xref: /linux/drivers/pci/controller/vmd.c (revision 44f57d78)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Volume Management Device driver
4  * Copyright (c) 2015, Intel Corporation.
5  */
6 
7 #include <linux/device.h>
8 #include <linux/interrupt.h>
9 #include <linux/irq.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/msi.h>
13 #include <linux/pci.h>
14 #include <linux/srcu.h>
15 #include <linux/rculist.h>
16 #include <linux/rcupdate.h>
17 
18 #include <asm/irqdomain.h>
19 #include <asm/device.h>
20 #include <asm/msi.h>
21 #include <asm/msidef.h>
22 
23 #define VMD_CFGBAR	0
24 #define VMD_MEMBAR1	2
25 #define VMD_MEMBAR2	4
26 
27 #define PCI_REG_VMCAP		0x40
28 #define BUS_RESTRICT_CAP(vmcap)	(vmcap & 0x1)
29 #define PCI_REG_VMCONFIG	0x44
30 #define BUS_RESTRICT_CFG(vmcfg)	((vmcfg >> 8) & 0x3)
31 #define PCI_REG_VMLOCK		0x70
32 #define MB2_SHADOW_EN(vmlock)	(vmlock & 0x2)
33 
34 enum vmd_features {
35 	/*
36 	 * Device may contain registers which hint the physical location of the
37 	 * membars, in order to allow proper address translation during
38 	 * resource assignment to enable guest virtualization
39 	 */
40 	VMD_FEAT_HAS_MEMBAR_SHADOW	= (1 << 0),
41 
42 	/*
43 	 * Device may provide root port configuration information which limits
44 	 * bus numbering
45 	 */
46 	VMD_FEAT_HAS_BUS_RESTRICTIONS	= (1 << 1),
47 };
48 
49 /*
50  * Lock for manipulating VMD IRQ lists.
51  */
52 static DEFINE_RAW_SPINLOCK(list_lock);
53 
54 /**
55  * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
56  * @node:	list item for parent traversal.
57  * @irq:	back pointer to parent.
58  * @enabled:	true if driver enabled IRQ
59  * @virq:	the virtual IRQ value provided to the requesting driver.
60  *
61  * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
62  * a VMD IRQ using this structure.
63  */
64 struct vmd_irq {
65 	struct list_head	node;
66 	struct vmd_irq_list	*irq;
67 	bool			enabled;
68 	unsigned int		virq;
69 };
70 
71 /**
72  * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
73  * @irq_list:	the list of irq's the VMD one demuxes to.
74  * @srcu:	SRCU struct for local synchronization.
75  * @count:	number of child IRQs assigned to this vector; used to track
76  *		sharing.
77  */
78 struct vmd_irq_list {
79 	struct list_head	irq_list;
80 	struct srcu_struct	srcu;
81 	unsigned int		count;
82 };
83 
84 struct vmd_dev {
85 	struct pci_dev		*dev;
86 
87 	spinlock_t		cfg_lock;
88 	char __iomem		*cfgbar;
89 
90 	int msix_count;
91 	struct vmd_irq_list	*irqs;
92 
93 	struct pci_sysdata	sysdata;
94 	struct resource		resources[3];
95 	struct irq_domain	*irq_domain;
96 	struct pci_bus		*bus;
97 
98 	struct dma_map_ops	dma_ops;
99 	struct dma_domain	dma_domain;
100 };
101 
102 static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
103 {
104 	return container_of(bus->sysdata, struct vmd_dev, sysdata);
105 }
106 
107 static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
108 					   struct vmd_irq_list *irqs)
109 {
110 	return irqs - vmd->irqs;
111 }
112 
113 /*
114  * Drivers managing a device in a VMD domain allocate their own IRQs as before,
115  * but the MSI entry for the hardware it's driving will be programmed with a
116  * destination ID for the VMD MSI-X table.  The VMD muxes interrupts in its
117  * domain into one of its own, and the VMD driver de-muxes these for the
118  * handlers sharing that VMD IRQ.  The vmd irq_domain provides the operations
119  * and irq_chip to set this up.
120  */
121 static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
122 {
123 	struct vmd_irq *vmdirq = data->chip_data;
124 	struct vmd_irq_list *irq = vmdirq->irq;
125 	struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
126 
127 	msg->address_hi = MSI_ADDR_BASE_HI;
128 	msg->address_lo = MSI_ADDR_BASE_LO |
129 			  MSI_ADDR_DEST_ID(index_from_irqs(vmd, irq));
130 	msg->data = 0;
131 }
132 
133 /*
134  * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
135  */
136 static void vmd_irq_enable(struct irq_data *data)
137 {
138 	struct vmd_irq *vmdirq = data->chip_data;
139 	unsigned long flags;
140 
141 	raw_spin_lock_irqsave(&list_lock, flags);
142 	WARN_ON(vmdirq->enabled);
143 	list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
144 	vmdirq->enabled = true;
145 	raw_spin_unlock_irqrestore(&list_lock, flags);
146 
147 	data->chip->irq_unmask(data);
148 }
149 
150 static void vmd_irq_disable(struct irq_data *data)
151 {
152 	struct vmd_irq *vmdirq = data->chip_data;
153 	unsigned long flags;
154 
155 	data->chip->irq_mask(data);
156 
157 	raw_spin_lock_irqsave(&list_lock, flags);
158 	if (vmdirq->enabled) {
159 		list_del_rcu(&vmdirq->node);
160 		vmdirq->enabled = false;
161 	}
162 	raw_spin_unlock_irqrestore(&list_lock, flags);
163 }
164 
165 /*
166  * XXX: Stubbed until we develop acceptable way to not create conflicts with
167  * other devices sharing the same vector.
168  */
169 static int vmd_irq_set_affinity(struct irq_data *data,
170 				const struct cpumask *dest, bool force)
171 {
172 	return -EINVAL;
173 }
174 
175 static struct irq_chip vmd_msi_controller = {
176 	.name			= "VMD-MSI",
177 	.irq_enable		= vmd_irq_enable,
178 	.irq_disable		= vmd_irq_disable,
179 	.irq_compose_msi_msg	= vmd_compose_msi_msg,
180 	.irq_set_affinity	= vmd_irq_set_affinity,
181 };
182 
183 static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
184 				     msi_alloc_info_t *arg)
185 {
186 	return 0;
187 }
188 
189 /*
190  * XXX: We can be even smarter selecting the best IRQ once we solve the
191  * affinity problem.
192  */
193 static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
194 {
195 	int i, best = 1;
196 	unsigned long flags;
197 
198 	if (vmd->msix_count == 1)
199 		return &vmd->irqs[0];
200 
201 	/*
202 	 * White list for fast-interrupt handlers. All others will share the
203 	 * "slow" interrupt vector.
204 	 */
205 	switch (msi_desc_to_pci_dev(desc)->class) {
206 	case PCI_CLASS_STORAGE_EXPRESS:
207 		break;
208 	default:
209 		return &vmd->irqs[0];
210 	}
211 
212 	raw_spin_lock_irqsave(&list_lock, flags);
213 	for (i = 1; i < vmd->msix_count; i++)
214 		if (vmd->irqs[i].count < vmd->irqs[best].count)
215 			best = i;
216 	vmd->irqs[best].count++;
217 	raw_spin_unlock_irqrestore(&list_lock, flags);
218 
219 	return &vmd->irqs[best];
220 }
221 
222 static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
223 			unsigned int virq, irq_hw_number_t hwirq,
224 			msi_alloc_info_t *arg)
225 {
226 	struct msi_desc *desc = arg->desc;
227 	struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
228 	struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
229 	unsigned int index, vector;
230 
231 	if (!vmdirq)
232 		return -ENOMEM;
233 
234 	INIT_LIST_HEAD(&vmdirq->node);
235 	vmdirq->irq = vmd_next_irq(vmd, desc);
236 	vmdirq->virq = virq;
237 	index = index_from_irqs(vmd, vmdirq->irq);
238 	vector = pci_irq_vector(vmd->dev, index);
239 
240 	irq_domain_set_info(domain, virq, vector, info->chip, vmdirq,
241 			    handle_untracked_irq, vmd, NULL);
242 	return 0;
243 }
244 
245 static void vmd_msi_free(struct irq_domain *domain,
246 			struct msi_domain_info *info, unsigned int virq)
247 {
248 	struct vmd_irq *vmdirq = irq_get_chip_data(virq);
249 	unsigned long flags;
250 
251 	synchronize_srcu(&vmdirq->irq->srcu);
252 
253 	/* XXX: Potential optimization to rebalance */
254 	raw_spin_lock_irqsave(&list_lock, flags);
255 	vmdirq->irq->count--;
256 	raw_spin_unlock_irqrestore(&list_lock, flags);
257 
258 	kfree(vmdirq);
259 }
260 
261 static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
262 			   int nvec, msi_alloc_info_t *arg)
263 {
264 	struct pci_dev *pdev = to_pci_dev(dev);
265 	struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
266 
267 	if (nvec > vmd->msix_count)
268 		return vmd->msix_count;
269 
270 	memset(arg, 0, sizeof(*arg));
271 	return 0;
272 }
273 
274 static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
275 {
276 	arg->desc = desc;
277 }
278 
279 static struct msi_domain_ops vmd_msi_domain_ops = {
280 	.get_hwirq	= vmd_get_hwirq,
281 	.msi_init	= vmd_msi_init,
282 	.msi_free	= vmd_msi_free,
283 	.msi_prepare	= vmd_msi_prepare,
284 	.set_desc	= vmd_set_desc,
285 };
286 
287 static struct msi_domain_info vmd_msi_domain_info = {
288 	.flags		= MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
289 			  MSI_FLAG_PCI_MSIX,
290 	.ops		= &vmd_msi_domain_ops,
291 	.chip		= &vmd_msi_controller,
292 };
293 
294 /*
295  * VMD replaces the requester ID with its own.  DMA mappings for devices in a
296  * VMD domain need to be mapped for the VMD, not the device requiring
297  * the mapping.
298  */
299 static struct device *to_vmd_dev(struct device *dev)
300 {
301 	struct pci_dev *pdev = to_pci_dev(dev);
302 	struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
303 
304 	return &vmd->dev->dev;
305 }
306 
307 static void *vmd_alloc(struct device *dev, size_t size, dma_addr_t *addr,
308 		       gfp_t flag, unsigned long attrs)
309 {
310 	return dma_alloc_attrs(to_vmd_dev(dev), size, addr, flag, attrs);
311 }
312 
313 static void vmd_free(struct device *dev, size_t size, void *vaddr,
314 		     dma_addr_t addr, unsigned long attrs)
315 {
316 	return dma_free_attrs(to_vmd_dev(dev), size, vaddr, addr, attrs);
317 }
318 
319 static int vmd_mmap(struct device *dev, struct vm_area_struct *vma,
320 		    void *cpu_addr, dma_addr_t addr, size_t size,
321 		    unsigned long attrs)
322 {
323 	return dma_mmap_attrs(to_vmd_dev(dev), vma, cpu_addr, addr, size,
324 			attrs);
325 }
326 
327 static int vmd_get_sgtable(struct device *dev, struct sg_table *sgt,
328 			   void *cpu_addr, dma_addr_t addr, size_t size,
329 			   unsigned long attrs)
330 {
331 	return dma_get_sgtable_attrs(to_vmd_dev(dev), sgt, cpu_addr, addr, size,
332 			attrs);
333 }
334 
335 static dma_addr_t vmd_map_page(struct device *dev, struct page *page,
336 			       unsigned long offset, size_t size,
337 			       enum dma_data_direction dir,
338 			       unsigned long attrs)
339 {
340 	return dma_map_page_attrs(to_vmd_dev(dev), page, offset, size, dir,
341 			attrs);
342 }
343 
344 static void vmd_unmap_page(struct device *dev, dma_addr_t addr, size_t size,
345 			   enum dma_data_direction dir, unsigned long attrs)
346 {
347 	dma_unmap_page_attrs(to_vmd_dev(dev), addr, size, dir, attrs);
348 }
349 
350 static int vmd_map_sg(struct device *dev, struct scatterlist *sg, int nents,
351 		      enum dma_data_direction dir, unsigned long attrs)
352 {
353 	return dma_map_sg_attrs(to_vmd_dev(dev), sg, nents, dir, attrs);
354 }
355 
356 static void vmd_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
357 			 enum dma_data_direction dir, unsigned long attrs)
358 {
359 	dma_unmap_sg_attrs(to_vmd_dev(dev), sg, nents, dir, attrs);
360 }
361 
362 static void vmd_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
363 				    size_t size, enum dma_data_direction dir)
364 {
365 	dma_sync_single_for_cpu(to_vmd_dev(dev), addr, size, dir);
366 }
367 
368 static void vmd_sync_single_for_device(struct device *dev, dma_addr_t addr,
369 				       size_t size, enum dma_data_direction dir)
370 {
371 	dma_sync_single_for_device(to_vmd_dev(dev), addr, size, dir);
372 }
373 
374 static void vmd_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
375 				int nents, enum dma_data_direction dir)
376 {
377 	dma_sync_sg_for_cpu(to_vmd_dev(dev), sg, nents, dir);
378 }
379 
380 static void vmd_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
381 				   int nents, enum dma_data_direction dir)
382 {
383 	dma_sync_sg_for_device(to_vmd_dev(dev), sg, nents, dir);
384 }
385 
386 static int vmd_dma_supported(struct device *dev, u64 mask)
387 {
388 	return dma_supported(to_vmd_dev(dev), mask);
389 }
390 
391 static u64 vmd_get_required_mask(struct device *dev)
392 {
393 	return dma_get_required_mask(to_vmd_dev(dev));
394 }
395 
396 static void vmd_teardown_dma_ops(struct vmd_dev *vmd)
397 {
398 	struct dma_domain *domain = &vmd->dma_domain;
399 
400 	if (get_dma_ops(&vmd->dev->dev))
401 		del_dma_domain(domain);
402 }
403 
404 #define ASSIGN_VMD_DMA_OPS(source, dest, fn)	\
405 	do {					\
406 		if (source->fn)			\
407 			dest->fn = vmd_##fn;	\
408 	} while (0)
409 
410 static void vmd_setup_dma_ops(struct vmd_dev *vmd)
411 {
412 	const struct dma_map_ops *source = get_dma_ops(&vmd->dev->dev);
413 	struct dma_map_ops *dest = &vmd->dma_ops;
414 	struct dma_domain *domain = &vmd->dma_domain;
415 
416 	domain->domain_nr = vmd->sysdata.domain;
417 	domain->dma_ops = dest;
418 
419 	if (!source)
420 		return;
421 	ASSIGN_VMD_DMA_OPS(source, dest, alloc);
422 	ASSIGN_VMD_DMA_OPS(source, dest, free);
423 	ASSIGN_VMD_DMA_OPS(source, dest, mmap);
424 	ASSIGN_VMD_DMA_OPS(source, dest, get_sgtable);
425 	ASSIGN_VMD_DMA_OPS(source, dest, map_page);
426 	ASSIGN_VMD_DMA_OPS(source, dest, unmap_page);
427 	ASSIGN_VMD_DMA_OPS(source, dest, map_sg);
428 	ASSIGN_VMD_DMA_OPS(source, dest, unmap_sg);
429 	ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_cpu);
430 	ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_device);
431 	ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_cpu);
432 	ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_device);
433 	ASSIGN_VMD_DMA_OPS(source, dest, dma_supported);
434 	ASSIGN_VMD_DMA_OPS(source, dest, get_required_mask);
435 	add_dma_domain(domain);
436 }
437 #undef ASSIGN_VMD_DMA_OPS
438 
439 static char __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
440 				  unsigned int devfn, int reg, int len)
441 {
442 	char __iomem *addr = vmd->cfgbar +
443 			     (bus->number << 20) + (devfn << 12) + reg;
444 
445 	if ((addr - vmd->cfgbar) + len >=
446 	    resource_size(&vmd->dev->resource[VMD_CFGBAR]))
447 		return NULL;
448 
449 	return addr;
450 }
451 
452 /*
453  * CPU may deadlock if config space is not serialized on some versions of this
454  * hardware, so all config space access is done under a spinlock.
455  */
456 static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
457 			int len, u32 *value)
458 {
459 	struct vmd_dev *vmd = vmd_from_bus(bus);
460 	char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
461 	unsigned long flags;
462 	int ret = 0;
463 
464 	if (!addr)
465 		return -EFAULT;
466 
467 	spin_lock_irqsave(&vmd->cfg_lock, flags);
468 	switch (len) {
469 	case 1:
470 		*value = readb(addr);
471 		break;
472 	case 2:
473 		*value = readw(addr);
474 		break;
475 	case 4:
476 		*value = readl(addr);
477 		break;
478 	default:
479 		ret = -EINVAL;
480 		break;
481 	}
482 	spin_unlock_irqrestore(&vmd->cfg_lock, flags);
483 	return ret;
484 }
485 
486 /*
487  * VMD h/w converts non-posted config writes to posted memory writes. The
488  * read-back in this function forces the completion so it returns only after
489  * the config space was written, as expected.
490  */
491 static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
492 			 int len, u32 value)
493 {
494 	struct vmd_dev *vmd = vmd_from_bus(bus);
495 	char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
496 	unsigned long flags;
497 	int ret = 0;
498 
499 	if (!addr)
500 		return -EFAULT;
501 
502 	spin_lock_irqsave(&vmd->cfg_lock, flags);
503 	switch (len) {
504 	case 1:
505 		writeb(value, addr);
506 		readb(addr);
507 		break;
508 	case 2:
509 		writew(value, addr);
510 		readw(addr);
511 		break;
512 	case 4:
513 		writel(value, addr);
514 		readl(addr);
515 		break;
516 	default:
517 		ret = -EINVAL;
518 		break;
519 	}
520 	spin_unlock_irqrestore(&vmd->cfg_lock, flags);
521 	return ret;
522 }
523 
524 static struct pci_ops vmd_ops = {
525 	.read		= vmd_pci_read,
526 	.write		= vmd_pci_write,
527 };
528 
529 static void vmd_attach_resources(struct vmd_dev *vmd)
530 {
531 	vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
532 	vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
533 }
534 
535 static void vmd_detach_resources(struct vmd_dev *vmd)
536 {
537 	vmd->dev->resource[VMD_MEMBAR1].child = NULL;
538 	vmd->dev->resource[VMD_MEMBAR2].child = NULL;
539 }
540 
541 /*
542  * VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
543  * Per ACPI r6.0, sec 6.5.6,  _SEG returns an integer, of which the lower
544  * 16 bits are the PCI Segment Group (domain) number.  Other bits are
545  * currently reserved.
546  */
547 static int vmd_find_free_domain(void)
548 {
549 	int domain = 0xffff;
550 	struct pci_bus *bus = NULL;
551 
552 	while ((bus = pci_find_next_bus(bus)) != NULL)
553 		domain = max_t(int, domain, pci_domain_nr(bus));
554 	return domain + 1;
555 }
556 
557 static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features)
558 {
559 	struct pci_sysdata *sd = &vmd->sysdata;
560 	struct fwnode_handle *fn;
561 	struct resource *res;
562 	u32 upper_bits;
563 	unsigned long flags;
564 	LIST_HEAD(resources);
565 	resource_size_t offset[2] = {0};
566 	resource_size_t membar2_offset = 0x2000, busn_start = 0;
567 	struct pci_bus *child;
568 
569 	/*
570 	 * Shadow registers may exist in certain VMD device ids which allow
571 	 * guests to correctly assign host physical addresses to the root ports
572 	 * and child devices. These registers will either return the host value
573 	 * or 0, depending on an enable bit in the VMD device.
574 	 */
575 	if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) {
576 		u32 vmlock;
577 		int ret;
578 
579 		membar2_offset = 0x2018;
580 		ret = pci_read_config_dword(vmd->dev, PCI_REG_VMLOCK, &vmlock);
581 		if (ret || vmlock == ~0)
582 			return -ENODEV;
583 
584 		if (MB2_SHADOW_EN(vmlock)) {
585 			void __iomem *membar2;
586 
587 			membar2 = pci_iomap(vmd->dev, VMD_MEMBAR2, 0);
588 			if (!membar2)
589 				return -ENOMEM;
590 			offset[0] = vmd->dev->resource[VMD_MEMBAR1].start -
591 						readq(membar2 + 0x2008);
592 			offset[1] = vmd->dev->resource[VMD_MEMBAR2].start -
593 						readq(membar2 + 0x2010);
594 			pci_iounmap(vmd->dev, membar2);
595 		}
596 	}
597 
598 	/*
599 	 * Certain VMD devices may have a root port configuration option which
600 	 * limits the bus range to between 0-127 or 128-255
601 	 */
602 	if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) {
603 		u32 vmcap, vmconfig;
604 
605 		pci_read_config_dword(vmd->dev, PCI_REG_VMCAP, &vmcap);
606 		pci_read_config_dword(vmd->dev, PCI_REG_VMCONFIG, &vmconfig);
607 		if (BUS_RESTRICT_CAP(vmcap) &&
608 		    (BUS_RESTRICT_CFG(vmconfig) == 0x1))
609 			busn_start = 128;
610 	}
611 
612 	res = &vmd->dev->resource[VMD_CFGBAR];
613 	vmd->resources[0] = (struct resource) {
614 		.name  = "VMD CFGBAR",
615 		.start = busn_start,
616 		.end   = busn_start + (resource_size(res) >> 20) - 1,
617 		.flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
618 	};
619 
620 	/*
621 	 * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
622 	 * put 32-bit resources in the window.
623 	 *
624 	 * There's no hardware reason why a 64-bit window *couldn't*
625 	 * contain a 32-bit resource, but pbus_size_mem() computes the
626 	 * bridge window size assuming a 64-bit window will contain no
627 	 * 32-bit resources.  __pci_assign_resource() enforces that
628 	 * artificial restriction to make sure everything will fit.
629 	 *
630 	 * The only way we could use a 64-bit non-prefechable MEMBAR is
631 	 * if its address is <4GB so that we can convert it to a 32-bit
632 	 * resource.  To be visible to the host OS, all VMD endpoints must
633 	 * be initially configured by platform BIOS, which includes setting
634 	 * up these resources.  We can assume the device is configured
635 	 * according to the platform needs.
636 	 */
637 	res = &vmd->dev->resource[VMD_MEMBAR1];
638 	upper_bits = upper_32_bits(res->end);
639 	flags = res->flags & ~IORESOURCE_SIZEALIGN;
640 	if (!upper_bits)
641 		flags &= ~IORESOURCE_MEM_64;
642 	vmd->resources[1] = (struct resource) {
643 		.name  = "VMD MEMBAR1",
644 		.start = res->start,
645 		.end   = res->end,
646 		.flags = flags,
647 		.parent = res,
648 	};
649 
650 	res = &vmd->dev->resource[VMD_MEMBAR2];
651 	upper_bits = upper_32_bits(res->end);
652 	flags = res->flags & ~IORESOURCE_SIZEALIGN;
653 	if (!upper_bits)
654 		flags &= ~IORESOURCE_MEM_64;
655 	vmd->resources[2] = (struct resource) {
656 		.name  = "VMD MEMBAR2",
657 		.start = res->start + membar2_offset,
658 		.end   = res->end,
659 		.flags = flags,
660 		.parent = res,
661 	};
662 
663 	sd->vmd_domain = true;
664 	sd->domain = vmd_find_free_domain();
665 	if (sd->domain < 0)
666 		return sd->domain;
667 
668 	sd->node = pcibus_to_node(vmd->dev->bus);
669 
670 	fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain);
671 	if (!fn)
672 		return -ENODEV;
673 
674 	vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info,
675 						    x86_vector_domain);
676 	irq_domain_free_fwnode(fn);
677 	if (!vmd->irq_domain)
678 		return -ENODEV;
679 
680 	pci_add_resource(&resources, &vmd->resources[0]);
681 	pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]);
682 	pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]);
683 
684 	vmd->bus = pci_create_root_bus(&vmd->dev->dev, busn_start, &vmd_ops,
685 				       sd, &resources);
686 	if (!vmd->bus) {
687 		pci_free_resource_list(&resources);
688 		irq_domain_remove(vmd->irq_domain);
689 		return -ENODEV;
690 	}
691 
692 	vmd_attach_resources(vmd);
693 	vmd_setup_dma_ops(vmd);
694 	dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
695 
696 	pci_scan_child_bus(vmd->bus);
697 	pci_assign_unassigned_bus_resources(vmd->bus);
698 
699 	/*
700 	 * VMD root buses are virtual and don't return true on pci_is_pcie()
701 	 * and will fail pcie_bus_configure_settings() early. It can instead be
702 	 * run on each of the real root ports.
703 	 */
704 	list_for_each_entry(child, &vmd->bus->children, node)
705 		pcie_bus_configure_settings(child);
706 
707 	pci_bus_add_devices(vmd->bus);
708 
709 	WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
710 			       "domain"), "Can't create symlink to domain\n");
711 	return 0;
712 }
713 
714 static irqreturn_t vmd_irq(int irq, void *data)
715 {
716 	struct vmd_irq_list *irqs = data;
717 	struct vmd_irq *vmdirq;
718 	int idx;
719 
720 	idx = srcu_read_lock(&irqs->srcu);
721 	list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
722 		generic_handle_irq(vmdirq->virq);
723 	srcu_read_unlock(&irqs->srcu, idx);
724 
725 	return IRQ_HANDLED;
726 }
727 
728 static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
729 {
730 	struct vmd_dev *vmd;
731 	int i, err;
732 
733 	if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
734 		return -ENOMEM;
735 
736 	vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
737 	if (!vmd)
738 		return -ENOMEM;
739 
740 	vmd->dev = dev;
741 	err = pcim_enable_device(dev);
742 	if (err < 0)
743 		return err;
744 
745 	vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
746 	if (!vmd->cfgbar)
747 		return -ENOMEM;
748 
749 	pci_set_master(dev);
750 	if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
751 	    dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32)))
752 		return -ENODEV;
753 
754 	vmd->msix_count = pci_msix_vec_count(dev);
755 	if (vmd->msix_count < 0)
756 		return -ENODEV;
757 
758 	vmd->msix_count = pci_alloc_irq_vectors(dev, 1, vmd->msix_count,
759 					PCI_IRQ_MSIX);
760 	if (vmd->msix_count < 0)
761 		return vmd->msix_count;
762 
763 	vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
764 				 GFP_KERNEL);
765 	if (!vmd->irqs)
766 		return -ENOMEM;
767 
768 	for (i = 0; i < vmd->msix_count; i++) {
769 		err = init_srcu_struct(&vmd->irqs[i].srcu);
770 		if (err)
771 			return err;
772 
773 		INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
774 		err = devm_request_irq(&dev->dev, pci_irq_vector(dev, i),
775 				       vmd_irq, IRQF_NO_THREAD,
776 				       "vmd", &vmd->irqs[i]);
777 		if (err)
778 			return err;
779 	}
780 
781 	spin_lock_init(&vmd->cfg_lock);
782 	pci_set_drvdata(dev, vmd);
783 	err = vmd_enable_domain(vmd, (unsigned long) id->driver_data);
784 	if (err)
785 		return err;
786 
787 	dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
788 		 vmd->sysdata.domain);
789 	return 0;
790 }
791 
792 static void vmd_cleanup_srcu(struct vmd_dev *vmd)
793 {
794 	int i;
795 
796 	for (i = 0; i < vmd->msix_count; i++)
797 		cleanup_srcu_struct(&vmd->irqs[i].srcu);
798 }
799 
800 static void vmd_remove(struct pci_dev *dev)
801 {
802 	struct vmd_dev *vmd = pci_get_drvdata(dev);
803 
804 	sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
805 	pci_stop_root_bus(vmd->bus);
806 	pci_remove_root_bus(vmd->bus);
807 	vmd_cleanup_srcu(vmd);
808 	vmd_teardown_dma_ops(vmd);
809 	vmd_detach_resources(vmd);
810 	irq_domain_remove(vmd->irq_domain);
811 }
812 
813 #ifdef CONFIG_PM_SLEEP
814 static int vmd_suspend(struct device *dev)
815 {
816 	struct pci_dev *pdev = to_pci_dev(dev);
817 	struct vmd_dev *vmd = pci_get_drvdata(pdev);
818 	int i;
819 
820 	for (i = 0; i < vmd->msix_count; i++)
821                 devm_free_irq(dev, pci_irq_vector(pdev, i), &vmd->irqs[i]);
822 
823 	pci_save_state(pdev);
824 	return 0;
825 }
826 
827 static int vmd_resume(struct device *dev)
828 {
829 	struct pci_dev *pdev = to_pci_dev(dev);
830 	struct vmd_dev *vmd = pci_get_drvdata(pdev);
831 	int err, i;
832 
833 	for (i = 0; i < vmd->msix_count; i++) {
834 		err = devm_request_irq(dev, pci_irq_vector(pdev, i),
835 				       vmd_irq, IRQF_NO_THREAD,
836 				       "vmd", &vmd->irqs[i]);
837 		if (err)
838 			return err;
839 	}
840 
841 	pci_restore_state(pdev);
842 	return 0;
843 }
844 #endif
845 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
846 
847 static const struct pci_device_id vmd_ids[] = {
848 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_201D),},
849 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0),
850 		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW |
851 				VMD_FEAT_HAS_BUS_RESTRICTIONS,},
852 	{0,}
853 };
854 MODULE_DEVICE_TABLE(pci, vmd_ids);
855 
856 static struct pci_driver vmd_drv = {
857 	.name		= "vmd",
858 	.id_table	= vmd_ids,
859 	.probe		= vmd_probe,
860 	.remove		= vmd_remove,
861 	.driver		= {
862 		.pm	= &vmd_dev_pm_ops,
863 	},
864 };
865 module_pci_driver(vmd_drv);
866 
867 MODULE_AUTHOR("Intel Corporation");
868 MODULE_LICENSE("GPL v2");
869 MODULE_VERSION("0.6");
870