xref: /linux/drivers/of/address.c (revision 44f57d78)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt)	"OF: " fmt
3 
4 #include <linux/device.h>
5 #include <linux/fwnode.h>
6 #include <linux/io.h>
7 #include <linux/ioport.h>
8 #include <linux/logic_pio.h>
9 #include <linux/module.h>
10 #include <linux/of_address.h>
11 #include <linux/pci.h>
12 #include <linux/pci_regs.h>
13 #include <linux/sizes.h>
14 #include <linux/slab.h>
15 #include <linux/string.h>
16 
17 /* Max address size we deal with */
18 #define OF_MAX_ADDR_CELLS	4
19 #define OF_CHECK_ADDR_COUNT(na)	((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
20 #define OF_CHECK_COUNTS(na, ns)	(OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
21 
22 static struct of_bus *of_match_bus(struct device_node *np);
23 static int __of_address_to_resource(struct device_node *dev,
24 		const __be32 *addrp, u64 size, unsigned int flags,
25 		const char *name, struct resource *r);
26 
27 /* Debug utility */
28 #ifdef DEBUG
29 static void of_dump_addr(const char *s, const __be32 *addr, int na)
30 {
31 	pr_debug("%s", s);
32 	while (na--)
33 		pr_cont(" %08x", be32_to_cpu(*(addr++)));
34 	pr_cont("\n");
35 }
36 #else
37 static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
38 #endif
39 
40 /* Callbacks for bus specific translators */
41 struct of_bus {
42 	const char	*name;
43 	const char	*addresses;
44 	int		(*match)(struct device_node *parent);
45 	void		(*count_cells)(struct device_node *child,
46 				       int *addrc, int *sizec);
47 	u64		(*map)(__be32 *addr, const __be32 *range,
48 				int na, int ns, int pna);
49 	int		(*translate)(__be32 *addr, u64 offset, int na);
50 	unsigned int	(*get_flags)(const __be32 *addr);
51 };
52 
53 /*
54  * Default translator (generic bus)
55  */
56 
57 static void of_bus_default_count_cells(struct device_node *dev,
58 				       int *addrc, int *sizec)
59 {
60 	if (addrc)
61 		*addrc = of_n_addr_cells(dev);
62 	if (sizec)
63 		*sizec = of_n_size_cells(dev);
64 }
65 
66 static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
67 		int na, int ns, int pna)
68 {
69 	u64 cp, s, da;
70 
71 	cp = of_read_number(range, na);
72 	s  = of_read_number(range + na + pna, ns);
73 	da = of_read_number(addr, na);
74 
75 	pr_debug("default map, cp=%llx, s=%llx, da=%llx\n",
76 		 (unsigned long long)cp, (unsigned long long)s,
77 		 (unsigned long long)da);
78 
79 	if (da < cp || da >= (cp + s))
80 		return OF_BAD_ADDR;
81 	return da - cp;
82 }
83 
84 static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
85 {
86 	u64 a = of_read_number(addr, na);
87 	memset(addr, 0, na * 4);
88 	a += offset;
89 	if (na > 1)
90 		addr[na - 2] = cpu_to_be32(a >> 32);
91 	addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
92 
93 	return 0;
94 }
95 
96 static unsigned int of_bus_default_get_flags(const __be32 *addr)
97 {
98 	return IORESOURCE_MEM;
99 }
100 
101 #ifdef CONFIG_PCI
102 /*
103  * PCI bus specific translator
104  */
105 
106 static int of_bus_pci_match(struct device_node *np)
107 {
108 	/*
109  	 * "pciex" is PCI Express
110 	 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
111 	 * "ht" is hypertransport
112 	 */
113 	return of_node_is_type(np, "pci") || of_node_is_type(np, "pciex") ||
114 		of_node_is_type(np, "vci") || of_node_is_type(np, "ht");
115 }
116 
117 static void of_bus_pci_count_cells(struct device_node *np,
118 				   int *addrc, int *sizec)
119 {
120 	if (addrc)
121 		*addrc = 3;
122 	if (sizec)
123 		*sizec = 2;
124 }
125 
126 static unsigned int of_bus_pci_get_flags(const __be32 *addr)
127 {
128 	unsigned int flags = 0;
129 	u32 w = be32_to_cpup(addr);
130 
131 	switch((w >> 24) & 0x03) {
132 	case 0x01:
133 		flags |= IORESOURCE_IO;
134 		break;
135 	case 0x02: /* 32 bits */
136 	case 0x03: /* 64 bits */
137 		flags |= IORESOURCE_MEM;
138 		break;
139 	}
140 	if (w & 0x40000000)
141 		flags |= IORESOURCE_PREFETCH;
142 	return flags;
143 }
144 
145 static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
146 		int pna)
147 {
148 	u64 cp, s, da;
149 	unsigned int af, rf;
150 
151 	af = of_bus_pci_get_flags(addr);
152 	rf = of_bus_pci_get_flags(range);
153 
154 	/* Check address type match */
155 	if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
156 		return OF_BAD_ADDR;
157 
158 	/* Read address values, skipping high cell */
159 	cp = of_read_number(range + 1, na - 1);
160 	s  = of_read_number(range + na + pna, ns);
161 	da = of_read_number(addr + 1, na - 1);
162 
163 	pr_debug("PCI map, cp=%llx, s=%llx, da=%llx\n",
164 		 (unsigned long long)cp, (unsigned long long)s,
165 		 (unsigned long long)da);
166 
167 	if (da < cp || da >= (cp + s))
168 		return OF_BAD_ADDR;
169 	return da - cp;
170 }
171 
172 static int of_bus_pci_translate(__be32 *addr, u64 offset, int na)
173 {
174 	return of_bus_default_translate(addr + 1, offset, na - 1);
175 }
176 
177 const __be32 *of_get_pci_address(struct device_node *dev, int bar_no, u64 *size,
178 			unsigned int *flags)
179 {
180 	const __be32 *prop;
181 	unsigned int psize;
182 	struct device_node *parent;
183 	struct of_bus *bus;
184 	int onesize, i, na, ns;
185 
186 	/* Get parent & match bus type */
187 	parent = of_get_parent(dev);
188 	if (parent == NULL)
189 		return NULL;
190 	bus = of_match_bus(parent);
191 	if (strcmp(bus->name, "pci")) {
192 		of_node_put(parent);
193 		return NULL;
194 	}
195 	bus->count_cells(dev, &na, &ns);
196 	of_node_put(parent);
197 	if (!OF_CHECK_ADDR_COUNT(na))
198 		return NULL;
199 
200 	/* Get "reg" or "assigned-addresses" property */
201 	prop = of_get_property(dev, bus->addresses, &psize);
202 	if (prop == NULL)
203 		return NULL;
204 	psize /= 4;
205 
206 	onesize = na + ns;
207 	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
208 		u32 val = be32_to_cpu(prop[0]);
209 		if ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0)) {
210 			if (size)
211 				*size = of_read_number(prop + na, ns);
212 			if (flags)
213 				*flags = bus->get_flags(prop);
214 			return prop;
215 		}
216 	}
217 	return NULL;
218 }
219 EXPORT_SYMBOL(of_get_pci_address);
220 
221 int of_pci_address_to_resource(struct device_node *dev, int bar,
222 			       struct resource *r)
223 {
224 	const __be32	*addrp;
225 	u64		size;
226 	unsigned int	flags;
227 
228 	addrp = of_get_pci_address(dev, bar, &size, &flags);
229 	if (addrp == NULL)
230 		return -EINVAL;
231 	return __of_address_to_resource(dev, addrp, size, flags, NULL, r);
232 }
233 EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
234 
235 static int parser_init(struct of_pci_range_parser *parser,
236 			struct device_node *node, const char *name)
237 {
238 	const int na = 3, ns = 2;
239 	int rlen;
240 
241 	parser->node = node;
242 	parser->pna = of_n_addr_cells(node);
243 	parser->np = parser->pna + na + ns;
244 
245 	parser->range = of_get_property(node, name, &rlen);
246 	if (parser->range == NULL)
247 		return -ENOENT;
248 
249 	parser->end = parser->range + rlen / sizeof(__be32);
250 
251 	return 0;
252 }
253 
254 int of_pci_range_parser_init(struct of_pci_range_parser *parser,
255 				struct device_node *node)
256 {
257 	return parser_init(parser, node, "ranges");
258 }
259 EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
260 
261 int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser,
262 				struct device_node *node)
263 {
264 	return parser_init(parser, node, "dma-ranges");
265 }
266 EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init);
267 
268 struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
269 						struct of_pci_range *range)
270 {
271 	const int na = 3, ns = 2;
272 
273 	if (!range)
274 		return NULL;
275 
276 	if (!parser->range || parser->range + parser->np > parser->end)
277 		return NULL;
278 
279 	range->pci_space = be32_to_cpup(parser->range);
280 	range->flags = of_bus_pci_get_flags(parser->range);
281 	range->pci_addr = of_read_number(parser->range + 1, ns);
282 	range->cpu_addr = of_translate_address(parser->node,
283 				parser->range + na);
284 	range->size = of_read_number(parser->range + parser->pna + na, ns);
285 
286 	parser->range += parser->np;
287 
288 	/* Now consume following elements while they are contiguous */
289 	while (parser->range + parser->np <= parser->end) {
290 		u32 flags;
291 		u64 pci_addr, cpu_addr, size;
292 
293 		flags = of_bus_pci_get_flags(parser->range);
294 		pci_addr = of_read_number(parser->range + 1, ns);
295 		cpu_addr = of_translate_address(parser->node,
296 				parser->range + na);
297 		size = of_read_number(parser->range + parser->pna + na, ns);
298 
299 		if (flags != range->flags)
300 			break;
301 		if (pci_addr != range->pci_addr + range->size ||
302 		    cpu_addr != range->cpu_addr + range->size)
303 			break;
304 
305 		range->size += size;
306 		parser->range += parser->np;
307 	}
308 
309 	return range;
310 }
311 EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
312 
313 /*
314  * of_pci_range_to_resource - Create a resource from an of_pci_range
315  * @range:	the PCI range that describes the resource
316  * @np:		device node where the range belongs to
317  * @res:	pointer to a valid resource that will be updated to
318  *              reflect the values contained in the range.
319  *
320  * Returns EINVAL if the range cannot be converted to resource.
321  *
322  * Note that if the range is an IO range, the resource will be converted
323  * using pci_address_to_pio() which can fail if it is called too early or
324  * if the range cannot be matched to any host bridge IO space (our case here).
325  * To guard against that we try to register the IO range first.
326  * If that fails we know that pci_address_to_pio() will do too.
327  */
328 int of_pci_range_to_resource(struct of_pci_range *range,
329 			     struct device_node *np, struct resource *res)
330 {
331 	int err;
332 	res->flags = range->flags;
333 	res->parent = res->child = res->sibling = NULL;
334 	res->name = np->full_name;
335 
336 	if (res->flags & IORESOURCE_IO) {
337 		unsigned long port;
338 		err = pci_register_io_range(&np->fwnode, range->cpu_addr,
339 				range->size);
340 		if (err)
341 			goto invalid_range;
342 		port = pci_address_to_pio(range->cpu_addr);
343 		if (port == (unsigned long)-1) {
344 			err = -EINVAL;
345 			goto invalid_range;
346 		}
347 		res->start = port;
348 	} else {
349 		if ((sizeof(resource_size_t) < 8) &&
350 		    upper_32_bits(range->cpu_addr)) {
351 			err = -EINVAL;
352 			goto invalid_range;
353 		}
354 
355 		res->start = range->cpu_addr;
356 	}
357 	res->end = res->start + range->size - 1;
358 	return 0;
359 
360 invalid_range:
361 	res->start = (resource_size_t)OF_BAD_ADDR;
362 	res->end = (resource_size_t)OF_BAD_ADDR;
363 	return err;
364 }
365 EXPORT_SYMBOL(of_pci_range_to_resource);
366 #endif /* CONFIG_PCI */
367 
368 /*
369  * ISA bus specific translator
370  */
371 
372 static int of_bus_isa_match(struct device_node *np)
373 {
374 	return of_node_name_eq(np, "isa");
375 }
376 
377 static void of_bus_isa_count_cells(struct device_node *child,
378 				   int *addrc, int *sizec)
379 {
380 	if (addrc)
381 		*addrc = 2;
382 	if (sizec)
383 		*sizec = 1;
384 }
385 
386 static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
387 		int pna)
388 {
389 	u64 cp, s, da;
390 
391 	/* Check address type match */
392 	if ((addr[0] ^ range[0]) & cpu_to_be32(1))
393 		return OF_BAD_ADDR;
394 
395 	/* Read address values, skipping high cell */
396 	cp = of_read_number(range + 1, na - 1);
397 	s  = of_read_number(range + na + pna, ns);
398 	da = of_read_number(addr + 1, na - 1);
399 
400 	pr_debug("ISA map, cp=%llx, s=%llx, da=%llx\n",
401 		 (unsigned long long)cp, (unsigned long long)s,
402 		 (unsigned long long)da);
403 
404 	if (da < cp || da >= (cp + s))
405 		return OF_BAD_ADDR;
406 	return da - cp;
407 }
408 
409 static int of_bus_isa_translate(__be32 *addr, u64 offset, int na)
410 {
411 	return of_bus_default_translate(addr + 1, offset, na - 1);
412 }
413 
414 static unsigned int of_bus_isa_get_flags(const __be32 *addr)
415 {
416 	unsigned int flags = 0;
417 	u32 w = be32_to_cpup(addr);
418 
419 	if (w & 1)
420 		flags |= IORESOURCE_IO;
421 	else
422 		flags |= IORESOURCE_MEM;
423 	return flags;
424 }
425 
426 /*
427  * Array of bus specific translators
428  */
429 
430 static struct of_bus of_busses[] = {
431 #ifdef CONFIG_PCI
432 	/* PCI */
433 	{
434 		.name = "pci",
435 		.addresses = "assigned-addresses",
436 		.match = of_bus_pci_match,
437 		.count_cells = of_bus_pci_count_cells,
438 		.map = of_bus_pci_map,
439 		.translate = of_bus_pci_translate,
440 		.get_flags = of_bus_pci_get_flags,
441 	},
442 #endif /* CONFIG_PCI */
443 	/* ISA */
444 	{
445 		.name = "isa",
446 		.addresses = "reg",
447 		.match = of_bus_isa_match,
448 		.count_cells = of_bus_isa_count_cells,
449 		.map = of_bus_isa_map,
450 		.translate = of_bus_isa_translate,
451 		.get_flags = of_bus_isa_get_flags,
452 	},
453 	/* Default */
454 	{
455 		.name = "default",
456 		.addresses = "reg",
457 		.match = NULL,
458 		.count_cells = of_bus_default_count_cells,
459 		.map = of_bus_default_map,
460 		.translate = of_bus_default_translate,
461 		.get_flags = of_bus_default_get_flags,
462 	},
463 };
464 
465 static struct of_bus *of_match_bus(struct device_node *np)
466 {
467 	int i;
468 
469 	for (i = 0; i < ARRAY_SIZE(of_busses); i++)
470 		if (!of_busses[i].match || of_busses[i].match(np))
471 			return &of_busses[i];
472 	BUG();
473 	return NULL;
474 }
475 
476 static int of_empty_ranges_quirk(struct device_node *np)
477 {
478 	if (IS_ENABLED(CONFIG_PPC)) {
479 		/* To save cycles, we cache the result for global "Mac" setting */
480 		static int quirk_state = -1;
481 
482 		/* PA-SEMI sdc DT bug */
483 		if (of_device_is_compatible(np, "1682m-sdc"))
484 			return true;
485 
486 		/* Make quirk cached */
487 		if (quirk_state < 0)
488 			quirk_state =
489 				of_machine_is_compatible("Power Macintosh") ||
490 				of_machine_is_compatible("MacRISC");
491 		return quirk_state;
492 	}
493 	return false;
494 }
495 
496 static int of_translate_one(struct device_node *parent, struct of_bus *bus,
497 			    struct of_bus *pbus, __be32 *addr,
498 			    int na, int ns, int pna, const char *rprop)
499 {
500 	const __be32 *ranges;
501 	unsigned int rlen;
502 	int rone;
503 	u64 offset = OF_BAD_ADDR;
504 
505 	/*
506 	 * Normally, an absence of a "ranges" property means we are
507 	 * crossing a non-translatable boundary, and thus the addresses
508 	 * below the current cannot be converted to CPU physical ones.
509 	 * Unfortunately, while this is very clear in the spec, it's not
510 	 * what Apple understood, and they do have things like /uni-n or
511 	 * /ht nodes with no "ranges" property and a lot of perfectly
512 	 * useable mapped devices below them. Thus we treat the absence of
513 	 * "ranges" as equivalent to an empty "ranges" property which means
514 	 * a 1:1 translation at that level. It's up to the caller not to try
515 	 * to translate addresses that aren't supposed to be translated in
516 	 * the first place. --BenH.
517 	 *
518 	 * As far as we know, this damage only exists on Apple machines, so
519 	 * This code is only enabled on powerpc. --gcl
520 	 */
521 	ranges = of_get_property(parent, rprop, &rlen);
522 	if (ranges == NULL && !of_empty_ranges_quirk(parent)) {
523 		pr_debug("no ranges; cannot translate\n");
524 		return 1;
525 	}
526 	if (ranges == NULL || rlen == 0) {
527 		offset = of_read_number(addr, na);
528 		memset(addr, 0, pna * 4);
529 		pr_debug("empty ranges; 1:1 translation\n");
530 		goto finish;
531 	}
532 
533 	pr_debug("walking ranges...\n");
534 
535 	/* Now walk through the ranges */
536 	rlen /= 4;
537 	rone = na + pna + ns;
538 	for (; rlen >= rone; rlen -= rone, ranges += rone) {
539 		offset = bus->map(addr, ranges, na, ns, pna);
540 		if (offset != OF_BAD_ADDR)
541 			break;
542 	}
543 	if (offset == OF_BAD_ADDR) {
544 		pr_debug("not found !\n");
545 		return 1;
546 	}
547 	memcpy(addr, ranges + na, 4 * pna);
548 
549  finish:
550 	of_dump_addr("parent translation for:", addr, pna);
551 	pr_debug("with offset: %llx\n", (unsigned long long)offset);
552 
553 	/* Translate it into parent bus space */
554 	return pbus->translate(addr, offset, pna);
555 }
556 
557 /*
558  * Translate an address from the device-tree into a CPU physical address,
559  * this walks up the tree and applies the various bus mappings on the
560  * way.
561  *
562  * Note: We consider that crossing any level with #size-cells == 0 to mean
563  * that translation is impossible (that is we are not dealing with a value
564  * that can be mapped to a cpu physical address). This is not really specified
565  * that way, but this is traditionally the way IBM at least do things
566  *
567  * Whenever the translation fails, the *host pointer will be set to the
568  * device that had registered logical PIO mapping, and the return code is
569  * relative to that node.
570  */
571 static u64 __of_translate_address(struct device_node *dev,
572 				  struct device_node *(*get_parent)(const struct device_node *),
573 				  const __be32 *in_addr, const char *rprop,
574 				  struct device_node **host)
575 {
576 	struct device_node *parent = NULL;
577 	struct of_bus *bus, *pbus;
578 	__be32 addr[OF_MAX_ADDR_CELLS];
579 	int na, ns, pna, pns;
580 	u64 result = OF_BAD_ADDR;
581 
582 	pr_debug("** translation for device %pOF **\n", dev);
583 
584 	/* Increase refcount at current level */
585 	of_node_get(dev);
586 
587 	*host = NULL;
588 	/* Get parent & match bus type */
589 	parent = get_parent(dev);
590 	if (parent == NULL)
591 		goto bail;
592 	bus = of_match_bus(parent);
593 
594 	/* Count address cells & copy address locally */
595 	bus->count_cells(dev, &na, &ns);
596 	if (!OF_CHECK_COUNTS(na, ns)) {
597 		pr_debug("Bad cell count for %pOF\n", dev);
598 		goto bail;
599 	}
600 	memcpy(addr, in_addr, na * 4);
601 
602 	pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n",
603 	    bus->name, na, ns, parent);
604 	of_dump_addr("translating address:", addr, na);
605 
606 	/* Translate */
607 	for (;;) {
608 		struct logic_pio_hwaddr *iorange;
609 
610 		/* Switch to parent bus */
611 		of_node_put(dev);
612 		dev = parent;
613 		parent = get_parent(dev);
614 
615 		/* If root, we have finished */
616 		if (parent == NULL) {
617 			pr_debug("reached root node\n");
618 			result = of_read_number(addr, na);
619 			break;
620 		}
621 
622 		/*
623 		 * For indirectIO device which has no ranges property, get
624 		 * the address from reg directly.
625 		 */
626 		iorange = find_io_range_by_fwnode(&dev->fwnode);
627 		if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) {
628 			result = of_read_number(addr + 1, na - 1);
629 			pr_debug("indirectIO matched(%pOF) 0x%llx\n",
630 				 dev, result);
631 			*host = of_node_get(dev);
632 			break;
633 		}
634 
635 		/* Get new parent bus and counts */
636 		pbus = of_match_bus(parent);
637 		pbus->count_cells(dev, &pna, &pns);
638 		if (!OF_CHECK_COUNTS(pna, pns)) {
639 			pr_err("Bad cell count for %pOF\n", dev);
640 			break;
641 		}
642 
643 		pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n",
644 		    pbus->name, pna, pns, parent);
645 
646 		/* Apply bus translation */
647 		if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
648 			break;
649 
650 		/* Complete the move up one level */
651 		na = pna;
652 		ns = pns;
653 		bus = pbus;
654 
655 		of_dump_addr("one level translation:", addr, na);
656 	}
657  bail:
658 	of_node_put(parent);
659 	of_node_put(dev);
660 
661 	return result;
662 }
663 
664 u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
665 {
666 	struct device_node *host;
667 	u64 ret;
668 
669 	ret = __of_translate_address(dev, of_get_parent,
670 				     in_addr, "ranges", &host);
671 	if (host) {
672 		of_node_put(host);
673 		return OF_BAD_ADDR;
674 	}
675 
676 	return ret;
677 }
678 EXPORT_SYMBOL(of_translate_address);
679 
680 static struct device_node *__of_get_dma_parent(const struct device_node *np)
681 {
682 	struct of_phandle_args args;
683 	int ret, index;
684 
685 	index = of_property_match_string(np, "interconnect-names", "dma-mem");
686 	if (index < 0)
687 		return of_get_parent(np);
688 
689 	ret = of_parse_phandle_with_args(np, "interconnects",
690 					 "#interconnect-cells",
691 					 index, &args);
692 	if (ret < 0)
693 		return of_get_parent(np);
694 
695 	return of_node_get(args.np);
696 }
697 
698 u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
699 {
700 	struct device_node *host;
701 	u64 ret;
702 
703 	ret = __of_translate_address(dev, __of_get_dma_parent,
704 				     in_addr, "dma-ranges", &host);
705 
706 	if (host) {
707 		of_node_put(host);
708 		return OF_BAD_ADDR;
709 	}
710 
711 	return ret;
712 }
713 EXPORT_SYMBOL(of_translate_dma_address);
714 
715 const __be32 *of_get_address(struct device_node *dev, int index, u64 *size,
716 		    unsigned int *flags)
717 {
718 	const __be32 *prop;
719 	unsigned int psize;
720 	struct device_node *parent;
721 	struct of_bus *bus;
722 	int onesize, i, na, ns;
723 
724 	/* Get parent & match bus type */
725 	parent = of_get_parent(dev);
726 	if (parent == NULL)
727 		return NULL;
728 	bus = of_match_bus(parent);
729 	bus->count_cells(dev, &na, &ns);
730 	of_node_put(parent);
731 	if (!OF_CHECK_ADDR_COUNT(na))
732 		return NULL;
733 
734 	/* Get "reg" or "assigned-addresses" property */
735 	prop = of_get_property(dev, bus->addresses, &psize);
736 	if (prop == NULL)
737 		return NULL;
738 	psize /= 4;
739 
740 	onesize = na + ns;
741 	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++)
742 		if (i == index) {
743 			if (size)
744 				*size = of_read_number(prop + na, ns);
745 			if (flags)
746 				*flags = bus->get_flags(prop);
747 			return prop;
748 		}
749 	return NULL;
750 }
751 EXPORT_SYMBOL(of_get_address);
752 
753 static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr,
754 			u64 size)
755 {
756 	u64 taddr;
757 	unsigned long port;
758 	struct device_node *host;
759 
760 	taddr = __of_translate_address(dev, of_get_parent,
761 				       in_addr, "ranges", &host);
762 	if (host) {
763 		/* host-specific port access */
764 		port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size);
765 		of_node_put(host);
766 	} else {
767 		/* memory-mapped I/O range */
768 		port = pci_address_to_pio(taddr);
769 	}
770 
771 	if (port == (unsigned long)-1)
772 		return OF_BAD_ADDR;
773 
774 	return port;
775 }
776 
777 static int __of_address_to_resource(struct device_node *dev,
778 		const __be32 *addrp, u64 size, unsigned int flags,
779 		const char *name, struct resource *r)
780 {
781 	u64 taddr;
782 
783 	if (flags & IORESOURCE_MEM)
784 		taddr = of_translate_address(dev, addrp);
785 	else if (flags & IORESOURCE_IO)
786 		taddr = of_translate_ioport(dev, addrp, size);
787 	else
788 		return -EINVAL;
789 
790 	if (taddr == OF_BAD_ADDR)
791 		return -EINVAL;
792 	memset(r, 0, sizeof(struct resource));
793 
794 	r->start = taddr;
795 	r->end = taddr + size - 1;
796 	r->flags = flags;
797 	r->name = name ? name : dev->full_name;
798 
799 	return 0;
800 }
801 
802 /**
803  * of_address_to_resource - Translate device tree address and return as resource
804  *
805  * Note that if your address is a PIO address, the conversion will fail if
806  * the physical address can't be internally converted to an IO token with
807  * pci_address_to_pio(), that is because it's either called too early or it
808  * can't be matched to any host bridge IO space
809  */
810 int of_address_to_resource(struct device_node *dev, int index,
811 			   struct resource *r)
812 {
813 	const __be32	*addrp;
814 	u64		size;
815 	unsigned int	flags;
816 	const char	*name = NULL;
817 
818 	addrp = of_get_address(dev, index, &size, &flags);
819 	if (addrp == NULL)
820 		return -EINVAL;
821 
822 	/* Get optional "reg-names" property to add a name to a resource */
823 	of_property_read_string_index(dev, "reg-names",	index, &name);
824 
825 	return __of_address_to_resource(dev, addrp, size, flags, name, r);
826 }
827 EXPORT_SYMBOL_GPL(of_address_to_resource);
828 
829 struct device_node *of_find_matching_node_by_address(struct device_node *from,
830 					const struct of_device_id *matches,
831 					u64 base_address)
832 {
833 	struct device_node *dn = of_find_matching_node(from, matches);
834 	struct resource res;
835 
836 	while (dn) {
837 		if (!of_address_to_resource(dn, 0, &res) &&
838 		    res.start == base_address)
839 			return dn;
840 
841 		dn = of_find_matching_node(dn, matches);
842 	}
843 
844 	return NULL;
845 }
846 
847 
848 /**
849  * of_iomap - Maps the memory mapped IO for a given device_node
850  * @device:	the device whose io range will be mapped
851  * @index:	index of the io range
852  *
853  * Returns a pointer to the mapped memory
854  */
855 void __iomem *of_iomap(struct device_node *np, int index)
856 {
857 	struct resource res;
858 
859 	if (of_address_to_resource(np, index, &res))
860 		return NULL;
861 
862 	return ioremap(res.start, resource_size(&res));
863 }
864 EXPORT_SYMBOL(of_iomap);
865 
866 /*
867  * of_io_request_and_map - Requests a resource and maps the memory mapped IO
868  *			   for a given device_node
869  * @device:	the device whose io range will be mapped
870  * @index:	index of the io range
871  * @name:	name "override" for the memory region request or NULL
872  *
873  * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
874  * error code on failure. Usage example:
875  *
876  *	base = of_io_request_and_map(node, 0, "foo");
877  *	if (IS_ERR(base))
878  *		return PTR_ERR(base);
879  */
880 void __iomem *of_io_request_and_map(struct device_node *np, int index,
881 				    const char *name)
882 {
883 	struct resource res;
884 	void __iomem *mem;
885 
886 	if (of_address_to_resource(np, index, &res))
887 		return IOMEM_ERR_PTR(-EINVAL);
888 
889 	if (!name)
890 		name = res.name;
891 	if (!request_mem_region(res.start, resource_size(&res), name))
892 		return IOMEM_ERR_PTR(-EBUSY);
893 
894 	mem = ioremap(res.start, resource_size(&res));
895 	if (!mem) {
896 		release_mem_region(res.start, resource_size(&res));
897 		return IOMEM_ERR_PTR(-ENOMEM);
898 	}
899 
900 	return mem;
901 }
902 EXPORT_SYMBOL(of_io_request_and_map);
903 
904 /**
905  * of_dma_get_range - Get DMA range info
906  * @np:		device node to get DMA range info
907  * @dma_addr:	pointer to store initial DMA address of DMA range
908  * @paddr:	pointer to store initial CPU address of DMA range
909  * @size:	pointer to store size of DMA range
910  *
911  * Look in bottom up direction for the first "dma-ranges" property
912  * and parse it.
913  *  dma-ranges format:
914  *	DMA addr (dma_addr)	: naddr cells
915  *	CPU addr (phys_addr_t)	: pna cells
916  *	size			: nsize cells
917  *
918  * It returns -ENODEV if "dma-ranges" property was not found
919  * for this device in DT.
920  */
921 int of_dma_get_range(struct device_node *np, u64 *dma_addr, u64 *paddr, u64 *size)
922 {
923 	struct device_node *node = of_node_get(np);
924 	const __be32 *ranges = NULL;
925 	int len, naddr, nsize, pna;
926 	int ret = 0;
927 	u64 dmaaddr;
928 
929 	if (!node)
930 		return -EINVAL;
931 
932 	while (1) {
933 		struct device_node *parent;
934 
935 		naddr = of_n_addr_cells(node);
936 		nsize = of_n_size_cells(node);
937 
938 		parent = __of_get_dma_parent(node);
939 		of_node_put(node);
940 
941 		node = parent;
942 		if (!node)
943 			break;
944 
945 		ranges = of_get_property(node, "dma-ranges", &len);
946 
947 		/* Ignore empty ranges, they imply no translation required */
948 		if (ranges && len > 0)
949 			break;
950 
951 		/*
952 		 * At least empty ranges has to be defined for parent node if
953 		 * DMA is supported
954 		 */
955 		if (!ranges)
956 			break;
957 	}
958 
959 	if (!ranges) {
960 		pr_debug("no dma-ranges found for node(%pOF)\n", np);
961 		ret = -ENODEV;
962 		goto out;
963 	}
964 
965 	len /= sizeof(u32);
966 
967 	pna = of_n_addr_cells(node);
968 
969 	/* dma-ranges format:
970 	 * DMA addr	: naddr cells
971 	 * CPU addr	: pna cells
972 	 * size		: nsize cells
973 	 */
974 	dmaaddr = of_read_number(ranges, naddr);
975 	*paddr = of_translate_dma_address(np, ranges);
976 	if (*paddr == OF_BAD_ADDR) {
977 		pr_err("translation of DMA address(%pad) to CPU address failed node(%pOF)\n",
978 		       dma_addr, np);
979 		ret = -EINVAL;
980 		goto out;
981 	}
982 	*dma_addr = dmaaddr;
983 
984 	*size = of_read_number(ranges + naddr + pna, nsize);
985 
986 	pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
987 		 *dma_addr, *paddr, *size);
988 
989 out:
990 	of_node_put(node);
991 
992 	return ret;
993 }
994 EXPORT_SYMBOL_GPL(of_dma_get_range);
995 
996 /**
997  * of_dma_is_coherent - Check if device is coherent
998  * @np:	device node
999  *
1000  * It returns true if "dma-coherent" property was found
1001  * for this device in DT.
1002  */
1003 bool of_dma_is_coherent(struct device_node *np)
1004 {
1005 	struct device_node *node = of_node_get(np);
1006 
1007 	while (node) {
1008 		if (of_property_read_bool(node, "dma-coherent")) {
1009 			of_node_put(node);
1010 			return true;
1011 		}
1012 		node = of_get_next_parent(node);
1013 	}
1014 	of_node_put(node);
1015 	return false;
1016 }
1017 EXPORT_SYMBOL_GPL(of_dma_is_coherent);
1018