xref: /linux/drivers/nvme/host/pci.c (revision d642ef71)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq.h>
11 #include <linux/blk-mq-pci.h>
12 #include <linux/blk-integrity.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/kstrtox.h>
18 #include <linux/memremap.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/mutex.h>
22 #include <linux/once.h>
23 #include <linux/pci.h>
24 #include <linux/suspend.h>
25 #include <linux/t10-pi.h>
26 #include <linux/types.h>
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #include <linux/io-64-nonatomic-hi-lo.h>
29 #include <linux/sed-opal.h>
30 #include <linux/pci-p2pdma.h>
31 
32 #include "trace.h"
33 #include "nvme.h"
34 
35 #define SQ_SIZE(q)	((q)->q_depth << (q)->sqes)
36 #define CQ_SIZE(q)	((q)->q_depth * sizeof(struct nvme_completion))
37 
38 #define SGES_PER_PAGE	(NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
39 
40 /*
41  * These can be higher, but we need to ensure that any command doesn't
42  * require an sg allocation that needs more than a page of data.
43  */
44 #define NVME_MAX_KB_SZ	8192
45 #define NVME_MAX_SEGS	128
46 #define NVME_MAX_NR_ALLOCATIONS	5
47 
48 static int use_threaded_interrupts;
49 module_param(use_threaded_interrupts, int, 0444);
50 
51 static bool use_cmb_sqes = true;
52 module_param(use_cmb_sqes, bool, 0444);
53 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
54 
55 static unsigned int max_host_mem_size_mb = 128;
56 module_param(max_host_mem_size_mb, uint, 0444);
57 MODULE_PARM_DESC(max_host_mem_size_mb,
58 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
59 
60 static unsigned int sgl_threshold = SZ_32K;
61 module_param(sgl_threshold, uint, 0644);
62 MODULE_PARM_DESC(sgl_threshold,
63 		"Use SGLs when average request segment size is larger or equal to "
64 		"this size. Use 0 to disable SGLs.");
65 
66 #define NVME_PCI_MIN_QUEUE_SIZE 2
67 #define NVME_PCI_MAX_QUEUE_SIZE 4095
68 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
69 static const struct kernel_param_ops io_queue_depth_ops = {
70 	.set = io_queue_depth_set,
71 	.get = param_get_uint,
72 };
73 
74 static unsigned int io_queue_depth = 1024;
75 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
76 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
77 
78 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
79 {
80 	unsigned int n;
81 	int ret;
82 
83 	ret = kstrtouint(val, 10, &n);
84 	if (ret != 0 || n > num_possible_cpus())
85 		return -EINVAL;
86 	return param_set_uint(val, kp);
87 }
88 
89 static const struct kernel_param_ops io_queue_count_ops = {
90 	.set = io_queue_count_set,
91 	.get = param_get_uint,
92 };
93 
94 static unsigned int write_queues;
95 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
96 MODULE_PARM_DESC(write_queues,
97 	"Number of queues to use for writes. If not set, reads and writes "
98 	"will share a queue set.");
99 
100 static unsigned int poll_queues;
101 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
102 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
103 
104 static bool noacpi;
105 module_param(noacpi, bool, 0444);
106 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
107 
108 struct nvme_dev;
109 struct nvme_queue;
110 
111 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
112 static void nvme_delete_io_queues(struct nvme_dev *dev);
113 static void nvme_update_attrs(struct nvme_dev *dev);
114 
115 /*
116  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
117  */
118 struct nvme_dev {
119 	struct nvme_queue *queues;
120 	struct blk_mq_tag_set tagset;
121 	struct blk_mq_tag_set admin_tagset;
122 	u32 __iomem *dbs;
123 	struct device *dev;
124 	struct dma_pool *prp_page_pool;
125 	struct dma_pool *prp_small_pool;
126 	unsigned online_queues;
127 	unsigned max_qid;
128 	unsigned io_queues[HCTX_MAX_TYPES];
129 	unsigned int num_vecs;
130 	u32 q_depth;
131 	int io_sqes;
132 	u32 db_stride;
133 	void __iomem *bar;
134 	unsigned long bar_mapped_size;
135 	struct mutex shutdown_lock;
136 	bool subsystem;
137 	u64 cmb_size;
138 	bool cmb_use_sqes;
139 	u32 cmbsz;
140 	u32 cmbloc;
141 	struct nvme_ctrl ctrl;
142 	u32 last_ps;
143 	bool hmb;
144 
145 	mempool_t *iod_mempool;
146 
147 	/* shadow doorbell buffer support: */
148 	__le32 *dbbuf_dbs;
149 	dma_addr_t dbbuf_dbs_dma_addr;
150 	__le32 *dbbuf_eis;
151 	dma_addr_t dbbuf_eis_dma_addr;
152 
153 	/* host memory buffer support: */
154 	u64 host_mem_size;
155 	u32 nr_host_mem_descs;
156 	dma_addr_t host_mem_descs_dma;
157 	struct nvme_host_mem_buf_desc *host_mem_descs;
158 	void **host_mem_desc_bufs;
159 	unsigned int nr_allocated_queues;
160 	unsigned int nr_write_queues;
161 	unsigned int nr_poll_queues;
162 };
163 
164 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
165 {
166 	return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
167 			NVME_PCI_MAX_QUEUE_SIZE);
168 }
169 
170 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
171 {
172 	return qid * 2 * stride;
173 }
174 
175 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
176 {
177 	return (qid * 2 + 1) * stride;
178 }
179 
180 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
181 {
182 	return container_of(ctrl, struct nvme_dev, ctrl);
183 }
184 
185 /*
186  * An NVM Express queue.  Each device has at least two (one for admin
187  * commands and one for I/O commands).
188  */
189 struct nvme_queue {
190 	struct nvme_dev *dev;
191 	spinlock_t sq_lock;
192 	void *sq_cmds;
193 	 /* only used for poll queues: */
194 	spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
195 	struct nvme_completion *cqes;
196 	dma_addr_t sq_dma_addr;
197 	dma_addr_t cq_dma_addr;
198 	u32 __iomem *q_db;
199 	u32 q_depth;
200 	u16 cq_vector;
201 	u16 sq_tail;
202 	u16 last_sq_tail;
203 	u16 cq_head;
204 	u16 qid;
205 	u8 cq_phase;
206 	u8 sqes;
207 	unsigned long flags;
208 #define NVMEQ_ENABLED		0
209 #define NVMEQ_SQ_CMB		1
210 #define NVMEQ_DELETE_ERROR	2
211 #define NVMEQ_POLLED		3
212 	__le32 *dbbuf_sq_db;
213 	__le32 *dbbuf_cq_db;
214 	__le32 *dbbuf_sq_ei;
215 	__le32 *dbbuf_cq_ei;
216 	struct completion delete_done;
217 };
218 
219 union nvme_descriptor {
220 	struct nvme_sgl_desc	*sg_list;
221 	__le64			*prp_list;
222 };
223 
224 /*
225  * The nvme_iod describes the data in an I/O.
226  *
227  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
228  * to the actual struct scatterlist.
229  */
230 struct nvme_iod {
231 	struct nvme_request req;
232 	struct nvme_command cmd;
233 	bool aborted;
234 	s8 nr_allocations;	/* PRP list pool allocations. 0 means small
235 				   pool in use */
236 	unsigned int dma_len;	/* length of single DMA segment mapping */
237 	dma_addr_t first_dma;
238 	dma_addr_t meta_dma;
239 	struct sg_table sgt;
240 	union nvme_descriptor list[NVME_MAX_NR_ALLOCATIONS];
241 };
242 
243 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
244 {
245 	return dev->nr_allocated_queues * 8 * dev->db_stride;
246 }
247 
248 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
249 {
250 	unsigned int mem_size = nvme_dbbuf_size(dev);
251 
252 	if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP))
253 		return;
254 
255 	if (dev->dbbuf_dbs) {
256 		/*
257 		 * Clear the dbbuf memory so the driver doesn't observe stale
258 		 * values from the previous instantiation.
259 		 */
260 		memset(dev->dbbuf_dbs, 0, mem_size);
261 		memset(dev->dbbuf_eis, 0, mem_size);
262 		return;
263 	}
264 
265 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
266 					    &dev->dbbuf_dbs_dma_addr,
267 					    GFP_KERNEL);
268 	if (!dev->dbbuf_dbs)
269 		goto fail;
270 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
271 					    &dev->dbbuf_eis_dma_addr,
272 					    GFP_KERNEL);
273 	if (!dev->dbbuf_eis)
274 		goto fail_free_dbbuf_dbs;
275 	return;
276 
277 fail_free_dbbuf_dbs:
278 	dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs,
279 			  dev->dbbuf_dbs_dma_addr);
280 	dev->dbbuf_dbs = NULL;
281 fail:
282 	dev_warn(dev->dev, "unable to allocate dma for dbbuf\n");
283 }
284 
285 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
286 {
287 	unsigned int mem_size = nvme_dbbuf_size(dev);
288 
289 	if (dev->dbbuf_dbs) {
290 		dma_free_coherent(dev->dev, mem_size,
291 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
292 		dev->dbbuf_dbs = NULL;
293 	}
294 	if (dev->dbbuf_eis) {
295 		dma_free_coherent(dev->dev, mem_size,
296 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
297 		dev->dbbuf_eis = NULL;
298 	}
299 }
300 
301 static void nvme_dbbuf_init(struct nvme_dev *dev,
302 			    struct nvme_queue *nvmeq, int qid)
303 {
304 	if (!dev->dbbuf_dbs || !qid)
305 		return;
306 
307 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
308 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
309 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
310 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
311 }
312 
313 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
314 {
315 	if (!nvmeq->qid)
316 		return;
317 
318 	nvmeq->dbbuf_sq_db = NULL;
319 	nvmeq->dbbuf_cq_db = NULL;
320 	nvmeq->dbbuf_sq_ei = NULL;
321 	nvmeq->dbbuf_cq_ei = NULL;
322 }
323 
324 static void nvme_dbbuf_set(struct nvme_dev *dev)
325 {
326 	struct nvme_command c = { };
327 	unsigned int i;
328 
329 	if (!dev->dbbuf_dbs)
330 		return;
331 
332 	c.dbbuf.opcode = nvme_admin_dbbuf;
333 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
334 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
335 
336 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
337 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
338 		/* Free memory and continue on */
339 		nvme_dbbuf_dma_free(dev);
340 
341 		for (i = 1; i <= dev->online_queues; i++)
342 			nvme_dbbuf_free(&dev->queues[i]);
343 	}
344 }
345 
346 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
347 {
348 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
349 }
350 
351 /* Update dbbuf and return true if an MMIO is required */
352 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
353 					      volatile __le32 *dbbuf_ei)
354 {
355 	if (dbbuf_db) {
356 		u16 old_value, event_idx;
357 
358 		/*
359 		 * Ensure that the queue is written before updating
360 		 * the doorbell in memory
361 		 */
362 		wmb();
363 
364 		old_value = le32_to_cpu(*dbbuf_db);
365 		*dbbuf_db = cpu_to_le32(value);
366 
367 		/*
368 		 * Ensure that the doorbell is updated before reading the event
369 		 * index from memory.  The controller needs to provide similar
370 		 * ordering to ensure the envent index is updated before reading
371 		 * the doorbell.
372 		 */
373 		mb();
374 
375 		event_idx = le32_to_cpu(*dbbuf_ei);
376 		if (!nvme_dbbuf_need_event(event_idx, value, old_value))
377 			return false;
378 	}
379 
380 	return true;
381 }
382 
383 /*
384  * Will slightly overestimate the number of pages needed.  This is OK
385  * as it only leads to a small amount of wasted memory for the lifetime of
386  * the I/O.
387  */
388 static int nvme_pci_npages_prp(void)
389 {
390 	unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE;
391 	unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE);
392 	return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8);
393 }
394 
395 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
396 				unsigned int hctx_idx)
397 {
398 	struct nvme_dev *dev = to_nvme_dev(data);
399 	struct nvme_queue *nvmeq = &dev->queues[0];
400 
401 	WARN_ON(hctx_idx != 0);
402 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
403 
404 	hctx->driver_data = nvmeq;
405 	return 0;
406 }
407 
408 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
409 			  unsigned int hctx_idx)
410 {
411 	struct nvme_dev *dev = to_nvme_dev(data);
412 	struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
413 
414 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
415 	hctx->driver_data = nvmeq;
416 	return 0;
417 }
418 
419 static int nvme_pci_init_request(struct blk_mq_tag_set *set,
420 		struct request *req, unsigned int hctx_idx,
421 		unsigned int numa_node)
422 {
423 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
424 
425 	nvme_req(req)->ctrl = set->driver_data;
426 	nvme_req(req)->cmd = &iod->cmd;
427 	return 0;
428 }
429 
430 static int queue_irq_offset(struct nvme_dev *dev)
431 {
432 	/* if we have more than 1 vec, admin queue offsets us by 1 */
433 	if (dev->num_vecs > 1)
434 		return 1;
435 
436 	return 0;
437 }
438 
439 static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
440 {
441 	struct nvme_dev *dev = to_nvme_dev(set->driver_data);
442 	int i, qoff, offset;
443 
444 	offset = queue_irq_offset(dev);
445 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
446 		struct blk_mq_queue_map *map = &set->map[i];
447 
448 		map->nr_queues = dev->io_queues[i];
449 		if (!map->nr_queues) {
450 			BUG_ON(i == HCTX_TYPE_DEFAULT);
451 			continue;
452 		}
453 
454 		/*
455 		 * The poll queue(s) doesn't have an IRQ (and hence IRQ
456 		 * affinity), so use the regular blk-mq cpu mapping
457 		 */
458 		map->queue_offset = qoff;
459 		if (i != HCTX_TYPE_POLL && offset)
460 			blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
461 		else
462 			blk_mq_map_queues(map);
463 		qoff += map->nr_queues;
464 		offset += map->nr_queues;
465 	}
466 }
467 
468 /*
469  * Write sq tail if we are asked to, or if the next command would wrap.
470  */
471 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
472 {
473 	if (!write_sq) {
474 		u16 next_tail = nvmeq->sq_tail + 1;
475 
476 		if (next_tail == nvmeq->q_depth)
477 			next_tail = 0;
478 		if (next_tail != nvmeq->last_sq_tail)
479 			return;
480 	}
481 
482 	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
483 			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
484 		writel(nvmeq->sq_tail, nvmeq->q_db);
485 	nvmeq->last_sq_tail = nvmeq->sq_tail;
486 }
487 
488 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
489 				    struct nvme_command *cmd)
490 {
491 	memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
492 		absolute_pointer(cmd), sizeof(*cmd));
493 	if (++nvmeq->sq_tail == nvmeq->q_depth)
494 		nvmeq->sq_tail = 0;
495 }
496 
497 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
498 {
499 	struct nvme_queue *nvmeq = hctx->driver_data;
500 
501 	spin_lock(&nvmeq->sq_lock);
502 	if (nvmeq->sq_tail != nvmeq->last_sq_tail)
503 		nvme_write_sq_db(nvmeq, true);
504 	spin_unlock(&nvmeq->sq_lock);
505 }
506 
507 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req,
508 				     int nseg)
509 {
510 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
511 	unsigned int avg_seg_size;
512 
513 	avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
514 
515 	if (!nvme_ctrl_sgl_supported(&dev->ctrl))
516 		return false;
517 	if (!nvmeq->qid)
518 		return false;
519 	if (!sgl_threshold || avg_seg_size < sgl_threshold)
520 		return false;
521 	return true;
522 }
523 
524 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
525 {
526 	const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
527 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
528 	dma_addr_t dma_addr = iod->first_dma;
529 	int i;
530 
531 	for (i = 0; i < iod->nr_allocations; i++) {
532 		__le64 *prp_list = iod->list[i].prp_list;
533 		dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
534 
535 		dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
536 		dma_addr = next_dma_addr;
537 	}
538 }
539 
540 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
541 {
542 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
543 
544 	if (iod->dma_len) {
545 		dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
546 			       rq_dma_dir(req));
547 		return;
548 	}
549 
550 	WARN_ON_ONCE(!iod->sgt.nents);
551 
552 	dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
553 
554 	if (iod->nr_allocations == 0)
555 		dma_pool_free(dev->prp_small_pool, iod->list[0].sg_list,
556 			      iod->first_dma);
557 	else if (iod->nr_allocations == 1)
558 		dma_pool_free(dev->prp_page_pool, iod->list[0].sg_list,
559 			      iod->first_dma);
560 	else
561 		nvme_free_prps(dev, req);
562 	mempool_free(iod->sgt.sgl, dev->iod_mempool);
563 }
564 
565 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
566 {
567 	int i;
568 	struct scatterlist *sg;
569 
570 	for_each_sg(sgl, sg, nents, i) {
571 		dma_addr_t phys = sg_phys(sg);
572 		pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
573 			"dma_address:%pad dma_length:%d\n",
574 			i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
575 			sg_dma_len(sg));
576 	}
577 }
578 
579 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
580 		struct request *req, struct nvme_rw_command *cmnd)
581 {
582 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
583 	struct dma_pool *pool;
584 	int length = blk_rq_payload_bytes(req);
585 	struct scatterlist *sg = iod->sgt.sgl;
586 	int dma_len = sg_dma_len(sg);
587 	u64 dma_addr = sg_dma_address(sg);
588 	int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
589 	__le64 *prp_list;
590 	dma_addr_t prp_dma;
591 	int nprps, i;
592 
593 	length -= (NVME_CTRL_PAGE_SIZE - offset);
594 	if (length <= 0) {
595 		iod->first_dma = 0;
596 		goto done;
597 	}
598 
599 	dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
600 	if (dma_len) {
601 		dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
602 	} else {
603 		sg = sg_next(sg);
604 		dma_addr = sg_dma_address(sg);
605 		dma_len = sg_dma_len(sg);
606 	}
607 
608 	if (length <= NVME_CTRL_PAGE_SIZE) {
609 		iod->first_dma = dma_addr;
610 		goto done;
611 	}
612 
613 	nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
614 	if (nprps <= (256 / 8)) {
615 		pool = dev->prp_small_pool;
616 		iod->nr_allocations = 0;
617 	} else {
618 		pool = dev->prp_page_pool;
619 		iod->nr_allocations = 1;
620 	}
621 
622 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
623 	if (!prp_list) {
624 		iod->nr_allocations = -1;
625 		return BLK_STS_RESOURCE;
626 	}
627 	iod->list[0].prp_list = prp_list;
628 	iod->first_dma = prp_dma;
629 	i = 0;
630 	for (;;) {
631 		if (i == NVME_CTRL_PAGE_SIZE >> 3) {
632 			__le64 *old_prp_list = prp_list;
633 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
634 			if (!prp_list)
635 				goto free_prps;
636 			iod->list[iod->nr_allocations++].prp_list = prp_list;
637 			prp_list[0] = old_prp_list[i - 1];
638 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
639 			i = 1;
640 		}
641 		prp_list[i++] = cpu_to_le64(dma_addr);
642 		dma_len -= NVME_CTRL_PAGE_SIZE;
643 		dma_addr += NVME_CTRL_PAGE_SIZE;
644 		length -= NVME_CTRL_PAGE_SIZE;
645 		if (length <= 0)
646 			break;
647 		if (dma_len > 0)
648 			continue;
649 		if (unlikely(dma_len < 0))
650 			goto bad_sgl;
651 		sg = sg_next(sg);
652 		dma_addr = sg_dma_address(sg);
653 		dma_len = sg_dma_len(sg);
654 	}
655 done:
656 	cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl));
657 	cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
658 	return BLK_STS_OK;
659 free_prps:
660 	nvme_free_prps(dev, req);
661 	return BLK_STS_RESOURCE;
662 bad_sgl:
663 	WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents),
664 			"Invalid SGL for payload:%d nents:%d\n",
665 			blk_rq_payload_bytes(req), iod->sgt.nents);
666 	return BLK_STS_IOERR;
667 }
668 
669 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
670 		struct scatterlist *sg)
671 {
672 	sge->addr = cpu_to_le64(sg_dma_address(sg));
673 	sge->length = cpu_to_le32(sg_dma_len(sg));
674 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
675 }
676 
677 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
678 		dma_addr_t dma_addr, int entries)
679 {
680 	sge->addr = cpu_to_le64(dma_addr);
681 	sge->length = cpu_to_le32(entries * sizeof(*sge));
682 	sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
683 }
684 
685 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
686 		struct request *req, struct nvme_rw_command *cmd)
687 {
688 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
689 	struct dma_pool *pool;
690 	struct nvme_sgl_desc *sg_list;
691 	struct scatterlist *sg = iod->sgt.sgl;
692 	unsigned int entries = iod->sgt.nents;
693 	dma_addr_t sgl_dma;
694 	int i = 0;
695 
696 	/* setting the transfer type as SGL */
697 	cmd->flags = NVME_CMD_SGL_METABUF;
698 
699 	if (entries == 1) {
700 		nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
701 		return BLK_STS_OK;
702 	}
703 
704 	if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
705 		pool = dev->prp_small_pool;
706 		iod->nr_allocations = 0;
707 	} else {
708 		pool = dev->prp_page_pool;
709 		iod->nr_allocations = 1;
710 	}
711 
712 	sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
713 	if (!sg_list) {
714 		iod->nr_allocations = -1;
715 		return BLK_STS_RESOURCE;
716 	}
717 
718 	iod->list[0].sg_list = sg_list;
719 	iod->first_dma = sgl_dma;
720 
721 	nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
722 	do {
723 		nvme_pci_sgl_set_data(&sg_list[i++], sg);
724 		sg = sg_next(sg);
725 	} while (--entries > 0);
726 
727 	return BLK_STS_OK;
728 }
729 
730 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
731 		struct request *req, struct nvme_rw_command *cmnd,
732 		struct bio_vec *bv)
733 {
734 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
735 	unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
736 	unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
737 
738 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
739 	if (dma_mapping_error(dev->dev, iod->first_dma))
740 		return BLK_STS_RESOURCE;
741 	iod->dma_len = bv->bv_len;
742 
743 	cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
744 	if (bv->bv_len > first_prp_len)
745 		cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
746 	else
747 		cmnd->dptr.prp2 = 0;
748 	return BLK_STS_OK;
749 }
750 
751 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
752 		struct request *req, struct nvme_rw_command *cmnd,
753 		struct bio_vec *bv)
754 {
755 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
756 
757 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
758 	if (dma_mapping_error(dev->dev, iod->first_dma))
759 		return BLK_STS_RESOURCE;
760 	iod->dma_len = bv->bv_len;
761 
762 	cmnd->flags = NVME_CMD_SGL_METABUF;
763 	cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
764 	cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
765 	cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
766 	return BLK_STS_OK;
767 }
768 
769 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
770 		struct nvme_command *cmnd)
771 {
772 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
773 	blk_status_t ret = BLK_STS_RESOURCE;
774 	int rc;
775 
776 	if (blk_rq_nr_phys_segments(req) == 1) {
777 		struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
778 		struct bio_vec bv = req_bvec(req);
779 
780 		if (!is_pci_p2pdma_page(bv.bv_page)) {
781 			if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
782 				return nvme_setup_prp_simple(dev, req,
783 							     &cmnd->rw, &bv);
784 
785 			if (nvmeq->qid && sgl_threshold &&
786 			    nvme_ctrl_sgl_supported(&dev->ctrl))
787 				return nvme_setup_sgl_simple(dev, req,
788 							     &cmnd->rw, &bv);
789 		}
790 	}
791 
792 	iod->dma_len = 0;
793 	iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
794 	if (!iod->sgt.sgl)
795 		return BLK_STS_RESOURCE;
796 	sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req));
797 	iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl);
798 	if (!iod->sgt.orig_nents)
799 		goto out_free_sg;
800 
801 	rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req),
802 			     DMA_ATTR_NO_WARN);
803 	if (rc) {
804 		if (rc == -EREMOTEIO)
805 			ret = BLK_STS_TARGET;
806 		goto out_free_sg;
807 	}
808 
809 	if (nvme_pci_use_sgls(dev, req, iod->sgt.nents))
810 		ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw);
811 	else
812 		ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
813 	if (ret != BLK_STS_OK)
814 		goto out_unmap_sg;
815 	return BLK_STS_OK;
816 
817 out_unmap_sg:
818 	dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
819 out_free_sg:
820 	mempool_free(iod->sgt.sgl, dev->iod_mempool);
821 	return ret;
822 }
823 
824 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
825 		struct nvme_command *cmnd)
826 {
827 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
828 
829 	iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
830 			rq_dma_dir(req), 0);
831 	if (dma_mapping_error(dev->dev, iod->meta_dma))
832 		return BLK_STS_IOERR;
833 	cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
834 	return BLK_STS_OK;
835 }
836 
837 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
838 {
839 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
840 	blk_status_t ret;
841 
842 	iod->aborted = false;
843 	iod->nr_allocations = -1;
844 	iod->sgt.nents = 0;
845 
846 	ret = nvme_setup_cmd(req->q->queuedata, req);
847 	if (ret)
848 		return ret;
849 
850 	if (blk_rq_nr_phys_segments(req)) {
851 		ret = nvme_map_data(dev, req, &iod->cmd);
852 		if (ret)
853 			goto out_free_cmd;
854 	}
855 
856 	if (blk_integrity_rq(req)) {
857 		ret = nvme_map_metadata(dev, req, &iod->cmd);
858 		if (ret)
859 			goto out_unmap_data;
860 	}
861 
862 	nvme_start_request(req);
863 	return BLK_STS_OK;
864 out_unmap_data:
865 	nvme_unmap_data(dev, req);
866 out_free_cmd:
867 	nvme_cleanup_cmd(req);
868 	return ret;
869 }
870 
871 /*
872  * NOTE: ns is NULL when called on the admin queue.
873  */
874 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
875 			 const struct blk_mq_queue_data *bd)
876 {
877 	struct nvme_queue *nvmeq = hctx->driver_data;
878 	struct nvme_dev *dev = nvmeq->dev;
879 	struct request *req = bd->rq;
880 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
881 	blk_status_t ret;
882 
883 	/*
884 	 * We should not need to do this, but we're still using this to
885 	 * ensure we can drain requests on a dying queue.
886 	 */
887 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
888 		return BLK_STS_IOERR;
889 
890 	if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
891 		return nvme_fail_nonready_command(&dev->ctrl, req);
892 
893 	ret = nvme_prep_rq(dev, req);
894 	if (unlikely(ret))
895 		return ret;
896 	spin_lock(&nvmeq->sq_lock);
897 	nvme_sq_copy_cmd(nvmeq, &iod->cmd);
898 	nvme_write_sq_db(nvmeq, bd->last);
899 	spin_unlock(&nvmeq->sq_lock);
900 	return BLK_STS_OK;
901 }
902 
903 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist)
904 {
905 	spin_lock(&nvmeq->sq_lock);
906 	while (!rq_list_empty(*rqlist)) {
907 		struct request *req = rq_list_pop(rqlist);
908 		struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
909 
910 		nvme_sq_copy_cmd(nvmeq, &iod->cmd);
911 	}
912 	nvme_write_sq_db(nvmeq, true);
913 	spin_unlock(&nvmeq->sq_lock);
914 }
915 
916 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
917 {
918 	/*
919 	 * We should not need to do this, but we're still using this to
920 	 * ensure we can drain requests on a dying queue.
921 	 */
922 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
923 		return false;
924 	if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
925 		return false;
926 
927 	return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
928 }
929 
930 static void nvme_queue_rqs(struct request **rqlist)
931 {
932 	struct request *req, *next, *prev = NULL;
933 	struct request *requeue_list = NULL;
934 
935 	rq_list_for_each_safe(rqlist, req, next) {
936 		struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
937 
938 		if (!nvme_prep_rq_batch(nvmeq, req)) {
939 			/* detach 'req' and add to remainder list */
940 			rq_list_move(rqlist, &requeue_list, req, prev);
941 
942 			req = prev;
943 			if (!req)
944 				continue;
945 		}
946 
947 		if (!next || req->mq_hctx != next->mq_hctx) {
948 			/* detach rest of list, and submit */
949 			req->rq_next = NULL;
950 			nvme_submit_cmds(nvmeq, rqlist);
951 			*rqlist = next;
952 			prev = NULL;
953 		} else
954 			prev = req;
955 	}
956 
957 	*rqlist = requeue_list;
958 }
959 
960 static __always_inline void nvme_pci_unmap_rq(struct request *req)
961 {
962 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
963 	struct nvme_dev *dev = nvmeq->dev;
964 
965 	if (blk_integrity_rq(req)) {
966 	        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
967 
968 		dma_unmap_page(dev->dev, iod->meta_dma,
969 			       rq_integrity_vec(req)->bv_len, rq_dma_dir(req));
970 	}
971 
972 	if (blk_rq_nr_phys_segments(req))
973 		nvme_unmap_data(dev, req);
974 }
975 
976 static void nvme_pci_complete_rq(struct request *req)
977 {
978 	nvme_pci_unmap_rq(req);
979 	nvme_complete_rq(req);
980 }
981 
982 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
983 {
984 	nvme_complete_batch(iob, nvme_pci_unmap_rq);
985 }
986 
987 /* We read the CQE phase first to check if the rest of the entry is valid */
988 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
989 {
990 	struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
991 
992 	return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
993 }
994 
995 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
996 {
997 	u16 head = nvmeq->cq_head;
998 
999 	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1000 					      nvmeq->dbbuf_cq_ei))
1001 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1002 }
1003 
1004 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1005 {
1006 	if (!nvmeq->qid)
1007 		return nvmeq->dev->admin_tagset.tags[0];
1008 	return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1009 }
1010 
1011 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1012 				   struct io_comp_batch *iob, u16 idx)
1013 {
1014 	struct nvme_completion *cqe = &nvmeq->cqes[idx];
1015 	__u16 command_id = READ_ONCE(cqe->command_id);
1016 	struct request *req;
1017 
1018 	/*
1019 	 * AEN requests are special as they don't time out and can
1020 	 * survive any kind of queue freeze and often don't respond to
1021 	 * aborts.  We don't even bother to allocate a struct request
1022 	 * for them but rather special case them here.
1023 	 */
1024 	if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1025 		nvme_complete_async_event(&nvmeq->dev->ctrl,
1026 				cqe->status, &cqe->result);
1027 		return;
1028 	}
1029 
1030 	req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1031 	if (unlikely(!req)) {
1032 		dev_warn(nvmeq->dev->ctrl.device,
1033 			"invalid id %d completed on queue %d\n",
1034 			command_id, le16_to_cpu(cqe->sq_id));
1035 		return;
1036 	}
1037 
1038 	trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1039 	if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1040 	    !blk_mq_add_to_batch(req, iob, nvme_req(req)->status,
1041 					nvme_pci_complete_batch))
1042 		nvme_pci_complete_rq(req);
1043 }
1044 
1045 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1046 {
1047 	u32 tmp = nvmeq->cq_head + 1;
1048 
1049 	if (tmp == nvmeq->q_depth) {
1050 		nvmeq->cq_head = 0;
1051 		nvmeq->cq_phase ^= 1;
1052 	} else {
1053 		nvmeq->cq_head = tmp;
1054 	}
1055 }
1056 
1057 static inline int nvme_poll_cq(struct nvme_queue *nvmeq,
1058 			       struct io_comp_batch *iob)
1059 {
1060 	int found = 0;
1061 
1062 	while (nvme_cqe_pending(nvmeq)) {
1063 		found++;
1064 		/*
1065 		 * load-load control dependency between phase and the rest of
1066 		 * the cqe requires a full read memory barrier
1067 		 */
1068 		dma_rmb();
1069 		nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1070 		nvme_update_cq_head(nvmeq);
1071 	}
1072 
1073 	if (found)
1074 		nvme_ring_cq_doorbell(nvmeq);
1075 	return found;
1076 }
1077 
1078 static irqreturn_t nvme_irq(int irq, void *data)
1079 {
1080 	struct nvme_queue *nvmeq = data;
1081 	DEFINE_IO_COMP_BATCH(iob);
1082 
1083 	if (nvme_poll_cq(nvmeq, &iob)) {
1084 		if (!rq_list_empty(iob.req_list))
1085 			nvme_pci_complete_batch(&iob);
1086 		return IRQ_HANDLED;
1087 	}
1088 	return IRQ_NONE;
1089 }
1090 
1091 static irqreturn_t nvme_irq_check(int irq, void *data)
1092 {
1093 	struct nvme_queue *nvmeq = data;
1094 
1095 	if (nvme_cqe_pending(nvmeq))
1096 		return IRQ_WAKE_THREAD;
1097 	return IRQ_NONE;
1098 }
1099 
1100 /*
1101  * Poll for completions for any interrupt driven queue
1102  * Can be called from any context.
1103  */
1104 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1105 {
1106 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1107 
1108 	WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1109 
1110 	disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1111 	nvme_poll_cq(nvmeq, NULL);
1112 	enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1113 }
1114 
1115 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1116 {
1117 	struct nvme_queue *nvmeq = hctx->driver_data;
1118 	bool found;
1119 
1120 	if (!nvme_cqe_pending(nvmeq))
1121 		return 0;
1122 
1123 	spin_lock(&nvmeq->cq_poll_lock);
1124 	found = nvme_poll_cq(nvmeq, iob);
1125 	spin_unlock(&nvmeq->cq_poll_lock);
1126 
1127 	return found;
1128 }
1129 
1130 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1131 {
1132 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1133 	struct nvme_queue *nvmeq = &dev->queues[0];
1134 	struct nvme_command c = { };
1135 
1136 	c.common.opcode = nvme_admin_async_event;
1137 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1138 
1139 	spin_lock(&nvmeq->sq_lock);
1140 	nvme_sq_copy_cmd(nvmeq, &c);
1141 	nvme_write_sq_db(nvmeq, true);
1142 	spin_unlock(&nvmeq->sq_lock);
1143 }
1144 
1145 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1146 {
1147 	struct nvme_command c = { };
1148 
1149 	c.delete_queue.opcode = opcode;
1150 	c.delete_queue.qid = cpu_to_le16(id);
1151 
1152 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1153 }
1154 
1155 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1156 		struct nvme_queue *nvmeq, s16 vector)
1157 {
1158 	struct nvme_command c = { };
1159 	int flags = NVME_QUEUE_PHYS_CONTIG;
1160 
1161 	if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1162 		flags |= NVME_CQ_IRQ_ENABLED;
1163 
1164 	/*
1165 	 * Note: we (ab)use the fact that the prp fields survive if no data
1166 	 * is attached to the request.
1167 	 */
1168 	c.create_cq.opcode = nvme_admin_create_cq;
1169 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1170 	c.create_cq.cqid = cpu_to_le16(qid);
1171 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1172 	c.create_cq.cq_flags = cpu_to_le16(flags);
1173 	c.create_cq.irq_vector = cpu_to_le16(vector);
1174 
1175 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1176 }
1177 
1178 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1179 						struct nvme_queue *nvmeq)
1180 {
1181 	struct nvme_ctrl *ctrl = &dev->ctrl;
1182 	struct nvme_command c = { };
1183 	int flags = NVME_QUEUE_PHYS_CONTIG;
1184 
1185 	/*
1186 	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1187 	 * set. Since URGENT priority is zeroes, it makes all queues
1188 	 * URGENT.
1189 	 */
1190 	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1191 		flags |= NVME_SQ_PRIO_MEDIUM;
1192 
1193 	/*
1194 	 * Note: we (ab)use the fact that the prp fields survive if no data
1195 	 * is attached to the request.
1196 	 */
1197 	c.create_sq.opcode = nvme_admin_create_sq;
1198 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1199 	c.create_sq.sqid = cpu_to_le16(qid);
1200 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1201 	c.create_sq.sq_flags = cpu_to_le16(flags);
1202 	c.create_sq.cqid = cpu_to_le16(qid);
1203 
1204 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1205 }
1206 
1207 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1208 {
1209 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1210 }
1211 
1212 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1213 {
1214 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1215 }
1216 
1217 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
1218 {
1219 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1220 
1221 	dev_warn(nvmeq->dev->ctrl.device,
1222 		 "Abort status: 0x%x", nvme_req(req)->status);
1223 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1224 	blk_mq_free_request(req);
1225 	return RQ_END_IO_NONE;
1226 }
1227 
1228 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1229 {
1230 	/* If true, indicates loss of adapter communication, possibly by a
1231 	 * NVMe Subsystem reset.
1232 	 */
1233 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1234 
1235 	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1236 	switch (nvme_ctrl_state(&dev->ctrl)) {
1237 	case NVME_CTRL_RESETTING:
1238 	case NVME_CTRL_CONNECTING:
1239 		return false;
1240 	default:
1241 		break;
1242 	}
1243 
1244 	/* We shouldn't reset unless the controller is on fatal error state
1245 	 * _or_ if we lost the communication with it.
1246 	 */
1247 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1248 		return false;
1249 
1250 	return true;
1251 }
1252 
1253 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1254 {
1255 	/* Read a config register to help see what died. */
1256 	u16 pci_status;
1257 	int result;
1258 
1259 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1260 				      &pci_status);
1261 	if (result == PCIBIOS_SUCCESSFUL)
1262 		dev_warn(dev->ctrl.device,
1263 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1264 			 csts, pci_status);
1265 	else
1266 		dev_warn(dev->ctrl.device,
1267 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1268 			 csts, result);
1269 
1270 	if (csts != ~0)
1271 		return;
1272 
1273 	dev_warn(dev->ctrl.device,
1274 		 "Does your device have a faulty power saving mode enabled?\n");
1275 	dev_warn(dev->ctrl.device,
1276 		 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off\" and report a bug\n");
1277 }
1278 
1279 static enum blk_eh_timer_return nvme_timeout(struct request *req)
1280 {
1281 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1282 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1283 	struct nvme_dev *dev = nvmeq->dev;
1284 	struct request *abort_req;
1285 	struct nvme_command cmd = { };
1286 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1287 
1288 	/* If PCI error recovery process is happening, we cannot reset or
1289 	 * the recovery mechanism will surely fail.
1290 	 */
1291 	mb();
1292 	if (pci_channel_offline(to_pci_dev(dev->dev)))
1293 		return BLK_EH_RESET_TIMER;
1294 
1295 	/*
1296 	 * Reset immediately if the controller is failed
1297 	 */
1298 	if (nvme_should_reset(dev, csts)) {
1299 		nvme_warn_reset(dev, csts);
1300 		goto disable;
1301 	}
1302 
1303 	/*
1304 	 * Did we miss an interrupt?
1305 	 */
1306 	if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1307 		nvme_poll(req->mq_hctx, NULL);
1308 	else
1309 		nvme_poll_irqdisable(nvmeq);
1310 
1311 	if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) {
1312 		dev_warn(dev->ctrl.device,
1313 			 "I/O %d QID %d timeout, completion polled\n",
1314 			 req->tag, nvmeq->qid);
1315 		return BLK_EH_DONE;
1316 	}
1317 
1318 	/*
1319 	 * Shutdown immediately if controller times out while starting. The
1320 	 * reset work will see the pci device disabled when it gets the forced
1321 	 * cancellation error. All outstanding requests are completed on
1322 	 * shutdown, so we return BLK_EH_DONE.
1323 	 */
1324 	switch (nvme_ctrl_state(&dev->ctrl)) {
1325 	case NVME_CTRL_CONNECTING:
1326 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1327 		fallthrough;
1328 	case NVME_CTRL_DELETING:
1329 		dev_warn_ratelimited(dev->ctrl.device,
1330 			 "I/O %d QID %d timeout, disable controller\n",
1331 			 req->tag, nvmeq->qid);
1332 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1333 		nvme_dev_disable(dev, true);
1334 		return BLK_EH_DONE;
1335 	case NVME_CTRL_RESETTING:
1336 		return BLK_EH_RESET_TIMER;
1337 	default:
1338 		break;
1339 	}
1340 
1341 	/*
1342 	 * Shutdown the controller immediately and schedule a reset if the
1343 	 * command was already aborted once before and still hasn't been
1344 	 * returned to the driver, or if this is the admin queue.
1345 	 */
1346 	if (!nvmeq->qid || iod->aborted) {
1347 		dev_warn(dev->ctrl.device,
1348 			 "I/O %d QID %d timeout, reset controller\n",
1349 			 req->tag, nvmeq->qid);
1350 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1351 		goto disable;
1352 	}
1353 
1354 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1355 		atomic_inc(&dev->ctrl.abort_limit);
1356 		return BLK_EH_RESET_TIMER;
1357 	}
1358 	iod->aborted = true;
1359 
1360 	cmd.abort.opcode = nvme_admin_abort_cmd;
1361 	cmd.abort.cid = nvme_cid(req);
1362 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1363 
1364 	dev_warn(nvmeq->dev->ctrl.device,
1365 		"I/O %d (%s) QID %d timeout, aborting\n",
1366 		 req->tag,
1367 		 nvme_get_opcode_str(nvme_req(req)->cmd->common.opcode),
1368 		 nvmeq->qid);
1369 
1370 	abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1371 					 BLK_MQ_REQ_NOWAIT);
1372 	if (IS_ERR(abort_req)) {
1373 		atomic_inc(&dev->ctrl.abort_limit);
1374 		return BLK_EH_RESET_TIMER;
1375 	}
1376 	nvme_init_request(abort_req, &cmd);
1377 
1378 	abort_req->end_io = abort_endio;
1379 	abort_req->end_io_data = NULL;
1380 	blk_execute_rq_nowait(abort_req, false);
1381 
1382 	/*
1383 	 * The aborted req will be completed on receiving the abort req.
1384 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1385 	 * as the device then is in a faulty state.
1386 	 */
1387 	return BLK_EH_RESET_TIMER;
1388 
1389 disable:
1390 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
1391 		return BLK_EH_DONE;
1392 
1393 	nvme_dev_disable(dev, false);
1394 	if (nvme_try_sched_reset(&dev->ctrl))
1395 		nvme_unquiesce_io_queues(&dev->ctrl);
1396 	return BLK_EH_DONE;
1397 }
1398 
1399 static void nvme_free_queue(struct nvme_queue *nvmeq)
1400 {
1401 	dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1402 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1403 	if (!nvmeq->sq_cmds)
1404 		return;
1405 
1406 	if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1407 		pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1408 				nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1409 	} else {
1410 		dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1411 				nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1412 	}
1413 }
1414 
1415 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1416 {
1417 	int i;
1418 
1419 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1420 		dev->ctrl.queue_count--;
1421 		nvme_free_queue(&dev->queues[i]);
1422 	}
1423 }
1424 
1425 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid)
1426 {
1427 	struct nvme_queue *nvmeq = &dev->queues[qid];
1428 
1429 	if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1430 		return;
1431 
1432 	/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1433 	mb();
1434 
1435 	nvmeq->dev->online_queues--;
1436 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1437 		nvme_quiesce_admin_queue(&nvmeq->dev->ctrl);
1438 	if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1439 		pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq);
1440 }
1441 
1442 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1443 {
1444 	int i;
1445 
1446 	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1447 		nvme_suspend_queue(dev, i);
1448 }
1449 
1450 /*
1451  * Called only on a device that has been disabled and after all other threads
1452  * that can check this device's completion queues have synced, except
1453  * nvme_poll(). This is the last chance for the driver to see a natural
1454  * completion before nvme_cancel_request() terminates all incomplete requests.
1455  */
1456 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1457 {
1458 	int i;
1459 
1460 	for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1461 		spin_lock(&dev->queues[i].cq_poll_lock);
1462 		nvme_poll_cq(&dev->queues[i], NULL);
1463 		spin_unlock(&dev->queues[i].cq_poll_lock);
1464 	}
1465 }
1466 
1467 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1468 				int entry_size)
1469 {
1470 	int q_depth = dev->q_depth;
1471 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1472 					  NVME_CTRL_PAGE_SIZE);
1473 
1474 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1475 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1476 
1477 		mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1478 		q_depth = div_u64(mem_per_q, entry_size);
1479 
1480 		/*
1481 		 * Ensure the reduced q_depth is above some threshold where it
1482 		 * would be better to map queues in system memory with the
1483 		 * original depth
1484 		 */
1485 		if (q_depth < 64)
1486 			return -ENOMEM;
1487 	}
1488 
1489 	return q_depth;
1490 }
1491 
1492 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1493 				int qid)
1494 {
1495 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1496 
1497 	if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1498 		nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1499 		if (nvmeq->sq_cmds) {
1500 			nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1501 							nvmeq->sq_cmds);
1502 			if (nvmeq->sq_dma_addr) {
1503 				set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1504 				return 0;
1505 			}
1506 
1507 			pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1508 		}
1509 	}
1510 
1511 	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1512 				&nvmeq->sq_dma_addr, GFP_KERNEL);
1513 	if (!nvmeq->sq_cmds)
1514 		return -ENOMEM;
1515 	return 0;
1516 }
1517 
1518 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1519 {
1520 	struct nvme_queue *nvmeq = &dev->queues[qid];
1521 
1522 	if (dev->ctrl.queue_count > qid)
1523 		return 0;
1524 
1525 	nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1526 	nvmeq->q_depth = depth;
1527 	nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1528 					 &nvmeq->cq_dma_addr, GFP_KERNEL);
1529 	if (!nvmeq->cqes)
1530 		goto free_nvmeq;
1531 
1532 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1533 		goto free_cqdma;
1534 
1535 	nvmeq->dev = dev;
1536 	spin_lock_init(&nvmeq->sq_lock);
1537 	spin_lock_init(&nvmeq->cq_poll_lock);
1538 	nvmeq->cq_head = 0;
1539 	nvmeq->cq_phase = 1;
1540 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1541 	nvmeq->qid = qid;
1542 	dev->ctrl.queue_count++;
1543 
1544 	return 0;
1545 
1546  free_cqdma:
1547 	dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1548 			  nvmeq->cq_dma_addr);
1549  free_nvmeq:
1550 	return -ENOMEM;
1551 }
1552 
1553 static int queue_request_irq(struct nvme_queue *nvmeq)
1554 {
1555 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1556 	int nr = nvmeq->dev->ctrl.instance;
1557 
1558 	if (use_threaded_interrupts) {
1559 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1560 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1561 	} else {
1562 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1563 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1564 	}
1565 }
1566 
1567 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1568 {
1569 	struct nvme_dev *dev = nvmeq->dev;
1570 
1571 	nvmeq->sq_tail = 0;
1572 	nvmeq->last_sq_tail = 0;
1573 	nvmeq->cq_head = 0;
1574 	nvmeq->cq_phase = 1;
1575 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1576 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1577 	nvme_dbbuf_init(dev, nvmeq, qid);
1578 	dev->online_queues++;
1579 	wmb(); /* ensure the first interrupt sees the initialization */
1580 }
1581 
1582 /*
1583  * Try getting shutdown_lock while setting up IO queues.
1584  */
1585 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1586 {
1587 	/*
1588 	 * Give up if the lock is being held by nvme_dev_disable.
1589 	 */
1590 	if (!mutex_trylock(&dev->shutdown_lock))
1591 		return -ENODEV;
1592 
1593 	/*
1594 	 * Controller is in wrong state, fail early.
1595 	 */
1596 	if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_CONNECTING) {
1597 		mutex_unlock(&dev->shutdown_lock);
1598 		return -ENODEV;
1599 	}
1600 
1601 	return 0;
1602 }
1603 
1604 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1605 {
1606 	struct nvme_dev *dev = nvmeq->dev;
1607 	int result;
1608 	u16 vector = 0;
1609 
1610 	clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1611 
1612 	/*
1613 	 * A queue's vector matches the queue identifier unless the controller
1614 	 * has only one vector available.
1615 	 */
1616 	if (!polled)
1617 		vector = dev->num_vecs == 1 ? 0 : qid;
1618 	else
1619 		set_bit(NVMEQ_POLLED, &nvmeq->flags);
1620 
1621 	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1622 	if (result)
1623 		return result;
1624 
1625 	result = adapter_alloc_sq(dev, qid, nvmeq);
1626 	if (result < 0)
1627 		return result;
1628 	if (result)
1629 		goto release_cq;
1630 
1631 	nvmeq->cq_vector = vector;
1632 
1633 	result = nvme_setup_io_queues_trylock(dev);
1634 	if (result)
1635 		return result;
1636 	nvme_init_queue(nvmeq, qid);
1637 	if (!polled) {
1638 		result = queue_request_irq(nvmeq);
1639 		if (result < 0)
1640 			goto release_sq;
1641 	}
1642 
1643 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1644 	mutex_unlock(&dev->shutdown_lock);
1645 	return result;
1646 
1647 release_sq:
1648 	dev->online_queues--;
1649 	mutex_unlock(&dev->shutdown_lock);
1650 	adapter_delete_sq(dev, qid);
1651 release_cq:
1652 	adapter_delete_cq(dev, qid);
1653 	return result;
1654 }
1655 
1656 static const struct blk_mq_ops nvme_mq_admin_ops = {
1657 	.queue_rq	= nvme_queue_rq,
1658 	.complete	= nvme_pci_complete_rq,
1659 	.init_hctx	= nvme_admin_init_hctx,
1660 	.init_request	= nvme_pci_init_request,
1661 	.timeout	= nvme_timeout,
1662 };
1663 
1664 static const struct blk_mq_ops nvme_mq_ops = {
1665 	.queue_rq	= nvme_queue_rq,
1666 	.queue_rqs	= nvme_queue_rqs,
1667 	.complete	= nvme_pci_complete_rq,
1668 	.commit_rqs	= nvme_commit_rqs,
1669 	.init_hctx	= nvme_init_hctx,
1670 	.init_request	= nvme_pci_init_request,
1671 	.map_queues	= nvme_pci_map_queues,
1672 	.timeout	= nvme_timeout,
1673 	.poll		= nvme_poll,
1674 };
1675 
1676 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1677 {
1678 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1679 		/*
1680 		 * If the controller was reset during removal, it's possible
1681 		 * user requests may be waiting on a stopped queue. Start the
1682 		 * queue to flush these to completion.
1683 		 */
1684 		nvme_unquiesce_admin_queue(&dev->ctrl);
1685 		nvme_remove_admin_tag_set(&dev->ctrl);
1686 	}
1687 }
1688 
1689 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1690 {
1691 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1692 }
1693 
1694 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1695 {
1696 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1697 
1698 	if (size <= dev->bar_mapped_size)
1699 		return 0;
1700 	if (size > pci_resource_len(pdev, 0))
1701 		return -ENOMEM;
1702 	if (dev->bar)
1703 		iounmap(dev->bar);
1704 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1705 	if (!dev->bar) {
1706 		dev->bar_mapped_size = 0;
1707 		return -ENOMEM;
1708 	}
1709 	dev->bar_mapped_size = size;
1710 	dev->dbs = dev->bar + NVME_REG_DBS;
1711 
1712 	return 0;
1713 }
1714 
1715 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1716 {
1717 	int result;
1718 	u32 aqa;
1719 	struct nvme_queue *nvmeq;
1720 
1721 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1722 	if (result < 0)
1723 		return result;
1724 
1725 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1726 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1727 
1728 	if (dev->subsystem &&
1729 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1730 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1731 
1732 	/*
1733 	 * If the device has been passed off to us in an enabled state, just
1734 	 * clear the enabled bit.  The spec says we should set the 'shutdown
1735 	 * notification bits', but doing so may cause the device to complete
1736 	 * commands to the admin queue ... and we don't know what memory that
1737 	 * might be pointing at!
1738 	 */
1739 	result = nvme_disable_ctrl(&dev->ctrl, false);
1740 	if (result < 0)
1741 		return result;
1742 
1743 	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1744 	if (result)
1745 		return result;
1746 
1747 	dev->ctrl.numa_node = dev_to_node(dev->dev);
1748 
1749 	nvmeq = &dev->queues[0];
1750 	aqa = nvmeq->q_depth - 1;
1751 	aqa |= aqa << 16;
1752 
1753 	writel(aqa, dev->bar + NVME_REG_AQA);
1754 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1755 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1756 
1757 	result = nvme_enable_ctrl(&dev->ctrl);
1758 	if (result)
1759 		return result;
1760 
1761 	nvmeq->cq_vector = 0;
1762 	nvme_init_queue(nvmeq, 0);
1763 	result = queue_request_irq(nvmeq);
1764 	if (result) {
1765 		dev->online_queues--;
1766 		return result;
1767 	}
1768 
1769 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1770 	return result;
1771 }
1772 
1773 static int nvme_create_io_queues(struct nvme_dev *dev)
1774 {
1775 	unsigned i, max, rw_queues;
1776 	int ret = 0;
1777 
1778 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1779 		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1780 			ret = -ENOMEM;
1781 			break;
1782 		}
1783 	}
1784 
1785 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1786 	if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1787 		rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1788 				dev->io_queues[HCTX_TYPE_READ];
1789 	} else {
1790 		rw_queues = max;
1791 	}
1792 
1793 	for (i = dev->online_queues; i <= max; i++) {
1794 		bool polled = i > rw_queues;
1795 
1796 		ret = nvme_create_queue(&dev->queues[i], i, polled);
1797 		if (ret)
1798 			break;
1799 	}
1800 
1801 	/*
1802 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1803 	 * than the desired amount of queues, and even a controller without
1804 	 * I/O queues can still be used to issue admin commands.  This might
1805 	 * be useful to upgrade a buggy firmware for example.
1806 	 */
1807 	return ret >= 0 ? 0 : ret;
1808 }
1809 
1810 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1811 {
1812 	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1813 
1814 	return 1ULL << (12 + 4 * szu);
1815 }
1816 
1817 static u32 nvme_cmb_size(struct nvme_dev *dev)
1818 {
1819 	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1820 }
1821 
1822 static void nvme_map_cmb(struct nvme_dev *dev)
1823 {
1824 	u64 size, offset;
1825 	resource_size_t bar_size;
1826 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1827 	int bar;
1828 
1829 	if (dev->cmb_size)
1830 		return;
1831 
1832 	if (NVME_CAP_CMBS(dev->ctrl.cap))
1833 		writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1834 
1835 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1836 	if (!dev->cmbsz)
1837 		return;
1838 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1839 
1840 	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1841 	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1842 	bar = NVME_CMB_BIR(dev->cmbloc);
1843 	bar_size = pci_resource_len(pdev, bar);
1844 
1845 	if (offset > bar_size)
1846 		return;
1847 
1848 	/*
1849 	 * Tell the controller about the host side address mapping the CMB,
1850 	 * and enable CMB decoding for the NVMe 1.4+ scheme:
1851 	 */
1852 	if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1853 		hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1854 			     (pci_bus_address(pdev, bar) + offset),
1855 			     dev->bar + NVME_REG_CMBMSC);
1856 	}
1857 
1858 	/*
1859 	 * Controllers may support a CMB size larger than their BAR,
1860 	 * for example, due to being behind a bridge. Reduce the CMB to
1861 	 * the reported size of the BAR
1862 	 */
1863 	if (size > bar_size - offset)
1864 		size = bar_size - offset;
1865 
1866 	if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1867 		dev_warn(dev->ctrl.device,
1868 			 "failed to register the CMB\n");
1869 		return;
1870 	}
1871 
1872 	dev->cmb_size = size;
1873 	dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1874 
1875 	if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1876 			(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1877 		pci_p2pmem_publish(pdev, true);
1878 
1879 	nvme_update_attrs(dev);
1880 }
1881 
1882 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1883 {
1884 	u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1885 	u64 dma_addr = dev->host_mem_descs_dma;
1886 	struct nvme_command c = { };
1887 	int ret;
1888 
1889 	c.features.opcode	= nvme_admin_set_features;
1890 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1891 	c.features.dword11	= cpu_to_le32(bits);
1892 	c.features.dword12	= cpu_to_le32(host_mem_size);
1893 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
1894 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
1895 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
1896 
1897 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1898 	if (ret) {
1899 		dev_warn(dev->ctrl.device,
1900 			 "failed to set host mem (err %d, flags %#x).\n",
1901 			 ret, bits);
1902 	} else
1903 		dev->hmb = bits & NVME_HOST_MEM_ENABLE;
1904 
1905 	return ret;
1906 }
1907 
1908 static void nvme_free_host_mem(struct nvme_dev *dev)
1909 {
1910 	int i;
1911 
1912 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
1913 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1914 		size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
1915 
1916 		dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1917 			       le64_to_cpu(desc->addr),
1918 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1919 	}
1920 
1921 	kfree(dev->host_mem_desc_bufs);
1922 	dev->host_mem_desc_bufs = NULL;
1923 	dma_free_coherent(dev->dev,
1924 			dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1925 			dev->host_mem_descs, dev->host_mem_descs_dma);
1926 	dev->host_mem_descs = NULL;
1927 	dev->nr_host_mem_descs = 0;
1928 }
1929 
1930 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1931 		u32 chunk_size)
1932 {
1933 	struct nvme_host_mem_buf_desc *descs;
1934 	u32 max_entries, len;
1935 	dma_addr_t descs_dma;
1936 	int i = 0;
1937 	void **bufs;
1938 	u64 size, tmp;
1939 
1940 	tmp = (preferred + chunk_size - 1);
1941 	do_div(tmp, chunk_size);
1942 	max_entries = tmp;
1943 
1944 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1945 		max_entries = dev->ctrl.hmmaxd;
1946 
1947 	descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1948 				   &descs_dma, GFP_KERNEL);
1949 	if (!descs)
1950 		goto out;
1951 
1952 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1953 	if (!bufs)
1954 		goto out_free_descs;
1955 
1956 	for (size = 0; size < preferred && i < max_entries; size += len) {
1957 		dma_addr_t dma_addr;
1958 
1959 		len = min_t(u64, chunk_size, preferred - size);
1960 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1961 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1962 		if (!bufs[i])
1963 			break;
1964 
1965 		descs[i].addr = cpu_to_le64(dma_addr);
1966 		descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
1967 		i++;
1968 	}
1969 
1970 	if (!size)
1971 		goto out_free_bufs;
1972 
1973 	dev->nr_host_mem_descs = i;
1974 	dev->host_mem_size = size;
1975 	dev->host_mem_descs = descs;
1976 	dev->host_mem_descs_dma = descs_dma;
1977 	dev->host_mem_desc_bufs = bufs;
1978 	return 0;
1979 
1980 out_free_bufs:
1981 	while (--i >= 0) {
1982 		size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
1983 
1984 		dma_free_attrs(dev->dev, size, bufs[i],
1985 			       le64_to_cpu(descs[i].addr),
1986 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1987 	}
1988 
1989 	kfree(bufs);
1990 out_free_descs:
1991 	dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1992 			descs_dma);
1993 out:
1994 	dev->host_mem_descs = NULL;
1995 	return -ENOMEM;
1996 }
1997 
1998 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1999 {
2000 	u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2001 	u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2002 	u64 chunk_size;
2003 
2004 	/* start big and work our way down */
2005 	for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2006 		if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2007 			if (!min || dev->host_mem_size >= min)
2008 				return 0;
2009 			nvme_free_host_mem(dev);
2010 		}
2011 	}
2012 
2013 	return -ENOMEM;
2014 }
2015 
2016 static int nvme_setup_host_mem(struct nvme_dev *dev)
2017 {
2018 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2019 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2020 	u64 min = (u64)dev->ctrl.hmmin * 4096;
2021 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
2022 	int ret;
2023 
2024 	if (!dev->ctrl.hmpre)
2025 		return 0;
2026 
2027 	preferred = min(preferred, max);
2028 	if (min > max) {
2029 		dev_warn(dev->ctrl.device,
2030 			"min host memory (%lld MiB) above limit (%d MiB).\n",
2031 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
2032 		nvme_free_host_mem(dev);
2033 		return 0;
2034 	}
2035 
2036 	/*
2037 	 * If we already have a buffer allocated check if we can reuse it.
2038 	 */
2039 	if (dev->host_mem_descs) {
2040 		if (dev->host_mem_size >= min)
2041 			enable_bits |= NVME_HOST_MEM_RETURN;
2042 		else
2043 			nvme_free_host_mem(dev);
2044 	}
2045 
2046 	if (!dev->host_mem_descs) {
2047 		if (nvme_alloc_host_mem(dev, min, preferred)) {
2048 			dev_warn(dev->ctrl.device,
2049 				"failed to allocate host memory buffer.\n");
2050 			return 0; /* controller must work without HMB */
2051 		}
2052 
2053 		dev_info(dev->ctrl.device,
2054 			"allocated %lld MiB host memory buffer.\n",
2055 			dev->host_mem_size >> ilog2(SZ_1M));
2056 	}
2057 
2058 	ret = nvme_set_host_mem(dev, enable_bits);
2059 	if (ret)
2060 		nvme_free_host_mem(dev);
2061 	return ret;
2062 }
2063 
2064 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2065 		char *buf)
2066 {
2067 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2068 
2069 	return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz  : x%08x\n",
2070 		       ndev->cmbloc, ndev->cmbsz);
2071 }
2072 static DEVICE_ATTR_RO(cmb);
2073 
2074 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2075 		char *buf)
2076 {
2077 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2078 
2079 	return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2080 }
2081 static DEVICE_ATTR_RO(cmbloc);
2082 
2083 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2084 		char *buf)
2085 {
2086 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2087 
2088 	return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2089 }
2090 static DEVICE_ATTR_RO(cmbsz);
2091 
2092 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2093 			char *buf)
2094 {
2095 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2096 
2097 	return sysfs_emit(buf, "%d\n", ndev->hmb);
2098 }
2099 
2100 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2101 			 const char *buf, size_t count)
2102 {
2103 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2104 	bool new;
2105 	int ret;
2106 
2107 	if (kstrtobool(buf, &new) < 0)
2108 		return -EINVAL;
2109 
2110 	if (new == ndev->hmb)
2111 		return count;
2112 
2113 	if (new) {
2114 		ret = nvme_setup_host_mem(ndev);
2115 	} else {
2116 		ret = nvme_set_host_mem(ndev, 0);
2117 		if (!ret)
2118 			nvme_free_host_mem(ndev);
2119 	}
2120 
2121 	if (ret < 0)
2122 		return ret;
2123 
2124 	return count;
2125 }
2126 static DEVICE_ATTR_RW(hmb);
2127 
2128 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2129 		struct attribute *a, int n)
2130 {
2131 	struct nvme_ctrl *ctrl =
2132 		dev_get_drvdata(container_of(kobj, struct device, kobj));
2133 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2134 
2135 	if (a == &dev_attr_cmb.attr ||
2136 	    a == &dev_attr_cmbloc.attr ||
2137 	    a == &dev_attr_cmbsz.attr) {
2138 	    	if (!dev->cmbsz)
2139 			return 0;
2140 	}
2141 	if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2142 		return 0;
2143 
2144 	return a->mode;
2145 }
2146 
2147 static struct attribute *nvme_pci_attrs[] = {
2148 	&dev_attr_cmb.attr,
2149 	&dev_attr_cmbloc.attr,
2150 	&dev_attr_cmbsz.attr,
2151 	&dev_attr_hmb.attr,
2152 	NULL,
2153 };
2154 
2155 static const struct attribute_group nvme_pci_dev_attrs_group = {
2156 	.attrs		= nvme_pci_attrs,
2157 	.is_visible	= nvme_pci_attrs_are_visible,
2158 };
2159 
2160 static const struct attribute_group *nvme_pci_dev_attr_groups[] = {
2161 	&nvme_dev_attrs_group,
2162 	&nvme_pci_dev_attrs_group,
2163 	NULL,
2164 };
2165 
2166 static void nvme_update_attrs(struct nvme_dev *dev)
2167 {
2168 	sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group);
2169 }
2170 
2171 /*
2172  * nirqs is the number of interrupts available for write and read
2173  * queues. The core already reserved an interrupt for the admin queue.
2174  */
2175 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2176 {
2177 	struct nvme_dev *dev = affd->priv;
2178 	unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2179 
2180 	/*
2181 	 * If there is no interrupt available for queues, ensure that
2182 	 * the default queue is set to 1. The affinity set size is
2183 	 * also set to one, but the irq core ignores it for this case.
2184 	 *
2185 	 * If only one interrupt is available or 'write_queue' == 0, combine
2186 	 * write and read queues.
2187 	 *
2188 	 * If 'write_queues' > 0, ensure it leaves room for at least one read
2189 	 * queue.
2190 	 */
2191 	if (!nrirqs) {
2192 		nrirqs = 1;
2193 		nr_read_queues = 0;
2194 	} else if (nrirqs == 1 || !nr_write_queues) {
2195 		nr_read_queues = 0;
2196 	} else if (nr_write_queues >= nrirqs) {
2197 		nr_read_queues = 1;
2198 	} else {
2199 		nr_read_queues = nrirqs - nr_write_queues;
2200 	}
2201 
2202 	dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2203 	affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2204 	dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2205 	affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2206 	affd->nr_sets = nr_read_queues ? 2 : 1;
2207 }
2208 
2209 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2210 {
2211 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2212 	struct irq_affinity affd = {
2213 		.pre_vectors	= 1,
2214 		.calc_sets	= nvme_calc_irq_sets,
2215 		.priv		= dev,
2216 	};
2217 	unsigned int irq_queues, poll_queues;
2218 
2219 	/*
2220 	 * Poll queues don't need interrupts, but we need at least one I/O queue
2221 	 * left over for non-polled I/O.
2222 	 */
2223 	poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2224 	dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2225 
2226 	/*
2227 	 * Initialize for the single interrupt case, will be updated in
2228 	 * nvme_calc_irq_sets().
2229 	 */
2230 	dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2231 	dev->io_queues[HCTX_TYPE_READ] = 0;
2232 
2233 	/*
2234 	 * We need interrupts for the admin queue and each non-polled I/O queue,
2235 	 * but some Apple controllers require all queues to use the first
2236 	 * vector.
2237 	 */
2238 	irq_queues = 1;
2239 	if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2240 		irq_queues += (nr_io_queues - poll_queues);
2241 	return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2242 			      PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2243 }
2244 
2245 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2246 {
2247 	/*
2248 	 * If tags are shared with admin queue (Apple bug), then
2249 	 * make sure we only use one IO queue.
2250 	 */
2251 	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2252 		return 1;
2253 	return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2254 }
2255 
2256 static int nvme_setup_io_queues(struct nvme_dev *dev)
2257 {
2258 	struct nvme_queue *adminq = &dev->queues[0];
2259 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2260 	unsigned int nr_io_queues;
2261 	unsigned long size;
2262 	int result;
2263 
2264 	/*
2265 	 * Sample the module parameters once at reset time so that we have
2266 	 * stable values to work with.
2267 	 */
2268 	dev->nr_write_queues = write_queues;
2269 	dev->nr_poll_queues = poll_queues;
2270 
2271 	nr_io_queues = dev->nr_allocated_queues - 1;
2272 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2273 	if (result < 0)
2274 		return result;
2275 
2276 	if (nr_io_queues == 0)
2277 		return 0;
2278 
2279 	/*
2280 	 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2281 	 * from set to unset. If there is a window to it is truely freed,
2282 	 * pci_free_irq_vectors() jumping into this window will crash.
2283 	 * And take lock to avoid racing with pci_free_irq_vectors() in
2284 	 * nvme_dev_disable() path.
2285 	 */
2286 	result = nvme_setup_io_queues_trylock(dev);
2287 	if (result)
2288 		return result;
2289 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2290 		pci_free_irq(pdev, 0, adminq);
2291 
2292 	if (dev->cmb_use_sqes) {
2293 		result = nvme_cmb_qdepth(dev, nr_io_queues,
2294 				sizeof(struct nvme_command));
2295 		if (result > 0) {
2296 			dev->q_depth = result;
2297 			dev->ctrl.sqsize = result - 1;
2298 		} else {
2299 			dev->cmb_use_sqes = false;
2300 		}
2301 	}
2302 
2303 	do {
2304 		size = db_bar_size(dev, nr_io_queues);
2305 		result = nvme_remap_bar(dev, size);
2306 		if (!result)
2307 			break;
2308 		if (!--nr_io_queues) {
2309 			result = -ENOMEM;
2310 			goto out_unlock;
2311 		}
2312 	} while (1);
2313 	adminq->q_db = dev->dbs;
2314 
2315  retry:
2316 	/* Deregister the admin queue's interrupt */
2317 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2318 		pci_free_irq(pdev, 0, adminq);
2319 
2320 	/*
2321 	 * If we enable msix early due to not intx, disable it again before
2322 	 * setting up the full range we need.
2323 	 */
2324 	pci_free_irq_vectors(pdev);
2325 
2326 	result = nvme_setup_irqs(dev, nr_io_queues);
2327 	if (result <= 0) {
2328 		result = -EIO;
2329 		goto out_unlock;
2330 	}
2331 
2332 	dev->num_vecs = result;
2333 	result = max(result - 1, 1);
2334 	dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2335 
2336 	/*
2337 	 * Should investigate if there's a performance win from allocating
2338 	 * more queues than interrupt vectors; it might allow the submission
2339 	 * path to scale better, even if the receive path is limited by the
2340 	 * number of interrupts.
2341 	 */
2342 	result = queue_request_irq(adminq);
2343 	if (result)
2344 		goto out_unlock;
2345 	set_bit(NVMEQ_ENABLED, &adminq->flags);
2346 	mutex_unlock(&dev->shutdown_lock);
2347 
2348 	result = nvme_create_io_queues(dev);
2349 	if (result || dev->online_queues < 2)
2350 		return result;
2351 
2352 	if (dev->online_queues - 1 < dev->max_qid) {
2353 		nr_io_queues = dev->online_queues - 1;
2354 		nvme_delete_io_queues(dev);
2355 		result = nvme_setup_io_queues_trylock(dev);
2356 		if (result)
2357 			return result;
2358 		nvme_suspend_io_queues(dev);
2359 		goto retry;
2360 	}
2361 	dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2362 					dev->io_queues[HCTX_TYPE_DEFAULT],
2363 					dev->io_queues[HCTX_TYPE_READ],
2364 					dev->io_queues[HCTX_TYPE_POLL]);
2365 	return 0;
2366 out_unlock:
2367 	mutex_unlock(&dev->shutdown_lock);
2368 	return result;
2369 }
2370 
2371 static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
2372 					     blk_status_t error)
2373 {
2374 	struct nvme_queue *nvmeq = req->end_io_data;
2375 
2376 	blk_mq_free_request(req);
2377 	complete(&nvmeq->delete_done);
2378 	return RQ_END_IO_NONE;
2379 }
2380 
2381 static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
2382 					  blk_status_t error)
2383 {
2384 	struct nvme_queue *nvmeq = req->end_io_data;
2385 
2386 	if (error)
2387 		set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2388 
2389 	return nvme_del_queue_end(req, error);
2390 }
2391 
2392 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2393 {
2394 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2395 	struct request *req;
2396 	struct nvme_command cmd = { };
2397 
2398 	cmd.delete_queue.opcode = opcode;
2399 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2400 
2401 	req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2402 	if (IS_ERR(req))
2403 		return PTR_ERR(req);
2404 	nvme_init_request(req, &cmd);
2405 
2406 	if (opcode == nvme_admin_delete_cq)
2407 		req->end_io = nvme_del_cq_end;
2408 	else
2409 		req->end_io = nvme_del_queue_end;
2410 	req->end_io_data = nvmeq;
2411 
2412 	init_completion(&nvmeq->delete_done);
2413 	blk_execute_rq_nowait(req, false);
2414 	return 0;
2415 }
2416 
2417 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode)
2418 {
2419 	int nr_queues = dev->online_queues - 1, sent = 0;
2420 	unsigned long timeout;
2421 
2422  retry:
2423 	timeout = NVME_ADMIN_TIMEOUT;
2424 	while (nr_queues > 0) {
2425 		if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2426 			break;
2427 		nr_queues--;
2428 		sent++;
2429 	}
2430 	while (sent) {
2431 		struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2432 
2433 		timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2434 				timeout);
2435 		if (timeout == 0)
2436 			return false;
2437 
2438 		sent--;
2439 		if (nr_queues)
2440 			goto retry;
2441 	}
2442 	return true;
2443 }
2444 
2445 static void nvme_delete_io_queues(struct nvme_dev *dev)
2446 {
2447 	if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq))
2448 		__nvme_delete_io_queues(dev, nvme_admin_delete_cq);
2449 }
2450 
2451 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev)
2452 {
2453 	if (dev->io_queues[HCTX_TYPE_POLL])
2454 		return 3;
2455 	if (dev->io_queues[HCTX_TYPE_READ])
2456 		return 2;
2457 	return 1;
2458 }
2459 
2460 static void nvme_pci_update_nr_queues(struct nvme_dev *dev)
2461 {
2462 	blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2463 	/* free previously allocated queues that are no longer usable */
2464 	nvme_free_queues(dev, dev->online_queues);
2465 }
2466 
2467 static int nvme_pci_enable(struct nvme_dev *dev)
2468 {
2469 	int result = -ENOMEM;
2470 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2471 
2472 	if (pci_enable_device_mem(pdev))
2473 		return result;
2474 
2475 	pci_set_master(pdev);
2476 
2477 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2478 		result = -ENODEV;
2479 		goto disable;
2480 	}
2481 
2482 	/*
2483 	 * Some devices and/or platforms don't advertise or work with INTx
2484 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2485 	 * adjust this later.
2486 	 */
2487 	result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2488 	if (result < 0)
2489 		goto disable;
2490 
2491 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2492 
2493 	dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2494 				io_queue_depth);
2495 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2496 	dev->dbs = dev->bar + 4096;
2497 
2498 	/*
2499 	 * Some Apple controllers require a non-standard SQE size.
2500 	 * Interestingly they also seem to ignore the CC:IOSQES register
2501 	 * so we don't bother updating it here.
2502 	 */
2503 	if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2504 		dev->io_sqes = 7;
2505 	else
2506 		dev->io_sqes = NVME_NVM_IOSQES;
2507 
2508 	/*
2509 	 * Temporary fix for the Apple controller found in the MacBook8,1 and
2510 	 * some MacBook7,1 to avoid controller resets and data loss.
2511 	 */
2512 	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2513 		dev->q_depth = 2;
2514 		dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2515 			"set queue depth=%u to work around controller resets\n",
2516 			dev->q_depth);
2517 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2518 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2519 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2520 		dev->q_depth = 64;
2521 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2522                         "set queue depth=%u\n", dev->q_depth);
2523 	}
2524 
2525 	/*
2526 	 * Controllers with the shared tags quirk need the IO queue to be
2527 	 * big enough so that we get 32 tags for the admin queue
2528 	 */
2529 	if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2530 	    (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2531 		dev->q_depth = NVME_AQ_DEPTH + 2;
2532 		dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2533 			 dev->q_depth);
2534 	}
2535 	dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2536 
2537 	nvme_map_cmb(dev);
2538 
2539 	pci_save_state(pdev);
2540 
2541 	result = nvme_pci_configure_admin_queue(dev);
2542 	if (result)
2543 		goto free_irq;
2544 	return result;
2545 
2546  free_irq:
2547 	pci_free_irq_vectors(pdev);
2548  disable:
2549 	pci_disable_device(pdev);
2550 	return result;
2551 }
2552 
2553 static void nvme_dev_unmap(struct nvme_dev *dev)
2554 {
2555 	if (dev->bar)
2556 		iounmap(dev->bar);
2557 	pci_release_mem_regions(to_pci_dev(dev->dev));
2558 }
2559 
2560 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev)
2561 {
2562 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2563 	u32 csts;
2564 
2565 	if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev))
2566 		return true;
2567 	if (pdev->error_state != pci_channel_io_normal)
2568 		return true;
2569 
2570 	csts = readl(dev->bar + NVME_REG_CSTS);
2571 	return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY);
2572 }
2573 
2574 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2575 {
2576 	enum nvme_ctrl_state state = nvme_ctrl_state(&dev->ctrl);
2577 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2578 	bool dead;
2579 
2580 	mutex_lock(&dev->shutdown_lock);
2581 	dead = nvme_pci_ctrl_is_dead(dev);
2582 	if (state == NVME_CTRL_LIVE || state == NVME_CTRL_RESETTING) {
2583 		if (pci_is_enabled(pdev))
2584 			nvme_start_freeze(&dev->ctrl);
2585 		/*
2586 		 * Give the controller a chance to complete all entered requests
2587 		 * if doing a safe shutdown.
2588 		 */
2589 		if (!dead && shutdown)
2590 			nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2591 	}
2592 
2593 	nvme_quiesce_io_queues(&dev->ctrl);
2594 
2595 	if (!dead && dev->ctrl.queue_count > 0) {
2596 		nvme_delete_io_queues(dev);
2597 		nvme_disable_ctrl(&dev->ctrl, shutdown);
2598 		nvme_poll_irqdisable(&dev->queues[0]);
2599 	}
2600 	nvme_suspend_io_queues(dev);
2601 	nvme_suspend_queue(dev, 0);
2602 	pci_free_irq_vectors(pdev);
2603 	if (pci_is_enabled(pdev))
2604 		pci_disable_device(pdev);
2605 	nvme_reap_pending_cqes(dev);
2606 
2607 	nvme_cancel_tagset(&dev->ctrl);
2608 	nvme_cancel_admin_tagset(&dev->ctrl);
2609 
2610 	/*
2611 	 * The driver will not be starting up queues again if shutting down so
2612 	 * must flush all entered requests to their failed completion to avoid
2613 	 * deadlocking blk-mq hot-cpu notifier.
2614 	 */
2615 	if (shutdown) {
2616 		nvme_unquiesce_io_queues(&dev->ctrl);
2617 		if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2618 			nvme_unquiesce_admin_queue(&dev->ctrl);
2619 	}
2620 	mutex_unlock(&dev->shutdown_lock);
2621 }
2622 
2623 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2624 {
2625 	if (!nvme_wait_reset(&dev->ctrl))
2626 		return -EBUSY;
2627 	nvme_dev_disable(dev, shutdown);
2628 	return 0;
2629 }
2630 
2631 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2632 {
2633 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2634 						NVME_CTRL_PAGE_SIZE,
2635 						NVME_CTRL_PAGE_SIZE, 0);
2636 	if (!dev->prp_page_pool)
2637 		return -ENOMEM;
2638 
2639 	/* Optimisation for I/Os between 4k and 128k */
2640 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2641 						256, 256, 0);
2642 	if (!dev->prp_small_pool) {
2643 		dma_pool_destroy(dev->prp_page_pool);
2644 		return -ENOMEM;
2645 	}
2646 	return 0;
2647 }
2648 
2649 static void nvme_release_prp_pools(struct nvme_dev *dev)
2650 {
2651 	dma_pool_destroy(dev->prp_page_pool);
2652 	dma_pool_destroy(dev->prp_small_pool);
2653 }
2654 
2655 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
2656 {
2657 	size_t alloc_size = sizeof(struct scatterlist) * NVME_MAX_SEGS;
2658 
2659 	dev->iod_mempool = mempool_create_node(1,
2660 			mempool_kmalloc, mempool_kfree,
2661 			(void *)alloc_size, GFP_KERNEL,
2662 			dev_to_node(dev->dev));
2663 	if (!dev->iod_mempool)
2664 		return -ENOMEM;
2665 	return 0;
2666 }
2667 
2668 static void nvme_free_tagset(struct nvme_dev *dev)
2669 {
2670 	if (dev->tagset.tags)
2671 		nvme_remove_io_tag_set(&dev->ctrl);
2672 	dev->ctrl.tagset = NULL;
2673 }
2674 
2675 /* pairs with nvme_pci_alloc_dev */
2676 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2677 {
2678 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2679 
2680 	nvme_free_tagset(dev);
2681 	put_device(dev->dev);
2682 	kfree(dev->queues);
2683 	kfree(dev);
2684 }
2685 
2686 static void nvme_reset_work(struct work_struct *work)
2687 {
2688 	struct nvme_dev *dev =
2689 		container_of(work, struct nvme_dev, ctrl.reset_work);
2690 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2691 	int result;
2692 
2693 	if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_RESETTING) {
2694 		dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2695 			 dev->ctrl.state);
2696 		result = -ENODEV;
2697 		goto out;
2698 	}
2699 
2700 	/*
2701 	 * If we're called to reset a live controller first shut it down before
2702 	 * moving on.
2703 	 */
2704 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2705 		nvme_dev_disable(dev, false);
2706 	nvme_sync_queues(&dev->ctrl);
2707 
2708 	mutex_lock(&dev->shutdown_lock);
2709 	result = nvme_pci_enable(dev);
2710 	if (result)
2711 		goto out_unlock;
2712 	nvme_unquiesce_admin_queue(&dev->ctrl);
2713 	mutex_unlock(&dev->shutdown_lock);
2714 
2715 	/*
2716 	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2717 	 * initializing procedure here.
2718 	 */
2719 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2720 		dev_warn(dev->ctrl.device,
2721 			"failed to mark controller CONNECTING\n");
2722 		result = -EBUSY;
2723 		goto out;
2724 	}
2725 
2726 	result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend);
2727 	if (result)
2728 		goto out;
2729 
2730 	nvme_dbbuf_dma_alloc(dev);
2731 
2732 	result = nvme_setup_host_mem(dev);
2733 	if (result < 0)
2734 		goto out;
2735 
2736 	result = nvme_setup_io_queues(dev);
2737 	if (result)
2738 		goto out;
2739 
2740 	/*
2741 	 * Freeze and update the number of I/O queues as thos might have
2742 	 * changed.  If there are no I/O queues left after this reset, keep the
2743 	 * controller around but remove all namespaces.
2744 	 */
2745 	if (dev->online_queues > 1) {
2746 		nvme_unquiesce_io_queues(&dev->ctrl);
2747 		nvme_wait_freeze(&dev->ctrl);
2748 		nvme_pci_update_nr_queues(dev);
2749 		nvme_dbbuf_set(dev);
2750 		nvme_unfreeze(&dev->ctrl);
2751 	} else {
2752 		dev_warn(dev->ctrl.device, "IO queues lost\n");
2753 		nvme_mark_namespaces_dead(&dev->ctrl);
2754 		nvme_unquiesce_io_queues(&dev->ctrl);
2755 		nvme_remove_namespaces(&dev->ctrl);
2756 		nvme_free_tagset(dev);
2757 	}
2758 
2759 	/*
2760 	 * If only admin queue live, keep it to do further investigation or
2761 	 * recovery.
2762 	 */
2763 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2764 		dev_warn(dev->ctrl.device,
2765 			"failed to mark controller live state\n");
2766 		result = -ENODEV;
2767 		goto out;
2768 	}
2769 
2770 	nvme_start_ctrl(&dev->ctrl);
2771 	return;
2772 
2773  out_unlock:
2774 	mutex_unlock(&dev->shutdown_lock);
2775  out:
2776 	/*
2777 	 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2778 	 * may be holding this pci_dev's device lock.
2779 	 */
2780 	dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n",
2781 		 result);
2782 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2783 	nvme_dev_disable(dev, true);
2784 	nvme_sync_queues(&dev->ctrl);
2785 	nvme_mark_namespaces_dead(&dev->ctrl);
2786 	nvme_unquiesce_io_queues(&dev->ctrl);
2787 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2788 }
2789 
2790 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2791 {
2792 	*val = readl(to_nvme_dev(ctrl)->bar + off);
2793 	return 0;
2794 }
2795 
2796 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2797 {
2798 	writel(val, to_nvme_dev(ctrl)->bar + off);
2799 	return 0;
2800 }
2801 
2802 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2803 {
2804 	*val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2805 	return 0;
2806 }
2807 
2808 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2809 {
2810 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2811 
2812 	return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2813 }
2814 
2815 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
2816 {
2817 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2818 	struct nvme_subsystem *subsys = ctrl->subsys;
2819 
2820 	dev_err(ctrl->device,
2821 		"VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
2822 		pdev->vendor, pdev->device,
2823 		nvme_strlen(subsys->model, sizeof(subsys->model)),
2824 		subsys->model, nvme_strlen(subsys->firmware_rev,
2825 					   sizeof(subsys->firmware_rev)),
2826 		subsys->firmware_rev);
2827 }
2828 
2829 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
2830 {
2831 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2832 
2833 	return dma_pci_p2pdma_supported(dev->dev);
2834 }
2835 
2836 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2837 	.name			= "pcie",
2838 	.module			= THIS_MODULE,
2839 	.flags			= NVME_F_METADATA_SUPPORTED,
2840 	.dev_attr_groups	= nvme_pci_dev_attr_groups,
2841 	.reg_read32		= nvme_pci_reg_read32,
2842 	.reg_write32		= nvme_pci_reg_write32,
2843 	.reg_read64		= nvme_pci_reg_read64,
2844 	.free_ctrl		= nvme_pci_free_ctrl,
2845 	.submit_async_event	= nvme_pci_submit_async_event,
2846 	.get_address		= nvme_pci_get_address,
2847 	.print_device_info	= nvme_pci_print_device_info,
2848 	.supports_pci_p2pdma	= nvme_pci_supports_pci_p2pdma,
2849 };
2850 
2851 static int nvme_dev_map(struct nvme_dev *dev)
2852 {
2853 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2854 
2855 	if (pci_request_mem_regions(pdev, "nvme"))
2856 		return -ENODEV;
2857 
2858 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2859 		goto release;
2860 
2861 	return 0;
2862   release:
2863 	pci_release_mem_regions(pdev);
2864 	return -ENODEV;
2865 }
2866 
2867 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2868 {
2869 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2870 		/*
2871 		 * Several Samsung devices seem to drop off the PCIe bus
2872 		 * randomly when APST is on and uses the deepest sleep state.
2873 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2874 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2875 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
2876 		 * laptops.
2877 		 */
2878 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2879 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2880 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2881 			return NVME_QUIRK_NO_DEEPEST_PS;
2882 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2883 		/*
2884 		 * Samsung SSD 960 EVO drops off the PCIe bus after system
2885 		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2886 		 * within few minutes after bootup on a Coffee Lake board -
2887 		 * ASUS PRIME Z370-A
2888 		 */
2889 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2890 		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2891 		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2892 			return NVME_QUIRK_NO_APST;
2893 	} else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2894 		    pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2895 		   (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2896 		/*
2897 		 * Forcing to use host managed nvme power settings for
2898 		 * lowest idle power with quick resume latency on
2899 		 * Samsung and Toshiba SSDs based on suspend behavior
2900 		 * on Coffee Lake board for LENOVO C640
2901 		 */
2902 		if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2903 		     dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2904 			return NVME_QUIRK_SIMPLE_SUSPEND;
2905 	} else if (pdev->vendor == 0x2646 && (pdev->device == 0x2263 ||
2906 		   pdev->device == 0x500f)) {
2907 		/*
2908 		 * Exclude some Kingston NV1 and A2000 devices from
2909 		 * NVME_QUIRK_SIMPLE_SUSPEND. Do a full suspend to save a
2910 		 * lot fo energy with s2idle sleep on some TUXEDO platforms.
2911 		 */
2912 		if (dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") ||
2913 		    dmi_match(DMI_BOARD_NAME, "NS5x_7xAU") ||
2914 		    dmi_match(DMI_BOARD_NAME, "NS5x_7xPU") ||
2915 		    dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1"))
2916 			return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
2917 	}
2918 
2919 	return 0;
2920 }
2921 
2922 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
2923 		const struct pci_device_id *id)
2924 {
2925 	unsigned long quirks = id->driver_data;
2926 	int node = dev_to_node(&pdev->dev);
2927 	struct nvme_dev *dev;
2928 	int ret = -ENOMEM;
2929 
2930 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2931 	if (!dev)
2932 		return ERR_PTR(-ENOMEM);
2933 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2934 	mutex_init(&dev->shutdown_lock);
2935 
2936 	dev->nr_write_queues = write_queues;
2937 	dev->nr_poll_queues = poll_queues;
2938 	dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
2939 	dev->queues = kcalloc_node(dev->nr_allocated_queues,
2940 			sizeof(struct nvme_queue), GFP_KERNEL, node);
2941 	if (!dev->queues)
2942 		goto out_free_dev;
2943 
2944 	dev->dev = get_device(&pdev->dev);
2945 
2946 	quirks |= check_vendor_combination_bug(pdev);
2947 	if (!noacpi &&
2948 	    !(quirks & NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND) &&
2949 	    acpi_storage_d3(&pdev->dev)) {
2950 		/*
2951 		 * Some systems use a bios work around to ask for D3 on
2952 		 * platforms that support kernel managed suspend.
2953 		 */
2954 		dev_info(&pdev->dev,
2955 			 "platform quirk: setting simple suspend\n");
2956 		quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
2957 	}
2958 	ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2959 			     quirks);
2960 	if (ret)
2961 		goto out_put_device;
2962 
2963 	if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
2964 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
2965 	else
2966 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2967 	dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1);
2968 	dma_set_max_seg_size(&pdev->dev, 0xffffffff);
2969 
2970 	/*
2971 	 * Limit the max command size to prevent iod->sg allocations going
2972 	 * over a single page.
2973 	 */
2974 	dev->ctrl.max_hw_sectors = min_t(u32,
2975 		NVME_MAX_KB_SZ << 1, dma_opt_mapping_size(&pdev->dev) >> 9);
2976 	dev->ctrl.max_segments = NVME_MAX_SEGS;
2977 
2978 	/*
2979 	 * There is no support for SGLs for metadata (yet), so we are limited to
2980 	 * a single integrity segment for the separate metadata pointer.
2981 	 */
2982 	dev->ctrl.max_integrity_segments = 1;
2983 	return dev;
2984 
2985 out_put_device:
2986 	put_device(dev->dev);
2987 	kfree(dev->queues);
2988 out_free_dev:
2989 	kfree(dev);
2990 	return ERR_PTR(ret);
2991 }
2992 
2993 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2994 {
2995 	struct nvme_dev *dev;
2996 	int result = -ENOMEM;
2997 
2998 	dev = nvme_pci_alloc_dev(pdev, id);
2999 	if (IS_ERR(dev))
3000 		return PTR_ERR(dev);
3001 
3002 	result = nvme_dev_map(dev);
3003 	if (result)
3004 		goto out_uninit_ctrl;
3005 
3006 	result = nvme_setup_prp_pools(dev);
3007 	if (result)
3008 		goto out_dev_unmap;
3009 
3010 	result = nvme_pci_alloc_iod_mempool(dev);
3011 	if (result)
3012 		goto out_release_prp_pools;
3013 
3014 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3015 
3016 	result = nvme_pci_enable(dev);
3017 	if (result)
3018 		goto out_release_iod_mempool;
3019 
3020 	result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset,
3021 				&nvme_mq_admin_ops, sizeof(struct nvme_iod));
3022 	if (result)
3023 		goto out_disable;
3024 
3025 	/*
3026 	 * Mark the controller as connecting before sending admin commands to
3027 	 * allow the timeout handler to do the right thing.
3028 	 */
3029 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3030 		dev_warn(dev->ctrl.device,
3031 			"failed to mark controller CONNECTING\n");
3032 		result = -EBUSY;
3033 		goto out_disable;
3034 	}
3035 
3036 	result = nvme_init_ctrl_finish(&dev->ctrl, false);
3037 	if (result)
3038 		goto out_disable;
3039 
3040 	nvme_dbbuf_dma_alloc(dev);
3041 
3042 	result = nvme_setup_host_mem(dev);
3043 	if (result < 0)
3044 		goto out_disable;
3045 
3046 	result = nvme_setup_io_queues(dev);
3047 	if (result)
3048 		goto out_disable;
3049 
3050 	if (dev->online_queues > 1) {
3051 		nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
3052 				nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
3053 		nvme_dbbuf_set(dev);
3054 	}
3055 
3056 	if (!dev->ctrl.tagset)
3057 		dev_warn(dev->ctrl.device, "IO queues not created\n");
3058 
3059 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3060 		dev_warn(dev->ctrl.device,
3061 			"failed to mark controller live state\n");
3062 		result = -ENODEV;
3063 		goto out_disable;
3064 	}
3065 
3066 	pci_set_drvdata(pdev, dev);
3067 
3068 	nvme_start_ctrl(&dev->ctrl);
3069 	nvme_put_ctrl(&dev->ctrl);
3070 	flush_work(&dev->ctrl.scan_work);
3071 	return 0;
3072 
3073 out_disable:
3074 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3075 	nvme_dev_disable(dev, true);
3076 	nvme_free_host_mem(dev);
3077 	nvme_dev_remove_admin(dev);
3078 	nvme_dbbuf_dma_free(dev);
3079 	nvme_free_queues(dev, 0);
3080 out_release_iod_mempool:
3081 	mempool_destroy(dev->iod_mempool);
3082 out_release_prp_pools:
3083 	nvme_release_prp_pools(dev);
3084 out_dev_unmap:
3085 	nvme_dev_unmap(dev);
3086 out_uninit_ctrl:
3087 	nvme_uninit_ctrl(&dev->ctrl);
3088 	nvme_put_ctrl(&dev->ctrl);
3089 	return result;
3090 }
3091 
3092 static void nvme_reset_prepare(struct pci_dev *pdev)
3093 {
3094 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3095 
3096 	/*
3097 	 * We don't need to check the return value from waiting for the reset
3098 	 * state as pci_dev device lock is held, making it impossible to race
3099 	 * with ->remove().
3100 	 */
3101 	nvme_disable_prepare_reset(dev, false);
3102 	nvme_sync_queues(&dev->ctrl);
3103 }
3104 
3105 static void nvme_reset_done(struct pci_dev *pdev)
3106 {
3107 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3108 
3109 	if (!nvme_try_sched_reset(&dev->ctrl))
3110 		flush_work(&dev->ctrl.reset_work);
3111 }
3112 
3113 static void nvme_shutdown(struct pci_dev *pdev)
3114 {
3115 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3116 
3117 	nvme_disable_prepare_reset(dev, true);
3118 }
3119 
3120 /*
3121  * The driver's remove may be called on a device in a partially initialized
3122  * state. This function must not have any dependencies on the device state in
3123  * order to proceed.
3124  */
3125 static void nvme_remove(struct pci_dev *pdev)
3126 {
3127 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3128 
3129 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3130 	pci_set_drvdata(pdev, NULL);
3131 
3132 	if (!pci_device_is_present(pdev)) {
3133 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3134 		nvme_dev_disable(dev, true);
3135 	}
3136 
3137 	flush_work(&dev->ctrl.reset_work);
3138 	nvme_stop_ctrl(&dev->ctrl);
3139 	nvme_remove_namespaces(&dev->ctrl);
3140 	nvme_dev_disable(dev, true);
3141 	nvme_free_host_mem(dev);
3142 	nvme_dev_remove_admin(dev);
3143 	nvme_dbbuf_dma_free(dev);
3144 	nvme_free_queues(dev, 0);
3145 	mempool_destroy(dev->iod_mempool);
3146 	nvme_release_prp_pools(dev);
3147 	nvme_dev_unmap(dev);
3148 	nvme_uninit_ctrl(&dev->ctrl);
3149 }
3150 
3151 #ifdef CONFIG_PM_SLEEP
3152 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3153 {
3154 	return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3155 }
3156 
3157 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3158 {
3159 	return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3160 }
3161 
3162 static int nvme_resume(struct device *dev)
3163 {
3164 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3165 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3166 
3167 	if (ndev->last_ps == U32_MAX ||
3168 	    nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3169 		goto reset;
3170 	if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3171 		goto reset;
3172 
3173 	return 0;
3174 reset:
3175 	return nvme_try_sched_reset(ctrl);
3176 }
3177 
3178 static int nvme_suspend(struct device *dev)
3179 {
3180 	struct pci_dev *pdev = to_pci_dev(dev);
3181 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3182 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3183 	int ret = -EBUSY;
3184 
3185 	ndev->last_ps = U32_MAX;
3186 
3187 	/*
3188 	 * The platform does not remove power for a kernel managed suspend so
3189 	 * use host managed nvme power settings for lowest idle power if
3190 	 * possible. This should have quicker resume latency than a full device
3191 	 * shutdown.  But if the firmware is involved after the suspend or the
3192 	 * device does not support any non-default power states, shut down the
3193 	 * device fully.
3194 	 *
3195 	 * If ASPM is not enabled for the device, shut down the device and allow
3196 	 * the PCI bus layer to put it into D3 in order to take the PCIe link
3197 	 * down, so as to allow the platform to achieve its minimum low-power
3198 	 * state (which may not be possible if the link is up).
3199 	 */
3200 	if (pm_suspend_via_firmware() || !ctrl->npss ||
3201 	    !pcie_aspm_enabled(pdev) ||
3202 	    (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3203 		return nvme_disable_prepare_reset(ndev, true);
3204 
3205 	nvme_start_freeze(ctrl);
3206 	nvme_wait_freeze(ctrl);
3207 	nvme_sync_queues(ctrl);
3208 
3209 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
3210 		goto unfreeze;
3211 
3212 	/*
3213 	 * Host memory access may not be successful in a system suspend state,
3214 	 * but the specification allows the controller to access memory in a
3215 	 * non-operational power state.
3216 	 */
3217 	if (ndev->hmb) {
3218 		ret = nvme_set_host_mem(ndev, 0);
3219 		if (ret < 0)
3220 			goto unfreeze;
3221 	}
3222 
3223 	ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3224 	if (ret < 0)
3225 		goto unfreeze;
3226 
3227 	/*
3228 	 * A saved state prevents pci pm from generically controlling the
3229 	 * device's power. If we're using protocol specific settings, we don't
3230 	 * want pci interfering.
3231 	 */
3232 	pci_save_state(pdev);
3233 
3234 	ret = nvme_set_power_state(ctrl, ctrl->npss);
3235 	if (ret < 0)
3236 		goto unfreeze;
3237 
3238 	if (ret) {
3239 		/* discard the saved state */
3240 		pci_load_saved_state(pdev, NULL);
3241 
3242 		/*
3243 		 * Clearing npss forces a controller reset on resume. The
3244 		 * correct value will be rediscovered then.
3245 		 */
3246 		ret = nvme_disable_prepare_reset(ndev, true);
3247 		ctrl->npss = 0;
3248 	}
3249 unfreeze:
3250 	nvme_unfreeze(ctrl);
3251 	return ret;
3252 }
3253 
3254 static int nvme_simple_suspend(struct device *dev)
3255 {
3256 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3257 
3258 	return nvme_disable_prepare_reset(ndev, true);
3259 }
3260 
3261 static int nvme_simple_resume(struct device *dev)
3262 {
3263 	struct pci_dev *pdev = to_pci_dev(dev);
3264 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3265 
3266 	return nvme_try_sched_reset(&ndev->ctrl);
3267 }
3268 
3269 static const struct dev_pm_ops nvme_dev_pm_ops = {
3270 	.suspend	= nvme_suspend,
3271 	.resume		= nvme_resume,
3272 	.freeze		= nvme_simple_suspend,
3273 	.thaw		= nvme_simple_resume,
3274 	.poweroff	= nvme_simple_suspend,
3275 	.restore	= nvme_simple_resume,
3276 };
3277 #endif /* CONFIG_PM_SLEEP */
3278 
3279 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3280 						pci_channel_state_t state)
3281 {
3282 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3283 
3284 	/*
3285 	 * A frozen channel requires a reset. When detected, this method will
3286 	 * shutdown the controller to quiesce. The controller will be restarted
3287 	 * after the slot reset through driver's slot_reset callback.
3288 	 */
3289 	switch (state) {
3290 	case pci_channel_io_normal:
3291 		return PCI_ERS_RESULT_CAN_RECOVER;
3292 	case pci_channel_io_frozen:
3293 		dev_warn(dev->ctrl.device,
3294 			"frozen state error detected, reset controller\n");
3295 		if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
3296 			nvme_dev_disable(dev, true);
3297 			return PCI_ERS_RESULT_DISCONNECT;
3298 		}
3299 		nvme_dev_disable(dev, false);
3300 		return PCI_ERS_RESULT_NEED_RESET;
3301 	case pci_channel_io_perm_failure:
3302 		dev_warn(dev->ctrl.device,
3303 			"failure state error detected, request disconnect\n");
3304 		return PCI_ERS_RESULT_DISCONNECT;
3305 	}
3306 	return PCI_ERS_RESULT_NEED_RESET;
3307 }
3308 
3309 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3310 {
3311 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3312 
3313 	dev_info(dev->ctrl.device, "restart after slot reset\n");
3314 	pci_restore_state(pdev);
3315 	if (!nvme_try_sched_reset(&dev->ctrl))
3316 		nvme_unquiesce_io_queues(&dev->ctrl);
3317 	return PCI_ERS_RESULT_RECOVERED;
3318 }
3319 
3320 static void nvme_error_resume(struct pci_dev *pdev)
3321 {
3322 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3323 
3324 	flush_work(&dev->ctrl.reset_work);
3325 }
3326 
3327 static const struct pci_error_handlers nvme_err_handler = {
3328 	.error_detected	= nvme_error_detected,
3329 	.slot_reset	= nvme_slot_reset,
3330 	.resume		= nvme_error_resume,
3331 	.reset_prepare	= nvme_reset_prepare,
3332 	.reset_done	= nvme_reset_done,
3333 };
3334 
3335 static const struct pci_device_id nvme_id_table[] = {
3336 	{ PCI_VDEVICE(INTEL, 0x0953),	/* Intel 750/P3500/P3600/P3700 */
3337 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3338 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3339 	{ PCI_VDEVICE(INTEL, 0x0a53),	/* Intel P3520 */
3340 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3341 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3342 	{ PCI_VDEVICE(INTEL, 0x0a54),	/* Intel P4500/P4600 */
3343 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3344 				NVME_QUIRK_DEALLOCATE_ZEROES |
3345 				NVME_QUIRK_IGNORE_DEV_SUBNQN |
3346 				NVME_QUIRK_BOGUS_NID, },
3347 	{ PCI_VDEVICE(INTEL, 0x0a55),	/* Dell Express Flash P4600 */
3348 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3349 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3350 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
3351 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3352 				NVME_QUIRK_MEDIUM_PRIO_SQ |
3353 				NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3354 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3355 	{ PCI_VDEVICE(INTEL, 0xf1a6),	/* Intel 760p/Pro 7600p */
3356 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3357 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
3358 		.driver_data = NVME_QUIRK_IDENTIFY_CNS |
3359 				NVME_QUIRK_DISABLE_WRITE_ZEROES |
3360 				NVME_QUIRK_BOGUS_NID, },
3361 	{ PCI_VDEVICE(REDHAT, 0x0010),	/* Qemu emulated controller */
3362 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3363 	{ PCI_DEVICE(0x126f, 0x2263),	/* Silicon Motion unidentified */
3364 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3365 				NVME_QUIRK_BOGUS_NID, },
3366 	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3367 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3368 				NVME_QUIRK_NO_NS_DESC_LIST, },
3369 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
3370 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3371 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
3372 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3373 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
3374 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3375 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3376 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3377 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3378 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3379 				NVME_QUIRK_DISABLE_WRITE_ZEROES|
3380 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3381 	{ PCI_DEVICE(0x1987, 0x5012),	/* Phison E12 */
3382 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3383 	{ PCI_DEVICE(0x1987, 0x5016),	/* Phison E16 */
3384 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3385 				NVME_QUIRK_BOGUS_NID, },
3386 	{ PCI_DEVICE(0x1987, 0x5019),  /* phison E19 */
3387 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3388 	{ PCI_DEVICE(0x1987, 0x5021),   /* Phison E21 */
3389 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3390 	{ PCI_DEVICE(0x1b4b, 0x1092),	/* Lexar 256 GB SSD */
3391 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3392 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3393 	{ PCI_DEVICE(0x1cc1, 0x33f8),   /* ADATA IM2P33F8ABR1 1 TB */
3394 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3395 	{ PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3396 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3397 				NVME_QUIRK_BOGUS_NID, },
3398 	{ PCI_DEVICE(0x10ec, 0x5763),  /* ADATA SX6000PNP */
3399 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3400 	{ PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3401 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3402 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3403 	 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3404 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3405 	 { PCI_DEVICE(0x1344, 0x6001),   /* Micron Nitro NVMe */
3406 		 .driver_data = NVME_QUIRK_BOGUS_NID, },
3407 	{ PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3408 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3409 	{ PCI_DEVICE(0x1c5c, 0x174a),   /* SK Hynix P31 SSD */
3410 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3411 	{ PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3412 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3413 	{ PCI_DEVICE(0x1d97, 0x2263),   /* SPCC */
3414 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3415 	{ PCI_DEVICE(0x144d, 0xa80b),   /* Samsung PM9B1 256G and 512G */
3416 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES |
3417 				NVME_QUIRK_BOGUS_NID, },
3418 	{ PCI_DEVICE(0x144d, 0xa809),   /* Samsung MZALQ256HBJD 256G */
3419 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3420 	{ PCI_DEVICE(0x144d, 0xa802),   /* Samsung SM953 */
3421 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3422 	{ PCI_DEVICE(0x1cc4, 0x6303),   /* UMIS RPJTJ512MGE1QDY 512G */
3423 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3424 	{ PCI_DEVICE(0x1cc4, 0x6302),   /* UMIS RPJTJ256MGE1QDY 256G */
3425 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3426 	{ PCI_DEVICE(0x2646, 0x2262),   /* KINGSTON SKC2000 NVMe SSD */
3427 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3428 	{ PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3429 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3430 	{ PCI_DEVICE(0x2646, 0x5013),   /* Kingston KC3000, Kingston FURY Renegade */
3431 		.driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, },
3432 	{ PCI_DEVICE(0x2646, 0x5018),   /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3433 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3434 	{ PCI_DEVICE(0x2646, 0x5016),   /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3435 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3436 	{ PCI_DEVICE(0x2646, 0x501A),   /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3437 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3438 	{ PCI_DEVICE(0x2646, 0x501B),   /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3439 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3440 	{ PCI_DEVICE(0x2646, 0x501E),   /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3441 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3442 	{ PCI_DEVICE(0x1f40, 0x1202),   /* Netac Technologies Co. NV3000 NVMe SSD */
3443 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3444 	{ PCI_DEVICE(0x1f40, 0x5236),   /* Netac Technologies Co. NV7000 NVMe SSD */
3445 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3446 	{ PCI_DEVICE(0x1e4B, 0x1001),   /* MAXIO MAP1001 */
3447 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3448 	{ PCI_DEVICE(0x1e4B, 0x1002),   /* MAXIO MAP1002 */
3449 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3450 	{ PCI_DEVICE(0x1e4B, 0x1202),   /* MAXIO MAP1202 */
3451 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3452 	{ PCI_DEVICE(0x1e4B, 0x1602),   /* MAXIO MAP1602 */
3453 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3454 	{ PCI_DEVICE(0x1cc1, 0x5350),   /* ADATA XPG GAMMIX S50 */
3455 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3456 	{ PCI_DEVICE(0x1dbe, 0x5236),   /* ADATA XPG GAMMIX S70 */
3457 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3458 	{ PCI_DEVICE(0x1e49, 0x0021),   /* ZHITAI TiPro5000 NVMe SSD */
3459 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3460 	{ PCI_DEVICE(0x1e49, 0x0041),   /* ZHITAI TiPro7000 NVMe SSD */
3461 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3462 	{ PCI_DEVICE(0xc0a9, 0x540a),   /* Crucial P2 */
3463 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3464 	{ PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
3465 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3466 	{ PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */
3467 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3468 	{ PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
3469 		.driver_data = NVME_QUIRK_BOGUS_NID |
3470 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3471 	{ PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */
3472 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3473 	{ PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G  */
3474 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3475 	{ PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */
3476 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3477 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3478 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3479 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3480 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3481 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3482 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3483 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3484 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3485 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3486 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3487 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3488 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3489 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3490 		.driver_data = NVME_QUIRK_SINGLE_VECTOR },
3491 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3492 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3493 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3494 				NVME_QUIRK_128_BYTES_SQES |
3495 				NVME_QUIRK_SHARED_TAGS |
3496 				NVME_QUIRK_SKIP_CID_GEN |
3497 				NVME_QUIRK_IDENTIFY_CNS },
3498 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3499 	{ 0, }
3500 };
3501 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3502 
3503 static struct pci_driver nvme_driver = {
3504 	.name		= "nvme",
3505 	.id_table	= nvme_id_table,
3506 	.probe		= nvme_probe,
3507 	.remove		= nvme_remove,
3508 	.shutdown	= nvme_shutdown,
3509 	.driver		= {
3510 		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
3511 #ifdef CONFIG_PM_SLEEP
3512 		.pm		= &nvme_dev_pm_ops,
3513 #endif
3514 	},
3515 	.sriov_configure = pci_sriov_configure_simple,
3516 	.err_handler	= &nvme_err_handler,
3517 };
3518 
3519 static int __init nvme_init(void)
3520 {
3521 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3522 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3523 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3524 	BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3525 	BUILD_BUG_ON(NVME_MAX_SEGS > SGES_PER_PAGE);
3526 	BUILD_BUG_ON(sizeof(struct scatterlist) * NVME_MAX_SEGS > PAGE_SIZE);
3527 	BUILD_BUG_ON(nvme_pci_npages_prp() > NVME_MAX_NR_ALLOCATIONS);
3528 
3529 	return pci_register_driver(&nvme_driver);
3530 }
3531 
3532 static void __exit nvme_exit(void)
3533 {
3534 	pci_unregister_driver(&nvme_driver);
3535 	flush_workqueue(nvme_wq);
3536 }
3537 
3538 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3539 MODULE_LICENSE("GPL");
3540 MODULE_VERSION("1.0");
3541 module_init(nvme_init);
3542 module_exit(nvme_exit);
3543