}
1992 	}
1993 	for (i = 0; i < 4; i++) {
1994 		reg_e94 = result[i][0];
1995 		reg_e9c = result[i][1];
1996 		reg_ea4 = result[i][2];
1997 		reg_eb4 = result[i][4];
1998 		reg_ebc = result[i][5];
1999 	}
2000 	if (final_candidate != 0xff) {
2001 		reg_e94 = result[final_candidate][0];
2002 		reg_e9c = result[final_candidate][1];
2003 		reg_ea4 = result[final_candidate][2];
2004 		reg_eb4 = result[final_candidate][4];
2005 		reg_ebc = result[final_candidate][5];
2006 		rtlphy->reg_eb4 = reg_eb4;
2007 		rtlphy->reg_ebc = reg_ebc;
2008 		rtlphy->reg_e94 = reg_e94;
2009 		rtlphy->reg_e9c = reg_e9c;
2010 		b_patha_ok = true;
2011 	} else {
2012 		rtlphy->reg_e94 = 0x100;
2013 		rtlphy->reg_eb4 = 0x100;
2014 		rtlphy->reg_e9c = 0x0;
2015 		rtlphy->reg_ebc = 0x0;
2016 	}
2017 	if (reg_e94 != 0) /*&&(reg_ea4 != 0) */
2018 		_rtl88e_phy_path_a_fill_iqk_matrix(hw, b_patha_ok, result,
2019 						   final_candidate,
2020 						   (reg_ea4 == 0));
2021 	if (final_candidate != 0xFF) {
2022 		for (i = 0; i < IQK_MATRIX_REG_NUM; i++)
2023 			rtlphy->iqk_matrix[0].value[0][i] =
2024 				result[final_candidate][i];
2025 		rtlphy->iqk_matrix[0].iqk_done = true;
2026 
2027 	}
2028 	_rtl88e_phy_save_adda_registers(hw, iqk_bb_reg,
2029 					rtlphy->iqk_bb_backup, 9);
2030 }
2031 
2032 void rtl88e_phy_lc_calibrate(struct ieee80211_hw *hw)
2033 {
2034 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2035 	struct rtl_phy *rtlphy = &rtlpriv->phy;
2036 	struct rtl_hal *rtlhal = &rtlpriv->rtlhal;
2037 	u32 timeout = 2000, timecount = 0;
2038 
2039 	while (rtlpriv->mac80211.act_scanning && timecount < timeout) {
2040 		udelay(50);
2041 		timecount += 50;
2042 	}
2043 
2044 	rtlphy->lck_inprogress = true;
2045 	RTPRINT(rtlpriv, FINIT, INIT_IQK,
2046 		"LCK:Start!!! currentband %x delay %d ms\n",
2047 		 rtlhal->current_bandtype, timecount);
2048 
2049 	_rtl88e_phy_lc_calibrate(hw, false);
2050 
2051 	rtlphy->lck_inprogress = false;
2052 }
2053 
2054 void rtl88e_phy_set_rfpath_switch(struct ieee80211_hw *hw, bool bmain)
2055 {
2056 	_rtl88e_phy_set_rfpath_switch(hw, bmain, false);
2057 }
2058 
2059 bool rtl88e_phy_set_io_cmd(struct ieee80211_hw *hw, enum io_type iotype)
2060 {
2061 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2062 	struct rtl_phy *rtlphy = &rtlpriv->phy;
2063 	bool postprocessing = false;
2064 
2065 	rtl_dbg(rtlpriv, COMP_CMD, DBG_TRACE,
2066 		"-->IO Cmd(%#x), set_io_inprogress(%d)\n",
2067 		iotype, rtlphy->set_io_inprogress);
2068 	do {
2069 		switch (iotype) {
2070 		case IO_CMD_RESUME_DM_BY_SCAN:
2071 			rtl_dbg(rtlpriv, COMP_CMD, DBG_TRACE,
2072 				"[IO CMD] Resume DM after scan.\n");
2073 			postprocessing = true;
2074 			break;
2075 		case IO_CMD_PAUSE_BAND0_DM_BY_SCAN:
2076 			rtl_dbg(rtlpriv, COMP_CMD, DBG_TRACE,
2077 				"[IO CMD] Pause DM before scan.\n");
2078 			postprocessing = true;
2079 			break;
2080 		default:
2081 			rtl_dbg(rtlpriv, COMP_ERR, DBG_LOUD,
2082 				"switch case %#x not processed\n", iotype);
2083 			break;
2084 		}
2085 	} while (false);
2086 	if (postprocessing && !rtlphy->set_io_inprogress) {
2087 		rtlphy->set_io_inprogress = true;
2088 		rtlphy->current_io_type = iotype;
2089 	} else {
2090 		return false;
2091 	}
2092 	rtl88e_phy_set_io(hw);
2093 	rtl_dbg(rtlpriv, COMP_CMD, DBG_TRACE, "IO Type(%#x)\n", iotype);
2094 	return true;
2095 }
2096 
2097 static void rtl88e_phy_set_io(struct ieee80211_hw *hw)
2098 {
2099 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2100 	struct rtl_phy *rtlphy = &rtlpriv->phy;
2101 	struct dig_t *dm_digtable = &rtlpriv->dm_digtable;
2102 
2103 	rtl_dbg(rtlpriv, COMP_CMD, DBG_TRACE,
2104 		"--->Cmd(%#x), set_io_inprogress(%d)\n",
2105 		rtlphy->current_io_type, rtlphy->set_io_inprogress);
2106 	switch (rtlphy->current_io_type) {
2107 	case IO_CMD_RESUME_DM_BY_SCAN:
2108 		dm_digtable->cur_igvalue = rtlphy->initgain_backup.xaagccore1;
2109 		/*rtl92c_dm_write_dig(hw);*/
2110 		rtl88e_phy_set_txpower_level(hw, rtlphy->current_channel);
2111 		rtl_set_bbreg(hw, RCCK0_CCA, 0xff0000, 0x83);
2112 		break;
2113 	case IO_CMD_PAUSE_BAND0_DM_BY_SCAN:
2114 		rtlphy->initgain_backup.xaagccore1 = dm_digtable->cur_igvalue;
2115 		dm_digtable->cur_igvalue = 0x17;
2116 		rtl_set_bbreg(hw, RCCK0_CCA, 0xff0000, 0x40);
2117 		break;
2118 	default:
2119 		rtl_dbg(rtlpriv, COMP_ERR, DBG_LOUD,
2120 			"switch case %#x not processed\n",
2121 			rtlphy->current_io_type);
2122 		break;
2123 	}
2124 	rtlphy->set_io_inprogress = false;
2125 	rtl_dbg(rtlpriv, COMP_CMD, DBG_TRACE,
2126 		"(%#x)\n", rtlphy->current_io_type);
2127 }
2128 
2129 static void rtl88ee_phy_set_rf_on(struct ieee80211_hw *hw)
2130 {
2131 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2132 
2133 	rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x2b);
2134 	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3);
2135 	/*rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x00);*/
2136 	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2);
2137 	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3);
2138 	rtl_write_byte(rtlpriv, REG_TXPAUSE, 0x00);
2139 }
2140 
2141 static void _rtl88ee_phy_set_rf_sleep(struct ieee80211_hw *hw)
2142 {
2143 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2144 
2145 	rtl_write_byte(rtlpriv, REG_TXPAUSE, 0xFF);
2146 	rtl_set_rfreg(hw, RF90_PATH_A, 0x00, RFREG_OFFSET_MASK, 0x00);
2147 	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2);
2148 	rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x22);
2149 }
2150 
2151 static bool _rtl88ee_phy_set_rf_power_state(struct ieee80211_hw *hw,
2152 					    enum rf_pwrstate rfpwr_state)
2153 {
2154 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2155 	struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
2156 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2157 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
2158 	bool bresult = true;
2159 	u8 i, queue_id;
2160 	struct rtl8192_tx_ring *ring = NULL;
2161 
2162 	switch (rfpwr_state) {
2163 	case ERFON:
2164 		if ((ppsc->rfpwr_state == ERFOFF) &&
2165 		    RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC)) {
2166 			bool rtstatus;
2167 			u32 initializecount = 0;
2168 
2169 			do {
2170 				initializecount++;
2171 				rtl_dbg(rtlpriv, COMP_RF, DBG_DMESG,
2172 					"IPS Set eRf nic enable\n");
2173 				rtstatus = rtl_ps_enable_nic(hw);
2174 			} while (!rtstatus &&
2175 				 (initializecount < 10));
2176 			RT_CLEAR_PS_LEVEL(ppsc,
2177 					  RT_RF_OFF_LEVL_HALT_NIC);
2178 		} else {
2179 			rtl_dbg(rtlpriv, COMP_RF, DBG_DMESG,
2180 				"Set ERFON slept:%d ms\n",
2181 				jiffies_to_msecs(jiffies -
2182 						 ppsc->last_sleep_jiffies));
2183 			ppsc->last_awake_jiffies = jiffies;
2184 			rtl88ee_phy_set_rf_on(hw);
2185 		}
2186 		if (mac->link_state == MAC80211_LINKED) {
2187 			rtlpriv->cfg->ops->led_control(hw,
2188 						       LED_CTL_LINK);
2189 		} else {
2190 			rtlpriv->cfg->ops->led_control(hw,
2191 						       LED_CTL_NO_LINK);
2192 		}
2193 		break;
2194 	case ERFOFF:
2195 		for (queue_id = 0, i = 0;
2196 		     queue_id < RTL_PCI_MAX_TX_QUEUE_COUNT;) {
2197 			ring = &pcipriv->dev.tx_ring[queue_id];
2198 			if (queue_id == BEACON_QUEUE ||
2199 			    skb_queue_len(&ring->queue) == 0) {
2200 				queue_id++;
2201 				continue;
2202 			} else {
2203 				rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
2204 					"eRf Off/Sleep: %d times TcbBusyQueue[%d] =%d before doze!\n",
2205 					(i + 1), queue_id,
2206 					skb_queue_len(&ring->queue));
2207 
2208 				udelay(10);
2209 				i++;
2210 			}
2211 			if (i >= MAX_DOZE_WAITING_TIMES_9x) {
2212 				rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
2213 					"\n ERFSLEEP: %d times TcbBusyQueue[%d] = %d !\n",
2214 					MAX_DOZE_WAITING_TIMES_9x,
2215 					queue_id,
2216 					skb_queue_len(&ring->queue));
2217 				break;
2218 			}
2219 		}
2220 
2221 		if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC) {
2222 			rtl_dbg(rtlpriv, COMP_RF, DBG_DMESG,
2223 				"IPS Set eRf nic disable\n");
2224 			rtl_ps_disable_nic(hw);
2225 			RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
2226 		} else {
2227 			if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS) {
2228 				rtlpriv->cfg->ops->led_control(hw,
2229 							       LED_CTL_NO_LINK);
2230 			} else {
2231 				rtlpriv->cfg->ops->led_control(hw,
2232 							       LED_CTL_POWER_OFF);
2233 			}
2234 		}
2235 		break;
2236 	case ERFSLEEP:{
2237 			if (ppsc->rfpwr_state == ERFOFF)
2238 				break;
2239 			for (queue_id = 0, i = 0;
2240 			     queue_id < RTL_PCI_MAX_TX_QUEUE_COUNT;) {
2241 				ring = &pcipriv->dev.tx_ring[queue_id];
2242 				if (skb_queue_len(&ring->queue) == 0) {
2243 					queue_id++;
2244 					continue;
2245 				} else {
2246 					rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
2247 						"eRf Off/Sleep: %d times TcbBusyQueue[%d] =%d before doze!\n",
2248 						(i + 1), queue_id,
2249 						skb_queue_len(&ring->queue));
2250 
2251 					udelay(10);
2252 					i++;
2253 				}
2254 				if (i >= MAX_DOZE_WAITING_TIMES_9x) {
2255 					rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
2256 						"\n ERFSLEEP: %d times TcbBusyQueue[%d] = %d !\n",
2257 						MAX_DOZE_WAITING_TIMES_9x,
2258 						queue_id,
2259 						skb_queue_len(&ring->queue));
2260 					break;
2261 				}
2262 			}
2263 			rtl_dbg(rtlpriv, COMP_RF, DBG_DMESG,
2264 				"Set ERFSLEEP awaked:%d ms\n",
2265 				jiffies_to_msecs(jiffies -
2266 				ppsc->last_awake_jiffies));
2267 			ppsc->last_sleep_jiffies = jiffies;
2268 			_rtl88ee_phy_set_rf_sleep(hw);
2269 			break;
2270 		}
2271 	default:
2272 		rtl_dbg(rtlpriv, COMP_ERR, DBG_LOUD,
2273 			"switch case %#x not processed\n", rfpwr_state);
2274 		bresult = false;
2275 		break;
2276 	}
2277 	if (bresult)
2278 		ppsc->rfpwr_state = rfpwr_state;
2279 	return bresult;
2280 }
2281 
2282 bool rtl88e_phy_set_rf_power_state(struct ieee80211_hw *hw,
2283 				   enum rf_pwrstate rfpwr_state)
2284 {
2285 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
2286 
2287 	bool bresult = false;
2288 
2289 	if (rfpwr_state == ppsc->rfpwr_state)
2290 		return bresult;
2291 	bresult = _rtl88ee_phy_set_rf_power_state(hw, rfpwr_state);
2292 	return bresult;
2293 }
2294