xref: /linux/drivers/nvme/host/pci.c (revision 9a6b55ac)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/aer.h>
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq.h>
11 #include <linux/blk-mq-pci.h>
12 #include <linux/dmi.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/mutex.h>
19 #include <linux/once.h>
20 #include <linux/pci.h>
21 #include <linux/suspend.h>
22 #include <linux/t10-pi.h>
23 #include <linux/types.h>
24 #include <linux/io-64-nonatomic-lo-hi.h>
25 #include <linux/sed-opal.h>
26 #include <linux/pci-p2pdma.h>
27 
28 #include "trace.h"
29 #include "nvme.h"
30 
31 #define SQ_SIZE(q)	((q)->q_depth << (q)->sqes)
32 #define CQ_SIZE(q)	((q)->q_depth * sizeof(struct nvme_completion))
33 
34 #define SGES_PER_PAGE	(PAGE_SIZE / sizeof(struct nvme_sgl_desc))
35 
36 /*
37  * These can be higher, but we need to ensure that any command doesn't
38  * require an sg allocation that needs more than a page of data.
39  */
40 #define NVME_MAX_KB_SZ	4096
41 #define NVME_MAX_SEGS	127
42 
43 static int use_threaded_interrupts;
44 module_param(use_threaded_interrupts, int, 0);
45 
46 static bool use_cmb_sqes = true;
47 module_param(use_cmb_sqes, bool, 0444);
48 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
49 
50 static unsigned int max_host_mem_size_mb = 128;
51 module_param(max_host_mem_size_mb, uint, 0444);
52 MODULE_PARM_DESC(max_host_mem_size_mb,
53 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
54 
55 static unsigned int sgl_threshold = SZ_32K;
56 module_param(sgl_threshold, uint, 0644);
57 MODULE_PARM_DESC(sgl_threshold,
58 		"Use SGLs when average request segment size is larger or equal to "
59 		"this size. Use 0 to disable SGLs.");
60 
61 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
62 static const struct kernel_param_ops io_queue_depth_ops = {
63 	.set = io_queue_depth_set,
64 	.get = param_get_int,
65 };
66 
67 static int io_queue_depth = 1024;
68 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
69 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
70 
71 static unsigned int write_queues;
72 module_param(write_queues, uint, 0644);
73 MODULE_PARM_DESC(write_queues,
74 	"Number of queues to use for writes. If not set, reads and writes "
75 	"will share a queue set.");
76 
77 static unsigned int poll_queues;
78 module_param(poll_queues, uint, 0644);
79 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
80 
81 struct nvme_dev;
82 struct nvme_queue;
83 
84 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
85 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
86 
87 /*
88  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
89  */
90 struct nvme_dev {
91 	struct nvme_queue *queues;
92 	struct blk_mq_tag_set tagset;
93 	struct blk_mq_tag_set admin_tagset;
94 	u32 __iomem *dbs;
95 	struct device *dev;
96 	struct dma_pool *prp_page_pool;
97 	struct dma_pool *prp_small_pool;
98 	unsigned online_queues;
99 	unsigned max_qid;
100 	unsigned io_queues[HCTX_MAX_TYPES];
101 	unsigned int num_vecs;
102 	int q_depth;
103 	int io_sqes;
104 	u32 db_stride;
105 	void __iomem *bar;
106 	unsigned long bar_mapped_size;
107 	struct work_struct remove_work;
108 	struct mutex shutdown_lock;
109 	bool subsystem;
110 	u64 cmb_size;
111 	bool cmb_use_sqes;
112 	u32 cmbsz;
113 	u32 cmbloc;
114 	struct nvme_ctrl ctrl;
115 	u32 last_ps;
116 
117 	mempool_t *iod_mempool;
118 
119 	/* shadow doorbell buffer support: */
120 	u32 *dbbuf_dbs;
121 	dma_addr_t dbbuf_dbs_dma_addr;
122 	u32 *dbbuf_eis;
123 	dma_addr_t dbbuf_eis_dma_addr;
124 
125 	/* host memory buffer support: */
126 	u64 host_mem_size;
127 	u32 nr_host_mem_descs;
128 	dma_addr_t host_mem_descs_dma;
129 	struct nvme_host_mem_buf_desc *host_mem_descs;
130 	void **host_mem_desc_bufs;
131 };
132 
133 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
134 {
135 	int n = 0, ret;
136 
137 	ret = kstrtoint(val, 10, &n);
138 	if (ret != 0 || n < 2)
139 		return -EINVAL;
140 
141 	return param_set_int(val, kp);
142 }
143 
144 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
145 {
146 	return qid * 2 * stride;
147 }
148 
149 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
150 {
151 	return (qid * 2 + 1) * stride;
152 }
153 
154 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
155 {
156 	return container_of(ctrl, struct nvme_dev, ctrl);
157 }
158 
159 /*
160  * An NVM Express queue.  Each device has at least two (one for admin
161  * commands and one for I/O commands).
162  */
163 struct nvme_queue {
164 	struct nvme_dev *dev;
165 	spinlock_t sq_lock;
166 	void *sq_cmds;
167 	 /* only used for poll queues: */
168 	spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
169 	volatile struct nvme_completion *cqes;
170 	struct blk_mq_tags **tags;
171 	dma_addr_t sq_dma_addr;
172 	dma_addr_t cq_dma_addr;
173 	u32 __iomem *q_db;
174 	u16 q_depth;
175 	u16 cq_vector;
176 	u16 sq_tail;
177 	u16 last_sq_tail;
178 	u16 cq_head;
179 	u16 qid;
180 	u8 cq_phase;
181 	u8 sqes;
182 	unsigned long flags;
183 #define NVMEQ_ENABLED		0
184 #define NVMEQ_SQ_CMB		1
185 #define NVMEQ_DELETE_ERROR	2
186 #define NVMEQ_POLLED		3
187 	u32 *dbbuf_sq_db;
188 	u32 *dbbuf_cq_db;
189 	u32 *dbbuf_sq_ei;
190 	u32 *dbbuf_cq_ei;
191 	struct completion delete_done;
192 };
193 
194 /*
195  * The nvme_iod describes the data in an I/O.
196  *
197  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
198  * to the actual struct scatterlist.
199  */
200 struct nvme_iod {
201 	struct nvme_request req;
202 	struct nvme_queue *nvmeq;
203 	bool use_sgl;
204 	int aborted;
205 	int npages;		/* In the PRP list. 0 means small pool in use */
206 	int nents;		/* Used in scatterlist */
207 	dma_addr_t first_dma;
208 	unsigned int dma_len;	/* length of single DMA segment mapping */
209 	dma_addr_t meta_dma;
210 	struct scatterlist *sg;
211 };
212 
213 static unsigned int max_io_queues(void)
214 {
215 	return num_possible_cpus() + write_queues + poll_queues;
216 }
217 
218 static unsigned int max_queue_count(void)
219 {
220 	/* IO queues + admin queue */
221 	return 1 + max_io_queues();
222 }
223 
224 static inline unsigned int nvme_dbbuf_size(u32 stride)
225 {
226 	return (max_queue_count() * 8 * stride);
227 }
228 
229 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
230 {
231 	unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
232 
233 	if (dev->dbbuf_dbs)
234 		return 0;
235 
236 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
237 					    &dev->dbbuf_dbs_dma_addr,
238 					    GFP_KERNEL);
239 	if (!dev->dbbuf_dbs)
240 		return -ENOMEM;
241 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
242 					    &dev->dbbuf_eis_dma_addr,
243 					    GFP_KERNEL);
244 	if (!dev->dbbuf_eis) {
245 		dma_free_coherent(dev->dev, mem_size,
246 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
247 		dev->dbbuf_dbs = NULL;
248 		return -ENOMEM;
249 	}
250 
251 	return 0;
252 }
253 
254 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
255 {
256 	unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
257 
258 	if (dev->dbbuf_dbs) {
259 		dma_free_coherent(dev->dev, mem_size,
260 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
261 		dev->dbbuf_dbs = NULL;
262 	}
263 	if (dev->dbbuf_eis) {
264 		dma_free_coherent(dev->dev, mem_size,
265 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
266 		dev->dbbuf_eis = NULL;
267 	}
268 }
269 
270 static void nvme_dbbuf_init(struct nvme_dev *dev,
271 			    struct nvme_queue *nvmeq, int qid)
272 {
273 	if (!dev->dbbuf_dbs || !qid)
274 		return;
275 
276 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
277 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
278 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
279 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
280 }
281 
282 static void nvme_dbbuf_set(struct nvme_dev *dev)
283 {
284 	struct nvme_command c;
285 
286 	if (!dev->dbbuf_dbs)
287 		return;
288 
289 	memset(&c, 0, sizeof(c));
290 	c.dbbuf.opcode = nvme_admin_dbbuf;
291 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
292 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
293 
294 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
295 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
296 		/* Free memory and continue on */
297 		nvme_dbbuf_dma_free(dev);
298 	}
299 }
300 
301 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
302 {
303 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
304 }
305 
306 /* Update dbbuf and return true if an MMIO is required */
307 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
308 					      volatile u32 *dbbuf_ei)
309 {
310 	if (dbbuf_db) {
311 		u16 old_value;
312 
313 		/*
314 		 * Ensure that the queue is written before updating
315 		 * the doorbell in memory
316 		 */
317 		wmb();
318 
319 		old_value = *dbbuf_db;
320 		*dbbuf_db = value;
321 
322 		/*
323 		 * Ensure that the doorbell is updated before reading the event
324 		 * index from memory.  The controller needs to provide similar
325 		 * ordering to ensure the envent index is updated before reading
326 		 * the doorbell.
327 		 */
328 		mb();
329 
330 		if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
331 			return false;
332 	}
333 
334 	return true;
335 }
336 
337 /*
338  * Will slightly overestimate the number of pages needed.  This is OK
339  * as it only leads to a small amount of wasted memory for the lifetime of
340  * the I/O.
341  */
342 static int nvme_npages(unsigned size, struct nvme_dev *dev)
343 {
344 	unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
345 				      dev->ctrl.page_size);
346 	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
347 }
348 
349 /*
350  * Calculates the number of pages needed for the SGL segments. For example a 4k
351  * page can accommodate 256 SGL descriptors.
352  */
353 static int nvme_pci_npages_sgl(unsigned int num_seg)
354 {
355 	return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
356 }
357 
358 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
359 		unsigned int size, unsigned int nseg, bool use_sgl)
360 {
361 	size_t alloc_size;
362 
363 	if (use_sgl)
364 		alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
365 	else
366 		alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
367 
368 	return alloc_size + sizeof(struct scatterlist) * nseg;
369 }
370 
371 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
372 				unsigned int hctx_idx)
373 {
374 	struct nvme_dev *dev = data;
375 	struct nvme_queue *nvmeq = &dev->queues[0];
376 
377 	WARN_ON(hctx_idx != 0);
378 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
379 	WARN_ON(nvmeq->tags);
380 
381 	hctx->driver_data = nvmeq;
382 	nvmeq->tags = &dev->admin_tagset.tags[0];
383 	return 0;
384 }
385 
386 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
387 {
388 	struct nvme_queue *nvmeq = hctx->driver_data;
389 
390 	nvmeq->tags = NULL;
391 }
392 
393 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
394 			  unsigned int hctx_idx)
395 {
396 	struct nvme_dev *dev = data;
397 	struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
398 
399 	if (!nvmeq->tags)
400 		nvmeq->tags = &dev->tagset.tags[hctx_idx];
401 
402 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
403 	hctx->driver_data = nvmeq;
404 	return 0;
405 }
406 
407 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
408 		unsigned int hctx_idx, unsigned int numa_node)
409 {
410 	struct nvme_dev *dev = set->driver_data;
411 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
412 	int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
413 	struct nvme_queue *nvmeq = &dev->queues[queue_idx];
414 
415 	BUG_ON(!nvmeq);
416 	iod->nvmeq = nvmeq;
417 
418 	nvme_req(req)->ctrl = &dev->ctrl;
419 	return 0;
420 }
421 
422 static int queue_irq_offset(struct nvme_dev *dev)
423 {
424 	/* if we have more than 1 vec, admin queue offsets us by 1 */
425 	if (dev->num_vecs > 1)
426 		return 1;
427 
428 	return 0;
429 }
430 
431 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
432 {
433 	struct nvme_dev *dev = set->driver_data;
434 	int i, qoff, offset;
435 
436 	offset = queue_irq_offset(dev);
437 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
438 		struct blk_mq_queue_map *map = &set->map[i];
439 
440 		map->nr_queues = dev->io_queues[i];
441 		if (!map->nr_queues) {
442 			BUG_ON(i == HCTX_TYPE_DEFAULT);
443 			continue;
444 		}
445 
446 		/*
447 		 * The poll queue(s) doesn't have an IRQ (and hence IRQ
448 		 * affinity), so use the regular blk-mq cpu mapping
449 		 */
450 		map->queue_offset = qoff;
451 		if (i != HCTX_TYPE_POLL && offset)
452 			blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
453 		else
454 			blk_mq_map_queues(map);
455 		qoff += map->nr_queues;
456 		offset += map->nr_queues;
457 	}
458 
459 	return 0;
460 }
461 
462 /*
463  * Write sq tail if we are asked to, or if the next command would wrap.
464  */
465 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
466 {
467 	if (!write_sq) {
468 		u16 next_tail = nvmeq->sq_tail + 1;
469 
470 		if (next_tail == nvmeq->q_depth)
471 			next_tail = 0;
472 		if (next_tail != nvmeq->last_sq_tail)
473 			return;
474 	}
475 
476 	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
477 			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
478 		writel(nvmeq->sq_tail, nvmeq->q_db);
479 	nvmeq->last_sq_tail = nvmeq->sq_tail;
480 }
481 
482 /**
483  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
484  * @nvmeq: The queue to use
485  * @cmd: The command to send
486  * @write_sq: whether to write to the SQ doorbell
487  */
488 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
489 			    bool write_sq)
490 {
491 	spin_lock(&nvmeq->sq_lock);
492 	memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
493 	       cmd, sizeof(*cmd));
494 	if (++nvmeq->sq_tail == nvmeq->q_depth)
495 		nvmeq->sq_tail = 0;
496 	nvme_write_sq_db(nvmeq, write_sq);
497 	spin_unlock(&nvmeq->sq_lock);
498 }
499 
500 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
501 {
502 	struct nvme_queue *nvmeq = hctx->driver_data;
503 
504 	spin_lock(&nvmeq->sq_lock);
505 	if (nvmeq->sq_tail != nvmeq->last_sq_tail)
506 		nvme_write_sq_db(nvmeq, true);
507 	spin_unlock(&nvmeq->sq_lock);
508 }
509 
510 static void **nvme_pci_iod_list(struct request *req)
511 {
512 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
513 	return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
514 }
515 
516 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
517 {
518 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
519 	int nseg = blk_rq_nr_phys_segments(req);
520 	unsigned int avg_seg_size;
521 
522 	if (nseg == 0)
523 		return false;
524 
525 	avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
526 
527 	if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
528 		return false;
529 	if (!iod->nvmeq->qid)
530 		return false;
531 	if (!sgl_threshold || avg_seg_size < sgl_threshold)
532 		return false;
533 	return true;
534 }
535 
536 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
537 {
538 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
539 	const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
540 	dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
541 	int i;
542 
543 	if (iod->dma_len) {
544 		dma_unmap_page(dev->dev, dma_addr, iod->dma_len,
545 			       rq_dma_dir(req));
546 		return;
547 	}
548 
549 	WARN_ON_ONCE(!iod->nents);
550 
551 	if (is_pci_p2pdma_page(sg_page(iod->sg)))
552 		pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents,
553 				    rq_dma_dir(req));
554 	else
555 		dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
556 
557 
558 	if (iod->npages == 0)
559 		dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
560 			dma_addr);
561 
562 	for (i = 0; i < iod->npages; i++) {
563 		void *addr = nvme_pci_iod_list(req)[i];
564 
565 		if (iod->use_sgl) {
566 			struct nvme_sgl_desc *sg_list = addr;
567 
568 			next_dma_addr =
569 			    le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
570 		} else {
571 			__le64 *prp_list = addr;
572 
573 			next_dma_addr = le64_to_cpu(prp_list[last_prp]);
574 		}
575 
576 		dma_pool_free(dev->prp_page_pool, addr, dma_addr);
577 		dma_addr = next_dma_addr;
578 	}
579 
580 	mempool_free(iod->sg, dev->iod_mempool);
581 }
582 
583 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
584 {
585 	int i;
586 	struct scatterlist *sg;
587 
588 	for_each_sg(sgl, sg, nents, i) {
589 		dma_addr_t phys = sg_phys(sg);
590 		pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
591 			"dma_address:%pad dma_length:%d\n",
592 			i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
593 			sg_dma_len(sg));
594 	}
595 }
596 
597 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
598 		struct request *req, struct nvme_rw_command *cmnd)
599 {
600 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
601 	struct dma_pool *pool;
602 	int length = blk_rq_payload_bytes(req);
603 	struct scatterlist *sg = iod->sg;
604 	int dma_len = sg_dma_len(sg);
605 	u64 dma_addr = sg_dma_address(sg);
606 	u32 page_size = dev->ctrl.page_size;
607 	int offset = dma_addr & (page_size - 1);
608 	__le64 *prp_list;
609 	void **list = nvme_pci_iod_list(req);
610 	dma_addr_t prp_dma;
611 	int nprps, i;
612 
613 	length -= (page_size - offset);
614 	if (length <= 0) {
615 		iod->first_dma = 0;
616 		goto done;
617 	}
618 
619 	dma_len -= (page_size - offset);
620 	if (dma_len) {
621 		dma_addr += (page_size - offset);
622 	} else {
623 		sg = sg_next(sg);
624 		dma_addr = sg_dma_address(sg);
625 		dma_len = sg_dma_len(sg);
626 	}
627 
628 	if (length <= page_size) {
629 		iod->first_dma = dma_addr;
630 		goto done;
631 	}
632 
633 	nprps = DIV_ROUND_UP(length, page_size);
634 	if (nprps <= (256 / 8)) {
635 		pool = dev->prp_small_pool;
636 		iod->npages = 0;
637 	} else {
638 		pool = dev->prp_page_pool;
639 		iod->npages = 1;
640 	}
641 
642 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
643 	if (!prp_list) {
644 		iod->first_dma = dma_addr;
645 		iod->npages = -1;
646 		return BLK_STS_RESOURCE;
647 	}
648 	list[0] = prp_list;
649 	iod->first_dma = prp_dma;
650 	i = 0;
651 	for (;;) {
652 		if (i == page_size >> 3) {
653 			__le64 *old_prp_list = prp_list;
654 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
655 			if (!prp_list)
656 				return BLK_STS_RESOURCE;
657 			list[iod->npages++] = prp_list;
658 			prp_list[0] = old_prp_list[i - 1];
659 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
660 			i = 1;
661 		}
662 		prp_list[i++] = cpu_to_le64(dma_addr);
663 		dma_len -= page_size;
664 		dma_addr += page_size;
665 		length -= page_size;
666 		if (length <= 0)
667 			break;
668 		if (dma_len > 0)
669 			continue;
670 		if (unlikely(dma_len < 0))
671 			goto bad_sgl;
672 		sg = sg_next(sg);
673 		dma_addr = sg_dma_address(sg);
674 		dma_len = sg_dma_len(sg);
675 	}
676 
677 done:
678 	cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
679 	cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
680 
681 	return BLK_STS_OK;
682 
683  bad_sgl:
684 	WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
685 			"Invalid SGL for payload:%d nents:%d\n",
686 			blk_rq_payload_bytes(req), iod->nents);
687 	return BLK_STS_IOERR;
688 }
689 
690 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
691 		struct scatterlist *sg)
692 {
693 	sge->addr = cpu_to_le64(sg_dma_address(sg));
694 	sge->length = cpu_to_le32(sg_dma_len(sg));
695 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
696 }
697 
698 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
699 		dma_addr_t dma_addr, int entries)
700 {
701 	sge->addr = cpu_to_le64(dma_addr);
702 	if (entries < SGES_PER_PAGE) {
703 		sge->length = cpu_to_le32(entries * sizeof(*sge));
704 		sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
705 	} else {
706 		sge->length = cpu_to_le32(PAGE_SIZE);
707 		sge->type = NVME_SGL_FMT_SEG_DESC << 4;
708 	}
709 }
710 
711 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
712 		struct request *req, struct nvme_rw_command *cmd, int entries)
713 {
714 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
715 	struct dma_pool *pool;
716 	struct nvme_sgl_desc *sg_list;
717 	struct scatterlist *sg = iod->sg;
718 	dma_addr_t sgl_dma;
719 	int i = 0;
720 
721 	/* setting the transfer type as SGL */
722 	cmd->flags = NVME_CMD_SGL_METABUF;
723 
724 	if (entries == 1) {
725 		nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
726 		return BLK_STS_OK;
727 	}
728 
729 	if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
730 		pool = dev->prp_small_pool;
731 		iod->npages = 0;
732 	} else {
733 		pool = dev->prp_page_pool;
734 		iod->npages = 1;
735 	}
736 
737 	sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
738 	if (!sg_list) {
739 		iod->npages = -1;
740 		return BLK_STS_RESOURCE;
741 	}
742 
743 	nvme_pci_iod_list(req)[0] = sg_list;
744 	iod->first_dma = sgl_dma;
745 
746 	nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
747 
748 	do {
749 		if (i == SGES_PER_PAGE) {
750 			struct nvme_sgl_desc *old_sg_desc = sg_list;
751 			struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
752 
753 			sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
754 			if (!sg_list)
755 				return BLK_STS_RESOURCE;
756 
757 			i = 0;
758 			nvme_pci_iod_list(req)[iod->npages++] = sg_list;
759 			sg_list[i++] = *link;
760 			nvme_pci_sgl_set_seg(link, sgl_dma, entries);
761 		}
762 
763 		nvme_pci_sgl_set_data(&sg_list[i++], sg);
764 		sg = sg_next(sg);
765 	} while (--entries > 0);
766 
767 	return BLK_STS_OK;
768 }
769 
770 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
771 		struct request *req, struct nvme_rw_command *cmnd,
772 		struct bio_vec *bv)
773 {
774 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
775 	unsigned int offset = bv->bv_offset & (dev->ctrl.page_size - 1);
776 	unsigned int first_prp_len = dev->ctrl.page_size - offset;
777 
778 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
779 	if (dma_mapping_error(dev->dev, iod->first_dma))
780 		return BLK_STS_RESOURCE;
781 	iod->dma_len = bv->bv_len;
782 
783 	cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
784 	if (bv->bv_len > first_prp_len)
785 		cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
786 	return 0;
787 }
788 
789 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
790 		struct request *req, struct nvme_rw_command *cmnd,
791 		struct bio_vec *bv)
792 {
793 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
794 
795 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
796 	if (dma_mapping_error(dev->dev, iod->first_dma))
797 		return BLK_STS_RESOURCE;
798 	iod->dma_len = bv->bv_len;
799 
800 	cmnd->flags = NVME_CMD_SGL_METABUF;
801 	cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
802 	cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
803 	cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
804 	return 0;
805 }
806 
807 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
808 		struct nvme_command *cmnd)
809 {
810 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
811 	blk_status_t ret = BLK_STS_RESOURCE;
812 	int nr_mapped;
813 
814 	if (blk_rq_nr_phys_segments(req) == 1) {
815 		struct bio_vec bv = req_bvec(req);
816 
817 		if (!is_pci_p2pdma_page(bv.bv_page)) {
818 			if (bv.bv_offset + bv.bv_len <= dev->ctrl.page_size * 2)
819 				return nvme_setup_prp_simple(dev, req,
820 							     &cmnd->rw, &bv);
821 
822 			if (iod->nvmeq->qid &&
823 			    dev->ctrl.sgls & ((1 << 0) | (1 << 1)))
824 				return nvme_setup_sgl_simple(dev, req,
825 							     &cmnd->rw, &bv);
826 		}
827 	}
828 
829 	iod->dma_len = 0;
830 	iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
831 	if (!iod->sg)
832 		return BLK_STS_RESOURCE;
833 	sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
834 	iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
835 	if (!iod->nents)
836 		goto out;
837 
838 	if (is_pci_p2pdma_page(sg_page(iod->sg)))
839 		nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg,
840 				iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN);
841 	else
842 		nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
843 					     rq_dma_dir(req), DMA_ATTR_NO_WARN);
844 	if (!nr_mapped)
845 		goto out;
846 
847 	iod->use_sgl = nvme_pci_use_sgls(dev, req);
848 	if (iod->use_sgl)
849 		ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
850 	else
851 		ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
852 out:
853 	if (ret != BLK_STS_OK)
854 		nvme_unmap_data(dev, req);
855 	return ret;
856 }
857 
858 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
859 		struct nvme_command *cmnd)
860 {
861 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
862 
863 	iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
864 			rq_dma_dir(req), 0);
865 	if (dma_mapping_error(dev->dev, iod->meta_dma))
866 		return BLK_STS_IOERR;
867 	cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
868 	return 0;
869 }
870 
871 /*
872  * NOTE: ns is NULL when called on the admin queue.
873  */
874 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
875 			 const struct blk_mq_queue_data *bd)
876 {
877 	struct nvme_ns *ns = hctx->queue->queuedata;
878 	struct nvme_queue *nvmeq = hctx->driver_data;
879 	struct nvme_dev *dev = nvmeq->dev;
880 	struct request *req = bd->rq;
881 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
882 	struct nvme_command cmnd;
883 	blk_status_t ret;
884 
885 	iod->aborted = 0;
886 	iod->npages = -1;
887 	iod->nents = 0;
888 
889 	/*
890 	 * We should not need to do this, but we're still using this to
891 	 * ensure we can drain requests on a dying queue.
892 	 */
893 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
894 		return BLK_STS_IOERR;
895 
896 	ret = nvme_setup_cmd(ns, req, &cmnd);
897 	if (ret)
898 		return ret;
899 
900 	if (blk_rq_nr_phys_segments(req)) {
901 		ret = nvme_map_data(dev, req, &cmnd);
902 		if (ret)
903 			goto out_free_cmd;
904 	}
905 
906 	if (blk_integrity_rq(req)) {
907 		ret = nvme_map_metadata(dev, req, &cmnd);
908 		if (ret)
909 			goto out_unmap_data;
910 	}
911 
912 	blk_mq_start_request(req);
913 	nvme_submit_cmd(nvmeq, &cmnd, bd->last);
914 	return BLK_STS_OK;
915 out_unmap_data:
916 	nvme_unmap_data(dev, req);
917 out_free_cmd:
918 	nvme_cleanup_cmd(req);
919 	return ret;
920 }
921 
922 static void nvme_pci_complete_rq(struct request *req)
923 {
924 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
925 	struct nvme_dev *dev = iod->nvmeq->dev;
926 
927 	if (blk_integrity_rq(req))
928 		dma_unmap_page(dev->dev, iod->meta_dma,
929 			       rq_integrity_vec(req)->bv_len, rq_data_dir(req));
930 	if (blk_rq_nr_phys_segments(req))
931 		nvme_unmap_data(dev, req);
932 	nvme_complete_rq(req);
933 }
934 
935 /* We read the CQE phase first to check if the rest of the entry is valid */
936 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
937 {
938 	return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
939 			nvmeq->cq_phase;
940 }
941 
942 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
943 {
944 	u16 head = nvmeq->cq_head;
945 
946 	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
947 					      nvmeq->dbbuf_cq_ei))
948 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
949 }
950 
951 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
952 {
953 	volatile struct nvme_completion *cqe = &nvmeq->cqes[idx];
954 	struct request *req;
955 
956 	if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
957 		dev_warn(nvmeq->dev->ctrl.device,
958 			"invalid id %d completed on queue %d\n",
959 			cqe->command_id, le16_to_cpu(cqe->sq_id));
960 		return;
961 	}
962 
963 	/*
964 	 * AEN requests are special as they don't time out and can
965 	 * survive any kind of queue freeze and often don't respond to
966 	 * aborts.  We don't even bother to allocate a struct request
967 	 * for them but rather special case them here.
968 	 */
969 	if (unlikely(nvme_is_aen_req(nvmeq->qid, cqe->command_id))) {
970 		nvme_complete_async_event(&nvmeq->dev->ctrl,
971 				cqe->status, &cqe->result);
972 		return;
973 	}
974 
975 	req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
976 	trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
977 	nvme_end_request(req, cqe->status, cqe->result);
978 }
979 
980 static void nvme_complete_cqes(struct nvme_queue *nvmeq, u16 start, u16 end)
981 {
982 	while (start != end) {
983 		nvme_handle_cqe(nvmeq, start);
984 		if (++start == nvmeq->q_depth)
985 			start = 0;
986 	}
987 }
988 
989 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
990 {
991 	if (nvmeq->cq_head == nvmeq->q_depth - 1) {
992 		nvmeq->cq_head = 0;
993 		nvmeq->cq_phase = !nvmeq->cq_phase;
994 	} else {
995 		nvmeq->cq_head++;
996 	}
997 }
998 
999 static inline int nvme_process_cq(struct nvme_queue *nvmeq, u16 *start,
1000 				  u16 *end, unsigned int tag)
1001 {
1002 	int found = 0;
1003 
1004 	*start = nvmeq->cq_head;
1005 	while (nvme_cqe_pending(nvmeq)) {
1006 		if (tag == -1U || nvmeq->cqes[nvmeq->cq_head].command_id == tag)
1007 			found++;
1008 		nvme_update_cq_head(nvmeq);
1009 	}
1010 	*end = nvmeq->cq_head;
1011 
1012 	if (*start != *end)
1013 		nvme_ring_cq_doorbell(nvmeq);
1014 	return found;
1015 }
1016 
1017 static irqreturn_t nvme_irq(int irq, void *data)
1018 {
1019 	struct nvme_queue *nvmeq = data;
1020 	irqreturn_t ret = IRQ_NONE;
1021 	u16 start, end;
1022 
1023 	/*
1024 	 * The rmb/wmb pair ensures we see all updates from a previous run of
1025 	 * the irq handler, even if that was on another CPU.
1026 	 */
1027 	rmb();
1028 	nvme_process_cq(nvmeq, &start, &end, -1);
1029 	wmb();
1030 
1031 	if (start != end) {
1032 		nvme_complete_cqes(nvmeq, start, end);
1033 		return IRQ_HANDLED;
1034 	}
1035 
1036 	return ret;
1037 }
1038 
1039 static irqreturn_t nvme_irq_check(int irq, void *data)
1040 {
1041 	struct nvme_queue *nvmeq = data;
1042 	if (nvme_cqe_pending(nvmeq))
1043 		return IRQ_WAKE_THREAD;
1044 	return IRQ_NONE;
1045 }
1046 
1047 /*
1048  * Poll for completions any queue, including those not dedicated to polling.
1049  * Can be called from any context.
1050  */
1051 static int nvme_poll_irqdisable(struct nvme_queue *nvmeq, unsigned int tag)
1052 {
1053 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1054 	u16 start, end;
1055 	int found;
1056 
1057 	/*
1058 	 * For a poll queue we need to protect against the polling thread
1059 	 * using the CQ lock.  For normal interrupt driven threads we have
1060 	 * to disable the interrupt to avoid racing with it.
1061 	 */
1062 	if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) {
1063 		spin_lock(&nvmeq->cq_poll_lock);
1064 		found = nvme_process_cq(nvmeq, &start, &end, tag);
1065 		spin_unlock(&nvmeq->cq_poll_lock);
1066 	} else {
1067 		disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1068 		found = nvme_process_cq(nvmeq, &start, &end, tag);
1069 		enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1070 	}
1071 
1072 	nvme_complete_cqes(nvmeq, start, end);
1073 	return found;
1074 }
1075 
1076 static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1077 {
1078 	struct nvme_queue *nvmeq = hctx->driver_data;
1079 	u16 start, end;
1080 	bool found;
1081 
1082 	if (!nvme_cqe_pending(nvmeq))
1083 		return 0;
1084 
1085 	spin_lock(&nvmeq->cq_poll_lock);
1086 	found = nvme_process_cq(nvmeq, &start, &end, -1);
1087 	spin_unlock(&nvmeq->cq_poll_lock);
1088 
1089 	nvme_complete_cqes(nvmeq, start, end);
1090 	return found;
1091 }
1092 
1093 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1094 {
1095 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1096 	struct nvme_queue *nvmeq = &dev->queues[0];
1097 	struct nvme_command c;
1098 
1099 	memset(&c, 0, sizeof(c));
1100 	c.common.opcode = nvme_admin_async_event;
1101 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1102 	nvme_submit_cmd(nvmeq, &c, true);
1103 }
1104 
1105 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1106 {
1107 	struct nvme_command c;
1108 
1109 	memset(&c, 0, sizeof(c));
1110 	c.delete_queue.opcode = opcode;
1111 	c.delete_queue.qid = cpu_to_le16(id);
1112 
1113 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1114 }
1115 
1116 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1117 		struct nvme_queue *nvmeq, s16 vector)
1118 {
1119 	struct nvme_command c;
1120 	int flags = NVME_QUEUE_PHYS_CONTIG;
1121 
1122 	if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1123 		flags |= NVME_CQ_IRQ_ENABLED;
1124 
1125 	/*
1126 	 * Note: we (ab)use the fact that the prp fields survive if no data
1127 	 * is attached to the request.
1128 	 */
1129 	memset(&c, 0, sizeof(c));
1130 	c.create_cq.opcode = nvme_admin_create_cq;
1131 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1132 	c.create_cq.cqid = cpu_to_le16(qid);
1133 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1134 	c.create_cq.cq_flags = cpu_to_le16(flags);
1135 	c.create_cq.irq_vector = cpu_to_le16(vector);
1136 
1137 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1138 }
1139 
1140 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1141 						struct nvme_queue *nvmeq)
1142 {
1143 	struct nvme_ctrl *ctrl = &dev->ctrl;
1144 	struct nvme_command c;
1145 	int flags = NVME_QUEUE_PHYS_CONTIG;
1146 
1147 	/*
1148 	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1149 	 * set. Since URGENT priority is zeroes, it makes all queues
1150 	 * URGENT.
1151 	 */
1152 	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1153 		flags |= NVME_SQ_PRIO_MEDIUM;
1154 
1155 	/*
1156 	 * Note: we (ab)use the fact that the prp fields survive if no data
1157 	 * is attached to the request.
1158 	 */
1159 	memset(&c, 0, sizeof(c));
1160 	c.create_sq.opcode = nvme_admin_create_sq;
1161 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1162 	c.create_sq.sqid = cpu_to_le16(qid);
1163 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1164 	c.create_sq.sq_flags = cpu_to_le16(flags);
1165 	c.create_sq.cqid = cpu_to_le16(qid);
1166 
1167 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1168 }
1169 
1170 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1171 {
1172 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1173 }
1174 
1175 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1176 {
1177 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1178 }
1179 
1180 static void abort_endio(struct request *req, blk_status_t error)
1181 {
1182 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1183 	struct nvme_queue *nvmeq = iod->nvmeq;
1184 
1185 	dev_warn(nvmeq->dev->ctrl.device,
1186 		 "Abort status: 0x%x", nvme_req(req)->status);
1187 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1188 	blk_mq_free_request(req);
1189 }
1190 
1191 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1192 {
1193 
1194 	/* If true, indicates loss of adapter communication, possibly by a
1195 	 * NVMe Subsystem reset.
1196 	 */
1197 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1198 
1199 	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1200 	switch (dev->ctrl.state) {
1201 	case NVME_CTRL_RESETTING:
1202 	case NVME_CTRL_CONNECTING:
1203 		return false;
1204 	default:
1205 		break;
1206 	}
1207 
1208 	/* We shouldn't reset unless the controller is on fatal error state
1209 	 * _or_ if we lost the communication with it.
1210 	 */
1211 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1212 		return false;
1213 
1214 	return true;
1215 }
1216 
1217 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1218 {
1219 	/* Read a config register to help see what died. */
1220 	u16 pci_status;
1221 	int result;
1222 
1223 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1224 				      &pci_status);
1225 	if (result == PCIBIOS_SUCCESSFUL)
1226 		dev_warn(dev->ctrl.device,
1227 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1228 			 csts, pci_status);
1229 	else
1230 		dev_warn(dev->ctrl.device,
1231 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1232 			 csts, result);
1233 }
1234 
1235 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1236 {
1237 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1238 	struct nvme_queue *nvmeq = iod->nvmeq;
1239 	struct nvme_dev *dev = nvmeq->dev;
1240 	struct request *abort_req;
1241 	struct nvme_command cmd;
1242 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1243 
1244 	/* If PCI error recovery process is happening, we cannot reset or
1245 	 * the recovery mechanism will surely fail.
1246 	 */
1247 	mb();
1248 	if (pci_channel_offline(to_pci_dev(dev->dev)))
1249 		return BLK_EH_RESET_TIMER;
1250 
1251 	/*
1252 	 * Reset immediately if the controller is failed
1253 	 */
1254 	if (nvme_should_reset(dev, csts)) {
1255 		nvme_warn_reset(dev, csts);
1256 		nvme_dev_disable(dev, false);
1257 		nvme_reset_ctrl(&dev->ctrl);
1258 		return BLK_EH_DONE;
1259 	}
1260 
1261 	/*
1262 	 * Did we miss an interrupt?
1263 	 */
1264 	if (nvme_poll_irqdisable(nvmeq, req->tag)) {
1265 		dev_warn(dev->ctrl.device,
1266 			 "I/O %d QID %d timeout, completion polled\n",
1267 			 req->tag, nvmeq->qid);
1268 		return BLK_EH_DONE;
1269 	}
1270 
1271 	/*
1272 	 * Shutdown immediately if controller times out while starting. The
1273 	 * reset work will see the pci device disabled when it gets the forced
1274 	 * cancellation error. All outstanding requests are completed on
1275 	 * shutdown, so we return BLK_EH_DONE.
1276 	 */
1277 	switch (dev->ctrl.state) {
1278 	case NVME_CTRL_CONNECTING:
1279 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1280 		/* fall through */
1281 	case NVME_CTRL_DELETING:
1282 		dev_warn_ratelimited(dev->ctrl.device,
1283 			 "I/O %d QID %d timeout, disable controller\n",
1284 			 req->tag, nvmeq->qid);
1285 		nvme_dev_disable(dev, true);
1286 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1287 		return BLK_EH_DONE;
1288 	case NVME_CTRL_RESETTING:
1289 		return BLK_EH_RESET_TIMER;
1290 	default:
1291 		break;
1292 	}
1293 
1294 	/*
1295  	 * Shutdown the controller immediately and schedule a reset if the
1296  	 * command was already aborted once before and still hasn't been
1297  	 * returned to the driver, or if this is the admin queue.
1298 	 */
1299 	if (!nvmeq->qid || iod->aborted) {
1300 		dev_warn(dev->ctrl.device,
1301 			 "I/O %d QID %d timeout, reset controller\n",
1302 			 req->tag, nvmeq->qid);
1303 		nvme_dev_disable(dev, false);
1304 		nvme_reset_ctrl(&dev->ctrl);
1305 
1306 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1307 		return BLK_EH_DONE;
1308 	}
1309 
1310 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1311 		atomic_inc(&dev->ctrl.abort_limit);
1312 		return BLK_EH_RESET_TIMER;
1313 	}
1314 	iod->aborted = 1;
1315 
1316 	memset(&cmd, 0, sizeof(cmd));
1317 	cmd.abort.opcode = nvme_admin_abort_cmd;
1318 	cmd.abort.cid = req->tag;
1319 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1320 
1321 	dev_warn(nvmeq->dev->ctrl.device,
1322 		"I/O %d QID %d timeout, aborting\n",
1323 		 req->tag, nvmeq->qid);
1324 
1325 	abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1326 			BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1327 	if (IS_ERR(abort_req)) {
1328 		atomic_inc(&dev->ctrl.abort_limit);
1329 		return BLK_EH_RESET_TIMER;
1330 	}
1331 
1332 	abort_req->timeout = ADMIN_TIMEOUT;
1333 	abort_req->end_io_data = NULL;
1334 	blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1335 
1336 	/*
1337 	 * The aborted req will be completed on receiving the abort req.
1338 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1339 	 * as the device then is in a faulty state.
1340 	 */
1341 	return BLK_EH_RESET_TIMER;
1342 }
1343 
1344 static void nvme_free_queue(struct nvme_queue *nvmeq)
1345 {
1346 	dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1347 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1348 	if (!nvmeq->sq_cmds)
1349 		return;
1350 
1351 	if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1352 		pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1353 				nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1354 	} else {
1355 		dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1356 				nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1357 	}
1358 }
1359 
1360 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1361 {
1362 	int i;
1363 
1364 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1365 		dev->ctrl.queue_count--;
1366 		nvme_free_queue(&dev->queues[i]);
1367 	}
1368 }
1369 
1370 /**
1371  * nvme_suspend_queue - put queue into suspended state
1372  * @nvmeq: queue to suspend
1373  */
1374 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1375 {
1376 	if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1377 		return 1;
1378 
1379 	/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1380 	mb();
1381 
1382 	nvmeq->dev->online_queues--;
1383 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1384 		blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1385 	if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1386 		pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1387 	return 0;
1388 }
1389 
1390 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1391 {
1392 	int i;
1393 
1394 	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1395 		nvme_suspend_queue(&dev->queues[i]);
1396 }
1397 
1398 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1399 {
1400 	struct nvme_queue *nvmeq = &dev->queues[0];
1401 
1402 	if (shutdown)
1403 		nvme_shutdown_ctrl(&dev->ctrl);
1404 	else
1405 		nvme_disable_ctrl(&dev->ctrl);
1406 
1407 	nvme_poll_irqdisable(nvmeq, -1);
1408 }
1409 
1410 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1411 				int entry_size)
1412 {
1413 	int q_depth = dev->q_depth;
1414 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1415 					  dev->ctrl.page_size);
1416 
1417 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1418 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1419 		mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1420 		q_depth = div_u64(mem_per_q, entry_size);
1421 
1422 		/*
1423 		 * Ensure the reduced q_depth is above some threshold where it
1424 		 * would be better to map queues in system memory with the
1425 		 * original depth
1426 		 */
1427 		if (q_depth < 64)
1428 			return -ENOMEM;
1429 	}
1430 
1431 	return q_depth;
1432 }
1433 
1434 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1435 				int qid)
1436 {
1437 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1438 
1439 	if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1440 		nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1441 		if (nvmeq->sq_cmds) {
1442 			nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1443 							nvmeq->sq_cmds);
1444 			if (nvmeq->sq_dma_addr) {
1445 				set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1446 				return 0;
1447 			}
1448 
1449 			pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1450 		}
1451 	}
1452 
1453 	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1454 				&nvmeq->sq_dma_addr, GFP_KERNEL);
1455 	if (!nvmeq->sq_cmds)
1456 		return -ENOMEM;
1457 	return 0;
1458 }
1459 
1460 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1461 {
1462 	struct nvme_queue *nvmeq = &dev->queues[qid];
1463 
1464 	if (dev->ctrl.queue_count > qid)
1465 		return 0;
1466 
1467 	nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1468 	nvmeq->q_depth = depth;
1469 	nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1470 					 &nvmeq->cq_dma_addr, GFP_KERNEL);
1471 	if (!nvmeq->cqes)
1472 		goto free_nvmeq;
1473 
1474 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1475 		goto free_cqdma;
1476 
1477 	nvmeq->dev = dev;
1478 	spin_lock_init(&nvmeq->sq_lock);
1479 	spin_lock_init(&nvmeq->cq_poll_lock);
1480 	nvmeq->cq_head = 0;
1481 	nvmeq->cq_phase = 1;
1482 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1483 	nvmeq->qid = qid;
1484 	dev->ctrl.queue_count++;
1485 
1486 	return 0;
1487 
1488  free_cqdma:
1489 	dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1490 			  nvmeq->cq_dma_addr);
1491  free_nvmeq:
1492 	return -ENOMEM;
1493 }
1494 
1495 static int queue_request_irq(struct nvme_queue *nvmeq)
1496 {
1497 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1498 	int nr = nvmeq->dev->ctrl.instance;
1499 
1500 	if (use_threaded_interrupts) {
1501 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1502 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1503 	} else {
1504 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1505 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1506 	}
1507 }
1508 
1509 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1510 {
1511 	struct nvme_dev *dev = nvmeq->dev;
1512 
1513 	nvmeq->sq_tail = 0;
1514 	nvmeq->last_sq_tail = 0;
1515 	nvmeq->cq_head = 0;
1516 	nvmeq->cq_phase = 1;
1517 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1518 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1519 	nvme_dbbuf_init(dev, nvmeq, qid);
1520 	dev->online_queues++;
1521 	wmb(); /* ensure the first interrupt sees the initialization */
1522 }
1523 
1524 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1525 {
1526 	struct nvme_dev *dev = nvmeq->dev;
1527 	int result;
1528 	u16 vector = 0;
1529 
1530 	clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1531 
1532 	/*
1533 	 * A queue's vector matches the queue identifier unless the controller
1534 	 * has only one vector available.
1535 	 */
1536 	if (!polled)
1537 		vector = dev->num_vecs == 1 ? 0 : qid;
1538 	else
1539 		set_bit(NVMEQ_POLLED, &nvmeq->flags);
1540 
1541 	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1542 	if (result)
1543 		return result;
1544 
1545 	result = adapter_alloc_sq(dev, qid, nvmeq);
1546 	if (result < 0)
1547 		return result;
1548 	if (result)
1549 		goto release_cq;
1550 
1551 	nvmeq->cq_vector = vector;
1552 	nvme_init_queue(nvmeq, qid);
1553 
1554 	if (!polled) {
1555 		result = queue_request_irq(nvmeq);
1556 		if (result < 0)
1557 			goto release_sq;
1558 	}
1559 
1560 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1561 	return result;
1562 
1563 release_sq:
1564 	dev->online_queues--;
1565 	adapter_delete_sq(dev, qid);
1566 release_cq:
1567 	adapter_delete_cq(dev, qid);
1568 	return result;
1569 }
1570 
1571 static const struct blk_mq_ops nvme_mq_admin_ops = {
1572 	.queue_rq	= nvme_queue_rq,
1573 	.complete	= nvme_pci_complete_rq,
1574 	.init_hctx	= nvme_admin_init_hctx,
1575 	.exit_hctx      = nvme_admin_exit_hctx,
1576 	.init_request	= nvme_init_request,
1577 	.timeout	= nvme_timeout,
1578 };
1579 
1580 static const struct blk_mq_ops nvme_mq_ops = {
1581 	.queue_rq	= nvme_queue_rq,
1582 	.complete	= nvme_pci_complete_rq,
1583 	.commit_rqs	= nvme_commit_rqs,
1584 	.init_hctx	= nvme_init_hctx,
1585 	.init_request	= nvme_init_request,
1586 	.map_queues	= nvme_pci_map_queues,
1587 	.timeout	= nvme_timeout,
1588 	.poll		= nvme_poll,
1589 };
1590 
1591 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1592 {
1593 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1594 		/*
1595 		 * If the controller was reset during removal, it's possible
1596 		 * user requests may be waiting on a stopped queue. Start the
1597 		 * queue to flush these to completion.
1598 		 */
1599 		blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1600 		blk_cleanup_queue(dev->ctrl.admin_q);
1601 		blk_mq_free_tag_set(&dev->admin_tagset);
1602 	}
1603 }
1604 
1605 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1606 {
1607 	if (!dev->ctrl.admin_q) {
1608 		dev->admin_tagset.ops = &nvme_mq_admin_ops;
1609 		dev->admin_tagset.nr_hw_queues = 1;
1610 
1611 		dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1612 		dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1613 		dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1614 		dev->admin_tagset.cmd_size = sizeof(struct nvme_iod);
1615 		dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1616 		dev->admin_tagset.driver_data = dev;
1617 
1618 		if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1619 			return -ENOMEM;
1620 		dev->ctrl.admin_tagset = &dev->admin_tagset;
1621 
1622 		dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1623 		if (IS_ERR(dev->ctrl.admin_q)) {
1624 			blk_mq_free_tag_set(&dev->admin_tagset);
1625 			return -ENOMEM;
1626 		}
1627 		if (!blk_get_queue(dev->ctrl.admin_q)) {
1628 			nvme_dev_remove_admin(dev);
1629 			dev->ctrl.admin_q = NULL;
1630 			return -ENODEV;
1631 		}
1632 	} else
1633 		blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1634 
1635 	return 0;
1636 }
1637 
1638 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1639 {
1640 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1641 }
1642 
1643 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1644 {
1645 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1646 
1647 	if (size <= dev->bar_mapped_size)
1648 		return 0;
1649 	if (size > pci_resource_len(pdev, 0))
1650 		return -ENOMEM;
1651 	if (dev->bar)
1652 		iounmap(dev->bar);
1653 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1654 	if (!dev->bar) {
1655 		dev->bar_mapped_size = 0;
1656 		return -ENOMEM;
1657 	}
1658 	dev->bar_mapped_size = size;
1659 	dev->dbs = dev->bar + NVME_REG_DBS;
1660 
1661 	return 0;
1662 }
1663 
1664 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1665 {
1666 	int result;
1667 	u32 aqa;
1668 	struct nvme_queue *nvmeq;
1669 
1670 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1671 	if (result < 0)
1672 		return result;
1673 
1674 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1675 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1676 
1677 	if (dev->subsystem &&
1678 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1679 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1680 
1681 	result = nvme_disable_ctrl(&dev->ctrl);
1682 	if (result < 0)
1683 		return result;
1684 
1685 	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1686 	if (result)
1687 		return result;
1688 
1689 	nvmeq = &dev->queues[0];
1690 	aqa = nvmeq->q_depth - 1;
1691 	aqa |= aqa << 16;
1692 
1693 	writel(aqa, dev->bar + NVME_REG_AQA);
1694 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1695 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1696 
1697 	result = nvme_enable_ctrl(&dev->ctrl);
1698 	if (result)
1699 		return result;
1700 
1701 	nvmeq->cq_vector = 0;
1702 	nvme_init_queue(nvmeq, 0);
1703 	result = queue_request_irq(nvmeq);
1704 	if (result) {
1705 		dev->online_queues--;
1706 		return result;
1707 	}
1708 
1709 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1710 	return result;
1711 }
1712 
1713 static int nvme_create_io_queues(struct nvme_dev *dev)
1714 {
1715 	unsigned i, max, rw_queues;
1716 	int ret = 0;
1717 
1718 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1719 		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1720 			ret = -ENOMEM;
1721 			break;
1722 		}
1723 	}
1724 
1725 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1726 	if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1727 		rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1728 				dev->io_queues[HCTX_TYPE_READ];
1729 	} else {
1730 		rw_queues = max;
1731 	}
1732 
1733 	for (i = dev->online_queues; i <= max; i++) {
1734 		bool polled = i > rw_queues;
1735 
1736 		ret = nvme_create_queue(&dev->queues[i], i, polled);
1737 		if (ret)
1738 			break;
1739 	}
1740 
1741 	/*
1742 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1743 	 * than the desired amount of queues, and even a controller without
1744 	 * I/O queues can still be used to issue admin commands.  This might
1745 	 * be useful to upgrade a buggy firmware for example.
1746 	 */
1747 	return ret >= 0 ? 0 : ret;
1748 }
1749 
1750 static ssize_t nvme_cmb_show(struct device *dev,
1751 			     struct device_attribute *attr,
1752 			     char *buf)
1753 {
1754 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1755 
1756 	return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1757 		       ndev->cmbloc, ndev->cmbsz);
1758 }
1759 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1760 
1761 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1762 {
1763 	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1764 
1765 	return 1ULL << (12 + 4 * szu);
1766 }
1767 
1768 static u32 nvme_cmb_size(struct nvme_dev *dev)
1769 {
1770 	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1771 }
1772 
1773 static void nvme_map_cmb(struct nvme_dev *dev)
1774 {
1775 	u64 size, offset;
1776 	resource_size_t bar_size;
1777 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1778 	int bar;
1779 
1780 	if (dev->cmb_size)
1781 		return;
1782 
1783 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1784 	if (!dev->cmbsz)
1785 		return;
1786 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1787 
1788 	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1789 	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1790 	bar = NVME_CMB_BIR(dev->cmbloc);
1791 	bar_size = pci_resource_len(pdev, bar);
1792 
1793 	if (offset > bar_size)
1794 		return;
1795 
1796 	/*
1797 	 * Controllers may support a CMB size larger than their BAR,
1798 	 * for example, due to being behind a bridge. Reduce the CMB to
1799 	 * the reported size of the BAR
1800 	 */
1801 	if (size > bar_size - offset)
1802 		size = bar_size - offset;
1803 
1804 	if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1805 		dev_warn(dev->ctrl.device,
1806 			 "failed to register the CMB\n");
1807 		return;
1808 	}
1809 
1810 	dev->cmb_size = size;
1811 	dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1812 
1813 	if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1814 			(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1815 		pci_p2pmem_publish(pdev, true);
1816 
1817 	if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1818 				    &dev_attr_cmb.attr, NULL))
1819 		dev_warn(dev->ctrl.device,
1820 			 "failed to add sysfs attribute for CMB\n");
1821 }
1822 
1823 static inline void nvme_release_cmb(struct nvme_dev *dev)
1824 {
1825 	if (dev->cmb_size) {
1826 		sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1827 					     &dev_attr_cmb.attr, NULL);
1828 		dev->cmb_size = 0;
1829 	}
1830 }
1831 
1832 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1833 {
1834 	u64 dma_addr = dev->host_mem_descs_dma;
1835 	struct nvme_command c;
1836 	int ret;
1837 
1838 	memset(&c, 0, sizeof(c));
1839 	c.features.opcode	= nvme_admin_set_features;
1840 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1841 	c.features.dword11	= cpu_to_le32(bits);
1842 	c.features.dword12	= cpu_to_le32(dev->host_mem_size >>
1843 					      ilog2(dev->ctrl.page_size));
1844 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
1845 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
1846 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
1847 
1848 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1849 	if (ret) {
1850 		dev_warn(dev->ctrl.device,
1851 			 "failed to set host mem (err %d, flags %#x).\n",
1852 			 ret, bits);
1853 	}
1854 	return ret;
1855 }
1856 
1857 static void nvme_free_host_mem(struct nvme_dev *dev)
1858 {
1859 	int i;
1860 
1861 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
1862 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1863 		size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1864 
1865 		dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1866 			       le64_to_cpu(desc->addr),
1867 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1868 	}
1869 
1870 	kfree(dev->host_mem_desc_bufs);
1871 	dev->host_mem_desc_bufs = NULL;
1872 	dma_free_coherent(dev->dev,
1873 			dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1874 			dev->host_mem_descs, dev->host_mem_descs_dma);
1875 	dev->host_mem_descs = NULL;
1876 	dev->nr_host_mem_descs = 0;
1877 }
1878 
1879 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1880 		u32 chunk_size)
1881 {
1882 	struct nvme_host_mem_buf_desc *descs;
1883 	u32 max_entries, len;
1884 	dma_addr_t descs_dma;
1885 	int i = 0;
1886 	void **bufs;
1887 	u64 size, tmp;
1888 
1889 	tmp = (preferred + chunk_size - 1);
1890 	do_div(tmp, chunk_size);
1891 	max_entries = tmp;
1892 
1893 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1894 		max_entries = dev->ctrl.hmmaxd;
1895 
1896 	descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1897 				   &descs_dma, GFP_KERNEL);
1898 	if (!descs)
1899 		goto out;
1900 
1901 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1902 	if (!bufs)
1903 		goto out_free_descs;
1904 
1905 	for (size = 0; size < preferred && i < max_entries; size += len) {
1906 		dma_addr_t dma_addr;
1907 
1908 		len = min_t(u64, chunk_size, preferred - size);
1909 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1910 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1911 		if (!bufs[i])
1912 			break;
1913 
1914 		descs[i].addr = cpu_to_le64(dma_addr);
1915 		descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1916 		i++;
1917 	}
1918 
1919 	if (!size)
1920 		goto out_free_bufs;
1921 
1922 	dev->nr_host_mem_descs = i;
1923 	dev->host_mem_size = size;
1924 	dev->host_mem_descs = descs;
1925 	dev->host_mem_descs_dma = descs_dma;
1926 	dev->host_mem_desc_bufs = bufs;
1927 	return 0;
1928 
1929 out_free_bufs:
1930 	while (--i >= 0) {
1931 		size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1932 
1933 		dma_free_attrs(dev->dev, size, bufs[i],
1934 			       le64_to_cpu(descs[i].addr),
1935 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1936 	}
1937 
1938 	kfree(bufs);
1939 out_free_descs:
1940 	dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1941 			descs_dma);
1942 out:
1943 	dev->host_mem_descs = NULL;
1944 	return -ENOMEM;
1945 }
1946 
1947 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1948 {
1949 	u32 chunk_size;
1950 
1951 	/* start big and work our way down */
1952 	for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1953 	     chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1954 	     chunk_size /= 2) {
1955 		if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1956 			if (!min || dev->host_mem_size >= min)
1957 				return 0;
1958 			nvme_free_host_mem(dev);
1959 		}
1960 	}
1961 
1962 	return -ENOMEM;
1963 }
1964 
1965 static int nvme_setup_host_mem(struct nvme_dev *dev)
1966 {
1967 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1968 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1969 	u64 min = (u64)dev->ctrl.hmmin * 4096;
1970 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
1971 	int ret;
1972 
1973 	preferred = min(preferred, max);
1974 	if (min > max) {
1975 		dev_warn(dev->ctrl.device,
1976 			"min host memory (%lld MiB) above limit (%d MiB).\n",
1977 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
1978 		nvme_free_host_mem(dev);
1979 		return 0;
1980 	}
1981 
1982 	/*
1983 	 * If we already have a buffer allocated check if we can reuse it.
1984 	 */
1985 	if (dev->host_mem_descs) {
1986 		if (dev->host_mem_size >= min)
1987 			enable_bits |= NVME_HOST_MEM_RETURN;
1988 		else
1989 			nvme_free_host_mem(dev);
1990 	}
1991 
1992 	if (!dev->host_mem_descs) {
1993 		if (nvme_alloc_host_mem(dev, min, preferred)) {
1994 			dev_warn(dev->ctrl.device,
1995 				"failed to allocate host memory buffer.\n");
1996 			return 0; /* controller must work without HMB */
1997 		}
1998 
1999 		dev_info(dev->ctrl.device,
2000 			"allocated %lld MiB host memory buffer.\n",
2001 			dev->host_mem_size >> ilog2(SZ_1M));
2002 	}
2003 
2004 	ret = nvme_set_host_mem(dev, enable_bits);
2005 	if (ret)
2006 		nvme_free_host_mem(dev);
2007 	return ret;
2008 }
2009 
2010 /*
2011  * nirqs is the number of interrupts available for write and read
2012  * queues. The core already reserved an interrupt for the admin queue.
2013  */
2014 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2015 {
2016 	struct nvme_dev *dev = affd->priv;
2017 	unsigned int nr_read_queues;
2018 
2019 	/*
2020 	 * If there is no interupt available for queues, ensure that
2021 	 * the default queue is set to 1. The affinity set size is
2022 	 * also set to one, but the irq core ignores it for this case.
2023 	 *
2024 	 * If only one interrupt is available or 'write_queue' == 0, combine
2025 	 * write and read queues.
2026 	 *
2027 	 * If 'write_queues' > 0, ensure it leaves room for at least one read
2028 	 * queue.
2029 	 */
2030 	if (!nrirqs) {
2031 		nrirqs = 1;
2032 		nr_read_queues = 0;
2033 	} else if (nrirqs == 1 || !write_queues) {
2034 		nr_read_queues = 0;
2035 	} else if (write_queues >= nrirqs) {
2036 		nr_read_queues = 1;
2037 	} else {
2038 		nr_read_queues = nrirqs - write_queues;
2039 	}
2040 
2041 	dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2042 	affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2043 	dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2044 	affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2045 	affd->nr_sets = nr_read_queues ? 2 : 1;
2046 }
2047 
2048 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2049 {
2050 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2051 	struct irq_affinity affd = {
2052 		.pre_vectors	= 1,
2053 		.calc_sets	= nvme_calc_irq_sets,
2054 		.priv		= dev,
2055 	};
2056 	unsigned int irq_queues, this_p_queues;
2057 
2058 	/*
2059 	 * Poll queues don't need interrupts, but we need at least one IO
2060 	 * queue left over for non-polled IO.
2061 	 */
2062 	this_p_queues = poll_queues;
2063 	if (this_p_queues >= nr_io_queues) {
2064 		this_p_queues = nr_io_queues - 1;
2065 		irq_queues = 1;
2066 	} else {
2067 		irq_queues = nr_io_queues - this_p_queues + 1;
2068 	}
2069 	dev->io_queues[HCTX_TYPE_POLL] = this_p_queues;
2070 
2071 	/* Initialize for the single interrupt case */
2072 	dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2073 	dev->io_queues[HCTX_TYPE_READ] = 0;
2074 
2075 	/*
2076 	 * Some Apple controllers require all queues to use the
2077 	 * first vector.
2078 	 */
2079 	if (dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR)
2080 		irq_queues = 1;
2081 
2082 	return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2083 			      PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2084 }
2085 
2086 static void nvme_disable_io_queues(struct nvme_dev *dev)
2087 {
2088 	if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2089 		__nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2090 }
2091 
2092 static int nvme_setup_io_queues(struct nvme_dev *dev)
2093 {
2094 	struct nvme_queue *adminq = &dev->queues[0];
2095 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2096 	int result, nr_io_queues;
2097 	unsigned long size;
2098 
2099 	nr_io_queues = max_io_queues();
2100 
2101 	/*
2102 	 * If tags are shared with admin queue (Apple bug), then
2103 	 * make sure we only use one IO queue.
2104 	 */
2105 	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2106 		nr_io_queues = 1;
2107 
2108 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2109 	if (result < 0)
2110 		return result;
2111 
2112 	if (nr_io_queues == 0)
2113 		return 0;
2114 
2115 	clear_bit(NVMEQ_ENABLED, &adminq->flags);
2116 
2117 	if (dev->cmb_use_sqes) {
2118 		result = nvme_cmb_qdepth(dev, nr_io_queues,
2119 				sizeof(struct nvme_command));
2120 		if (result > 0)
2121 			dev->q_depth = result;
2122 		else
2123 			dev->cmb_use_sqes = false;
2124 	}
2125 
2126 	do {
2127 		size = db_bar_size(dev, nr_io_queues);
2128 		result = nvme_remap_bar(dev, size);
2129 		if (!result)
2130 			break;
2131 		if (!--nr_io_queues)
2132 			return -ENOMEM;
2133 	} while (1);
2134 	adminq->q_db = dev->dbs;
2135 
2136  retry:
2137 	/* Deregister the admin queue's interrupt */
2138 	pci_free_irq(pdev, 0, adminq);
2139 
2140 	/*
2141 	 * If we enable msix early due to not intx, disable it again before
2142 	 * setting up the full range we need.
2143 	 */
2144 	pci_free_irq_vectors(pdev);
2145 
2146 	result = nvme_setup_irqs(dev, nr_io_queues);
2147 	if (result <= 0)
2148 		return -EIO;
2149 
2150 	dev->num_vecs = result;
2151 	result = max(result - 1, 1);
2152 	dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2153 
2154 	/*
2155 	 * Should investigate if there's a performance win from allocating
2156 	 * more queues than interrupt vectors; it might allow the submission
2157 	 * path to scale better, even if the receive path is limited by the
2158 	 * number of interrupts.
2159 	 */
2160 	result = queue_request_irq(adminq);
2161 	if (result)
2162 		return result;
2163 	set_bit(NVMEQ_ENABLED, &adminq->flags);
2164 
2165 	result = nvme_create_io_queues(dev);
2166 	if (result || dev->online_queues < 2)
2167 		return result;
2168 
2169 	if (dev->online_queues - 1 < dev->max_qid) {
2170 		nr_io_queues = dev->online_queues - 1;
2171 		nvme_disable_io_queues(dev);
2172 		nvme_suspend_io_queues(dev);
2173 		goto retry;
2174 	}
2175 	dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2176 					dev->io_queues[HCTX_TYPE_DEFAULT],
2177 					dev->io_queues[HCTX_TYPE_READ],
2178 					dev->io_queues[HCTX_TYPE_POLL]);
2179 	return 0;
2180 }
2181 
2182 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2183 {
2184 	struct nvme_queue *nvmeq = req->end_io_data;
2185 
2186 	blk_mq_free_request(req);
2187 	complete(&nvmeq->delete_done);
2188 }
2189 
2190 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2191 {
2192 	struct nvme_queue *nvmeq = req->end_io_data;
2193 
2194 	if (error)
2195 		set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2196 
2197 	nvme_del_queue_end(req, error);
2198 }
2199 
2200 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2201 {
2202 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2203 	struct request *req;
2204 	struct nvme_command cmd;
2205 
2206 	memset(&cmd, 0, sizeof(cmd));
2207 	cmd.delete_queue.opcode = opcode;
2208 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2209 
2210 	req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
2211 	if (IS_ERR(req))
2212 		return PTR_ERR(req);
2213 
2214 	req->timeout = ADMIN_TIMEOUT;
2215 	req->end_io_data = nvmeq;
2216 
2217 	init_completion(&nvmeq->delete_done);
2218 	blk_execute_rq_nowait(q, NULL, req, false,
2219 			opcode == nvme_admin_delete_cq ?
2220 				nvme_del_cq_end : nvme_del_queue_end);
2221 	return 0;
2222 }
2223 
2224 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2225 {
2226 	int nr_queues = dev->online_queues - 1, sent = 0;
2227 	unsigned long timeout;
2228 
2229  retry:
2230 	timeout = ADMIN_TIMEOUT;
2231 	while (nr_queues > 0) {
2232 		if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2233 			break;
2234 		nr_queues--;
2235 		sent++;
2236 	}
2237 	while (sent) {
2238 		struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2239 
2240 		timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2241 				timeout);
2242 		if (timeout == 0)
2243 			return false;
2244 
2245 		/* handle any remaining CQEs */
2246 		if (opcode == nvme_admin_delete_cq &&
2247 		    !test_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags))
2248 			nvme_poll_irqdisable(nvmeq, -1);
2249 
2250 		sent--;
2251 		if (nr_queues)
2252 			goto retry;
2253 	}
2254 	return true;
2255 }
2256 
2257 static void nvme_dev_add(struct nvme_dev *dev)
2258 {
2259 	int ret;
2260 
2261 	if (!dev->ctrl.tagset) {
2262 		dev->tagset.ops = &nvme_mq_ops;
2263 		dev->tagset.nr_hw_queues = dev->online_queues - 1;
2264 		dev->tagset.nr_maps = 2; /* default + read */
2265 		if (dev->io_queues[HCTX_TYPE_POLL])
2266 			dev->tagset.nr_maps++;
2267 		dev->tagset.timeout = NVME_IO_TIMEOUT;
2268 		dev->tagset.numa_node = dev_to_node(dev->dev);
2269 		dev->tagset.queue_depth =
2270 				min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2271 		dev->tagset.cmd_size = sizeof(struct nvme_iod);
2272 		dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2273 		dev->tagset.driver_data = dev;
2274 
2275 		/*
2276 		 * Some Apple controllers requires tags to be unique
2277 		 * across admin and IO queue, so reserve the first 32
2278 		 * tags of the IO queue.
2279 		 */
2280 		if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2281 			dev->tagset.reserved_tags = NVME_AQ_DEPTH;
2282 
2283 		ret = blk_mq_alloc_tag_set(&dev->tagset);
2284 		if (ret) {
2285 			dev_warn(dev->ctrl.device,
2286 				"IO queues tagset allocation failed %d\n", ret);
2287 			return;
2288 		}
2289 		dev->ctrl.tagset = &dev->tagset;
2290 	} else {
2291 		blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2292 
2293 		/* Free previously allocated queues that are no longer usable */
2294 		nvme_free_queues(dev, dev->online_queues);
2295 	}
2296 
2297 	nvme_dbbuf_set(dev);
2298 }
2299 
2300 static int nvme_pci_enable(struct nvme_dev *dev)
2301 {
2302 	int result = -ENOMEM;
2303 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2304 
2305 	if (pci_enable_device_mem(pdev))
2306 		return result;
2307 
2308 	pci_set_master(pdev);
2309 
2310 	if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)))
2311 		goto disable;
2312 
2313 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2314 		result = -ENODEV;
2315 		goto disable;
2316 	}
2317 
2318 	/*
2319 	 * Some devices and/or platforms don't advertise or work with INTx
2320 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2321 	 * adjust this later.
2322 	 */
2323 	result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2324 	if (result < 0)
2325 		return result;
2326 
2327 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2328 
2329 	dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2330 				io_queue_depth);
2331 	dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2332 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2333 	dev->dbs = dev->bar + 4096;
2334 
2335 	/*
2336 	 * Some Apple controllers require a non-standard SQE size.
2337 	 * Interestingly they also seem to ignore the CC:IOSQES register
2338 	 * so we don't bother updating it here.
2339 	 */
2340 	if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2341 		dev->io_sqes = 7;
2342 	else
2343 		dev->io_sqes = NVME_NVM_IOSQES;
2344 
2345 	/*
2346 	 * Temporary fix for the Apple controller found in the MacBook8,1 and
2347 	 * some MacBook7,1 to avoid controller resets and data loss.
2348 	 */
2349 	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2350 		dev->q_depth = 2;
2351 		dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2352 			"set queue depth=%u to work around controller resets\n",
2353 			dev->q_depth);
2354 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2355 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2356 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2357 		dev->q_depth = 64;
2358 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2359                         "set queue depth=%u\n", dev->q_depth);
2360 	}
2361 
2362 	/*
2363 	 * Controllers with the shared tags quirk need the IO queue to be
2364 	 * big enough so that we get 32 tags for the admin queue
2365 	 */
2366 	if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2367 	    (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2368 		dev->q_depth = NVME_AQ_DEPTH + 2;
2369 		dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2370 			 dev->q_depth);
2371 	}
2372 
2373 
2374 	nvme_map_cmb(dev);
2375 
2376 	pci_enable_pcie_error_reporting(pdev);
2377 	pci_save_state(pdev);
2378 	return 0;
2379 
2380  disable:
2381 	pci_disable_device(pdev);
2382 	return result;
2383 }
2384 
2385 static void nvme_dev_unmap(struct nvme_dev *dev)
2386 {
2387 	if (dev->bar)
2388 		iounmap(dev->bar);
2389 	pci_release_mem_regions(to_pci_dev(dev->dev));
2390 }
2391 
2392 static void nvme_pci_disable(struct nvme_dev *dev)
2393 {
2394 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2395 
2396 	pci_free_irq_vectors(pdev);
2397 
2398 	if (pci_is_enabled(pdev)) {
2399 		pci_disable_pcie_error_reporting(pdev);
2400 		pci_disable_device(pdev);
2401 	}
2402 }
2403 
2404 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2405 {
2406 	bool dead = true, freeze = false;
2407 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2408 
2409 	mutex_lock(&dev->shutdown_lock);
2410 	if (pci_is_enabled(pdev)) {
2411 		u32 csts = readl(dev->bar + NVME_REG_CSTS);
2412 
2413 		if (dev->ctrl.state == NVME_CTRL_LIVE ||
2414 		    dev->ctrl.state == NVME_CTRL_RESETTING) {
2415 			freeze = true;
2416 			nvme_start_freeze(&dev->ctrl);
2417 		}
2418 		dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2419 			pdev->error_state  != pci_channel_io_normal);
2420 	}
2421 
2422 	/*
2423 	 * Give the controller a chance to complete all entered requests if
2424 	 * doing a safe shutdown.
2425 	 */
2426 	if (!dead && shutdown && freeze)
2427 		nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2428 
2429 	nvme_stop_queues(&dev->ctrl);
2430 
2431 	if (!dead && dev->ctrl.queue_count > 0) {
2432 		nvme_disable_io_queues(dev);
2433 		nvme_disable_admin_queue(dev, shutdown);
2434 	}
2435 	nvme_suspend_io_queues(dev);
2436 	nvme_suspend_queue(&dev->queues[0]);
2437 	nvme_pci_disable(dev);
2438 
2439 	blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2440 	blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2441 	blk_mq_tagset_wait_completed_request(&dev->tagset);
2442 	blk_mq_tagset_wait_completed_request(&dev->admin_tagset);
2443 
2444 	/*
2445 	 * The driver will not be starting up queues again if shutting down so
2446 	 * must flush all entered requests to their failed completion to avoid
2447 	 * deadlocking blk-mq hot-cpu notifier.
2448 	 */
2449 	if (shutdown) {
2450 		nvme_start_queues(&dev->ctrl);
2451 		if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2452 			blk_mq_unquiesce_queue(dev->ctrl.admin_q);
2453 	}
2454 	mutex_unlock(&dev->shutdown_lock);
2455 }
2456 
2457 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2458 {
2459 	if (!nvme_wait_reset(&dev->ctrl))
2460 		return -EBUSY;
2461 	nvme_dev_disable(dev, shutdown);
2462 	return 0;
2463 }
2464 
2465 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2466 {
2467 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2468 						PAGE_SIZE, PAGE_SIZE, 0);
2469 	if (!dev->prp_page_pool)
2470 		return -ENOMEM;
2471 
2472 	/* Optimisation for I/Os between 4k and 128k */
2473 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2474 						256, 256, 0);
2475 	if (!dev->prp_small_pool) {
2476 		dma_pool_destroy(dev->prp_page_pool);
2477 		return -ENOMEM;
2478 	}
2479 	return 0;
2480 }
2481 
2482 static void nvme_release_prp_pools(struct nvme_dev *dev)
2483 {
2484 	dma_pool_destroy(dev->prp_page_pool);
2485 	dma_pool_destroy(dev->prp_small_pool);
2486 }
2487 
2488 static void nvme_free_tagset(struct nvme_dev *dev)
2489 {
2490 	if (dev->tagset.tags)
2491 		blk_mq_free_tag_set(&dev->tagset);
2492 	dev->ctrl.tagset = NULL;
2493 }
2494 
2495 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2496 {
2497 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2498 
2499 	nvme_dbbuf_dma_free(dev);
2500 	put_device(dev->dev);
2501 	nvme_free_tagset(dev);
2502 	if (dev->ctrl.admin_q)
2503 		blk_put_queue(dev->ctrl.admin_q);
2504 	kfree(dev->queues);
2505 	free_opal_dev(dev->ctrl.opal_dev);
2506 	mempool_destroy(dev->iod_mempool);
2507 	kfree(dev);
2508 }
2509 
2510 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2511 {
2512 	/*
2513 	 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2514 	 * may be holding this pci_dev's device lock.
2515 	 */
2516 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2517 	nvme_get_ctrl(&dev->ctrl);
2518 	nvme_dev_disable(dev, false);
2519 	nvme_kill_queues(&dev->ctrl);
2520 	if (!queue_work(nvme_wq, &dev->remove_work))
2521 		nvme_put_ctrl(&dev->ctrl);
2522 }
2523 
2524 static void nvme_reset_work(struct work_struct *work)
2525 {
2526 	struct nvme_dev *dev =
2527 		container_of(work, struct nvme_dev, ctrl.reset_work);
2528 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2529 	int result;
2530 
2531 	if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING)) {
2532 		result = -ENODEV;
2533 		goto out;
2534 	}
2535 
2536 	/*
2537 	 * If we're called to reset a live controller first shut it down before
2538 	 * moving on.
2539 	 */
2540 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2541 		nvme_dev_disable(dev, false);
2542 	nvme_sync_queues(&dev->ctrl);
2543 
2544 	mutex_lock(&dev->shutdown_lock);
2545 	result = nvme_pci_enable(dev);
2546 	if (result)
2547 		goto out_unlock;
2548 
2549 	result = nvme_pci_configure_admin_queue(dev);
2550 	if (result)
2551 		goto out_unlock;
2552 
2553 	result = nvme_alloc_admin_tags(dev);
2554 	if (result)
2555 		goto out_unlock;
2556 
2557 	/*
2558 	 * Limit the max command size to prevent iod->sg allocations going
2559 	 * over a single page.
2560 	 */
2561 	dev->ctrl.max_hw_sectors = min_t(u32,
2562 		NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2563 	dev->ctrl.max_segments = NVME_MAX_SEGS;
2564 
2565 	/*
2566 	 * Don't limit the IOMMU merged segment size.
2567 	 */
2568 	dma_set_max_seg_size(dev->dev, 0xffffffff);
2569 
2570 	mutex_unlock(&dev->shutdown_lock);
2571 
2572 	/*
2573 	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2574 	 * initializing procedure here.
2575 	 */
2576 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2577 		dev_warn(dev->ctrl.device,
2578 			"failed to mark controller CONNECTING\n");
2579 		result = -EBUSY;
2580 		goto out;
2581 	}
2582 
2583 	result = nvme_init_identify(&dev->ctrl);
2584 	if (result)
2585 		goto out;
2586 
2587 	if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2588 		if (!dev->ctrl.opal_dev)
2589 			dev->ctrl.opal_dev =
2590 				init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2591 		else if (was_suspend)
2592 			opal_unlock_from_suspend(dev->ctrl.opal_dev);
2593 	} else {
2594 		free_opal_dev(dev->ctrl.opal_dev);
2595 		dev->ctrl.opal_dev = NULL;
2596 	}
2597 
2598 	if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2599 		result = nvme_dbbuf_dma_alloc(dev);
2600 		if (result)
2601 			dev_warn(dev->dev,
2602 				 "unable to allocate dma for dbbuf\n");
2603 	}
2604 
2605 	if (dev->ctrl.hmpre) {
2606 		result = nvme_setup_host_mem(dev);
2607 		if (result < 0)
2608 			goto out;
2609 	}
2610 
2611 	result = nvme_setup_io_queues(dev);
2612 	if (result)
2613 		goto out;
2614 
2615 	/*
2616 	 * Keep the controller around but remove all namespaces if we don't have
2617 	 * any working I/O queue.
2618 	 */
2619 	if (dev->online_queues < 2) {
2620 		dev_warn(dev->ctrl.device, "IO queues not created\n");
2621 		nvme_kill_queues(&dev->ctrl);
2622 		nvme_remove_namespaces(&dev->ctrl);
2623 		nvme_free_tagset(dev);
2624 	} else {
2625 		nvme_start_queues(&dev->ctrl);
2626 		nvme_wait_freeze(&dev->ctrl);
2627 		nvme_dev_add(dev);
2628 		nvme_unfreeze(&dev->ctrl);
2629 	}
2630 
2631 	/*
2632 	 * If only admin queue live, keep it to do further investigation or
2633 	 * recovery.
2634 	 */
2635 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2636 		dev_warn(dev->ctrl.device,
2637 			"failed to mark controller live state\n");
2638 		result = -ENODEV;
2639 		goto out;
2640 	}
2641 
2642 	nvme_start_ctrl(&dev->ctrl);
2643 	return;
2644 
2645  out_unlock:
2646 	mutex_unlock(&dev->shutdown_lock);
2647  out:
2648 	if (result)
2649 		dev_warn(dev->ctrl.device,
2650 			 "Removing after probe failure status: %d\n", result);
2651 	nvme_remove_dead_ctrl(dev);
2652 }
2653 
2654 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2655 {
2656 	struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2657 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2658 
2659 	if (pci_get_drvdata(pdev))
2660 		device_release_driver(&pdev->dev);
2661 	nvme_put_ctrl(&dev->ctrl);
2662 }
2663 
2664 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2665 {
2666 	*val = readl(to_nvme_dev(ctrl)->bar + off);
2667 	return 0;
2668 }
2669 
2670 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2671 {
2672 	writel(val, to_nvme_dev(ctrl)->bar + off);
2673 	return 0;
2674 }
2675 
2676 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2677 {
2678 	*val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2679 	return 0;
2680 }
2681 
2682 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2683 {
2684 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2685 
2686 	return snprintf(buf, size, "%s", dev_name(&pdev->dev));
2687 }
2688 
2689 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2690 	.name			= "pcie",
2691 	.module			= THIS_MODULE,
2692 	.flags			= NVME_F_METADATA_SUPPORTED |
2693 				  NVME_F_PCI_P2PDMA,
2694 	.reg_read32		= nvme_pci_reg_read32,
2695 	.reg_write32		= nvme_pci_reg_write32,
2696 	.reg_read64		= nvme_pci_reg_read64,
2697 	.free_ctrl		= nvme_pci_free_ctrl,
2698 	.submit_async_event	= nvme_pci_submit_async_event,
2699 	.get_address		= nvme_pci_get_address,
2700 };
2701 
2702 static int nvme_dev_map(struct nvme_dev *dev)
2703 {
2704 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2705 
2706 	if (pci_request_mem_regions(pdev, "nvme"))
2707 		return -ENODEV;
2708 
2709 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2710 		goto release;
2711 
2712 	return 0;
2713   release:
2714 	pci_release_mem_regions(pdev);
2715 	return -ENODEV;
2716 }
2717 
2718 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2719 {
2720 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2721 		/*
2722 		 * Several Samsung devices seem to drop off the PCIe bus
2723 		 * randomly when APST is on and uses the deepest sleep state.
2724 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2725 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2726 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
2727 		 * laptops.
2728 		 */
2729 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2730 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2731 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2732 			return NVME_QUIRK_NO_DEEPEST_PS;
2733 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2734 		/*
2735 		 * Samsung SSD 960 EVO drops off the PCIe bus after system
2736 		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2737 		 * within few minutes after bootup on a Coffee Lake board -
2738 		 * ASUS PRIME Z370-A
2739 		 */
2740 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2741 		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2742 		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2743 			return NVME_QUIRK_NO_APST;
2744 	}
2745 
2746 	return 0;
2747 }
2748 
2749 static void nvme_async_probe(void *data, async_cookie_t cookie)
2750 {
2751 	struct nvme_dev *dev = data;
2752 
2753 	flush_work(&dev->ctrl.reset_work);
2754 	flush_work(&dev->ctrl.scan_work);
2755 	nvme_put_ctrl(&dev->ctrl);
2756 }
2757 
2758 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2759 {
2760 	int node, result = -ENOMEM;
2761 	struct nvme_dev *dev;
2762 	unsigned long quirks = id->driver_data;
2763 	size_t alloc_size;
2764 
2765 	node = dev_to_node(&pdev->dev);
2766 	if (node == NUMA_NO_NODE)
2767 		set_dev_node(&pdev->dev, first_memory_node);
2768 
2769 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2770 	if (!dev)
2771 		return -ENOMEM;
2772 
2773 	dev->queues = kcalloc_node(max_queue_count(), sizeof(struct nvme_queue),
2774 					GFP_KERNEL, node);
2775 	if (!dev->queues)
2776 		goto free;
2777 
2778 	dev->dev = get_device(&pdev->dev);
2779 	pci_set_drvdata(pdev, dev);
2780 
2781 	result = nvme_dev_map(dev);
2782 	if (result)
2783 		goto put_pci;
2784 
2785 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2786 	INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2787 	mutex_init(&dev->shutdown_lock);
2788 
2789 	result = nvme_setup_prp_pools(dev);
2790 	if (result)
2791 		goto unmap;
2792 
2793 	quirks |= check_vendor_combination_bug(pdev);
2794 
2795 	/*
2796 	 * Double check that our mempool alloc size will cover the biggest
2797 	 * command we support.
2798 	 */
2799 	alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ,
2800 						NVME_MAX_SEGS, true);
2801 	WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2802 
2803 	dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2804 						mempool_kfree,
2805 						(void *) alloc_size,
2806 						GFP_KERNEL, node);
2807 	if (!dev->iod_mempool) {
2808 		result = -ENOMEM;
2809 		goto release_pools;
2810 	}
2811 
2812 	result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2813 			quirks);
2814 	if (result)
2815 		goto release_mempool;
2816 
2817 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2818 
2819 	nvme_reset_ctrl(&dev->ctrl);
2820 	nvme_get_ctrl(&dev->ctrl);
2821 	async_schedule(nvme_async_probe, dev);
2822 
2823 	return 0;
2824 
2825  release_mempool:
2826 	mempool_destroy(dev->iod_mempool);
2827  release_pools:
2828 	nvme_release_prp_pools(dev);
2829  unmap:
2830 	nvme_dev_unmap(dev);
2831  put_pci:
2832 	put_device(dev->dev);
2833  free:
2834 	kfree(dev->queues);
2835 	kfree(dev);
2836 	return result;
2837 }
2838 
2839 static void nvme_reset_prepare(struct pci_dev *pdev)
2840 {
2841 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2842 
2843 	/*
2844 	 * We don't need to check the return value from waiting for the reset
2845 	 * state as pci_dev device lock is held, making it impossible to race
2846 	 * with ->remove().
2847 	 */
2848 	nvme_disable_prepare_reset(dev, false);
2849 	nvme_sync_queues(&dev->ctrl);
2850 }
2851 
2852 static void nvme_reset_done(struct pci_dev *pdev)
2853 {
2854 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2855 
2856 	if (!nvme_try_sched_reset(&dev->ctrl))
2857 		flush_work(&dev->ctrl.reset_work);
2858 }
2859 
2860 static void nvme_shutdown(struct pci_dev *pdev)
2861 {
2862 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2863 	nvme_disable_prepare_reset(dev, true);
2864 }
2865 
2866 /*
2867  * The driver's remove may be called on a device in a partially initialized
2868  * state. This function must not have any dependencies on the device state in
2869  * order to proceed.
2870  */
2871 static void nvme_remove(struct pci_dev *pdev)
2872 {
2873 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2874 
2875 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2876 	pci_set_drvdata(pdev, NULL);
2877 
2878 	if (!pci_device_is_present(pdev)) {
2879 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2880 		nvme_dev_disable(dev, true);
2881 		nvme_dev_remove_admin(dev);
2882 	}
2883 
2884 	flush_work(&dev->ctrl.reset_work);
2885 	nvme_stop_ctrl(&dev->ctrl);
2886 	nvme_remove_namespaces(&dev->ctrl);
2887 	nvme_dev_disable(dev, true);
2888 	nvme_release_cmb(dev);
2889 	nvme_free_host_mem(dev);
2890 	nvme_dev_remove_admin(dev);
2891 	nvme_free_queues(dev, 0);
2892 	nvme_uninit_ctrl(&dev->ctrl);
2893 	nvme_release_prp_pools(dev);
2894 	nvme_dev_unmap(dev);
2895 	nvme_put_ctrl(&dev->ctrl);
2896 }
2897 
2898 #ifdef CONFIG_PM_SLEEP
2899 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
2900 {
2901 	return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
2902 }
2903 
2904 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
2905 {
2906 	return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
2907 }
2908 
2909 static int nvme_resume(struct device *dev)
2910 {
2911 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
2912 	struct nvme_ctrl *ctrl = &ndev->ctrl;
2913 
2914 	if (ndev->last_ps == U32_MAX ||
2915 	    nvme_set_power_state(ctrl, ndev->last_ps) != 0)
2916 		return nvme_try_sched_reset(&ndev->ctrl);
2917 	return 0;
2918 }
2919 
2920 static int nvme_suspend(struct device *dev)
2921 {
2922 	struct pci_dev *pdev = to_pci_dev(dev);
2923 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
2924 	struct nvme_ctrl *ctrl = &ndev->ctrl;
2925 	int ret = -EBUSY;
2926 
2927 	ndev->last_ps = U32_MAX;
2928 
2929 	/*
2930 	 * The platform does not remove power for a kernel managed suspend so
2931 	 * use host managed nvme power settings for lowest idle power if
2932 	 * possible. This should have quicker resume latency than a full device
2933 	 * shutdown.  But if the firmware is involved after the suspend or the
2934 	 * device does not support any non-default power states, shut down the
2935 	 * device fully.
2936 	 *
2937 	 * If ASPM is not enabled for the device, shut down the device and allow
2938 	 * the PCI bus layer to put it into D3 in order to take the PCIe link
2939 	 * down, so as to allow the platform to achieve its minimum low-power
2940 	 * state (which may not be possible if the link is up).
2941 	 */
2942 	if (pm_suspend_via_firmware() || !ctrl->npss ||
2943 	    !pcie_aspm_enabled(pdev) ||
2944 	    (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
2945 		return nvme_disable_prepare_reset(ndev, true);
2946 
2947 	nvme_start_freeze(ctrl);
2948 	nvme_wait_freeze(ctrl);
2949 	nvme_sync_queues(ctrl);
2950 
2951 	if (ctrl->state != NVME_CTRL_LIVE)
2952 		goto unfreeze;
2953 
2954 	ret = nvme_get_power_state(ctrl, &ndev->last_ps);
2955 	if (ret < 0)
2956 		goto unfreeze;
2957 
2958 	/*
2959 	 * A saved state prevents pci pm from generically controlling the
2960 	 * device's power. If we're using protocol specific settings, we don't
2961 	 * want pci interfering.
2962 	 */
2963 	pci_save_state(pdev);
2964 
2965 	ret = nvme_set_power_state(ctrl, ctrl->npss);
2966 	if (ret < 0)
2967 		goto unfreeze;
2968 
2969 	if (ret) {
2970 		/* discard the saved state */
2971 		pci_load_saved_state(pdev, NULL);
2972 
2973 		/*
2974 		 * Clearing npss forces a controller reset on resume. The
2975 		 * correct value will be rediscovered then.
2976 		 */
2977 		ret = nvme_disable_prepare_reset(ndev, true);
2978 		ctrl->npss = 0;
2979 	}
2980 unfreeze:
2981 	nvme_unfreeze(ctrl);
2982 	return ret;
2983 }
2984 
2985 static int nvme_simple_suspend(struct device *dev)
2986 {
2987 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
2988 	return nvme_disable_prepare_reset(ndev, true);
2989 }
2990 
2991 static int nvme_simple_resume(struct device *dev)
2992 {
2993 	struct pci_dev *pdev = to_pci_dev(dev);
2994 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
2995 
2996 	return nvme_try_sched_reset(&ndev->ctrl);
2997 }
2998 
2999 static const struct dev_pm_ops nvme_dev_pm_ops = {
3000 	.suspend	= nvme_suspend,
3001 	.resume		= nvme_resume,
3002 	.freeze		= nvme_simple_suspend,
3003 	.thaw		= nvme_simple_resume,
3004 	.poweroff	= nvme_simple_suspend,
3005 	.restore	= nvme_simple_resume,
3006 };
3007 #endif /* CONFIG_PM_SLEEP */
3008 
3009 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3010 						pci_channel_state_t state)
3011 {
3012 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3013 
3014 	/*
3015 	 * A frozen channel requires a reset. When detected, this method will
3016 	 * shutdown the controller to quiesce. The controller will be restarted
3017 	 * after the slot reset through driver's slot_reset callback.
3018 	 */
3019 	switch (state) {
3020 	case pci_channel_io_normal:
3021 		return PCI_ERS_RESULT_CAN_RECOVER;
3022 	case pci_channel_io_frozen:
3023 		dev_warn(dev->ctrl.device,
3024 			"frozen state error detected, reset controller\n");
3025 		nvme_dev_disable(dev, false);
3026 		return PCI_ERS_RESULT_NEED_RESET;
3027 	case pci_channel_io_perm_failure:
3028 		dev_warn(dev->ctrl.device,
3029 			"failure state error detected, request disconnect\n");
3030 		return PCI_ERS_RESULT_DISCONNECT;
3031 	}
3032 	return PCI_ERS_RESULT_NEED_RESET;
3033 }
3034 
3035 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3036 {
3037 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3038 
3039 	dev_info(dev->ctrl.device, "restart after slot reset\n");
3040 	pci_restore_state(pdev);
3041 	nvme_reset_ctrl(&dev->ctrl);
3042 	return PCI_ERS_RESULT_RECOVERED;
3043 }
3044 
3045 static void nvme_error_resume(struct pci_dev *pdev)
3046 {
3047 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3048 
3049 	flush_work(&dev->ctrl.reset_work);
3050 }
3051 
3052 static const struct pci_error_handlers nvme_err_handler = {
3053 	.error_detected	= nvme_error_detected,
3054 	.slot_reset	= nvme_slot_reset,
3055 	.resume		= nvme_error_resume,
3056 	.reset_prepare	= nvme_reset_prepare,
3057 	.reset_done	= nvme_reset_done,
3058 };
3059 
3060 static const struct pci_device_id nvme_id_table[] = {
3061 	{ PCI_VDEVICE(INTEL, 0x0953),
3062 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3063 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3064 	{ PCI_VDEVICE(INTEL, 0x0a53),
3065 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3066 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3067 	{ PCI_VDEVICE(INTEL, 0x0a54),
3068 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3069 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3070 	{ PCI_VDEVICE(INTEL, 0x0a55),
3071 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3072 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3073 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
3074 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3075 				NVME_QUIRK_MEDIUM_PRIO_SQ |
3076 				NVME_QUIRK_NO_TEMP_THRESH_CHANGE },
3077 	{ PCI_VDEVICE(INTEL, 0xf1a6),	/* Intel 760p/Pro 7600p */
3078 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3079 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
3080 		.driver_data = NVME_QUIRK_IDENTIFY_CNS |
3081 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3082 	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3083 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3084 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
3085 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3086 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
3087 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3088 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
3089 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3090 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3091 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3092 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3093 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3094 	{ PCI_DEVICE(0x1d1d, 0x1f1f),	/* LighNVM qemu device */
3095 		.driver_data = NVME_QUIRK_LIGHTNVM, },
3096 	{ PCI_DEVICE(0x1d1d, 0x2807),	/* CNEX WL */
3097 		.driver_data = NVME_QUIRK_LIGHTNVM, },
3098 	{ PCI_DEVICE(0x1d1d, 0x2601),	/* CNEX Granby */
3099 		.driver_data = NVME_QUIRK_LIGHTNVM, },
3100 	{ PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3101 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3102 	{ PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3103 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3104 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3105 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3106 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
3107 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3108 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3109 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3110 				NVME_QUIRK_128_BYTES_SQES |
3111 				NVME_QUIRK_SHARED_TAGS },
3112 	{ 0, }
3113 };
3114 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3115 
3116 static struct pci_driver nvme_driver = {
3117 	.name		= "nvme",
3118 	.id_table	= nvme_id_table,
3119 	.probe		= nvme_probe,
3120 	.remove		= nvme_remove,
3121 	.shutdown	= nvme_shutdown,
3122 #ifdef CONFIG_PM_SLEEP
3123 	.driver		= {
3124 		.pm	= &nvme_dev_pm_ops,
3125 	},
3126 #endif
3127 	.sriov_configure = pci_sriov_configure_simple,
3128 	.err_handler	= &nvme_err_handler,
3129 };
3130 
3131 static int __init nvme_init(void)
3132 {
3133 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3134 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3135 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3136 	BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3137 
3138 	write_queues = min(write_queues, num_possible_cpus());
3139 	poll_queues = min(poll_queues, num_possible_cpus());
3140 	return pci_register_driver(&nvme_driver);
3141 }
3142 
3143 static void __exit nvme_exit(void)
3144 {
3145 	pci_unregister_driver(&nvme_driver);
3146 	flush_workqueue(nvme_wq);
3147 }
3148 
3149 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3150 MODULE_LICENSE("GPL");
3151 MODULE_VERSION("1.0");
3152 module_init(nvme_init);
3153 module_exit(nvme_exit);
3154