xref: /linux/drivers/pci/pci.c (revision 9a6b55ac)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/of_pci.h>
19 #include <linux/pci.h>
20 #include <linux/pm.h>
21 #include <linux/slab.h>
22 #include <linux/module.h>
23 #include <linux/spinlock.h>
24 #include <linux/string.h>
25 #include <linux/log2.h>
26 #include <linux/logic_pio.h>
27 #include <linux/pm_wakeup.h>
28 #include <linux/interrupt.h>
29 #include <linux/device.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/pci_hotplug.h>
32 #include <linux/vmalloc.h>
33 #include <linux/pci-ats.h>
34 #include <asm/setup.h>
35 #include <asm/dma.h>
36 #include <linux/aer.h>
37 #include "pci.h"
38 
39 DEFINE_MUTEX(pci_slot_mutex);
40 
41 const char *pci_power_names[] = {
42 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
43 };
44 EXPORT_SYMBOL_GPL(pci_power_names);
45 
46 int isa_dma_bridge_buggy;
47 EXPORT_SYMBOL(isa_dma_bridge_buggy);
48 
49 int pci_pci_problems;
50 EXPORT_SYMBOL(pci_pci_problems);
51 
52 unsigned int pci_pm_d3_delay;
53 
54 static void pci_pme_list_scan(struct work_struct *work);
55 
56 static LIST_HEAD(pci_pme_list);
57 static DEFINE_MUTEX(pci_pme_list_mutex);
58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
59 
60 struct pci_pme_device {
61 	struct list_head list;
62 	struct pci_dev *dev;
63 };
64 
65 #define PME_TIMEOUT 1000 /* How long between PME checks */
66 
67 static void pci_dev_d3_sleep(struct pci_dev *dev)
68 {
69 	unsigned int delay = dev->d3_delay;
70 
71 	if (delay < pci_pm_d3_delay)
72 		delay = pci_pm_d3_delay;
73 
74 	if (delay)
75 		msleep(delay);
76 }
77 
78 #ifdef CONFIG_PCI_DOMAINS
79 int pci_domains_supported = 1;
80 #endif
81 
82 #define DEFAULT_CARDBUS_IO_SIZE		(256)
83 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
84 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
85 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
86 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
87 
88 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
89 #define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
90 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
91 /* hpiosize=nn can override this */
92 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
93 /*
94  * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
95  * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
96  * pci=hpmemsize=nnM overrides both
97  */
98 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
99 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
100 
101 #define DEFAULT_HOTPLUG_BUS_SIZE	1
102 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
103 
104 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
105 
106 /*
107  * The default CLS is used if arch didn't set CLS explicitly and not
108  * all pci devices agree on the same value.  Arch can override either
109  * the dfl or actual value as it sees fit.  Don't forget this is
110  * measured in 32-bit words, not bytes.
111  */
112 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
113 u8 pci_cache_line_size;
114 
115 /*
116  * If we set up a device for bus mastering, we need to check the latency
117  * timer as certain BIOSes forget to set it properly.
118  */
119 unsigned int pcibios_max_latency = 255;
120 
121 /* If set, the PCIe ARI capability will not be used. */
122 static bool pcie_ari_disabled;
123 
124 /* If set, the PCIe ATS capability will not be used. */
125 static bool pcie_ats_disabled;
126 
127 /* If set, the PCI config space of each device is printed during boot. */
128 bool pci_early_dump;
129 
130 bool pci_ats_disabled(void)
131 {
132 	return pcie_ats_disabled;
133 }
134 
135 /* Disable bridge_d3 for all PCIe ports */
136 static bool pci_bridge_d3_disable;
137 /* Force bridge_d3 for all PCIe ports */
138 static bool pci_bridge_d3_force;
139 
140 static int __init pcie_port_pm_setup(char *str)
141 {
142 	if (!strcmp(str, "off"))
143 		pci_bridge_d3_disable = true;
144 	else if (!strcmp(str, "force"))
145 		pci_bridge_d3_force = true;
146 	return 1;
147 }
148 __setup("pcie_port_pm=", pcie_port_pm_setup);
149 
150 /* Time to wait after a reset for device to become responsive */
151 #define PCIE_RESET_READY_POLL_MS 60000
152 
153 /**
154  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
155  * @bus: pointer to PCI bus structure to search
156  *
157  * Given a PCI bus, returns the highest PCI bus number present in the set
158  * including the given PCI bus and its list of child PCI buses.
159  */
160 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
161 {
162 	struct pci_bus *tmp;
163 	unsigned char max, n;
164 
165 	max = bus->busn_res.end;
166 	list_for_each_entry(tmp, &bus->children, node) {
167 		n = pci_bus_max_busnr(tmp);
168 		if (n > max)
169 			max = n;
170 	}
171 	return max;
172 }
173 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
174 
175 #ifdef CONFIG_HAS_IOMEM
176 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
177 {
178 	struct resource *res = &pdev->resource[bar];
179 
180 	/*
181 	 * Make sure the BAR is actually a memory resource, not an IO resource
182 	 */
183 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
184 		pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
185 		return NULL;
186 	}
187 	return ioremap_nocache(res->start, resource_size(res));
188 }
189 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
190 
191 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
192 {
193 	/*
194 	 * Make sure the BAR is actually a memory resource, not an IO resource
195 	 */
196 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
197 		WARN_ON(1);
198 		return NULL;
199 	}
200 	return ioremap_wc(pci_resource_start(pdev, bar),
201 			  pci_resource_len(pdev, bar));
202 }
203 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
204 #endif
205 
206 /**
207  * pci_dev_str_match_path - test if a path string matches a device
208  * @dev: the PCI device to test
209  * @path: string to match the device against
210  * @endptr: pointer to the string after the match
211  *
212  * Test if a string (typically from a kernel parameter) formatted as a
213  * path of device/function addresses matches a PCI device. The string must
214  * be of the form:
215  *
216  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
217  *
218  * A path for a device can be obtained using 'lspci -t'.  Using a path
219  * is more robust against bus renumbering than using only a single bus,
220  * device and function address.
221  *
222  * Returns 1 if the string matches the device, 0 if it does not and
223  * a negative error code if it fails to parse the string.
224  */
225 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
226 				  const char **endptr)
227 {
228 	int ret;
229 	int seg, bus, slot, func;
230 	char *wpath, *p;
231 	char end;
232 
233 	*endptr = strchrnul(path, ';');
234 
235 	wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL);
236 	if (!wpath)
237 		return -ENOMEM;
238 
239 	while (1) {
240 		p = strrchr(wpath, '/');
241 		if (!p)
242 			break;
243 		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
244 		if (ret != 2) {
245 			ret = -EINVAL;
246 			goto free_and_exit;
247 		}
248 
249 		if (dev->devfn != PCI_DEVFN(slot, func)) {
250 			ret = 0;
251 			goto free_and_exit;
252 		}
253 
254 		/*
255 		 * Note: we don't need to get a reference to the upstream
256 		 * bridge because we hold a reference to the top level
257 		 * device which should hold a reference to the bridge,
258 		 * and so on.
259 		 */
260 		dev = pci_upstream_bridge(dev);
261 		if (!dev) {
262 			ret = 0;
263 			goto free_and_exit;
264 		}
265 
266 		*p = 0;
267 	}
268 
269 	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
270 		     &func, &end);
271 	if (ret != 4) {
272 		seg = 0;
273 		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
274 		if (ret != 3) {
275 			ret = -EINVAL;
276 			goto free_and_exit;
277 		}
278 	}
279 
280 	ret = (seg == pci_domain_nr(dev->bus) &&
281 	       bus == dev->bus->number &&
282 	       dev->devfn == PCI_DEVFN(slot, func));
283 
284 free_and_exit:
285 	kfree(wpath);
286 	return ret;
287 }
288 
289 /**
290  * pci_dev_str_match - test if a string matches a device
291  * @dev: the PCI device to test
292  * @p: string to match the device against
293  * @endptr: pointer to the string after the match
294  *
295  * Test if a string (typically from a kernel parameter) matches a specified
296  * PCI device. The string may be of one of the following formats:
297  *
298  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
299  *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
300  *
301  * The first format specifies a PCI bus/device/function address which
302  * may change if new hardware is inserted, if motherboard firmware changes,
303  * or due to changes caused in kernel parameters. If the domain is
304  * left unspecified, it is taken to be 0.  In order to be robust against
305  * bus renumbering issues, a path of PCI device/function numbers may be used
306  * to address the specific device.  The path for a device can be determined
307  * through the use of 'lspci -t'.
308  *
309  * The second format matches devices using IDs in the configuration
310  * space which may match multiple devices in the system. A value of 0
311  * for any field will match all devices. (Note: this differs from
312  * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
313  * legacy reasons and convenience so users don't have to specify
314  * FFFFFFFFs on the command line.)
315  *
316  * Returns 1 if the string matches the device, 0 if it does not and
317  * a negative error code if the string cannot be parsed.
318  */
319 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
320 			     const char **endptr)
321 {
322 	int ret;
323 	int count;
324 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
325 
326 	if (strncmp(p, "pci:", 4) == 0) {
327 		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
328 		p += 4;
329 		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
330 			     &subsystem_vendor, &subsystem_device, &count);
331 		if (ret != 4) {
332 			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
333 			if (ret != 2)
334 				return -EINVAL;
335 
336 			subsystem_vendor = 0;
337 			subsystem_device = 0;
338 		}
339 
340 		p += count;
341 
342 		if ((!vendor || vendor == dev->vendor) &&
343 		    (!device || device == dev->device) &&
344 		    (!subsystem_vendor ||
345 			    subsystem_vendor == dev->subsystem_vendor) &&
346 		    (!subsystem_device ||
347 			    subsystem_device == dev->subsystem_device))
348 			goto found;
349 	} else {
350 		/*
351 		 * PCI Bus, Device, Function IDs are specified
352 		 * (optionally, may include a path of devfns following it)
353 		 */
354 		ret = pci_dev_str_match_path(dev, p, &p);
355 		if (ret < 0)
356 			return ret;
357 		else if (ret)
358 			goto found;
359 	}
360 
361 	*endptr = p;
362 	return 0;
363 
364 found:
365 	*endptr = p;
366 	return 1;
367 }
368 
369 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
370 				   u8 pos, int cap, int *ttl)
371 {
372 	u8 id;
373 	u16 ent;
374 
375 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
376 
377 	while ((*ttl)--) {
378 		if (pos < 0x40)
379 			break;
380 		pos &= ~3;
381 		pci_bus_read_config_word(bus, devfn, pos, &ent);
382 
383 		id = ent & 0xff;
384 		if (id == 0xff)
385 			break;
386 		if (id == cap)
387 			return pos;
388 		pos = (ent >> 8);
389 	}
390 	return 0;
391 }
392 
393 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
394 			       u8 pos, int cap)
395 {
396 	int ttl = PCI_FIND_CAP_TTL;
397 
398 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
399 }
400 
401 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
402 {
403 	return __pci_find_next_cap(dev->bus, dev->devfn,
404 				   pos + PCI_CAP_LIST_NEXT, cap);
405 }
406 EXPORT_SYMBOL_GPL(pci_find_next_capability);
407 
408 static int __pci_bus_find_cap_start(struct pci_bus *bus,
409 				    unsigned int devfn, u8 hdr_type)
410 {
411 	u16 status;
412 
413 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
414 	if (!(status & PCI_STATUS_CAP_LIST))
415 		return 0;
416 
417 	switch (hdr_type) {
418 	case PCI_HEADER_TYPE_NORMAL:
419 	case PCI_HEADER_TYPE_BRIDGE:
420 		return PCI_CAPABILITY_LIST;
421 	case PCI_HEADER_TYPE_CARDBUS:
422 		return PCI_CB_CAPABILITY_LIST;
423 	}
424 
425 	return 0;
426 }
427 
428 /**
429  * pci_find_capability - query for devices' capabilities
430  * @dev: PCI device to query
431  * @cap: capability code
432  *
433  * Tell if a device supports a given PCI capability.
434  * Returns the address of the requested capability structure within the
435  * device's PCI configuration space or 0 in case the device does not
436  * support it.  Possible values for @cap include:
437  *
438  *  %PCI_CAP_ID_PM           Power Management
439  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
440  *  %PCI_CAP_ID_VPD          Vital Product Data
441  *  %PCI_CAP_ID_SLOTID       Slot Identification
442  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
443  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
444  *  %PCI_CAP_ID_PCIX         PCI-X
445  *  %PCI_CAP_ID_EXP          PCI Express
446  */
447 int pci_find_capability(struct pci_dev *dev, int cap)
448 {
449 	int pos;
450 
451 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
452 	if (pos)
453 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
454 
455 	return pos;
456 }
457 EXPORT_SYMBOL(pci_find_capability);
458 
459 /**
460  * pci_bus_find_capability - query for devices' capabilities
461  * @bus: the PCI bus to query
462  * @devfn: PCI device to query
463  * @cap: capability code
464  *
465  * Like pci_find_capability() but works for PCI devices that do not have a
466  * pci_dev structure set up yet.
467  *
468  * Returns the address of the requested capability structure within the
469  * device's PCI configuration space or 0 in case the device does not
470  * support it.
471  */
472 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
473 {
474 	int pos;
475 	u8 hdr_type;
476 
477 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
478 
479 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
480 	if (pos)
481 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
482 
483 	return pos;
484 }
485 EXPORT_SYMBOL(pci_bus_find_capability);
486 
487 /**
488  * pci_find_next_ext_capability - Find an extended capability
489  * @dev: PCI device to query
490  * @start: address at which to start looking (0 to start at beginning of list)
491  * @cap: capability code
492  *
493  * Returns the address of the next matching extended capability structure
494  * within the device's PCI configuration space or 0 if the device does
495  * not support it.  Some capabilities can occur several times, e.g., the
496  * vendor-specific capability, and this provides a way to find them all.
497  */
498 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
499 {
500 	u32 header;
501 	int ttl;
502 	int pos = PCI_CFG_SPACE_SIZE;
503 
504 	/* minimum 8 bytes per capability */
505 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
506 
507 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
508 		return 0;
509 
510 	if (start)
511 		pos = start;
512 
513 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
514 		return 0;
515 
516 	/*
517 	 * If we have no capabilities, this is indicated by cap ID,
518 	 * cap version and next pointer all being 0.
519 	 */
520 	if (header == 0)
521 		return 0;
522 
523 	while (ttl-- > 0) {
524 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
525 			return pos;
526 
527 		pos = PCI_EXT_CAP_NEXT(header);
528 		if (pos < PCI_CFG_SPACE_SIZE)
529 			break;
530 
531 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
532 			break;
533 	}
534 
535 	return 0;
536 }
537 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
538 
539 /**
540  * pci_find_ext_capability - Find an extended capability
541  * @dev: PCI device to query
542  * @cap: capability code
543  *
544  * Returns the address of the requested extended capability structure
545  * within the device's PCI configuration space or 0 if the device does
546  * not support it.  Possible values for @cap include:
547  *
548  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
549  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
550  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
551  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
552  */
553 int pci_find_ext_capability(struct pci_dev *dev, int cap)
554 {
555 	return pci_find_next_ext_capability(dev, 0, cap);
556 }
557 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
558 
559 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
560 {
561 	int rc, ttl = PCI_FIND_CAP_TTL;
562 	u8 cap, mask;
563 
564 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
565 		mask = HT_3BIT_CAP_MASK;
566 	else
567 		mask = HT_5BIT_CAP_MASK;
568 
569 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
570 				      PCI_CAP_ID_HT, &ttl);
571 	while (pos) {
572 		rc = pci_read_config_byte(dev, pos + 3, &cap);
573 		if (rc != PCIBIOS_SUCCESSFUL)
574 			return 0;
575 
576 		if ((cap & mask) == ht_cap)
577 			return pos;
578 
579 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
580 					      pos + PCI_CAP_LIST_NEXT,
581 					      PCI_CAP_ID_HT, &ttl);
582 	}
583 
584 	return 0;
585 }
586 /**
587  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
588  * @dev: PCI device to query
589  * @pos: Position from which to continue searching
590  * @ht_cap: Hypertransport capability code
591  *
592  * To be used in conjunction with pci_find_ht_capability() to search for
593  * all capabilities matching @ht_cap. @pos should always be a value returned
594  * from pci_find_ht_capability().
595  *
596  * NB. To be 100% safe against broken PCI devices, the caller should take
597  * steps to avoid an infinite loop.
598  */
599 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
600 {
601 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
602 }
603 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
604 
605 /**
606  * pci_find_ht_capability - query a device's Hypertransport capabilities
607  * @dev: PCI device to query
608  * @ht_cap: Hypertransport capability code
609  *
610  * Tell if a device supports a given Hypertransport capability.
611  * Returns an address within the device's PCI configuration space
612  * or 0 in case the device does not support the request capability.
613  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
614  * which has a Hypertransport capability matching @ht_cap.
615  */
616 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
617 {
618 	int pos;
619 
620 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
621 	if (pos)
622 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
623 
624 	return pos;
625 }
626 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
627 
628 /**
629  * pci_find_parent_resource - return resource region of parent bus of given
630  *			      region
631  * @dev: PCI device structure contains resources to be searched
632  * @res: child resource record for which parent is sought
633  *
634  * For given resource region of given device, return the resource region of
635  * parent bus the given region is contained in.
636  */
637 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
638 					  struct resource *res)
639 {
640 	const struct pci_bus *bus = dev->bus;
641 	struct resource *r;
642 	int i;
643 
644 	pci_bus_for_each_resource(bus, r, i) {
645 		if (!r)
646 			continue;
647 		if (resource_contains(r, res)) {
648 
649 			/*
650 			 * If the window is prefetchable but the BAR is
651 			 * not, the allocator made a mistake.
652 			 */
653 			if (r->flags & IORESOURCE_PREFETCH &&
654 			    !(res->flags & IORESOURCE_PREFETCH))
655 				return NULL;
656 
657 			/*
658 			 * If we're below a transparent bridge, there may
659 			 * be both a positively-decoded aperture and a
660 			 * subtractively-decoded region that contain the BAR.
661 			 * We want the positively-decoded one, so this depends
662 			 * on pci_bus_for_each_resource() giving us those
663 			 * first.
664 			 */
665 			return r;
666 		}
667 	}
668 	return NULL;
669 }
670 EXPORT_SYMBOL(pci_find_parent_resource);
671 
672 /**
673  * pci_find_resource - Return matching PCI device resource
674  * @dev: PCI device to query
675  * @res: Resource to look for
676  *
677  * Goes over standard PCI resources (BARs) and checks if the given resource
678  * is partially or fully contained in any of them. In that case the
679  * matching resource is returned, %NULL otherwise.
680  */
681 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
682 {
683 	int i;
684 
685 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
686 		struct resource *r = &dev->resource[i];
687 
688 		if (r->start && resource_contains(r, res))
689 			return r;
690 	}
691 
692 	return NULL;
693 }
694 EXPORT_SYMBOL(pci_find_resource);
695 
696 /**
697  * pci_find_pcie_root_port - return PCIe Root Port
698  * @dev: PCI device to query
699  *
700  * Traverse up the parent chain and return the PCIe Root Port PCI Device
701  * for a given PCI Device.
702  */
703 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
704 {
705 	struct pci_dev *bridge, *highest_pcie_bridge = dev;
706 
707 	bridge = pci_upstream_bridge(dev);
708 	while (bridge && pci_is_pcie(bridge)) {
709 		highest_pcie_bridge = bridge;
710 		bridge = pci_upstream_bridge(bridge);
711 	}
712 
713 	if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
714 		return NULL;
715 
716 	return highest_pcie_bridge;
717 }
718 EXPORT_SYMBOL(pci_find_pcie_root_port);
719 
720 /**
721  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
722  * @dev: the PCI device to operate on
723  * @pos: config space offset of status word
724  * @mask: mask of bit(s) to care about in status word
725  *
726  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
727  */
728 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
729 {
730 	int i;
731 
732 	/* Wait for Transaction Pending bit clean */
733 	for (i = 0; i < 4; i++) {
734 		u16 status;
735 		if (i)
736 			msleep((1 << (i - 1)) * 100);
737 
738 		pci_read_config_word(dev, pos, &status);
739 		if (!(status & mask))
740 			return 1;
741 	}
742 
743 	return 0;
744 }
745 
746 /**
747  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
748  * @dev: PCI device to have its BARs restored
749  *
750  * Restore the BAR values for a given device, so as to make it
751  * accessible by its driver.
752  */
753 static void pci_restore_bars(struct pci_dev *dev)
754 {
755 	int i;
756 
757 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
758 		pci_update_resource(dev, i);
759 }
760 
761 static const struct pci_platform_pm_ops *pci_platform_pm;
762 
763 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
764 {
765 	if (!ops->is_manageable || !ops->set_state  || !ops->get_state ||
766 	    !ops->choose_state  || !ops->set_wakeup || !ops->need_resume)
767 		return -EINVAL;
768 	pci_platform_pm = ops;
769 	return 0;
770 }
771 
772 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
773 {
774 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
775 }
776 
777 static inline int platform_pci_set_power_state(struct pci_dev *dev,
778 					       pci_power_t t)
779 {
780 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
781 }
782 
783 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
784 {
785 	return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
786 }
787 
788 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
789 {
790 	if (pci_platform_pm && pci_platform_pm->refresh_state)
791 		pci_platform_pm->refresh_state(dev);
792 }
793 
794 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
795 {
796 	return pci_platform_pm ?
797 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
798 }
799 
800 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
801 {
802 	return pci_platform_pm ?
803 			pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
804 }
805 
806 static inline bool platform_pci_need_resume(struct pci_dev *dev)
807 {
808 	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
809 }
810 
811 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
812 {
813 	return pci_platform_pm ? pci_platform_pm->bridge_d3(dev) : false;
814 }
815 
816 /**
817  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
818  *			     given PCI device
819  * @dev: PCI device to handle.
820  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
821  *
822  * RETURN VALUE:
823  * -EINVAL if the requested state is invalid.
824  * -EIO if device does not support PCI PM or its PM capabilities register has a
825  * wrong version, or device doesn't support the requested state.
826  * 0 if device already is in the requested state.
827  * 0 if device's power state has been successfully changed.
828  */
829 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
830 {
831 	u16 pmcsr;
832 	bool need_restore = false;
833 
834 	/* Check if we're already there */
835 	if (dev->current_state == state)
836 		return 0;
837 
838 	if (!dev->pm_cap)
839 		return -EIO;
840 
841 	if (state < PCI_D0 || state > PCI_D3hot)
842 		return -EINVAL;
843 
844 	/*
845 	 * Validate transition: We can enter D0 from any state, but if
846 	 * we're already in a low-power state, we can only go deeper.  E.g.,
847 	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
848 	 * we'd have to go from D3 to D0, then to D1.
849 	 */
850 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
851 	    && dev->current_state > state) {
852 		pci_err(dev, "invalid power transition (from %s to %s)\n",
853 			pci_power_name(dev->current_state),
854 			pci_power_name(state));
855 		return -EINVAL;
856 	}
857 
858 	/* Check if this device supports the desired state */
859 	if ((state == PCI_D1 && !dev->d1_support)
860 	   || (state == PCI_D2 && !dev->d2_support))
861 		return -EIO;
862 
863 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
864 	if (pmcsr == (u16) ~0) {
865 		pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n",
866 			pci_power_name(dev->current_state),
867 			pci_power_name(state));
868 		return -EIO;
869 	}
870 
871 	/*
872 	 * If we're (effectively) in D3, force entire word to 0.
873 	 * This doesn't affect PME_Status, disables PME_En, and
874 	 * sets PowerState to 0.
875 	 */
876 	switch (dev->current_state) {
877 	case PCI_D0:
878 	case PCI_D1:
879 	case PCI_D2:
880 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
881 		pmcsr |= state;
882 		break;
883 	case PCI_D3hot:
884 	case PCI_D3cold:
885 	case PCI_UNKNOWN: /* Boot-up */
886 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
887 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
888 			need_restore = true;
889 		/* Fall-through - force to D0 */
890 	default:
891 		pmcsr = 0;
892 		break;
893 	}
894 
895 	/* Enter specified state */
896 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
897 
898 	/*
899 	 * Mandatory power management transition delays; see PCI PM 1.1
900 	 * 5.6.1 table 18
901 	 */
902 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
903 		pci_dev_d3_sleep(dev);
904 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
905 		msleep(PCI_PM_D2_DELAY);
906 
907 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
908 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
909 	if (dev->current_state != state)
910 		pci_info_ratelimited(dev, "refused to change power state from %s to %s\n",
911 			 pci_power_name(dev->current_state),
912 			 pci_power_name(state));
913 
914 	/*
915 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
916 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
917 	 * from D3hot to D0 _may_ perform an internal reset, thereby
918 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
919 	 * For example, at least some versions of the 3c905B and the
920 	 * 3c556B exhibit this behaviour.
921 	 *
922 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
923 	 * devices in a D3hot state at boot.  Consequently, we need to
924 	 * restore at least the BARs so that the device will be
925 	 * accessible to its driver.
926 	 */
927 	if (need_restore)
928 		pci_restore_bars(dev);
929 
930 	if (dev->bus->self)
931 		pcie_aspm_pm_state_change(dev->bus->self);
932 
933 	return 0;
934 }
935 
936 /**
937  * pci_update_current_state - Read power state of given device and cache it
938  * @dev: PCI device to handle.
939  * @state: State to cache in case the device doesn't have the PM capability
940  *
941  * The power state is read from the PMCSR register, which however is
942  * inaccessible in D3cold.  The platform firmware is therefore queried first
943  * to detect accessibility of the register.  In case the platform firmware
944  * reports an incorrect state or the device isn't power manageable by the
945  * platform at all, we try to detect D3cold by testing accessibility of the
946  * vendor ID in config space.
947  */
948 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
949 {
950 	if (platform_pci_get_power_state(dev) == PCI_D3cold ||
951 	    !pci_device_is_present(dev)) {
952 		dev->current_state = PCI_D3cold;
953 	} else if (dev->pm_cap) {
954 		u16 pmcsr;
955 
956 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
957 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
958 	} else {
959 		dev->current_state = state;
960 	}
961 }
962 
963 /**
964  * pci_refresh_power_state - Refresh the given device's power state data
965  * @dev: Target PCI device.
966  *
967  * Ask the platform to refresh the devices power state information and invoke
968  * pci_update_current_state() to update its current PCI power state.
969  */
970 void pci_refresh_power_state(struct pci_dev *dev)
971 {
972 	if (platform_pci_power_manageable(dev))
973 		platform_pci_refresh_power_state(dev);
974 
975 	pci_update_current_state(dev, dev->current_state);
976 }
977 
978 /**
979  * pci_platform_power_transition - Use platform to change device power state
980  * @dev: PCI device to handle.
981  * @state: State to put the device into.
982  */
983 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
984 {
985 	int error;
986 
987 	if (platform_pci_power_manageable(dev)) {
988 		error = platform_pci_set_power_state(dev, state);
989 		if (!error)
990 			pci_update_current_state(dev, state);
991 	} else
992 		error = -ENODEV;
993 
994 	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
995 		dev->current_state = PCI_D0;
996 
997 	return error;
998 }
999 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1000 
1001 /**
1002  * pci_wakeup - Wake up a PCI device
1003  * @pci_dev: Device to handle.
1004  * @ign: ignored parameter
1005  */
1006 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
1007 {
1008 	pci_wakeup_event(pci_dev);
1009 	pm_request_resume(&pci_dev->dev);
1010 	return 0;
1011 }
1012 
1013 /**
1014  * pci_wakeup_bus - Walk given bus and wake up devices on it
1015  * @bus: Top bus of the subtree to walk.
1016  */
1017 void pci_wakeup_bus(struct pci_bus *bus)
1018 {
1019 	if (bus)
1020 		pci_walk_bus(bus, pci_wakeup, NULL);
1021 }
1022 
1023 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1024 {
1025 	int delay = 1;
1026 	u32 id;
1027 
1028 	/*
1029 	 * After reset, the device should not silently discard config
1030 	 * requests, but it may still indicate that it needs more time by
1031 	 * responding to them with CRS completions.  The Root Port will
1032 	 * generally synthesize ~0 data to complete the read (except when
1033 	 * CRS SV is enabled and the read was for the Vendor ID; in that
1034 	 * case it synthesizes 0x0001 data).
1035 	 *
1036 	 * Wait for the device to return a non-CRS completion.  Read the
1037 	 * Command register instead of Vendor ID so we don't have to
1038 	 * contend with the CRS SV value.
1039 	 */
1040 	pci_read_config_dword(dev, PCI_COMMAND, &id);
1041 	while (id == ~0) {
1042 		if (delay > timeout) {
1043 			pci_warn(dev, "not ready %dms after %s; giving up\n",
1044 				 delay - 1, reset_type);
1045 			return -ENOTTY;
1046 		}
1047 
1048 		if (delay > 1000)
1049 			pci_info(dev, "not ready %dms after %s; waiting\n",
1050 				 delay - 1, reset_type);
1051 
1052 		msleep(delay);
1053 		delay *= 2;
1054 		pci_read_config_dword(dev, PCI_COMMAND, &id);
1055 	}
1056 
1057 	if (delay > 1000)
1058 		pci_info(dev, "ready %dms after %s\n", delay - 1,
1059 			 reset_type);
1060 
1061 	return 0;
1062 }
1063 
1064 /**
1065  * pci_power_up - Put the given device into D0
1066  * @dev: PCI device to power up
1067  */
1068 int pci_power_up(struct pci_dev *dev)
1069 {
1070 	pci_platform_power_transition(dev, PCI_D0);
1071 
1072 	/*
1073 	 * Mandatory power management transition delays are handled in
1074 	 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1075 	 * corresponding bridge.
1076 	 */
1077 	if (dev->runtime_d3cold) {
1078 		/*
1079 		 * When powering on a bridge from D3cold, the whole hierarchy
1080 		 * may be powered on into D0uninitialized state, resume them to
1081 		 * give them a chance to suspend again
1082 		 */
1083 		pci_wakeup_bus(dev->subordinate);
1084 	}
1085 
1086 	return pci_raw_set_power_state(dev, PCI_D0);
1087 }
1088 
1089 /**
1090  * __pci_dev_set_current_state - Set current state of a PCI device
1091  * @dev: Device to handle
1092  * @data: pointer to state to be set
1093  */
1094 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1095 {
1096 	pci_power_t state = *(pci_power_t *)data;
1097 
1098 	dev->current_state = state;
1099 	return 0;
1100 }
1101 
1102 /**
1103  * pci_bus_set_current_state - Walk given bus and set current state of devices
1104  * @bus: Top bus of the subtree to walk.
1105  * @state: state to be set
1106  */
1107 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1108 {
1109 	if (bus)
1110 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1111 }
1112 
1113 /**
1114  * pci_set_power_state - Set the power state of a PCI device
1115  * @dev: PCI device to handle.
1116  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1117  *
1118  * Transition a device to a new power state, using the platform firmware and/or
1119  * the device's PCI PM registers.
1120  *
1121  * RETURN VALUE:
1122  * -EINVAL if the requested state is invalid.
1123  * -EIO if device does not support PCI PM or its PM capabilities register has a
1124  * wrong version, or device doesn't support the requested state.
1125  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1126  * 0 if device already is in the requested state.
1127  * 0 if the transition is to D3 but D3 is not supported.
1128  * 0 if device's power state has been successfully changed.
1129  */
1130 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1131 {
1132 	int error;
1133 
1134 	/* Bound the state we're entering */
1135 	if (state > PCI_D3cold)
1136 		state = PCI_D3cold;
1137 	else if (state < PCI_D0)
1138 		state = PCI_D0;
1139 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1140 
1141 		/*
1142 		 * If the device or the parent bridge do not support PCI
1143 		 * PM, ignore the request if we're doing anything other
1144 		 * than putting it into D0 (which would only happen on
1145 		 * boot).
1146 		 */
1147 		return 0;
1148 
1149 	/* Check if we're already there */
1150 	if (dev->current_state == state)
1151 		return 0;
1152 
1153 	if (state == PCI_D0)
1154 		return pci_power_up(dev);
1155 
1156 	/*
1157 	 * This device is quirked not to be put into D3, so don't put it in
1158 	 * D3
1159 	 */
1160 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1161 		return 0;
1162 
1163 	/*
1164 	 * To put device in D3cold, we put device into D3hot in native
1165 	 * way, then put device into D3cold with platform ops
1166 	 */
1167 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1168 					PCI_D3hot : state);
1169 
1170 	if (pci_platform_power_transition(dev, state))
1171 		return error;
1172 
1173 	/* Powering off a bridge may power off the whole hierarchy */
1174 	if (state == PCI_D3cold)
1175 		pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1176 
1177 	return 0;
1178 }
1179 EXPORT_SYMBOL(pci_set_power_state);
1180 
1181 /**
1182  * pci_choose_state - Choose the power state of a PCI device
1183  * @dev: PCI device to be suspended
1184  * @state: target sleep state for the whole system. This is the value
1185  *	   that is passed to suspend() function.
1186  *
1187  * Returns PCI power state suitable for given device and given system
1188  * message.
1189  */
1190 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1191 {
1192 	pci_power_t ret;
1193 
1194 	if (!dev->pm_cap)
1195 		return PCI_D0;
1196 
1197 	ret = platform_pci_choose_state(dev);
1198 	if (ret != PCI_POWER_ERROR)
1199 		return ret;
1200 
1201 	switch (state.event) {
1202 	case PM_EVENT_ON:
1203 		return PCI_D0;
1204 	case PM_EVENT_FREEZE:
1205 	case PM_EVENT_PRETHAW:
1206 		/* REVISIT both freeze and pre-thaw "should" use D0 */
1207 	case PM_EVENT_SUSPEND:
1208 	case PM_EVENT_HIBERNATE:
1209 		return PCI_D3hot;
1210 	default:
1211 		pci_info(dev, "unrecognized suspend event %d\n",
1212 			 state.event);
1213 		BUG();
1214 	}
1215 	return PCI_D0;
1216 }
1217 EXPORT_SYMBOL(pci_choose_state);
1218 
1219 #define PCI_EXP_SAVE_REGS	7
1220 
1221 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1222 						       u16 cap, bool extended)
1223 {
1224 	struct pci_cap_saved_state *tmp;
1225 
1226 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1227 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1228 			return tmp;
1229 	}
1230 	return NULL;
1231 }
1232 
1233 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1234 {
1235 	return _pci_find_saved_cap(dev, cap, false);
1236 }
1237 
1238 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1239 {
1240 	return _pci_find_saved_cap(dev, cap, true);
1241 }
1242 
1243 static int pci_save_pcie_state(struct pci_dev *dev)
1244 {
1245 	int i = 0;
1246 	struct pci_cap_saved_state *save_state;
1247 	u16 *cap;
1248 
1249 	if (!pci_is_pcie(dev))
1250 		return 0;
1251 
1252 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1253 	if (!save_state) {
1254 		pci_err(dev, "buffer not found in %s\n", __func__);
1255 		return -ENOMEM;
1256 	}
1257 
1258 	cap = (u16 *)&save_state->cap.data[0];
1259 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1260 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1261 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1262 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1263 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1264 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1265 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1266 
1267 	return 0;
1268 }
1269 
1270 static void pci_restore_pcie_state(struct pci_dev *dev)
1271 {
1272 	int i = 0;
1273 	struct pci_cap_saved_state *save_state;
1274 	u16 *cap;
1275 
1276 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1277 	if (!save_state)
1278 		return;
1279 
1280 	cap = (u16 *)&save_state->cap.data[0];
1281 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1282 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1283 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1284 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1285 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1286 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1287 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1288 }
1289 
1290 static int pci_save_pcix_state(struct pci_dev *dev)
1291 {
1292 	int pos;
1293 	struct pci_cap_saved_state *save_state;
1294 
1295 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1296 	if (!pos)
1297 		return 0;
1298 
1299 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1300 	if (!save_state) {
1301 		pci_err(dev, "buffer not found in %s\n", __func__);
1302 		return -ENOMEM;
1303 	}
1304 
1305 	pci_read_config_word(dev, pos + PCI_X_CMD,
1306 			     (u16 *)save_state->cap.data);
1307 
1308 	return 0;
1309 }
1310 
1311 static void pci_restore_pcix_state(struct pci_dev *dev)
1312 {
1313 	int i = 0, pos;
1314 	struct pci_cap_saved_state *save_state;
1315 	u16 *cap;
1316 
1317 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1318 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1319 	if (!save_state || !pos)
1320 		return;
1321 	cap = (u16 *)&save_state->cap.data[0];
1322 
1323 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1324 }
1325 
1326 static void pci_save_ltr_state(struct pci_dev *dev)
1327 {
1328 	int ltr;
1329 	struct pci_cap_saved_state *save_state;
1330 	u16 *cap;
1331 
1332 	if (!pci_is_pcie(dev))
1333 		return;
1334 
1335 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1336 	if (!ltr)
1337 		return;
1338 
1339 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1340 	if (!save_state) {
1341 		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1342 		return;
1343 	}
1344 
1345 	cap = (u16 *)&save_state->cap.data[0];
1346 	pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1347 	pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1348 }
1349 
1350 static void pci_restore_ltr_state(struct pci_dev *dev)
1351 {
1352 	struct pci_cap_saved_state *save_state;
1353 	int ltr;
1354 	u16 *cap;
1355 
1356 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1357 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1358 	if (!save_state || !ltr)
1359 		return;
1360 
1361 	cap = (u16 *)&save_state->cap.data[0];
1362 	pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1363 	pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1364 }
1365 
1366 /**
1367  * pci_save_state - save the PCI configuration space of a device before
1368  *		    suspending
1369  * @dev: PCI device that we're dealing with
1370  */
1371 int pci_save_state(struct pci_dev *dev)
1372 {
1373 	int i;
1374 	/* XXX: 100% dword access ok here? */
1375 	for (i = 0; i < 16; i++)
1376 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1377 	dev->state_saved = true;
1378 
1379 	i = pci_save_pcie_state(dev);
1380 	if (i != 0)
1381 		return i;
1382 
1383 	i = pci_save_pcix_state(dev);
1384 	if (i != 0)
1385 		return i;
1386 
1387 	pci_save_ltr_state(dev);
1388 	pci_save_dpc_state(dev);
1389 	pci_save_aer_state(dev);
1390 	return pci_save_vc_state(dev);
1391 }
1392 EXPORT_SYMBOL(pci_save_state);
1393 
1394 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1395 				     u32 saved_val, int retry, bool force)
1396 {
1397 	u32 val;
1398 
1399 	pci_read_config_dword(pdev, offset, &val);
1400 	if (!force && val == saved_val)
1401 		return;
1402 
1403 	for (;;) {
1404 		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1405 			offset, val, saved_val);
1406 		pci_write_config_dword(pdev, offset, saved_val);
1407 		if (retry-- <= 0)
1408 			return;
1409 
1410 		pci_read_config_dword(pdev, offset, &val);
1411 		if (val == saved_val)
1412 			return;
1413 
1414 		mdelay(1);
1415 	}
1416 }
1417 
1418 static void pci_restore_config_space_range(struct pci_dev *pdev,
1419 					   int start, int end, int retry,
1420 					   bool force)
1421 {
1422 	int index;
1423 
1424 	for (index = end; index >= start; index--)
1425 		pci_restore_config_dword(pdev, 4 * index,
1426 					 pdev->saved_config_space[index],
1427 					 retry, force);
1428 }
1429 
1430 static void pci_restore_config_space(struct pci_dev *pdev)
1431 {
1432 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1433 		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1434 		/* Restore BARs before the command register. */
1435 		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1436 		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1437 	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1438 		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1439 
1440 		/*
1441 		 * Force rewriting of prefetch registers to avoid S3 resume
1442 		 * issues on Intel PCI bridges that occur when these
1443 		 * registers are not explicitly written.
1444 		 */
1445 		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1446 		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1447 	} else {
1448 		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1449 	}
1450 }
1451 
1452 static void pci_restore_rebar_state(struct pci_dev *pdev)
1453 {
1454 	unsigned int pos, nbars, i;
1455 	u32 ctrl;
1456 
1457 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1458 	if (!pos)
1459 		return;
1460 
1461 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1462 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1463 		    PCI_REBAR_CTRL_NBAR_SHIFT;
1464 
1465 	for (i = 0; i < nbars; i++, pos += 8) {
1466 		struct resource *res;
1467 		int bar_idx, size;
1468 
1469 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1470 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1471 		res = pdev->resource + bar_idx;
1472 		size = ilog2(resource_size(res)) - 20;
1473 		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1474 		ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1475 		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1476 	}
1477 }
1478 
1479 /**
1480  * pci_restore_state - Restore the saved state of a PCI device
1481  * @dev: PCI device that we're dealing with
1482  */
1483 void pci_restore_state(struct pci_dev *dev)
1484 {
1485 	if (!dev->state_saved)
1486 		return;
1487 
1488 	/*
1489 	 * Restore max latencies (in the LTR capability) before enabling
1490 	 * LTR itself (in the PCIe capability).
1491 	 */
1492 	pci_restore_ltr_state(dev);
1493 
1494 	pci_restore_pcie_state(dev);
1495 	pci_restore_pasid_state(dev);
1496 	pci_restore_pri_state(dev);
1497 	pci_restore_ats_state(dev);
1498 	pci_restore_vc_state(dev);
1499 	pci_restore_rebar_state(dev);
1500 	pci_restore_dpc_state(dev);
1501 
1502 	pci_cleanup_aer_error_status_regs(dev);
1503 	pci_restore_aer_state(dev);
1504 
1505 	pci_restore_config_space(dev);
1506 
1507 	pci_restore_pcix_state(dev);
1508 	pci_restore_msi_state(dev);
1509 
1510 	/* Restore ACS and IOV configuration state */
1511 	pci_enable_acs(dev);
1512 	pci_restore_iov_state(dev);
1513 
1514 	dev->state_saved = false;
1515 }
1516 EXPORT_SYMBOL(pci_restore_state);
1517 
1518 struct pci_saved_state {
1519 	u32 config_space[16];
1520 	struct pci_cap_saved_data cap[0];
1521 };
1522 
1523 /**
1524  * pci_store_saved_state - Allocate and return an opaque struct containing
1525  *			   the device saved state.
1526  * @dev: PCI device that we're dealing with
1527  *
1528  * Return NULL if no state or error.
1529  */
1530 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1531 {
1532 	struct pci_saved_state *state;
1533 	struct pci_cap_saved_state *tmp;
1534 	struct pci_cap_saved_data *cap;
1535 	size_t size;
1536 
1537 	if (!dev->state_saved)
1538 		return NULL;
1539 
1540 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1541 
1542 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1543 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1544 
1545 	state = kzalloc(size, GFP_KERNEL);
1546 	if (!state)
1547 		return NULL;
1548 
1549 	memcpy(state->config_space, dev->saved_config_space,
1550 	       sizeof(state->config_space));
1551 
1552 	cap = state->cap;
1553 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1554 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1555 		memcpy(cap, &tmp->cap, len);
1556 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1557 	}
1558 	/* Empty cap_save terminates list */
1559 
1560 	return state;
1561 }
1562 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1563 
1564 /**
1565  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1566  * @dev: PCI device that we're dealing with
1567  * @state: Saved state returned from pci_store_saved_state()
1568  */
1569 int pci_load_saved_state(struct pci_dev *dev,
1570 			 struct pci_saved_state *state)
1571 {
1572 	struct pci_cap_saved_data *cap;
1573 
1574 	dev->state_saved = false;
1575 
1576 	if (!state)
1577 		return 0;
1578 
1579 	memcpy(dev->saved_config_space, state->config_space,
1580 	       sizeof(state->config_space));
1581 
1582 	cap = state->cap;
1583 	while (cap->size) {
1584 		struct pci_cap_saved_state *tmp;
1585 
1586 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1587 		if (!tmp || tmp->cap.size != cap->size)
1588 			return -EINVAL;
1589 
1590 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1591 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1592 		       sizeof(struct pci_cap_saved_data) + cap->size);
1593 	}
1594 
1595 	dev->state_saved = true;
1596 	return 0;
1597 }
1598 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1599 
1600 /**
1601  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1602  *				   and free the memory allocated for it.
1603  * @dev: PCI device that we're dealing with
1604  * @state: Pointer to saved state returned from pci_store_saved_state()
1605  */
1606 int pci_load_and_free_saved_state(struct pci_dev *dev,
1607 				  struct pci_saved_state **state)
1608 {
1609 	int ret = pci_load_saved_state(dev, *state);
1610 	kfree(*state);
1611 	*state = NULL;
1612 	return ret;
1613 }
1614 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1615 
1616 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1617 {
1618 	return pci_enable_resources(dev, bars);
1619 }
1620 
1621 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1622 {
1623 	int err;
1624 	struct pci_dev *bridge;
1625 	u16 cmd;
1626 	u8 pin;
1627 
1628 	err = pci_set_power_state(dev, PCI_D0);
1629 	if (err < 0 && err != -EIO)
1630 		return err;
1631 
1632 	bridge = pci_upstream_bridge(dev);
1633 	if (bridge)
1634 		pcie_aspm_powersave_config_link(bridge);
1635 
1636 	err = pcibios_enable_device(dev, bars);
1637 	if (err < 0)
1638 		return err;
1639 	pci_fixup_device(pci_fixup_enable, dev);
1640 
1641 	if (dev->msi_enabled || dev->msix_enabled)
1642 		return 0;
1643 
1644 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1645 	if (pin) {
1646 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1647 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1648 			pci_write_config_word(dev, PCI_COMMAND,
1649 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1650 	}
1651 
1652 	return 0;
1653 }
1654 
1655 /**
1656  * pci_reenable_device - Resume abandoned device
1657  * @dev: PCI device to be resumed
1658  *
1659  * NOTE: This function is a backend of pci_default_resume() and is not supposed
1660  * to be called by normal code, write proper resume handler and use it instead.
1661  */
1662 int pci_reenable_device(struct pci_dev *dev)
1663 {
1664 	if (pci_is_enabled(dev))
1665 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1666 	return 0;
1667 }
1668 EXPORT_SYMBOL(pci_reenable_device);
1669 
1670 static void pci_enable_bridge(struct pci_dev *dev)
1671 {
1672 	struct pci_dev *bridge;
1673 	int retval;
1674 
1675 	bridge = pci_upstream_bridge(dev);
1676 	if (bridge)
1677 		pci_enable_bridge(bridge);
1678 
1679 	if (pci_is_enabled(dev)) {
1680 		if (!dev->is_busmaster)
1681 			pci_set_master(dev);
1682 		return;
1683 	}
1684 
1685 	retval = pci_enable_device(dev);
1686 	if (retval)
1687 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
1688 			retval);
1689 	pci_set_master(dev);
1690 }
1691 
1692 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1693 {
1694 	struct pci_dev *bridge;
1695 	int err;
1696 	int i, bars = 0;
1697 
1698 	/*
1699 	 * Power state could be unknown at this point, either due to a fresh
1700 	 * boot or a device removal call.  So get the current power state
1701 	 * so that things like MSI message writing will behave as expected
1702 	 * (e.g. if the device really is in D0 at enable time).
1703 	 */
1704 	if (dev->pm_cap) {
1705 		u16 pmcsr;
1706 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1707 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1708 	}
1709 
1710 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1711 		return 0;		/* already enabled */
1712 
1713 	bridge = pci_upstream_bridge(dev);
1714 	if (bridge)
1715 		pci_enable_bridge(bridge);
1716 
1717 	/* only skip sriov related */
1718 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1719 		if (dev->resource[i].flags & flags)
1720 			bars |= (1 << i);
1721 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1722 		if (dev->resource[i].flags & flags)
1723 			bars |= (1 << i);
1724 
1725 	err = do_pci_enable_device(dev, bars);
1726 	if (err < 0)
1727 		atomic_dec(&dev->enable_cnt);
1728 	return err;
1729 }
1730 
1731 /**
1732  * pci_enable_device_io - Initialize a device for use with IO space
1733  * @dev: PCI device to be initialized
1734  *
1735  * Initialize device before it's used by a driver. Ask low-level code
1736  * to enable I/O resources. Wake up the device if it was suspended.
1737  * Beware, this function can fail.
1738  */
1739 int pci_enable_device_io(struct pci_dev *dev)
1740 {
1741 	return pci_enable_device_flags(dev, IORESOURCE_IO);
1742 }
1743 EXPORT_SYMBOL(pci_enable_device_io);
1744 
1745 /**
1746  * pci_enable_device_mem - Initialize a device for use with Memory space
1747  * @dev: PCI device to be initialized
1748  *
1749  * Initialize device before it's used by a driver. Ask low-level code
1750  * to enable Memory resources. Wake up the device if it was suspended.
1751  * Beware, this function can fail.
1752  */
1753 int pci_enable_device_mem(struct pci_dev *dev)
1754 {
1755 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1756 }
1757 EXPORT_SYMBOL(pci_enable_device_mem);
1758 
1759 /**
1760  * pci_enable_device - Initialize device before it's used by a driver.
1761  * @dev: PCI device to be initialized
1762  *
1763  * Initialize device before it's used by a driver. Ask low-level code
1764  * to enable I/O and memory. Wake up the device if it was suspended.
1765  * Beware, this function can fail.
1766  *
1767  * Note we don't actually enable the device many times if we call
1768  * this function repeatedly (we just increment the count).
1769  */
1770 int pci_enable_device(struct pci_dev *dev)
1771 {
1772 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1773 }
1774 EXPORT_SYMBOL(pci_enable_device);
1775 
1776 /*
1777  * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
1778  * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
1779  * there's no need to track it separately.  pci_devres is initialized
1780  * when a device is enabled using managed PCI device enable interface.
1781  */
1782 struct pci_devres {
1783 	unsigned int enabled:1;
1784 	unsigned int pinned:1;
1785 	unsigned int orig_intx:1;
1786 	unsigned int restore_intx:1;
1787 	unsigned int mwi:1;
1788 	u32 region_mask;
1789 };
1790 
1791 static void pcim_release(struct device *gendev, void *res)
1792 {
1793 	struct pci_dev *dev = to_pci_dev(gendev);
1794 	struct pci_devres *this = res;
1795 	int i;
1796 
1797 	if (dev->msi_enabled)
1798 		pci_disable_msi(dev);
1799 	if (dev->msix_enabled)
1800 		pci_disable_msix(dev);
1801 
1802 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1803 		if (this->region_mask & (1 << i))
1804 			pci_release_region(dev, i);
1805 
1806 	if (this->mwi)
1807 		pci_clear_mwi(dev);
1808 
1809 	if (this->restore_intx)
1810 		pci_intx(dev, this->orig_intx);
1811 
1812 	if (this->enabled && !this->pinned)
1813 		pci_disable_device(dev);
1814 }
1815 
1816 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1817 {
1818 	struct pci_devres *dr, *new_dr;
1819 
1820 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1821 	if (dr)
1822 		return dr;
1823 
1824 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1825 	if (!new_dr)
1826 		return NULL;
1827 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1828 }
1829 
1830 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1831 {
1832 	if (pci_is_managed(pdev))
1833 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1834 	return NULL;
1835 }
1836 
1837 /**
1838  * pcim_enable_device - Managed pci_enable_device()
1839  * @pdev: PCI device to be initialized
1840  *
1841  * Managed pci_enable_device().
1842  */
1843 int pcim_enable_device(struct pci_dev *pdev)
1844 {
1845 	struct pci_devres *dr;
1846 	int rc;
1847 
1848 	dr = get_pci_dr(pdev);
1849 	if (unlikely(!dr))
1850 		return -ENOMEM;
1851 	if (dr->enabled)
1852 		return 0;
1853 
1854 	rc = pci_enable_device(pdev);
1855 	if (!rc) {
1856 		pdev->is_managed = 1;
1857 		dr->enabled = 1;
1858 	}
1859 	return rc;
1860 }
1861 EXPORT_SYMBOL(pcim_enable_device);
1862 
1863 /**
1864  * pcim_pin_device - Pin managed PCI device
1865  * @pdev: PCI device to pin
1866  *
1867  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1868  * driver detach.  @pdev must have been enabled with
1869  * pcim_enable_device().
1870  */
1871 void pcim_pin_device(struct pci_dev *pdev)
1872 {
1873 	struct pci_devres *dr;
1874 
1875 	dr = find_pci_dr(pdev);
1876 	WARN_ON(!dr || !dr->enabled);
1877 	if (dr)
1878 		dr->pinned = 1;
1879 }
1880 EXPORT_SYMBOL(pcim_pin_device);
1881 
1882 /*
1883  * pcibios_add_device - provide arch specific hooks when adding device dev
1884  * @dev: the PCI device being added
1885  *
1886  * Permits the platform to provide architecture specific functionality when
1887  * devices are added. This is the default implementation. Architecture
1888  * implementations can override this.
1889  */
1890 int __weak pcibios_add_device(struct pci_dev *dev)
1891 {
1892 	return 0;
1893 }
1894 
1895 /**
1896  * pcibios_release_device - provide arch specific hooks when releasing
1897  *			    device dev
1898  * @dev: the PCI device being released
1899  *
1900  * Permits the platform to provide architecture specific functionality when
1901  * devices are released. This is the default implementation. Architecture
1902  * implementations can override this.
1903  */
1904 void __weak pcibios_release_device(struct pci_dev *dev) {}
1905 
1906 /**
1907  * pcibios_disable_device - disable arch specific PCI resources for device dev
1908  * @dev: the PCI device to disable
1909  *
1910  * Disables architecture specific PCI resources for the device. This
1911  * is the default implementation. Architecture implementations can
1912  * override this.
1913  */
1914 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1915 
1916 /**
1917  * pcibios_penalize_isa_irq - penalize an ISA IRQ
1918  * @irq: ISA IRQ to penalize
1919  * @active: IRQ active or not
1920  *
1921  * Permits the platform to provide architecture-specific functionality when
1922  * penalizing ISA IRQs. This is the default implementation. Architecture
1923  * implementations can override this.
1924  */
1925 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1926 
1927 static void do_pci_disable_device(struct pci_dev *dev)
1928 {
1929 	u16 pci_command;
1930 
1931 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1932 	if (pci_command & PCI_COMMAND_MASTER) {
1933 		pci_command &= ~PCI_COMMAND_MASTER;
1934 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1935 	}
1936 
1937 	pcibios_disable_device(dev);
1938 }
1939 
1940 /**
1941  * pci_disable_enabled_device - Disable device without updating enable_cnt
1942  * @dev: PCI device to disable
1943  *
1944  * NOTE: This function is a backend of PCI power management routines and is
1945  * not supposed to be called drivers.
1946  */
1947 void pci_disable_enabled_device(struct pci_dev *dev)
1948 {
1949 	if (pci_is_enabled(dev))
1950 		do_pci_disable_device(dev);
1951 }
1952 
1953 /**
1954  * pci_disable_device - Disable PCI device after use
1955  * @dev: PCI device to be disabled
1956  *
1957  * Signal to the system that the PCI device is not in use by the system
1958  * anymore.  This only involves disabling PCI bus-mastering, if active.
1959  *
1960  * Note we don't actually disable the device until all callers of
1961  * pci_enable_device() have called pci_disable_device().
1962  */
1963 void pci_disable_device(struct pci_dev *dev)
1964 {
1965 	struct pci_devres *dr;
1966 
1967 	dr = find_pci_dr(dev);
1968 	if (dr)
1969 		dr->enabled = 0;
1970 
1971 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1972 		      "disabling already-disabled device");
1973 
1974 	if (atomic_dec_return(&dev->enable_cnt) != 0)
1975 		return;
1976 
1977 	do_pci_disable_device(dev);
1978 
1979 	dev->is_busmaster = 0;
1980 }
1981 EXPORT_SYMBOL(pci_disable_device);
1982 
1983 /**
1984  * pcibios_set_pcie_reset_state - set reset state for device dev
1985  * @dev: the PCIe device reset
1986  * @state: Reset state to enter into
1987  *
1988  * Set the PCIe reset state for the device. This is the default
1989  * implementation. Architecture implementations can override this.
1990  */
1991 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1992 					enum pcie_reset_state state)
1993 {
1994 	return -EINVAL;
1995 }
1996 
1997 /**
1998  * pci_set_pcie_reset_state - set reset state for device dev
1999  * @dev: the PCIe device reset
2000  * @state: Reset state to enter into
2001  *
2002  * Sets the PCI reset state for the device.
2003  */
2004 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2005 {
2006 	return pcibios_set_pcie_reset_state(dev, state);
2007 }
2008 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2009 
2010 /**
2011  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2012  * @dev: PCIe root port or event collector.
2013  */
2014 void pcie_clear_root_pme_status(struct pci_dev *dev)
2015 {
2016 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2017 }
2018 
2019 /**
2020  * pci_check_pme_status - Check if given device has generated PME.
2021  * @dev: Device to check.
2022  *
2023  * Check the PME status of the device and if set, clear it and clear PME enable
2024  * (if set).  Return 'true' if PME status and PME enable were both set or
2025  * 'false' otherwise.
2026  */
2027 bool pci_check_pme_status(struct pci_dev *dev)
2028 {
2029 	int pmcsr_pos;
2030 	u16 pmcsr;
2031 	bool ret = false;
2032 
2033 	if (!dev->pm_cap)
2034 		return false;
2035 
2036 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2037 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2038 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2039 		return false;
2040 
2041 	/* Clear PME status. */
2042 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2043 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2044 		/* Disable PME to avoid interrupt flood. */
2045 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2046 		ret = true;
2047 	}
2048 
2049 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2050 
2051 	return ret;
2052 }
2053 
2054 /**
2055  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2056  * @dev: Device to handle.
2057  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2058  *
2059  * Check if @dev has generated PME and queue a resume request for it in that
2060  * case.
2061  */
2062 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2063 {
2064 	if (pme_poll_reset && dev->pme_poll)
2065 		dev->pme_poll = false;
2066 
2067 	if (pci_check_pme_status(dev)) {
2068 		pci_wakeup_event(dev);
2069 		pm_request_resume(&dev->dev);
2070 	}
2071 	return 0;
2072 }
2073 
2074 /**
2075  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2076  * @bus: Top bus of the subtree to walk.
2077  */
2078 void pci_pme_wakeup_bus(struct pci_bus *bus)
2079 {
2080 	if (bus)
2081 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2082 }
2083 
2084 
2085 /**
2086  * pci_pme_capable - check the capability of PCI device to generate PME#
2087  * @dev: PCI device to handle.
2088  * @state: PCI state from which device will issue PME#.
2089  */
2090 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2091 {
2092 	if (!dev->pm_cap)
2093 		return false;
2094 
2095 	return !!(dev->pme_support & (1 << state));
2096 }
2097 EXPORT_SYMBOL(pci_pme_capable);
2098 
2099 static void pci_pme_list_scan(struct work_struct *work)
2100 {
2101 	struct pci_pme_device *pme_dev, *n;
2102 
2103 	mutex_lock(&pci_pme_list_mutex);
2104 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2105 		if (pme_dev->dev->pme_poll) {
2106 			struct pci_dev *bridge;
2107 
2108 			bridge = pme_dev->dev->bus->self;
2109 			/*
2110 			 * If bridge is in low power state, the
2111 			 * configuration space of subordinate devices
2112 			 * may be not accessible
2113 			 */
2114 			if (bridge && bridge->current_state != PCI_D0)
2115 				continue;
2116 			/*
2117 			 * If the device is in D3cold it should not be
2118 			 * polled either.
2119 			 */
2120 			if (pme_dev->dev->current_state == PCI_D3cold)
2121 				continue;
2122 
2123 			pci_pme_wakeup(pme_dev->dev, NULL);
2124 		} else {
2125 			list_del(&pme_dev->list);
2126 			kfree(pme_dev);
2127 		}
2128 	}
2129 	if (!list_empty(&pci_pme_list))
2130 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2131 				   msecs_to_jiffies(PME_TIMEOUT));
2132 	mutex_unlock(&pci_pme_list_mutex);
2133 }
2134 
2135 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2136 {
2137 	u16 pmcsr;
2138 
2139 	if (!dev->pme_support)
2140 		return;
2141 
2142 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2143 	/* Clear PME_Status by writing 1 to it and enable PME# */
2144 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2145 	if (!enable)
2146 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2147 
2148 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2149 }
2150 
2151 /**
2152  * pci_pme_restore - Restore PME configuration after config space restore.
2153  * @dev: PCI device to update.
2154  */
2155 void pci_pme_restore(struct pci_dev *dev)
2156 {
2157 	u16 pmcsr;
2158 
2159 	if (!dev->pme_support)
2160 		return;
2161 
2162 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2163 	if (dev->wakeup_prepared) {
2164 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2165 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2166 	} else {
2167 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2168 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2169 	}
2170 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2171 }
2172 
2173 /**
2174  * pci_pme_active - enable or disable PCI device's PME# function
2175  * @dev: PCI device to handle.
2176  * @enable: 'true' to enable PME# generation; 'false' to disable it.
2177  *
2178  * The caller must verify that the device is capable of generating PME# before
2179  * calling this function with @enable equal to 'true'.
2180  */
2181 void pci_pme_active(struct pci_dev *dev, bool enable)
2182 {
2183 	__pci_pme_active(dev, enable);
2184 
2185 	/*
2186 	 * PCI (as opposed to PCIe) PME requires that the device have
2187 	 * its PME# line hooked up correctly. Not all hardware vendors
2188 	 * do this, so the PME never gets delivered and the device
2189 	 * remains asleep. The easiest way around this is to
2190 	 * periodically walk the list of suspended devices and check
2191 	 * whether any have their PME flag set. The assumption is that
2192 	 * we'll wake up often enough anyway that this won't be a huge
2193 	 * hit, and the power savings from the devices will still be a
2194 	 * win.
2195 	 *
2196 	 * Although PCIe uses in-band PME message instead of PME# line
2197 	 * to report PME, PME does not work for some PCIe devices in
2198 	 * reality.  For example, there are devices that set their PME
2199 	 * status bits, but don't really bother to send a PME message;
2200 	 * there are PCI Express Root Ports that don't bother to
2201 	 * trigger interrupts when they receive PME messages from the
2202 	 * devices below.  So PME poll is used for PCIe devices too.
2203 	 */
2204 
2205 	if (dev->pme_poll) {
2206 		struct pci_pme_device *pme_dev;
2207 		if (enable) {
2208 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2209 					  GFP_KERNEL);
2210 			if (!pme_dev) {
2211 				pci_warn(dev, "can't enable PME#\n");
2212 				return;
2213 			}
2214 			pme_dev->dev = dev;
2215 			mutex_lock(&pci_pme_list_mutex);
2216 			list_add(&pme_dev->list, &pci_pme_list);
2217 			if (list_is_singular(&pci_pme_list))
2218 				queue_delayed_work(system_freezable_wq,
2219 						   &pci_pme_work,
2220 						   msecs_to_jiffies(PME_TIMEOUT));
2221 			mutex_unlock(&pci_pme_list_mutex);
2222 		} else {
2223 			mutex_lock(&pci_pme_list_mutex);
2224 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2225 				if (pme_dev->dev == dev) {
2226 					list_del(&pme_dev->list);
2227 					kfree(pme_dev);
2228 					break;
2229 				}
2230 			}
2231 			mutex_unlock(&pci_pme_list_mutex);
2232 		}
2233 	}
2234 
2235 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2236 }
2237 EXPORT_SYMBOL(pci_pme_active);
2238 
2239 /**
2240  * __pci_enable_wake - enable PCI device as wakeup event source
2241  * @dev: PCI device affected
2242  * @state: PCI state from which device will issue wakeup events
2243  * @enable: True to enable event generation; false to disable
2244  *
2245  * This enables the device as a wakeup event source, or disables it.
2246  * When such events involves platform-specific hooks, those hooks are
2247  * called automatically by this routine.
2248  *
2249  * Devices with legacy power management (no standard PCI PM capabilities)
2250  * always require such platform hooks.
2251  *
2252  * RETURN VALUE:
2253  * 0 is returned on success
2254  * -EINVAL is returned if device is not supposed to wake up the system
2255  * Error code depending on the platform is returned if both the platform and
2256  * the native mechanism fail to enable the generation of wake-up events
2257  */
2258 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2259 {
2260 	int ret = 0;
2261 
2262 	/*
2263 	 * Bridges that are not power-manageable directly only signal
2264 	 * wakeup on behalf of subordinate devices which is set up
2265 	 * elsewhere, so skip them. However, bridges that are
2266 	 * power-manageable may signal wakeup for themselves (for example,
2267 	 * on a hotplug event) and they need to be covered here.
2268 	 */
2269 	if (!pci_power_manageable(dev))
2270 		return 0;
2271 
2272 	/* Don't do the same thing twice in a row for one device. */
2273 	if (!!enable == !!dev->wakeup_prepared)
2274 		return 0;
2275 
2276 	/*
2277 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2278 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2279 	 * enable.  To disable wake-up we call the platform first, for symmetry.
2280 	 */
2281 
2282 	if (enable) {
2283 		int error;
2284 
2285 		if (pci_pme_capable(dev, state))
2286 			pci_pme_active(dev, true);
2287 		else
2288 			ret = 1;
2289 		error = platform_pci_set_wakeup(dev, true);
2290 		if (ret)
2291 			ret = error;
2292 		if (!ret)
2293 			dev->wakeup_prepared = true;
2294 	} else {
2295 		platform_pci_set_wakeup(dev, false);
2296 		pci_pme_active(dev, false);
2297 		dev->wakeup_prepared = false;
2298 	}
2299 
2300 	return ret;
2301 }
2302 
2303 /**
2304  * pci_enable_wake - change wakeup settings for a PCI device
2305  * @pci_dev: Target device
2306  * @state: PCI state from which device will issue wakeup events
2307  * @enable: Whether or not to enable event generation
2308  *
2309  * If @enable is set, check device_may_wakeup() for the device before calling
2310  * __pci_enable_wake() for it.
2311  */
2312 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2313 {
2314 	if (enable && !device_may_wakeup(&pci_dev->dev))
2315 		return -EINVAL;
2316 
2317 	return __pci_enable_wake(pci_dev, state, enable);
2318 }
2319 EXPORT_SYMBOL(pci_enable_wake);
2320 
2321 /**
2322  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2323  * @dev: PCI device to prepare
2324  * @enable: True to enable wake-up event generation; false to disable
2325  *
2326  * Many drivers want the device to wake up the system from D3_hot or D3_cold
2327  * and this function allows them to set that up cleanly - pci_enable_wake()
2328  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2329  * ordering constraints.
2330  *
2331  * This function only returns error code if the device is not allowed to wake
2332  * up the system from sleep or it is not capable of generating PME# from both
2333  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2334  */
2335 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2336 {
2337 	return pci_pme_capable(dev, PCI_D3cold) ?
2338 			pci_enable_wake(dev, PCI_D3cold, enable) :
2339 			pci_enable_wake(dev, PCI_D3hot, enable);
2340 }
2341 EXPORT_SYMBOL(pci_wake_from_d3);
2342 
2343 /**
2344  * pci_target_state - find an appropriate low power state for a given PCI dev
2345  * @dev: PCI device
2346  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2347  *
2348  * Use underlying platform code to find a supported low power state for @dev.
2349  * If the platform can't manage @dev, return the deepest state from which it
2350  * can generate wake events, based on any available PME info.
2351  */
2352 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2353 {
2354 	pci_power_t target_state = PCI_D3hot;
2355 
2356 	if (platform_pci_power_manageable(dev)) {
2357 		/*
2358 		 * Call the platform to find the target state for the device.
2359 		 */
2360 		pci_power_t state = platform_pci_choose_state(dev);
2361 
2362 		switch (state) {
2363 		case PCI_POWER_ERROR:
2364 		case PCI_UNKNOWN:
2365 			break;
2366 		case PCI_D1:
2367 		case PCI_D2:
2368 			if (pci_no_d1d2(dev))
2369 				break;
2370 			/* else, fall through */
2371 		default:
2372 			target_state = state;
2373 		}
2374 
2375 		return target_state;
2376 	}
2377 
2378 	if (!dev->pm_cap)
2379 		target_state = PCI_D0;
2380 
2381 	/*
2382 	 * If the device is in D3cold even though it's not power-manageable by
2383 	 * the platform, it may have been powered down by non-standard means.
2384 	 * Best to let it slumber.
2385 	 */
2386 	if (dev->current_state == PCI_D3cold)
2387 		target_state = PCI_D3cold;
2388 
2389 	if (wakeup) {
2390 		/*
2391 		 * Find the deepest state from which the device can generate
2392 		 * PME#.
2393 		 */
2394 		if (dev->pme_support) {
2395 			while (target_state
2396 			      && !(dev->pme_support & (1 << target_state)))
2397 				target_state--;
2398 		}
2399 	}
2400 
2401 	return target_state;
2402 }
2403 
2404 /**
2405  * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2406  *			  into a sleep state
2407  * @dev: Device to handle.
2408  *
2409  * Choose the power state appropriate for the device depending on whether
2410  * it can wake up the system and/or is power manageable by the platform
2411  * (PCI_D3hot is the default) and put the device into that state.
2412  */
2413 int pci_prepare_to_sleep(struct pci_dev *dev)
2414 {
2415 	bool wakeup = device_may_wakeup(&dev->dev);
2416 	pci_power_t target_state = pci_target_state(dev, wakeup);
2417 	int error;
2418 
2419 	if (target_state == PCI_POWER_ERROR)
2420 		return -EIO;
2421 
2422 	pci_enable_wake(dev, target_state, wakeup);
2423 
2424 	error = pci_set_power_state(dev, target_state);
2425 
2426 	if (error)
2427 		pci_enable_wake(dev, target_state, false);
2428 
2429 	return error;
2430 }
2431 EXPORT_SYMBOL(pci_prepare_to_sleep);
2432 
2433 /**
2434  * pci_back_from_sleep - turn PCI device on during system-wide transition
2435  *			 into working state
2436  * @dev: Device to handle.
2437  *
2438  * Disable device's system wake-up capability and put it into D0.
2439  */
2440 int pci_back_from_sleep(struct pci_dev *dev)
2441 {
2442 	pci_enable_wake(dev, PCI_D0, false);
2443 	return pci_set_power_state(dev, PCI_D0);
2444 }
2445 EXPORT_SYMBOL(pci_back_from_sleep);
2446 
2447 /**
2448  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2449  * @dev: PCI device being suspended.
2450  *
2451  * Prepare @dev to generate wake-up events at run time and put it into a low
2452  * power state.
2453  */
2454 int pci_finish_runtime_suspend(struct pci_dev *dev)
2455 {
2456 	pci_power_t target_state;
2457 	int error;
2458 
2459 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2460 	if (target_state == PCI_POWER_ERROR)
2461 		return -EIO;
2462 
2463 	dev->runtime_d3cold = target_state == PCI_D3cold;
2464 
2465 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2466 
2467 	error = pci_set_power_state(dev, target_state);
2468 
2469 	if (error) {
2470 		pci_enable_wake(dev, target_state, false);
2471 		dev->runtime_d3cold = false;
2472 	}
2473 
2474 	return error;
2475 }
2476 
2477 /**
2478  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2479  * @dev: Device to check.
2480  *
2481  * Return true if the device itself is capable of generating wake-up events
2482  * (through the platform or using the native PCIe PME) or if the device supports
2483  * PME and one of its upstream bridges can generate wake-up events.
2484  */
2485 bool pci_dev_run_wake(struct pci_dev *dev)
2486 {
2487 	struct pci_bus *bus = dev->bus;
2488 
2489 	if (!dev->pme_support)
2490 		return false;
2491 
2492 	/* PME-capable in principle, but not from the target power state */
2493 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2494 		return false;
2495 
2496 	if (device_can_wakeup(&dev->dev))
2497 		return true;
2498 
2499 	while (bus->parent) {
2500 		struct pci_dev *bridge = bus->self;
2501 
2502 		if (device_can_wakeup(&bridge->dev))
2503 			return true;
2504 
2505 		bus = bus->parent;
2506 	}
2507 
2508 	/* We have reached the root bus. */
2509 	if (bus->bridge)
2510 		return device_can_wakeup(bus->bridge);
2511 
2512 	return false;
2513 }
2514 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2515 
2516 /**
2517  * pci_dev_need_resume - Check if it is necessary to resume the device.
2518  * @pci_dev: Device to check.
2519  *
2520  * Return 'true' if the device is not runtime-suspended or it has to be
2521  * reconfigured due to wakeup settings difference between system and runtime
2522  * suspend, or the current power state of it is not suitable for the upcoming
2523  * (system-wide) transition.
2524  */
2525 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2526 {
2527 	struct device *dev = &pci_dev->dev;
2528 	pci_power_t target_state;
2529 
2530 	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2531 		return true;
2532 
2533 	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2534 
2535 	/*
2536 	 * If the earlier platform check has not triggered, D3cold is just power
2537 	 * removal on top of D3hot, so no need to resume the device in that
2538 	 * case.
2539 	 */
2540 	return target_state != pci_dev->current_state &&
2541 		target_state != PCI_D3cold &&
2542 		pci_dev->current_state != PCI_D3hot;
2543 }
2544 
2545 /**
2546  * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2547  * @pci_dev: Device to check.
2548  *
2549  * If the device is suspended and it is not configured for system wakeup,
2550  * disable PME for it to prevent it from waking up the system unnecessarily.
2551  *
2552  * Note that if the device's power state is D3cold and the platform check in
2553  * pci_dev_need_resume() has not triggered, the device's configuration need not
2554  * be changed.
2555  */
2556 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2557 {
2558 	struct device *dev = &pci_dev->dev;
2559 
2560 	spin_lock_irq(&dev->power.lock);
2561 
2562 	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2563 	    pci_dev->current_state < PCI_D3cold)
2564 		__pci_pme_active(pci_dev, false);
2565 
2566 	spin_unlock_irq(&dev->power.lock);
2567 }
2568 
2569 /**
2570  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2571  * @pci_dev: Device to handle.
2572  *
2573  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2574  * it might have been disabled during the prepare phase of system suspend if
2575  * the device was not configured for system wakeup.
2576  */
2577 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2578 {
2579 	struct device *dev = &pci_dev->dev;
2580 
2581 	if (!pci_dev_run_wake(pci_dev))
2582 		return;
2583 
2584 	spin_lock_irq(&dev->power.lock);
2585 
2586 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2587 		__pci_pme_active(pci_dev, true);
2588 
2589 	spin_unlock_irq(&dev->power.lock);
2590 }
2591 
2592 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2593 {
2594 	struct device *dev = &pdev->dev;
2595 	struct device *parent = dev->parent;
2596 
2597 	if (parent)
2598 		pm_runtime_get_sync(parent);
2599 	pm_runtime_get_noresume(dev);
2600 	/*
2601 	 * pdev->current_state is set to PCI_D3cold during suspending,
2602 	 * so wait until suspending completes
2603 	 */
2604 	pm_runtime_barrier(dev);
2605 	/*
2606 	 * Only need to resume devices in D3cold, because config
2607 	 * registers are still accessible for devices suspended but
2608 	 * not in D3cold.
2609 	 */
2610 	if (pdev->current_state == PCI_D3cold)
2611 		pm_runtime_resume(dev);
2612 }
2613 
2614 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2615 {
2616 	struct device *dev = &pdev->dev;
2617 	struct device *parent = dev->parent;
2618 
2619 	pm_runtime_put(dev);
2620 	if (parent)
2621 		pm_runtime_put_sync(parent);
2622 }
2623 
2624 static const struct dmi_system_id bridge_d3_blacklist[] = {
2625 #ifdef CONFIG_X86
2626 	{
2627 		/*
2628 		 * Gigabyte X299 root port is not marked as hotplug capable
2629 		 * which allows Linux to power manage it.  However, this
2630 		 * confuses the BIOS SMI handler so don't power manage root
2631 		 * ports on that system.
2632 		 */
2633 		.ident = "X299 DESIGNARE EX-CF",
2634 		.matches = {
2635 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2636 			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2637 		},
2638 	},
2639 #endif
2640 	{ }
2641 };
2642 
2643 /**
2644  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2645  * @bridge: Bridge to check
2646  *
2647  * This function checks if it is possible to move the bridge to D3.
2648  * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2649  */
2650 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2651 {
2652 	if (!pci_is_pcie(bridge))
2653 		return false;
2654 
2655 	switch (pci_pcie_type(bridge)) {
2656 	case PCI_EXP_TYPE_ROOT_PORT:
2657 	case PCI_EXP_TYPE_UPSTREAM:
2658 	case PCI_EXP_TYPE_DOWNSTREAM:
2659 		if (pci_bridge_d3_disable)
2660 			return false;
2661 
2662 		/*
2663 		 * Hotplug ports handled by firmware in System Management Mode
2664 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2665 		 */
2666 		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2667 			return false;
2668 
2669 		if (pci_bridge_d3_force)
2670 			return true;
2671 
2672 		/* Even the oldest 2010 Thunderbolt controller supports D3. */
2673 		if (bridge->is_thunderbolt)
2674 			return true;
2675 
2676 		/* Platform might know better if the bridge supports D3 */
2677 		if (platform_pci_bridge_d3(bridge))
2678 			return true;
2679 
2680 		/*
2681 		 * Hotplug ports handled natively by the OS were not validated
2682 		 * by vendors for runtime D3 at least until 2018 because there
2683 		 * was no OS support.
2684 		 */
2685 		if (bridge->is_hotplug_bridge)
2686 			return false;
2687 
2688 		if (dmi_check_system(bridge_d3_blacklist))
2689 			return false;
2690 
2691 		/*
2692 		 * It should be safe to put PCIe ports from 2015 or newer
2693 		 * to D3.
2694 		 */
2695 		if (dmi_get_bios_year() >= 2015)
2696 			return true;
2697 		break;
2698 	}
2699 
2700 	return false;
2701 }
2702 
2703 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2704 {
2705 	bool *d3cold_ok = data;
2706 
2707 	if (/* The device needs to be allowed to go D3cold ... */
2708 	    dev->no_d3cold || !dev->d3cold_allowed ||
2709 
2710 	    /* ... and if it is wakeup capable to do so from D3cold. */
2711 	    (device_may_wakeup(&dev->dev) &&
2712 	     !pci_pme_capable(dev, PCI_D3cold)) ||
2713 
2714 	    /* If it is a bridge it must be allowed to go to D3. */
2715 	    !pci_power_manageable(dev))
2716 
2717 		*d3cold_ok = false;
2718 
2719 	return !*d3cold_ok;
2720 }
2721 
2722 /*
2723  * pci_bridge_d3_update - Update bridge D3 capabilities
2724  * @dev: PCI device which is changed
2725  *
2726  * Update upstream bridge PM capabilities accordingly depending on if the
2727  * device PM configuration was changed or the device is being removed.  The
2728  * change is also propagated upstream.
2729  */
2730 void pci_bridge_d3_update(struct pci_dev *dev)
2731 {
2732 	bool remove = !device_is_registered(&dev->dev);
2733 	struct pci_dev *bridge;
2734 	bool d3cold_ok = true;
2735 
2736 	bridge = pci_upstream_bridge(dev);
2737 	if (!bridge || !pci_bridge_d3_possible(bridge))
2738 		return;
2739 
2740 	/*
2741 	 * If D3 is currently allowed for the bridge, removing one of its
2742 	 * children won't change that.
2743 	 */
2744 	if (remove && bridge->bridge_d3)
2745 		return;
2746 
2747 	/*
2748 	 * If D3 is currently allowed for the bridge and a child is added or
2749 	 * changed, disallowance of D3 can only be caused by that child, so
2750 	 * we only need to check that single device, not any of its siblings.
2751 	 *
2752 	 * If D3 is currently not allowed for the bridge, checking the device
2753 	 * first may allow us to skip checking its siblings.
2754 	 */
2755 	if (!remove)
2756 		pci_dev_check_d3cold(dev, &d3cold_ok);
2757 
2758 	/*
2759 	 * If D3 is currently not allowed for the bridge, this may be caused
2760 	 * either by the device being changed/removed or any of its siblings,
2761 	 * so we need to go through all children to find out if one of them
2762 	 * continues to block D3.
2763 	 */
2764 	if (d3cold_ok && !bridge->bridge_d3)
2765 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2766 			     &d3cold_ok);
2767 
2768 	if (bridge->bridge_d3 != d3cold_ok) {
2769 		bridge->bridge_d3 = d3cold_ok;
2770 		/* Propagate change to upstream bridges */
2771 		pci_bridge_d3_update(bridge);
2772 	}
2773 }
2774 
2775 /**
2776  * pci_d3cold_enable - Enable D3cold for device
2777  * @dev: PCI device to handle
2778  *
2779  * This function can be used in drivers to enable D3cold from the device
2780  * they handle.  It also updates upstream PCI bridge PM capabilities
2781  * accordingly.
2782  */
2783 void pci_d3cold_enable(struct pci_dev *dev)
2784 {
2785 	if (dev->no_d3cold) {
2786 		dev->no_d3cold = false;
2787 		pci_bridge_d3_update(dev);
2788 	}
2789 }
2790 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2791 
2792 /**
2793  * pci_d3cold_disable - Disable D3cold for device
2794  * @dev: PCI device to handle
2795  *
2796  * This function can be used in drivers to disable D3cold from the device
2797  * they handle.  It also updates upstream PCI bridge PM capabilities
2798  * accordingly.
2799  */
2800 void pci_d3cold_disable(struct pci_dev *dev)
2801 {
2802 	if (!dev->no_d3cold) {
2803 		dev->no_d3cold = true;
2804 		pci_bridge_d3_update(dev);
2805 	}
2806 }
2807 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2808 
2809 /**
2810  * pci_pm_init - Initialize PM functions of given PCI device
2811  * @dev: PCI device to handle.
2812  */
2813 void pci_pm_init(struct pci_dev *dev)
2814 {
2815 	int pm;
2816 	u16 status;
2817 	u16 pmc;
2818 
2819 	pm_runtime_forbid(&dev->dev);
2820 	pm_runtime_set_active(&dev->dev);
2821 	pm_runtime_enable(&dev->dev);
2822 	device_enable_async_suspend(&dev->dev);
2823 	dev->wakeup_prepared = false;
2824 
2825 	dev->pm_cap = 0;
2826 	dev->pme_support = 0;
2827 
2828 	/* find PCI PM capability in list */
2829 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2830 	if (!pm)
2831 		return;
2832 	/* Check device's ability to generate PME# */
2833 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2834 
2835 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2836 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
2837 			pmc & PCI_PM_CAP_VER_MASK);
2838 		return;
2839 	}
2840 
2841 	dev->pm_cap = pm;
2842 	dev->d3_delay = PCI_PM_D3_WAIT;
2843 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2844 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
2845 	dev->d3cold_allowed = true;
2846 
2847 	dev->d1_support = false;
2848 	dev->d2_support = false;
2849 	if (!pci_no_d1d2(dev)) {
2850 		if (pmc & PCI_PM_CAP_D1)
2851 			dev->d1_support = true;
2852 		if (pmc & PCI_PM_CAP_D2)
2853 			dev->d2_support = true;
2854 
2855 		if (dev->d1_support || dev->d2_support)
2856 			pci_info(dev, "supports%s%s\n",
2857 				   dev->d1_support ? " D1" : "",
2858 				   dev->d2_support ? " D2" : "");
2859 	}
2860 
2861 	pmc &= PCI_PM_CAP_PME_MASK;
2862 	if (pmc) {
2863 		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
2864 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2865 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2866 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2867 			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2868 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2869 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2870 		dev->pme_poll = true;
2871 		/*
2872 		 * Make device's PM flags reflect the wake-up capability, but
2873 		 * let the user space enable it to wake up the system as needed.
2874 		 */
2875 		device_set_wakeup_capable(&dev->dev, true);
2876 		/* Disable the PME# generation functionality */
2877 		pci_pme_active(dev, false);
2878 	}
2879 
2880 	pci_read_config_word(dev, PCI_STATUS, &status);
2881 	if (status & PCI_STATUS_IMM_READY)
2882 		dev->imm_ready = 1;
2883 }
2884 
2885 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2886 {
2887 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2888 
2889 	switch (prop) {
2890 	case PCI_EA_P_MEM:
2891 	case PCI_EA_P_VF_MEM:
2892 		flags |= IORESOURCE_MEM;
2893 		break;
2894 	case PCI_EA_P_MEM_PREFETCH:
2895 	case PCI_EA_P_VF_MEM_PREFETCH:
2896 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2897 		break;
2898 	case PCI_EA_P_IO:
2899 		flags |= IORESOURCE_IO;
2900 		break;
2901 	default:
2902 		return 0;
2903 	}
2904 
2905 	return flags;
2906 }
2907 
2908 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2909 					    u8 prop)
2910 {
2911 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2912 		return &dev->resource[bei];
2913 #ifdef CONFIG_PCI_IOV
2914 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2915 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2916 		return &dev->resource[PCI_IOV_RESOURCES +
2917 				      bei - PCI_EA_BEI_VF_BAR0];
2918 #endif
2919 	else if (bei == PCI_EA_BEI_ROM)
2920 		return &dev->resource[PCI_ROM_RESOURCE];
2921 	else
2922 		return NULL;
2923 }
2924 
2925 /* Read an Enhanced Allocation (EA) entry */
2926 static int pci_ea_read(struct pci_dev *dev, int offset)
2927 {
2928 	struct resource *res;
2929 	int ent_size, ent_offset = offset;
2930 	resource_size_t start, end;
2931 	unsigned long flags;
2932 	u32 dw0, bei, base, max_offset;
2933 	u8 prop;
2934 	bool support_64 = (sizeof(resource_size_t) >= 8);
2935 
2936 	pci_read_config_dword(dev, ent_offset, &dw0);
2937 	ent_offset += 4;
2938 
2939 	/* Entry size field indicates DWORDs after 1st */
2940 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2941 
2942 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2943 		goto out;
2944 
2945 	bei = (dw0 & PCI_EA_BEI) >> 4;
2946 	prop = (dw0 & PCI_EA_PP) >> 8;
2947 
2948 	/*
2949 	 * If the Property is in the reserved range, try the Secondary
2950 	 * Property instead.
2951 	 */
2952 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2953 		prop = (dw0 & PCI_EA_SP) >> 16;
2954 	if (prop > PCI_EA_P_BRIDGE_IO)
2955 		goto out;
2956 
2957 	res = pci_ea_get_resource(dev, bei, prop);
2958 	if (!res) {
2959 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
2960 		goto out;
2961 	}
2962 
2963 	flags = pci_ea_flags(dev, prop);
2964 	if (!flags) {
2965 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
2966 		goto out;
2967 	}
2968 
2969 	/* Read Base */
2970 	pci_read_config_dword(dev, ent_offset, &base);
2971 	start = (base & PCI_EA_FIELD_MASK);
2972 	ent_offset += 4;
2973 
2974 	/* Read MaxOffset */
2975 	pci_read_config_dword(dev, ent_offset, &max_offset);
2976 	ent_offset += 4;
2977 
2978 	/* Read Base MSBs (if 64-bit entry) */
2979 	if (base & PCI_EA_IS_64) {
2980 		u32 base_upper;
2981 
2982 		pci_read_config_dword(dev, ent_offset, &base_upper);
2983 		ent_offset += 4;
2984 
2985 		flags |= IORESOURCE_MEM_64;
2986 
2987 		/* entry starts above 32-bit boundary, can't use */
2988 		if (!support_64 && base_upper)
2989 			goto out;
2990 
2991 		if (support_64)
2992 			start |= ((u64)base_upper << 32);
2993 	}
2994 
2995 	end = start + (max_offset | 0x03);
2996 
2997 	/* Read MaxOffset MSBs (if 64-bit entry) */
2998 	if (max_offset & PCI_EA_IS_64) {
2999 		u32 max_offset_upper;
3000 
3001 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3002 		ent_offset += 4;
3003 
3004 		flags |= IORESOURCE_MEM_64;
3005 
3006 		/* entry too big, can't use */
3007 		if (!support_64 && max_offset_upper)
3008 			goto out;
3009 
3010 		if (support_64)
3011 			end += ((u64)max_offset_upper << 32);
3012 	}
3013 
3014 	if (end < start) {
3015 		pci_err(dev, "EA Entry crosses address boundary\n");
3016 		goto out;
3017 	}
3018 
3019 	if (ent_size != ent_offset - offset) {
3020 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3021 			ent_size, ent_offset - offset);
3022 		goto out;
3023 	}
3024 
3025 	res->name = pci_name(dev);
3026 	res->start = start;
3027 	res->end = end;
3028 	res->flags = flags;
3029 
3030 	if (bei <= PCI_EA_BEI_BAR5)
3031 		pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3032 			   bei, res, prop);
3033 	else if (bei == PCI_EA_BEI_ROM)
3034 		pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3035 			   res, prop);
3036 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3037 		pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3038 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
3039 	else
3040 		pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3041 			   bei, res, prop);
3042 
3043 out:
3044 	return offset + ent_size;
3045 }
3046 
3047 /* Enhanced Allocation Initialization */
3048 void pci_ea_init(struct pci_dev *dev)
3049 {
3050 	int ea;
3051 	u8 num_ent;
3052 	int offset;
3053 	int i;
3054 
3055 	/* find PCI EA capability in list */
3056 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3057 	if (!ea)
3058 		return;
3059 
3060 	/* determine the number of entries */
3061 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3062 					&num_ent);
3063 	num_ent &= PCI_EA_NUM_ENT_MASK;
3064 
3065 	offset = ea + PCI_EA_FIRST_ENT;
3066 
3067 	/* Skip DWORD 2 for type 1 functions */
3068 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3069 		offset += 4;
3070 
3071 	/* parse each EA entry */
3072 	for (i = 0; i < num_ent; ++i)
3073 		offset = pci_ea_read(dev, offset);
3074 }
3075 
3076 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3077 	struct pci_cap_saved_state *new_cap)
3078 {
3079 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3080 }
3081 
3082 /**
3083  * _pci_add_cap_save_buffer - allocate buffer for saving given
3084  *			      capability registers
3085  * @dev: the PCI device
3086  * @cap: the capability to allocate the buffer for
3087  * @extended: Standard or Extended capability ID
3088  * @size: requested size of the buffer
3089  */
3090 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3091 				    bool extended, unsigned int size)
3092 {
3093 	int pos;
3094 	struct pci_cap_saved_state *save_state;
3095 
3096 	if (extended)
3097 		pos = pci_find_ext_capability(dev, cap);
3098 	else
3099 		pos = pci_find_capability(dev, cap);
3100 
3101 	if (!pos)
3102 		return 0;
3103 
3104 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3105 	if (!save_state)
3106 		return -ENOMEM;
3107 
3108 	save_state->cap.cap_nr = cap;
3109 	save_state->cap.cap_extended = extended;
3110 	save_state->cap.size = size;
3111 	pci_add_saved_cap(dev, save_state);
3112 
3113 	return 0;
3114 }
3115 
3116 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3117 {
3118 	return _pci_add_cap_save_buffer(dev, cap, false, size);
3119 }
3120 
3121 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3122 {
3123 	return _pci_add_cap_save_buffer(dev, cap, true, size);
3124 }
3125 
3126 /**
3127  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3128  * @dev: the PCI device
3129  */
3130 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3131 {
3132 	int error;
3133 
3134 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3135 					PCI_EXP_SAVE_REGS * sizeof(u16));
3136 	if (error)
3137 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3138 
3139 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3140 	if (error)
3141 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3142 
3143 	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3144 					    2 * sizeof(u16));
3145 	if (error)
3146 		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3147 
3148 	pci_allocate_vc_save_buffers(dev);
3149 }
3150 
3151 void pci_free_cap_save_buffers(struct pci_dev *dev)
3152 {
3153 	struct pci_cap_saved_state *tmp;
3154 	struct hlist_node *n;
3155 
3156 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3157 		kfree(tmp);
3158 }
3159 
3160 /**
3161  * pci_configure_ari - enable or disable ARI forwarding
3162  * @dev: the PCI device
3163  *
3164  * If @dev and its upstream bridge both support ARI, enable ARI in the
3165  * bridge.  Otherwise, disable ARI in the bridge.
3166  */
3167 void pci_configure_ari(struct pci_dev *dev)
3168 {
3169 	u32 cap;
3170 	struct pci_dev *bridge;
3171 
3172 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3173 		return;
3174 
3175 	bridge = dev->bus->self;
3176 	if (!bridge)
3177 		return;
3178 
3179 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3180 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3181 		return;
3182 
3183 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3184 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3185 					 PCI_EXP_DEVCTL2_ARI);
3186 		bridge->ari_enabled = 1;
3187 	} else {
3188 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3189 					   PCI_EXP_DEVCTL2_ARI);
3190 		bridge->ari_enabled = 0;
3191 	}
3192 }
3193 
3194 static int pci_acs_enable;
3195 
3196 /**
3197  * pci_request_acs - ask for ACS to be enabled if supported
3198  */
3199 void pci_request_acs(void)
3200 {
3201 	pci_acs_enable = 1;
3202 }
3203 
3204 static const char *disable_acs_redir_param;
3205 
3206 /**
3207  * pci_disable_acs_redir - disable ACS redirect capabilities
3208  * @dev: the PCI device
3209  *
3210  * For only devices specified in the disable_acs_redir parameter.
3211  */
3212 static void pci_disable_acs_redir(struct pci_dev *dev)
3213 {
3214 	int ret = 0;
3215 	const char *p;
3216 	int pos;
3217 	u16 ctrl;
3218 
3219 	if (!disable_acs_redir_param)
3220 		return;
3221 
3222 	p = disable_acs_redir_param;
3223 	while (*p) {
3224 		ret = pci_dev_str_match(dev, p, &p);
3225 		if (ret < 0) {
3226 			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
3227 				     disable_acs_redir_param);
3228 
3229 			break;
3230 		} else if (ret == 1) {
3231 			/* Found a match */
3232 			break;
3233 		}
3234 
3235 		if (*p != ';' && *p != ',') {
3236 			/* End of param or invalid format */
3237 			break;
3238 		}
3239 		p++;
3240 	}
3241 
3242 	if (ret != 1)
3243 		return;
3244 
3245 	if (!pci_dev_specific_disable_acs_redir(dev))
3246 		return;
3247 
3248 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3249 	if (!pos) {
3250 		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
3251 		return;
3252 	}
3253 
3254 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3255 
3256 	/* P2P Request & Completion Redirect */
3257 	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
3258 
3259 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3260 
3261 	pci_info(dev, "disabled ACS redirect\n");
3262 }
3263 
3264 /**
3265  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
3266  * @dev: the PCI device
3267  */
3268 static void pci_std_enable_acs(struct pci_dev *dev)
3269 {
3270 	int pos;
3271 	u16 cap;
3272 	u16 ctrl;
3273 
3274 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3275 	if (!pos)
3276 		return;
3277 
3278 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
3279 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3280 
3281 	/* Source Validation */
3282 	ctrl |= (cap & PCI_ACS_SV);
3283 
3284 	/* P2P Request Redirect */
3285 	ctrl |= (cap & PCI_ACS_RR);
3286 
3287 	/* P2P Completion Redirect */
3288 	ctrl |= (cap & PCI_ACS_CR);
3289 
3290 	/* Upstream Forwarding */
3291 	ctrl |= (cap & PCI_ACS_UF);
3292 
3293 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3294 }
3295 
3296 /**
3297  * pci_enable_acs - enable ACS if hardware support it
3298  * @dev: the PCI device
3299  */
3300 void pci_enable_acs(struct pci_dev *dev)
3301 {
3302 	if (!pci_acs_enable)
3303 		goto disable_acs_redir;
3304 
3305 	if (!pci_dev_specific_enable_acs(dev))
3306 		goto disable_acs_redir;
3307 
3308 	pci_std_enable_acs(dev);
3309 
3310 disable_acs_redir:
3311 	/*
3312 	 * Note: pci_disable_acs_redir() must be called even if ACS was not
3313 	 * enabled by the kernel because it may have been enabled by
3314 	 * platform firmware.  So if we are told to disable it, we should
3315 	 * always disable it after setting the kernel's default
3316 	 * preferences.
3317 	 */
3318 	pci_disable_acs_redir(dev);
3319 }
3320 
3321 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3322 {
3323 	int pos;
3324 	u16 cap, ctrl;
3325 
3326 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
3327 	if (!pos)
3328 		return false;
3329 
3330 	/*
3331 	 * Except for egress control, capabilities are either required
3332 	 * or only required if controllable.  Features missing from the
3333 	 * capability field can therefore be assumed as hard-wired enabled.
3334 	 */
3335 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3336 	acs_flags &= (cap | PCI_ACS_EC);
3337 
3338 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3339 	return (ctrl & acs_flags) == acs_flags;
3340 }
3341 
3342 /**
3343  * pci_acs_enabled - test ACS against required flags for a given device
3344  * @pdev: device to test
3345  * @acs_flags: required PCI ACS flags
3346  *
3347  * Return true if the device supports the provided flags.  Automatically
3348  * filters out flags that are not implemented on multifunction devices.
3349  *
3350  * Note that this interface checks the effective ACS capabilities of the
3351  * device rather than the actual capabilities.  For instance, most single
3352  * function endpoints are not required to support ACS because they have no
3353  * opportunity for peer-to-peer access.  We therefore return 'true'
3354  * regardless of whether the device exposes an ACS capability.  This makes
3355  * it much easier for callers of this function to ignore the actual type
3356  * or topology of the device when testing ACS support.
3357  */
3358 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3359 {
3360 	int ret;
3361 
3362 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3363 	if (ret >= 0)
3364 		return ret > 0;
3365 
3366 	/*
3367 	 * Conventional PCI and PCI-X devices never support ACS, either
3368 	 * effectively or actually.  The shared bus topology implies that
3369 	 * any device on the bus can receive or snoop DMA.
3370 	 */
3371 	if (!pci_is_pcie(pdev))
3372 		return false;
3373 
3374 	switch (pci_pcie_type(pdev)) {
3375 	/*
3376 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3377 	 * but since their primary interface is PCI/X, we conservatively
3378 	 * handle them as we would a non-PCIe device.
3379 	 */
3380 	case PCI_EXP_TYPE_PCIE_BRIDGE:
3381 	/*
3382 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3383 	 * applicable... must never implement an ACS Extended Capability...".
3384 	 * This seems arbitrary, but we take a conservative interpretation
3385 	 * of this statement.
3386 	 */
3387 	case PCI_EXP_TYPE_PCI_BRIDGE:
3388 	case PCI_EXP_TYPE_RC_EC:
3389 		return false;
3390 	/*
3391 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3392 	 * implement ACS in order to indicate their peer-to-peer capabilities,
3393 	 * regardless of whether they are single- or multi-function devices.
3394 	 */
3395 	case PCI_EXP_TYPE_DOWNSTREAM:
3396 	case PCI_EXP_TYPE_ROOT_PORT:
3397 		return pci_acs_flags_enabled(pdev, acs_flags);
3398 	/*
3399 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3400 	 * implemented by the remaining PCIe types to indicate peer-to-peer
3401 	 * capabilities, but only when they are part of a multifunction
3402 	 * device.  The footnote for section 6.12 indicates the specific
3403 	 * PCIe types included here.
3404 	 */
3405 	case PCI_EXP_TYPE_ENDPOINT:
3406 	case PCI_EXP_TYPE_UPSTREAM:
3407 	case PCI_EXP_TYPE_LEG_END:
3408 	case PCI_EXP_TYPE_RC_END:
3409 		if (!pdev->multifunction)
3410 			break;
3411 
3412 		return pci_acs_flags_enabled(pdev, acs_flags);
3413 	}
3414 
3415 	/*
3416 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3417 	 * to single function devices with the exception of downstream ports.
3418 	 */
3419 	return true;
3420 }
3421 
3422 /**
3423  * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
3424  * @start: starting downstream device
3425  * @end: ending upstream device or NULL to search to the root bus
3426  * @acs_flags: required flags
3427  *
3428  * Walk up a device tree from start to end testing PCI ACS support.  If
3429  * any step along the way does not support the required flags, return false.
3430  */
3431 bool pci_acs_path_enabled(struct pci_dev *start,
3432 			  struct pci_dev *end, u16 acs_flags)
3433 {
3434 	struct pci_dev *pdev, *parent = start;
3435 
3436 	do {
3437 		pdev = parent;
3438 
3439 		if (!pci_acs_enabled(pdev, acs_flags))
3440 			return false;
3441 
3442 		if (pci_is_root_bus(pdev->bus))
3443 			return (end == NULL);
3444 
3445 		parent = pdev->bus->self;
3446 	} while (pdev != end);
3447 
3448 	return true;
3449 }
3450 
3451 /**
3452  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3453  * @pdev: PCI device
3454  * @bar: BAR to find
3455  *
3456  * Helper to find the position of the ctrl register for a BAR.
3457  * Returns -ENOTSUPP if resizable BARs are not supported at all.
3458  * Returns -ENOENT if no ctrl register for the BAR could be found.
3459  */
3460 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3461 {
3462 	unsigned int pos, nbars, i;
3463 	u32 ctrl;
3464 
3465 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3466 	if (!pos)
3467 		return -ENOTSUPP;
3468 
3469 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3470 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3471 		    PCI_REBAR_CTRL_NBAR_SHIFT;
3472 
3473 	for (i = 0; i < nbars; i++, pos += 8) {
3474 		int bar_idx;
3475 
3476 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3477 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3478 		if (bar_idx == bar)
3479 			return pos;
3480 	}
3481 
3482 	return -ENOENT;
3483 }
3484 
3485 /**
3486  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3487  * @pdev: PCI device
3488  * @bar: BAR to query
3489  *
3490  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3491  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3492  */
3493 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3494 {
3495 	int pos;
3496 	u32 cap;
3497 
3498 	pos = pci_rebar_find_pos(pdev, bar);
3499 	if (pos < 0)
3500 		return 0;
3501 
3502 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3503 	return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3504 }
3505 
3506 /**
3507  * pci_rebar_get_current_size - get the current size of a BAR
3508  * @pdev: PCI device
3509  * @bar: BAR to set size to
3510  *
3511  * Read the size of a BAR from the resizable BAR config.
3512  * Returns size if found or negative error code.
3513  */
3514 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3515 {
3516 	int pos;
3517 	u32 ctrl;
3518 
3519 	pos = pci_rebar_find_pos(pdev, bar);
3520 	if (pos < 0)
3521 		return pos;
3522 
3523 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3524 	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3525 }
3526 
3527 /**
3528  * pci_rebar_set_size - set a new size for a BAR
3529  * @pdev: PCI device
3530  * @bar: BAR to set size to
3531  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3532  *
3533  * Set the new size of a BAR as defined in the spec.
3534  * Returns zero if resizing was successful, error code otherwise.
3535  */
3536 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3537 {
3538 	int pos;
3539 	u32 ctrl;
3540 
3541 	pos = pci_rebar_find_pos(pdev, bar);
3542 	if (pos < 0)
3543 		return pos;
3544 
3545 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3546 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3547 	ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3548 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3549 	return 0;
3550 }
3551 
3552 /**
3553  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3554  * @dev: the PCI device
3555  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3556  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3557  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3558  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3559  *
3560  * Return 0 if all upstream bridges support AtomicOp routing, egress
3561  * blocking is disabled on all upstream ports, and the root port supports
3562  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3563  * AtomicOp completion), or negative otherwise.
3564  */
3565 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3566 {
3567 	struct pci_bus *bus = dev->bus;
3568 	struct pci_dev *bridge;
3569 	u32 cap, ctl2;
3570 
3571 	if (!pci_is_pcie(dev))
3572 		return -EINVAL;
3573 
3574 	/*
3575 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3576 	 * AtomicOp requesters.  For now, we only support endpoints as
3577 	 * requesters and root ports as completers.  No endpoints as
3578 	 * completers, and no peer-to-peer.
3579 	 */
3580 
3581 	switch (pci_pcie_type(dev)) {
3582 	case PCI_EXP_TYPE_ENDPOINT:
3583 	case PCI_EXP_TYPE_LEG_END:
3584 	case PCI_EXP_TYPE_RC_END:
3585 		break;
3586 	default:
3587 		return -EINVAL;
3588 	}
3589 
3590 	while (bus->parent) {
3591 		bridge = bus->self;
3592 
3593 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3594 
3595 		switch (pci_pcie_type(bridge)) {
3596 		/* Ensure switch ports support AtomicOp routing */
3597 		case PCI_EXP_TYPE_UPSTREAM:
3598 		case PCI_EXP_TYPE_DOWNSTREAM:
3599 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3600 				return -EINVAL;
3601 			break;
3602 
3603 		/* Ensure root port supports all the sizes we care about */
3604 		case PCI_EXP_TYPE_ROOT_PORT:
3605 			if ((cap & cap_mask) != cap_mask)
3606 				return -EINVAL;
3607 			break;
3608 		}
3609 
3610 		/* Ensure upstream ports don't block AtomicOps on egress */
3611 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3612 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3613 						   &ctl2);
3614 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3615 				return -EINVAL;
3616 		}
3617 
3618 		bus = bus->parent;
3619 	}
3620 
3621 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3622 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3623 	return 0;
3624 }
3625 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3626 
3627 /**
3628  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3629  * @dev: the PCI device
3630  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3631  *
3632  * Perform INTx swizzling for a device behind one level of bridge.  This is
3633  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3634  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3635  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3636  * the PCI Express Base Specification, Revision 2.1)
3637  */
3638 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3639 {
3640 	int slot;
3641 
3642 	if (pci_ari_enabled(dev->bus))
3643 		slot = 0;
3644 	else
3645 		slot = PCI_SLOT(dev->devfn);
3646 
3647 	return (((pin - 1) + slot) % 4) + 1;
3648 }
3649 
3650 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3651 {
3652 	u8 pin;
3653 
3654 	pin = dev->pin;
3655 	if (!pin)
3656 		return -1;
3657 
3658 	while (!pci_is_root_bus(dev->bus)) {
3659 		pin = pci_swizzle_interrupt_pin(dev, pin);
3660 		dev = dev->bus->self;
3661 	}
3662 	*bridge = dev;
3663 	return pin;
3664 }
3665 
3666 /**
3667  * pci_common_swizzle - swizzle INTx all the way to root bridge
3668  * @dev: the PCI device
3669  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3670  *
3671  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3672  * bridges all the way up to a PCI root bus.
3673  */
3674 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3675 {
3676 	u8 pin = *pinp;
3677 
3678 	while (!pci_is_root_bus(dev->bus)) {
3679 		pin = pci_swizzle_interrupt_pin(dev, pin);
3680 		dev = dev->bus->self;
3681 	}
3682 	*pinp = pin;
3683 	return PCI_SLOT(dev->devfn);
3684 }
3685 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3686 
3687 /**
3688  * pci_release_region - Release a PCI bar
3689  * @pdev: PCI device whose resources were previously reserved by
3690  *	  pci_request_region()
3691  * @bar: BAR to release
3692  *
3693  * Releases the PCI I/O and memory resources previously reserved by a
3694  * successful call to pci_request_region().  Call this function only
3695  * after all use of the PCI regions has ceased.
3696  */
3697 void pci_release_region(struct pci_dev *pdev, int bar)
3698 {
3699 	struct pci_devres *dr;
3700 
3701 	if (pci_resource_len(pdev, bar) == 0)
3702 		return;
3703 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3704 		release_region(pci_resource_start(pdev, bar),
3705 				pci_resource_len(pdev, bar));
3706 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3707 		release_mem_region(pci_resource_start(pdev, bar),
3708 				pci_resource_len(pdev, bar));
3709 
3710 	dr = find_pci_dr(pdev);
3711 	if (dr)
3712 		dr->region_mask &= ~(1 << bar);
3713 }
3714 EXPORT_SYMBOL(pci_release_region);
3715 
3716 /**
3717  * __pci_request_region - Reserved PCI I/O and memory resource
3718  * @pdev: PCI device whose resources are to be reserved
3719  * @bar: BAR to be reserved
3720  * @res_name: Name to be associated with resource.
3721  * @exclusive: whether the region access is exclusive or not
3722  *
3723  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3724  * being reserved by owner @res_name.  Do not access any
3725  * address inside the PCI regions unless this call returns
3726  * successfully.
3727  *
3728  * If @exclusive is set, then the region is marked so that userspace
3729  * is explicitly not allowed to map the resource via /dev/mem or
3730  * sysfs MMIO access.
3731  *
3732  * Returns 0 on success, or %EBUSY on error.  A warning
3733  * message is also printed on failure.
3734  */
3735 static int __pci_request_region(struct pci_dev *pdev, int bar,
3736 				const char *res_name, int exclusive)
3737 {
3738 	struct pci_devres *dr;
3739 
3740 	if (pci_resource_len(pdev, bar) == 0)
3741 		return 0;
3742 
3743 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3744 		if (!request_region(pci_resource_start(pdev, bar),
3745 			    pci_resource_len(pdev, bar), res_name))
3746 			goto err_out;
3747 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3748 		if (!__request_mem_region(pci_resource_start(pdev, bar),
3749 					pci_resource_len(pdev, bar), res_name,
3750 					exclusive))
3751 			goto err_out;
3752 	}
3753 
3754 	dr = find_pci_dr(pdev);
3755 	if (dr)
3756 		dr->region_mask |= 1 << bar;
3757 
3758 	return 0;
3759 
3760 err_out:
3761 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3762 		 &pdev->resource[bar]);
3763 	return -EBUSY;
3764 }
3765 
3766 /**
3767  * pci_request_region - Reserve PCI I/O and memory resource
3768  * @pdev: PCI device whose resources are to be reserved
3769  * @bar: BAR to be reserved
3770  * @res_name: Name to be associated with resource
3771  *
3772  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3773  * being reserved by owner @res_name.  Do not access any
3774  * address inside the PCI regions unless this call returns
3775  * successfully.
3776  *
3777  * Returns 0 on success, or %EBUSY on error.  A warning
3778  * message is also printed on failure.
3779  */
3780 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3781 {
3782 	return __pci_request_region(pdev, bar, res_name, 0);
3783 }
3784 EXPORT_SYMBOL(pci_request_region);
3785 
3786 /**
3787  * pci_release_selected_regions - Release selected PCI I/O and memory resources
3788  * @pdev: PCI device whose resources were previously reserved
3789  * @bars: Bitmask of BARs to be released
3790  *
3791  * Release selected PCI I/O and memory resources previously reserved.
3792  * Call this function only after all use of the PCI regions has ceased.
3793  */
3794 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3795 {
3796 	int i;
3797 
3798 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
3799 		if (bars & (1 << i))
3800 			pci_release_region(pdev, i);
3801 }
3802 EXPORT_SYMBOL(pci_release_selected_regions);
3803 
3804 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3805 					  const char *res_name, int excl)
3806 {
3807 	int i;
3808 
3809 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
3810 		if (bars & (1 << i))
3811 			if (__pci_request_region(pdev, i, res_name, excl))
3812 				goto err_out;
3813 	return 0;
3814 
3815 err_out:
3816 	while (--i >= 0)
3817 		if (bars & (1 << i))
3818 			pci_release_region(pdev, i);
3819 
3820 	return -EBUSY;
3821 }
3822 
3823 
3824 /**
3825  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3826  * @pdev: PCI device whose resources are to be reserved
3827  * @bars: Bitmask of BARs to be requested
3828  * @res_name: Name to be associated with resource
3829  */
3830 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3831 				 const char *res_name)
3832 {
3833 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
3834 }
3835 EXPORT_SYMBOL(pci_request_selected_regions);
3836 
3837 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3838 					   const char *res_name)
3839 {
3840 	return __pci_request_selected_regions(pdev, bars, res_name,
3841 			IORESOURCE_EXCLUSIVE);
3842 }
3843 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3844 
3845 /**
3846  * pci_release_regions - Release reserved PCI I/O and memory resources
3847  * @pdev: PCI device whose resources were previously reserved by
3848  *	  pci_request_regions()
3849  *
3850  * Releases all PCI I/O and memory resources previously reserved by a
3851  * successful call to pci_request_regions().  Call this function only
3852  * after all use of the PCI regions has ceased.
3853  */
3854 
3855 void pci_release_regions(struct pci_dev *pdev)
3856 {
3857 	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
3858 }
3859 EXPORT_SYMBOL(pci_release_regions);
3860 
3861 /**
3862  * pci_request_regions - Reserve PCI I/O and memory resources
3863  * @pdev: PCI device whose resources are to be reserved
3864  * @res_name: Name to be associated with resource.
3865  *
3866  * Mark all PCI regions associated with PCI device @pdev as
3867  * being reserved by owner @res_name.  Do not access any
3868  * address inside the PCI regions unless this call returns
3869  * successfully.
3870  *
3871  * Returns 0 on success, or %EBUSY on error.  A warning
3872  * message is also printed on failure.
3873  */
3874 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3875 {
3876 	return pci_request_selected_regions(pdev,
3877 			((1 << PCI_STD_NUM_BARS) - 1), res_name);
3878 }
3879 EXPORT_SYMBOL(pci_request_regions);
3880 
3881 /**
3882  * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
3883  * @pdev: PCI device whose resources are to be reserved
3884  * @res_name: Name to be associated with resource.
3885  *
3886  * Mark all PCI regions associated with PCI device @pdev as being reserved
3887  * by owner @res_name.  Do not access any address inside the PCI regions
3888  * unless this call returns successfully.
3889  *
3890  * pci_request_regions_exclusive() will mark the region so that /dev/mem
3891  * and the sysfs MMIO access will not be allowed.
3892  *
3893  * Returns 0 on success, or %EBUSY on error.  A warning message is also
3894  * printed on failure.
3895  */
3896 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3897 {
3898 	return pci_request_selected_regions_exclusive(pdev,
3899 				((1 << PCI_STD_NUM_BARS) - 1), res_name);
3900 }
3901 EXPORT_SYMBOL(pci_request_regions_exclusive);
3902 
3903 /*
3904  * Record the PCI IO range (expressed as CPU physical address + size).
3905  * Return a negative value if an error has occurred, zero otherwise
3906  */
3907 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3908 			resource_size_t	size)
3909 {
3910 	int ret = 0;
3911 #ifdef PCI_IOBASE
3912 	struct logic_pio_hwaddr *range;
3913 
3914 	if (!size || addr + size < addr)
3915 		return -EINVAL;
3916 
3917 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
3918 	if (!range)
3919 		return -ENOMEM;
3920 
3921 	range->fwnode = fwnode;
3922 	range->size = size;
3923 	range->hw_start = addr;
3924 	range->flags = LOGIC_PIO_CPU_MMIO;
3925 
3926 	ret = logic_pio_register_range(range);
3927 	if (ret)
3928 		kfree(range);
3929 #endif
3930 
3931 	return ret;
3932 }
3933 
3934 phys_addr_t pci_pio_to_address(unsigned long pio)
3935 {
3936 	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3937 
3938 #ifdef PCI_IOBASE
3939 	if (pio >= MMIO_UPPER_LIMIT)
3940 		return address;
3941 
3942 	address = logic_pio_to_hwaddr(pio);
3943 #endif
3944 
3945 	return address;
3946 }
3947 
3948 unsigned long __weak pci_address_to_pio(phys_addr_t address)
3949 {
3950 #ifdef PCI_IOBASE
3951 	return logic_pio_trans_cpuaddr(address);
3952 #else
3953 	if (address > IO_SPACE_LIMIT)
3954 		return (unsigned long)-1;
3955 
3956 	return (unsigned long) address;
3957 #endif
3958 }
3959 
3960 /**
3961  * pci_remap_iospace - Remap the memory mapped I/O space
3962  * @res: Resource describing the I/O space
3963  * @phys_addr: physical address of range to be mapped
3964  *
3965  * Remap the memory mapped I/O space described by the @res and the CPU
3966  * physical address @phys_addr into virtual address space.  Only
3967  * architectures that have memory mapped IO functions defined (and the
3968  * PCI_IOBASE value defined) should call this function.
3969  */
3970 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3971 {
3972 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3973 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3974 
3975 	if (!(res->flags & IORESOURCE_IO))
3976 		return -EINVAL;
3977 
3978 	if (res->end > IO_SPACE_LIMIT)
3979 		return -EINVAL;
3980 
3981 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3982 				  pgprot_device(PAGE_KERNEL));
3983 #else
3984 	/*
3985 	 * This architecture does not have memory mapped I/O space,
3986 	 * so this function should never be called
3987 	 */
3988 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3989 	return -ENODEV;
3990 #endif
3991 }
3992 EXPORT_SYMBOL(pci_remap_iospace);
3993 
3994 /**
3995  * pci_unmap_iospace - Unmap the memory mapped I/O space
3996  * @res: resource to be unmapped
3997  *
3998  * Unmap the CPU virtual address @res from virtual address space.  Only
3999  * architectures that have memory mapped IO functions defined (and the
4000  * PCI_IOBASE value defined) should call this function.
4001  */
4002 void pci_unmap_iospace(struct resource *res)
4003 {
4004 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4005 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4006 
4007 	unmap_kernel_range(vaddr, resource_size(res));
4008 #endif
4009 }
4010 EXPORT_SYMBOL(pci_unmap_iospace);
4011 
4012 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4013 {
4014 	struct resource **res = ptr;
4015 
4016 	pci_unmap_iospace(*res);
4017 }
4018 
4019 /**
4020  * devm_pci_remap_iospace - Managed pci_remap_iospace()
4021  * @dev: Generic device to remap IO address for
4022  * @res: Resource describing the I/O space
4023  * @phys_addr: physical address of range to be mapped
4024  *
4025  * Managed pci_remap_iospace().  Map is automatically unmapped on driver
4026  * detach.
4027  */
4028 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4029 			   phys_addr_t phys_addr)
4030 {
4031 	const struct resource **ptr;
4032 	int error;
4033 
4034 	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4035 	if (!ptr)
4036 		return -ENOMEM;
4037 
4038 	error = pci_remap_iospace(res, phys_addr);
4039 	if (error) {
4040 		devres_free(ptr);
4041 	} else	{
4042 		*ptr = res;
4043 		devres_add(dev, ptr);
4044 	}
4045 
4046 	return error;
4047 }
4048 EXPORT_SYMBOL(devm_pci_remap_iospace);
4049 
4050 /**
4051  * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4052  * @dev: Generic device to remap IO address for
4053  * @offset: Resource address to map
4054  * @size: Size of map
4055  *
4056  * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4057  * detach.
4058  */
4059 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4060 				      resource_size_t offset,
4061 				      resource_size_t size)
4062 {
4063 	void __iomem **ptr, *addr;
4064 
4065 	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4066 	if (!ptr)
4067 		return NULL;
4068 
4069 	addr = pci_remap_cfgspace(offset, size);
4070 	if (addr) {
4071 		*ptr = addr;
4072 		devres_add(dev, ptr);
4073 	} else
4074 		devres_free(ptr);
4075 
4076 	return addr;
4077 }
4078 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4079 
4080 /**
4081  * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4082  * @dev: generic device to handle the resource for
4083  * @res: configuration space resource to be handled
4084  *
4085  * Checks that a resource is a valid memory region, requests the memory
4086  * region and ioremaps with pci_remap_cfgspace() API that ensures the
4087  * proper PCI configuration space memory attributes are guaranteed.
4088  *
4089  * All operations are managed and will be undone on driver detach.
4090  *
4091  * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4092  * on failure. Usage example::
4093  *
4094  *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4095  *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4096  *	if (IS_ERR(base))
4097  *		return PTR_ERR(base);
4098  */
4099 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4100 					  struct resource *res)
4101 {
4102 	resource_size_t size;
4103 	const char *name;
4104 	void __iomem *dest_ptr;
4105 
4106 	BUG_ON(!dev);
4107 
4108 	if (!res || resource_type(res) != IORESOURCE_MEM) {
4109 		dev_err(dev, "invalid resource\n");
4110 		return IOMEM_ERR_PTR(-EINVAL);
4111 	}
4112 
4113 	size = resource_size(res);
4114 	name = res->name ?: dev_name(dev);
4115 
4116 	if (!devm_request_mem_region(dev, res->start, size, name)) {
4117 		dev_err(dev, "can't request region for resource %pR\n", res);
4118 		return IOMEM_ERR_PTR(-EBUSY);
4119 	}
4120 
4121 	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4122 	if (!dest_ptr) {
4123 		dev_err(dev, "ioremap failed for resource %pR\n", res);
4124 		devm_release_mem_region(dev, res->start, size);
4125 		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4126 	}
4127 
4128 	return dest_ptr;
4129 }
4130 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4131 
4132 static void __pci_set_master(struct pci_dev *dev, bool enable)
4133 {
4134 	u16 old_cmd, cmd;
4135 
4136 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4137 	if (enable)
4138 		cmd = old_cmd | PCI_COMMAND_MASTER;
4139 	else
4140 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4141 	if (cmd != old_cmd) {
4142 		pci_dbg(dev, "%s bus mastering\n",
4143 			enable ? "enabling" : "disabling");
4144 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4145 	}
4146 	dev->is_busmaster = enable;
4147 }
4148 
4149 /**
4150  * pcibios_setup - process "pci=" kernel boot arguments
4151  * @str: string used to pass in "pci=" kernel boot arguments
4152  *
4153  * Process kernel boot arguments.  This is the default implementation.
4154  * Architecture specific implementations can override this as necessary.
4155  */
4156 char * __weak __init pcibios_setup(char *str)
4157 {
4158 	return str;
4159 }
4160 
4161 /**
4162  * pcibios_set_master - enable PCI bus-mastering for device dev
4163  * @dev: the PCI device to enable
4164  *
4165  * Enables PCI bus-mastering for the device.  This is the default
4166  * implementation.  Architecture specific implementations can override
4167  * this if necessary.
4168  */
4169 void __weak pcibios_set_master(struct pci_dev *dev)
4170 {
4171 	u8 lat;
4172 
4173 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4174 	if (pci_is_pcie(dev))
4175 		return;
4176 
4177 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4178 	if (lat < 16)
4179 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4180 	else if (lat > pcibios_max_latency)
4181 		lat = pcibios_max_latency;
4182 	else
4183 		return;
4184 
4185 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4186 }
4187 
4188 /**
4189  * pci_set_master - enables bus-mastering for device dev
4190  * @dev: the PCI device to enable
4191  *
4192  * Enables bus-mastering on the device and calls pcibios_set_master()
4193  * to do the needed arch specific settings.
4194  */
4195 void pci_set_master(struct pci_dev *dev)
4196 {
4197 	__pci_set_master(dev, true);
4198 	pcibios_set_master(dev);
4199 }
4200 EXPORT_SYMBOL(pci_set_master);
4201 
4202 /**
4203  * pci_clear_master - disables bus-mastering for device dev
4204  * @dev: the PCI device to disable
4205  */
4206 void pci_clear_master(struct pci_dev *dev)
4207 {
4208 	__pci_set_master(dev, false);
4209 }
4210 EXPORT_SYMBOL(pci_clear_master);
4211 
4212 /**
4213  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4214  * @dev: the PCI device for which MWI is to be enabled
4215  *
4216  * Helper function for pci_set_mwi.
4217  * Originally copied from drivers/net/acenic.c.
4218  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4219  *
4220  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4221  */
4222 int pci_set_cacheline_size(struct pci_dev *dev)
4223 {
4224 	u8 cacheline_size;
4225 
4226 	if (!pci_cache_line_size)
4227 		return -EINVAL;
4228 
4229 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4230 	   equal to or multiple of the right value. */
4231 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4232 	if (cacheline_size >= pci_cache_line_size &&
4233 	    (cacheline_size % pci_cache_line_size) == 0)
4234 		return 0;
4235 
4236 	/* Write the correct value. */
4237 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4238 	/* Read it back. */
4239 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4240 	if (cacheline_size == pci_cache_line_size)
4241 		return 0;
4242 
4243 	pci_info(dev, "cache line size of %d is not supported\n",
4244 		   pci_cache_line_size << 2);
4245 
4246 	return -EINVAL;
4247 }
4248 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4249 
4250 /**
4251  * pci_set_mwi - enables memory-write-invalidate PCI transaction
4252  * @dev: the PCI device for which MWI is enabled
4253  *
4254  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4255  *
4256  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4257  */
4258 int pci_set_mwi(struct pci_dev *dev)
4259 {
4260 #ifdef PCI_DISABLE_MWI
4261 	return 0;
4262 #else
4263 	int rc;
4264 	u16 cmd;
4265 
4266 	rc = pci_set_cacheline_size(dev);
4267 	if (rc)
4268 		return rc;
4269 
4270 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4271 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4272 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4273 		cmd |= PCI_COMMAND_INVALIDATE;
4274 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4275 	}
4276 	return 0;
4277 #endif
4278 }
4279 EXPORT_SYMBOL(pci_set_mwi);
4280 
4281 /**
4282  * pcim_set_mwi - a device-managed pci_set_mwi()
4283  * @dev: the PCI device for which MWI is enabled
4284  *
4285  * Managed pci_set_mwi().
4286  *
4287  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4288  */
4289 int pcim_set_mwi(struct pci_dev *dev)
4290 {
4291 	struct pci_devres *dr;
4292 
4293 	dr = find_pci_dr(dev);
4294 	if (!dr)
4295 		return -ENOMEM;
4296 
4297 	dr->mwi = 1;
4298 	return pci_set_mwi(dev);
4299 }
4300 EXPORT_SYMBOL(pcim_set_mwi);
4301 
4302 /**
4303  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4304  * @dev: the PCI device for which MWI is enabled
4305  *
4306  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4307  * Callers are not required to check the return value.
4308  *
4309  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4310  */
4311 int pci_try_set_mwi(struct pci_dev *dev)
4312 {
4313 #ifdef PCI_DISABLE_MWI
4314 	return 0;
4315 #else
4316 	return pci_set_mwi(dev);
4317 #endif
4318 }
4319 EXPORT_SYMBOL(pci_try_set_mwi);
4320 
4321 /**
4322  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4323  * @dev: the PCI device to disable
4324  *
4325  * Disables PCI Memory-Write-Invalidate transaction on the device
4326  */
4327 void pci_clear_mwi(struct pci_dev *dev)
4328 {
4329 #ifndef PCI_DISABLE_MWI
4330 	u16 cmd;
4331 
4332 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4333 	if (cmd & PCI_COMMAND_INVALIDATE) {
4334 		cmd &= ~PCI_COMMAND_INVALIDATE;
4335 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4336 	}
4337 #endif
4338 }
4339 EXPORT_SYMBOL(pci_clear_mwi);
4340 
4341 /**
4342  * pci_intx - enables/disables PCI INTx for device dev
4343  * @pdev: the PCI device to operate on
4344  * @enable: boolean: whether to enable or disable PCI INTx
4345  *
4346  * Enables/disables PCI INTx for device @pdev
4347  */
4348 void pci_intx(struct pci_dev *pdev, int enable)
4349 {
4350 	u16 pci_command, new;
4351 
4352 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4353 
4354 	if (enable)
4355 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4356 	else
4357 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4358 
4359 	if (new != pci_command) {
4360 		struct pci_devres *dr;
4361 
4362 		pci_write_config_word(pdev, PCI_COMMAND, new);
4363 
4364 		dr = find_pci_dr(pdev);
4365 		if (dr && !dr->restore_intx) {
4366 			dr->restore_intx = 1;
4367 			dr->orig_intx = !enable;
4368 		}
4369 	}
4370 }
4371 EXPORT_SYMBOL_GPL(pci_intx);
4372 
4373 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4374 {
4375 	struct pci_bus *bus = dev->bus;
4376 	bool mask_updated = true;
4377 	u32 cmd_status_dword;
4378 	u16 origcmd, newcmd;
4379 	unsigned long flags;
4380 	bool irq_pending;
4381 
4382 	/*
4383 	 * We do a single dword read to retrieve both command and status.
4384 	 * Document assumptions that make this possible.
4385 	 */
4386 	BUILD_BUG_ON(PCI_COMMAND % 4);
4387 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4388 
4389 	raw_spin_lock_irqsave(&pci_lock, flags);
4390 
4391 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4392 
4393 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4394 
4395 	/*
4396 	 * Check interrupt status register to see whether our device
4397 	 * triggered the interrupt (when masking) or the next IRQ is
4398 	 * already pending (when unmasking).
4399 	 */
4400 	if (mask != irq_pending) {
4401 		mask_updated = false;
4402 		goto done;
4403 	}
4404 
4405 	origcmd = cmd_status_dword;
4406 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4407 	if (mask)
4408 		newcmd |= PCI_COMMAND_INTX_DISABLE;
4409 	if (newcmd != origcmd)
4410 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4411 
4412 done:
4413 	raw_spin_unlock_irqrestore(&pci_lock, flags);
4414 
4415 	return mask_updated;
4416 }
4417 
4418 /**
4419  * pci_check_and_mask_intx - mask INTx on pending interrupt
4420  * @dev: the PCI device to operate on
4421  *
4422  * Check if the device dev has its INTx line asserted, mask it and return
4423  * true in that case. False is returned if no interrupt was pending.
4424  */
4425 bool pci_check_and_mask_intx(struct pci_dev *dev)
4426 {
4427 	return pci_check_and_set_intx_mask(dev, true);
4428 }
4429 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4430 
4431 /**
4432  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4433  * @dev: the PCI device to operate on
4434  *
4435  * Check if the device dev has its INTx line asserted, unmask it if not and
4436  * return true. False is returned and the mask remains active if there was
4437  * still an interrupt pending.
4438  */
4439 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4440 {
4441 	return pci_check_and_set_intx_mask(dev, false);
4442 }
4443 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4444 
4445 /**
4446  * pci_wait_for_pending_transaction - wait for pending transaction
4447  * @dev: the PCI device to operate on
4448  *
4449  * Return 0 if transaction is pending 1 otherwise.
4450  */
4451 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4452 {
4453 	if (!pci_is_pcie(dev))
4454 		return 1;
4455 
4456 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4457 				    PCI_EXP_DEVSTA_TRPND);
4458 }
4459 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4460 
4461 /**
4462  * pcie_has_flr - check if a device supports function level resets
4463  * @dev: device to check
4464  *
4465  * Returns true if the device advertises support for PCIe function level
4466  * resets.
4467  */
4468 bool pcie_has_flr(struct pci_dev *dev)
4469 {
4470 	u32 cap;
4471 
4472 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4473 		return false;
4474 
4475 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4476 	return cap & PCI_EXP_DEVCAP_FLR;
4477 }
4478 EXPORT_SYMBOL_GPL(pcie_has_flr);
4479 
4480 /**
4481  * pcie_flr - initiate a PCIe function level reset
4482  * @dev: device to reset
4483  *
4484  * Initiate a function level reset on @dev.  The caller should ensure the
4485  * device supports FLR before calling this function, e.g. by using the
4486  * pcie_has_flr() helper.
4487  */
4488 int pcie_flr(struct pci_dev *dev)
4489 {
4490 	if (!pci_wait_for_pending_transaction(dev))
4491 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4492 
4493 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4494 
4495 	if (dev->imm_ready)
4496 		return 0;
4497 
4498 	/*
4499 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4500 	 * 100ms, but may silently discard requests while the FLR is in
4501 	 * progress.  Wait 100ms before trying to access the device.
4502 	 */
4503 	msleep(100);
4504 
4505 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4506 }
4507 EXPORT_SYMBOL_GPL(pcie_flr);
4508 
4509 static int pci_af_flr(struct pci_dev *dev, int probe)
4510 {
4511 	int pos;
4512 	u8 cap;
4513 
4514 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4515 	if (!pos)
4516 		return -ENOTTY;
4517 
4518 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4519 		return -ENOTTY;
4520 
4521 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4522 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4523 		return -ENOTTY;
4524 
4525 	if (probe)
4526 		return 0;
4527 
4528 	/*
4529 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4530 	 * is used, so we use the control offset rather than status and shift
4531 	 * the test bit to match.
4532 	 */
4533 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4534 				 PCI_AF_STATUS_TP << 8))
4535 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4536 
4537 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4538 
4539 	if (dev->imm_ready)
4540 		return 0;
4541 
4542 	/*
4543 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4544 	 * updated 27 July 2006; a device must complete an FLR within
4545 	 * 100ms, but may silently discard requests while the FLR is in
4546 	 * progress.  Wait 100ms before trying to access the device.
4547 	 */
4548 	msleep(100);
4549 
4550 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4551 }
4552 
4553 /**
4554  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4555  * @dev: Device to reset.
4556  * @probe: If set, only check if the device can be reset this way.
4557  *
4558  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4559  * unset, it will be reinitialized internally when going from PCI_D3hot to
4560  * PCI_D0.  If that's the case and the device is not in a low-power state
4561  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4562  *
4563  * NOTE: This causes the caller to sleep for twice the device power transition
4564  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4565  * by default (i.e. unless the @dev's d3_delay field has a different value).
4566  * Moreover, only devices in D0 can be reset by this function.
4567  */
4568 static int pci_pm_reset(struct pci_dev *dev, int probe)
4569 {
4570 	u16 csr;
4571 
4572 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4573 		return -ENOTTY;
4574 
4575 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4576 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4577 		return -ENOTTY;
4578 
4579 	if (probe)
4580 		return 0;
4581 
4582 	if (dev->current_state != PCI_D0)
4583 		return -EINVAL;
4584 
4585 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4586 	csr |= PCI_D3hot;
4587 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4588 	pci_dev_d3_sleep(dev);
4589 
4590 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4591 	csr |= PCI_D0;
4592 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4593 	pci_dev_d3_sleep(dev);
4594 
4595 	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4596 }
4597 
4598 /**
4599  * pcie_wait_for_link_delay - Wait until link is active or inactive
4600  * @pdev: Bridge device
4601  * @active: waiting for active or inactive?
4602  * @delay: Delay to wait after link has become active (in ms)
4603  *
4604  * Use this to wait till link becomes active or inactive.
4605  */
4606 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4607 				     int delay)
4608 {
4609 	int timeout = 1000;
4610 	bool ret;
4611 	u16 lnk_status;
4612 
4613 	/*
4614 	 * Some controllers might not implement link active reporting. In this
4615 	 * case, we wait for 1000 + 100 ms.
4616 	 */
4617 	if (!pdev->link_active_reporting) {
4618 		msleep(1100);
4619 		return true;
4620 	}
4621 
4622 	/*
4623 	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4624 	 * after which we should expect an link active if the reset was
4625 	 * successful. If so, software must wait a minimum 100ms before sending
4626 	 * configuration requests to devices downstream this port.
4627 	 *
4628 	 * If the link fails to activate, either the device was physically
4629 	 * removed or the link is permanently failed.
4630 	 */
4631 	if (active)
4632 		msleep(20);
4633 	for (;;) {
4634 		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4635 		ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4636 		if (ret == active)
4637 			break;
4638 		if (timeout <= 0)
4639 			break;
4640 		msleep(10);
4641 		timeout -= 10;
4642 	}
4643 	if (active && ret)
4644 		msleep(delay);
4645 	else if (ret != active)
4646 		pci_info(pdev, "Data Link Layer Link Active not %s in 1000 msec\n",
4647 			active ? "set" : "cleared");
4648 	return ret == active;
4649 }
4650 
4651 /**
4652  * pcie_wait_for_link - Wait until link is active or inactive
4653  * @pdev: Bridge device
4654  * @active: waiting for active or inactive?
4655  *
4656  * Use this to wait till link becomes active or inactive.
4657  */
4658 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4659 {
4660 	return pcie_wait_for_link_delay(pdev, active, 100);
4661 }
4662 
4663 /*
4664  * Find maximum D3cold delay required by all the devices on the bus.  The
4665  * spec says 100 ms, but firmware can lower it and we allow drivers to
4666  * increase it as well.
4667  *
4668  * Called with @pci_bus_sem locked for reading.
4669  */
4670 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4671 {
4672 	const struct pci_dev *pdev;
4673 	int min_delay = 100;
4674 	int max_delay = 0;
4675 
4676 	list_for_each_entry(pdev, &bus->devices, bus_list) {
4677 		if (pdev->d3cold_delay < min_delay)
4678 			min_delay = pdev->d3cold_delay;
4679 		if (pdev->d3cold_delay > max_delay)
4680 			max_delay = pdev->d3cold_delay;
4681 	}
4682 
4683 	return max(min_delay, max_delay);
4684 }
4685 
4686 /**
4687  * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4688  * @dev: PCI bridge
4689  *
4690  * Handle necessary delays before access to the devices on the secondary
4691  * side of the bridge are permitted after D3cold to D0 transition.
4692  *
4693  * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4694  * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4695  * 4.3.2.
4696  */
4697 void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4698 {
4699 	struct pci_dev *child;
4700 	int delay;
4701 
4702 	if (pci_dev_is_disconnected(dev))
4703 		return;
4704 
4705 	if (!pci_is_bridge(dev) || !dev->bridge_d3)
4706 		return;
4707 
4708 	down_read(&pci_bus_sem);
4709 
4710 	/*
4711 	 * We only deal with devices that are present currently on the bus.
4712 	 * For any hot-added devices the access delay is handled in pciehp
4713 	 * board_added(). In case of ACPI hotplug the firmware is expected
4714 	 * to configure the devices before OS is notified.
4715 	 */
4716 	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4717 		up_read(&pci_bus_sem);
4718 		return;
4719 	}
4720 
4721 	/* Take d3cold_delay requirements into account */
4722 	delay = pci_bus_max_d3cold_delay(dev->subordinate);
4723 	if (!delay) {
4724 		up_read(&pci_bus_sem);
4725 		return;
4726 	}
4727 
4728 	child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4729 				 bus_list);
4730 	up_read(&pci_bus_sem);
4731 
4732 	/*
4733 	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4734 	 * accessing the device after reset (that is 1000 ms + 100 ms). In
4735 	 * practice this should not be needed because we don't do power
4736 	 * management for them (see pci_bridge_d3_possible()).
4737 	 */
4738 	if (!pci_is_pcie(dev)) {
4739 		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4740 		msleep(1000 + delay);
4741 		return;
4742 	}
4743 
4744 	/*
4745 	 * For PCIe downstream and root ports that do not support speeds
4746 	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4747 	 * speeds (gen3) we need to wait first for the data link layer to
4748 	 * become active.
4749 	 *
4750 	 * However, 100 ms is the minimum and the PCIe spec says the
4751 	 * software must allow at least 1s before it can determine that the
4752 	 * device that did not respond is a broken device. There is
4753 	 * evidence that 100 ms is not always enough, for example certain
4754 	 * Titan Ridge xHCI controller does not always respond to
4755 	 * configuration requests if we only wait for 100 ms (see
4756 	 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
4757 	 *
4758 	 * Therefore we wait for 100 ms and check for the device presence.
4759 	 * If it is still not present give it an additional 100 ms.
4760 	 */
4761 	if (!pcie_downstream_port(dev))
4762 		return;
4763 
4764 	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4765 		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4766 		msleep(delay);
4767 	} else {
4768 		pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4769 			delay);
4770 		if (!pcie_wait_for_link_delay(dev, true, delay)) {
4771 			/* Did not train, no need to wait any further */
4772 			return;
4773 		}
4774 	}
4775 
4776 	if (!pci_device_is_present(child)) {
4777 		pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
4778 		msleep(delay);
4779 	}
4780 }
4781 
4782 void pci_reset_secondary_bus(struct pci_dev *dev)
4783 {
4784 	u16 ctrl;
4785 
4786 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4787 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4788 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4789 
4790 	/*
4791 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4792 	 * this to 2ms to ensure that we meet the minimum requirement.
4793 	 */
4794 	msleep(2);
4795 
4796 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4797 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4798 
4799 	/*
4800 	 * Trhfa for conventional PCI is 2^25 clock cycles.
4801 	 * Assuming a minimum 33MHz clock this results in a 1s
4802 	 * delay before we can consider subordinate devices to
4803 	 * be re-initialized.  PCIe has some ways to shorten this,
4804 	 * but we don't make use of them yet.
4805 	 */
4806 	ssleep(1);
4807 }
4808 
4809 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4810 {
4811 	pci_reset_secondary_bus(dev);
4812 }
4813 
4814 /**
4815  * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4816  * @dev: Bridge device
4817  *
4818  * Use the bridge control register to assert reset on the secondary bus.
4819  * Devices on the secondary bus are left in power-on state.
4820  */
4821 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4822 {
4823 	pcibios_reset_secondary_bus(dev);
4824 
4825 	return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4826 }
4827 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4828 
4829 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4830 {
4831 	struct pci_dev *pdev;
4832 
4833 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4834 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4835 		return -ENOTTY;
4836 
4837 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4838 		if (pdev != dev)
4839 			return -ENOTTY;
4840 
4841 	if (probe)
4842 		return 0;
4843 
4844 	return pci_bridge_secondary_bus_reset(dev->bus->self);
4845 }
4846 
4847 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4848 {
4849 	int rc = -ENOTTY;
4850 
4851 	if (!hotplug || !try_module_get(hotplug->owner))
4852 		return rc;
4853 
4854 	if (hotplug->ops->reset_slot)
4855 		rc = hotplug->ops->reset_slot(hotplug, probe);
4856 
4857 	module_put(hotplug->owner);
4858 
4859 	return rc;
4860 }
4861 
4862 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4863 {
4864 	struct pci_dev *pdev;
4865 
4866 	if (dev->subordinate || !dev->slot ||
4867 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4868 		return -ENOTTY;
4869 
4870 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4871 		if (pdev != dev && pdev->slot == dev->slot)
4872 			return -ENOTTY;
4873 
4874 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4875 }
4876 
4877 static void pci_dev_lock(struct pci_dev *dev)
4878 {
4879 	pci_cfg_access_lock(dev);
4880 	/* block PM suspend, driver probe, etc. */
4881 	device_lock(&dev->dev);
4882 }
4883 
4884 /* Return 1 on successful lock, 0 on contention */
4885 static int pci_dev_trylock(struct pci_dev *dev)
4886 {
4887 	if (pci_cfg_access_trylock(dev)) {
4888 		if (device_trylock(&dev->dev))
4889 			return 1;
4890 		pci_cfg_access_unlock(dev);
4891 	}
4892 
4893 	return 0;
4894 }
4895 
4896 static void pci_dev_unlock(struct pci_dev *dev)
4897 {
4898 	device_unlock(&dev->dev);
4899 	pci_cfg_access_unlock(dev);
4900 }
4901 
4902 static void pci_dev_save_and_disable(struct pci_dev *dev)
4903 {
4904 	const struct pci_error_handlers *err_handler =
4905 			dev->driver ? dev->driver->err_handler : NULL;
4906 
4907 	/*
4908 	 * dev->driver->err_handler->reset_prepare() is protected against
4909 	 * races with ->remove() by the device lock, which must be held by
4910 	 * the caller.
4911 	 */
4912 	if (err_handler && err_handler->reset_prepare)
4913 		err_handler->reset_prepare(dev);
4914 
4915 	/*
4916 	 * Wake-up device prior to save.  PM registers default to D0 after
4917 	 * reset and a simple register restore doesn't reliably return
4918 	 * to a non-D0 state anyway.
4919 	 */
4920 	pci_set_power_state(dev, PCI_D0);
4921 
4922 	pci_save_state(dev);
4923 	/*
4924 	 * Disable the device by clearing the Command register, except for
4925 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
4926 	 * BARs, but also prevents the device from being Bus Master, preventing
4927 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
4928 	 * compliant devices, INTx-disable prevents legacy interrupts.
4929 	 */
4930 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4931 }
4932 
4933 static void pci_dev_restore(struct pci_dev *dev)
4934 {
4935 	const struct pci_error_handlers *err_handler =
4936 			dev->driver ? dev->driver->err_handler : NULL;
4937 
4938 	pci_restore_state(dev);
4939 
4940 	/*
4941 	 * dev->driver->err_handler->reset_done() is protected against
4942 	 * races with ->remove() by the device lock, which must be held by
4943 	 * the caller.
4944 	 */
4945 	if (err_handler && err_handler->reset_done)
4946 		err_handler->reset_done(dev);
4947 }
4948 
4949 /**
4950  * __pci_reset_function_locked - reset a PCI device function while holding
4951  * the @dev mutex lock.
4952  * @dev: PCI device to reset
4953  *
4954  * Some devices allow an individual function to be reset without affecting
4955  * other functions in the same device.  The PCI device must be responsive
4956  * to PCI config space in order to use this function.
4957  *
4958  * The device function is presumed to be unused and the caller is holding
4959  * the device mutex lock when this function is called.
4960  *
4961  * Resetting the device will make the contents of PCI configuration space
4962  * random, so any caller of this must be prepared to reinitialise the
4963  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4964  * etc.
4965  *
4966  * Returns 0 if the device function was successfully reset or negative if the
4967  * device doesn't support resetting a single function.
4968  */
4969 int __pci_reset_function_locked(struct pci_dev *dev)
4970 {
4971 	int rc;
4972 
4973 	might_sleep();
4974 
4975 	/*
4976 	 * A reset method returns -ENOTTY if it doesn't support this device
4977 	 * and we should try the next method.
4978 	 *
4979 	 * If it returns 0 (success), we're finished.  If it returns any
4980 	 * other error, we're also finished: this indicates that further
4981 	 * reset mechanisms might be broken on the device.
4982 	 */
4983 	rc = pci_dev_specific_reset(dev, 0);
4984 	if (rc != -ENOTTY)
4985 		return rc;
4986 	if (pcie_has_flr(dev)) {
4987 		rc = pcie_flr(dev);
4988 		if (rc != -ENOTTY)
4989 			return rc;
4990 	}
4991 	rc = pci_af_flr(dev, 0);
4992 	if (rc != -ENOTTY)
4993 		return rc;
4994 	rc = pci_pm_reset(dev, 0);
4995 	if (rc != -ENOTTY)
4996 		return rc;
4997 	rc = pci_dev_reset_slot_function(dev, 0);
4998 	if (rc != -ENOTTY)
4999 		return rc;
5000 	return pci_parent_bus_reset(dev, 0);
5001 }
5002 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5003 
5004 /**
5005  * pci_probe_reset_function - check whether the device can be safely reset
5006  * @dev: PCI device to reset
5007  *
5008  * Some devices allow an individual function to be reset without affecting
5009  * other functions in the same device.  The PCI device must be responsive
5010  * to PCI config space in order to use this function.
5011  *
5012  * Returns 0 if the device function can be reset or negative if the
5013  * device doesn't support resetting a single function.
5014  */
5015 int pci_probe_reset_function(struct pci_dev *dev)
5016 {
5017 	int rc;
5018 
5019 	might_sleep();
5020 
5021 	rc = pci_dev_specific_reset(dev, 1);
5022 	if (rc != -ENOTTY)
5023 		return rc;
5024 	if (pcie_has_flr(dev))
5025 		return 0;
5026 	rc = pci_af_flr(dev, 1);
5027 	if (rc != -ENOTTY)
5028 		return rc;
5029 	rc = pci_pm_reset(dev, 1);
5030 	if (rc != -ENOTTY)
5031 		return rc;
5032 	rc = pci_dev_reset_slot_function(dev, 1);
5033 	if (rc != -ENOTTY)
5034 		return rc;
5035 
5036 	return pci_parent_bus_reset(dev, 1);
5037 }
5038 
5039 /**
5040  * pci_reset_function - quiesce and reset a PCI device function
5041  * @dev: PCI device to reset
5042  *
5043  * Some devices allow an individual function to be reset without affecting
5044  * other functions in the same device.  The PCI device must be responsive
5045  * to PCI config space in order to use this function.
5046  *
5047  * This function does not just reset the PCI portion of a device, but
5048  * clears all the state associated with the device.  This function differs
5049  * from __pci_reset_function_locked() in that it saves and restores device state
5050  * over the reset and takes the PCI device lock.
5051  *
5052  * Returns 0 if the device function was successfully reset or negative if the
5053  * device doesn't support resetting a single function.
5054  */
5055 int pci_reset_function(struct pci_dev *dev)
5056 {
5057 	int rc;
5058 
5059 	if (!dev->reset_fn)
5060 		return -ENOTTY;
5061 
5062 	pci_dev_lock(dev);
5063 	pci_dev_save_and_disable(dev);
5064 
5065 	rc = __pci_reset_function_locked(dev);
5066 
5067 	pci_dev_restore(dev);
5068 	pci_dev_unlock(dev);
5069 
5070 	return rc;
5071 }
5072 EXPORT_SYMBOL_GPL(pci_reset_function);
5073 
5074 /**
5075  * pci_reset_function_locked - quiesce and reset a PCI device function
5076  * @dev: PCI device to reset
5077  *
5078  * Some devices allow an individual function to be reset without affecting
5079  * other functions in the same device.  The PCI device must be responsive
5080  * to PCI config space in order to use this function.
5081  *
5082  * This function does not just reset the PCI portion of a device, but
5083  * clears all the state associated with the device.  This function differs
5084  * from __pci_reset_function_locked() in that it saves and restores device state
5085  * over the reset.  It also differs from pci_reset_function() in that it
5086  * requires the PCI device lock to be held.
5087  *
5088  * Returns 0 if the device function was successfully reset or negative if the
5089  * device doesn't support resetting a single function.
5090  */
5091 int pci_reset_function_locked(struct pci_dev *dev)
5092 {
5093 	int rc;
5094 
5095 	if (!dev->reset_fn)
5096 		return -ENOTTY;
5097 
5098 	pci_dev_save_and_disable(dev);
5099 
5100 	rc = __pci_reset_function_locked(dev);
5101 
5102 	pci_dev_restore(dev);
5103 
5104 	return rc;
5105 }
5106 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5107 
5108 /**
5109  * pci_try_reset_function - quiesce and reset a PCI device function
5110  * @dev: PCI device to reset
5111  *
5112  * Same as above, except return -EAGAIN if unable to lock device.
5113  */
5114 int pci_try_reset_function(struct pci_dev *dev)
5115 {
5116 	int rc;
5117 
5118 	if (!dev->reset_fn)
5119 		return -ENOTTY;
5120 
5121 	if (!pci_dev_trylock(dev))
5122 		return -EAGAIN;
5123 
5124 	pci_dev_save_and_disable(dev);
5125 	rc = __pci_reset_function_locked(dev);
5126 	pci_dev_restore(dev);
5127 	pci_dev_unlock(dev);
5128 
5129 	return rc;
5130 }
5131 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5132 
5133 /* Do any devices on or below this bus prevent a bus reset? */
5134 static bool pci_bus_resetable(struct pci_bus *bus)
5135 {
5136 	struct pci_dev *dev;
5137 
5138 
5139 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5140 		return false;
5141 
5142 	list_for_each_entry(dev, &bus->devices, bus_list) {
5143 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5144 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5145 			return false;
5146 	}
5147 
5148 	return true;
5149 }
5150 
5151 /* Lock devices from the top of the tree down */
5152 static void pci_bus_lock(struct pci_bus *bus)
5153 {
5154 	struct pci_dev *dev;
5155 
5156 	list_for_each_entry(dev, &bus->devices, bus_list) {
5157 		pci_dev_lock(dev);
5158 		if (dev->subordinate)
5159 			pci_bus_lock(dev->subordinate);
5160 	}
5161 }
5162 
5163 /* Unlock devices from the bottom of the tree up */
5164 static void pci_bus_unlock(struct pci_bus *bus)
5165 {
5166 	struct pci_dev *dev;
5167 
5168 	list_for_each_entry(dev, &bus->devices, bus_list) {
5169 		if (dev->subordinate)
5170 			pci_bus_unlock(dev->subordinate);
5171 		pci_dev_unlock(dev);
5172 	}
5173 }
5174 
5175 /* Return 1 on successful lock, 0 on contention */
5176 static int pci_bus_trylock(struct pci_bus *bus)
5177 {
5178 	struct pci_dev *dev;
5179 
5180 	list_for_each_entry(dev, &bus->devices, bus_list) {
5181 		if (!pci_dev_trylock(dev))
5182 			goto unlock;
5183 		if (dev->subordinate) {
5184 			if (!pci_bus_trylock(dev->subordinate)) {
5185 				pci_dev_unlock(dev);
5186 				goto unlock;
5187 			}
5188 		}
5189 	}
5190 	return 1;
5191 
5192 unlock:
5193 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5194 		if (dev->subordinate)
5195 			pci_bus_unlock(dev->subordinate);
5196 		pci_dev_unlock(dev);
5197 	}
5198 	return 0;
5199 }
5200 
5201 /* Do any devices on or below this slot prevent a bus reset? */
5202 static bool pci_slot_resetable(struct pci_slot *slot)
5203 {
5204 	struct pci_dev *dev;
5205 
5206 	if (slot->bus->self &&
5207 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5208 		return false;
5209 
5210 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5211 		if (!dev->slot || dev->slot != slot)
5212 			continue;
5213 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5214 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5215 			return false;
5216 	}
5217 
5218 	return true;
5219 }
5220 
5221 /* Lock devices from the top of the tree down */
5222 static void pci_slot_lock(struct pci_slot *slot)
5223 {
5224 	struct pci_dev *dev;
5225 
5226 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5227 		if (!dev->slot || dev->slot != slot)
5228 			continue;
5229 		pci_dev_lock(dev);
5230 		if (dev->subordinate)
5231 			pci_bus_lock(dev->subordinate);
5232 	}
5233 }
5234 
5235 /* Unlock devices from the bottom of the tree up */
5236 static void pci_slot_unlock(struct pci_slot *slot)
5237 {
5238 	struct pci_dev *dev;
5239 
5240 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5241 		if (!dev->slot || dev->slot != slot)
5242 			continue;
5243 		if (dev->subordinate)
5244 			pci_bus_unlock(dev->subordinate);
5245 		pci_dev_unlock(dev);
5246 	}
5247 }
5248 
5249 /* Return 1 on successful lock, 0 on contention */
5250 static int pci_slot_trylock(struct pci_slot *slot)
5251 {
5252 	struct pci_dev *dev;
5253 
5254 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5255 		if (!dev->slot || dev->slot != slot)
5256 			continue;
5257 		if (!pci_dev_trylock(dev))
5258 			goto unlock;
5259 		if (dev->subordinate) {
5260 			if (!pci_bus_trylock(dev->subordinate)) {
5261 				pci_dev_unlock(dev);
5262 				goto unlock;
5263 			}
5264 		}
5265 	}
5266 	return 1;
5267 
5268 unlock:
5269 	list_for_each_entry_continue_reverse(dev,
5270 					     &slot->bus->devices, bus_list) {
5271 		if (!dev->slot || dev->slot != slot)
5272 			continue;
5273 		if (dev->subordinate)
5274 			pci_bus_unlock(dev->subordinate);
5275 		pci_dev_unlock(dev);
5276 	}
5277 	return 0;
5278 }
5279 
5280 /*
5281  * Save and disable devices from the top of the tree down while holding
5282  * the @dev mutex lock for the entire tree.
5283  */
5284 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5285 {
5286 	struct pci_dev *dev;
5287 
5288 	list_for_each_entry(dev, &bus->devices, bus_list) {
5289 		pci_dev_save_and_disable(dev);
5290 		if (dev->subordinate)
5291 			pci_bus_save_and_disable_locked(dev->subordinate);
5292 	}
5293 }
5294 
5295 /*
5296  * Restore devices from top of the tree down while holding @dev mutex lock
5297  * for the entire tree.  Parent bridges need to be restored before we can
5298  * get to subordinate devices.
5299  */
5300 static void pci_bus_restore_locked(struct pci_bus *bus)
5301 {
5302 	struct pci_dev *dev;
5303 
5304 	list_for_each_entry(dev, &bus->devices, bus_list) {
5305 		pci_dev_restore(dev);
5306 		if (dev->subordinate)
5307 			pci_bus_restore_locked(dev->subordinate);
5308 	}
5309 }
5310 
5311 /*
5312  * Save and disable devices from the top of the tree down while holding
5313  * the @dev mutex lock for the entire tree.
5314  */
5315 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5316 {
5317 	struct pci_dev *dev;
5318 
5319 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5320 		if (!dev->slot || dev->slot != slot)
5321 			continue;
5322 		pci_dev_save_and_disable(dev);
5323 		if (dev->subordinate)
5324 			pci_bus_save_and_disable_locked(dev->subordinate);
5325 	}
5326 }
5327 
5328 /*
5329  * Restore devices from top of the tree down while holding @dev mutex lock
5330  * for the entire tree.  Parent bridges need to be restored before we can
5331  * get to subordinate devices.
5332  */
5333 static void pci_slot_restore_locked(struct pci_slot *slot)
5334 {
5335 	struct pci_dev *dev;
5336 
5337 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5338 		if (!dev->slot || dev->slot != slot)
5339 			continue;
5340 		pci_dev_restore(dev);
5341 		if (dev->subordinate)
5342 			pci_bus_restore_locked(dev->subordinate);
5343 	}
5344 }
5345 
5346 static int pci_slot_reset(struct pci_slot *slot, int probe)
5347 {
5348 	int rc;
5349 
5350 	if (!slot || !pci_slot_resetable(slot))
5351 		return -ENOTTY;
5352 
5353 	if (!probe)
5354 		pci_slot_lock(slot);
5355 
5356 	might_sleep();
5357 
5358 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5359 
5360 	if (!probe)
5361 		pci_slot_unlock(slot);
5362 
5363 	return rc;
5364 }
5365 
5366 /**
5367  * pci_probe_reset_slot - probe whether a PCI slot can be reset
5368  * @slot: PCI slot to probe
5369  *
5370  * Return 0 if slot can be reset, negative if a slot reset is not supported.
5371  */
5372 int pci_probe_reset_slot(struct pci_slot *slot)
5373 {
5374 	return pci_slot_reset(slot, 1);
5375 }
5376 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5377 
5378 /**
5379  * __pci_reset_slot - Try to reset a PCI slot
5380  * @slot: PCI slot to reset
5381  *
5382  * A PCI bus may host multiple slots, each slot may support a reset mechanism
5383  * independent of other slots.  For instance, some slots may support slot power
5384  * control.  In the case of a 1:1 bus to slot architecture, this function may
5385  * wrap the bus reset to avoid spurious slot related events such as hotplug.
5386  * Generally a slot reset should be attempted before a bus reset.  All of the
5387  * function of the slot and any subordinate buses behind the slot are reset
5388  * through this function.  PCI config space of all devices in the slot and
5389  * behind the slot is saved before and restored after reset.
5390  *
5391  * Same as above except return -EAGAIN if the slot cannot be locked
5392  */
5393 static int __pci_reset_slot(struct pci_slot *slot)
5394 {
5395 	int rc;
5396 
5397 	rc = pci_slot_reset(slot, 1);
5398 	if (rc)
5399 		return rc;
5400 
5401 	if (pci_slot_trylock(slot)) {
5402 		pci_slot_save_and_disable_locked(slot);
5403 		might_sleep();
5404 		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5405 		pci_slot_restore_locked(slot);
5406 		pci_slot_unlock(slot);
5407 	} else
5408 		rc = -EAGAIN;
5409 
5410 	return rc;
5411 }
5412 
5413 static int pci_bus_reset(struct pci_bus *bus, int probe)
5414 {
5415 	int ret;
5416 
5417 	if (!bus->self || !pci_bus_resetable(bus))
5418 		return -ENOTTY;
5419 
5420 	if (probe)
5421 		return 0;
5422 
5423 	pci_bus_lock(bus);
5424 
5425 	might_sleep();
5426 
5427 	ret = pci_bridge_secondary_bus_reset(bus->self);
5428 
5429 	pci_bus_unlock(bus);
5430 
5431 	return ret;
5432 }
5433 
5434 /**
5435  * pci_bus_error_reset - reset the bridge's subordinate bus
5436  * @bridge: The parent device that connects to the bus to reset
5437  *
5438  * This function will first try to reset the slots on this bus if the method is
5439  * available. If slot reset fails or is not available, this will fall back to a
5440  * secondary bus reset.
5441  */
5442 int pci_bus_error_reset(struct pci_dev *bridge)
5443 {
5444 	struct pci_bus *bus = bridge->subordinate;
5445 	struct pci_slot *slot;
5446 
5447 	if (!bus)
5448 		return -ENOTTY;
5449 
5450 	mutex_lock(&pci_slot_mutex);
5451 	if (list_empty(&bus->slots))
5452 		goto bus_reset;
5453 
5454 	list_for_each_entry(slot, &bus->slots, list)
5455 		if (pci_probe_reset_slot(slot))
5456 			goto bus_reset;
5457 
5458 	list_for_each_entry(slot, &bus->slots, list)
5459 		if (pci_slot_reset(slot, 0))
5460 			goto bus_reset;
5461 
5462 	mutex_unlock(&pci_slot_mutex);
5463 	return 0;
5464 bus_reset:
5465 	mutex_unlock(&pci_slot_mutex);
5466 	return pci_bus_reset(bridge->subordinate, 0);
5467 }
5468 
5469 /**
5470  * pci_probe_reset_bus - probe whether a PCI bus can be reset
5471  * @bus: PCI bus to probe
5472  *
5473  * Return 0 if bus can be reset, negative if a bus reset is not supported.
5474  */
5475 int pci_probe_reset_bus(struct pci_bus *bus)
5476 {
5477 	return pci_bus_reset(bus, 1);
5478 }
5479 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5480 
5481 /**
5482  * __pci_reset_bus - Try to reset a PCI bus
5483  * @bus: top level PCI bus to reset
5484  *
5485  * Same as above except return -EAGAIN if the bus cannot be locked
5486  */
5487 static int __pci_reset_bus(struct pci_bus *bus)
5488 {
5489 	int rc;
5490 
5491 	rc = pci_bus_reset(bus, 1);
5492 	if (rc)
5493 		return rc;
5494 
5495 	if (pci_bus_trylock(bus)) {
5496 		pci_bus_save_and_disable_locked(bus);
5497 		might_sleep();
5498 		rc = pci_bridge_secondary_bus_reset(bus->self);
5499 		pci_bus_restore_locked(bus);
5500 		pci_bus_unlock(bus);
5501 	} else
5502 		rc = -EAGAIN;
5503 
5504 	return rc;
5505 }
5506 
5507 /**
5508  * pci_reset_bus - Try to reset a PCI bus
5509  * @pdev: top level PCI device to reset via slot/bus
5510  *
5511  * Same as above except return -EAGAIN if the bus cannot be locked
5512  */
5513 int pci_reset_bus(struct pci_dev *pdev)
5514 {
5515 	return (!pci_probe_reset_slot(pdev->slot)) ?
5516 	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5517 }
5518 EXPORT_SYMBOL_GPL(pci_reset_bus);
5519 
5520 /**
5521  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5522  * @dev: PCI device to query
5523  *
5524  * Returns mmrbc: maximum designed memory read count in bytes or
5525  * appropriate error value.
5526  */
5527 int pcix_get_max_mmrbc(struct pci_dev *dev)
5528 {
5529 	int cap;
5530 	u32 stat;
5531 
5532 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5533 	if (!cap)
5534 		return -EINVAL;
5535 
5536 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5537 		return -EINVAL;
5538 
5539 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5540 }
5541 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5542 
5543 /**
5544  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5545  * @dev: PCI device to query
5546  *
5547  * Returns mmrbc: maximum memory read count in bytes or appropriate error
5548  * value.
5549  */
5550 int pcix_get_mmrbc(struct pci_dev *dev)
5551 {
5552 	int cap;
5553 	u16 cmd;
5554 
5555 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5556 	if (!cap)
5557 		return -EINVAL;
5558 
5559 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5560 		return -EINVAL;
5561 
5562 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5563 }
5564 EXPORT_SYMBOL(pcix_get_mmrbc);
5565 
5566 /**
5567  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5568  * @dev: PCI device to query
5569  * @mmrbc: maximum memory read count in bytes
5570  *    valid values are 512, 1024, 2048, 4096
5571  *
5572  * If possible sets maximum memory read byte count, some bridges have errata
5573  * that prevent this.
5574  */
5575 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5576 {
5577 	int cap;
5578 	u32 stat, v, o;
5579 	u16 cmd;
5580 
5581 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5582 		return -EINVAL;
5583 
5584 	v = ffs(mmrbc) - 10;
5585 
5586 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5587 	if (!cap)
5588 		return -EINVAL;
5589 
5590 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5591 		return -EINVAL;
5592 
5593 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5594 		return -E2BIG;
5595 
5596 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5597 		return -EINVAL;
5598 
5599 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5600 	if (o != v) {
5601 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5602 			return -EIO;
5603 
5604 		cmd &= ~PCI_X_CMD_MAX_READ;
5605 		cmd |= v << 2;
5606 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5607 			return -EIO;
5608 	}
5609 	return 0;
5610 }
5611 EXPORT_SYMBOL(pcix_set_mmrbc);
5612 
5613 /**
5614  * pcie_get_readrq - get PCI Express read request size
5615  * @dev: PCI device to query
5616  *
5617  * Returns maximum memory read request in bytes or appropriate error value.
5618  */
5619 int pcie_get_readrq(struct pci_dev *dev)
5620 {
5621 	u16 ctl;
5622 
5623 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5624 
5625 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5626 }
5627 EXPORT_SYMBOL(pcie_get_readrq);
5628 
5629 /**
5630  * pcie_set_readrq - set PCI Express maximum memory read request
5631  * @dev: PCI device to query
5632  * @rq: maximum memory read count in bytes
5633  *    valid values are 128, 256, 512, 1024, 2048, 4096
5634  *
5635  * If possible sets maximum memory read request in bytes
5636  */
5637 int pcie_set_readrq(struct pci_dev *dev, int rq)
5638 {
5639 	u16 v;
5640 
5641 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5642 		return -EINVAL;
5643 
5644 	/*
5645 	 * If using the "performance" PCIe config, we clamp the read rq
5646 	 * size to the max packet size to keep the host bridge from
5647 	 * generating requests larger than we can cope with.
5648 	 */
5649 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5650 		int mps = pcie_get_mps(dev);
5651 
5652 		if (mps < rq)
5653 			rq = mps;
5654 	}
5655 
5656 	v = (ffs(rq) - 8) << 12;
5657 
5658 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5659 						  PCI_EXP_DEVCTL_READRQ, v);
5660 }
5661 EXPORT_SYMBOL(pcie_set_readrq);
5662 
5663 /**
5664  * pcie_get_mps - get PCI Express maximum payload size
5665  * @dev: PCI device to query
5666  *
5667  * Returns maximum payload size in bytes
5668  */
5669 int pcie_get_mps(struct pci_dev *dev)
5670 {
5671 	u16 ctl;
5672 
5673 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5674 
5675 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5676 }
5677 EXPORT_SYMBOL(pcie_get_mps);
5678 
5679 /**
5680  * pcie_set_mps - set PCI Express maximum payload size
5681  * @dev: PCI device to query
5682  * @mps: maximum payload size in bytes
5683  *    valid values are 128, 256, 512, 1024, 2048, 4096
5684  *
5685  * If possible sets maximum payload size
5686  */
5687 int pcie_set_mps(struct pci_dev *dev, int mps)
5688 {
5689 	u16 v;
5690 
5691 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5692 		return -EINVAL;
5693 
5694 	v = ffs(mps) - 8;
5695 	if (v > dev->pcie_mpss)
5696 		return -EINVAL;
5697 	v <<= 5;
5698 
5699 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5700 						  PCI_EXP_DEVCTL_PAYLOAD, v);
5701 }
5702 EXPORT_SYMBOL(pcie_set_mps);
5703 
5704 /**
5705  * pcie_bandwidth_available - determine minimum link settings of a PCIe
5706  *			      device and its bandwidth limitation
5707  * @dev: PCI device to query
5708  * @limiting_dev: storage for device causing the bandwidth limitation
5709  * @speed: storage for speed of limiting device
5710  * @width: storage for width of limiting device
5711  *
5712  * Walk up the PCI device chain and find the point where the minimum
5713  * bandwidth is available.  Return the bandwidth available there and (if
5714  * limiting_dev, speed, and width pointers are supplied) information about
5715  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
5716  * raw bandwidth.
5717  */
5718 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5719 			     enum pci_bus_speed *speed,
5720 			     enum pcie_link_width *width)
5721 {
5722 	u16 lnksta;
5723 	enum pci_bus_speed next_speed;
5724 	enum pcie_link_width next_width;
5725 	u32 bw, next_bw;
5726 
5727 	if (speed)
5728 		*speed = PCI_SPEED_UNKNOWN;
5729 	if (width)
5730 		*width = PCIE_LNK_WIDTH_UNKNOWN;
5731 
5732 	bw = 0;
5733 
5734 	while (dev) {
5735 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5736 
5737 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5738 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5739 			PCI_EXP_LNKSTA_NLW_SHIFT;
5740 
5741 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5742 
5743 		/* Check if current device limits the total bandwidth */
5744 		if (!bw || next_bw <= bw) {
5745 			bw = next_bw;
5746 
5747 			if (limiting_dev)
5748 				*limiting_dev = dev;
5749 			if (speed)
5750 				*speed = next_speed;
5751 			if (width)
5752 				*width = next_width;
5753 		}
5754 
5755 		dev = pci_upstream_bridge(dev);
5756 	}
5757 
5758 	return bw;
5759 }
5760 EXPORT_SYMBOL(pcie_bandwidth_available);
5761 
5762 /**
5763  * pcie_get_speed_cap - query for the PCI device's link speed capability
5764  * @dev: PCI device to query
5765  *
5766  * Query the PCI device speed capability.  Return the maximum link speed
5767  * supported by the device.
5768  */
5769 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5770 {
5771 	u32 lnkcap2, lnkcap;
5772 
5773 	/*
5774 	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
5775 	 * implementation note there recommends using the Supported Link
5776 	 * Speeds Vector in Link Capabilities 2 when supported.
5777 	 *
5778 	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5779 	 * should use the Supported Link Speeds field in Link Capabilities,
5780 	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5781 	 */
5782 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5783 	if (lnkcap2) { /* PCIe r3.0-compliant */
5784 		if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_32_0GB)
5785 			return PCIE_SPEED_32_0GT;
5786 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_16_0GB)
5787 			return PCIE_SPEED_16_0GT;
5788 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
5789 			return PCIE_SPEED_8_0GT;
5790 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
5791 			return PCIE_SPEED_5_0GT;
5792 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
5793 			return PCIE_SPEED_2_5GT;
5794 		return PCI_SPEED_UNKNOWN;
5795 	}
5796 
5797 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5798 	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5799 		return PCIE_SPEED_5_0GT;
5800 	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5801 		return PCIE_SPEED_2_5GT;
5802 
5803 	return PCI_SPEED_UNKNOWN;
5804 }
5805 EXPORT_SYMBOL(pcie_get_speed_cap);
5806 
5807 /**
5808  * pcie_get_width_cap - query for the PCI device's link width capability
5809  * @dev: PCI device to query
5810  *
5811  * Query the PCI device width capability.  Return the maximum link width
5812  * supported by the device.
5813  */
5814 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5815 {
5816 	u32 lnkcap;
5817 
5818 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5819 	if (lnkcap)
5820 		return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5821 
5822 	return PCIE_LNK_WIDTH_UNKNOWN;
5823 }
5824 EXPORT_SYMBOL(pcie_get_width_cap);
5825 
5826 /**
5827  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5828  * @dev: PCI device
5829  * @speed: storage for link speed
5830  * @width: storage for link width
5831  *
5832  * Calculate a PCI device's link bandwidth by querying for its link speed
5833  * and width, multiplying them, and applying encoding overhead.  The result
5834  * is in Mb/s, i.e., megabits/second of raw bandwidth.
5835  */
5836 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5837 			   enum pcie_link_width *width)
5838 {
5839 	*speed = pcie_get_speed_cap(dev);
5840 	*width = pcie_get_width_cap(dev);
5841 
5842 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5843 		return 0;
5844 
5845 	return *width * PCIE_SPEED2MBS_ENC(*speed);
5846 }
5847 
5848 /**
5849  * __pcie_print_link_status - Report the PCI device's link speed and width
5850  * @dev: PCI device to query
5851  * @verbose: Print info even when enough bandwidth is available
5852  *
5853  * If the available bandwidth at the device is less than the device is
5854  * capable of, report the device's maximum possible bandwidth and the
5855  * upstream link that limits its performance.  If @verbose, always print
5856  * the available bandwidth, even if the device isn't constrained.
5857  */
5858 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
5859 {
5860 	enum pcie_link_width width, width_cap;
5861 	enum pci_bus_speed speed, speed_cap;
5862 	struct pci_dev *limiting_dev = NULL;
5863 	u32 bw_avail, bw_cap;
5864 
5865 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5866 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5867 
5868 	if (bw_avail >= bw_cap && verbose)
5869 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5870 			 bw_cap / 1000, bw_cap % 1000,
5871 			 PCIE_SPEED2STR(speed_cap), width_cap);
5872 	else if (bw_avail < bw_cap)
5873 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5874 			 bw_avail / 1000, bw_avail % 1000,
5875 			 PCIE_SPEED2STR(speed), width,
5876 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5877 			 bw_cap / 1000, bw_cap % 1000,
5878 			 PCIE_SPEED2STR(speed_cap), width_cap);
5879 }
5880 
5881 /**
5882  * pcie_print_link_status - Report the PCI device's link speed and width
5883  * @dev: PCI device to query
5884  *
5885  * Report the available bandwidth at the device.
5886  */
5887 void pcie_print_link_status(struct pci_dev *dev)
5888 {
5889 	__pcie_print_link_status(dev, true);
5890 }
5891 EXPORT_SYMBOL(pcie_print_link_status);
5892 
5893 /**
5894  * pci_select_bars - Make BAR mask from the type of resource
5895  * @dev: the PCI device for which BAR mask is made
5896  * @flags: resource type mask to be selected
5897  *
5898  * This helper routine makes bar mask from the type of resource.
5899  */
5900 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5901 {
5902 	int i, bars = 0;
5903 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
5904 		if (pci_resource_flags(dev, i) & flags)
5905 			bars |= (1 << i);
5906 	return bars;
5907 }
5908 EXPORT_SYMBOL(pci_select_bars);
5909 
5910 /* Some architectures require additional programming to enable VGA */
5911 static arch_set_vga_state_t arch_set_vga_state;
5912 
5913 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5914 {
5915 	arch_set_vga_state = func;	/* NULL disables */
5916 }
5917 
5918 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5919 				  unsigned int command_bits, u32 flags)
5920 {
5921 	if (arch_set_vga_state)
5922 		return arch_set_vga_state(dev, decode, command_bits,
5923 						flags);
5924 	return 0;
5925 }
5926 
5927 /**
5928  * pci_set_vga_state - set VGA decode state on device and parents if requested
5929  * @dev: the PCI device
5930  * @decode: true = enable decoding, false = disable decoding
5931  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5932  * @flags: traverse ancestors and change bridges
5933  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5934  */
5935 int pci_set_vga_state(struct pci_dev *dev, bool decode,
5936 		      unsigned int command_bits, u32 flags)
5937 {
5938 	struct pci_bus *bus;
5939 	struct pci_dev *bridge;
5940 	u16 cmd;
5941 	int rc;
5942 
5943 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
5944 
5945 	/* ARCH specific VGA enables */
5946 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
5947 	if (rc)
5948 		return rc;
5949 
5950 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
5951 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
5952 		if (decode == true)
5953 			cmd |= command_bits;
5954 		else
5955 			cmd &= ~command_bits;
5956 		pci_write_config_word(dev, PCI_COMMAND, cmd);
5957 	}
5958 
5959 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
5960 		return 0;
5961 
5962 	bus = dev->bus;
5963 	while (bus) {
5964 		bridge = bus->self;
5965 		if (bridge) {
5966 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
5967 					     &cmd);
5968 			if (decode == true)
5969 				cmd |= PCI_BRIDGE_CTL_VGA;
5970 			else
5971 				cmd &= ~PCI_BRIDGE_CTL_VGA;
5972 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5973 					      cmd);
5974 		}
5975 		bus = bus->parent;
5976 	}
5977 	return 0;
5978 }
5979 
5980 #ifdef CONFIG_ACPI
5981 bool pci_pr3_present(struct pci_dev *pdev)
5982 {
5983 	struct acpi_device *adev;
5984 
5985 	if (acpi_disabled)
5986 		return false;
5987 
5988 	adev = ACPI_COMPANION(&pdev->dev);
5989 	if (!adev)
5990 		return false;
5991 
5992 	return adev->power.flags.power_resources &&
5993 		acpi_has_method(adev->handle, "_PR3");
5994 }
5995 EXPORT_SYMBOL_GPL(pci_pr3_present);
5996 #endif
5997 
5998 /**
5999  * pci_add_dma_alias - Add a DMA devfn alias for a device
6000  * @dev: the PCI device for which alias is added
6001  * @devfn: alias slot and function
6002  *
6003  * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6004  * which is used to program permissible bus-devfn source addresses for DMA
6005  * requests in an IOMMU.  These aliases factor into IOMMU group creation
6006  * and are useful for devices generating DMA requests beyond or different
6007  * from their logical bus-devfn.  Examples include device quirks where the
6008  * device simply uses the wrong devfn, as well as non-transparent bridges
6009  * where the alias may be a proxy for devices in another domain.
6010  *
6011  * IOMMU group creation is performed during device discovery or addition,
6012  * prior to any potential DMA mapping and therefore prior to driver probing
6013  * (especially for userspace assigned devices where IOMMU group definition
6014  * cannot be left as a userspace activity).  DMA aliases should therefore
6015  * be configured via quirks, such as the PCI fixup header quirk.
6016  */
6017 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
6018 {
6019 	if (!dev->dma_alias_mask)
6020 		dev->dma_alias_mask = bitmap_zalloc(U8_MAX, GFP_KERNEL);
6021 	if (!dev->dma_alias_mask) {
6022 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6023 		return;
6024 	}
6025 
6026 	set_bit(devfn, dev->dma_alias_mask);
6027 	pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6028 		 PCI_SLOT(devfn), PCI_FUNC(devfn));
6029 }
6030 
6031 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6032 {
6033 	return (dev1->dma_alias_mask &&
6034 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6035 	       (dev2->dma_alias_mask &&
6036 		test_bit(dev1->devfn, dev2->dma_alias_mask));
6037 }
6038 
6039 bool pci_device_is_present(struct pci_dev *pdev)
6040 {
6041 	u32 v;
6042 
6043 	if (pci_dev_is_disconnected(pdev))
6044 		return false;
6045 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6046 }
6047 EXPORT_SYMBOL_GPL(pci_device_is_present);
6048 
6049 void pci_ignore_hotplug(struct pci_dev *dev)
6050 {
6051 	struct pci_dev *bridge = dev->bus->self;
6052 
6053 	dev->ignore_hotplug = 1;
6054 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6055 	if (bridge)
6056 		bridge->ignore_hotplug = 1;
6057 }
6058 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6059 
6060 resource_size_t __weak pcibios_default_alignment(void)
6061 {
6062 	return 0;
6063 }
6064 
6065 /*
6066  * Arches that don't want to expose struct resource to userland as-is in
6067  * sysfs and /proc can implement their own pci_resource_to_user().
6068  */
6069 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6070 				 const struct resource *rsrc,
6071 				 resource_size_t *start, resource_size_t *end)
6072 {
6073 	*start = rsrc->start;
6074 	*end = rsrc->end;
6075 }
6076 
6077 static char *resource_alignment_param;
6078 static DEFINE_SPINLOCK(resource_alignment_lock);
6079 
6080 /**
6081  * pci_specified_resource_alignment - get resource alignment specified by user.
6082  * @dev: the PCI device to get
6083  * @resize: whether or not to change resources' size when reassigning alignment
6084  *
6085  * RETURNS: Resource alignment if it is specified.
6086  *          Zero if it is not specified.
6087  */
6088 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6089 							bool *resize)
6090 {
6091 	int align_order, count;
6092 	resource_size_t align = pcibios_default_alignment();
6093 	const char *p;
6094 	int ret;
6095 
6096 	spin_lock(&resource_alignment_lock);
6097 	p = resource_alignment_param;
6098 	if (!p || !*p)
6099 		goto out;
6100 	if (pci_has_flag(PCI_PROBE_ONLY)) {
6101 		align = 0;
6102 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6103 		goto out;
6104 	}
6105 
6106 	while (*p) {
6107 		count = 0;
6108 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6109 							p[count] == '@') {
6110 			p += count + 1;
6111 		} else {
6112 			align_order = -1;
6113 		}
6114 
6115 		ret = pci_dev_str_match(dev, p, &p);
6116 		if (ret == 1) {
6117 			*resize = true;
6118 			if (align_order == -1)
6119 				align = PAGE_SIZE;
6120 			else
6121 				align = 1 << align_order;
6122 			break;
6123 		} else if (ret < 0) {
6124 			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6125 			       p);
6126 			break;
6127 		}
6128 
6129 		if (*p != ';' && *p != ',') {
6130 			/* End of param or invalid format */
6131 			break;
6132 		}
6133 		p++;
6134 	}
6135 out:
6136 	spin_unlock(&resource_alignment_lock);
6137 	return align;
6138 }
6139 
6140 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6141 					   resource_size_t align, bool resize)
6142 {
6143 	struct resource *r = &dev->resource[bar];
6144 	resource_size_t size;
6145 
6146 	if (!(r->flags & IORESOURCE_MEM))
6147 		return;
6148 
6149 	if (r->flags & IORESOURCE_PCI_FIXED) {
6150 		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6151 			 bar, r, (unsigned long long)align);
6152 		return;
6153 	}
6154 
6155 	size = resource_size(r);
6156 	if (size >= align)
6157 		return;
6158 
6159 	/*
6160 	 * Increase the alignment of the resource.  There are two ways we
6161 	 * can do this:
6162 	 *
6163 	 * 1) Increase the size of the resource.  BARs are aligned on their
6164 	 *    size, so when we reallocate space for this resource, we'll
6165 	 *    allocate it with the larger alignment.  This also prevents
6166 	 *    assignment of any other BARs inside the alignment region, so
6167 	 *    if we're requesting page alignment, this means no other BARs
6168 	 *    will share the page.
6169 	 *
6170 	 *    The disadvantage is that this makes the resource larger than
6171 	 *    the hardware BAR, which may break drivers that compute things
6172 	 *    based on the resource size, e.g., to find registers at a
6173 	 *    fixed offset before the end of the BAR.
6174 	 *
6175 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6176 	 *    set r->start to the desired alignment.  By itself this
6177 	 *    doesn't prevent other BARs being put inside the alignment
6178 	 *    region, but if we realign *every* resource of every device in
6179 	 *    the system, none of them will share an alignment region.
6180 	 *
6181 	 * When the user has requested alignment for only some devices via
6182 	 * the "pci=resource_alignment" argument, "resize" is true and we
6183 	 * use the first method.  Otherwise we assume we're aligning all
6184 	 * devices and we use the second.
6185 	 */
6186 
6187 	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6188 		 bar, r, (unsigned long long)align);
6189 
6190 	if (resize) {
6191 		r->start = 0;
6192 		r->end = align - 1;
6193 	} else {
6194 		r->flags &= ~IORESOURCE_SIZEALIGN;
6195 		r->flags |= IORESOURCE_STARTALIGN;
6196 		r->start = align;
6197 		r->end = r->start + size - 1;
6198 	}
6199 	r->flags |= IORESOURCE_UNSET;
6200 }
6201 
6202 /*
6203  * This function disables memory decoding and releases memory resources
6204  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6205  * It also rounds up size to specified alignment.
6206  * Later on, the kernel will assign page-aligned memory resource back
6207  * to the device.
6208  */
6209 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6210 {
6211 	int i;
6212 	struct resource *r;
6213 	resource_size_t align;
6214 	u16 command;
6215 	bool resize = false;
6216 
6217 	/*
6218 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6219 	 * 3.4.1.11.  Their resources are allocated from the space
6220 	 * described by the VF BARx register in the PF's SR-IOV capability.
6221 	 * We can't influence their alignment here.
6222 	 */
6223 	if (dev->is_virtfn)
6224 		return;
6225 
6226 	/* check if specified PCI is target device to reassign */
6227 	align = pci_specified_resource_alignment(dev, &resize);
6228 	if (!align)
6229 		return;
6230 
6231 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6232 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6233 		pci_warn(dev, "Can't reassign resources to host bridge\n");
6234 		return;
6235 	}
6236 
6237 	pci_read_config_word(dev, PCI_COMMAND, &command);
6238 	command &= ~PCI_COMMAND_MEMORY;
6239 	pci_write_config_word(dev, PCI_COMMAND, command);
6240 
6241 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6242 		pci_request_resource_alignment(dev, i, align, resize);
6243 
6244 	/*
6245 	 * Need to disable bridge's resource window,
6246 	 * to enable the kernel to reassign new resource
6247 	 * window later on.
6248 	 */
6249 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6250 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6251 			r = &dev->resource[i];
6252 			if (!(r->flags & IORESOURCE_MEM))
6253 				continue;
6254 			r->flags |= IORESOURCE_UNSET;
6255 			r->end = resource_size(r) - 1;
6256 			r->start = 0;
6257 		}
6258 		pci_disable_bridge_window(dev);
6259 	}
6260 }
6261 
6262 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6263 {
6264 	size_t count = 0;
6265 
6266 	spin_lock(&resource_alignment_lock);
6267 	if (resource_alignment_param)
6268 		count = snprintf(buf, PAGE_SIZE, "%s", resource_alignment_param);
6269 	spin_unlock(&resource_alignment_lock);
6270 
6271 	/*
6272 	 * When set by the command line, resource_alignment_param will not
6273 	 * have a trailing line feed, which is ugly. So conditionally add
6274 	 * it here.
6275 	 */
6276 	if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) {
6277 		buf[count - 1] = '\n';
6278 		buf[count++] = 0;
6279 	}
6280 
6281 	return count;
6282 }
6283 
6284 static ssize_t resource_alignment_store(struct bus_type *bus,
6285 					const char *buf, size_t count)
6286 {
6287 	char *param = kstrndup(buf, count, GFP_KERNEL);
6288 
6289 	if (!param)
6290 		return -ENOMEM;
6291 
6292 	spin_lock(&resource_alignment_lock);
6293 	kfree(resource_alignment_param);
6294 	resource_alignment_param = param;
6295 	spin_unlock(&resource_alignment_lock);
6296 	return count;
6297 }
6298 
6299 static BUS_ATTR_RW(resource_alignment);
6300 
6301 static int __init pci_resource_alignment_sysfs_init(void)
6302 {
6303 	return bus_create_file(&pci_bus_type,
6304 					&bus_attr_resource_alignment);
6305 }
6306 late_initcall(pci_resource_alignment_sysfs_init);
6307 
6308 static void pci_no_domains(void)
6309 {
6310 #ifdef CONFIG_PCI_DOMAINS
6311 	pci_domains_supported = 0;
6312 #endif
6313 }
6314 
6315 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6316 static atomic_t __domain_nr = ATOMIC_INIT(-1);
6317 
6318 static int pci_get_new_domain_nr(void)
6319 {
6320 	return atomic_inc_return(&__domain_nr);
6321 }
6322 
6323 static int of_pci_bus_find_domain_nr(struct device *parent)
6324 {
6325 	static int use_dt_domains = -1;
6326 	int domain = -1;
6327 
6328 	if (parent)
6329 		domain = of_get_pci_domain_nr(parent->of_node);
6330 
6331 	/*
6332 	 * Check DT domain and use_dt_domains values.
6333 	 *
6334 	 * If DT domain property is valid (domain >= 0) and
6335 	 * use_dt_domains != 0, the DT assignment is valid since this means
6336 	 * we have not previously allocated a domain number by using
6337 	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6338 	 * 1, to indicate that we have just assigned a domain number from
6339 	 * DT.
6340 	 *
6341 	 * If DT domain property value is not valid (ie domain < 0), and we
6342 	 * have not previously assigned a domain number from DT
6343 	 * (use_dt_domains != 1) we should assign a domain number by
6344 	 * using the:
6345 	 *
6346 	 * pci_get_new_domain_nr()
6347 	 *
6348 	 * API and update the use_dt_domains value to keep track of method we
6349 	 * are using to assign domain numbers (use_dt_domains = 0).
6350 	 *
6351 	 * All other combinations imply we have a platform that is trying
6352 	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6353 	 * which is a recipe for domain mishandling and it is prevented by
6354 	 * invalidating the domain value (domain = -1) and printing a
6355 	 * corresponding error.
6356 	 */
6357 	if (domain >= 0 && use_dt_domains) {
6358 		use_dt_domains = 1;
6359 	} else if (domain < 0 && use_dt_domains != 1) {
6360 		use_dt_domains = 0;
6361 		domain = pci_get_new_domain_nr();
6362 	} else {
6363 		if (parent)
6364 			pr_err("Node %pOF has ", parent->of_node);
6365 		pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6366 		domain = -1;
6367 	}
6368 
6369 	return domain;
6370 }
6371 
6372 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6373 {
6374 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6375 			       acpi_pci_bus_find_domain_nr(bus);
6376 }
6377 #endif
6378 
6379 /**
6380  * pci_ext_cfg_avail - can we access extended PCI config space?
6381  *
6382  * Returns 1 if we can access PCI extended config space (offsets
6383  * greater than 0xff). This is the default implementation. Architecture
6384  * implementations can override this.
6385  */
6386 int __weak pci_ext_cfg_avail(void)
6387 {
6388 	return 1;
6389 }
6390 
6391 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6392 {
6393 }
6394 EXPORT_SYMBOL(pci_fixup_cardbus);
6395 
6396 static int __init pci_setup(char *str)
6397 {
6398 	while (str) {
6399 		char *k = strchr(str, ',');
6400 		if (k)
6401 			*k++ = 0;
6402 		if (*str && (str = pcibios_setup(str)) && *str) {
6403 			if (!strcmp(str, "nomsi")) {
6404 				pci_no_msi();
6405 			} else if (!strncmp(str, "noats", 5)) {
6406 				pr_info("PCIe: ATS is disabled\n");
6407 				pcie_ats_disabled = true;
6408 			} else if (!strcmp(str, "noaer")) {
6409 				pci_no_aer();
6410 			} else if (!strcmp(str, "earlydump")) {
6411 				pci_early_dump = true;
6412 			} else if (!strncmp(str, "realloc=", 8)) {
6413 				pci_realloc_get_opt(str + 8);
6414 			} else if (!strncmp(str, "realloc", 7)) {
6415 				pci_realloc_get_opt("on");
6416 			} else if (!strcmp(str, "nodomains")) {
6417 				pci_no_domains();
6418 			} else if (!strncmp(str, "noari", 5)) {
6419 				pcie_ari_disabled = true;
6420 			} else if (!strncmp(str, "cbiosize=", 9)) {
6421 				pci_cardbus_io_size = memparse(str + 9, &str);
6422 			} else if (!strncmp(str, "cbmemsize=", 10)) {
6423 				pci_cardbus_mem_size = memparse(str + 10, &str);
6424 			} else if (!strncmp(str, "resource_alignment=", 19)) {
6425 				resource_alignment_param = str + 19;
6426 			} else if (!strncmp(str, "ecrc=", 5)) {
6427 				pcie_ecrc_get_policy(str + 5);
6428 			} else if (!strncmp(str, "hpiosize=", 9)) {
6429 				pci_hotplug_io_size = memparse(str + 9, &str);
6430 			} else if (!strncmp(str, "hpmmiosize=", 11)) {
6431 				pci_hotplug_mmio_size = memparse(str + 11, &str);
6432 			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6433 				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6434 			} else if (!strncmp(str, "hpmemsize=", 10)) {
6435 				pci_hotplug_mmio_size = memparse(str + 10, &str);
6436 				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6437 			} else if (!strncmp(str, "hpbussize=", 10)) {
6438 				pci_hotplug_bus_size =
6439 					simple_strtoul(str + 10, &str, 0);
6440 				if (pci_hotplug_bus_size > 0xff)
6441 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6442 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6443 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6444 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6445 				pcie_bus_config = PCIE_BUS_SAFE;
6446 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6447 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6448 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6449 				pcie_bus_config = PCIE_BUS_PEER2PEER;
6450 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6451 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6452 			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6453 				disable_acs_redir_param = str + 18;
6454 			} else {
6455 				pr_err("PCI: Unknown option `%s'\n", str);
6456 			}
6457 		}
6458 		str = k;
6459 	}
6460 	return 0;
6461 }
6462 early_param("pci", pci_setup);
6463 
6464 /*
6465  * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6466  * in pci_setup(), above, to point to data in the __initdata section which
6467  * will be freed after the init sequence is complete. We can't allocate memory
6468  * in pci_setup() because some architectures do not have any memory allocation
6469  * service available during an early_param() call. So we allocate memory and
6470  * copy the variable here before the init section is freed.
6471  *
6472  */
6473 static int __init pci_realloc_setup_params(void)
6474 {
6475 	resource_alignment_param = kstrdup(resource_alignment_param,
6476 					   GFP_KERNEL);
6477 	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6478 
6479 	return 0;
6480 }
6481 pure_initcall(pci_realloc_setup_params);
6482