1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2009-2012  Realtek Corporation.*/
3 
4 #include "../wifi.h"
5 #include "../efuse.h"
6 #include "../base.h"
7 #include "../regd.h"
8 #include "../cam.h"
9 #include "../ps.h"
10 #include "../pci.h"
11 #include "reg.h"
12 #include "def.h"
13 #include "phy.h"
14 #include "dm.h"
15 #include "fw.h"
16 #include "led.h"
17 #include "sw.h"
18 #include "hw.h"
19 
20 u32 rtl92de_read_dword_dbi(struct ieee80211_hw *hw, u16 offset, u8 direct)
21 {
22 	struct rtl_priv *rtlpriv = rtl_priv(hw);
23 	u32 value;
24 
25 	rtl_write_word(rtlpriv, REG_DBI_CTRL, (offset & 0xFFC));
26 	rtl_write_byte(rtlpriv, REG_DBI_FLAG, BIT(1) | direct);
27 	udelay(10);
28 	value = rtl_read_dword(rtlpriv, REG_DBI_RDATA);
29 	return value;
30 }
31 
32 void rtl92de_write_dword_dbi(struct ieee80211_hw *hw,
33 			     u16 offset, u32 value, u8 direct)
34 {
35 	struct rtl_priv *rtlpriv = rtl_priv(hw);
36 
37 	rtl_write_word(rtlpriv, REG_DBI_CTRL, ((offset & 0xFFC) | 0xF000));
38 	rtl_write_dword(rtlpriv, REG_DBI_WDATA, value);
39 	rtl_write_byte(rtlpriv, REG_DBI_FLAG, BIT(0) | direct);
40 }
41 
42 static void _rtl92de_set_bcn_ctrl_reg(struct ieee80211_hw *hw,
43 				      u8 set_bits, u8 clear_bits)
44 {
45 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
46 	struct rtl_priv *rtlpriv = rtl_priv(hw);
47 
48 	rtlpci->reg_bcn_ctrl_val |= set_bits;
49 	rtlpci->reg_bcn_ctrl_val &= ~clear_bits;
50 	rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8) rtlpci->reg_bcn_ctrl_val);
51 }
52 
53 static void _rtl92de_stop_tx_beacon(struct ieee80211_hw *hw)
54 {
55 	struct rtl_priv *rtlpriv = rtl_priv(hw);
56 	u8 tmp1byte;
57 
58 	tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
59 	rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte & (~BIT(6)));
60 	rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0xff);
61 	rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0x64);
62 	tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
63 	tmp1byte &= ~(BIT(0));
64 	rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
65 }
66 
67 static void _rtl92de_resume_tx_beacon(struct ieee80211_hw *hw)
68 {
69 	struct rtl_priv *rtlpriv = rtl_priv(hw);
70 	u8 tmp1byte;
71 
72 	tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
73 	rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte | BIT(6));
74 	rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0x0a);
75 	rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
76 	tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
77 	tmp1byte |= BIT(0);
78 	rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
79 }
80 
81 static void _rtl92de_enable_bcn_sub_func(struct ieee80211_hw *hw)
82 {
83 	_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(1));
84 }
85 
86 static void _rtl92de_disable_bcn_sub_func(struct ieee80211_hw *hw)
87 {
88 	_rtl92de_set_bcn_ctrl_reg(hw, BIT(1), 0);
89 }
90 
91 void rtl92de_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
92 {
93 	struct rtl_priv *rtlpriv = rtl_priv(hw);
94 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
95 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
96 
97 	switch (variable) {
98 	case HW_VAR_RCR:
99 		*((u32 *) (val)) = rtlpci->receive_config;
100 		break;
101 	case HW_VAR_RF_STATE:
102 		*((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
103 		break;
104 	case HW_VAR_FWLPS_RF_ON:{
105 		enum rf_pwrstate rfstate;
106 		u32 val_rcr;
107 
108 		rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RF_STATE,
109 					      (u8 *)(&rfstate));
110 		if (rfstate == ERFOFF) {
111 			*((bool *) (val)) = true;
112 		} else {
113 			val_rcr = rtl_read_dword(rtlpriv, REG_RCR);
114 			val_rcr &= 0x00070000;
115 			if (val_rcr)
116 				*((bool *) (val)) = false;
117 			else
118 				*((bool *) (val)) = true;
119 		}
120 		break;
121 	}
122 	case HW_VAR_FW_PSMODE_STATUS:
123 		*((bool *) (val)) = ppsc->fw_current_inpsmode;
124 		break;
125 	case HW_VAR_CORRECT_TSF:{
126 		u64 tsf;
127 		u32 *ptsf_low = (u32 *)&tsf;
128 		u32 *ptsf_high = ((u32 *)&tsf) + 1;
129 
130 		*ptsf_high = rtl_read_dword(rtlpriv, (REG_TSFTR + 4));
131 		*ptsf_low = rtl_read_dword(rtlpriv, REG_TSFTR);
132 		*((u64 *) (val)) = tsf;
133 		break;
134 	}
135 	case HW_VAR_INT_MIGRATION:
136 		*((bool *)(val)) = rtlpriv->dm.interrupt_migration;
137 		break;
138 	case HW_VAR_INT_AC:
139 		*((bool *)(val)) = rtlpriv->dm.disable_tx_int;
140 		break;
141 	case HAL_DEF_WOWLAN:
142 		break;
143 	default:
144 		pr_err("switch case %#x not processed\n", variable);
145 		break;
146 	}
147 }
148 
149 void rtl92de_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
150 {
151 	struct rtl_priv *rtlpriv = rtl_priv(hw);
152 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
153 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
154 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
155 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
156 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
157 	u8 idx;
158 
159 	switch (variable) {
160 	case HW_VAR_ETHER_ADDR:
161 		for (idx = 0; idx < ETH_ALEN; idx++) {
162 			rtl_write_byte(rtlpriv, (REG_MACID + idx),
163 				       val[idx]);
164 		}
165 		break;
166 	case HW_VAR_BASIC_RATE: {
167 		u16 rate_cfg = ((u16 *) val)[0];
168 		u8 rate_index = 0;
169 
170 		rate_cfg = rate_cfg & 0x15f;
171 		if (mac->vendor == PEER_CISCO &&
172 		    ((rate_cfg & 0x150) == 0))
173 			rate_cfg |= 0x01;
174 		rtl_write_byte(rtlpriv, REG_RRSR, rate_cfg & 0xff);
175 		rtl_write_byte(rtlpriv, REG_RRSR + 1,
176 			       (rate_cfg >> 8) & 0xff);
177 		while (rate_cfg > 0x1) {
178 			rate_cfg = (rate_cfg >> 1);
179 			rate_index++;
180 		}
181 		if (rtlhal->fw_version > 0xe)
182 			rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL,
183 				       rate_index);
184 		break;
185 	}
186 	case HW_VAR_BSSID:
187 		for (idx = 0; idx < ETH_ALEN; idx++) {
188 			rtl_write_byte(rtlpriv, (REG_BSSID + idx),
189 				       val[idx]);
190 		}
191 		break;
192 	case HW_VAR_SIFS:
193 		rtl_write_byte(rtlpriv, REG_SIFS_CTX + 1, val[0]);
194 		rtl_write_byte(rtlpriv, REG_SIFS_TRX + 1, val[1]);
195 		rtl_write_byte(rtlpriv, REG_SPEC_SIFS + 1, val[0]);
196 		rtl_write_byte(rtlpriv, REG_MAC_SPEC_SIFS + 1, val[0]);
197 		if (!mac->ht_enable)
198 			rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM,
199 				       0x0e0e);
200 		else
201 			rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM,
202 				       *((u16 *) val));
203 		break;
204 	case HW_VAR_SLOT_TIME: {
205 		u8 e_aci;
206 
207 		rtl_dbg(rtlpriv, COMP_MLME, DBG_LOUD,
208 			"HW_VAR_SLOT_TIME %x\n", val[0]);
209 		rtl_write_byte(rtlpriv, REG_SLOT, val[0]);
210 		for (e_aci = 0; e_aci < AC_MAX; e_aci++)
211 			rtlpriv->cfg->ops->set_hw_reg(hw,
212 						      HW_VAR_AC_PARAM,
213 						      (&e_aci));
214 		break;
215 	}
216 	case HW_VAR_ACK_PREAMBLE: {
217 		u8 reg_tmp;
218 		u8 short_preamble = (bool) (*val);
219 
220 		reg_tmp = (mac->cur_40_prime_sc) << 5;
221 		if (short_preamble)
222 			reg_tmp |= 0x80;
223 		rtl_write_byte(rtlpriv, REG_RRSR + 2, reg_tmp);
224 		break;
225 	}
226 	case HW_VAR_AMPDU_MIN_SPACE: {
227 		u8 min_spacing_to_set;
228 
229 		min_spacing_to_set = *val;
230 		if (min_spacing_to_set <= 7) {
231 			mac->min_space_cfg = ((mac->min_space_cfg & 0xf8) |
232 					      min_spacing_to_set);
233 			*val = min_spacing_to_set;
234 			rtl_dbg(rtlpriv, COMP_MLME, DBG_LOUD,
235 				"Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
236 				mac->min_space_cfg);
237 			rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
238 				       mac->min_space_cfg);
239 		}
240 		break;
241 	}
242 	case HW_VAR_SHORTGI_DENSITY: {
243 		u8 density_to_set;
244 
245 		density_to_set = *val;
246 		mac->min_space_cfg = rtlpriv->rtlhal.minspace_cfg;
247 		mac->min_space_cfg |= (density_to_set << 3);
248 		rtl_dbg(rtlpriv, COMP_MLME, DBG_LOUD,
249 			"Set HW_VAR_SHORTGI_DENSITY: %#x\n",
250 			mac->min_space_cfg);
251 		rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
252 			       mac->min_space_cfg);
253 		break;
254 	}
255 	case HW_VAR_AMPDU_FACTOR: {
256 		u8 factor_toset;
257 		u32 regtoset;
258 		u8 *ptmp_byte = NULL;
259 		u8 index;
260 
261 		if (rtlhal->macphymode == DUALMAC_DUALPHY)
262 			regtoset = 0xb9726641;
263 		else if (rtlhal->macphymode == DUALMAC_SINGLEPHY)
264 			regtoset = 0x66626641;
265 		else
266 			regtoset = 0xb972a841;
267 		factor_toset = *val;
268 		if (factor_toset <= 3) {
269 			factor_toset = (1 << (factor_toset + 2));
270 			if (factor_toset > 0xf)
271 				factor_toset = 0xf;
272 			for (index = 0; index < 4; index++) {
273 				ptmp_byte = (u8 *)(&regtoset) + index;
274 				if ((*ptmp_byte & 0xf0) >
275 				    (factor_toset << 4))
276 					*ptmp_byte = (*ptmp_byte & 0x0f)
277 						 | (factor_toset << 4);
278 				if ((*ptmp_byte & 0x0f) > factor_toset)
279 					*ptmp_byte = (*ptmp_byte & 0xf0)
280 						     | (factor_toset);
281 			}
282 			rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, regtoset);
283 			rtl_dbg(rtlpriv, COMP_MLME, DBG_LOUD,
284 				"Set HW_VAR_AMPDU_FACTOR: %#x\n",
285 				factor_toset);
286 		}
287 		break;
288 	}
289 	case HW_VAR_AC_PARAM: {
290 		u8 e_aci = *val;
291 		rtl92d_dm_init_edca_turbo(hw);
292 		if (rtlpci->acm_method != EACMWAY2_SW)
293 			rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ACM_CTRL,
294 						      &e_aci);
295 		break;
296 	}
297 	case HW_VAR_ACM_CTRL: {
298 		u8 e_aci = *val;
299 		union aci_aifsn *p_aci_aifsn =
300 		    (union aci_aifsn *)(&(mac->ac[0].aifs));
301 		u8 acm = p_aci_aifsn->f.acm;
302 		u8 acm_ctrl = rtl_read_byte(rtlpriv, REG_ACMHWCTRL);
303 
304 		acm_ctrl = acm_ctrl | ((rtlpci->acm_method == 2) ?  0x0 : 0x1);
305 		if (acm) {
306 			switch (e_aci) {
307 			case AC0_BE:
308 				acm_ctrl |= ACMHW_BEQEN;
309 				break;
310 			case AC2_VI:
311 				acm_ctrl |= ACMHW_VIQEN;
312 				break;
313 			case AC3_VO:
314 				acm_ctrl |= ACMHW_VOQEN;
315 				break;
316 			default:
317 				rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
318 					"HW_VAR_ACM_CTRL acm set failed: eACI is %d\n",
319 					acm);
320 				break;
321 			}
322 		} else {
323 			switch (e_aci) {
324 			case AC0_BE:
325 				acm_ctrl &= (~ACMHW_BEQEN);
326 				break;
327 			case AC2_VI:
328 				acm_ctrl &= (~ACMHW_VIQEN);
329 				break;
330 			case AC3_VO:
331 				acm_ctrl &= (~ACMHW_VOQEN);
332 				break;
333 			default:
334 				pr_err("switch case %#x not processed\n",
335 				       e_aci);
336 				break;
337 			}
338 		}
339 		rtl_dbg(rtlpriv, COMP_QOS, DBG_TRACE,
340 			"SetHwReg8190pci(): [HW_VAR_ACM_CTRL] Write 0x%X\n",
341 			acm_ctrl);
342 		rtl_write_byte(rtlpriv, REG_ACMHWCTRL, acm_ctrl);
343 		break;
344 	}
345 	case HW_VAR_RCR:
346 		rtl_write_dword(rtlpriv, REG_RCR, ((u32 *) (val))[0]);
347 		rtlpci->receive_config = ((u32 *) (val))[0];
348 		break;
349 	case HW_VAR_RETRY_LIMIT: {
350 		u8 retry_limit = val[0];
351 
352 		rtl_write_word(rtlpriv, REG_RL,
353 			       retry_limit << RETRY_LIMIT_SHORT_SHIFT |
354 			       retry_limit << RETRY_LIMIT_LONG_SHIFT);
355 		break;
356 	}
357 	case HW_VAR_DUAL_TSF_RST:
358 		rtl_write_byte(rtlpriv, REG_DUAL_TSF_RST, (BIT(0) | BIT(1)));
359 		break;
360 	case HW_VAR_EFUSE_BYTES:
361 		rtlefuse->efuse_usedbytes = *((u16 *) val);
362 		break;
363 	case HW_VAR_EFUSE_USAGE:
364 		rtlefuse->efuse_usedpercentage = *val;
365 		break;
366 	case HW_VAR_IO_CMD:
367 		rtl92d_phy_set_io_cmd(hw, (*(enum io_type *)val));
368 		break;
369 	case HW_VAR_WPA_CONFIG:
370 		rtl_write_byte(rtlpriv, REG_SECCFG, *val);
371 		break;
372 	case HW_VAR_SET_RPWM:
373 		rtl92d_fill_h2c_cmd(hw, H2C_PWRM, 1, (val));
374 		break;
375 	case HW_VAR_H2C_FW_PWRMODE:
376 		break;
377 	case HW_VAR_FW_PSMODE_STATUS:
378 		ppsc->fw_current_inpsmode = *((bool *) val);
379 		break;
380 	case HW_VAR_H2C_FW_JOINBSSRPT: {
381 		u8 mstatus = (*val);
382 		u8 tmp_regcr, tmp_reg422;
383 		bool recover = false;
384 
385 		if (mstatus == RT_MEDIA_CONNECT) {
386 			rtlpriv->cfg->ops->set_hw_reg(hw,
387 						      HW_VAR_AID, NULL);
388 			tmp_regcr = rtl_read_byte(rtlpriv, REG_CR + 1);
389 			rtl_write_byte(rtlpriv, REG_CR + 1,
390 				       (tmp_regcr | BIT(0)));
391 			_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(3));
392 			_rtl92de_set_bcn_ctrl_reg(hw, BIT(4), 0);
393 			tmp_reg422 = rtl_read_byte(rtlpriv,
394 						 REG_FWHW_TXQ_CTRL + 2);
395 			if (tmp_reg422 & BIT(6))
396 				recover = true;
397 			rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2,
398 				       tmp_reg422 & (~BIT(6)));
399 			rtl92d_set_fw_rsvdpagepkt(hw, 0);
400 			_rtl92de_set_bcn_ctrl_reg(hw, BIT(3), 0);
401 			_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(4));
402 			if (recover)
403 				rtl_write_byte(rtlpriv,
404 					       REG_FWHW_TXQ_CTRL + 2,
405 					       tmp_reg422);
406 			rtl_write_byte(rtlpriv, REG_CR + 1,
407 				       (tmp_regcr & ~(BIT(0))));
408 		}
409 		rtl92d_set_fw_joinbss_report_cmd(hw, (*val));
410 		break;
411 	}
412 	case HW_VAR_AID: {
413 		u16 u2btmp;
414 		u2btmp = rtl_read_word(rtlpriv, REG_BCN_PSR_RPT);
415 		u2btmp &= 0xC000;
416 		rtl_write_word(rtlpriv, REG_BCN_PSR_RPT, (u2btmp |
417 			       mac->assoc_id));
418 		break;
419 	}
420 	case HW_VAR_CORRECT_TSF: {
421 		u8 btype_ibss = val[0];
422 
423 		if (btype_ibss)
424 			_rtl92de_stop_tx_beacon(hw);
425 		_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(3));
426 		rtl_write_dword(rtlpriv, REG_TSFTR,
427 				(u32) (mac->tsf & 0xffffffff));
428 		rtl_write_dword(rtlpriv, REG_TSFTR + 4,
429 				(u32) ((mac->tsf >> 32) & 0xffffffff));
430 		_rtl92de_set_bcn_ctrl_reg(hw, BIT(3), 0);
431 		if (btype_ibss)
432 			_rtl92de_resume_tx_beacon(hw);
433 
434 		break;
435 	}
436 	case HW_VAR_INT_MIGRATION: {
437 		bool int_migration = *(bool *) (val);
438 
439 		if (int_migration) {
440 			/* Set interrupt migration timer and
441 			 * corresponding Tx/Rx counter.
442 			 * timer 25ns*0xfa0=100us for 0xf packets.
443 			 * 0x306:Rx, 0x307:Tx */
444 			rtl_write_dword(rtlpriv, REG_INT_MIG, 0xfe000fa0);
445 			rtlpriv->dm.interrupt_migration = int_migration;
446 		} else {
447 			/* Reset all interrupt migration settings. */
448 			rtl_write_dword(rtlpriv, REG_INT_MIG, 0);
449 			rtlpriv->dm.interrupt_migration = int_migration;
450 		}
451 		break;
452 	}
453 	case HW_VAR_INT_AC: {
454 		bool disable_ac_int = *((bool *) val);
455 
456 		/* Disable four ACs interrupts. */
457 		if (disable_ac_int) {
458 			/* Disable VO, VI, BE and BK four AC interrupts
459 			 * to gain more efficient CPU utilization.
460 			 * When extremely highly Rx OK occurs,
461 			 * we will disable Tx interrupts.
462 			 */
463 			rtlpriv->cfg->ops->update_interrupt_mask(hw, 0,
464 						 RT_AC_INT_MASKS);
465 			rtlpriv->dm.disable_tx_int = disable_ac_int;
466 		/* Enable four ACs interrupts. */
467 		} else {
468 			rtlpriv->cfg->ops->update_interrupt_mask(hw,
469 						 RT_AC_INT_MASKS, 0);
470 			rtlpriv->dm.disable_tx_int = disable_ac_int;
471 		}
472 		break;
473 	}
474 	default:
475 		pr_err("switch case %#x not processed\n", variable);
476 		break;
477 	}
478 }
479 
480 static bool _rtl92de_llt_write(struct ieee80211_hw *hw, u32 address, u32 data)
481 {
482 	struct rtl_priv *rtlpriv = rtl_priv(hw);
483 	bool status = true;
484 	long count = 0;
485 	u32 value = _LLT_INIT_ADDR(address) |
486 	    _LLT_INIT_DATA(data) | _LLT_OP(_LLT_WRITE_ACCESS);
487 
488 	rtl_write_dword(rtlpriv, REG_LLT_INIT, value);
489 	do {
490 		value = rtl_read_dword(rtlpriv, REG_LLT_INIT);
491 		if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value))
492 			break;
493 		if (count > POLLING_LLT_THRESHOLD) {
494 			pr_err("Failed to polling write LLT done at address %d!\n",
495 			       address);
496 			status = false;
497 			break;
498 		}
499 	} while (++count);
500 	return status;
501 }
502 
503 static bool _rtl92de_llt_table_init(struct ieee80211_hw *hw)
504 {
505 	struct rtl_priv *rtlpriv = rtl_priv(hw);
506 	unsigned short i;
507 	u8 txpktbuf_bndy;
508 	u8 maxpage;
509 	bool status;
510 	u32 value32; /* High+low page number */
511 	u8 value8;	 /* normal page number */
512 
513 	if (rtlpriv->rtlhal.macphymode == SINGLEMAC_SINGLEPHY) {
514 		maxpage = 255;
515 		txpktbuf_bndy = 246;
516 		value8 = 0;
517 		value32 = 0x80bf0d29;
518 	} else {
519 		maxpage = 127;
520 		txpktbuf_bndy = 123;
521 		value8 = 0;
522 		value32 = 0x80750005;
523 	}
524 
525 	/* Set reserved page for each queue */
526 	/* 11.  RQPN 0x200[31:0] = 0x80BD1C1C */
527 	/* load RQPN */
528 	rtl_write_byte(rtlpriv, REG_RQPN_NPQ, value8);
529 	rtl_write_dword(rtlpriv, REG_RQPN, value32);
530 
531 	/* 12.  TXRKTBUG_PG_BNDY 0x114[31:0] = 0x27FF00F6 */
532 	/* TXRKTBUG_PG_BNDY */
533 	rtl_write_dword(rtlpriv, REG_TRXFF_BNDY,
534 			(rtl_read_word(rtlpriv, REG_TRXFF_BNDY + 2) << 16 |
535 			txpktbuf_bndy));
536 
537 	/* 13.  TDECTRL[15:8] 0x209[7:0] = 0xF6 */
538 	/* Beacon Head for TXDMA */
539 	rtl_write_byte(rtlpriv, REG_TDECTRL + 1, txpktbuf_bndy);
540 
541 	/* 14.  BCNQ_PGBNDY 0x424[7:0] =  0xF6 */
542 	/* BCNQ_PGBNDY */
543 	rtl_write_byte(rtlpriv, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy);
544 	rtl_write_byte(rtlpriv, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy);
545 
546 	/* 15.  WMAC_LBK_BF_HD 0x45D[7:0] =  0xF6 */
547 	/* WMAC_LBK_BF_HD */
548 	rtl_write_byte(rtlpriv, 0x45D, txpktbuf_bndy);
549 
550 	/* Set Tx/Rx page size (Tx must be 128 Bytes, */
551 	/* Rx can be 64,128,256,512,1024 bytes) */
552 	/* 16.  PBP [7:0] = 0x11 */
553 	/* TRX page size */
554 	rtl_write_byte(rtlpriv, REG_PBP, 0x11);
555 
556 	/* 17.  DRV_INFO_SZ = 0x04 */
557 	rtl_write_byte(rtlpriv, REG_RX_DRVINFO_SZ, 0x4);
558 
559 	/* 18.  LLT_table_init(Adapter);  */
560 	for (i = 0; i < (txpktbuf_bndy - 1); i++) {
561 		status = _rtl92de_llt_write(hw, i, i + 1);
562 		if (!status)
563 			return status;
564 	}
565 
566 	/* end of list */
567 	status = _rtl92de_llt_write(hw, (txpktbuf_bndy - 1), 0xFF);
568 	if (!status)
569 		return status;
570 
571 	/* Make the other pages as ring buffer */
572 	/* This ring buffer is used as beacon buffer if we */
573 	/* config this MAC as two MAC transfer. */
574 	/* Otherwise used as local loopback buffer.  */
575 	for (i = txpktbuf_bndy; i < maxpage; i++) {
576 		status = _rtl92de_llt_write(hw, i, (i + 1));
577 		if (!status)
578 			return status;
579 	}
580 
581 	/* Let last entry point to the start entry of ring buffer */
582 	status = _rtl92de_llt_write(hw, maxpage, txpktbuf_bndy);
583 	if (!status)
584 		return status;
585 
586 	return true;
587 }
588 
589 static void _rtl92de_gen_refresh_led_state(struct ieee80211_hw *hw)
590 {
591 	struct rtl_priv *rtlpriv = rtl_priv(hw);
592 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
593 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
594 	enum rtl_led_pin pin0 = rtlpriv->ledctl.sw_led0;
595 
596 	if (rtlpci->up_first_time)
597 		return;
598 	if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS)
599 		rtl92de_sw_led_on(hw, pin0);
600 	else if (ppsc->rfoff_reason == RF_CHANGE_BY_INIT)
601 		rtl92de_sw_led_on(hw, pin0);
602 	else
603 		rtl92de_sw_led_off(hw, pin0);
604 }
605 
606 static bool _rtl92de_init_mac(struct ieee80211_hw *hw)
607 {
608 	struct rtl_priv *rtlpriv = rtl_priv(hw);
609 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
610 	unsigned char bytetmp;
611 	unsigned short wordtmp;
612 	u16 retry;
613 
614 	rtl92d_phy_set_poweron(hw);
615 	/* Add for resume sequence of power domain according
616 	 * to power document V11. Chapter V.11....  */
617 	/* 0.   RSV_CTRL 0x1C[7:0] = 0x00  */
618 	/* unlock ISO/CLK/Power control register */
619 	rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x00);
620 	rtl_write_byte(rtlpriv, REG_LDOA15_CTRL, 0x05);
621 
622 	/* 1.   AFE_XTAL_CTRL [7:0] = 0x0F  enable XTAL */
623 	/* 2.   SPS0_CTRL 0x11[7:0] = 0x2b  enable SPS into PWM mode  */
624 	/* 3.   delay (1ms) this is not necessary when initially power on */
625 
626 	/* C.   Resume Sequence */
627 	/* a.   SPS0_CTRL 0x11[7:0] = 0x2b */
628 	rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x2b);
629 
630 	/* b.   AFE_XTAL_CTRL [7:0] = 0x0F */
631 	rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL, 0x0F);
632 
633 	/* c.   DRV runs power on init flow */
634 
635 	/* auto enable WLAN */
636 	/* 4.   APS_FSMCO 0x04[8] = 1; wait till 0x04[8] = 0   */
637 	/* Power On Reset for MAC Block */
638 	bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1) | BIT(0);
639 	udelay(2);
640 	rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, bytetmp);
641 	udelay(2);
642 
643 	/* 5.   Wait while 0x04[8] == 0 goto 2, otherwise goto 1 */
644 	bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1);
645 	udelay(50);
646 	retry = 0;
647 	while ((bytetmp & BIT(0)) && retry < 1000) {
648 		retry++;
649 		bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1);
650 		udelay(50);
651 	}
652 
653 	/* Enable Radio off, GPIO, and LED function */
654 	/* 6.   APS_FSMCO 0x04[15:0] = 0x0012  when enable HWPDN */
655 	rtl_write_word(rtlpriv, REG_APS_FSMCO, 0x1012);
656 
657 	/* release RF digital isolation  */
658 	/* 7.  SYS_ISO_CTRL 0x01[1]    = 0x0;  */
659 	/*Set REG_SYS_ISO_CTRL 0x1=0x82 to prevent wake# problem. */
660 	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x82);
661 	udelay(2);
662 
663 	/* make sure that BB reset OK. */
664 	/* rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3); */
665 
666 	/* Disable REG_CR before enable it to assure reset */
667 	rtl_write_word(rtlpriv, REG_CR, 0x0);
668 
669 	/* Release MAC IO register reset */
670 	rtl_write_word(rtlpriv, REG_CR, 0x2ff);
671 
672 	/* clear stopping tx/rx dma   */
673 	rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0x0);
674 
675 	/* rtl_write_word(rtlpriv,REG_CR+2, 0x2); */
676 
677 	/* System init */
678 	/* 18.  LLT_table_init(Adapter);  */
679 	if (!_rtl92de_llt_table_init(hw))
680 		return false;
681 
682 	/* Clear interrupt and enable interrupt */
683 	/* 19.  HISR 0x124[31:0] = 0xffffffff;  */
684 	/*      HISRE 0x12C[7:0] = 0xFF */
685 	rtl_write_dword(rtlpriv, REG_HISR, 0xffffffff);
686 	rtl_write_byte(rtlpriv, REG_HISRE, 0xff);
687 
688 	/* 20.  HIMR 0x120[31:0] |= [enable INT mask bit map];  */
689 	/* 21.  HIMRE 0x128[7:0] = [enable INT mask bit map] */
690 	/* The IMR should be enabled later after all init sequence
691 	 * is finished. */
692 
693 	/* 22.  PCIE configuration space configuration */
694 	/* 23.  Ensure PCIe Device 0x80[15:0] = 0x0143 (ASPM+CLKREQ),  */
695 	/*      and PCIe gated clock function is enabled.    */
696 	/* PCIE configuration space will be written after
697 	 * all init sequence.(Or by BIOS) */
698 
699 	rtl92d_phy_config_maccoexist_rfpage(hw);
700 
701 	/* THe below section is not related to power document Vxx . */
702 	/* This is only useful for driver and OS setting. */
703 	/* -------------------Software Relative Setting---------------------- */
704 	wordtmp = rtl_read_word(rtlpriv, REG_TRXDMA_CTRL);
705 	wordtmp &= 0xf;
706 	wordtmp |= 0xF771;
707 	rtl_write_word(rtlpriv, REG_TRXDMA_CTRL, wordtmp);
708 
709 	/* Reported Tx status from HW for rate adaptive. */
710 	/* This should be realtive to power on step 14. But in document V11  */
711 	/* still not contain the description.!!! */
712 	rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 1, 0x1F);
713 
714 	/* Set Tx/Rx page size (Tx must be 128 Bytes,
715 	 * Rx can be 64,128,256,512,1024 bytes) */
716 	/* rtl_write_byte(rtlpriv,REG_PBP, 0x11); */
717 
718 	/* Set RCR register */
719 	rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config);
720 	/* rtl_write_byte(rtlpriv,REG_RX_DRVINFO_SZ, 4); */
721 
722 	/*  Set TCR register */
723 	rtl_write_dword(rtlpriv, REG_TCR, rtlpci->transmit_config);
724 
725 	/* disable earlymode */
726 	rtl_write_byte(rtlpriv, 0x4d0, 0x0);
727 
728 	/* Set TX/RX descriptor physical address(from OS API). */
729 	rtl_write_dword(rtlpriv, REG_BCNQ_DESA,
730 			rtlpci->tx_ring[BEACON_QUEUE].dma);
731 	rtl_write_dword(rtlpriv, REG_MGQ_DESA, rtlpci->tx_ring[MGNT_QUEUE].dma);
732 	rtl_write_dword(rtlpriv, REG_VOQ_DESA, rtlpci->tx_ring[VO_QUEUE].dma);
733 	rtl_write_dword(rtlpriv, REG_VIQ_DESA, rtlpci->tx_ring[VI_QUEUE].dma);
734 	rtl_write_dword(rtlpriv, REG_BEQ_DESA, rtlpci->tx_ring[BE_QUEUE].dma);
735 	rtl_write_dword(rtlpriv, REG_BKQ_DESA, rtlpci->tx_ring[BK_QUEUE].dma);
736 	rtl_write_dword(rtlpriv, REG_HQ_DESA, rtlpci->tx_ring[HIGH_QUEUE].dma);
737 	/* Set RX Desc Address */
738 	rtl_write_dword(rtlpriv, REG_RX_DESA,
739 			rtlpci->rx_ring[RX_MPDU_QUEUE].dma);
740 
741 	/* if we want to support 64 bit DMA, we should set it here,
742 	 * but now we do not support 64 bit DMA*/
743 
744 	rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 3, 0x33);
745 
746 	/* Reset interrupt migration setting when initialization */
747 	rtl_write_dword(rtlpriv, REG_INT_MIG, 0);
748 
749 	/* Reconsider when to do this operation after asking HWSD. */
750 	bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL);
751 	rtl_write_byte(rtlpriv, REG_APSD_CTRL, bytetmp & ~BIT(6));
752 	do {
753 		retry++;
754 		bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL);
755 	} while ((retry < 200) && !(bytetmp & BIT(7)));
756 
757 	/* After MACIO reset,we must refresh LED state. */
758 	_rtl92de_gen_refresh_led_state(hw);
759 
760 	/* Reset H2C protection register */
761 	rtl_write_dword(rtlpriv, REG_MCUTST_1, 0x0);
762 
763 	return true;
764 }
765 
766 static void _rtl92de_hw_configure(struct ieee80211_hw *hw)
767 {
768 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
769 	struct rtl_priv *rtlpriv = rtl_priv(hw);
770 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
771 	u8 reg_bw_opmode = BW_OPMODE_20MHZ;
772 	u32 reg_rrsr;
773 
774 	reg_rrsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
775 	rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL, 0x8);
776 	rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode);
777 	rtl_write_dword(rtlpriv, REG_RRSR, reg_rrsr);
778 	rtl_write_byte(rtlpriv, REG_SLOT, 0x09);
779 	rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE, 0x0);
780 	rtl_write_word(rtlpriv, REG_FWHW_TXQ_CTRL, 0x1F80);
781 	rtl_write_word(rtlpriv, REG_RL, 0x0707);
782 	rtl_write_dword(rtlpriv, REG_BAR_MODE_CTRL, 0x02012802);
783 	rtl_write_byte(rtlpriv, REG_HWSEQ_CTRL, 0xFF);
784 	rtl_write_dword(rtlpriv, REG_DARFRC, 0x01000000);
785 	rtl_write_dword(rtlpriv, REG_DARFRC + 4, 0x07060504);
786 	rtl_write_dword(rtlpriv, REG_RARFRC, 0x01000000);
787 	rtl_write_dword(rtlpriv, REG_RARFRC + 4, 0x07060504);
788 	/* Aggregation threshold */
789 	if (rtlhal->macphymode == DUALMAC_DUALPHY)
790 		rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0xb9726641);
791 	else if (rtlhal->macphymode == DUALMAC_SINGLEPHY)
792 		rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0x66626641);
793 	else
794 		rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0xb972a841);
795 	rtl_write_byte(rtlpriv, REG_ATIMWND, 0x2);
796 	rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0x0a);
797 	rtlpci->reg_bcn_ctrl_val = 0x1f;
798 	rtl_write_byte(rtlpriv, REG_BCN_CTRL, rtlpci->reg_bcn_ctrl_val);
799 	rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
800 	rtl_write_byte(rtlpriv, REG_PIFS, 0x1C);
801 	rtl_write_byte(rtlpriv, REG_AGGR_BREAK_TIME, 0x16);
802 	rtl_write_word(rtlpriv, REG_NAV_PROT_LEN, 0x0020);
803 	/* For throughput */
804 	rtl_write_word(rtlpriv, REG_FAST_EDCA_CTRL, 0x6666);
805 	/* ACKTO for IOT issue. */
806 	rtl_write_byte(rtlpriv, REG_ACKTO, 0x40);
807 	/* Set Spec SIFS (used in NAV) */
808 	rtl_write_word(rtlpriv, REG_SPEC_SIFS, 0x1010);
809 	rtl_write_word(rtlpriv, REG_MAC_SPEC_SIFS, 0x1010);
810 	/* Set SIFS for CCK */
811 	rtl_write_word(rtlpriv, REG_SIFS_CTX, 0x1010);
812 	/* Set SIFS for OFDM */
813 	rtl_write_word(rtlpriv, REG_SIFS_TRX, 0x1010);
814 	/* Set Multicast Address. */
815 	rtl_write_dword(rtlpriv, REG_MAR, 0xffffffff);
816 	rtl_write_dword(rtlpriv, REG_MAR + 4, 0xffffffff);
817 	switch (rtlpriv->phy.rf_type) {
818 	case RF_1T2R:
819 	case RF_1T1R:
820 		rtlhal->minspace_cfg = (MAX_MSS_DENSITY_1T << 3);
821 		break;
822 	case RF_2T2R:
823 	case RF_2T2R_GREEN:
824 		rtlhal->minspace_cfg = (MAX_MSS_DENSITY_2T << 3);
825 		break;
826 	}
827 }
828 
829 static void _rtl92de_enable_aspm_back_door(struct ieee80211_hw *hw)
830 {
831 	struct rtl_priv *rtlpriv = rtl_priv(hw);
832 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
833 
834 	rtl_write_byte(rtlpriv, 0x34b, 0x93);
835 	rtl_write_word(rtlpriv, 0x350, 0x870c);
836 	rtl_write_byte(rtlpriv, 0x352, 0x1);
837 	if (ppsc->support_backdoor)
838 		rtl_write_byte(rtlpriv, 0x349, 0x1b);
839 	else
840 		rtl_write_byte(rtlpriv, 0x349, 0x03);
841 	rtl_write_word(rtlpriv, 0x350, 0x2718);
842 	rtl_write_byte(rtlpriv, 0x352, 0x1);
843 }
844 
845 void rtl92de_enable_hw_security_config(struct ieee80211_hw *hw)
846 {
847 	struct rtl_priv *rtlpriv = rtl_priv(hw);
848 	u8 sec_reg_value;
849 
850 	rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
851 		"PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
852 		rtlpriv->sec.pairwise_enc_algorithm,
853 		rtlpriv->sec.group_enc_algorithm);
854 	if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
855 		rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
856 			"not open hw encryption\n");
857 		return;
858 	}
859 	sec_reg_value = SCR_TXENCENABLE | SCR_RXENCENABLE;
860 	if (rtlpriv->sec.use_defaultkey) {
861 		sec_reg_value |= SCR_TXUSEDK;
862 		sec_reg_value |= SCR_RXUSEDK;
863 	}
864 	sec_reg_value |= (SCR_RXBCUSEDK | SCR_TXBCUSEDK);
865 	rtl_write_byte(rtlpriv, REG_CR + 1, 0x02);
866 	rtl_dbg(rtlpriv, COMP_SEC, DBG_LOUD,
867 		"The SECR-value %x\n", sec_reg_value);
868 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
869 }
870 
871 int rtl92de_hw_init(struct ieee80211_hw *hw)
872 {
873 	struct rtl_priv *rtlpriv = rtl_priv(hw);
874 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
875 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
876 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
877 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
878 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
879 	bool rtstatus = true;
880 	u8 tmp_u1b;
881 	int i;
882 	int err;
883 	unsigned long flags;
884 
885 	rtlpci->being_init_adapter = true;
886 	rtlpci->init_ready = false;
887 	spin_lock_irqsave(&globalmutex_for_power_and_efuse, flags);
888 	/* we should do iqk after disable/enable */
889 	rtl92d_phy_reset_iqk_result(hw);
890 	/* rtlpriv->intf_ops->disable_aspm(hw); */
891 	rtstatus = _rtl92de_init_mac(hw);
892 	if (!rtstatus) {
893 		pr_err("Init MAC failed\n");
894 		err = 1;
895 		spin_unlock_irqrestore(&globalmutex_for_power_and_efuse, flags);
896 		return err;
897 	}
898 	err = rtl92d_download_fw(hw);
899 	spin_unlock_irqrestore(&globalmutex_for_power_and_efuse, flags);
900 	if (err) {
901 		rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
902 			"Failed to download FW. Init HW without FW..\n");
903 		return 1;
904 	}
905 	rtlhal->last_hmeboxnum = 0;
906 	rtlpriv->psc.fw_current_inpsmode = false;
907 
908 	tmp_u1b = rtl_read_byte(rtlpriv, 0x605);
909 	tmp_u1b = tmp_u1b | 0x30;
910 	rtl_write_byte(rtlpriv, 0x605, tmp_u1b);
911 
912 	if (rtlhal->earlymode_enable) {
913 		rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
914 			"EarlyMode Enabled!!!\n");
915 
916 		tmp_u1b = rtl_read_byte(rtlpriv, 0x4d0);
917 		tmp_u1b = tmp_u1b | 0x1f;
918 		rtl_write_byte(rtlpriv, 0x4d0, tmp_u1b);
919 
920 		rtl_write_byte(rtlpriv, 0x4d3, 0x80);
921 
922 		tmp_u1b = rtl_read_byte(rtlpriv, 0x605);
923 		tmp_u1b = tmp_u1b | 0x40;
924 		rtl_write_byte(rtlpriv, 0x605, tmp_u1b);
925 	}
926 
927 	if (mac->rdg_en) {
928 		rtl_write_byte(rtlpriv, REG_RD_CTRL, 0xff);
929 		rtl_write_word(rtlpriv, REG_RD_NAV_NXT, 0x200);
930 		rtl_write_byte(rtlpriv, REG_RD_RESP_PKT_TH, 0x05);
931 	}
932 
933 	rtl92d_phy_mac_config(hw);
934 	/* because last function modify RCR, so we update
935 	 * rcr var here, or TP will unstable for receive_config
936 	 * is wrong, RX RCR_ACRC32 will cause TP unstabel & Rx
937 	 * RCR_APP_ICV will cause mac80211 unassoc for cisco 1252*/
938 	rtlpci->receive_config = rtl_read_dword(rtlpriv, REG_RCR);
939 	rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV);
940 
941 	rtl92d_phy_bb_config(hw);
942 
943 	rtlphy->rf_mode = RF_OP_BY_SW_3WIRE;
944 	/* set before initialize RF */
945 	rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0xf);
946 
947 	/* config RF */
948 	rtl92d_phy_rf_config(hw);
949 
950 	/* After read predefined TXT, we must set BB/MAC/RF
951 	 * register as our requirement */
952 	/* After load BB,RF params,we need do more for 92D. */
953 	rtl92d_update_bbrf_configuration(hw);
954 	/* set default value after initialize RF,  */
955 	rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0);
956 	rtlphy->rfreg_chnlval[0] = rtl_get_rfreg(hw, (enum radio_path)0,
957 			RF_CHNLBW, RFREG_OFFSET_MASK);
958 	rtlphy->rfreg_chnlval[1] = rtl_get_rfreg(hw, (enum radio_path)1,
959 			RF_CHNLBW, RFREG_OFFSET_MASK);
960 
961 	/*---- Set CCK and OFDM Block "ON"----*/
962 	if (rtlhal->current_bandtype == BAND_ON_2_4G)
963 		rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1);
964 	rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1);
965 	if (rtlhal->interfaceindex == 0) {
966 		/* RFPGA0_ANALOGPARAMETER2: cck clock select,
967 		 *  set to 20MHz by default */
968 		rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10) |
969 			      BIT(11), 3);
970 	} else {
971 		/* Mac1 */
972 		rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(11) |
973 			      BIT(10), 3);
974 	}
975 
976 	_rtl92de_hw_configure(hw);
977 
978 	/* reset hw sec */
979 	rtl_cam_reset_all_entry(hw);
980 	rtl92de_enable_hw_security_config(hw);
981 
982 	/* Read EEPROM TX power index and PHY_REG_PG.txt to capture correct */
983 	/* TX power index for different rate set. */
984 	rtl92d_phy_get_hw_reg_originalvalue(hw);
985 	rtl92d_phy_set_txpower_level(hw, rtlphy->current_channel);
986 
987 	ppsc->rfpwr_state = ERFON;
988 
989 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR, mac->mac_addr);
990 
991 	_rtl92de_enable_aspm_back_door(hw);
992 	/* rtlpriv->intf_ops->enable_aspm(hw); */
993 
994 	rtl92d_dm_init(hw);
995 	rtlpci->being_init_adapter = false;
996 
997 	if (ppsc->rfpwr_state == ERFON) {
998 		rtl92d_phy_lc_calibrate(hw);
999 		/* 5G and 2.4G must wait sometime to let RF LO ready */
1000 		if (rtlhal->macphymode == DUALMAC_DUALPHY) {
1001 			u32 tmp_rega;
1002 			for (i = 0; i < 10000; i++) {
1003 				udelay(MAX_STALL_TIME);
1004 
1005 				tmp_rega = rtl_get_rfreg(hw,
1006 						  (enum radio_path)RF90_PATH_A,
1007 						  0x2a, MASKDWORD);
1008 
1009 				if (((tmp_rega & BIT(11)) == BIT(11)))
1010 					break;
1011 			}
1012 			/* check that loop was successful. If not, exit now */
1013 			if (i == 10000) {
1014 				rtlpci->init_ready = false;
1015 				return 1;
1016 			}
1017 		}
1018 	}
1019 	rtlpci->init_ready = true;
1020 	return err;
1021 }
1022 
1023 static enum version_8192d _rtl92de_read_chip_version(struct ieee80211_hw *hw)
1024 {
1025 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1026 	enum version_8192d version = VERSION_NORMAL_CHIP_92D_SINGLEPHY;
1027 	u32 value32;
1028 
1029 	value32 = rtl_read_dword(rtlpriv, REG_SYS_CFG);
1030 	if (!(value32 & 0x000f0000)) {
1031 		version = VERSION_TEST_CHIP_92D_SINGLEPHY;
1032 		rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "TEST CHIP!!!\n");
1033 	} else {
1034 		version = VERSION_NORMAL_CHIP_92D_SINGLEPHY;
1035 		rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "Normal CHIP!!!\n");
1036 	}
1037 	return version;
1038 }
1039 
1040 static int _rtl92de_set_media_status(struct ieee80211_hw *hw,
1041 				     enum nl80211_iftype type)
1042 {
1043 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1044 	u8 bt_msr = rtl_read_byte(rtlpriv, MSR);
1045 	enum led_ctl_mode ledaction = LED_CTL_NO_LINK;
1046 
1047 	bt_msr &= 0xfc;
1048 
1049 	if (type == NL80211_IFTYPE_UNSPECIFIED ||
1050 	    type == NL80211_IFTYPE_STATION) {
1051 		_rtl92de_stop_tx_beacon(hw);
1052 		_rtl92de_enable_bcn_sub_func(hw);
1053 	} else if (type == NL80211_IFTYPE_ADHOC ||
1054 		type == NL80211_IFTYPE_AP) {
1055 		_rtl92de_resume_tx_beacon(hw);
1056 		_rtl92de_disable_bcn_sub_func(hw);
1057 	} else {
1058 		rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
1059 			"Set HW_VAR_MEDIA_STATUS: No such media status(%x)\n",
1060 			type);
1061 	}
1062 	switch (type) {
1063 	case NL80211_IFTYPE_UNSPECIFIED:
1064 		bt_msr |= MSR_NOLINK;
1065 		ledaction = LED_CTL_LINK;
1066 		rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
1067 			"Set Network type to NO LINK!\n");
1068 		break;
1069 	case NL80211_IFTYPE_ADHOC:
1070 		bt_msr |= MSR_ADHOC;
1071 		rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
1072 			"Set Network type to Ad Hoc!\n");
1073 		break;
1074 	case NL80211_IFTYPE_STATION:
1075 		bt_msr |= MSR_INFRA;
1076 		ledaction = LED_CTL_LINK;
1077 		rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
1078 			"Set Network type to STA!\n");
1079 		break;
1080 	case NL80211_IFTYPE_AP:
1081 		bt_msr |= MSR_AP;
1082 		rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
1083 			"Set Network type to AP!\n");
1084 		break;
1085 	default:
1086 		pr_err("Network type %d not supported!\n", type);
1087 		return 1;
1088 	}
1089 	rtl_write_byte(rtlpriv, MSR, bt_msr);
1090 	rtlpriv->cfg->ops->led_control(hw, ledaction);
1091 	if ((bt_msr & MSR_MASK) == MSR_AP)
1092 		rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x00);
1093 	else
1094 		rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x66);
1095 	return 0;
1096 }
1097 
1098 void rtl92de_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
1099 {
1100 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1101 	u32 reg_rcr;
1102 
1103 	if (rtlpriv->psc.rfpwr_state != ERFON)
1104 		return;
1105 
1106 	rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1107 
1108 	if (check_bssid) {
1109 		reg_rcr |= (RCR_CBSSID_DATA | RCR_CBSSID_BCN);
1110 		rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1111 		_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(4));
1112 	} else if (!check_bssid) {
1113 		reg_rcr &= (~(RCR_CBSSID_DATA | RCR_CBSSID_BCN));
1114 		_rtl92de_set_bcn_ctrl_reg(hw, BIT(4), 0);
1115 		rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1116 	}
1117 }
1118 
1119 int rtl92de_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type)
1120 {
1121 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1122 
1123 	if (_rtl92de_set_media_status(hw, type))
1124 		return -EOPNOTSUPP;
1125 
1126 	/* check bssid */
1127 	if (rtlpriv->mac80211.link_state == MAC80211_LINKED) {
1128 		if (type != NL80211_IFTYPE_AP)
1129 			rtl92de_set_check_bssid(hw, true);
1130 	} else {
1131 		rtl92de_set_check_bssid(hw, false);
1132 	}
1133 	return 0;
1134 }
1135 
1136 /* do iqk or reload iqk */
1137 /* windows just rtl92d_phy_reload_iqk_setting in set channel,
1138  * but it's very strict for time sequence so we add
1139  * rtl92d_phy_reload_iqk_setting here */
1140 void rtl92d_linked_set_reg(struct ieee80211_hw *hw)
1141 {
1142 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1143 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
1144 	u8 indexforchannel;
1145 	u8 channel = rtlphy->current_channel;
1146 
1147 	indexforchannel = rtl92d_get_rightchnlplace_for_iqk(channel);
1148 	if (!rtlphy->iqk_matrix[indexforchannel].iqk_done) {
1149 		rtl_dbg(rtlpriv, COMP_SCAN | COMP_INIT, DBG_DMESG,
1150 			"Do IQK for channel:%d\n", channel);
1151 		rtl92d_phy_iq_calibrate(hw);
1152 	}
1153 }
1154 
1155 /* don't set REG_EDCA_BE_PARAM here because
1156  * mac80211 will send pkt when scan */
1157 void rtl92de_set_qos(struct ieee80211_hw *hw, int aci)
1158 {
1159 	rtl92d_dm_init_edca_turbo(hw);
1160 }
1161 
1162 void rtl92de_enable_interrupt(struct ieee80211_hw *hw)
1163 {
1164 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1165 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1166 
1167 	rtl_write_dword(rtlpriv, REG_HIMR, rtlpci->irq_mask[0] & 0xFFFFFFFF);
1168 	rtl_write_dword(rtlpriv, REG_HIMRE, rtlpci->irq_mask[1] & 0xFFFFFFFF);
1169 	rtlpci->irq_enabled = true;
1170 }
1171 
1172 void rtl92de_disable_interrupt(struct ieee80211_hw *hw)
1173 {
1174 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1175 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1176 
1177 	rtl_write_dword(rtlpriv, REG_HIMR, IMR8190_DISABLED);
1178 	rtl_write_dword(rtlpriv, REG_HIMRE, IMR8190_DISABLED);
1179 	rtlpci->irq_enabled = false;
1180 }
1181 
1182 static void _rtl92de_poweroff_adapter(struct ieee80211_hw *hw)
1183 {
1184 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1185 	u8 u1b_tmp;
1186 	unsigned long flags;
1187 
1188 	rtlpriv->intf_ops->enable_aspm(hw);
1189 	rtl_write_byte(rtlpriv, REG_RF_CTRL, 0x00);
1190 	rtl_set_bbreg(hw, RFPGA0_XCD_RFPARAMETER, BIT(3), 0);
1191 	rtl_set_bbreg(hw, RFPGA0_XCD_RFPARAMETER, BIT(15), 0);
1192 
1193 	/* 0x20:value 05-->04 */
1194 	rtl_write_byte(rtlpriv, REG_LDOA15_CTRL, 0x04);
1195 
1196 	/*  ==== Reset digital sequence   ====== */
1197 	rtl92d_firmware_selfreset(hw);
1198 
1199 	/* f.   SYS_FUNC_EN 0x03[7:0]=0x51 reset MCU, MAC register, DCORE */
1200 	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, 0x51);
1201 
1202 	/* g.   MCUFWDL 0x80[1:0]=0 reset MCU ready status */
1203 	rtl_write_byte(rtlpriv, REG_MCUFWDL, 0x00);
1204 
1205 	/*  ==== Pull GPIO PIN to balance level and LED control ====== */
1206 
1207 	/* h.     GPIO_PIN_CTRL 0x44[31:0]=0x000  */
1208 	rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL, 0x00000000);
1209 
1210 	/* i.    Value = GPIO_PIN_CTRL[7:0] */
1211 	u1b_tmp = rtl_read_byte(rtlpriv, REG_GPIO_PIN_CTRL);
1212 
1213 	/* j.    GPIO_PIN_CTRL 0x44[31:0] = 0x00FF0000 | (value <<8); */
1214 	/* write external PIN level  */
1215 	rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL,
1216 			0x00FF0000 | (u1b_tmp << 8));
1217 
1218 	/* k.   GPIO_MUXCFG 0x42 [15:0] = 0x0780 */
1219 	rtl_write_word(rtlpriv, REG_GPIO_IO_SEL, 0x0790);
1220 
1221 	/* l.   LEDCFG 0x4C[15:0] = 0x8080 */
1222 	rtl_write_word(rtlpriv, REG_LEDCFG0, 0x8080);
1223 
1224 	/*  ==== Disable analog sequence === */
1225 
1226 	/* m.   AFE_PLL_CTRL[7:0] = 0x80  disable PLL */
1227 	rtl_write_byte(rtlpriv, REG_AFE_PLL_CTRL, 0x80);
1228 
1229 	/* n.   SPS0_CTRL 0x11[7:0] = 0x22  enter PFM mode */
1230 	rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x23);
1231 
1232 	/* o.   AFE_XTAL_CTRL 0x24[7:0] = 0x0E  disable XTAL, if No BT COEX */
1233 	rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL, 0x0e);
1234 
1235 	/* p.   RSV_CTRL 0x1C[7:0] = 0x0E lock ISO/CLK/Power control register */
1236 	rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0e);
1237 
1238 	/*  ==== interface into suspend === */
1239 
1240 	/* q.   APS_FSMCO[15:8] = 0x58 PCIe suspend mode */
1241 	/* According to power document V11, we need to set this */
1242 	/* value as 0x18. Otherwise, we may not L0s sometimes. */
1243 	/* This indluences power consumption. Bases on SD1's test, */
1244 	/* set as 0x00 do not affect power current. And if it */
1245 	/* is set as 0x18, they had ever met auto load fail problem. */
1246 	rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, 0x10);
1247 
1248 	rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
1249 		"In PowerOff,reg0x%x=%X\n",
1250 		REG_SPS0_CTRL, rtl_read_byte(rtlpriv, REG_SPS0_CTRL));
1251 	/* r.   Note: for PCIe interface, PON will not turn */
1252 	/* off m-bias and BandGap in PCIe suspend mode.  */
1253 
1254 	/* 0x17[7] 1b': power off in process  0b' : power off over */
1255 	if (rtlpriv->rtlhal.macphymode != SINGLEMAC_SINGLEPHY) {
1256 		spin_lock_irqsave(&globalmutex_power, flags);
1257 		u1b_tmp = rtl_read_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS);
1258 		u1b_tmp &= (~BIT(7));
1259 		rtl_write_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS, u1b_tmp);
1260 		spin_unlock_irqrestore(&globalmutex_power, flags);
1261 	}
1262 
1263 	rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "<=======\n");
1264 }
1265 
1266 void rtl92de_card_disable(struct ieee80211_hw *hw)
1267 {
1268 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1269 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
1270 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1271 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1272 	enum nl80211_iftype opmode;
1273 
1274 	mac->link_state = MAC80211_NOLINK;
1275 	opmode = NL80211_IFTYPE_UNSPECIFIED;
1276 	_rtl92de_set_media_status(hw, opmode);
1277 
1278 	if (rtlpci->driver_is_goingto_unload ||
1279 	    ppsc->rfoff_reason > RF_CHANGE_BY_PS)
1280 		rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
1281 	RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
1282 	/* Power sequence for each MAC. */
1283 	/* a. stop tx DMA  */
1284 	/* b. close RF */
1285 	/* c. clear rx buf */
1286 	/* d. stop rx DMA */
1287 	/* e.  reset MAC */
1288 
1289 	/* a. stop tx DMA */
1290 	rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0xFE);
1291 	udelay(50);
1292 
1293 	/* b. TXPAUSE 0x522[7:0] = 0xFF Pause MAC TX queue */
1294 
1295 	/* c. ========RF OFF sequence==========  */
1296 	/* 0x88c[23:20] = 0xf. */
1297 	rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0xf);
1298 	rtl_set_rfreg(hw, RF90_PATH_A, 0x00, RFREG_OFFSET_MASK, 0x00);
1299 
1300 	/* APSD_CTRL 0x600[7:0] = 0x40 */
1301 	rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x40);
1302 
1303 	/* Close antenna 0,0xc04,0xd04 */
1304 	rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, MASKBYTE0, 0);
1305 	rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE, BDWORD, 0);
1306 
1307 	/*  SYS_FUNC_EN 0x02[7:0] = 0xE2   reset BB state machine */
1308 	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2);
1309 
1310 	/* Mac0 can not do Global reset. Mac1 can do. */
1311 	/* SYS_FUNC_EN 0x02[7:0] = 0xE0  reset BB state machine  */
1312 	if (rtlpriv->rtlhal.interfaceindex == 1)
1313 		rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE0);
1314 	udelay(50);
1315 
1316 	/* d.  stop tx/rx dma before disable REG_CR (0x100) to fix */
1317 	/* dma hang issue when disable/enable device.  */
1318 	rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0xff);
1319 	udelay(50);
1320 	rtl_write_byte(rtlpriv, REG_CR, 0x0);
1321 	rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "==> Do power off.......\n");
1322 	if (rtl92d_phy_check_poweroff(hw))
1323 		_rtl92de_poweroff_adapter(hw);
1324 	return;
1325 }
1326 
1327 void rtl92de_interrupt_recognized(struct ieee80211_hw *hw,
1328 				  struct rtl_int *intvec)
1329 {
1330 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1331 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1332 
1333 	intvec->inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0];
1334 	rtl_write_dword(rtlpriv, ISR, intvec->inta);
1335 }
1336 
1337 void rtl92de_set_beacon_related_registers(struct ieee80211_hw *hw)
1338 {
1339 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1340 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1341 	u16 bcn_interval, atim_window;
1342 
1343 	bcn_interval = mac->beacon_interval;
1344 	atim_window = 2;
1345 	rtl92de_disable_interrupt(hw);
1346 	rtl_write_word(rtlpriv, REG_ATIMWND, atim_window);
1347 	rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
1348 	rtl_write_word(rtlpriv, REG_BCNTCFG, 0x660f);
1349 	rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_CCK, 0x20);
1350 	if (rtlpriv->rtlhal.current_bandtype == BAND_ON_5G)
1351 		rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x30);
1352 	else
1353 		rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x20);
1354 	rtl_write_byte(rtlpriv, 0x606, 0x30);
1355 }
1356 
1357 void rtl92de_set_beacon_interval(struct ieee80211_hw *hw)
1358 {
1359 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1360 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1361 	u16 bcn_interval = mac->beacon_interval;
1362 
1363 	rtl_dbg(rtlpriv, COMP_BEACON, DBG_DMESG,
1364 		"beacon_interval:%d\n", bcn_interval);
1365 	rtl92de_disable_interrupt(hw);
1366 	rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
1367 	rtl92de_enable_interrupt(hw);
1368 }
1369 
1370 void rtl92de_update_interrupt_mask(struct ieee80211_hw *hw,
1371 				   u32 add_msr, u32 rm_msr)
1372 {
1373 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1374 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1375 
1376 	rtl_dbg(rtlpriv, COMP_INTR, DBG_LOUD, "add_msr:%x, rm_msr:%x\n",
1377 		add_msr, rm_msr);
1378 	if (add_msr)
1379 		rtlpci->irq_mask[0] |= add_msr;
1380 	if (rm_msr)
1381 		rtlpci->irq_mask[0] &= (~rm_msr);
1382 	rtl92de_disable_interrupt(hw);
1383 	rtl92de_enable_interrupt(hw);
1384 }
1385 
1386 static void _rtl92de_readpowervalue_fromprom(struct txpower_info *pwrinfo,
1387 				 u8 *rom_content, bool autoloadfail)
1388 {
1389 	u32 rfpath, eeaddr, group, offset1, offset2;
1390 	u8 i;
1391 
1392 	memset(pwrinfo, 0, sizeof(struct txpower_info));
1393 	if (autoloadfail) {
1394 		for (group = 0; group < CHANNEL_GROUP_MAX; group++) {
1395 			for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
1396 				if (group < CHANNEL_GROUP_MAX_2G) {
1397 					pwrinfo->cck_index[rfpath][group] =
1398 					    EEPROM_DEFAULT_TXPOWERLEVEL_2G;
1399 					pwrinfo->ht40_1sindex[rfpath][group] =
1400 					    EEPROM_DEFAULT_TXPOWERLEVEL_2G;
1401 				} else {
1402 					pwrinfo->ht40_1sindex[rfpath][group] =
1403 					    EEPROM_DEFAULT_TXPOWERLEVEL_5G;
1404 				}
1405 				pwrinfo->ht40_2sindexdiff[rfpath][group] =
1406 				    EEPROM_DEFAULT_HT40_2SDIFF;
1407 				pwrinfo->ht20indexdiff[rfpath][group] =
1408 				    EEPROM_DEFAULT_HT20_DIFF;
1409 				pwrinfo->ofdmindexdiff[rfpath][group] =
1410 				    EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF;
1411 				pwrinfo->ht40maxoffset[rfpath][group] =
1412 				    EEPROM_DEFAULT_HT40_PWRMAXOFFSET;
1413 				pwrinfo->ht20maxoffset[rfpath][group] =
1414 				    EEPROM_DEFAULT_HT20_PWRMAXOFFSET;
1415 			}
1416 		}
1417 		for (i = 0; i < 3; i++) {
1418 			pwrinfo->tssi_a[i] = EEPROM_DEFAULT_TSSI;
1419 			pwrinfo->tssi_b[i] = EEPROM_DEFAULT_TSSI;
1420 		}
1421 		return;
1422 	}
1423 
1424 	/* Maybe autoload OK,buf the tx power index value is not filled.
1425 	 * If we find it, we set it to default value. */
1426 	for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
1427 		for (group = 0; group < CHANNEL_GROUP_MAX_2G; group++) {
1428 			eeaddr = EEPROM_CCK_TX_PWR_INX_2G + (rfpath * 3)
1429 				 + group;
1430 			pwrinfo->cck_index[rfpath][group] =
1431 					(rom_content[eeaddr] == 0xFF) ?
1432 					     (eeaddr > 0x7B ?
1433 					     EEPROM_DEFAULT_TXPOWERLEVEL_5G :
1434 					     EEPROM_DEFAULT_TXPOWERLEVEL_2G) :
1435 					     rom_content[eeaddr];
1436 		}
1437 	}
1438 	for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
1439 		for (group = 0; group < CHANNEL_GROUP_MAX; group++) {
1440 			offset1 = group / 3;
1441 			offset2 = group % 3;
1442 			eeaddr = EEPROM_HT40_1S_TX_PWR_INX_2G + (rfpath * 3) +
1443 			    offset2 + offset1 * 21;
1444 			pwrinfo->ht40_1sindex[rfpath][group] =
1445 			    (rom_content[eeaddr] == 0xFF) ? (eeaddr > 0x7B ?
1446 					     EEPROM_DEFAULT_TXPOWERLEVEL_5G :
1447 					     EEPROM_DEFAULT_TXPOWERLEVEL_2G) :
1448 						 rom_content[eeaddr];
1449 		}
1450 	}
1451 	/* These just for 92D efuse offset. */
1452 	for (group = 0; group < CHANNEL_GROUP_MAX; group++) {
1453 		for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
1454 			int base1 = EEPROM_HT40_2S_TX_PWR_INX_DIFF_2G;
1455 
1456 			offset1 = group / 3;
1457 			offset2 = group % 3;
1458 
1459 			if (rom_content[base1 + offset2 + offset1 * 21] != 0xFF)
1460 				pwrinfo->ht40_2sindexdiff[rfpath][group] =
1461 				    (rom_content[base1 +
1462 				     offset2 + offset1 * 21] >> (rfpath * 4))
1463 				     & 0xF;
1464 			else
1465 				pwrinfo->ht40_2sindexdiff[rfpath][group] =
1466 				    EEPROM_DEFAULT_HT40_2SDIFF;
1467 			if (rom_content[EEPROM_HT20_TX_PWR_INX_DIFF_2G + offset2
1468 			    + offset1 * 21] != 0xFF)
1469 				pwrinfo->ht20indexdiff[rfpath][group] =
1470 				    (rom_content[EEPROM_HT20_TX_PWR_INX_DIFF_2G
1471 				    + offset2 + offset1 * 21] >> (rfpath * 4))
1472 				    & 0xF;
1473 			else
1474 				pwrinfo->ht20indexdiff[rfpath][group] =
1475 				    EEPROM_DEFAULT_HT20_DIFF;
1476 			if (rom_content[EEPROM_OFDM_TX_PWR_INX_DIFF_2G + offset2
1477 			    + offset1 * 21] != 0xFF)
1478 				pwrinfo->ofdmindexdiff[rfpath][group] =
1479 				    (rom_content[EEPROM_OFDM_TX_PWR_INX_DIFF_2G
1480 				     + offset2 + offset1 * 21] >> (rfpath * 4))
1481 				     & 0xF;
1482 			else
1483 				pwrinfo->ofdmindexdiff[rfpath][group] =
1484 				    EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF;
1485 			if (rom_content[EEPROM_HT40_MAX_PWR_OFFSET_2G + offset2
1486 			    + offset1 * 21] != 0xFF)
1487 				pwrinfo->ht40maxoffset[rfpath][group] =
1488 				    (rom_content[EEPROM_HT40_MAX_PWR_OFFSET_2G
1489 				    + offset2 + offset1 * 21] >> (rfpath * 4))
1490 				    & 0xF;
1491 			else
1492 				pwrinfo->ht40maxoffset[rfpath][group] =
1493 				    EEPROM_DEFAULT_HT40_PWRMAXOFFSET;
1494 			if (rom_content[EEPROM_HT20_MAX_PWR_OFFSET_2G + offset2
1495 			    + offset1 * 21] != 0xFF)
1496 				pwrinfo->ht20maxoffset[rfpath][group] =
1497 				    (rom_content[EEPROM_HT20_MAX_PWR_OFFSET_2G +
1498 				     offset2 + offset1 * 21] >> (rfpath * 4)) &
1499 				     0xF;
1500 			else
1501 				pwrinfo->ht20maxoffset[rfpath][group] =
1502 				    EEPROM_DEFAULT_HT20_PWRMAXOFFSET;
1503 		}
1504 	}
1505 	if (rom_content[EEPROM_TSSI_A_5G] != 0xFF) {
1506 		/* 5GL */
1507 		pwrinfo->tssi_a[0] = rom_content[EEPROM_TSSI_A_5G] & 0x3F;
1508 		pwrinfo->tssi_b[0] = rom_content[EEPROM_TSSI_B_5G] & 0x3F;
1509 		/* 5GM */
1510 		pwrinfo->tssi_a[1] = rom_content[EEPROM_TSSI_AB_5G] & 0x3F;
1511 		pwrinfo->tssi_b[1] =
1512 		    (rom_content[EEPROM_TSSI_AB_5G] & 0xC0) >> 6 |
1513 		    (rom_content[EEPROM_TSSI_AB_5G + 1] & 0x0F) << 2;
1514 		/* 5GH */
1515 		pwrinfo->tssi_a[2] = (rom_content[EEPROM_TSSI_AB_5G + 1] &
1516 				      0xF0) >> 4 |
1517 		    (rom_content[EEPROM_TSSI_AB_5G + 2] & 0x03) << 4;
1518 		pwrinfo->tssi_b[2] = (rom_content[EEPROM_TSSI_AB_5G + 2] &
1519 				      0xFC) >> 2;
1520 	} else {
1521 		for (i = 0; i < 3; i++) {
1522 			pwrinfo->tssi_a[i] = EEPROM_DEFAULT_TSSI;
1523 			pwrinfo->tssi_b[i] = EEPROM_DEFAULT_TSSI;
1524 		}
1525 	}
1526 }
1527 
1528 static void _rtl92de_read_txpower_info(struct ieee80211_hw *hw,
1529 				       bool autoload_fail, u8 *hwinfo)
1530 {
1531 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1532 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1533 	struct txpower_info pwrinfo;
1534 	u8 tempval[2], i, pwr, diff;
1535 	u32 ch, rfpath, group;
1536 
1537 	_rtl92de_readpowervalue_fromprom(&pwrinfo, hwinfo, autoload_fail);
1538 	if (!autoload_fail) {
1539 		/* bit0~2 */
1540 		rtlefuse->eeprom_regulatory = (hwinfo[EEPROM_RF_OPT1] & 0x7);
1541 		rtlefuse->eeprom_thermalmeter =
1542 			 hwinfo[EEPROM_THERMAL_METER] & 0x1f;
1543 		rtlefuse->crystalcap = hwinfo[EEPROM_XTAL_K];
1544 		tempval[0] = hwinfo[EEPROM_IQK_DELTA] & 0x03;
1545 		tempval[1] = (hwinfo[EEPROM_LCK_DELTA] & 0x0C) >> 2;
1546 		rtlefuse->txpwr_fromeprom = true;
1547 		if (IS_92D_D_CUT(rtlpriv->rtlhal.version) ||
1548 		    IS_92D_E_CUT(rtlpriv->rtlhal.version)) {
1549 			rtlefuse->internal_pa_5g[0] =
1550 				!((hwinfo[EEPROM_TSSI_A_5G] & BIT(6)) >> 6);
1551 			rtlefuse->internal_pa_5g[1] =
1552 				!((hwinfo[EEPROM_TSSI_B_5G] & BIT(6)) >> 6);
1553 			rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG,
1554 				"Is D cut,Internal PA0 %d Internal PA1 %d\n",
1555 				rtlefuse->internal_pa_5g[0],
1556 				rtlefuse->internal_pa_5g[1]);
1557 		}
1558 		rtlefuse->eeprom_c9 = hwinfo[EEPROM_RF_OPT6];
1559 		rtlefuse->eeprom_cc = hwinfo[EEPROM_RF_OPT7];
1560 	} else {
1561 		rtlefuse->eeprom_regulatory = 0;
1562 		rtlefuse->eeprom_thermalmeter = EEPROM_DEFAULT_THERMALMETER;
1563 		rtlefuse->crystalcap = EEPROM_DEFAULT_CRYSTALCAP;
1564 		tempval[0] = tempval[1] = 3;
1565 	}
1566 
1567 	/* Use default value to fill parameters if
1568 	 * efuse is not filled on some place. */
1569 
1570 	/* ThermalMeter from EEPROM */
1571 	if (rtlefuse->eeprom_thermalmeter < 0x06 ||
1572 	    rtlefuse->eeprom_thermalmeter > 0x1c)
1573 		rtlefuse->eeprom_thermalmeter = 0x12;
1574 	rtlefuse->thermalmeter[0] = rtlefuse->eeprom_thermalmeter;
1575 
1576 	/* check XTAL_K */
1577 	if (rtlefuse->crystalcap == 0xFF)
1578 		rtlefuse->crystalcap = 0;
1579 	if (rtlefuse->eeprom_regulatory > 3)
1580 		rtlefuse->eeprom_regulatory = 0;
1581 
1582 	for (i = 0; i < 2; i++) {
1583 		switch (tempval[i]) {
1584 		case 0:
1585 			tempval[i] = 5;
1586 			break;
1587 		case 1:
1588 			tempval[i] = 4;
1589 			break;
1590 		case 2:
1591 			tempval[i] = 3;
1592 			break;
1593 		case 3:
1594 		default:
1595 			tempval[i] = 0;
1596 			break;
1597 		}
1598 	}
1599 
1600 	rtlefuse->delta_iqk = tempval[0];
1601 	if (tempval[1] > 0)
1602 		rtlefuse->delta_lck = tempval[1] - 1;
1603 	if (rtlefuse->eeprom_c9 == 0xFF)
1604 		rtlefuse->eeprom_c9 = 0x00;
1605 	rtl_dbg(rtlpriv, COMP_INTR, DBG_LOUD,
1606 		"EEPROMRegulatory = 0x%x\n", rtlefuse->eeprom_regulatory);
1607 	rtl_dbg(rtlpriv, COMP_INTR, DBG_LOUD,
1608 		"ThermalMeter = 0x%x\n", rtlefuse->eeprom_thermalmeter);
1609 	rtl_dbg(rtlpriv, COMP_INTR, DBG_LOUD,
1610 		"CrystalCap = 0x%x\n", rtlefuse->crystalcap);
1611 	rtl_dbg(rtlpriv, COMP_INTR, DBG_LOUD,
1612 		"Delta_IQK = 0x%x Delta_LCK = 0x%x\n",
1613 		rtlefuse->delta_iqk, rtlefuse->delta_lck);
1614 
1615 	for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
1616 		for (ch = 0; ch < CHANNEL_MAX_NUMBER; ch++) {
1617 			group = rtl92d_get_chnlgroup_fromarray((u8) ch);
1618 			if (ch < CHANNEL_MAX_NUMBER_2G)
1619 				rtlefuse->txpwrlevel_cck[rfpath][ch] =
1620 				    pwrinfo.cck_index[rfpath][group];
1621 			rtlefuse->txpwrlevel_ht40_1s[rfpath][ch] =
1622 				    pwrinfo.ht40_1sindex[rfpath][group];
1623 			rtlefuse->txpwr_ht20diff[rfpath][ch] =
1624 				    pwrinfo.ht20indexdiff[rfpath][group];
1625 			rtlefuse->txpwr_legacyhtdiff[rfpath][ch] =
1626 				    pwrinfo.ofdmindexdiff[rfpath][group];
1627 			rtlefuse->pwrgroup_ht20[rfpath][ch] =
1628 				    pwrinfo.ht20maxoffset[rfpath][group];
1629 			rtlefuse->pwrgroup_ht40[rfpath][ch] =
1630 				    pwrinfo.ht40maxoffset[rfpath][group];
1631 			pwr = pwrinfo.ht40_1sindex[rfpath][group];
1632 			diff = pwrinfo.ht40_2sindexdiff[rfpath][group];
1633 			rtlefuse->txpwrlevel_ht40_2s[rfpath][ch] =
1634 				    (pwr > diff) ? (pwr - diff) : 0;
1635 		}
1636 	}
1637 }
1638 
1639 static void _rtl92de_read_macphymode_from_prom(struct ieee80211_hw *hw,
1640 					       u8 *content)
1641 {
1642 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1643 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1644 	u8 macphy_crvalue = content[EEPROM_MAC_FUNCTION];
1645 
1646 	if (macphy_crvalue & BIT(3)) {
1647 		rtlhal->macphymode = SINGLEMAC_SINGLEPHY;
1648 		rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
1649 			"MacPhyMode SINGLEMAC_SINGLEPHY\n");
1650 	} else {
1651 		rtlhal->macphymode = DUALMAC_DUALPHY;
1652 		rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
1653 			"MacPhyMode DUALMAC_DUALPHY\n");
1654 	}
1655 }
1656 
1657 static void _rtl92de_read_macphymode_and_bandtype(struct ieee80211_hw *hw,
1658 						  u8 *content)
1659 {
1660 	_rtl92de_read_macphymode_from_prom(hw, content);
1661 	rtl92d_phy_config_macphymode(hw);
1662 	rtl92d_phy_config_macphymode_info(hw);
1663 }
1664 
1665 static void _rtl92de_efuse_update_chip_version(struct ieee80211_hw *hw)
1666 {
1667 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1668 	enum version_8192d chipver = rtlpriv->rtlhal.version;
1669 	u8 cutvalue[2];
1670 	u16 chipvalue;
1671 
1672 	rtlpriv->intf_ops->read_efuse_byte(hw, EEPROME_CHIP_VERSION_H,
1673 					   &cutvalue[1]);
1674 	rtlpriv->intf_ops->read_efuse_byte(hw, EEPROME_CHIP_VERSION_L,
1675 					   &cutvalue[0]);
1676 	chipvalue = (cutvalue[1] << 8) | cutvalue[0];
1677 	switch (chipvalue) {
1678 	case 0xAA55:
1679 		chipver |= CHIP_92D_C_CUT;
1680 		rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "C-CUT!!!\n");
1681 		break;
1682 	case 0x9966:
1683 		chipver |= CHIP_92D_D_CUT;
1684 		rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "D-CUT!!!\n");
1685 		break;
1686 	case 0xCC33:
1687 		chipver |= CHIP_92D_E_CUT;
1688 		rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "E-CUT!!!\n");
1689 		break;
1690 	default:
1691 		chipver |= CHIP_92D_D_CUT;
1692 		pr_err("Unknown CUT!\n");
1693 		break;
1694 	}
1695 	rtlpriv->rtlhal.version = chipver;
1696 }
1697 
1698 static void _rtl92de_read_adapter_info(struct ieee80211_hw *hw)
1699 {
1700 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1701 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1702 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1703 	int params[] = {RTL8190_EEPROM_ID, EEPROM_VID, EEPROM_DID,
1704 			EEPROM_SVID, EEPROM_SMID, EEPROM_MAC_ADDR_MAC0_92D,
1705 			EEPROM_CHANNEL_PLAN, EEPROM_VERSION, EEPROM_CUSTOMER_ID,
1706 			COUNTRY_CODE_WORLD_WIDE_13};
1707 	int i;
1708 	u16 usvalue;
1709 	u8 *hwinfo;
1710 
1711 	hwinfo = kzalloc(HWSET_MAX_SIZE, GFP_KERNEL);
1712 	if (!hwinfo)
1713 		return;
1714 
1715 	if (rtl_get_hwinfo(hw, rtlpriv, HWSET_MAX_SIZE, hwinfo, params))
1716 		goto exit;
1717 
1718 	_rtl92de_efuse_update_chip_version(hw);
1719 	_rtl92de_read_macphymode_and_bandtype(hw, hwinfo);
1720 
1721 	/* Read Permanent MAC address for 2nd interface */
1722 	if (rtlhal->interfaceindex != 0) {
1723 		for (i = 0; i < 6; i += 2) {
1724 			usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR_MAC1_92D + i];
1725 			*((u16 *) (&rtlefuse->dev_addr[i])) = usvalue;
1726 		}
1727 	}
1728 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR,
1729 				      rtlefuse->dev_addr);
1730 	rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr);
1731 	_rtl92de_read_txpower_info(hw, rtlefuse->autoload_failflag, hwinfo);
1732 
1733 	/* Read Channel Plan */
1734 	switch (rtlhal->bandset) {
1735 	case BAND_ON_2_4G:
1736 		rtlefuse->channel_plan = COUNTRY_CODE_TELEC;
1737 		break;
1738 	case BAND_ON_5G:
1739 		rtlefuse->channel_plan = COUNTRY_CODE_FCC;
1740 		break;
1741 	case BAND_ON_BOTH:
1742 		rtlefuse->channel_plan = COUNTRY_CODE_FCC;
1743 		break;
1744 	default:
1745 		rtlefuse->channel_plan = COUNTRY_CODE_FCC;
1746 		break;
1747 	}
1748 	rtlefuse->txpwr_fromeprom = true;
1749 exit:
1750 	kfree(hwinfo);
1751 }
1752 
1753 void rtl92de_read_eeprom_info(struct ieee80211_hw *hw)
1754 {
1755 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1756 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1757 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1758 	u8 tmp_u1b;
1759 
1760 	rtlhal->version = _rtl92de_read_chip_version(hw);
1761 	tmp_u1b = rtl_read_byte(rtlpriv, REG_9346CR);
1762 	rtlefuse->autoload_status = tmp_u1b;
1763 	if (tmp_u1b & BIT(4)) {
1764 		rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n");
1765 		rtlefuse->epromtype = EEPROM_93C46;
1766 	} else {
1767 		rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n");
1768 		rtlefuse->epromtype = EEPROM_BOOT_EFUSE;
1769 	}
1770 	if (tmp_u1b & BIT(5)) {
1771 		rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
1772 
1773 		rtlefuse->autoload_failflag = false;
1774 		_rtl92de_read_adapter_info(hw);
1775 	} else {
1776 		pr_err("Autoload ERR!!\n");
1777 	}
1778 	return;
1779 }
1780 
1781 static void rtl92de_update_hal_rate_table(struct ieee80211_hw *hw,
1782 					  struct ieee80211_sta *sta)
1783 {
1784 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1785 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
1786 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1787 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1788 	u32 ratr_value;
1789 	u8 ratr_index = 0;
1790 	u8 nmode = mac->ht_enable;
1791 	u8 mimo_ps = IEEE80211_SMPS_OFF;
1792 	u16 shortgi_rate;
1793 	u32 tmp_ratr_value;
1794 	u8 curtxbw_40mhz = mac->bw_40;
1795 	u8 curshortgi_40mhz = (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
1796 							1 : 0;
1797 	u8 curshortgi_20mhz = (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
1798 							1 : 0;
1799 	enum wireless_mode wirelessmode = mac->mode;
1800 
1801 	if (rtlhal->current_bandtype == BAND_ON_5G)
1802 		ratr_value = sta->deflink.supp_rates[1] << 4;
1803 	else
1804 		ratr_value = sta->deflink.supp_rates[0];
1805 	ratr_value |= (sta->deflink.ht_cap.mcs.rx_mask[1] << 20 |
1806 		       sta->deflink.ht_cap.mcs.rx_mask[0] << 12);
1807 	switch (wirelessmode) {
1808 	case WIRELESS_MODE_A:
1809 		ratr_value &= 0x00000FF0;
1810 		break;
1811 	case WIRELESS_MODE_B:
1812 		if (ratr_value & 0x0000000c)
1813 			ratr_value &= 0x0000000d;
1814 		else
1815 			ratr_value &= 0x0000000f;
1816 		break;
1817 	case WIRELESS_MODE_G:
1818 		ratr_value &= 0x00000FF5;
1819 		break;
1820 	case WIRELESS_MODE_N_24G:
1821 	case WIRELESS_MODE_N_5G:
1822 		nmode = 1;
1823 		if (mimo_ps == IEEE80211_SMPS_STATIC) {
1824 			ratr_value &= 0x0007F005;
1825 		} else {
1826 			u32 ratr_mask;
1827 
1828 			if (get_rf_type(rtlphy) == RF_1T2R ||
1829 			    get_rf_type(rtlphy) == RF_1T1R) {
1830 				ratr_mask = 0x000ff005;
1831 			} else {
1832 				ratr_mask = 0x0f0ff005;
1833 			}
1834 
1835 			ratr_value &= ratr_mask;
1836 		}
1837 		break;
1838 	default:
1839 		if (rtlphy->rf_type == RF_1T2R)
1840 			ratr_value &= 0x000ff0ff;
1841 		else
1842 			ratr_value &= 0x0f0ff0ff;
1843 
1844 		break;
1845 	}
1846 	ratr_value &= 0x0FFFFFFF;
1847 	if (nmode && ((curtxbw_40mhz && curshortgi_40mhz) ||
1848 	    (!curtxbw_40mhz && curshortgi_20mhz))) {
1849 		ratr_value |= 0x10000000;
1850 		tmp_ratr_value = (ratr_value >> 12);
1851 		for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
1852 			if ((1 << shortgi_rate) & tmp_ratr_value)
1853 				break;
1854 		}
1855 		shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
1856 		    (shortgi_rate << 4) | (shortgi_rate);
1857 	}
1858 	rtl_write_dword(rtlpriv, REG_ARFR0 + ratr_index * 4, ratr_value);
1859 	rtl_dbg(rtlpriv, COMP_RATR, DBG_DMESG, "%x\n",
1860 		rtl_read_dword(rtlpriv, REG_ARFR0));
1861 }
1862 
1863 static void rtl92de_update_hal_rate_mask(struct ieee80211_hw *hw,
1864 		struct ieee80211_sta *sta, u8 rssi_level, bool update_bw)
1865 {
1866 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1867 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
1868 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1869 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1870 	struct rtl_sta_info *sta_entry = NULL;
1871 	u32 ratr_bitmap;
1872 	u8 ratr_index;
1873 	u8 curtxbw_40mhz = (sta->deflink.bandwidth >= IEEE80211_STA_RX_BW_40) ? 1 : 0;
1874 	u8 curshortgi_40mhz = (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
1875 							1 : 0;
1876 	u8 curshortgi_20mhz = (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
1877 							1 : 0;
1878 	enum wireless_mode wirelessmode = 0;
1879 	bool shortgi = false;
1880 	u32 value[2];
1881 	u8 macid = 0;
1882 	u8 mimo_ps = IEEE80211_SMPS_OFF;
1883 
1884 	sta_entry = (struct rtl_sta_info *) sta->drv_priv;
1885 	mimo_ps = sta_entry->mimo_ps;
1886 	wirelessmode = sta_entry->wireless_mode;
1887 	if (mac->opmode == NL80211_IFTYPE_STATION)
1888 		curtxbw_40mhz = mac->bw_40;
1889 	else if (mac->opmode == NL80211_IFTYPE_AP ||
1890 		mac->opmode == NL80211_IFTYPE_ADHOC)
1891 		macid = sta->aid + 1;
1892 
1893 	if (rtlhal->current_bandtype == BAND_ON_5G)
1894 		ratr_bitmap = sta->deflink.supp_rates[1] << 4;
1895 	else
1896 		ratr_bitmap = sta->deflink.supp_rates[0];
1897 	ratr_bitmap |= (sta->deflink.ht_cap.mcs.rx_mask[1] << 20 |
1898 			sta->deflink.ht_cap.mcs.rx_mask[0] << 12);
1899 	switch (wirelessmode) {
1900 	case WIRELESS_MODE_B:
1901 		ratr_index = RATR_INX_WIRELESS_B;
1902 		if (ratr_bitmap & 0x0000000c)
1903 			ratr_bitmap &= 0x0000000d;
1904 		else
1905 			ratr_bitmap &= 0x0000000f;
1906 		break;
1907 	case WIRELESS_MODE_G:
1908 		ratr_index = RATR_INX_WIRELESS_GB;
1909 
1910 		if (rssi_level == 1)
1911 			ratr_bitmap &= 0x00000f00;
1912 		else if (rssi_level == 2)
1913 			ratr_bitmap &= 0x00000ff0;
1914 		else
1915 			ratr_bitmap &= 0x00000ff5;
1916 		break;
1917 	case WIRELESS_MODE_A:
1918 		ratr_index = RATR_INX_WIRELESS_G;
1919 		ratr_bitmap &= 0x00000ff0;
1920 		break;
1921 	case WIRELESS_MODE_N_24G:
1922 	case WIRELESS_MODE_N_5G:
1923 		if (wirelessmode == WIRELESS_MODE_N_24G)
1924 			ratr_index = RATR_INX_WIRELESS_NGB;
1925 		else
1926 			ratr_index = RATR_INX_WIRELESS_NG;
1927 		if (mimo_ps == IEEE80211_SMPS_STATIC) {
1928 			if (rssi_level == 1)
1929 				ratr_bitmap &= 0x00070000;
1930 			else if (rssi_level == 2)
1931 				ratr_bitmap &= 0x0007f000;
1932 			else
1933 				ratr_bitmap &= 0x0007f005;
1934 		} else {
1935 			if (rtlphy->rf_type == RF_1T2R ||
1936 			    rtlphy->rf_type == RF_1T1R) {
1937 				if (curtxbw_40mhz) {
1938 					if (rssi_level == 1)
1939 						ratr_bitmap &= 0x000f0000;
1940 					else if (rssi_level == 2)
1941 						ratr_bitmap &= 0x000ff000;
1942 					else
1943 						ratr_bitmap &= 0x000ff015;
1944 				} else {
1945 					if (rssi_level == 1)
1946 						ratr_bitmap &= 0x000f0000;
1947 					else if (rssi_level == 2)
1948 						ratr_bitmap &= 0x000ff000;
1949 					else
1950 						ratr_bitmap &= 0x000ff005;
1951 				}
1952 			} else {
1953 				if (curtxbw_40mhz) {
1954 					if (rssi_level == 1)
1955 						ratr_bitmap &= 0x0f0f0000;
1956 					else if (rssi_level == 2)
1957 						ratr_bitmap &= 0x0f0ff000;
1958 					else
1959 						ratr_bitmap &= 0x0f0ff015;
1960 				} else {
1961 					if (rssi_level == 1)
1962 						ratr_bitmap &= 0x0f0f0000;
1963 					else if (rssi_level == 2)
1964 						ratr_bitmap &= 0x0f0ff000;
1965 					else
1966 						ratr_bitmap &= 0x0f0ff005;
1967 				}
1968 			}
1969 		}
1970 		if ((curtxbw_40mhz && curshortgi_40mhz) ||
1971 		    (!curtxbw_40mhz && curshortgi_20mhz)) {
1972 
1973 			if (macid == 0)
1974 				shortgi = true;
1975 			else if (macid == 1)
1976 				shortgi = false;
1977 		}
1978 		break;
1979 	default:
1980 		ratr_index = RATR_INX_WIRELESS_NGB;
1981 
1982 		if (rtlphy->rf_type == RF_1T2R)
1983 			ratr_bitmap &= 0x000ff0ff;
1984 		else
1985 			ratr_bitmap &= 0x0f0ff0ff;
1986 		break;
1987 	}
1988 
1989 	value[0] = (ratr_bitmap & 0x0fffffff) | (ratr_index << 28);
1990 	value[1] = macid | (shortgi ? 0x20 : 0x00) | 0x80;
1991 	rtl_dbg(rtlpriv, COMP_RATR, DBG_DMESG,
1992 		"ratr_bitmap :%x value0:%x value1:%x\n",
1993 		ratr_bitmap, value[0], value[1]);
1994 	rtl92d_fill_h2c_cmd(hw, H2C_RA_MASK, 5, (u8 *) value);
1995 	if (macid != 0)
1996 		sta_entry->ratr_index = ratr_index;
1997 }
1998 
1999 void rtl92de_update_hal_rate_tbl(struct ieee80211_hw *hw,
2000 		struct ieee80211_sta *sta, u8 rssi_level, bool update_bw)
2001 {
2002 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2003 
2004 	if (rtlpriv->dm.useramask)
2005 		rtl92de_update_hal_rate_mask(hw, sta, rssi_level, update_bw);
2006 	else
2007 		rtl92de_update_hal_rate_table(hw, sta);
2008 }
2009 
2010 void rtl92de_update_channel_access_setting(struct ieee80211_hw *hw)
2011 {
2012 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2013 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2014 	u16 sifs_timer;
2015 
2016 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME,
2017 				      &mac->slot_time);
2018 	if (!mac->ht_enable)
2019 		sifs_timer = 0x0a0a;
2020 	else
2021 		sifs_timer = 0x1010;
2022 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
2023 }
2024 
2025 bool rtl92de_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid)
2026 {
2027 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2028 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
2029 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2030 	enum rf_pwrstate e_rfpowerstate_toset;
2031 	u8 u1tmp;
2032 	bool actuallyset = false;
2033 	unsigned long flag;
2034 
2035 	if (rtlpci->being_init_adapter)
2036 		return false;
2037 	if (ppsc->swrf_processing)
2038 		return false;
2039 	spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2040 	if (ppsc->rfchange_inprogress) {
2041 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2042 		return false;
2043 	} else {
2044 		ppsc->rfchange_inprogress = true;
2045 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2046 	}
2047 	rtl_write_byte(rtlpriv, REG_MAC_PINMUX_CFG, rtl_read_byte(rtlpriv,
2048 			  REG_MAC_PINMUX_CFG) & ~(BIT(3)));
2049 	u1tmp = rtl_read_byte(rtlpriv, REG_GPIO_IO_SEL);
2050 	e_rfpowerstate_toset = (u1tmp & BIT(3)) ? ERFON : ERFOFF;
2051 	if (ppsc->hwradiooff && (e_rfpowerstate_toset == ERFON)) {
2052 		rtl_dbg(rtlpriv, COMP_RF, DBG_DMESG,
2053 			"GPIOChangeRF  - HW Radio ON, RF ON\n");
2054 		e_rfpowerstate_toset = ERFON;
2055 		ppsc->hwradiooff = false;
2056 		actuallyset = true;
2057 	} else if (!ppsc->hwradiooff && (e_rfpowerstate_toset == ERFOFF)) {
2058 		rtl_dbg(rtlpriv, COMP_RF, DBG_DMESG,
2059 			"GPIOChangeRF  - HW Radio OFF, RF OFF\n");
2060 		e_rfpowerstate_toset = ERFOFF;
2061 		ppsc->hwradiooff = true;
2062 		actuallyset = true;
2063 	}
2064 	if (actuallyset) {
2065 		spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2066 		ppsc->rfchange_inprogress = false;
2067 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2068 	} else {
2069 		if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC)
2070 			RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
2071 		spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2072 		ppsc->rfchange_inprogress = false;
2073 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2074 	}
2075 	*valid = 1;
2076 	return !ppsc->hwradiooff;
2077 }
2078 
2079 void rtl92de_set_key(struct ieee80211_hw *hw, u32 key_index,
2080 		     u8 *p_macaddr, bool is_group, u8 enc_algo,
2081 		     bool is_wepkey, bool clear_all)
2082 {
2083 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2084 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2085 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
2086 	u8 *macaddr = p_macaddr;
2087 	u32 entry_id;
2088 	bool is_pairwise = false;
2089 	static u8 cam_const_addr[4][6] = {
2090 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
2091 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
2092 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
2093 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
2094 	};
2095 	static u8 cam_const_broad[] = {
2096 		0xff, 0xff, 0xff, 0xff, 0xff, 0xff
2097 	};
2098 
2099 	if (clear_all) {
2100 		u8 idx;
2101 		u8 cam_offset = 0;
2102 		u8 clear_number = 5;
2103 		rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n");
2104 		for (idx = 0; idx < clear_number; idx++) {
2105 			rtl_cam_mark_invalid(hw, cam_offset + idx);
2106 			rtl_cam_empty_entry(hw, cam_offset + idx);
2107 
2108 			if (idx < 5) {
2109 				memset(rtlpriv->sec.key_buf[idx], 0,
2110 				       MAX_KEY_LEN);
2111 				rtlpriv->sec.key_len[idx] = 0;
2112 			}
2113 		}
2114 	} else {
2115 		switch (enc_algo) {
2116 		case WEP40_ENCRYPTION:
2117 			enc_algo = CAM_WEP40;
2118 			break;
2119 		case WEP104_ENCRYPTION:
2120 			enc_algo = CAM_WEP104;
2121 			break;
2122 		case TKIP_ENCRYPTION:
2123 			enc_algo = CAM_TKIP;
2124 			break;
2125 		case AESCCMP_ENCRYPTION:
2126 			enc_algo = CAM_AES;
2127 			break;
2128 		default:
2129 			pr_err("switch case %#x not processed\n",
2130 			       enc_algo);
2131 			enc_algo = CAM_TKIP;
2132 			break;
2133 		}
2134 		if (is_wepkey || rtlpriv->sec.use_defaultkey) {
2135 			macaddr = cam_const_addr[key_index];
2136 			entry_id = key_index;
2137 		} else {
2138 			if (is_group) {
2139 				macaddr = cam_const_broad;
2140 				entry_id = key_index;
2141 			} else {
2142 				if (mac->opmode == NL80211_IFTYPE_AP) {
2143 					entry_id = rtl_cam_get_free_entry(hw,
2144 								 p_macaddr);
2145 					if (entry_id >=  TOTAL_CAM_ENTRY) {
2146 						pr_err("Can not find free hw security cam entry\n");
2147 						return;
2148 					}
2149 				} else {
2150 					entry_id = CAM_PAIRWISE_KEY_POSITION;
2151 				}
2152 				key_index = PAIRWISE_KEYIDX;
2153 				is_pairwise = true;
2154 			}
2155 		}
2156 		if (rtlpriv->sec.key_len[key_index] == 0) {
2157 			rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
2158 				"delete one entry, entry_id is %d\n",
2159 				entry_id);
2160 			if (mac->opmode == NL80211_IFTYPE_AP)
2161 				rtl_cam_del_entry(hw, p_macaddr);
2162 			rtl_cam_delete_one_entry(hw, p_macaddr, entry_id);
2163 		} else {
2164 			rtl_dbg(rtlpriv, COMP_SEC, DBG_LOUD,
2165 				"The insert KEY length is %d\n",
2166 				rtlpriv->sec.key_len[PAIRWISE_KEYIDX]);
2167 			rtl_dbg(rtlpriv, COMP_SEC, DBG_LOUD,
2168 				"The insert KEY is %x %x\n",
2169 				rtlpriv->sec.key_buf[0][0],
2170 				rtlpriv->sec.key_buf[0][1]);
2171 			rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
2172 				"add one entry\n");
2173 			if (is_pairwise) {
2174 				RT_PRINT_DATA(rtlpriv, COMP_SEC, DBG_LOUD,
2175 					      "Pairwise Key content",
2176 					      rtlpriv->sec.pairwise_key,
2177 					      rtlpriv->
2178 					      sec.key_len[PAIRWISE_KEYIDX]);
2179 				rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
2180 					"set Pairwise key\n");
2181 				rtl_cam_add_one_entry(hw, macaddr, key_index,
2182 						      entry_id, enc_algo,
2183 						      CAM_CONFIG_NO_USEDK,
2184 						      rtlpriv->
2185 						      sec.key_buf[key_index]);
2186 			} else {
2187 				rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
2188 					"set group key\n");
2189 				if (mac->opmode == NL80211_IFTYPE_ADHOC) {
2190 					rtl_cam_add_one_entry(hw,
2191 						rtlefuse->dev_addr,
2192 						PAIRWISE_KEYIDX,
2193 						CAM_PAIRWISE_KEY_POSITION,
2194 						enc_algo, CAM_CONFIG_NO_USEDK,
2195 						rtlpriv->sec.key_buf[entry_id]);
2196 				}
2197 				rtl_cam_add_one_entry(hw, macaddr, key_index,
2198 						entry_id, enc_algo,
2199 						CAM_CONFIG_NO_USEDK,
2200 						rtlpriv->sec.key_buf
2201 						[entry_id]);
2202 			}
2203 		}
2204 	}
2205 }
2206 
2207 void rtl92de_suspend(struct ieee80211_hw *hw)
2208 {
2209 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2210 
2211 	rtlpriv->rtlhal.macphyctl_reg = rtl_read_byte(rtlpriv,
2212 		REG_MAC_PHY_CTRL_NORMAL);
2213 }
2214 
2215 void rtl92de_resume(struct ieee80211_hw *hw)
2216 {
2217 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2218 
2219 	rtl_write_byte(rtlpriv, REG_MAC_PHY_CTRL_NORMAL,
2220 		       rtlpriv->rtlhal.macphyctl_reg);
2221 }
2222