xref: /linux/drivers/pci/pci.c (revision dd093fb0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <asm/dma.h>
33 #include <linux/aer.h>
34 #include <linux/bitfield.h>
35 #include "pci.h"
36 
37 DEFINE_MUTEX(pci_slot_mutex);
38 
39 const char *pci_power_names[] = {
40 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
41 };
42 EXPORT_SYMBOL_GPL(pci_power_names);
43 
44 #ifdef CONFIG_X86_32
45 int isa_dma_bridge_buggy;
46 EXPORT_SYMBOL(isa_dma_bridge_buggy);
47 #endif
48 
49 int pci_pci_problems;
50 EXPORT_SYMBOL(pci_pci_problems);
51 
52 unsigned int pci_pm_d3hot_delay;
53 
54 static void pci_pme_list_scan(struct work_struct *work);
55 
56 static LIST_HEAD(pci_pme_list);
57 static DEFINE_MUTEX(pci_pme_list_mutex);
58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
59 
60 struct pci_pme_device {
61 	struct list_head list;
62 	struct pci_dev *dev;
63 };
64 
65 #define PME_TIMEOUT 1000 /* How long between PME checks */
66 
67 static void pci_dev_d3_sleep(struct pci_dev *dev)
68 {
69 	unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
70 	unsigned int upper;
71 
72 	if (delay_ms) {
73 		/* Use a 20% upper bound, 1ms minimum */
74 		upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
75 		usleep_range(delay_ms * USEC_PER_MSEC,
76 			     (delay_ms + upper) * USEC_PER_MSEC);
77 	}
78 }
79 
80 bool pci_reset_supported(struct pci_dev *dev)
81 {
82 	return dev->reset_methods[0] != 0;
83 }
84 
85 #ifdef CONFIG_PCI_DOMAINS
86 int pci_domains_supported = 1;
87 #endif
88 
89 #define DEFAULT_CARDBUS_IO_SIZE		(256)
90 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
91 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
92 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
93 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
94 
95 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
96 #define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
97 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
98 /* hpiosize=nn can override this */
99 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
100 /*
101  * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
102  * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
103  * pci=hpmemsize=nnM overrides both
104  */
105 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
106 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
107 
108 #define DEFAULT_HOTPLUG_BUS_SIZE	1
109 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
110 
111 
112 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
113 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
114 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
115 #elif defined CONFIG_PCIE_BUS_SAFE
116 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
117 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
118 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
119 #elif defined CONFIG_PCIE_BUS_PEER2PEER
120 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
121 #else
122 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
123 #endif
124 
125 /*
126  * The default CLS is used if arch didn't set CLS explicitly and not
127  * all pci devices agree on the same value.  Arch can override either
128  * the dfl or actual value as it sees fit.  Don't forget this is
129  * measured in 32-bit words, not bytes.
130  */
131 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
132 u8 pci_cache_line_size;
133 
134 /*
135  * If we set up a device for bus mastering, we need to check the latency
136  * timer as certain BIOSes forget to set it properly.
137  */
138 unsigned int pcibios_max_latency = 255;
139 
140 /* If set, the PCIe ARI capability will not be used. */
141 static bool pcie_ari_disabled;
142 
143 /* If set, the PCIe ATS capability will not be used. */
144 static bool pcie_ats_disabled;
145 
146 /* If set, the PCI config space of each device is printed during boot. */
147 bool pci_early_dump;
148 
149 bool pci_ats_disabled(void)
150 {
151 	return pcie_ats_disabled;
152 }
153 EXPORT_SYMBOL_GPL(pci_ats_disabled);
154 
155 /* Disable bridge_d3 for all PCIe ports */
156 static bool pci_bridge_d3_disable;
157 /* Force bridge_d3 for all PCIe ports */
158 static bool pci_bridge_d3_force;
159 
160 static int __init pcie_port_pm_setup(char *str)
161 {
162 	if (!strcmp(str, "off"))
163 		pci_bridge_d3_disable = true;
164 	else if (!strcmp(str, "force"))
165 		pci_bridge_d3_force = true;
166 	return 1;
167 }
168 __setup("pcie_port_pm=", pcie_port_pm_setup);
169 
170 /* Time to wait after a reset for device to become responsive */
171 #define PCIE_RESET_READY_POLL_MS 60000
172 
173 /**
174  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
175  * @bus: pointer to PCI bus structure to search
176  *
177  * Given a PCI bus, returns the highest PCI bus number present in the set
178  * including the given PCI bus and its list of child PCI buses.
179  */
180 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
181 {
182 	struct pci_bus *tmp;
183 	unsigned char max, n;
184 
185 	max = bus->busn_res.end;
186 	list_for_each_entry(tmp, &bus->children, node) {
187 		n = pci_bus_max_busnr(tmp);
188 		if (n > max)
189 			max = n;
190 	}
191 	return max;
192 }
193 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
194 
195 /**
196  * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
197  * @pdev: the PCI device
198  *
199  * Returns error bits set in PCI_STATUS and clears them.
200  */
201 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
202 {
203 	u16 status;
204 	int ret;
205 
206 	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
207 	if (ret != PCIBIOS_SUCCESSFUL)
208 		return -EIO;
209 
210 	status &= PCI_STATUS_ERROR_BITS;
211 	if (status)
212 		pci_write_config_word(pdev, PCI_STATUS, status);
213 
214 	return status;
215 }
216 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
217 
218 #ifdef CONFIG_HAS_IOMEM
219 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
220 					    bool write_combine)
221 {
222 	struct resource *res = &pdev->resource[bar];
223 	resource_size_t start = res->start;
224 	resource_size_t size = resource_size(res);
225 
226 	/*
227 	 * Make sure the BAR is actually a memory resource, not an IO resource
228 	 */
229 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
230 		pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
231 		return NULL;
232 	}
233 
234 	if (write_combine)
235 		return ioremap_wc(start, size);
236 
237 	return ioremap(start, size);
238 }
239 
240 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
241 {
242 	return __pci_ioremap_resource(pdev, bar, false);
243 }
244 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
245 
246 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
247 {
248 	return __pci_ioremap_resource(pdev, bar, true);
249 }
250 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
251 #endif
252 
253 /**
254  * pci_dev_str_match_path - test if a path string matches a device
255  * @dev: the PCI device to test
256  * @path: string to match the device against
257  * @endptr: pointer to the string after the match
258  *
259  * Test if a string (typically from a kernel parameter) formatted as a
260  * path of device/function addresses matches a PCI device. The string must
261  * be of the form:
262  *
263  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
264  *
265  * A path for a device can be obtained using 'lspci -t'.  Using a path
266  * is more robust against bus renumbering than using only a single bus,
267  * device and function address.
268  *
269  * Returns 1 if the string matches the device, 0 if it does not and
270  * a negative error code if it fails to parse the string.
271  */
272 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
273 				  const char **endptr)
274 {
275 	int ret;
276 	unsigned int seg, bus, slot, func;
277 	char *wpath, *p;
278 	char end;
279 
280 	*endptr = strchrnul(path, ';');
281 
282 	wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
283 	if (!wpath)
284 		return -ENOMEM;
285 
286 	while (1) {
287 		p = strrchr(wpath, '/');
288 		if (!p)
289 			break;
290 		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
291 		if (ret != 2) {
292 			ret = -EINVAL;
293 			goto free_and_exit;
294 		}
295 
296 		if (dev->devfn != PCI_DEVFN(slot, func)) {
297 			ret = 0;
298 			goto free_and_exit;
299 		}
300 
301 		/*
302 		 * Note: we don't need to get a reference to the upstream
303 		 * bridge because we hold a reference to the top level
304 		 * device which should hold a reference to the bridge,
305 		 * and so on.
306 		 */
307 		dev = pci_upstream_bridge(dev);
308 		if (!dev) {
309 			ret = 0;
310 			goto free_and_exit;
311 		}
312 
313 		*p = 0;
314 	}
315 
316 	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
317 		     &func, &end);
318 	if (ret != 4) {
319 		seg = 0;
320 		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
321 		if (ret != 3) {
322 			ret = -EINVAL;
323 			goto free_and_exit;
324 		}
325 	}
326 
327 	ret = (seg == pci_domain_nr(dev->bus) &&
328 	       bus == dev->bus->number &&
329 	       dev->devfn == PCI_DEVFN(slot, func));
330 
331 free_and_exit:
332 	kfree(wpath);
333 	return ret;
334 }
335 
336 /**
337  * pci_dev_str_match - test if a string matches a device
338  * @dev: the PCI device to test
339  * @p: string to match the device against
340  * @endptr: pointer to the string after the match
341  *
342  * Test if a string (typically from a kernel parameter) matches a specified
343  * PCI device. The string may be of one of the following formats:
344  *
345  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
346  *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
347  *
348  * The first format specifies a PCI bus/device/function address which
349  * may change if new hardware is inserted, if motherboard firmware changes,
350  * or due to changes caused in kernel parameters. If the domain is
351  * left unspecified, it is taken to be 0.  In order to be robust against
352  * bus renumbering issues, a path of PCI device/function numbers may be used
353  * to address the specific device.  The path for a device can be determined
354  * through the use of 'lspci -t'.
355  *
356  * The second format matches devices using IDs in the configuration
357  * space which may match multiple devices in the system. A value of 0
358  * for any field will match all devices. (Note: this differs from
359  * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
360  * legacy reasons and convenience so users don't have to specify
361  * FFFFFFFFs on the command line.)
362  *
363  * Returns 1 if the string matches the device, 0 if it does not and
364  * a negative error code if the string cannot be parsed.
365  */
366 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
367 			     const char **endptr)
368 {
369 	int ret;
370 	int count;
371 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
372 
373 	if (strncmp(p, "pci:", 4) == 0) {
374 		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
375 		p += 4;
376 		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
377 			     &subsystem_vendor, &subsystem_device, &count);
378 		if (ret != 4) {
379 			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
380 			if (ret != 2)
381 				return -EINVAL;
382 
383 			subsystem_vendor = 0;
384 			subsystem_device = 0;
385 		}
386 
387 		p += count;
388 
389 		if ((!vendor || vendor == dev->vendor) &&
390 		    (!device || device == dev->device) &&
391 		    (!subsystem_vendor ||
392 			    subsystem_vendor == dev->subsystem_vendor) &&
393 		    (!subsystem_device ||
394 			    subsystem_device == dev->subsystem_device))
395 			goto found;
396 	} else {
397 		/*
398 		 * PCI Bus, Device, Function IDs are specified
399 		 * (optionally, may include a path of devfns following it)
400 		 */
401 		ret = pci_dev_str_match_path(dev, p, &p);
402 		if (ret < 0)
403 			return ret;
404 		else if (ret)
405 			goto found;
406 	}
407 
408 	*endptr = p;
409 	return 0;
410 
411 found:
412 	*endptr = p;
413 	return 1;
414 }
415 
416 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
417 				  u8 pos, int cap, int *ttl)
418 {
419 	u8 id;
420 	u16 ent;
421 
422 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
423 
424 	while ((*ttl)--) {
425 		if (pos < 0x40)
426 			break;
427 		pos &= ~3;
428 		pci_bus_read_config_word(bus, devfn, pos, &ent);
429 
430 		id = ent & 0xff;
431 		if (id == 0xff)
432 			break;
433 		if (id == cap)
434 			return pos;
435 		pos = (ent >> 8);
436 	}
437 	return 0;
438 }
439 
440 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
441 			      u8 pos, int cap)
442 {
443 	int ttl = PCI_FIND_CAP_TTL;
444 
445 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
446 }
447 
448 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
449 {
450 	return __pci_find_next_cap(dev->bus, dev->devfn,
451 				   pos + PCI_CAP_LIST_NEXT, cap);
452 }
453 EXPORT_SYMBOL_GPL(pci_find_next_capability);
454 
455 static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
456 				    unsigned int devfn, u8 hdr_type)
457 {
458 	u16 status;
459 
460 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
461 	if (!(status & PCI_STATUS_CAP_LIST))
462 		return 0;
463 
464 	switch (hdr_type) {
465 	case PCI_HEADER_TYPE_NORMAL:
466 	case PCI_HEADER_TYPE_BRIDGE:
467 		return PCI_CAPABILITY_LIST;
468 	case PCI_HEADER_TYPE_CARDBUS:
469 		return PCI_CB_CAPABILITY_LIST;
470 	}
471 
472 	return 0;
473 }
474 
475 /**
476  * pci_find_capability - query for devices' capabilities
477  * @dev: PCI device to query
478  * @cap: capability code
479  *
480  * Tell if a device supports a given PCI capability.
481  * Returns the address of the requested capability structure within the
482  * device's PCI configuration space or 0 in case the device does not
483  * support it.  Possible values for @cap include:
484  *
485  *  %PCI_CAP_ID_PM           Power Management
486  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
487  *  %PCI_CAP_ID_VPD          Vital Product Data
488  *  %PCI_CAP_ID_SLOTID       Slot Identification
489  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
490  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
491  *  %PCI_CAP_ID_PCIX         PCI-X
492  *  %PCI_CAP_ID_EXP          PCI Express
493  */
494 u8 pci_find_capability(struct pci_dev *dev, int cap)
495 {
496 	u8 pos;
497 
498 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
499 	if (pos)
500 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
501 
502 	return pos;
503 }
504 EXPORT_SYMBOL(pci_find_capability);
505 
506 /**
507  * pci_bus_find_capability - query for devices' capabilities
508  * @bus: the PCI bus to query
509  * @devfn: PCI device to query
510  * @cap: capability code
511  *
512  * Like pci_find_capability() but works for PCI devices that do not have a
513  * pci_dev structure set up yet.
514  *
515  * Returns the address of the requested capability structure within the
516  * device's PCI configuration space or 0 in case the device does not
517  * support it.
518  */
519 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
520 {
521 	u8 hdr_type, pos;
522 
523 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
524 
525 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
526 	if (pos)
527 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
528 
529 	return pos;
530 }
531 EXPORT_SYMBOL(pci_bus_find_capability);
532 
533 /**
534  * pci_find_next_ext_capability - Find an extended capability
535  * @dev: PCI device to query
536  * @start: address at which to start looking (0 to start at beginning of list)
537  * @cap: capability code
538  *
539  * Returns the address of the next matching extended capability structure
540  * within the device's PCI configuration space or 0 if the device does
541  * not support it.  Some capabilities can occur several times, e.g., the
542  * vendor-specific capability, and this provides a way to find them all.
543  */
544 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
545 {
546 	u32 header;
547 	int ttl;
548 	u16 pos = PCI_CFG_SPACE_SIZE;
549 
550 	/* minimum 8 bytes per capability */
551 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
552 
553 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
554 		return 0;
555 
556 	if (start)
557 		pos = start;
558 
559 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
560 		return 0;
561 
562 	/*
563 	 * If we have no capabilities, this is indicated by cap ID,
564 	 * cap version and next pointer all being 0.
565 	 */
566 	if (header == 0)
567 		return 0;
568 
569 	while (ttl-- > 0) {
570 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
571 			return pos;
572 
573 		pos = PCI_EXT_CAP_NEXT(header);
574 		if (pos < PCI_CFG_SPACE_SIZE)
575 			break;
576 
577 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
578 			break;
579 	}
580 
581 	return 0;
582 }
583 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
584 
585 /**
586  * pci_find_ext_capability - Find an extended capability
587  * @dev: PCI device to query
588  * @cap: capability code
589  *
590  * Returns the address of the requested extended capability structure
591  * within the device's PCI configuration space or 0 if the device does
592  * not support it.  Possible values for @cap include:
593  *
594  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
595  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
596  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
597  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
598  */
599 u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
600 {
601 	return pci_find_next_ext_capability(dev, 0, cap);
602 }
603 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
604 
605 /**
606  * pci_get_dsn - Read and return the 8-byte Device Serial Number
607  * @dev: PCI device to query
608  *
609  * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
610  * Number.
611  *
612  * Returns the DSN, or zero if the capability does not exist.
613  */
614 u64 pci_get_dsn(struct pci_dev *dev)
615 {
616 	u32 dword;
617 	u64 dsn;
618 	int pos;
619 
620 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
621 	if (!pos)
622 		return 0;
623 
624 	/*
625 	 * The Device Serial Number is two dwords offset 4 bytes from the
626 	 * capability position. The specification says that the first dword is
627 	 * the lower half, and the second dword is the upper half.
628 	 */
629 	pos += 4;
630 	pci_read_config_dword(dev, pos, &dword);
631 	dsn = (u64)dword;
632 	pci_read_config_dword(dev, pos + 4, &dword);
633 	dsn |= ((u64)dword) << 32;
634 
635 	return dsn;
636 }
637 EXPORT_SYMBOL_GPL(pci_get_dsn);
638 
639 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
640 {
641 	int rc, ttl = PCI_FIND_CAP_TTL;
642 	u8 cap, mask;
643 
644 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
645 		mask = HT_3BIT_CAP_MASK;
646 	else
647 		mask = HT_5BIT_CAP_MASK;
648 
649 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
650 				      PCI_CAP_ID_HT, &ttl);
651 	while (pos) {
652 		rc = pci_read_config_byte(dev, pos + 3, &cap);
653 		if (rc != PCIBIOS_SUCCESSFUL)
654 			return 0;
655 
656 		if ((cap & mask) == ht_cap)
657 			return pos;
658 
659 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
660 					      pos + PCI_CAP_LIST_NEXT,
661 					      PCI_CAP_ID_HT, &ttl);
662 	}
663 
664 	return 0;
665 }
666 
667 /**
668  * pci_find_next_ht_capability - query a device's HyperTransport capabilities
669  * @dev: PCI device to query
670  * @pos: Position from which to continue searching
671  * @ht_cap: HyperTransport capability code
672  *
673  * To be used in conjunction with pci_find_ht_capability() to search for
674  * all capabilities matching @ht_cap. @pos should always be a value returned
675  * from pci_find_ht_capability().
676  *
677  * NB. To be 100% safe against broken PCI devices, the caller should take
678  * steps to avoid an infinite loop.
679  */
680 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
681 {
682 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
683 }
684 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
685 
686 /**
687  * pci_find_ht_capability - query a device's HyperTransport capabilities
688  * @dev: PCI device to query
689  * @ht_cap: HyperTransport capability code
690  *
691  * Tell if a device supports a given HyperTransport capability.
692  * Returns an address within the device's PCI configuration space
693  * or 0 in case the device does not support the request capability.
694  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
695  * which has a HyperTransport capability matching @ht_cap.
696  */
697 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
698 {
699 	u8 pos;
700 
701 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
702 	if (pos)
703 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
704 
705 	return pos;
706 }
707 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
708 
709 /**
710  * pci_find_vsec_capability - Find a vendor-specific extended capability
711  * @dev: PCI device to query
712  * @vendor: Vendor ID for which capability is defined
713  * @cap: Vendor-specific capability ID
714  *
715  * If @dev has Vendor ID @vendor, search for a VSEC capability with
716  * VSEC ID @cap. If found, return the capability offset in
717  * config space; otherwise return 0.
718  */
719 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
720 {
721 	u16 vsec = 0;
722 	u32 header;
723 
724 	if (vendor != dev->vendor)
725 		return 0;
726 
727 	while ((vsec = pci_find_next_ext_capability(dev, vsec,
728 						     PCI_EXT_CAP_ID_VNDR))) {
729 		if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER,
730 					  &header) == PCIBIOS_SUCCESSFUL &&
731 		    PCI_VNDR_HEADER_ID(header) == cap)
732 			return vsec;
733 	}
734 
735 	return 0;
736 }
737 EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
738 
739 /**
740  * pci_find_dvsec_capability - Find DVSEC for vendor
741  * @dev: PCI device to query
742  * @vendor: Vendor ID to match for the DVSEC
743  * @dvsec: Designated Vendor-specific capability ID
744  *
745  * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
746  * offset in config space; otherwise return 0.
747  */
748 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
749 {
750 	int pos;
751 
752 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
753 	if (!pos)
754 		return 0;
755 
756 	while (pos) {
757 		u16 v, id;
758 
759 		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
760 		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
761 		if (vendor == v && dvsec == id)
762 			return pos;
763 
764 		pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
765 	}
766 
767 	return 0;
768 }
769 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
770 
771 /**
772  * pci_find_parent_resource - return resource region of parent bus of given
773  *			      region
774  * @dev: PCI device structure contains resources to be searched
775  * @res: child resource record for which parent is sought
776  *
777  * For given resource region of given device, return the resource region of
778  * parent bus the given region is contained in.
779  */
780 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
781 					  struct resource *res)
782 {
783 	const struct pci_bus *bus = dev->bus;
784 	struct resource *r;
785 	int i;
786 
787 	pci_bus_for_each_resource(bus, r, i) {
788 		if (!r)
789 			continue;
790 		if (resource_contains(r, res)) {
791 
792 			/*
793 			 * If the window is prefetchable but the BAR is
794 			 * not, the allocator made a mistake.
795 			 */
796 			if (r->flags & IORESOURCE_PREFETCH &&
797 			    !(res->flags & IORESOURCE_PREFETCH))
798 				return NULL;
799 
800 			/*
801 			 * If we're below a transparent bridge, there may
802 			 * be both a positively-decoded aperture and a
803 			 * subtractively-decoded region that contain the BAR.
804 			 * We want the positively-decoded one, so this depends
805 			 * on pci_bus_for_each_resource() giving us those
806 			 * first.
807 			 */
808 			return r;
809 		}
810 	}
811 	return NULL;
812 }
813 EXPORT_SYMBOL(pci_find_parent_resource);
814 
815 /**
816  * pci_find_resource - Return matching PCI device resource
817  * @dev: PCI device to query
818  * @res: Resource to look for
819  *
820  * Goes over standard PCI resources (BARs) and checks if the given resource
821  * is partially or fully contained in any of them. In that case the
822  * matching resource is returned, %NULL otherwise.
823  */
824 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
825 {
826 	int i;
827 
828 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
829 		struct resource *r = &dev->resource[i];
830 
831 		if (r->start && resource_contains(r, res))
832 			return r;
833 	}
834 
835 	return NULL;
836 }
837 EXPORT_SYMBOL(pci_find_resource);
838 
839 /**
840  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
841  * @dev: the PCI device to operate on
842  * @pos: config space offset of status word
843  * @mask: mask of bit(s) to care about in status word
844  *
845  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
846  */
847 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
848 {
849 	int i;
850 
851 	/* Wait for Transaction Pending bit clean */
852 	for (i = 0; i < 4; i++) {
853 		u16 status;
854 		if (i)
855 			msleep((1 << (i - 1)) * 100);
856 
857 		pci_read_config_word(dev, pos, &status);
858 		if (!(status & mask))
859 			return 1;
860 	}
861 
862 	return 0;
863 }
864 
865 static int pci_acs_enable;
866 
867 /**
868  * pci_request_acs - ask for ACS to be enabled if supported
869  */
870 void pci_request_acs(void)
871 {
872 	pci_acs_enable = 1;
873 }
874 
875 static const char *disable_acs_redir_param;
876 
877 /**
878  * pci_disable_acs_redir - disable ACS redirect capabilities
879  * @dev: the PCI device
880  *
881  * For only devices specified in the disable_acs_redir parameter.
882  */
883 static void pci_disable_acs_redir(struct pci_dev *dev)
884 {
885 	int ret = 0;
886 	const char *p;
887 	int pos;
888 	u16 ctrl;
889 
890 	if (!disable_acs_redir_param)
891 		return;
892 
893 	p = disable_acs_redir_param;
894 	while (*p) {
895 		ret = pci_dev_str_match(dev, p, &p);
896 		if (ret < 0) {
897 			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
898 				     disable_acs_redir_param);
899 
900 			break;
901 		} else if (ret == 1) {
902 			/* Found a match */
903 			break;
904 		}
905 
906 		if (*p != ';' && *p != ',') {
907 			/* End of param or invalid format */
908 			break;
909 		}
910 		p++;
911 	}
912 
913 	if (ret != 1)
914 		return;
915 
916 	if (!pci_dev_specific_disable_acs_redir(dev))
917 		return;
918 
919 	pos = dev->acs_cap;
920 	if (!pos) {
921 		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
922 		return;
923 	}
924 
925 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
926 
927 	/* P2P Request & Completion Redirect */
928 	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
929 
930 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
931 
932 	pci_info(dev, "disabled ACS redirect\n");
933 }
934 
935 /**
936  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
937  * @dev: the PCI device
938  */
939 static void pci_std_enable_acs(struct pci_dev *dev)
940 {
941 	int pos;
942 	u16 cap;
943 	u16 ctrl;
944 
945 	pos = dev->acs_cap;
946 	if (!pos)
947 		return;
948 
949 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
950 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
951 
952 	/* Source Validation */
953 	ctrl |= (cap & PCI_ACS_SV);
954 
955 	/* P2P Request Redirect */
956 	ctrl |= (cap & PCI_ACS_RR);
957 
958 	/* P2P Completion Redirect */
959 	ctrl |= (cap & PCI_ACS_CR);
960 
961 	/* Upstream Forwarding */
962 	ctrl |= (cap & PCI_ACS_UF);
963 
964 	/* Enable Translation Blocking for external devices and noats */
965 	if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
966 		ctrl |= (cap & PCI_ACS_TB);
967 
968 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
969 }
970 
971 /**
972  * pci_enable_acs - enable ACS if hardware support it
973  * @dev: the PCI device
974  */
975 static void pci_enable_acs(struct pci_dev *dev)
976 {
977 	if (!pci_acs_enable)
978 		goto disable_acs_redir;
979 
980 	if (!pci_dev_specific_enable_acs(dev))
981 		goto disable_acs_redir;
982 
983 	pci_std_enable_acs(dev);
984 
985 disable_acs_redir:
986 	/*
987 	 * Note: pci_disable_acs_redir() must be called even if ACS was not
988 	 * enabled by the kernel because it may have been enabled by
989 	 * platform firmware.  So if we are told to disable it, we should
990 	 * always disable it after setting the kernel's default
991 	 * preferences.
992 	 */
993 	pci_disable_acs_redir(dev);
994 }
995 
996 /**
997  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
998  * @dev: PCI device to have its BARs restored
999  *
1000  * Restore the BAR values for a given device, so as to make it
1001  * accessible by its driver.
1002  */
1003 static void pci_restore_bars(struct pci_dev *dev)
1004 {
1005 	int i;
1006 
1007 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1008 		pci_update_resource(dev, i);
1009 }
1010 
1011 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1012 {
1013 	if (pci_use_mid_pm())
1014 		return true;
1015 
1016 	return acpi_pci_power_manageable(dev);
1017 }
1018 
1019 static inline int platform_pci_set_power_state(struct pci_dev *dev,
1020 					       pci_power_t t)
1021 {
1022 	if (pci_use_mid_pm())
1023 		return mid_pci_set_power_state(dev, t);
1024 
1025 	return acpi_pci_set_power_state(dev, t);
1026 }
1027 
1028 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1029 {
1030 	if (pci_use_mid_pm())
1031 		return mid_pci_get_power_state(dev);
1032 
1033 	return acpi_pci_get_power_state(dev);
1034 }
1035 
1036 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1037 {
1038 	if (!pci_use_mid_pm())
1039 		acpi_pci_refresh_power_state(dev);
1040 }
1041 
1042 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1043 {
1044 	if (pci_use_mid_pm())
1045 		return PCI_POWER_ERROR;
1046 
1047 	return acpi_pci_choose_state(dev);
1048 }
1049 
1050 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1051 {
1052 	if (pci_use_mid_pm())
1053 		return PCI_POWER_ERROR;
1054 
1055 	return acpi_pci_wakeup(dev, enable);
1056 }
1057 
1058 static inline bool platform_pci_need_resume(struct pci_dev *dev)
1059 {
1060 	if (pci_use_mid_pm())
1061 		return false;
1062 
1063 	return acpi_pci_need_resume(dev);
1064 }
1065 
1066 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1067 {
1068 	if (pci_use_mid_pm())
1069 		return false;
1070 
1071 	return acpi_pci_bridge_d3(dev);
1072 }
1073 
1074 /**
1075  * pci_update_current_state - Read power state of given device and cache it
1076  * @dev: PCI device to handle.
1077  * @state: State to cache in case the device doesn't have the PM capability
1078  *
1079  * The power state is read from the PMCSR register, which however is
1080  * inaccessible in D3cold.  The platform firmware is therefore queried first
1081  * to detect accessibility of the register.  In case the platform firmware
1082  * reports an incorrect state or the device isn't power manageable by the
1083  * platform at all, we try to detect D3cold by testing accessibility of the
1084  * vendor ID in config space.
1085  */
1086 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1087 {
1088 	if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1089 		dev->current_state = PCI_D3cold;
1090 	} else if (dev->pm_cap) {
1091 		u16 pmcsr;
1092 
1093 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1094 		if (PCI_POSSIBLE_ERROR(pmcsr)) {
1095 			dev->current_state = PCI_D3cold;
1096 			return;
1097 		}
1098 		dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1099 	} else {
1100 		dev->current_state = state;
1101 	}
1102 }
1103 
1104 /**
1105  * pci_refresh_power_state - Refresh the given device's power state data
1106  * @dev: Target PCI device.
1107  *
1108  * Ask the platform to refresh the devices power state information and invoke
1109  * pci_update_current_state() to update its current PCI power state.
1110  */
1111 void pci_refresh_power_state(struct pci_dev *dev)
1112 {
1113 	platform_pci_refresh_power_state(dev);
1114 	pci_update_current_state(dev, dev->current_state);
1115 }
1116 
1117 /**
1118  * pci_platform_power_transition - Use platform to change device power state
1119  * @dev: PCI device to handle.
1120  * @state: State to put the device into.
1121  */
1122 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1123 {
1124 	int error;
1125 
1126 	error = platform_pci_set_power_state(dev, state);
1127 	if (!error)
1128 		pci_update_current_state(dev, state);
1129 	else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1130 		dev->current_state = PCI_D0;
1131 
1132 	return error;
1133 }
1134 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1135 
1136 static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1137 {
1138 	pm_request_resume(&pci_dev->dev);
1139 	return 0;
1140 }
1141 
1142 /**
1143  * pci_resume_bus - Walk given bus and runtime resume devices on it
1144  * @bus: Top bus of the subtree to walk.
1145  */
1146 void pci_resume_bus(struct pci_bus *bus)
1147 {
1148 	if (bus)
1149 		pci_walk_bus(bus, pci_resume_one, NULL);
1150 }
1151 
1152 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1153 {
1154 	int delay = 1;
1155 	u32 id;
1156 
1157 	/*
1158 	 * After reset, the device should not silently discard config
1159 	 * requests, but it may still indicate that it needs more time by
1160 	 * responding to them with CRS completions.  The Root Port will
1161 	 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete
1162 	 * the read (except when CRS SV is enabled and the read was for the
1163 	 * Vendor ID; in that case it synthesizes 0x0001 data).
1164 	 *
1165 	 * Wait for the device to return a non-CRS completion.  Read the
1166 	 * Command register instead of Vendor ID so we don't have to
1167 	 * contend with the CRS SV value.
1168 	 */
1169 	pci_read_config_dword(dev, PCI_COMMAND, &id);
1170 	while (PCI_POSSIBLE_ERROR(id)) {
1171 		if (delay > timeout) {
1172 			pci_warn(dev, "not ready %dms after %s; giving up\n",
1173 				 delay - 1, reset_type);
1174 			return -ENOTTY;
1175 		}
1176 
1177 		if (delay > 1000)
1178 			pci_info(dev, "not ready %dms after %s; waiting\n",
1179 				 delay - 1, reset_type);
1180 
1181 		msleep(delay);
1182 		delay *= 2;
1183 		pci_read_config_dword(dev, PCI_COMMAND, &id);
1184 	}
1185 
1186 	if (delay > 1000)
1187 		pci_info(dev, "ready %dms after %s\n", delay - 1,
1188 			 reset_type);
1189 
1190 	return 0;
1191 }
1192 
1193 /**
1194  * pci_power_up - Put the given device into D0
1195  * @dev: PCI device to power up
1196  *
1197  * On success, return 0 or 1, depending on whether or not it is necessary to
1198  * restore the device's BARs subsequently (1 is returned in that case).
1199  */
1200 int pci_power_up(struct pci_dev *dev)
1201 {
1202 	bool need_restore;
1203 	pci_power_t state;
1204 	u16 pmcsr;
1205 
1206 	platform_pci_set_power_state(dev, PCI_D0);
1207 
1208 	if (!dev->pm_cap) {
1209 		state = platform_pci_get_power_state(dev);
1210 		if (state == PCI_UNKNOWN)
1211 			dev->current_state = PCI_D0;
1212 		else
1213 			dev->current_state = state;
1214 
1215 		if (state == PCI_D0)
1216 			return 0;
1217 
1218 		return -EIO;
1219 	}
1220 
1221 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1222 	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1223 		pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1224 			pci_power_name(dev->current_state));
1225 		dev->current_state = PCI_D3cold;
1226 		return -EIO;
1227 	}
1228 
1229 	state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1230 
1231 	need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1232 			!(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1233 
1234 	if (state == PCI_D0)
1235 		goto end;
1236 
1237 	/*
1238 	 * Force the entire word to 0. This doesn't affect PME_Status, disables
1239 	 * PME_En, and sets PowerState to 0.
1240 	 */
1241 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1242 
1243 	/* Mandatory transition delays; see PCI PM 1.2. */
1244 	if (state == PCI_D3hot)
1245 		pci_dev_d3_sleep(dev);
1246 	else if (state == PCI_D2)
1247 		udelay(PCI_PM_D2_DELAY);
1248 
1249 end:
1250 	dev->current_state = PCI_D0;
1251 	if (need_restore)
1252 		return 1;
1253 
1254 	return 0;
1255 }
1256 
1257 /**
1258  * pci_set_full_power_state - Put a PCI device into D0 and update its state
1259  * @dev: PCI device to power up
1260  *
1261  * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1262  * to confirm the state change, restore its BARs if they might be lost and
1263  * reconfigure ASPM in acordance with the new power state.
1264  *
1265  * If pci_restore_state() is going to be called right after a power state change
1266  * to D0, it is more efficient to use pci_power_up() directly instead of this
1267  * function.
1268  */
1269 static int pci_set_full_power_state(struct pci_dev *dev)
1270 {
1271 	u16 pmcsr;
1272 	int ret;
1273 
1274 	ret = pci_power_up(dev);
1275 	if (ret < 0)
1276 		return ret;
1277 
1278 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1279 	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1280 	if (dev->current_state != PCI_D0) {
1281 		pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1282 				     pci_power_name(dev->current_state));
1283 	} else if (ret > 0) {
1284 		/*
1285 		 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1286 		 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1287 		 * from D3hot to D0 _may_ perform an internal reset, thereby
1288 		 * going to "D0 Uninitialized" rather than "D0 Initialized".
1289 		 * For example, at least some versions of the 3c905B and the
1290 		 * 3c556B exhibit this behaviour.
1291 		 *
1292 		 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1293 		 * devices in a D3hot state at boot.  Consequently, we need to
1294 		 * restore at least the BARs so that the device will be
1295 		 * accessible to its driver.
1296 		 */
1297 		pci_restore_bars(dev);
1298 	}
1299 
1300 	return 0;
1301 }
1302 
1303 /**
1304  * __pci_dev_set_current_state - Set current state of a PCI device
1305  * @dev: Device to handle
1306  * @data: pointer to state to be set
1307  */
1308 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1309 {
1310 	pci_power_t state = *(pci_power_t *)data;
1311 
1312 	dev->current_state = state;
1313 	return 0;
1314 }
1315 
1316 /**
1317  * pci_bus_set_current_state - Walk given bus and set current state of devices
1318  * @bus: Top bus of the subtree to walk.
1319  * @state: state to be set
1320  */
1321 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1322 {
1323 	if (bus)
1324 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1325 }
1326 
1327 /**
1328  * pci_set_low_power_state - Put a PCI device into a low-power state.
1329  * @dev: PCI device to handle.
1330  * @state: PCI power state (D1, D2, D3hot) to put the device into.
1331  *
1332  * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1333  *
1334  * RETURN VALUE:
1335  * -EINVAL if the requested state is invalid.
1336  * -EIO if device does not support PCI PM or its PM capabilities register has a
1337  * wrong version, or device doesn't support the requested state.
1338  * 0 if device already is in the requested state.
1339  * 0 if device's power state has been successfully changed.
1340  */
1341 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state)
1342 {
1343 	u16 pmcsr;
1344 
1345 	if (!dev->pm_cap)
1346 		return -EIO;
1347 
1348 	/*
1349 	 * Validate transition: We can enter D0 from any state, but if
1350 	 * we're already in a low-power state, we can only go deeper.  E.g.,
1351 	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1352 	 * we'd have to go from D3 to D0, then to D1.
1353 	 */
1354 	if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1355 		pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1356 			pci_power_name(dev->current_state),
1357 			pci_power_name(state));
1358 		return -EINVAL;
1359 	}
1360 
1361 	/* Check if this device supports the desired state */
1362 	if ((state == PCI_D1 && !dev->d1_support)
1363 	   || (state == PCI_D2 && !dev->d2_support))
1364 		return -EIO;
1365 
1366 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1367 	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1368 		pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1369 			pci_power_name(dev->current_state),
1370 			pci_power_name(state));
1371 		dev->current_state = PCI_D3cold;
1372 		return -EIO;
1373 	}
1374 
1375 	pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1376 	pmcsr |= state;
1377 
1378 	/* Enter specified state */
1379 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1380 
1381 	/* Mandatory power management transition delays; see PCI PM 1.2. */
1382 	if (state == PCI_D3hot)
1383 		pci_dev_d3_sleep(dev);
1384 	else if (state == PCI_D2)
1385 		udelay(PCI_PM_D2_DELAY);
1386 
1387 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1388 	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1389 	if (dev->current_state != state)
1390 		pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1391 				     pci_power_name(dev->current_state),
1392 				     pci_power_name(state));
1393 
1394 	return 0;
1395 }
1396 
1397 /**
1398  * pci_set_power_state - Set the power state of a PCI device
1399  * @dev: PCI device to handle.
1400  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1401  *
1402  * Transition a device to a new power state, using the platform firmware and/or
1403  * the device's PCI PM registers.
1404  *
1405  * RETURN VALUE:
1406  * -EINVAL if the requested state is invalid.
1407  * -EIO if device does not support PCI PM or its PM capabilities register has a
1408  * wrong version, or device doesn't support the requested state.
1409  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1410  * 0 if device already is in the requested state.
1411  * 0 if the transition is to D3 but D3 is not supported.
1412  * 0 if device's power state has been successfully changed.
1413  */
1414 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1415 {
1416 	int error;
1417 
1418 	/* Bound the state we're entering */
1419 	if (state > PCI_D3cold)
1420 		state = PCI_D3cold;
1421 	else if (state < PCI_D0)
1422 		state = PCI_D0;
1423 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1424 
1425 		/*
1426 		 * If the device or the parent bridge do not support PCI
1427 		 * PM, ignore the request if we're doing anything other
1428 		 * than putting it into D0 (which would only happen on
1429 		 * boot).
1430 		 */
1431 		return 0;
1432 
1433 	/* Check if we're already there */
1434 	if (dev->current_state == state)
1435 		return 0;
1436 
1437 	if (state == PCI_D0)
1438 		return pci_set_full_power_state(dev);
1439 
1440 	/*
1441 	 * This device is quirked not to be put into D3, so don't put it in
1442 	 * D3
1443 	 */
1444 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1445 		return 0;
1446 
1447 	if (state == PCI_D3cold) {
1448 		/*
1449 		 * To put the device in D3cold, put it into D3hot in the native
1450 		 * way, then put it into D3cold using platform ops.
1451 		 */
1452 		error = pci_set_low_power_state(dev, PCI_D3hot);
1453 
1454 		if (pci_platform_power_transition(dev, PCI_D3cold))
1455 			return error;
1456 
1457 		/* Powering off a bridge may power off the whole hierarchy */
1458 		if (dev->current_state == PCI_D3cold)
1459 			pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1460 	} else {
1461 		error = pci_set_low_power_state(dev, state);
1462 
1463 		if (pci_platform_power_transition(dev, state))
1464 			return error;
1465 	}
1466 
1467 	return 0;
1468 }
1469 EXPORT_SYMBOL(pci_set_power_state);
1470 
1471 #define PCI_EXP_SAVE_REGS	7
1472 
1473 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1474 						       u16 cap, bool extended)
1475 {
1476 	struct pci_cap_saved_state *tmp;
1477 
1478 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1479 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1480 			return tmp;
1481 	}
1482 	return NULL;
1483 }
1484 
1485 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1486 {
1487 	return _pci_find_saved_cap(dev, cap, false);
1488 }
1489 
1490 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1491 {
1492 	return _pci_find_saved_cap(dev, cap, true);
1493 }
1494 
1495 static int pci_save_pcie_state(struct pci_dev *dev)
1496 {
1497 	int i = 0;
1498 	struct pci_cap_saved_state *save_state;
1499 	u16 *cap;
1500 
1501 	if (!pci_is_pcie(dev))
1502 		return 0;
1503 
1504 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1505 	if (!save_state) {
1506 		pci_err(dev, "buffer not found in %s\n", __func__);
1507 		return -ENOMEM;
1508 	}
1509 
1510 	cap = (u16 *)&save_state->cap.data[0];
1511 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1512 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1513 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1514 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1515 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1516 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1517 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1518 
1519 	return 0;
1520 }
1521 
1522 void pci_bridge_reconfigure_ltr(struct pci_dev *dev)
1523 {
1524 #ifdef CONFIG_PCIEASPM
1525 	struct pci_dev *bridge;
1526 	u32 ctl;
1527 
1528 	bridge = pci_upstream_bridge(dev);
1529 	if (bridge && bridge->ltr_path) {
1530 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl);
1531 		if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) {
1532 			pci_dbg(bridge, "re-enabling LTR\n");
1533 			pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
1534 						 PCI_EXP_DEVCTL2_LTR_EN);
1535 		}
1536 	}
1537 #endif
1538 }
1539 
1540 static void pci_restore_pcie_state(struct pci_dev *dev)
1541 {
1542 	int i = 0;
1543 	struct pci_cap_saved_state *save_state;
1544 	u16 *cap;
1545 
1546 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1547 	if (!save_state)
1548 		return;
1549 
1550 	/*
1551 	 * Downstream ports reset the LTR enable bit when link goes down.
1552 	 * Check and re-configure the bit here before restoring device.
1553 	 * PCIe r5.0, sec 7.5.3.16.
1554 	 */
1555 	pci_bridge_reconfigure_ltr(dev);
1556 
1557 	cap = (u16 *)&save_state->cap.data[0];
1558 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1559 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1560 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1561 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1562 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1563 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1564 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1565 }
1566 
1567 static int pci_save_pcix_state(struct pci_dev *dev)
1568 {
1569 	int pos;
1570 	struct pci_cap_saved_state *save_state;
1571 
1572 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1573 	if (!pos)
1574 		return 0;
1575 
1576 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1577 	if (!save_state) {
1578 		pci_err(dev, "buffer not found in %s\n", __func__);
1579 		return -ENOMEM;
1580 	}
1581 
1582 	pci_read_config_word(dev, pos + PCI_X_CMD,
1583 			     (u16 *)save_state->cap.data);
1584 
1585 	return 0;
1586 }
1587 
1588 static void pci_restore_pcix_state(struct pci_dev *dev)
1589 {
1590 	int i = 0, pos;
1591 	struct pci_cap_saved_state *save_state;
1592 	u16 *cap;
1593 
1594 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1595 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1596 	if (!save_state || !pos)
1597 		return;
1598 	cap = (u16 *)&save_state->cap.data[0];
1599 
1600 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1601 }
1602 
1603 static void pci_save_ltr_state(struct pci_dev *dev)
1604 {
1605 	int ltr;
1606 	struct pci_cap_saved_state *save_state;
1607 	u32 *cap;
1608 
1609 	if (!pci_is_pcie(dev))
1610 		return;
1611 
1612 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1613 	if (!ltr)
1614 		return;
1615 
1616 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1617 	if (!save_state) {
1618 		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1619 		return;
1620 	}
1621 
1622 	/* Some broken devices only support dword access to LTR */
1623 	cap = &save_state->cap.data[0];
1624 	pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap);
1625 }
1626 
1627 static void pci_restore_ltr_state(struct pci_dev *dev)
1628 {
1629 	struct pci_cap_saved_state *save_state;
1630 	int ltr;
1631 	u32 *cap;
1632 
1633 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1634 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1635 	if (!save_state || !ltr)
1636 		return;
1637 
1638 	/* Some broken devices only support dword access to LTR */
1639 	cap = &save_state->cap.data[0];
1640 	pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap);
1641 }
1642 
1643 /**
1644  * pci_save_state - save the PCI configuration space of a device before
1645  *		    suspending
1646  * @dev: PCI device that we're dealing with
1647  */
1648 int pci_save_state(struct pci_dev *dev)
1649 {
1650 	int i;
1651 	/* XXX: 100% dword access ok here? */
1652 	for (i = 0; i < 16; i++) {
1653 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1654 		pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1655 			i * 4, dev->saved_config_space[i]);
1656 	}
1657 	dev->state_saved = true;
1658 
1659 	i = pci_save_pcie_state(dev);
1660 	if (i != 0)
1661 		return i;
1662 
1663 	i = pci_save_pcix_state(dev);
1664 	if (i != 0)
1665 		return i;
1666 
1667 	pci_save_ltr_state(dev);
1668 	pci_save_dpc_state(dev);
1669 	pci_save_aer_state(dev);
1670 	pci_save_ptm_state(dev);
1671 	return pci_save_vc_state(dev);
1672 }
1673 EXPORT_SYMBOL(pci_save_state);
1674 
1675 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1676 				     u32 saved_val, int retry, bool force)
1677 {
1678 	u32 val;
1679 
1680 	pci_read_config_dword(pdev, offset, &val);
1681 	if (!force && val == saved_val)
1682 		return;
1683 
1684 	for (;;) {
1685 		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1686 			offset, val, saved_val);
1687 		pci_write_config_dword(pdev, offset, saved_val);
1688 		if (retry-- <= 0)
1689 			return;
1690 
1691 		pci_read_config_dword(pdev, offset, &val);
1692 		if (val == saved_val)
1693 			return;
1694 
1695 		mdelay(1);
1696 	}
1697 }
1698 
1699 static void pci_restore_config_space_range(struct pci_dev *pdev,
1700 					   int start, int end, int retry,
1701 					   bool force)
1702 {
1703 	int index;
1704 
1705 	for (index = end; index >= start; index--)
1706 		pci_restore_config_dword(pdev, 4 * index,
1707 					 pdev->saved_config_space[index],
1708 					 retry, force);
1709 }
1710 
1711 static void pci_restore_config_space(struct pci_dev *pdev)
1712 {
1713 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1714 		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1715 		/* Restore BARs before the command register. */
1716 		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1717 		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1718 	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1719 		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1720 
1721 		/*
1722 		 * Force rewriting of prefetch registers to avoid S3 resume
1723 		 * issues on Intel PCI bridges that occur when these
1724 		 * registers are not explicitly written.
1725 		 */
1726 		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1727 		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1728 	} else {
1729 		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1730 	}
1731 }
1732 
1733 static void pci_restore_rebar_state(struct pci_dev *pdev)
1734 {
1735 	unsigned int pos, nbars, i;
1736 	u32 ctrl;
1737 
1738 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1739 	if (!pos)
1740 		return;
1741 
1742 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1743 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1744 		    PCI_REBAR_CTRL_NBAR_SHIFT;
1745 
1746 	for (i = 0; i < nbars; i++, pos += 8) {
1747 		struct resource *res;
1748 		int bar_idx, size;
1749 
1750 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1751 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1752 		res = pdev->resource + bar_idx;
1753 		size = pci_rebar_bytes_to_size(resource_size(res));
1754 		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1755 		ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1756 		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1757 	}
1758 }
1759 
1760 /**
1761  * pci_restore_state - Restore the saved state of a PCI device
1762  * @dev: PCI device that we're dealing with
1763  */
1764 void pci_restore_state(struct pci_dev *dev)
1765 {
1766 	if (!dev->state_saved)
1767 		return;
1768 
1769 	/*
1770 	 * Restore max latencies (in the LTR capability) before enabling
1771 	 * LTR itself (in the PCIe capability).
1772 	 */
1773 	pci_restore_ltr_state(dev);
1774 
1775 	pci_restore_pcie_state(dev);
1776 	pci_restore_pasid_state(dev);
1777 	pci_restore_pri_state(dev);
1778 	pci_restore_ats_state(dev);
1779 	pci_restore_vc_state(dev);
1780 	pci_restore_rebar_state(dev);
1781 	pci_restore_dpc_state(dev);
1782 	pci_restore_ptm_state(dev);
1783 
1784 	pci_aer_clear_status(dev);
1785 	pci_restore_aer_state(dev);
1786 
1787 	pci_restore_config_space(dev);
1788 
1789 	pci_restore_pcix_state(dev);
1790 	pci_restore_msi_state(dev);
1791 
1792 	/* Restore ACS and IOV configuration state */
1793 	pci_enable_acs(dev);
1794 	pci_restore_iov_state(dev);
1795 
1796 	dev->state_saved = false;
1797 }
1798 EXPORT_SYMBOL(pci_restore_state);
1799 
1800 struct pci_saved_state {
1801 	u32 config_space[16];
1802 	struct pci_cap_saved_data cap[];
1803 };
1804 
1805 /**
1806  * pci_store_saved_state - Allocate and return an opaque struct containing
1807  *			   the device saved state.
1808  * @dev: PCI device that we're dealing with
1809  *
1810  * Return NULL if no state or error.
1811  */
1812 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1813 {
1814 	struct pci_saved_state *state;
1815 	struct pci_cap_saved_state *tmp;
1816 	struct pci_cap_saved_data *cap;
1817 	size_t size;
1818 
1819 	if (!dev->state_saved)
1820 		return NULL;
1821 
1822 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1823 
1824 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1825 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1826 
1827 	state = kzalloc(size, GFP_KERNEL);
1828 	if (!state)
1829 		return NULL;
1830 
1831 	memcpy(state->config_space, dev->saved_config_space,
1832 	       sizeof(state->config_space));
1833 
1834 	cap = state->cap;
1835 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1836 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1837 		memcpy(cap, &tmp->cap, len);
1838 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1839 	}
1840 	/* Empty cap_save terminates list */
1841 
1842 	return state;
1843 }
1844 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1845 
1846 /**
1847  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1848  * @dev: PCI device that we're dealing with
1849  * @state: Saved state returned from pci_store_saved_state()
1850  */
1851 int pci_load_saved_state(struct pci_dev *dev,
1852 			 struct pci_saved_state *state)
1853 {
1854 	struct pci_cap_saved_data *cap;
1855 
1856 	dev->state_saved = false;
1857 
1858 	if (!state)
1859 		return 0;
1860 
1861 	memcpy(dev->saved_config_space, state->config_space,
1862 	       sizeof(state->config_space));
1863 
1864 	cap = state->cap;
1865 	while (cap->size) {
1866 		struct pci_cap_saved_state *tmp;
1867 
1868 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1869 		if (!tmp || tmp->cap.size != cap->size)
1870 			return -EINVAL;
1871 
1872 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1873 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1874 		       sizeof(struct pci_cap_saved_data) + cap->size);
1875 	}
1876 
1877 	dev->state_saved = true;
1878 	return 0;
1879 }
1880 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1881 
1882 /**
1883  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1884  *				   and free the memory allocated for it.
1885  * @dev: PCI device that we're dealing with
1886  * @state: Pointer to saved state returned from pci_store_saved_state()
1887  */
1888 int pci_load_and_free_saved_state(struct pci_dev *dev,
1889 				  struct pci_saved_state **state)
1890 {
1891 	int ret = pci_load_saved_state(dev, *state);
1892 	kfree(*state);
1893 	*state = NULL;
1894 	return ret;
1895 }
1896 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1897 
1898 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1899 {
1900 	return pci_enable_resources(dev, bars);
1901 }
1902 
1903 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1904 {
1905 	int err;
1906 	struct pci_dev *bridge;
1907 	u16 cmd;
1908 	u8 pin;
1909 
1910 	err = pci_set_power_state(dev, PCI_D0);
1911 	if (err < 0 && err != -EIO)
1912 		return err;
1913 
1914 	bridge = pci_upstream_bridge(dev);
1915 	if (bridge)
1916 		pcie_aspm_powersave_config_link(bridge);
1917 
1918 	err = pcibios_enable_device(dev, bars);
1919 	if (err < 0)
1920 		return err;
1921 	pci_fixup_device(pci_fixup_enable, dev);
1922 
1923 	if (dev->msi_enabled || dev->msix_enabled)
1924 		return 0;
1925 
1926 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1927 	if (pin) {
1928 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1929 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1930 			pci_write_config_word(dev, PCI_COMMAND,
1931 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1932 	}
1933 
1934 	return 0;
1935 }
1936 
1937 /**
1938  * pci_reenable_device - Resume abandoned device
1939  * @dev: PCI device to be resumed
1940  *
1941  * NOTE: This function is a backend of pci_default_resume() and is not supposed
1942  * to be called by normal code, write proper resume handler and use it instead.
1943  */
1944 int pci_reenable_device(struct pci_dev *dev)
1945 {
1946 	if (pci_is_enabled(dev))
1947 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1948 	return 0;
1949 }
1950 EXPORT_SYMBOL(pci_reenable_device);
1951 
1952 static void pci_enable_bridge(struct pci_dev *dev)
1953 {
1954 	struct pci_dev *bridge;
1955 	int retval;
1956 
1957 	bridge = pci_upstream_bridge(dev);
1958 	if (bridge)
1959 		pci_enable_bridge(bridge);
1960 
1961 	if (pci_is_enabled(dev)) {
1962 		if (!dev->is_busmaster)
1963 			pci_set_master(dev);
1964 		return;
1965 	}
1966 
1967 	retval = pci_enable_device(dev);
1968 	if (retval)
1969 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
1970 			retval);
1971 	pci_set_master(dev);
1972 }
1973 
1974 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1975 {
1976 	struct pci_dev *bridge;
1977 	int err;
1978 	int i, bars = 0;
1979 
1980 	/*
1981 	 * Power state could be unknown at this point, either due to a fresh
1982 	 * boot or a device removal call.  So get the current power state
1983 	 * so that things like MSI message writing will behave as expected
1984 	 * (e.g. if the device really is in D0 at enable time).
1985 	 */
1986 	pci_update_current_state(dev, dev->current_state);
1987 
1988 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1989 		return 0;		/* already enabled */
1990 
1991 	bridge = pci_upstream_bridge(dev);
1992 	if (bridge)
1993 		pci_enable_bridge(bridge);
1994 
1995 	/* only skip sriov related */
1996 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1997 		if (dev->resource[i].flags & flags)
1998 			bars |= (1 << i);
1999 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2000 		if (dev->resource[i].flags & flags)
2001 			bars |= (1 << i);
2002 
2003 	err = do_pci_enable_device(dev, bars);
2004 	if (err < 0)
2005 		atomic_dec(&dev->enable_cnt);
2006 	return err;
2007 }
2008 
2009 /**
2010  * pci_enable_device_io - Initialize a device for use with IO space
2011  * @dev: PCI device to be initialized
2012  *
2013  * Initialize device before it's used by a driver. Ask low-level code
2014  * to enable I/O resources. Wake up the device if it was suspended.
2015  * Beware, this function can fail.
2016  */
2017 int pci_enable_device_io(struct pci_dev *dev)
2018 {
2019 	return pci_enable_device_flags(dev, IORESOURCE_IO);
2020 }
2021 EXPORT_SYMBOL(pci_enable_device_io);
2022 
2023 /**
2024  * pci_enable_device_mem - Initialize a device for use with Memory space
2025  * @dev: PCI device to be initialized
2026  *
2027  * Initialize device before it's used by a driver. Ask low-level code
2028  * to enable Memory resources. Wake up the device if it was suspended.
2029  * Beware, this function can fail.
2030  */
2031 int pci_enable_device_mem(struct pci_dev *dev)
2032 {
2033 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
2034 }
2035 EXPORT_SYMBOL(pci_enable_device_mem);
2036 
2037 /**
2038  * pci_enable_device - Initialize device before it's used by a driver.
2039  * @dev: PCI device to be initialized
2040  *
2041  * Initialize device before it's used by a driver. Ask low-level code
2042  * to enable I/O and memory. Wake up the device if it was suspended.
2043  * Beware, this function can fail.
2044  *
2045  * Note we don't actually enable the device many times if we call
2046  * this function repeatedly (we just increment the count).
2047  */
2048 int pci_enable_device(struct pci_dev *dev)
2049 {
2050 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2051 }
2052 EXPORT_SYMBOL(pci_enable_device);
2053 
2054 /*
2055  * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
2056  * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
2057  * there's no need to track it separately.  pci_devres is initialized
2058  * when a device is enabled using managed PCI device enable interface.
2059  */
2060 struct pci_devres {
2061 	unsigned int enabled:1;
2062 	unsigned int pinned:1;
2063 	unsigned int orig_intx:1;
2064 	unsigned int restore_intx:1;
2065 	unsigned int mwi:1;
2066 	u32 region_mask;
2067 };
2068 
2069 static void pcim_release(struct device *gendev, void *res)
2070 {
2071 	struct pci_dev *dev = to_pci_dev(gendev);
2072 	struct pci_devres *this = res;
2073 	int i;
2074 
2075 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2076 		if (this->region_mask & (1 << i))
2077 			pci_release_region(dev, i);
2078 
2079 	if (this->mwi)
2080 		pci_clear_mwi(dev);
2081 
2082 	if (this->restore_intx)
2083 		pci_intx(dev, this->orig_intx);
2084 
2085 	if (this->enabled && !this->pinned)
2086 		pci_disable_device(dev);
2087 }
2088 
2089 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2090 {
2091 	struct pci_devres *dr, *new_dr;
2092 
2093 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2094 	if (dr)
2095 		return dr;
2096 
2097 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2098 	if (!new_dr)
2099 		return NULL;
2100 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
2101 }
2102 
2103 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2104 {
2105 	if (pci_is_managed(pdev))
2106 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2107 	return NULL;
2108 }
2109 
2110 /**
2111  * pcim_enable_device - Managed pci_enable_device()
2112  * @pdev: PCI device to be initialized
2113  *
2114  * Managed pci_enable_device().
2115  */
2116 int pcim_enable_device(struct pci_dev *pdev)
2117 {
2118 	struct pci_devres *dr;
2119 	int rc;
2120 
2121 	dr = get_pci_dr(pdev);
2122 	if (unlikely(!dr))
2123 		return -ENOMEM;
2124 	if (dr->enabled)
2125 		return 0;
2126 
2127 	rc = pci_enable_device(pdev);
2128 	if (!rc) {
2129 		pdev->is_managed = 1;
2130 		dr->enabled = 1;
2131 	}
2132 	return rc;
2133 }
2134 EXPORT_SYMBOL(pcim_enable_device);
2135 
2136 /**
2137  * pcim_pin_device - Pin managed PCI device
2138  * @pdev: PCI device to pin
2139  *
2140  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
2141  * driver detach.  @pdev must have been enabled with
2142  * pcim_enable_device().
2143  */
2144 void pcim_pin_device(struct pci_dev *pdev)
2145 {
2146 	struct pci_devres *dr;
2147 
2148 	dr = find_pci_dr(pdev);
2149 	WARN_ON(!dr || !dr->enabled);
2150 	if (dr)
2151 		dr->pinned = 1;
2152 }
2153 EXPORT_SYMBOL(pcim_pin_device);
2154 
2155 /*
2156  * pcibios_device_add - provide arch specific hooks when adding device dev
2157  * @dev: the PCI device being added
2158  *
2159  * Permits the platform to provide architecture specific functionality when
2160  * devices are added. This is the default implementation. Architecture
2161  * implementations can override this.
2162  */
2163 int __weak pcibios_device_add(struct pci_dev *dev)
2164 {
2165 	return 0;
2166 }
2167 
2168 /**
2169  * pcibios_release_device - provide arch specific hooks when releasing
2170  *			    device dev
2171  * @dev: the PCI device being released
2172  *
2173  * Permits the platform to provide architecture specific functionality when
2174  * devices are released. This is the default implementation. Architecture
2175  * implementations can override this.
2176  */
2177 void __weak pcibios_release_device(struct pci_dev *dev) {}
2178 
2179 /**
2180  * pcibios_disable_device - disable arch specific PCI resources for device dev
2181  * @dev: the PCI device to disable
2182  *
2183  * Disables architecture specific PCI resources for the device. This
2184  * is the default implementation. Architecture implementations can
2185  * override this.
2186  */
2187 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2188 
2189 /**
2190  * pcibios_penalize_isa_irq - penalize an ISA IRQ
2191  * @irq: ISA IRQ to penalize
2192  * @active: IRQ active or not
2193  *
2194  * Permits the platform to provide architecture-specific functionality when
2195  * penalizing ISA IRQs. This is the default implementation. Architecture
2196  * implementations can override this.
2197  */
2198 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2199 
2200 static void do_pci_disable_device(struct pci_dev *dev)
2201 {
2202 	u16 pci_command;
2203 
2204 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2205 	if (pci_command & PCI_COMMAND_MASTER) {
2206 		pci_command &= ~PCI_COMMAND_MASTER;
2207 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
2208 	}
2209 
2210 	pcibios_disable_device(dev);
2211 }
2212 
2213 /**
2214  * pci_disable_enabled_device - Disable device without updating enable_cnt
2215  * @dev: PCI device to disable
2216  *
2217  * NOTE: This function is a backend of PCI power management routines and is
2218  * not supposed to be called drivers.
2219  */
2220 void pci_disable_enabled_device(struct pci_dev *dev)
2221 {
2222 	if (pci_is_enabled(dev))
2223 		do_pci_disable_device(dev);
2224 }
2225 
2226 /**
2227  * pci_disable_device - Disable PCI device after use
2228  * @dev: PCI device to be disabled
2229  *
2230  * Signal to the system that the PCI device is not in use by the system
2231  * anymore.  This only involves disabling PCI bus-mastering, if active.
2232  *
2233  * Note we don't actually disable the device until all callers of
2234  * pci_enable_device() have called pci_disable_device().
2235  */
2236 void pci_disable_device(struct pci_dev *dev)
2237 {
2238 	struct pci_devres *dr;
2239 
2240 	dr = find_pci_dr(dev);
2241 	if (dr)
2242 		dr->enabled = 0;
2243 
2244 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2245 		      "disabling already-disabled device");
2246 
2247 	if (atomic_dec_return(&dev->enable_cnt) != 0)
2248 		return;
2249 
2250 	do_pci_disable_device(dev);
2251 
2252 	dev->is_busmaster = 0;
2253 }
2254 EXPORT_SYMBOL(pci_disable_device);
2255 
2256 /**
2257  * pcibios_set_pcie_reset_state - set reset state for device dev
2258  * @dev: the PCIe device reset
2259  * @state: Reset state to enter into
2260  *
2261  * Set the PCIe reset state for the device. This is the default
2262  * implementation. Architecture implementations can override this.
2263  */
2264 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2265 					enum pcie_reset_state state)
2266 {
2267 	return -EINVAL;
2268 }
2269 
2270 /**
2271  * pci_set_pcie_reset_state - set reset state for device dev
2272  * @dev: the PCIe device reset
2273  * @state: Reset state to enter into
2274  *
2275  * Sets the PCI reset state for the device.
2276  */
2277 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2278 {
2279 	return pcibios_set_pcie_reset_state(dev, state);
2280 }
2281 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2282 
2283 #ifdef CONFIG_PCIEAER
2284 void pcie_clear_device_status(struct pci_dev *dev)
2285 {
2286 	u16 sta;
2287 
2288 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2289 	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2290 }
2291 #endif
2292 
2293 /**
2294  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2295  * @dev: PCIe root port or event collector.
2296  */
2297 void pcie_clear_root_pme_status(struct pci_dev *dev)
2298 {
2299 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2300 }
2301 
2302 /**
2303  * pci_check_pme_status - Check if given device has generated PME.
2304  * @dev: Device to check.
2305  *
2306  * Check the PME status of the device and if set, clear it and clear PME enable
2307  * (if set).  Return 'true' if PME status and PME enable were both set or
2308  * 'false' otherwise.
2309  */
2310 bool pci_check_pme_status(struct pci_dev *dev)
2311 {
2312 	int pmcsr_pos;
2313 	u16 pmcsr;
2314 	bool ret = false;
2315 
2316 	if (!dev->pm_cap)
2317 		return false;
2318 
2319 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2320 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2321 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2322 		return false;
2323 
2324 	/* Clear PME status. */
2325 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2326 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2327 		/* Disable PME to avoid interrupt flood. */
2328 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2329 		ret = true;
2330 	}
2331 
2332 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2333 
2334 	return ret;
2335 }
2336 
2337 /**
2338  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2339  * @dev: Device to handle.
2340  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2341  *
2342  * Check if @dev has generated PME and queue a resume request for it in that
2343  * case.
2344  */
2345 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2346 {
2347 	if (pme_poll_reset && dev->pme_poll)
2348 		dev->pme_poll = false;
2349 
2350 	if (pci_check_pme_status(dev)) {
2351 		pci_wakeup_event(dev);
2352 		pm_request_resume(&dev->dev);
2353 	}
2354 	return 0;
2355 }
2356 
2357 /**
2358  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2359  * @bus: Top bus of the subtree to walk.
2360  */
2361 void pci_pme_wakeup_bus(struct pci_bus *bus)
2362 {
2363 	if (bus)
2364 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2365 }
2366 
2367 
2368 /**
2369  * pci_pme_capable - check the capability of PCI device to generate PME#
2370  * @dev: PCI device to handle.
2371  * @state: PCI state from which device will issue PME#.
2372  */
2373 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2374 {
2375 	if (!dev->pm_cap)
2376 		return false;
2377 
2378 	return !!(dev->pme_support & (1 << state));
2379 }
2380 EXPORT_SYMBOL(pci_pme_capable);
2381 
2382 static void pci_pme_list_scan(struct work_struct *work)
2383 {
2384 	struct pci_pme_device *pme_dev, *n;
2385 
2386 	mutex_lock(&pci_pme_list_mutex);
2387 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2388 		if (pme_dev->dev->pme_poll) {
2389 			struct pci_dev *bridge;
2390 
2391 			bridge = pme_dev->dev->bus->self;
2392 			/*
2393 			 * If bridge is in low power state, the
2394 			 * configuration space of subordinate devices
2395 			 * may be not accessible
2396 			 */
2397 			if (bridge && bridge->current_state != PCI_D0)
2398 				continue;
2399 			/*
2400 			 * If the device is in D3cold it should not be
2401 			 * polled either.
2402 			 */
2403 			if (pme_dev->dev->current_state == PCI_D3cold)
2404 				continue;
2405 
2406 			pci_pme_wakeup(pme_dev->dev, NULL);
2407 		} else {
2408 			list_del(&pme_dev->list);
2409 			kfree(pme_dev);
2410 		}
2411 	}
2412 	if (!list_empty(&pci_pme_list))
2413 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2414 				   msecs_to_jiffies(PME_TIMEOUT));
2415 	mutex_unlock(&pci_pme_list_mutex);
2416 }
2417 
2418 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2419 {
2420 	u16 pmcsr;
2421 
2422 	if (!dev->pme_support)
2423 		return;
2424 
2425 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2426 	/* Clear PME_Status by writing 1 to it and enable PME# */
2427 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2428 	if (!enable)
2429 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2430 
2431 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2432 }
2433 
2434 /**
2435  * pci_pme_restore - Restore PME configuration after config space restore.
2436  * @dev: PCI device to update.
2437  */
2438 void pci_pme_restore(struct pci_dev *dev)
2439 {
2440 	u16 pmcsr;
2441 
2442 	if (!dev->pme_support)
2443 		return;
2444 
2445 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2446 	if (dev->wakeup_prepared) {
2447 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2448 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2449 	} else {
2450 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2451 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2452 	}
2453 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2454 }
2455 
2456 /**
2457  * pci_pme_active - enable or disable PCI device's PME# function
2458  * @dev: PCI device to handle.
2459  * @enable: 'true' to enable PME# generation; 'false' to disable it.
2460  *
2461  * The caller must verify that the device is capable of generating PME# before
2462  * calling this function with @enable equal to 'true'.
2463  */
2464 void pci_pme_active(struct pci_dev *dev, bool enable)
2465 {
2466 	__pci_pme_active(dev, enable);
2467 
2468 	/*
2469 	 * PCI (as opposed to PCIe) PME requires that the device have
2470 	 * its PME# line hooked up correctly. Not all hardware vendors
2471 	 * do this, so the PME never gets delivered and the device
2472 	 * remains asleep. The easiest way around this is to
2473 	 * periodically walk the list of suspended devices and check
2474 	 * whether any have their PME flag set. The assumption is that
2475 	 * we'll wake up often enough anyway that this won't be a huge
2476 	 * hit, and the power savings from the devices will still be a
2477 	 * win.
2478 	 *
2479 	 * Although PCIe uses in-band PME message instead of PME# line
2480 	 * to report PME, PME does not work for some PCIe devices in
2481 	 * reality.  For example, there are devices that set their PME
2482 	 * status bits, but don't really bother to send a PME message;
2483 	 * there are PCI Express Root Ports that don't bother to
2484 	 * trigger interrupts when they receive PME messages from the
2485 	 * devices below.  So PME poll is used for PCIe devices too.
2486 	 */
2487 
2488 	if (dev->pme_poll) {
2489 		struct pci_pme_device *pme_dev;
2490 		if (enable) {
2491 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2492 					  GFP_KERNEL);
2493 			if (!pme_dev) {
2494 				pci_warn(dev, "can't enable PME#\n");
2495 				return;
2496 			}
2497 			pme_dev->dev = dev;
2498 			mutex_lock(&pci_pme_list_mutex);
2499 			list_add(&pme_dev->list, &pci_pme_list);
2500 			if (list_is_singular(&pci_pme_list))
2501 				queue_delayed_work(system_freezable_wq,
2502 						   &pci_pme_work,
2503 						   msecs_to_jiffies(PME_TIMEOUT));
2504 			mutex_unlock(&pci_pme_list_mutex);
2505 		} else {
2506 			mutex_lock(&pci_pme_list_mutex);
2507 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2508 				if (pme_dev->dev == dev) {
2509 					list_del(&pme_dev->list);
2510 					kfree(pme_dev);
2511 					break;
2512 				}
2513 			}
2514 			mutex_unlock(&pci_pme_list_mutex);
2515 		}
2516 	}
2517 
2518 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2519 }
2520 EXPORT_SYMBOL(pci_pme_active);
2521 
2522 /**
2523  * __pci_enable_wake - enable PCI device as wakeup event source
2524  * @dev: PCI device affected
2525  * @state: PCI state from which device will issue wakeup events
2526  * @enable: True to enable event generation; false to disable
2527  *
2528  * This enables the device as a wakeup event source, or disables it.
2529  * When such events involves platform-specific hooks, those hooks are
2530  * called automatically by this routine.
2531  *
2532  * Devices with legacy power management (no standard PCI PM capabilities)
2533  * always require such platform hooks.
2534  *
2535  * RETURN VALUE:
2536  * 0 is returned on success
2537  * -EINVAL is returned if device is not supposed to wake up the system
2538  * Error code depending on the platform is returned if both the platform and
2539  * the native mechanism fail to enable the generation of wake-up events
2540  */
2541 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2542 {
2543 	int ret = 0;
2544 
2545 	/*
2546 	 * Bridges that are not power-manageable directly only signal
2547 	 * wakeup on behalf of subordinate devices which is set up
2548 	 * elsewhere, so skip them. However, bridges that are
2549 	 * power-manageable may signal wakeup for themselves (for example,
2550 	 * on a hotplug event) and they need to be covered here.
2551 	 */
2552 	if (!pci_power_manageable(dev))
2553 		return 0;
2554 
2555 	/* Don't do the same thing twice in a row for one device. */
2556 	if (!!enable == !!dev->wakeup_prepared)
2557 		return 0;
2558 
2559 	/*
2560 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2561 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2562 	 * enable.  To disable wake-up we call the platform first, for symmetry.
2563 	 */
2564 
2565 	if (enable) {
2566 		int error;
2567 
2568 		/*
2569 		 * Enable PME signaling if the device can signal PME from
2570 		 * D3cold regardless of whether or not it can signal PME from
2571 		 * the current target state, because that will allow it to
2572 		 * signal PME when the hierarchy above it goes into D3cold and
2573 		 * the device itself ends up in D3cold as a result of that.
2574 		 */
2575 		if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2576 			pci_pme_active(dev, true);
2577 		else
2578 			ret = 1;
2579 		error = platform_pci_set_wakeup(dev, true);
2580 		if (ret)
2581 			ret = error;
2582 		if (!ret)
2583 			dev->wakeup_prepared = true;
2584 	} else {
2585 		platform_pci_set_wakeup(dev, false);
2586 		pci_pme_active(dev, false);
2587 		dev->wakeup_prepared = false;
2588 	}
2589 
2590 	return ret;
2591 }
2592 
2593 /**
2594  * pci_enable_wake - change wakeup settings for a PCI device
2595  * @pci_dev: Target device
2596  * @state: PCI state from which device will issue wakeup events
2597  * @enable: Whether or not to enable event generation
2598  *
2599  * If @enable is set, check device_may_wakeup() for the device before calling
2600  * __pci_enable_wake() for it.
2601  */
2602 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2603 {
2604 	if (enable && !device_may_wakeup(&pci_dev->dev))
2605 		return -EINVAL;
2606 
2607 	return __pci_enable_wake(pci_dev, state, enable);
2608 }
2609 EXPORT_SYMBOL(pci_enable_wake);
2610 
2611 /**
2612  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2613  * @dev: PCI device to prepare
2614  * @enable: True to enable wake-up event generation; false to disable
2615  *
2616  * Many drivers want the device to wake up the system from D3_hot or D3_cold
2617  * and this function allows them to set that up cleanly - pci_enable_wake()
2618  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2619  * ordering constraints.
2620  *
2621  * This function only returns error code if the device is not allowed to wake
2622  * up the system from sleep or it is not capable of generating PME# from both
2623  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2624  */
2625 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2626 {
2627 	return pci_pme_capable(dev, PCI_D3cold) ?
2628 			pci_enable_wake(dev, PCI_D3cold, enable) :
2629 			pci_enable_wake(dev, PCI_D3hot, enable);
2630 }
2631 EXPORT_SYMBOL(pci_wake_from_d3);
2632 
2633 /**
2634  * pci_target_state - find an appropriate low power state for a given PCI dev
2635  * @dev: PCI device
2636  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2637  *
2638  * Use underlying platform code to find a supported low power state for @dev.
2639  * If the platform can't manage @dev, return the deepest state from which it
2640  * can generate wake events, based on any available PME info.
2641  */
2642 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2643 {
2644 	if (platform_pci_power_manageable(dev)) {
2645 		/*
2646 		 * Call the platform to find the target state for the device.
2647 		 */
2648 		pci_power_t state = platform_pci_choose_state(dev);
2649 
2650 		switch (state) {
2651 		case PCI_POWER_ERROR:
2652 		case PCI_UNKNOWN:
2653 			return PCI_D3hot;
2654 
2655 		case PCI_D1:
2656 		case PCI_D2:
2657 			if (pci_no_d1d2(dev))
2658 				return PCI_D3hot;
2659 		}
2660 
2661 		return state;
2662 	}
2663 
2664 	/*
2665 	 * If the device is in D3cold even though it's not power-manageable by
2666 	 * the platform, it may have been powered down by non-standard means.
2667 	 * Best to let it slumber.
2668 	 */
2669 	if (dev->current_state == PCI_D3cold)
2670 		return PCI_D3cold;
2671 	else if (!dev->pm_cap)
2672 		return PCI_D0;
2673 
2674 	if (wakeup && dev->pme_support) {
2675 		pci_power_t state = PCI_D3hot;
2676 
2677 		/*
2678 		 * Find the deepest state from which the device can generate
2679 		 * PME#.
2680 		 */
2681 		while (state && !(dev->pme_support & (1 << state)))
2682 			state--;
2683 
2684 		if (state)
2685 			return state;
2686 		else if (dev->pme_support & 1)
2687 			return PCI_D0;
2688 	}
2689 
2690 	return PCI_D3hot;
2691 }
2692 
2693 /**
2694  * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2695  *			  into a sleep state
2696  * @dev: Device to handle.
2697  *
2698  * Choose the power state appropriate for the device depending on whether
2699  * it can wake up the system and/or is power manageable by the platform
2700  * (PCI_D3hot is the default) and put the device into that state.
2701  */
2702 int pci_prepare_to_sleep(struct pci_dev *dev)
2703 {
2704 	bool wakeup = device_may_wakeup(&dev->dev);
2705 	pci_power_t target_state = pci_target_state(dev, wakeup);
2706 	int error;
2707 
2708 	if (target_state == PCI_POWER_ERROR)
2709 		return -EIO;
2710 
2711 	pci_enable_wake(dev, target_state, wakeup);
2712 
2713 	error = pci_set_power_state(dev, target_state);
2714 
2715 	if (error)
2716 		pci_enable_wake(dev, target_state, false);
2717 
2718 	return error;
2719 }
2720 EXPORT_SYMBOL(pci_prepare_to_sleep);
2721 
2722 /**
2723  * pci_back_from_sleep - turn PCI device on during system-wide transition
2724  *			 into working state
2725  * @dev: Device to handle.
2726  *
2727  * Disable device's system wake-up capability and put it into D0.
2728  */
2729 int pci_back_from_sleep(struct pci_dev *dev)
2730 {
2731 	int ret = pci_set_power_state(dev, PCI_D0);
2732 
2733 	if (ret)
2734 		return ret;
2735 
2736 	pci_enable_wake(dev, PCI_D0, false);
2737 	return 0;
2738 }
2739 EXPORT_SYMBOL(pci_back_from_sleep);
2740 
2741 /**
2742  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2743  * @dev: PCI device being suspended.
2744  *
2745  * Prepare @dev to generate wake-up events at run time and put it into a low
2746  * power state.
2747  */
2748 int pci_finish_runtime_suspend(struct pci_dev *dev)
2749 {
2750 	pci_power_t target_state;
2751 	int error;
2752 
2753 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2754 	if (target_state == PCI_POWER_ERROR)
2755 		return -EIO;
2756 
2757 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2758 
2759 	error = pci_set_power_state(dev, target_state);
2760 
2761 	if (error)
2762 		pci_enable_wake(dev, target_state, false);
2763 
2764 	return error;
2765 }
2766 
2767 /**
2768  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2769  * @dev: Device to check.
2770  *
2771  * Return true if the device itself is capable of generating wake-up events
2772  * (through the platform or using the native PCIe PME) or if the device supports
2773  * PME and one of its upstream bridges can generate wake-up events.
2774  */
2775 bool pci_dev_run_wake(struct pci_dev *dev)
2776 {
2777 	struct pci_bus *bus = dev->bus;
2778 
2779 	if (!dev->pme_support)
2780 		return false;
2781 
2782 	/* PME-capable in principle, but not from the target power state */
2783 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2784 		return false;
2785 
2786 	if (device_can_wakeup(&dev->dev))
2787 		return true;
2788 
2789 	while (bus->parent) {
2790 		struct pci_dev *bridge = bus->self;
2791 
2792 		if (device_can_wakeup(&bridge->dev))
2793 			return true;
2794 
2795 		bus = bus->parent;
2796 	}
2797 
2798 	/* We have reached the root bus. */
2799 	if (bus->bridge)
2800 		return device_can_wakeup(bus->bridge);
2801 
2802 	return false;
2803 }
2804 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2805 
2806 /**
2807  * pci_dev_need_resume - Check if it is necessary to resume the device.
2808  * @pci_dev: Device to check.
2809  *
2810  * Return 'true' if the device is not runtime-suspended or it has to be
2811  * reconfigured due to wakeup settings difference between system and runtime
2812  * suspend, or the current power state of it is not suitable for the upcoming
2813  * (system-wide) transition.
2814  */
2815 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2816 {
2817 	struct device *dev = &pci_dev->dev;
2818 	pci_power_t target_state;
2819 
2820 	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2821 		return true;
2822 
2823 	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2824 
2825 	/*
2826 	 * If the earlier platform check has not triggered, D3cold is just power
2827 	 * removal on top of D3hot, so no need to resume the device in that
2828 	 * case.
2829 	 */
2830 	return target_state != pci_dev->current_state &&
2831 		target_state != PCI_D3cold &&
2832 		pci_dev->current_state != PCI_D3hot;
2833 }
2834 
2835 /**
2836  * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2837  * @pci_dev: Device to check.
2838  *
2839  * If the device is suspended and it is not configured for system wakeup,
2840  * disable PME for it to prevent it from waking up the system unnecessarily.
2841  *
2842  * Note that if the device's power state is D3cold and the platform check in
2843  * pci_dev_need_resume() has not triggered, the device's configuration need not
2844  * be changed.
2845  */
2846 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2847 {
2848 	struct device *dev = &pci_dev->dev;
2849 
2850 	spin_lock_irq(&dev->power.lock);
2851 
2852 	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2853 	    pci_dev->current_state < PCI_D3cold)
2854 		__pci_pme_active(pci_dev, false);
2855 
2856 	spin_unlock_irq(&dev->power.lock);
2857 }
2858 
2859 /**
2860  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2861  * @pci_dev: Device to handle.
2862  *
2863  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2864  * it might have been disabled during the prepare phase of system suspend if
2865  * the device was not configured for system wakeup.
2866  */
2867 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2868 {
2869 	struct device *dev = &pci_dev->dev;
2870 
2871 	if (!pci_dev_run_wake(pci_dev))
2872 		return;
2873 
2874 	spin_lock_irq(&dev->power.lock);
2875 
2876 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2877 		__pci_pme_active(pci_dev, true);
2878 
2879 	spin_unlock_irq(&dev->power.lock);
2880 }
2881 
2882 /**
2883  * pci_choose_state - Choose the power state of a PCI device.
2884  * @dev: Target PCI device.
2885  * @state: Target state for the whole system.
2886  *
2887  * Returns PCI power state suitable for @dev and @state.
2888  */
2889 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2890 {
2891 	if (state.event == PM_EVENT_ON)
2892 		return PCI_D0;
2893 
2894 	return pci_target_state(dev, false);
2895 }
2896 EXPORT_SYMBOL(pci_choose_state);
2897 
2898 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2899 {
2900 	struct device *dev = &pdev->dev;
2901 	struct device *parent = dev->parent;
2902 
2903 	if (parent)
2904 		pm_runtime_get_sync(parent);
2905 	pm_runtime_get_noresume(dev);
2906 	/*
2907 	 * pdev->current_state is set to PCI_D3cold during suspending,
2908 	 * so wait until suspending completes
2909 	 */
2910 	pm_runtime_barrier(dev);
2911 	/*
2912 	 * Only need to resume devices in D3cold, because config
2913 	 * registers are still accessible for devices suspended but
2914 	 * not in D3cold.
2915 	 */
2916 	if (pdev->current_state == PCI_D3cold)
2917 		pm_runtime_resume(dev);
2918 }
2919 
2920 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2921 {
2922 	struct device *dev = &pdev->dev;
2923 	struct device *parent = dev->parent;
2924 
2925 	pm_runtime_put(dev);
2926 	if (parent)
2927 		pm_runtime_put_sync(parent);
2928 }
2929 
2930 static const struct dmi_system_id bridge_d3_blacklist[] = {
2931 #ifdef CONFIG_X86
2932 	{
2933 		/*
2934 		 * Gigabyte X299 root port is not marked as hotplug capable
2935 		 * which allows Linux to power manage it.  However, this
2936 		 * confuses the BIOS SMI handler so don't power manage root
2937 		 * ports on that system.
2938 		 */
2939 		.ident = "X299 DESIGNARE EX-CF",
2940 		.matches = {
2941 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2942 			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2943 		},
2944 	},
2945 	{
2946 		/*
2947 		 * Downstream device is not accessible after putting a root port
2948 		 * into D3cold and back into D0 on Elo i2.
2949 		 */
2950 		.ident = "Elo i2",
2951 		.matches = {
2952 			DMI_MATCH(DMI_SYS_VENDOR, "Elo Touch Solutions"),
2953 			DMI_MATCH(DMI_PRODUCT_NAME, "Elo i2"),
2954 			DMI_MATCH(DMI_PRODUCT_VERSION, "RevB"),
2955 		},
2956 	},
2957 #endif
2958 	{ }
2959 };
2960 
2961 /**
2962  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2963  * @bridge: Bridge to check
2964  *
2965  * This function checks if it is possible to move the bridge to D3.
2966  * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2967  */
2968 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2969 {
2970 	if (!pci_is_pcie(bridge))
2971 		return false;
2972 
2973 	switch (pci_pcie_type(bridge)) {
2974 	case PCI_EXP_TYPE_ROOT_PORT:
2975 	case PCI_EXP_TYPE_UPSTREAM:
2976 	case PCI_EXP_TYPE_DOWNSTREAM:
2977 		if (pci_bridge_d3_disable)
2978 			return false;
2979 
2980 		/*
2981 		 * Hotplug ports handled by firmware in System Management Mode
2982 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2983 		 */
2984 		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2985 			return false;
2986 
2987 		if (pci_bridge_d3_force)
2988 			return true;
2989 
2990 		/* Even the oldest 2010 Thunderbolt controller supports D3. */
2991 		if (bridge->is_thunderbolt)
2992 			return true;
2993 
2994 		/* Platform might know better if the bridge supports D3 */
2995 		if (platform_pci_bridge_d3(bridge))
2996 			return true;
2997 
2998 		/*
2999 		 * Hotplug ports handled natively by the OS were not validated
3000 		 * by vendors for runtime D3 at least until 2018 because there
3001 		 * was no OS support.
3002 		 */
3003 		if (bridge->is_hotplug_bridge)
3004 			return false;
3005 
3006 		if (dmi_check_system(bridge_d3_blacklist))
3007 			return false;
3008 
3009 		/*
3010 		 * It should be safe to put PCIe ports from 2015 or newer
3011 		 * to D3.
3012 		 */
3013 		if (dmi_get_bios_year() >= 2015)
3014 			return true;
3015 		break;
3016 	}
3017 
3018 	return false;
3019 }
3020 
3021 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3022 {
3023 	bool *d3cold_ok = data;
3024 
3025 	if (/* The device needs to be allowed to go D3cold ... */
3026 	    dev->no_d3cold || !dev->d3cold_allowed ||
3027 
3028 	    /* ... and if it is wakeup capable to do so from D3cold. */
3029 	    (device_may_wakeup(&dev->dev) &&
3030 	     !pci_pme_capable(dev, PCI_D3cold)) ||
3031 
3032 	    /* If it is a bridge it must be allowed to go to D3. */
3033 	    !pci_power_manageable(dev))
3034 
3035 		*d3cold_ok = false;
3036 
3037 	return !*d3cold_ok;
3038 }
3039 
3040 /*
3041  * pci_bridge_d3_update - Update bridge D3 capabilities
3042  * @dev: PCI device which is changed
3043  *
3044  * Update upstream bridge PM capabilities accordingly depending on if the
3045  * device PM configuration was changed or the device is being removed.  The
3046  * change is also propagated upstream.
3047  */
3048 void pci_bridge_d3_update(struct pci_dev *dev)
3049 {
3050 	bool remove = !device_is_registered(&dev->dev);
3051 	struct pci_dev *bridge;
3052 	bool d3cold_ok = true;
3053 
3054 	bridge = pci_upstream_bridge(dev);
3055 	if (!bridge || !pci_bridge_d3_possible(bridge))
3056 		return;
3057 
3058 	/*
3059 	 * If D3 is currently allowed for the bridge, removing one of its
3060 	 * children won't change that.
3061 	 */
3062 	if (remove && bridge->bridge_d3)
3063 		return;
3064 
3065 	/*
3066 	 * If D3 is currently allowed for the bridge and a child is added or
3067 	 * changed, disallowance of D3 can only be caused by that child, so
3068 	 * we only need to check that single device, not any of its siblings.
3069 	 *
3070 	 * If D3 is currently not allowed for the bridge, checking the device
3071 	 * first may allow us to skip checking its siblings.
3072 	 */
3073 	if (!remove)
3074 		pci_dev_check_d3cold(dev, &d3cold_ok);
3075 
3076 	/*
3077 	 * If D3 is currently not allowed for the bridge, this may be caused
3078 	 * either by the device being changed/removed or any of its siblings,
3079 	 * so we need to go through all children to find out if one of them
3080 	 * continues to block D3.
3081 	 */
3082 	if (d3cold_ok && !bridge->bridge_d3)
3083 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3084 			     &d3cold_ok);
3085 
3086 	if (bridge->bridge_d3 != d3cold_ok) {
3087 		bridge->bridge_d3 = d3cold_ok;
3088 		/* Propagate change to upstream bridges */
3089 		pci_bridge_d3_update(bridge);
3090 	}
3091 }
3092 
3093 /**
3094  * pci_d3cold_enable - Enable D3cold for device
3095  * @dev: PCI device to handle
3096  *
3097  * This function can be used in drivers to enable D3cold from the device
3098  * they handle.  It also updates upstream PCI bridge PM capabilities
3099  * accordingly.
3100  */
3101 void pci_d3cold_enable(struct pci_dev *dev)
3102 {
3103 	if (dev->no_d3cold) {
3104 		dev->no_d3cold = false;
3105 		pci_bridge_d3_update(dev);
3106 	}
3107 }
3108 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3109 
3110 /**
3111  * pci_d3cold_disable - Disable D3cold for device
3112  * @dev: PCI device to handle
3113  *
3114  * This function can be used in drivers to disable D3cold from the device
3115  * they handle.  It also updates upstream PCI bridge PM capabilities
3116  * accordingly.
3117  */
3118 void pci_d3cold_disable(struct pci_dev *dev)
3119 {
3120 	if (!dev->no_d3cold) {
3121 		dev->no_d3cold = true;
3122 		pci_bridge_d3_update(dev);
3123 	}
3124 }
3125 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3126 
3127 /**
3128  * pci_pm_init - Initialize PM functions of given PCI device
3129  * @dev: PCI device to handle.
3130  */
3131 void pci_pm_init(struct pci_dev *dev)
3132 {
3133 	int pm;
3134 	u16 status;
3135 	u16 pmc;
3136 
3137 	pm_runtime_forbid(&dev->dev);
3138 	pm_runtime_set_active(&dev->dev);
3139 	pm_runtime_enable(&dev->dev);
3140 	device_enable_async_suspend(&dev->dev);
3141 	dev->wakeup_prepared = false;
3142 
3143 	dev->pm_cap = 0;
3144 	dev->pme_support = 0;
3145 
3146 	/* find PCI PM capability in list */
3147 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3148 	if (!pm)
3149 		return;
3150 	/* Check device's ability to generate PME# */
3151 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3152 
3153 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3154 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3155 			pmc & PCI_PM_CAP_VER_MASK);
3156 		return;
3157 	}
3158 
3159 	dev->pm_cap = pm;
3160 	dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3161 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3162 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3163 	dev->d3cold_allowed = true;
3164 
3165 	dev->d1_support = false;
3166 	dev->d2_support = false;
3167 	if (!pci_no_d1d2(dev)) {
3168 		if (pmc & PCI_PM_CAP_D1)
3169 			dev->d1_support = true;
3170 		if (pmc & PCI_PM_CAP_D2)
3171 			dev->d2_support = true;
3172 
3173 		if (dev->d1_support || dev->d2_support)
3174 			pci_info(dev, "supports%s%s\n",
3175 				   dev->d1_support ? " D1" : "",
3176 				   dev->d2_support ? " D2" : "");
3177 	}
3178 
3179 	pmc &= PCI_PM_CAP_PME_MASK;
3180 	if (pmc) {
3181 		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3182 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3183 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3184 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3185 			 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3186 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3187 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3188 		dev->pme_poll = true;
3189 		/*
3190 		 * Make device's PM flags reflect the wake-up capability, but
3191 		 * let the user space enable it to wake up the system as needed.
3192 		 */
3193 		device_set_wakeup_capable(&dev->dev, true);
3194 		/* Disable the PME# generation functionality */
3195 		pci_pme_active(dev, false);
3196 	}
3197 
3198 	pci_read_config_word(dev, PCI_STATUS, &status);
3199 	if (status & PCI_STATUS_IMM_READY)
3200 		dev->imm_ready = 1;
3201 }
3202 
3203 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3204 {
3205 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3206 
3207 	switch (prop) {
3208 	case PCI_EA_P_MEM:
3209 	case PCI_EA_P_VF_MEM:
3210 		flags |= IORESOURCE_MEM;
3211 		break;
3212 	case PCI_EA_P_MEM_PREFETCH:
3213 	case PCI_EA_P_VF_MEM_PREFETCH:
3214 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3215 		break;
3216 	case PCI_EA_P_IO:
3217 		flags |= IORESOURCE_IO;
3218 		break;
3219 	default:
3220 		return 0;
3221 	}
3222 
3223 	return flags;
3224 }
3225 
3226 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3227 					    u8 prop)
3228 {
3229 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3230 		return &dev->resource[bei];
3231 #ifdef CONFIG_PCI_IOV
3232 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3233 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3234 		return &dev->resource[PCI_IOV_RESOURCES +
3235 				      bei - PCI_EA_BEI_VF_BAR0];
3236 #endif
3237 	else if (bei == PCI_EA_BEI_ROM)
3238 		return &dev->resource[PCI_ROM_RESOURCE];
3239 	else
3240 		return NULL;
3241 }
3242 
3243 /* Read an Enhanced Allocation (EA) entry */
3244 static int pci_ea_read(struct pci_dev *dev, int offset)
3245 {
3246 	struct resource *res;
3247 	int ent_size, ent_offset = offset;
3248 	resource_size_t start, end;
3249 	unsigned long flags;
3250 	u32 dw0, bei, base, max_offset;
3251 	u8 prop;
3252 	bool support_64 = (sizeof(resource_size_t) >= 8);
3253 
3254 	pci_read_config_dword(dev, ent_offset, &dw0);
3255 	ent_offset += 4;
3256 
3257 	/* Entry size field indicates DWORDs after 1st */
3258 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3259 
3260 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3261 		goto out;
3262 
3263 	bei = (dw0 & PCI_EA_BEI) >> 4;
3264 	prop = (dw0 & PCI_EA_PP) >> 8;
3265 
3266 	/*
3267 	 * If the Property is in the reserved range, try the Secondary
3268 	 * Property instead.
3269 	 */
3270 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3271 		prop = (dw0 & PCI_EA_SP) >> 16;
3272 	if (prop > PCI_EA_P_BRIDGE_IO)
3273 		goto out;
3274 
3275 	res = pci_ea_get_resource(dev, bei, prop);
3276 	if (!res) {
3277 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3278 		goto out;
3279 	}
3280 
3281 	flags = pci_ea_flags(dev, prop);
3282 	if (!flags) {
3283 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3284 		goto out;
3285 	}
3286 
3287 	/* Read Base */
3288 	pci_read_config_dword(dev, ent_offset, &base);
3289 	start = (base & PCI_EA_FIELD_MASK);
3290 	ent_offset += 4;
3291 
3292 	/* Read MaxOffset */
3293 	pci_read_config_dword(dev, ent_offset, &max_offset);
3294 	ent_offset += 4;
3295 
3296 	/* Read Base MSBs (if 64-bit entry) */
3297 	if (base & PCI_EA_IS_64) {
3298 		u32 base_upper;
3299 
3300 		pci_read_config_dword(dev, ent_offset, &base_upper);
3301 		ent_offset += 4;
3302 
3303 		flags |= IORESOURCE_MEM_64;
3304 
3305 		/* entry starts above 32-bit boundary, can't use */
3306 		if (!support_64 && base_upper)
3307 			goto out;
3308 
3309 		if (support_64)
3310 			start |= ((u64)base_upper << 32);
3311 	}
3312 
3313 	end = start + (max_offset | 0x03);
3314 
3315 	/* Read MaxOffset MSBs (if 64-bit entry) */
3316 	if (max_offset & PCI_EA_IS_64) {
3317 		u32 max_offset_upper;
3318 
3319 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3320 		ent_offset += 4;
3321 
3322 		flags |= IORESOURCE_MEM_64;
3323 
3324 		/* entry too big, can't use */
3325 		if (!support_64 && max_offset_upper)
3326 			goto out;
3327 
3328 		if (support_64)
3329 			end += ((u64)max_offset_upper << 32);
3330 	}
3331 
3332 	if (end < start) {
3333 		pci_err(dev, "EA Entry crosses address boundary\n");
3334 		goto out;
3335 	}
3336 
3337 	if (ent_size != ent_offset - offset) {
3338 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3339 			ent_size, ent_offset - offset);
3340 		goto out;
3341 	}
3342 
3343 	res->name = pci_name(dev);
3344 	res->start = start;
3345 	res->end = end;
3346 	res->flags = flags;
3347 
3348 	if (bei <= PCI_EA_BEI_BAR5)
3349 		pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3350 			   bei, res, prop);
3351 	else if (bei == PCI_EA_BEI_ROM)
3352 		pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3353 			   res, prop);
3354 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3355 		pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3356 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
3357 	else
3358 		pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3359 			   bei, res, prop);
3360 
3361 out:
3362 	return offset + ent_size;
3363 }
3364 
3365 /* Enhanced Allocation Initialization */
3366 void pci_ea_init(struct pci_dev *dev)
3367 {
3368 	int ea;
3369 	u8 num_ent;
3370 	int offset;
3371 	int i;
3372 
3373 	/* find PCI EA capability in list */
3374 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3375 	if (!ea)
3376 		return;
3377 
3378 	/* determine the number of entries */
3379 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3380 					&num_ent);
3381 	num_ent &= PCI_EA_NUM_ENT_MASK;
3382 
3383 	offset = ea + PCI_EA_FIRST_ENT;
3384 
3385 	/* Skip DWORD 2 for type 1 functions */
3386 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3387 		offset += 4;
3388 
3389 	/* parse each EA entry */
3390 	for (i = 0; i < num_ent; ++i)
3391 		offset = pci_ea_read(dev, offset);
3392 }
3393 
3394 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3395 	struct pci_cap_saved_state *new_cap)
3396 {
3397 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3398 }
3399 
3400 /**
3401  * _pci_add_cap_save_buffer - allocate buffer for saving given
3402  *			      capability registers
3403  * @dev: the PCI device
3404  * @cap: the capability to allocate the buffer for
3405  * @extended: Standard or Extended capability ID
3406  * @size: requested size of the buffer
3407  */
3408 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3409 				    bool extended, unsigned int size)
3410 {
3411 	int pos;
3412 	struct pci_cap_saved_state *save_state;
3413 
3414 	if (extended)
3415 		pos = pci_find_ext_capability(dev, cap);
3416 	else
3417 		pos = pci_find_capability(dev, cap);
3418 
3419 	if (!pos)
3420 		return 0;
3421 
3422 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3423 	if (!save_state)
3424 		return -ENOMEM;
3425 
3426 	save_state->cap.cap_nr = cap;
3427 	save_state->cap.cap_extended = extended;
3428 	save_state->cap.size = size;
3429 	pci_add_saved_cap(dev, save_state);
3430 
3431 	return 0;
3432 }
3433 
3434 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3435 {
3436 	return _pci_add_cap_save_buffer(dev, cap, false, size);
3437 }
3438 
3439 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3440 {
3441 	return _pci_add_cap_save_buffer(dev, cap, true, size);
3442 }
3443 
3444 /**
3445  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3446  * @dev: the PCI device
3447  */
3448 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3449 {
3450 	int error;
3451 
3452 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3453 					PCI_EXP_SAVE_REGS * sizeof(u16));
3454 	if (error)
3455 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3456 
3457 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3458 	if (error)
3459 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3460 
3461 	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3462 					    2 * sizeof(u16));
3463 	if (error)
3464 		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3465 
3466 	pci_allocate_vc_save_buffers(dev);
3467 }
3468 
3469 void pci_free_cap_save_buffers(struct pci_dev *dev)
3470 {
3471 	struct pci_cap_saved_state *tmp;
3472 	struct hlist_node *n;
3473 
3474 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3475 		kfree(tmp);
3476 }
3477 
3478 /**
3479  * pci_configure_ari - enable or disable ARI forwarding
3480  * @dev: the PCI device
3481  *
3482  * If @dev and its upstream bridge both support ARI, enable ARI in the
3483  * bridge.  Otherwise, disable ARI in the bridge.
3484  */
3485 void pci_configure_ari(struct pci_dev *dev)
3486 {
3487 	u32 cap;
3488 	struct pci_dev *bridge;
3489 
3490 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3491 		return;
3492 
3493 	bridge = dev->bus->self;
3494 	if (!bridge)
3495 		return;
3496 
3497 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3498 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3499 		return;
3500 
3501 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3502 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3503 					 PCI_EXP_DEVCTL2_ARI);
3504 		bridge->ari_enabled = 1;
3505 	} else {
3506 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3507 					   PCI_EXP_DEVCTL2_ARI);
3508 		bridge->ari_enabled = 0;
3509 	}
3510 }
3511 
3512 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3513 {
3514 	int pos;
3515 	u16 cap, ctrl;
3516 
3517 	pos = pdev->acs_cap;
3518 	if (!pos)
3519 		return false;
3520 
3521 	/*
3522 	 * Except for egress control, capabilities are either required
3523 	 * or only required if controllable.  Features missing from the
3524 	 * capability field can therefore be assumed as hard-wired enabled.
3525 	 */
3526 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3527 	acs_flags &= (cap | PCI_ACS_EC);
3528 
3529 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3530 	return (ctrl & acs_flags) == acs_flags;
3531 }
3532 
3533 /**
3534  * pci_acs_enabled - test ACS against required flags for a given device
3535  * @pdev: device to test
3536  * @acs_flags: required PCI ACS flags
3537  *
3538  * Return true if the device supports the provided flags.  Automatically
3539  * filters out flags that are not implemented on multifunction devices.
3540  *
3541  * Note that this interface checks the effective ACS capabilities of the
3542  * device rather than the actual capabilities.  For instance, most single
3543  * function endpoints are not required to support ACS because they have no
3544  * opportunity for peer-to-peer access.  We therefore return 'true'
3545  * regardless of whether the device exposes an ACS capability.  This makes
3546  * it much easier for callers of this function to ignore the actual type
3547  * or topology of the device when testing ACS support.
3548  */
3549 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3550 {
3551 	int ret;
3552 
3553 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3554 	if (ret >= 0)
3555 		return ret > 0;
3556 
3557 	/*
3558 	 * Conventional PCI and PCI-X devices never support ACS, either
3559 	 * effectively or actually.  The shared bus topology implies that
3560 	 * any device on the bus can receive or snoop DMA.
3561 	 */
3562 	if (!pci_is_pcie(pdev))
3563 		return false;
3564 
3565 	switch (pci_pcie_type(pdev)) {
3566 	/*
3567 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3568 	 * but since their primary interface is PCI/X, we conservatively
3569 	 * handle them as we would a non-PCIe device.
3570 	 */
3571 	case PCI_EXP_TYPE_PCIE_BRIDGE:
3572 	/*
3573 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3574 	 * applicable... must never implement an ACS Extended Capability...".
3575 	 * This seems arbitrary, but we take a conservative interpretation
3576 	 * of this statement.
3577 	 */
3578 	case PCI_EXP_TYPE_PCI_BRIDGE:
3579 	case PCI_EXP_TYPE_RC_EC:
3580 		return false;
3581 	/*
3582 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3583 	 * implement ACS in order to indicate their peer-to-peer capabilities,
3584 	 * regardless of whether they are single- or multi-function devices.
3585 	 */
3586 	case PCI_EXP_TYPE_DOWNSTREAM:
3587 	case PCI_EXP_TYPE_ROOT_PORT:
3588 		return pci_acs_flags_enabled(pdev, acs_flags);
3589 	/*
3590 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3591 	 * implemented by the remaining PCIe types to indicate peer-to-peer
3592 	 * capabilities, but only when they are part of a multifunction
3593 	 * device.  The footnote for section 6.12 indicates the specific
3594 	 * PCIe types included here.
3595 	 */
3596 	case PCI_EXP_TYPE_ENDPOINT:
3597 	case PCI_EXP_TYPE_UPSTREAM:
3598 	case PCI_EXP_TYPE_LEG_END:
3599 	case PCI_EXP_TYPE_RC_END:
3600 		if (!pdev->multifunction)
3601 			break;
3602 
3603 		return pci_acs_flags_enabled(pdev, acs_flags);
3604 	}
3605 
3606 	/*
3607 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3608 	 * to single function devices with the exception of downstream ports.
3609 	 */
3610 	return true;
3611 }
3612 
3613 /**
3614  * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3615  * @start: starting downstream device
3616  * @end: ending upstream device or NULL to search to the root bus
3617  * @acs_flags: required flags
3618  *
3619  * Walk up a device tree from start to end testing PCI ACS support.  If
3620  * any step along the way does not support the required flags, return false.
3621  */
3622 bool pci_acs_path_enabled(struct pci_dev *start,
3623 			  struct pci_dev *end, u16 acs_flags)
3624 {
3625 	struct pci_dev *pdev, *parent = start;
3626 
3627 	do {
3628 		pdev = parent;
3629 
3630 		if (!pci_acs_enabled(pdev, acs_flags))
3631 			return false;
3632 
3633 		if (pci_is_root_bus(pdev->bus))
3634 			return (end == NULL);
3635 
3636 		parent = pdev->bus->self;
3637 	} while (pdev != end);
3638 
3639 	return true;
3640 }
3641 
3642 /**
3643  * pci_acs_init - Initialize ACS if hardware supports it
3644  * @dev: the PCI device
3645  */
3646 void pci_acs_init(struct pci_dev *dev)
3647 {
3648 	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3649 
3650 	/*
3651 	 * Attempt to enable ACS regardless of capability because some Root
3652 	 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3653 	 * the standard ACS capability but still support ACS via those
3654 	 * quirks.
3655 	 */
3656 	pci_enable_acs(dev);
3657 }
3658 
3659 /**
3660  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3661  * @pdev: PCI device
3662  * @bar: BAR to find
3663  *
3664  * Helper to find the position of the ctrl register for a BAR.
3665  * Returns -ENOTSUPP if resizable BARs are not supported at all.
3666  * Returns -ENOENT if no ctrl register for the BAR could be found.
3667  */
3668 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3669 {
3670 	unsigned int pos, nbars, i;
3671 	u32 ctrl;
3672 
3673 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3674 	if (!pos)
3675 		return -ENOTSUPP;
3676 
3677 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3678 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3679 		    PCI_REBAR_CTRL_NBAR_SHIFT;
3680 
3681 	for (i = 0; i < nbars; i++, pos += 8) {
3682 		int bar_idx;
3683 
3684 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3685 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3686 		if (bar_idx == bar)
3687 			return pos;
3688 	}
3689 
3690 	return -ENOENT;
3691 }
3692 
3693 /**
3694  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3695  * @pdev: PCI device
3696  * @bar: BAR to query
3697  *
3698  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3699  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3700  */
3701 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3702 {
3703 	int pos;
3704 	u32 cap;
3705 
3706 	pos = pci_rebar_find_pos(pdev, bar);
3707 	if (pos < 0)
3708 		return 0;
3709 
3710 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3711 	cap &= PCI_REBAR_CAP_SIZES;
3712 
3713 	/* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3714 	if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3715 	    bar == 0 && cap == 0x7000)
3716 		cap = 0x3f000;
3717 
3718 	return cap >> 4;
3719 }
3720 EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3721 
3722 /**
3723  * pci_rebar_get_current_size - get the current size of a BAR
3724  * @pdev: PCI device
3725  * @bar: BAR to set size to
3726  *
3727  * Read the size of a BAR from the resizable BAR config.
3728  * Returns size if found or negative error code.
3729  */
3730 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3731 {
3732 	int pos;
3733 	u32 ctrl;
3734 
3735 	pos = pci_rebar_find_pos(pdev, bar);
3736 	if (pos < 0)
3737 		return pos;
3738 
3739 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3740 	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3741 }
3742 
3743 /**
3744  * pci_rebar_set_size - set a new size for a BAR
3745  * @pdev: PCI device
3746  * @bar: BAR to set size to
3747  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3748  *
3749  * Set the new size of a BAR as defined in the spec.
3750  * Returns zero if resizing was successful, error code otherwise.
3751  */
3752 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3753 {
3754 	int pos;
3755 	u32 ctrl;
3756 
3757 	pos = pci_rebar_find_pos(pdev, bar);
3758 	if (pos < 0)
3759 		return pos;
3760 
3761 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3762 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3763 	ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3764 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3765 	return 0;
3766 }
3767 
3768 /**
3769  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3770  * @dev: the PCI device
3771  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3772  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3773  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3774  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3775  *
3776  * Return 0 if all upstream bridges support AtomicOp routing, egress
3777  * blocking is disabled on all upstream ports, and the root port supports
3778  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3779  * AtomicOp completion), or negative otherwise.
3780  */
3781 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3782 {
3783 	struct pci_bus *bus = dev->bus;
3784 	struct pci_dev *bridge;
3785 	u32 cap, ctl2;
3786 
3787 	/*
3788 	 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3789 	 * in Device Control 2 is reserved in VFs and the PF value applies
3790 	 * to all associated VFs.
3791 	 */
3792 	if (dev->is_virtfn)
3793 		return -EINVAL;
3794 
3795 	if (!pci_is_pcie(dev))
3796 		return -EINVAL;
3797 
3798 	/*
3799 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3800 	 * AtomicOp requesters.  For now, we only support endpoints as
3801 	 * requesters and root ports as completers.  No endpoints as
3802 	 * completers, and no peer-to-peer.
3803 	 */
3804 
3805 	switch (pci_pcie_type(dev)) {
3806 	case PCI_EXP_TYPE_ENDPOINT:
3807 	case PCI_EXP_TYPE_LEG_END:
3808 	case PCI_EXP_TYPE_RC_END:
3809 		break;
3810 	default:
3811 		return -EINVAL;
3812 	}
3813 
3814 	while (bus->parent) {
3815 		bridge = bus->self;
3816 
3817 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3818 
3819 		switch (pci_pcie_type(bridge)) {
3820 		/* Ensure switch ports support AtomicOp routing */
3821 		case PCI_EXP_TYPE_UPSTREAM:
3822 		case PCI_EXP_TYPE_DOWNSTREAM:
3823 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3824 				return -EINVAL;
3825 			break;
3826 
3827 		/* Ensure root port supports all the sizes we care about */
3828 		case PCI_EXP_TYPE_ROOT_PORT:
3829 			if ((cap & cap_mask) != cap_mask)
3830 				return -EINVAL;
3831 			break;
3832 		}
3833 
3834 		/* Ensure upstream ports don't block AtomicOps on egress */
3835 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3836 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3837 						   &ctl2);
3838 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3839 				return -EINVAL;
3840 		}
3841 
3842 		bus = bus->parent;
3843 	}
3844 
3845 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3846 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3847 	return 0;
3848 }
3849 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3850 
3851 /**
3852  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3853  * @dev: the PCI device
3854  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3855  *
3856  * Perform INTx swizzling for a device behind one level of bridge.  This is
3857  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3858  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3859  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3860  * the PCI Express Base Specification, Revision 2.1)
3861  */
3862 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3863 {
3864 	int slot;
3865 
3866 	if (pci_ari_enabled(dev->bus))
3867 		slot = 0;
3868 	else
3869 		slot = PCI_SLOT(dev->devfn);
3870 
3871 	return (((pin - 1) + slot) % 4) + 1;
3872 }
3873 
3874 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3875 {
3876 	u8 pin;
3877 
3878 	pin = dev->pin;
3879 	if (!pin)
3880 		return -1;
3881 
3882 	while (!pci_is_root_bus(dev->bus)) {
3883 		pin = pci_swizzle_interrupt_pin(dev, pin);
3884 		dev = dev->bus->self;
3885 	}
3886 	*bridge = dev;
3887 	return pin;
3888 }
3889 
3890 /**
3891  * pci_common_swizzle - swizzle INTx all the way to root bridge
3892  * @dev: the PCI device
3893  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3894  *
3895  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3896  * bridges all the way up to a PCI root bus.
3897  */
3898 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3899 {
3900 	u8 pin = *pinp;
3901 
3902 	while (!pci_is_root_bus(dev->bus)) {
3903 		pin = pci_swizzle_interrupt_pin(dev, pin);
3904 		dev = dev->bus->self;
3905 	}
3906 	*pinp = pin;
3907 	return PCI_SLOT(dev->devfn);
3908 }
3909 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3910 
3911 /**
3912  * pci_release_region - Release a PCI bar
3913  * @pdev: PCI device whose resources were previously reserved by
3914  *	  pci_request_region()
3915  * @bar: BAR to release
3916  *
3917  * Releases the PCI I/O and memory resources previously reserved by a
3918  * successful call to pci_request_region().  Call this function only
3919  * after all use of the PCI regions has ceased.
3920  */
3921 void pci_release_region(struct pci_dev *pdev, int bar)
3922 {
3923 	struct pci_devres *dr;
3924 
3925 	if (pci_resource_len(pdev, bar) == 0)
3926 		return;
3927 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3928 		release_region(pci_resource_start(pdev, bar),
3929 				pci_resource_len(pdev, bar));
3930 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3931 		release_mem_region(pci_resource_start(pdev, bar),
3932 				pci_resource_len(pdev, bar));
3933 
3934 	dr = find_pci_dr(pdev);
3935 	if (dr)
3936 		dr->region_mask &= ~(1 << bar);
3937 }
3938 EXPORT_SYMBOL(pci_release_region);
3939 
3940 /**
3941  * __pci_request_region - Reserved PCI I/O and memory resource
3942  * @pdev: PCI device whose resources are to be reserved
3943  * @bar: BAR to be reserved
3944  * @res_name: Name to be associated with resource.
3945  * @exclusive: whether the region access is exclusive or not
3946  *
3947  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3948  * being reserved by owner @res_name.  Do not access any
3949  * address inside the PCI regions unless this call returns
3950  * successfully.
3951  *
3952  * If @exclusive is set, then the region is marked so that userspace
3953  * is explicitly not allowed to map the resource via /dev/mem or
3954  * sysfs MMIO access.
3955  *
3956  * Returns 0 on success, or %EBUSY on error.  A warning
3957  * message is also printed on failure.
3958  */
3959 static int __pci_request_region(struct pci_dev *pdev, int bar,
3960 				const char *res_name, int exclusive)
3961 {
3962 	struct pci_devres *dr;
3963 
3964 	if (pci_resource_len(pdev, bar) == 0)
3965 		return 0;
3966 
3967 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3968 		if (!request_region(pci_resource_start(pdev, bar),
3969 			    pci_resource_len(pdev, bar), res_name))
3970 			goto err_out;
3971 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3972 		if (!__request_mem_region(pci_resource_start(pdev, bar),
3973 					pci_resource_len(pdev, bar), res_name,
3974 					exclusive))
3975 			goto err_out;
3976 	}
3977 
3978 	dr = find_pci_dr(pdev);
3979 	if (dr)
3980 		dr->region_mask |= 1 << bar;
3981 
3982 	return 0;
3983 
3984 err_out:
3985 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3986 		 &pdev->resource[bar]);
3987 	return -EBUSY;
3988 }
3989 
3990 /**
3991  * pci_request_region - Reserve PCI I/O and memory resource
3992  * @pdev: PCI device whose resources are to be reserved
3993  * @bar: BAR to be reserved
3994  * @res_name: Name to be associated with resource
3995  *
3996  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3997  * being reserved by owner @res_name.  Do not access any
3998  * address inside the PCI regions unless this call returns
3999  * successfully.
4000  *
4001  * Returns 0 on success, or %EBUSY on error.  A warning
4002  * message is also printed on failure.
4003  */
4004 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
4005 {
4006 	return __pci_request_region(pdev, bar, res_name, 0);
4007 }
4008 EXPORT_SYMBOL(pci_request_region);
4009 
4010 /**
4011  * pci_release_selected_regions - Release selected PCI I/O and memory resources
4012  * @pdev: PCI device whose resources were previously reserved
4013  * @bars: Bitmask of BARs to be released
4014  *
4015  * Release selected PCI I/O and memory resources previously reserved.
4016  * Call this function only after all use of the PCI regions has ceased.
4017  */
4018 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4019 {
4020 	int i;
4021 
4022 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4023 		if (bars & (1 << i))
4024 			pci_release_region(pdev, i);
4025 }
4026 EXPORT_SYMBOL(pci_release_selected_regions);
4027 
4028 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4029 					  const char *res_name, int excl)
4030 {
4031 	int i;
4032 
4033 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4034 		if (bars & (1 << i))
4035 			if (__pci_request_region(pdev, i, res_name, excl))
4036 				goto err_out;
4037 	return 0;
4038 
4039 err_out:
4040 	while (--i >= 0)
4041 		if (bars & (1 << i))
4042 			pci_release_region(pdev, i);
4043 
4044 	return -EBUSY;
4045 }
4046 
4047 
4048 /**
4049  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4050  * @pdev: PCI device whose resources are to be reserved
4051  * @bars: Bitmask of BARs to be requested
4052  * @res_name: Name to be associated with resource
4053  */
4054 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4055 				 const char *res_name)
4056 {
4057 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
4058 }
4059 EXPORT_SYMBOL(pci_request_selected_regions);
4060 
4061 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4062 					   const char *res_name)
4063 {
4064 	return __pci_request_selected_regions(pdev, bars, res_name,
4065 			IORESOURCE_EXCLUSIVE);
4066 }
4067 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4068 
4069 /**
4070  * pci_release_regions - Release reserved PCI I/O and memory resources
4071  * @pdev: PCI device whose resources were previously reserved by
4072  *	  pci_request_regions()
4073  *
4074  * Releases all PCI I/O and memory resources previously reserved by a
4075  * successful call to pci_request_regions().  Call this function only
4076  * after all use of the PCI regions has ceased.
4077  */
4078 
4079 void pci_release_regions(struct pci_dev *pdev)
4080 {
4081 	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4082 }
4083 EXPORT_SYMBOL(pci_release_regions);
4084 
4085 /**
4086  * pci_request_regions - Reserve PCI I/O and memory resources
4087  * @pdev: PCI device whose resources are to be reserved
4088  * @res_name: Name to be associated with resource.
4089  *
4090  * Mark all PCI regions associated with PCI device @pdev as
4091  * being reserved by owner @res_name.  Do not access any
4092  * address inside the PCI regions unless this call returns
4093  * successfully.
4094  *
4095  * Returns 0 on success, or %EBUSY on error.  A warning
4096  * message is also printed on failure.
4097  */
4098 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4099 {
4100 	return pci_request_selected_regions(pdev,
4101 			((1 << PCI_STD_NUM_BARS) - 1), res_name);
4102 }
4103 EXPORT_SYMBOL(pci_request_regions);
4104 
4105 /**
4106  * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4107  * @pdev: PCI device whose resources are to be reserved
4108  * @res_name: Name to be associated with resource.
4109  *
4110  * Mark all PCI regions associated with PCI device @pdev as being reserved
4111  * by owner @res_name.  Do not access any address inside the PCI regions
4112  * unless this call returns successfully.
4113  *
4114  * pci_request_regions_exclusive() will mark the region so that /dev/mem
4115  * and the sysfs MMIO access will not be allowed.
4116  *
4117  * Returns 0 on success, or %EBUSY on error.  A warning message is also
4118  * printed on failure.
4119  */
4120 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4121 {
4122 	return pci_request_selected_regions_exclusive(pdev,
4123 				((1 << PCI_STD_NUM_BARS) - 1), res_name);
4124 }
4125 EXPORT_SYMBOL(pci_request_regions_exclusive);
4126 
4127 /*
4128  * Record the PCI IO range (expressed as CPU physical address + size).
4129  * Return a negative value if an error has occurred, zero otherwise
4130  */
4131 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4132 			resource_size_t	size)
4133 {
4134 	int ret = 0;
4135 #ifdef PCI_IOBASE
4136 	struct logic_pio_hwaddr *range;
4137 
4138 	if (!size || addr + size < addr)
4139 		return -EINVAL;
4140 
4141 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
4142 	if (!range)
4143 		return -ENOMEM;
4144 
4145 	range->fwnode = fwnode;
4146 	range->size = size;
4147 	range->hw_start = addr;
4148 	range->flags = LOGIC_PIO_CPU_MMIO;
4149 
4150 	ret = logic_pio_register_range(range);
4151 	if (ret)
4152 		kfree(range);
4153 
4154 	/* Ignore duplicates due to deferred probing */
4155 	if (ret == -EEXIST)
4156 		ret = 0;
4157 #endif
4158 
4159 	return ret;
4160 }
4161 
4162 phys_addr_t pci_pio_to_address(unsigned long pio)
4163 {
4164 	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4165 
4166 #ifdef PCI_IOBASE
4167 	if (pio >= MMIO_UPPER_LIMIT)
4168 		return address;
4169 
4170 	address = logic_pio_to_hwaddr(pio);
4171 #endif
4172 
4173 	return address;
4174 }
4175 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4176 
4177 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4178 {
4179 #ifdef PCI_IOBASE
4180 	return logic_pio_trans_cpuaddr(address);
4181 #else
4182 	if (address > IO_SPACE_LIMIT)
4183 		return (unsigned long)-1;
4184 
4185 	return (unsigned long) address;
4186 #endif
4187 }
4188 
4189 /**
4190  * pci_remap_iospace - Remap the memory mapped I/O space
4191  * @res: Resource describing the I/O space
4192  * @phys_addr: physical address of range to be mapped
4193  *
4194  * Remap the memory mapped I/O space described by the @res and the CPU
4195  * physical address @phys_addr into virtual address space.  Only
4196  * architectures that have memory mapped IO functions defined (and the
4197  * PCI_IOBASE value defined) should call this function.
4198  */
4199 #ifndef pci_remap_iospace
4200 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4201 {
4202 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4203 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4204 
4205 	if (!(res->flags & IORESOURCE_IO))
4206 		return -EINVAL;
4207 
4208 	if (res->end > IO_SPACE_LIMIT)
4209 		return -EINVAL;
4210 
4211 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4212 				  pgprot_device(PAGE_KERNEL));
4213 #else
4214 	/*
4215 	 * This architecture does not have memory mapped I/O space,
4216 	 * so this function should never be called
4217 	 */
4218 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4219 	return -ENODEV;
4220 #endif
4221 }
4222 EXPORT_SYMBOL(pci_remap_iospace);
4223 #endif
4224 
4225 /**
4226  * pci_unmap_iospace - Unmap the memory mapped I/O space
4227  * @res: resource to be unmapped
4228  *
4229  * Unmap the CPU virtual address @res from virtual address space.  Only
4230  * architectures that have memory mapped IO functions defined (and the
4231  * PCI_IOBASE value defined) should call this function.
4232  */
4233 void pci_unmap_iospace(struct resource *res)
4234 {
4235 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4236 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4237 
4238 	vunmap_range(vaddr, vaddr + resource_size(res));
4239 #endif
4240 }
4241 EXPORT_SYMBOL(pci_unmap_iospace);
4242 
4243 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4244 {
4245 	struct resource **res = ptr;
4246 
4247 	pci_unmap_iospace(*res);
4248 }
4249 
4250 /**
4251  * devm_pci_remap_iospace - Managed pci_remap_iospace()
4252  * @dev: Generic device to remap IO address for
4253  * @res: Resource describing the I/O space
4254  * @phys_addr: physical address of range to be mapped
4255  *
4256  * Managed pci_remap_iospace().  Map is automatically unmapped on driver
4257  * detach.
4258  */
4259 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4260 			   phys_addr_t phys_addr)
4261 {
4262 	const struct resource **ptr;
4263 	int error;
4264 
4265 	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4266 	if (!ptr)
4267 		return -ENOMEM;
4268 
4269 	error = pci_remap_iospace(res, phys_addr);
4270 	if (error) {
4271 		devres_free(ptr);
4272 	} else	{
4273 		*ptr = res;
4274 		devres_add(dev, ptr);
4275 	}
4276 
4277 	return error;
4278 }
4279 EXPORT_SYMBOL(devm_pci_remap_iospace);
4280 
4281 /**
4282  * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4283  * @dev: Generic device to remap IO address for
4284  * @offset: Resource address to map
4285  * @size: Size of map
4286  *
4287  * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4288  * detach.
4289  */
4290 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4291 				      resource_size_t offset,
4292 				      resource_size_t size)
4293 {
4294 	void __iomem **ptr, *addr;
4295 
4296 	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4297 	if (!ptr)
4298 		return NULL;
4299 
4300 	addr = pci_remap_cfgspace(offset, size);
4301 	if (addr) {
4302 		*ptr = addr;
4303 		devres_add(dev, ptr);
4304 	} else
4305 		devres_free(ptr);
4306 
4307 	return addr;
4308 }
4309 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4310 
4311 /**
4312  * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4313  * @dev: generic device to handle the resource for
4314  * @res: configuration space resource to be handled
4315  *
4316  * Checks that a resource is a valid memory region, requests the memory
4317  * region and ioremaps with pci_remap_cfgspace() API that ensures the
4318  * proper PCI configuration space memory attributes are guaranteed.
4319  *
4320  * All operations are managed and will be undone on driver detach.
4321  *
4322  * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4323  * on failure. Usage example::
4324  *
4325  *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4326  *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4327  *	if (IS_ERR(base))
4328  *		return PTR_ERR(base);
4329  */
4330 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4331 					  struct resource *res)
4332 {
4333 	resource_size_t size;
4334 	const char *name;
4335 	void __iomem *dest_ptr;
4336 
4337 	BUG_ON(!dev);
4338 
4339 	if (!res || resource_type(res) != IORESOURCE_MEM) {
4340 		dev_err(dev, "invalid resource\n");
4341 		return IOMEM_ERR_PTR(-EINVAL);
4342 	}
4343 
4344 	size = resource_size(res);
4345 
4346 	if (res->name)
4347 		name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4348 				      res->name);
4349 	else
4350 		name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4351 	if (!name)
4352 		return IOMEM_ERR_PTR(-ENOMEM);
4353 
4354 	if (!devm_request_mem_region(dev, res->start, size, name)) {
4355 		dev_err(dev, "can't request region for resource %pR\n", res);
4356 		return IOMEM_ERR_PTR(-EBUSY);
4357 	}
4358 
4359 	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4360 	if (!dest_ptr) {
4361 		dev_err(dev, "ioremap failed for resource %pR\n", res);
4362 		devm_release_mem_region(dev, res->start, size);
4363 		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4364 	}
4365 
4366 	return dest_ptr;
4367 }
4368 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4369 
4370 static void __pci_set_master(struct pci_dev *dev, bool enable)
4371 {
4372 	u16 old_cmd, cmd;
4373 
4374 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4375 	if (enable)
4376 		cmd = old_cmd | PCI_COMMAND_MASTER;
4377 	else
4378 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4379 	if (cmd != old_cmd) {
4380 		pci_dbg(dev, "%s bus mastering\n",
4381 			enable ? "enabling" : "disabling");
4382 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4383 	}
4384 	dev->is_busmaster = enable;
4385 }
4386 
4387 /**
4388  * pcibios_setup - process "pci=" kernel boot arguments
4389  * @str: string used to pass in "pci=" kernel boot arguments
4390  *
4391  * Process kernel boot arguments.  This is the default implementation.
4392  * Architecture specific implementations can override this as necessary.
4393  */
4394 char * __weak __init pcibios_setup(char *str)
4395 {
4396 	return str;
4397 }
4398 
4399 /**
4400  * pcibios_set_master - enable PCI bus-mastering for device dev
4401  * @dev: the PCI device to enable
4402  *
4403  * Enables PCI bus-mastering for the device.  This is the default
4404  * implementation.  Architecture specific implementations can override
4405  * this if necessary.
4406  */
4407 void __weak pcibios_set_master(struct pci_dev *dev)
4408 {
4409 	u8 lat;
4410 
4411 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4412 	if (pci_is_pcie(dev))
4413 		return;
4414 
4415 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4416 	if (lat < 16)
4417 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4418 	else if (lat > pcibios_max_latency)
4419 		lat = pcibios_max_latency;
4420 	else
4421 		return;
4422 
4423 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4424 }
4425 
4426 /**
4427  * pci_set_master - enables bus-mastering for device dev
4428  * @dev: the PCI device to enable
4429  *
4430  * Enables bus-mastering on the device and calls pcibios_set_master()
4431  * to do the needed arch specific settings.
4432  */
4433 void pci_set_master(struct pci_dev *dev)
4434 {
4435 	__pci_set_master(dev, true);
4436 	pcibios_set_master(dev);
4437 }
4438 EXPORT_SYMBOL(pci_set_master);
4439 
4440 /**
4441  * pci_clear_master - disables bus-mastering for device dev
4442  * @dev: the PCI device to disable
4443  */
4444 void pci_clear_master(struct pci_dev *dev)
4445 {
4446 	__pci_set_master(dev, false);
4447 }
4448 EXPORT_SYMBOL(pci_clear_master);
4449 
4450 /**
4451  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4452  * @dev: the PCI device for which MWI is to be enabled
4453  *
4454  * Helper function for pci_set_mwi.
4455  * Originally copied from drivers/net/acenic.c.
4456  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4457  *
4458  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4459  */
4460 int pci_set_cacheline_size(struct pci_dev *dev)
4461 {
4462 	u8 cacheline_size;
4463 
4464 	if (!pci_cache_line_size)
4465 		return -EINVAL;
4466 
4467 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4468 	   equal to or multiple of the right value. */
4469 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4470 	if (cacheline_size >= pci_cache_line_size &&
4471 	    (cacheline_size % pci_cache_line_size) == 0)
4472 		return 0;
4473 
4474 	/* Write the correct value. */
4475 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4476 	/* Read it back. */
4477 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4478 	if (cacheline_size == pci_cache_line_size)
4479 		return 0;
4480 
4481 	pci_dbg(dev, "cache line size of %d is not supported\n",
4482 		   pci_cache_line_size << 2);
4483 
4484 	return -EINVAL;
4485 }
4486 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4487 
4488 /**
4489  * pci_set_mwi - enables memory-write-invalidate PCI transaction
4490  * @dev: the PCI device for which MWI is enabled
4491  *
4492  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4493  *
4494  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4495  */
4496 int pci_set_mwi(struct pci_dev *dev)
4497 {
4498 #ifdef PCI_DISABLE_MWI
4499 	return 0;
4500 #else
4501 	int rc;
4502 	u16 cmd;
4503 
4504 	rc = pci_set_cacheline_size(dev);
4505 	if (rc)
4506 		return rc;
4507 
4508 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4509 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4510 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4511 		cmd |= PCI_COMMAND_INVALIDATE;
4512 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4513 	}
4514 	return 0;
4515 #endif
4516 }
4517 EXPORT_SYMBOL(pci_set_mwi);
4518 
4519 /**
4520  * pcim_set_mwi - a device-managed pci_set_mwi()
4521  * @dev: the PCI device for which MWI is enabled
4522  *
4523  * Managed pci_set_mwi().
4524  *
4525  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4526  */
4527 int pcim_set_mwi(struct pci_dev *dev)
4528 {
4529 	struct pci_devres *dr;
4530 
4531 	dr = find_pci_dr(dev);
4532 	if (!dr)
4533 		return -ENOMEM;
4534 
4535 	dr->mwi = 1;
4536 	return pci_set_mwi(dev);
4537 }
4538 EXPORT_SYMBOL(pcim_set_mwi);
4539 
4540 /**
4541  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4542  * @dev: the PCI device for which MWI is enabled
4543  *
4544  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4545  * Callers are not required to check the return value.
4546  *
4547  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4548  */
4549 int pci_try_set_mwi(struct pci_dev *dev)
4550 {
4551 #ifdef PCI_DISABLE_MWI
4552 	return 0;
4553 #else
4554 	return pci_set_mwi(dev);
4555 #endif
4556 }
4557 EXPORT_SYMBOL(pci_try_set_mwi);
4558 
4559 /**
4560  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4561  * @dev: the PCI device to disable
4562  *
4563  * Disables PCI Memory-Write-Invalidate transaction on the device
4564  */
4565 void pci_clear_mwi(struct pci_dev *dev)
4566 {
4567 #ifndef PCI_DISABLE_MWI
4568 	u16 cmd;
4569 
4570 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4571 	if (cmd & PCI_COMMAND_INVALIDATE) {
4572 		cmd &= ~PCI_COMMAND_INVALIDATE;
4573 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4574 	}
4575 #endif
4576 }
4577 EXPORT_SYMBOL(pci_clear_mwi);
4578 
4579 /**
4580  * pci_disable_parity - disable parity checking for device
4581  * @dev: the PCI device to operate on
4582  *
4583  * Disable parity checking for device @dev
4584  */
4585 void pci_disable_parity(struct pci_dev *dev)
4586 {
4587 	u16 cmd;
4588 
4589 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4590 	if (cmd & PCI_COMMAND_PARITY) {
4591 		cmd &= ~PCI_COMMAND_PARITY;
4592 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4593 	}
4594 }
4595 
4596 /**
4597  * pci_intx - enables/disables PCI INTx for device dev
4598  * @pdev: the PCI device to operate on
4599  * @enable: boolean: whether to enable or disable PCI INTx
4600  *
4601  * Enables/disables PCI INTx for device @pdev
4602  */
4603 void pci_intx(struct pci_dev *pdev, int enable)
4604 {
4605 	u16 pci_command, new;
4606 
4607 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4608 
4609 	if (enable)
4610 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4611 	else
4612 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4613 
4614 	if (new != pci_command) {
4615 		struct pci_devres *dr;
4616 
4617 		pci_write_config_word(pdev, PCI_COMMAND, new);
4618 
4619 		dr = find_pci_dr(pdev);
4620 		if (dr && !dr->restore_intx) {
4621 			dr->restore_intx = 1;
4622 			dr->orig_intx = !enable;
4623 		}
4624 	}
4625 }
4626 EXPORT_SYMBOL_GPL(pci_intx);
4627 
4628 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4629 {
4630 	struct pci_bus *bus = dev->bus;
4631 	bool mask_updated = true;
4632 	u32 cmd_status_dword;
4633 	u16 origcmd, newcmd;
4634 	unsigned long flags;
4635 	bool irq_pending;
4636 
4637 	/*
4638 	 * We do a single dword read to retrieve both command and status.
4639 	 * Document assumptions that make this possible.
4640 	 */
4641 	BUILD_BUG_ON(PCI_COMMAND % 4);
4642 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4643 
4644 	raw_spin_lock_irqsave(&pci_lock, flags);
4645 
4646 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4647 
4648 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4649 
4650 	/*
4651 	 * Check interrupt status register to see whether our device
4652 	 * triggered the interrupt (when masking) or the next IRQ is
4653 	 * already pending (when unmasking).
4654 	 */
4655 	if (mask != irq_pending) {
4656 		mask_updated = false;
4657 		goto done;
4658 	}
4659 
4660 	origcmd = cmd_status_dword;
4661 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4662 	if (mask)
4663 		newcmd |= PCI_COMMAND_INTX_DISABLE;
4664 	if (newcmd != origcmd)
4665 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4666 
4667 done:
4668 	raw_spin_unlock_irqrestore(&pci_lock, flags);
4669 
4670 	return mask_updated;
4671 }
4672 
4673 /**
4674  * pci_check_and_mask_intx - mask INTx on pending interrupt
4675  * @dev: the PCI device to operate on
4676  *
4677  * Check if the device dev has its INTx line asserted, mask it and return
4678  * true in that case. False is returned if no interrupt was pending.
4679  */
4680 bool pci_check_and_mask_intx(struct pci_dev *dev)
4681 {
4682 	return pci_check_and_set_intx_mask(dev, true);
4683 }
4684 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4685 
4686 /**
4687  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4688  * @dev: the PCI device to operate on
4689  *
4690  * Check if the device dev has its INTx line asserted, unmask it if not and
4691  * return true. False is returned and the mask remains active if there was
4692  * still an interrupt pending.
4693  */
4694 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4695 {
4696 	return pci_check_and_set_intx_mask(dev, false);
4697 }
4698 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4699 
4700 /**
4701  * pci_wait_for_pending_transaction - wait for pending transaction
4702  * @dev: the PCI device to operate on
4703  *
4704  * Return 0 if transaction is pending 1 otherwise.
4705  */
4706 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4707 {
4708 	if (!pci_is_pcie(dev))
4709 		return 1;
4710 
4711 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4712 				    PCI_EXP_DEVSTA_TRPND);
4713 }
4714 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4715 
4716 /**
4717  * pcie_flr - initiate a PCIe function level reset
4718  * @dev: device to reset
4719  *
4720  * Initiate a function level reset unconditionally on @dev without
4721  * checking any flags and DEVCAP
4722  */
4723 int pcie_flr(struct pci_dev *dev)
4724 {
4725 	if (!pci_wait_for_pending_transaction(dev))
4726 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4727 
4728 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4729 
4730 	if (dev->imm_ready)
4731 		return 0;
4732 
4733 	/*
4734 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4735 	 * 100ms, but may silently discard requests while the FLR is in
4736 	 * progress.  Wait 100ms before trying to access the device.
4737 	 */
4738 	msleep(100);
4739 
4740 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4741 }
4742 EXPORT_SYMBOL_GPL(pcie_flr);
4743 
4744 /**
4745  * pcie_reset_flr - initiate a PCIe function level reset
4746  * @dev: device to reset
4747  * @probe: if true, return 0 if device can be reset this way
4748  *
4749  * Initiate a function level reset on @dev.
4750  */
4751 int pcie_reset_flr(struct pci_dev *dev, bool probe)
4752 {
4753 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4754 		return -ENOTTY;
4755 
4756 	if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4757 		return -ENOTTY;
4758 
4759 	if (probe)
4760 		return 0;
4761 
4762 	return pcie_flr(dev);
4763 }
4764 EXPORT_SYMBOL_GPL(pcie_reset_flr);
4765 
4766 static int pci_af_flr(struct pci_dev *dev, bool probe)
4767 {
4768 	int pos;
4769 	u8 cap;
4770 
4771 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4772 	if (!pos)
4773 		return -ENOTTY;
4774 
4775 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4776 		return -ENOTTY;
4777 
4778 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4779 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4780 		return -ENOTTY;
4781 
4782 	if (probe)
4783 		return 0;
4784 
4785 	/*
4786 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4787 	 * is used, so we use the control offset rather than status and shift
4788 	 * the test bit to match.
4789 	 */
4790 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4791 				 PCI_AF_STATUS_TP << 8))
4792 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4793 
4794 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4795 
4796 	if (dev->imm_ready)
4797 		return 0;
4798 
4799 	/*
4800 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4801 	 * updated 27 July 2006; a device must complete an FLR within
4802 	 * 100ms, but may silently discard requests while the FLR is in
4803 	 * progress.  Wait 100ms before trying to access the device.
4804 	 */
4805 	msleep(100);
4806 
4807 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4808 }
4809 
4810 /**
4811  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4812  * @dev: Device to reset.
4813  * @probe: if true, return 0 if the device can be reset this way.
4814  *
4815  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4816  * unset, it will be reinitialized internally when going from PCI_D3hot to
4817  * PCI_D0.  If that's the case and the device is not in a low-power state
4818  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4819  *
4820  * NOTE: This causes the caller to sleep for twice the device power transition
4821  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4822  * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4823  * Moreover, only devices in D0 can be reset by this function.
4824  */
4825 static int pci_pm_reset(struct pci_dev *dev, bool probe)
4826 {
4827 	u16 csr;
4828 
4829 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4830 		return -ENOTTY;
4831 
4832 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4833 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4834 		return -ENOTTY;
4835 
4836 	if (probe)
4837 		return 0;
4838 
4839 	if (dev->current_state != PCI_D0)
4840 		return -EINVAL;
4841 
4842 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4843 	csr |= PCI_D3hot;
4844 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4845 	pci_dev_d3_sleep(dev);
4846 
4847 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4848 	csr |= PCI_D0;
4849 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4850 	pci_dev_d3_sleep(dev);
4851 
4852 	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4853 }
4854 
4855 /**
4856  * pcie_wait_for_link_delay - Wait until link is active or inactive
4857  * @pdev: Bridge device
4858  * @active: waiting for active or inactive?
4859  * @delay: Delay to wait after link has become active (in ms)
4860  *
4861  * Use this to wait till link becomes active or inactive.
4862  */
4863 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4864 				     int delay)
4865 {
4866 	int timeout = 1000;
4867 	bool ret;
4868 	u16 lnk_status;
4869 
4870 	/*
4871 	 * Some controllers might not implement link active reporting. In this
4872 	 * case, we wait for 1000 ms + any delay requested by the caller.
4873 	 */
4874 	if (!pdev->link_active_reporting) {
4875 		msleep(timeout + delay);
4876 		return true;
4877 	}
4878 
4879 	/*
4880 	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4881 	 * after which we should expect an link active if the reset was
4882 	 * successful. If so, software must wait a minimum 100ms before sending
4883 	 * configuration requests to devices downstream this port.
4884 	 *
4885 	 * If the link fails to activate, either the device was physically
4886 	 * removed or the link is permanently failed.
4887 	 */
4888 	if (active)
4889 		msleep(20);
4890 	for (;;) {
4891 		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4892 		ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4893 		if (ret == active)
4894 			break;
4895 		if (timeout <= 0)
4896 			break;
4897 		msleep(10);
4898 		timeout -= 10;
4899 	}
4900 	if (active && ret)
4901 		msleep(delay);
4902 
4903 	return ret == active;
4904 }
4905 
4906 /**
4907  * pcie_wait_for_link - Wait until link is active or inactive
4908  * @pdev: Bridge device
4909  * @active: waiting for active or inactive?
4910  *
4911  * Use this to wait till link becomes active or inactive.
4912  */
4913 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4914 {
4915 	return pcie_wait_for_link_delay(pdev, active, 100);
4916 }
4917 
4918 /*
4919  * Find maximum D3cold delay required by all the devices on the bus.  The
4920  * spec says 100 ms, but firmware can lower it and we allow drivers to
4921  * increase it as well.
4922  *
4923  * Called with @pci_bus_sem locked for reading.
4924  */
4925 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4926 {
4927 	const struct pci_dev *pdev;
4928 	int min_delay = 100;
4929 	int max_delay = 0;
4930 
4931 	list_for_each_entry(pdev, &bus->devices, bus_list) {
4932 		if (pdev->d3cold_delay < min_delay)
4933 			min_delay = pdev->d3cold_delay;
4934 		if (pdev->d3cold_delay > max_delay)
4935 			max_delay = pdev->d3cold_delay;
4936 	}
4937 
4938 	return max(min_delay, max_delay);
4939 }
4940 
4941 /**
4942  * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4943  * @dev: PCI bridge
4944  *
4945  * Handle necessary delays before access to the devices on the secondary
4946  * side of the bridge are permitted after D3cold to D0 transition.
4947  *
4948  * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4949  * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4950  * 4.3.2.
4951  */
4952 void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4953 {
4954 	struct pci_dev *child;
4955 	int delay;
4956 
4957 	if (pci_dev_is_disconnected(dev))
4958 		return;
4959 
4960 	if (!pci_is_bridge(dev) || !dev->bridge_d3)
4961 		return;
4962 
4963 	down_read(&pci_bus_sem);
4964 
4965 	/*
4966 	 * We only deal with devices that are present currently on the bus.
4967 	 * For any hot-added devices the access delay is handled in pciehp
4968 	 * board_added(). In case of ACPI hotplug the firmware is expected
4969 	 * to configure the devices before OS is notified.
4970 	 */
4971 	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4972 		up_read(&pci_bus_sem);
4973 		return;
4974 	}
4975 
4976 	/* Take d3cold_delay requirements into account */
4977 	delay = pci_bus_max_d3cold_delay(dev->subordinate);
4978 	if (!delay) {
4979 		up_read(&pci_bus_sem);
4980 		return;
4981 	}
4982 
4983 	child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4984 				 bus_list);
4985 	up_read(&pci_bus_sem);
4986 
4987 	/*
4988 	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4989 	 * accessing the device after reset (that is 1000 ms + 100 ms). In
4990 	 * practice this should not be needed because we don't do power
4991 	 * management for them (see pci_bridge_d3_possible()).
4992 	 */
4993 	if (!pci_is_pcie(dev)) {
4994 		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4995 		msleep(1000 + delay);
4996 		return;
4997 	}
4998 
4999 	/*
5000 	 * For PCIe downstream and root ports that do not support speeds
5001 	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
5002 	 * speeds (gen3) we need to wait first for the data link layer to
5003 	 * become active.
5004 	 *
5005 	 * However, 100 ms is the minimum and the PCIe spec says the
5006 	 * software must allow at least 1s before it can determine that the
5007 	 * device that did not respond is a broken device. There is
5008 	 * evidence that 100 ms is not always enough, for example certain
5009 	 * Titan Ridge xHCI controller does not always respond to
5010 	 * configuration requests if we only wait for 100 ms (see
5011 	 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
5012 	 *
5013 	 * Therefore we wait for 100 ms and check for the device presence.
5014 	 * If it is still not present give it an additional 100 ms.
5015 	 */
5016 	if (!pcie_downstream_port(dev))
5017 		return;
5018 
5019 	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
5020 		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
5021 		msleep(delay);
5022 	} else {
5023 		pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
5024 			delay);
5025 		if (!pcie_wait_for_link_delay(dev, true, delay)) {
5026 			/* Did not train, no need to wait any further */
5027 			pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
5028 			return;
5029 		}
5030 	}
5031 
5032 	if (!pci_device_is_present(child)) {
5033 		pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
5034 		msleep(delay);
5035 	}
5036 }
5037 
5038 void pci_reset_secondary_bus(struct pci_dev *dev)
5039 {
5040 	u16 ctrl;
5041 
5042 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
5043 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
5044 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5045 
5046 	/*
5047 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
5048 	 * this to 2ms to ensure that we meet the minimum requirement.
5049 	 */
5050 	msleep(2);
5051 
5052 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
5053 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5054 
5055 	/*
5056 	 * Trhfa for conventional PCI is 2^25 clock cycles.
5057 	 * Assuming a minimum 33MHz clock this results in a 1s
5058 	 * delay before we can consider subordinate devices to
5059 	 * be re-initialized.  PCIe has some ways to shorten this,
5060 	 * but we don't make use of them yet.
5061 	 */
5062 	ssleep(1);
5063 }
5064 
5065 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
5066 {
5067 	pci_reset_secondary_bus(dev);
5068 }
5069 
5070 /**
5071  * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
5072  * @dev: Bridge device
5073  *
5074  * Use the bridge control register to assert reset on the secondary bus.
5075  * Devices on the secondary bus are left in power-on state.
5076  */
5077 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
5078 {
5079 	pcibios_reset_secondary_bus(dev);
5080 
5081 	return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
5082 }
5083 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
5084 
5085 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
5086 {
5087 	struct pci_dev *pdev;
5088 
5089 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5090 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5091 		return -ENOTTY;
5092 
5093 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5094 		if (pdev != dev)
5095 			return -ENOTTY;
5096 
5097 	if (probe)
5098 		return 0;
5099 
5100 	return pci_bridge_secondary_bus_reset(dev->bus->self);
5101 }
5102 
5103 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5104 {
5105 	int rc = -ENOTTY;
5106 
5107 	if (!hotplug || !try_module_get(hotplug->owner))
5108 		return rc;
5109 
5110 	if (hotplug->ops->reset_slot)
5111 		rc = hotplug->ops->reset_slot(hotplug, probe);
5112 
5113 	module_put(hotplug->owner);
5114 
5115 	return rc;
5116 }
5117 
5118 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5119 {
5120 	if (dev->multifunction || dev->subordinate || !dev->slot ||
5121 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5122 		return -ENOTTY;
5123 
5124 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5125 }
5126 
5127 static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5128 {
5129 	int rc;
5130 
5131 	rc = pci_dev_reset_slot_function(dev, probe);
5132 	if (rc != -ENOTTY)
5133 		return rc;
5134 	return pci_parent_bus_reset(dev, probe);
5135 }
5136 
5137 void pci_dev_lock(struct pci_dev *dev)
5138 {
5139 	/* block PM suspend, driver probe, etc. */
5140 	device_lock(&dev->dev);
5141 	pci_cfg_access_lock(dev);
5142 }
5143 EXPORT_SYMBOL_GPL(pci_dev_lock);
5144 
5145 /* Return 1 on successful lock, 0 on contention */
5146 int pci_dev_trylock(struct pci_dev *dev)
5147 {
5148 	if (device_trylock(&dev->dev)) {
5149 		if (pci_cfg_access_trylock(dev))
5150 			return 1;
5151 		device_unlock(&dev->dev);
5152 	}
5153 
5154 	return 0;
5155 }
5156 EXPORT_SYMBOL_GPL(pci_dev_trylock);
5157 
5158 void pci_dev_unlock(struct pci_dev *dev)
5159 {
5160 	pci_cfg_access_unlock(dev);
5161 	device_unlock(&dev->dev);
5162 }
5163 EXPORT_SYMBOL_GPL(pci_dev_unlock);
5164 
5165 static void pci_dev_save_and_disable(struct pci_dev *dev)
5166 {
5167 	const struct pci_error_handlers *err_handler =
5168 			dev->driver ? dev->driver->err_handler : NULL;
5169 
5170 	/*
5171 	 * dev->driver->err_handler->reset_prepare() is protected against
5172 	 * races with ->remove() by the device lock, which must be held by
5173 	 * the caller.
5174 	 */
5175 	if (err_handler && err_handler->reset_prepare)
5176 		err_handler->reset_prepare(dev);
5177 
5178 	/*
5179 	 * Wake-up device prior to save.  PM registers default to D0 after
5180 	 * reset and a simple register restore doesn't reliably return
5181 	 * to a non-D0 state anyway.
5182 	 */
5183 	pci_set_power_state(dev, PCI_D0);
5184 
5185 	pci_save_state(dev);
5186 	/*
5187 	 * Disable the device by clearing the Command register, except for
5188 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
5189 	 * BARs, but also prevents the device from being Bus Master, preventing
5190 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
5191 	 * compliant devices, INTx-disable prevents legacy interrupts.
5192 	 */
5193 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5194 }
5195 
5196 static void pci_dev_restore(struct pci_dev *dev)
5197 {
5198 	const struct pci_error_handlers *err_handler =
5199 			dev->driver ? dev->driver->err_handler : NULL;
5200 
5201 	pci_restore_state(dev);
5202 
5203 	/*
5204 	 * dev->driver->err_handler->reset_done() is protected against
5205 	 * races with ->remove() by the device lock, which must be held by
5206 	 * the caller.
5207 	 */
5208 	if (err_handler && err_handler->reset_done)
5209 		err_handler->reset_done(dev);
5210 }
5211 
5212 /* dev->reset_methods[] is a 0-terminated list of indices into this array */
5213 static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5214 	{ },
5215 	{ pci_dev_specific_reset, .name = "device_specific" },
5216 	{ pci_dev_acpi_reset, .name = "acpi" },
5217 	{ pcie_reset_flr, .name = "flr" },
5218 	{ pci_af_flr, .name = "af_flr" },
5219 	{ pci_pm_reset, .name = "pm" },
5220 	{ pci_reset_bus_function, .name = "bus" },
5221 };
5222 
5223 static ssize_t reset_method_show(struct device *dev,
5224 				 struct device_attribute *attr, char *buf)
5225 {
5226 	struct pci_dev *pdev = to_pci_dev(dev);
5227 	ssize_t len = 0;
5228 	int i, m;
5229 
5230 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5231 		m = pdev->reset_methods[i];
5232 		if (!m)
5233 			break;
5234 
5235 		len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5236 				     pci_reset_fn_methods[m].name);
5237 	}
5238 
5239 	if (len)
5240 		len += sysfs_emit_at(buf, len, "\n");
5241 
5242 	return len;
5243 }
5244 
5245 static int reset_method_lookup(const char *name)
5246 {
5247 	int m;
5248 
5249 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5250 		if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5251 			return m;
5252 	}
5253 
5254 	return 0;	/* not found */
5255 }
5256 
5257 static ssize_t reset_method_store(struct device *dev,
5258 				  struct device_attribute *attr,
5259 				  const char *buf, size_t count)
5260 {
5261 	struct pci_dev *pdev = to_pci_dev(dev);
5262 	char *options, *name;
5263 	int m, n;
5264 	u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5265 
5266 	if (sysfs_streq(buf, "")) {
5267 		pdev->reset_methods[0] = 0;
5268 		pci_warn(pdev, "All device reset methods disabled by user");
5269 		return count;
5270 	}
5271 
5272 	if (sysfs_streq(buf, "default")) {
5273 		pci_init_reset_methods(pdev);
5274 		return count;
5275 	}
5276 
5277 	options = kstrndup(buf, count, GFP_KERNEL);
5278 	if (!options)
5279 		return -ENOMEM;
5280 
5281 	n = 0;
5282 	while ((name = strsep(&options, " ")) != NULL) {
5283 		if (sysfs_streq(name, ""))
5284 			continue;
5285 
5286 		name = strim(name);
5287 
5288 		m = reset_method_lookup(name);
5289 		if (!m) {
5290 			pci_err(pdev, "Invalid reset method '%s'", name);
5291 			goto error;
5292 		}
5293 
5294 		if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5295 			pci_err(pdev, "Unsupported reset method '%s'", name);
5296 			goto error;
5297 		}
5298 
5299 		if (n == PCI_NUM_RESET_METHODS - 1) {
5300 			pci_err(pdev, "Too many reset methods\n");
5301 			goto error;
5302 		}
5303 
5304 		reset_methods[n++] = m;
5305 	}
5306 
5307 	reset_methods[n] = 0;
5308 
5309 	/* Warn if dev-specific supported but not highest priority */
5310 	if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5311 	    reset_methods[0] != 1)
5312 		pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5313 	memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5314 	kfree(options);
5315 	return count;
5316 
5317 error:
5318 	/* Leave previous methods unchanged */
5319 	kfree(options);
5320 	return -EINVAL;
5321 }
5322 static DEVICE_ATTR_RW(reset_method);
5323 
5324 static struct attribute *pci_dev_reset_method_attrs[] = {
5325 	&dev_attr_reset_method.attr,
5326 	NULL,
5327 };
5328 
5329 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5330 						    struct attribute *a, int n)
5331 {
5332 	struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5333 
5334 	if (!pci_reset_supported(pdev))
5335 		return 0;
5336 
5337 	return a->mode;
5338 }
5339 
5340 const struct attribute_group pci_dev_reset_method_attr_group = {
5341 	.attrs = pci_dev_reset_method_attrs,
5342 	.is_visible = pci_dev_reset_method_attr_is_visible,
5343 };
5344 
5345 /**
5346  * __pci_reset_function_locked - reset a PCI device function while holding
5347  * the @dev mutex lock.
5348  * @dev: PCI device to reset
5349  *
5350  * Some devices allow an individual function to be reset without affecting
5351  * other functions in the same device.  The PCI device must be responsive
5352  * to PCI config space in order to use this function.
5353  *
5354  * The device function is presumed to be unused and the caller is holding
5355  * the device mutex lock when this function is called.
5356  *
5357  * Resetting the device will make the contents of PCI configuration space
5358  * random, so any caller of this must be prepared to reinitialise the
5359  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5360  * etc.
5361  *
5362  * Returns 0 if the device function was successfully reset or negative if the
5363  * device doesn't support resetting a single function.
5364  */
5365 int __pci_reset_function_locked(struct pci_dev *dev)
5366 {
5367 	int i, m, rc;
5368 
5369 	might_sleep();
5370 
5371 	/*
5372 	 * A reset method returns -ENOTTY if it doesn't support this device and
5373 	 * we should try the next method.
5374 	 *
5375 	 * If it returns 0 (success), we're finished.  If it returns any other
5376 	 * error, we're also finished: this indicates that further reset
5377 	 * mechanisms might be broken on the device.
5378 	 */
5379 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5380 		m = dev->reset_methods[i];
5381 		if (!m)
5382 			return -ENOTTY;
5383 
5384 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5385 		if (!rc)
5386 			return 0;
5387 		if (rc != -ENOTTY)
5388 			return rc;
5389 	}
5390 
5391 	return -ENOTTY;
5392 }
5393 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5394 
5395 /**
5396  * pci_init_reset_methods - check whether device can be safely reset
5397  * and store supported reset mechanisms.
5398  * @dev: PCI device to check for reset mechanisms
5399  *
5400  * Some devices allow an individual function to be reset without affecting
5401  * other functions in the same device.  The PCI device must be in D0-D3hot
5402  * state.
5403  *
5404  * Stores reset mechanisms supported by device in reset_methods byte array
5405  * which is a member of struct pci_dev.
5406  */
5407 void pci_init_reset_methods(struct pci_dev *dev)
5408 {
5409 	int m, i, rc;
5410 
5411 	BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5412 
5413 	might_sleep();
5414 
5415 	i = 0;
5416 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5417 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5418 		if (!rc)
5419 			dev->reset_methods[i++] = m;
5420 		else if (rc != -ENOTTY)
5421 			break;
5422 	}
5423 
5424 	dev->reset_methods[i] = 0;
5425 }
5426 
5427 /**
5428  * pci_reset_function - quiesce and reset a PCI device function
5429  * @dev: PCI device to reset
5430  *
5431  * Some devices allow an individual function to be reset without affecting
5432  * other functions in the same device.  The PCI device must be responsive
5433  * to PCI config space in order to use this function.
5434  *
5435  * This function does not just reset the PCI portion of a device, but
5436  * clears all the state associated with the device.  This function differs
5437  * from __pci_reset_function_locked() in that it saves and restores device state
5438  * over the reset and takes the PCI device lock.
5439  *
5440  * Returns 0 if the device function was successfully reset or negative if the
5441  * device doesn't support resetting a single function.
5442  */
5443 int pci_reset_function(struct pci_dev *dev)
5444 {
5445 	int rc;
5446 
5447 	if (!pci_reset_supported(dev))
5448 		return -ENOTTY;
5449 
5450 	pci_dev_lock(dev);
5451 	pci_dev_save_and_disable(dev);
5452 
5453 	rc = __pci_reset_function_locked(dev);
5454 
5455 	pci_dev_restore(dev);
5456 	pci_dev_unlock(dev);
5457 
5458 	return rc;
5459 }
5460 EXPORT_SYMBOL_GPL(pci_reset_function);
5461 
5462 /**
5463  * pci_reset_function_locked - quiesce and reset a PCI device function
5464  * @dev: PCI device to reset
5465  *
5466  * Some devices allow an individual function to be reset without affecting
5467  * other functions in the same device.  The PCI device must be responsive
5468  * to PCI config space in order to use this function.
5469  *
5470  * This function does not just reset the PCI portion of a device, but
5471  * clears all the state associated with the device.  This function differs
5472  * from __pci_reset_function_locked() in that it saves and restores device state
5473  * over the reset.  It also differs from pci_reset_function() in that it
5474  * requires the PCI device lock to be held.
5475  *
5476  * Returns 0 if the device function was successfully reset or negative if the
5477  * device doesn't support resetting a single function.
5478  */
5479 int pci_reset_function_locked(struct pci_dev *dev)
5480 {
5481 	int rc;
5482 
5483 	if (!pci_reset_supported(dev))
5484 		return -ENOTTY;
5485 
5486 	pci_dev_save_and_disable(dev);
5487 
5488 	rc = __pci_reset_function_locked(dev);
5489 
5490 	pci_dev_restore(dev);
5491 
5492 	return rc;
5493 }
5494 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5495 
5496 /**
5497  * pci_try_reset_function - quiesce and reset a PCI device function
5498  * @dev: PCI device to reset
5499  *
5500  * Same as above, except return -EAGAIN if unable to lock device.
5501  */
5502 int pci_try_reset_function(struct pci_dev *dev)
5503 {
5504 	int rc;
5505 
5506 	if (!pci_reset_supported(dev))
5507 		return -ENOTTY;
5508 
5509 	if (!pci_dev_trylock(dev))
5510 		return -EAGAIN;
5511 
5512 	pci_dev_save_and_disable(dev);
5513 	rc = __pci_reset_function_locked(dev);
5514 	pci_dev_restore(dev);
5515 	pci_dev_unlock(dev);
5516 
5517 	return rc;
5518 }
5519 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5520 
5521 /* Do any devices on or below this bus prevent a bus reset? */
5522 static bool pci_bus_resetable(struct pci_bus *bus)
5523 {
5524 	struct pci_dev *dev;
5525 
5526 
5527 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5528 		return false;
5529 
5530 	list_for_each_entry(dev, &bus->devices, bus_list) {
5531 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5532 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5533 			return false;
5534 	}
5535 
5536 	return true;
5537 }
5538 
5539 /* Lock devices from the top of the tree down */
5540 static void pci_bus_lock(struct pci_bus *bus)
5541 {
5542 	struct pci_dev *dev;
5543 
5544 	list_for_each_entry(dev, &bus->devices, bus_list) {
5545 		pci_dev_lock(dev);
5546 		if (dev->subordinate)
5547 			pci_bus_lock(dev->subordinate);
5548 	}
5549 }
5550 
5551 /* Unlock devices from the bottom of the tree up */
5552 static void pci_bus_unlock(struct pci_bus *bus)
5553 {
5554 	struct pci_dev *dev;
5555 
5556 	list_for_each_entry(dev, &bus->devices, bus_list) {
5557 		if (dev->subordinate)
5558 			pci_bus_unlock(dev->subordinate);
5559 		pci_dev_unlock(dev);
5560 	}
5561 }
5562 
5563 /* Return 1 on successful lock, 0 on contention */
5564 static int pci_bus_trylock(struct pci_bus *bus)
5565 {
5566 	struct pci_dev *dev;
5567 
5568 	list_for_each_entry(dev, &bus->devices, bus_list) {
5569 		if (!pci_dev_trylock(dev))
5570 			goto unlock;
5571 		if (dev->subordinate) {
5572 			if (!pci_bus_trylock(dev->subordinate)) {
5573 				pci_dev_unlock(dev);
5574 				goto unlock;
5575 			}
5576 		}
5577 	}
5578 	return 1;
5579 
5580 unlock:
5581 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5582 		if (dev->subordinate)
5583 			pci_bus_unlock(dev->subordinate);
5584 		pci_dev_unlock(dev);
5585 	}
5586 	return 0;
5587 }
5588 
5589 /* Do any devices on or below this slot prevent a bus reset? */
5590 static bool pci_slot_resetable(struct pci_slot *slot)
5591 {
5592 	struct pci_dev *dev;
5593 
5594 	if (slot->bus->self &&
5595 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5596 		return false;
5597 
5598 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5599 		if (!dev->slot || dev->slot != slot)
5600 			continue;
5601 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5602 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5603 			return false;
5604 	}
5605 
5606 	return true;
5607 }
5608 
5609 /* Lock devices from the top of the tree down */
5610 static void pci_slot_lock(struct pci_slot *slot)
5611 {
5612 	struct pci_dev *dev;
5613 
5614 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5615 		if (!dev->slot || dev->slot != slot)
5616 			continue;
5617 		pci_dev_lock(dev);
5618 		if (dev->subordinate)
5619 			pci_bus_lock(dev->subordinate);
5620 	}
5621 }
5622 
5623 /* Unlock devices from the bottom of the tree up */
5624 static void pci_slot_unlock(struct pci_slot *slot)
5625 {
5626 	struct pci_dev *dev;
5627 
5628 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5629 		if (!dev->slot || dev->slot != slot)
5630 			continue;
5631 		if (dev->subordinate)
5632 			pci_bus_unlock(dev->subordinate);
5633 		pci_dev_unlock(dev);
5634 	}
5635 }
5636 
5637 /* Return 1 on successful lock, 0 on contention */
5638 static int pci_slot_trylock(struct pci_slot *slot)
5639 {
5640 	struct pci_dev *dev;
5641 
5642 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5643 		if (!dev->slot || dev->slot != slot)
5644 			continue;
5645 		if (!pci_dev_trylock(dev))
5646 			goto unlock;
5647 		if (dev->subordinate) {
5648 			if (!pci_bus_trylock(dev->subordinate)) {
5649 				pci_dev_unlock(dev);
5650 				goto unlock;
5651 			}
5652 		}
5653 	}
5654 	return 1;
5655 
5656 unlock:
5657 	list_for_each_entry_continue_reverse(dev,
5658 					     &slot->bus->devices, bus_list) {
5659 		if (!dev->slot || dev->slot != slot)
5660 			continue;
5661 		if (dev->subordinate)
5662 			pci_bus_unlock(dev->subordinate);
5663 		pci_dev_unlock(dev);
5664 	}
5665 	return 0;
5666 }
5667 
5668 /*
5669  * Save and disable devices from the top of the tree down while holding
5670  * the @dev mutex lock for the entire tree.
5671  */
5672 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5673 {
5674 	struct pci_dev *dev;
5675 
5676 	list_for_each_entry(dev, &bus->devices, bus_list) {
5677 		pci_dev_save_and_disable(dev);
5678 		if (dev->subordinate)
5679 			pci_bus_save_and_disable_locked(dev->subordinate);
5680 	}
5681 }
5682 
5683 /*
5684  * Restore devices from top of the tree down while holding @dev mutex lock
5685  * for the entire tree.  Parent bridges need to be restored before we can
5686  * get to subordinate devices.
5687  */
5688 static void pci_bus_restore_locked(struct pci_bus *bus)
5689 {
5690 	struct pci_dev *dev;
5691 
5692 	list_for_each_entry(dev, &bus->devices, bus_list) {
5693 		pci_dev_restore(dev);
5694 		if (dev->subordinate)
5695 			pci_bus_restore_locked(dev->subordinate);
5696 	}
5697 }
5698 
5699 /*
5700  * Save and disable devices from the top of the tree down while holding
5701  * the @dev mutex lock for the entire tree.
5702  */
5703 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5704 {
5705 	struct pci_dev *dev;
5706 
5707 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5708 		if (!dev->slot || dev->slot != slot)
5709 			continue;
5710 		pci_dev_save_and_disable(dev);
5711 		if (dev->subordinate)
5712 			pci_bus_save_and_disable_locked(dev->subordinate);
5713 	}
5714 }
5715 
5716 /*
5717  * Restore devices from top of the tree down while holding @dev mutex lock
5718  * for the entire tree.  Parent bridges need to be restored before we can
5719  * get to subordinate devices.
5720  */
5721 static void pci_slot_restore_locked(struct pci_slot *slot)
5722 {
5723 	struct pci_dev *dev;
5724 
5725 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5726 		if (!dev->slot || dev->slot != slot)
5727 			continue;
5728 		pci_dev_restore(dev);
5729 		if (dev->subordinate)
5730 			pci_bus_restore_locked(dev->subordinate);
5731 	}
5732 }
5733 
5734 static int pci_slot_reset(struct pci_slot *slot, bool probe)
5735 {
5736 	int rc;
5737 
5738 	if (!slot || !pci_slot_resetable(slot))
5739 		return -ENOTTY;
5740 
5741 	if (!probe)
5742 		pci_slot_lock(slot);
5743 
5744 	might_sleep();
5745 
5746 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5747 
5748 	if (!probe)
5749 		pci_slot_unlock(slot);
5750 
5751 	return rc;
5752 }
5753 
5754 /**
5755  * pci_probe_reset_slot - probe whether a PCI slot can be reset
5756  * @slot: PCI slot to probe
5757  *
5758  * Return 0 if slot can be reset, negative if a slot reset is not supported.
5759  */
5760 int pci_probe_reset_slot(struct pci_slot *slot)
5761 {
5762 	return pci_slot_reset(slot, PCI_RESET_PROBE);
5763 }
5764 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5765 
5766 /**
5767  * __pci_reset_slot - Try to reset a PCI slot
5768  * @slot: PCI slot to reset
5769  *
5770  * A PCI bus may host multiple slots, each slot may support a reset mechanism
5771  * independent of other slots.  For instance, some slots may support slot power
5772  * control.  In the case of a 1:1 bus to slot architecture, this function may
5773  * wrap the bus reset to avoid spurious slot related events such as hotplug.
5774  * Generally a slot reset should be attempted before a bus reset.  All of the
5775  * function of the slot and any subordinate buses behind the slot are reset
5776  * through this function.  PCI config space of all devices in the slot and
5777  * behind the slot is saved before and restored after reset.
5778  *
5779  * Same as above except return -EAGAIN if the slot cannot be locked
5780  */
5781 static int __pci_reset_slot(struct pci_slot *slot)
5782 {
5783 	int rc;
5784 
5785 	rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5786 	if (rc)
5787 		return rc;
5788 
5789 	if (pci_slot_trylock(slot)) {
5790 		pci_slot_save_and_disable_locked(slot);
5791 		might_sleep();
5792 		rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5793 		pci_slot_restore_locked(slot);
5794 		pci_slot_unlock(slot);
5795 	} else
5796 		rc = -EAGAIN;
5797 
5798 	return rc;
5799 }
5800 
5801 static int pci_bus_reset(struct pci_bus *bus, bool probe)
5802 {
5803 	int ret;
5804 
5805 	if (!bus->self || !pci_bus_resetable(bus))
5806 		return -ENOTTY;
5807 
5808 	if (probe)
5809 		return 0;
5810 
5811 	pci_bus_lock(bus);
5812 
5813 	might_sleep();
5814 
5815 	ret = pci_bridge_secondary_bus_reset(bus->self);
5816 
5817 	pci_bus_unlock(bus);
5818 
5819 	return ret;
5820 }
5821 
5822 /**
5823  * pci_bus_error_reset - reset the bridge's subordinate bus
5824  * @bridge: The parent device that connects to the bus to reset
5825  *
5826  * This function will first try to reset the slots on this bus if the method is
5827  * available. If slot reset fails or is not available, this will fall back to a
5828  * secondary bus reset.
5829  */
5830 int pci_bus_error_reset(struct pci_dev *bridge)
5831 {
5832 	struct pci_bus *bus = bridge->subordinate;
5833 	struct pci_slot *slot;
5834 
5835 	if (!bus)
5836 		return -ENOTTY;
5837 
5838 	mutex_lock(&pci_slot_mutex);
5839 	if (list_empty(&bus->slots))
5840 		goto bus_reset;
5841 
5842 	list_for_each_entry(slot, &bus->slots, list)
5843 		if (pci_probe_reset_slot(slot))
5844 			goto bus_reset;
5845 
5846 	list_for_each_entry(slot, &bus->slots, list)
5847 		if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5848 			goto bus_reset;
5849 
5850 	mutex_unlock(&pci_slot_mutex);
5851 	return 0;
5852 bus_reset:
5853 	mutex_unlock(&pci_slot_mutex);
5854 	return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5855 }
5856 
5857 /**
5858  * pci_probe_reset_bus - probe whether a PCI bus can be reset
5859  * @bus: PCI bus to probe
5860  *
5861  * Return 0 if bus can be reset, negative if a bus reset is not supported.
5862  */
5863 int pci_probe_reset_bus(struct pci_bus *bus)
5864 {
5865 	return pci_bus_reset(bus, PCI_RESET_PROBE);
5866 }
5867 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5868 
5869 /**
5870  * __pci_reset_bus - Try to reset a PCI bus
5871  * @bus: top level PCI bus to reset
5872  *
5873  * Same as above except return -EAGAIN if the bus cannot be locked
5874  */
5875 static int __pci_reset_bus(struct pci_bus *bus)
5876 {
5877 	int rc;
5878 
5879 	rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5880 	if (rc)
5881 		return rc;
5882 
5883 	if (pci_bus_trylock(bus)) {
5884 		pci_bus_save_and_disable_locked(bus);
5885 		might_sleep();
5886 		rc = pci_bridge_secondary_bus_reset(bus->self);
5887 		pci_bus_restore_locked(bus);
5888 		pci_bus_unlock(bus);
5889 	} else
5890 		rc = -EAGAIN;
5891 
5892 	return rc;
5893 }
5894 
5895 /**
5896  * pci_reset_bus - Try to reset a PCI bus
5897  * @pdev: top level PCI device to reset via slot/bus
5898  *
5899  * Same as above except return -EAGAIN if the bus cannot be locked
5900  */
5901 int pci_reset_bus(struct pci_dev *pdev)
5902 {
5903 	return (!pci_probe_reset_slot(pdev->slot)) ?
5904 	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5905 }
5906 EXPORT_SYMBOL_GPL(pci_reset_bus);
5907 
5908 /**
5909  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5910  * @dev: PCI device to query
5911  *
5912  * Returns mmrbc: maximum designed memory read count in bytes or
5913  * appropriate error value.
5914  */
5915 int pcix_get_max_mmrbc(struct pci_dev *dev)
5916 {
5917 	int cap;
5918 	u32 stat;
5919 
5920 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5921 	if (!cap)
5922 		return -EINVAL;
5923 
5924 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5925 		return -EINVAL;
5926 
5927 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5928 }
5929 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5930 
5931 /**
5932  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5933  * @dev: PCI device to query
5934  *
5935  * Returns mmrbc: maximum memory read count in bytes or appropriate error
5936  * value.
5937  */
5938 int pcix_get_mmrbc(struct pci_dev *dev)
5939 {
5940 	int cap;
5941 	u16 cmd;
5942 
5943 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5944 	if (!cap)
5945 		return -EINVAL;
5946 
5947 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5948 		return -EINVAL;
5949 
5950 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5951 }
5952 EXPORT_SYMBOL(pcix_get_mmrbc);
5953 
5954 /**
5955  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5956  * @dev: PCI device to query
5957  * @mmrbc: maximum memory read count in bytes
5958  *    valid values are 512, 1024, 2048, 4096
5959  *
5960  * If possible sets maximum memory read byte count, some bridges have errata
5961  * that prevent this.
5962  */
5963 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5964 {
5965 	int cap;
5966 	u32 stat, v, o;
5967 	u16 cmd;
5968 
5969 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5970 		return -EINVAL;
5971 
5972 	v = ffs(mmrbc) - 10;
5973 
5974 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5975 	if (!cap)
5976 		return -EINVAL;
5977 
5978 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5979 		return -EINVAL;
5980 
5981 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5982 		return -E2BIG;
5983 
5984 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5985 		return -EINVAL;
5986 
5987 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5988 	if (o != v) {
5989 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5990 			return -EIO;
5991 
5992 		cmd &= ~PCI_X_CMD_MAX_READ;
5993 		cmd |= v << 2;
5994 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5995 			return -EIO;
5996 	}
5997 	return 0;
5998 }
5999 EXPORT_SYMBOL(pcix_set_mmrbc);
6000 
6001 /**
6002  * pcie_get_readrq - get PCI Express read request size
6003  * @dev: PCI device to query
6004  *
6005  * Returns maximum memory read request in bytes or appropriate error value.
6006  */
6007 int pcie_get_readrq(struct pci_dev *dev)
6008 {
6009 	u16 ctl;
6010 
6011 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6012 
6013 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6014 }
6015 EXPORT_SYMBOL(pcie_get_readrq);
6016 
6017 /**
6018  * pcie_set_readrq - set PCI Express maximum memory read request
6019  * @dev: PCI device to query
6020  * @rq: maximum memory read count in bytes
6021  *    valid values are 128, 256, 512, 1024, 2048, 4096
6022  *
6023  * If possible sets maximum memory read request in bytes
6024  */
6025 int pcie_set_readrq(struct pci_dev *dev, int rq)
6026 {
6027 	u16 v;
6028 	int ret;
6029 
6030 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6031 		return -EINVAL;
6032 
6033 	/*
6034 	 * If using the "performance" PCIe config, we clamp the read rq
6035 	 * size to the max packet size to keep the host bridge from
6036 	 * generating requests larger than we can cope with.
6037 	 */
6038 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6039 		int mps = pcie_get_mps(dev);
6040 
6041 		if (mps < rq)
6042 			rq = mps;
6043 	}
6044 
6045 	v = (ffs(rq) - 8) << 12;
6046 
6047 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6048 						  PCI_EXP_DEVCTL_READRQ, v);
6049 
6050 	return pcibios_err_to_errno(ret);
6051 }
6052 EXPORT_SYMBOL(pcie_set_readrq);
6053 
6054 /**
6055  * pcie_get_mps - get PCI Express maximum payload size
6056  * @dev: PCI device to query
6057  *
6058  * Returns maximum payload size in bytes
6059  */
6060 int pcie_get_mps(struct pci_dev *dev)
6061 {
6062 	u16 ctl;
6063 
6064 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6065 
6066 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6067 }
6068 EXPORT_SYMBOL(pcie_get_mps);
6069 
6070 /**
6071  * pcie_set_mps - set PCI Express maximum payload size
6072  * @dev: PCI device to query
6073  * @mps: maximum payload size in bytes
6074  *    valid values are 128, 256, 512, 1024, 2048, 4096
6075  *
6076  * If possible sets maximum payload size
6077  */
6078 int pcie_set_mps(struct pci_dev *dev, int mps)
6079 {
6080 	u16 v;
6081 	int ret;
6082 
6083 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6084 		return -EINVAL;
6085 
6086 	v = ffs(mps) - 8;
6087 	if (v > dev->pcie_mpss)
6088 		return -EINVAL;
6089 	v <<= 5;
6090 
6091 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6092 						  PCI_EXP_DEVCTL_PAYLOAD, v);
6093 
6094 	return pcibios_err_to_errno(ret);
6095 }
6096 EXPORT_SYMBOL(pcie_set_mps);
6097 
6098 /**
6099  * pcie_bandwidth_available - determine minimum link settings of a PCIe
6100  *			      device and its bandwidth limitation
6101  * @dev: PCI device to query
6102  * @limiting_dev: storage for device causing the bandwidth limitation
6103  * @speed: storage for speed of limiting device
6104  * @width: storage for width of limiting device
6105  *
6106  * Walk up the PCI device chain and find the point where the minimum
6107  * bandwidth is available.  Return the bandwidth available there and (if
6108  * limiting_dev, speed, and width pointers are supplied) information about
6109  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
6110  * raw bandwidth.
6111  */
6112 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6113 			     enum pci_bus_speed *speed,
6114 			     enum pcie_link_width *width)
6115 {
6116 	u16 lnksta;
6117 	enum pci_bus_speed next_speed;
6118 	enum pcie_link_width next_width;
6119 	u32 bw, next_bw;
6120 
6121 	if (speed)
6122 		*speed = PCI_SPEED_UNKNOWN;
6123 	if (width)
6124 		*width = PCIE_LNK_WIDTH_UNKNOWN;
6125 
6126 	bw = 0;
6127 
6128 	while (dev) {
6129 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6130 
6131 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
6132 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
6133 			PCI_EXP_LNKSTA_NLW_SHIFT;
6134 
6135 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6136 
6137 		/* Check if current device limits the total bandwidth */
6138 		if (!bw || next_bw <= bw) {
6139 			bw = next_bw;
6140 
6141 			if (limiting_dev)
6142 				*limiting_dev = dev;
6143 			if (speed)
6144 				*speed = next_speed;
6145 			if (width)
6146 				*width = next_width;
6147 		}
6148 
6149 		dev = pci_upstream_bridge(dev);
6150 	}
6151 
6152 	return bw;
6153 }
6154 EXPORT_SYMBOL(pcie_bandwidth_available);
6155 
6156 /**
6157  * pcie_get_speed_cap - query for the PCI device's link speed capability
6158  * @dev: PCI device to query
6159  *
6160  * Query the PCI device speed capability.  Return the maximum link speed
6161  * supported by the device.
6162  */
6163 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6164 {
6165 	u32 lnkcap2, lnkcap;
6166 
6167 	/*
6168 	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
6169 	 * implementation note there recommends using the Supported Link
6170 	 * Speeds Vector in Link Capabilities 2 when supported.
6171 	 *
6172 	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6173 	 * should use the Supported Link Speeds field in Link Capabilities,
6174 	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6175 	 */
6176 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6177 
6178 	/* PCIe r3.0-compliant */
6179 	if (lnkcap2)
6180 		return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6181 
6182 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6183 	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6184 		return PCIE_SPEED_5_0GT;
6185 	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6186 		return PCIE_SPEED_2_5GT;
6187 
6188 	return PCI_SPEED_UNKNOWN;
6189 }
6190 EXPORT_SYMBOL(pcie_get_speed_cap);
6191 
6192 /**
6193  * pcie_get_width_cap - query for the PCI device's link width capability
6194  * @dev: PCI device to query
6195  *
6196  * Query the PCI device width capability.  Return the maximum link width
6197  * supported by the device.
6198  */
6199 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6200 {
6201 	u32 lnkcap;
6202 
6203 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6204 	if (lnkcap)
6205 		return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
6206 
6207 	return PCIE_LNK_WIDTH_UNKNOWN;
6208 }
6209 EXPORT_SYMBOL(pcie_get_width_cap);
6210 
6211 /**
6212  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6213  * @dev: PCI device
6214  * @speed: storage for link speed
6215  * @width: storage for link width
6216  *
6217  * Calculate a PCI device's link bandwidth by querying for its link speed
6218  * and width, multiplying them, and applying encoding overhead.  The result
6219  * is in Mb/s, i.e., megabits/second of raw bandwidth.
6220  */
6221 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6222 			   enum pcie_link_width *width)
6223 {
6224 	*speed = pcie_get_speed_cap(dev);
6225 	*width = pcie_get_width_cap(dev);
6226 
6227 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6228 		return 0;
6229 
6230 	return *width * PCIE_SPEED2MBS_ENC(*speed);
6231 }
6232 
6233 /**
6234  * __pcie_print_link_status - Report the PCI device's link speed and width
6235  * @dev: PCI device to query
6236  * @verbose: Print info even when enough bandwidth is available
6237  *
6238  * If the available bandwidth at the device is less than the device is
6239  * capable of, report the device's maximum possible bandwidth and the
6240  * upstream link that limits its performance.  If @verbose, always print
6241  * the available bandwidth, even if the device isn't constrained.
6242  */
6243 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6244 {
6245 	enum pcie_link_width width, width_cap;
6246 	enum pci_bus_speed speed, speed_cap;
6247 	struct pci_dev *limiting_dev = NULL;
6248 	u32 bw_avail, bw_cap;
6249 
6250 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6251 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6252 
6253 	if (bw_avail >= bw_cap && verbose)
6254 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6255 			 bw_cap / 1000, bw_cap % 1000,
6256 			 pci_speed_string(speed_cap), width_cap);
6257 	else if (bw_avail < bw_cap)
6258 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6259 			 bw_avail / 1000, bw_avail % 1000,
6260 			 pci_speed_string(speed), width,
6261 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6262 			 bw_cap / 1000, bw_cap % 1000,
6263 			 pci_speed_string(speed_cap), width_cap);
6264 }
6265 
6266 /**
6267  * pcie_print_link_status - Report the PCI device's link speed and width
6268  * @dev: PCI device to query
6269  *
6270  * Report the available bandwidth at the device.
6271  */
6272 void pcie_print_link_status(struct pci_dev *dev)
6273 {
6274 	__pcie_print_link_status(dev, true);
6275 }
6276 EXPORT_SYMBOL(pcie_print_link_status);
6277 
6278 /**
6279  * pci_select_bars - Make BAR mask from the type of resource
6280  * @dev: the PCI device for which BAR mask is made
6281  * @flags: resource type mask to be selected
6282  *
6283  * This helper routine makes bar mask from the type of resource.
6284  */
6285 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6286 {
6287 	int i, bars = 0;
6288 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
6289 		if (pci_resource_flags(dev, i) & flags)
6290 			bars |= (1 << i);
6291 	return bars;
6292 }
6293 EXPORT_SYMBOL(pci_select_bars);
6294 
6295 /* Some architectures require additional programming to enable VGA */
6296 static arch_set_vga_state_t arch_set_vga_state;
6297 
6298 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6299 {
6300 	arch_set_vga_state = func;	/* NULL disables */
6301 }
6302 
6303 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6304 				  unsigned int command_bits, u32 flags)
6305 {
6306 	if (arch_set_vga_state)
6307 		return arch_set_vga_state(dev, decode, command_bits,
6308 						flags);
6309 	return 0;
6310 }
6311 
6312 /**
6313  * pci_set_vga_state - set VGA decode state on device and parents if requested
6314  * @dev: the PCI device
6315  * @decode: true = enable decoding, false = disable decoding
6316  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6317  * @flags: traverse ancestors and change bridges
6318  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6319  */
6320 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6321 		      unsigned int command_bits, u32 flags)
6322 {
6323 	struct pci_bus *bus;
6324 	struct pci_dev *bridge;
6325 	u16 cmd;
6326 	int rc;
6327 
6328 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6329 
6330 	/* ARCH specific VGA enables */
6331 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6332 	if (rc)
6333 		return rc;
6334 
6335 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6336 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6337 		if (decode)
6338 			cmd |= command_bits;
6339 		else
6340 			cmd &= ~command_bits;
6341 		pci_write_config_word(dev, PCI_COMMAND, cmd);
6342 	}
6343 
6344 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6345 		return 0;
6346 
6347 	bus = dev->bus;
6348 	while (bus) {
6349 		bridge = bus->self;
6350 		if (bridge) {
6351 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6352 					     &cmd);
6353 			if (decode)
6354 				cmd |= PCI_BRIDGE_CTL_VGA;
6355 			else
6356 				cmd &= ~PCI_BRIDGE_CTL_VGA;
6357 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6358 					      cmd);
6359 		}
6360 		bus = bus->parent;
6361 	}
6362 	return 0;
6363 }
6364 
6365 #ifdef CONFIG_ACPI
6366 bool pci_pr3_present(struct pci_dev *pdev)
6367 {
6368 	struct acpi_device *adev;
6369 
6370 	if (acpi_disabled)
6371 		return false;
6372 
6373 	adev = ACPI_COMPANION(&pdev->dev);
6374 	if (!adev)
6375 		return false;
6376 
6377 	return adev->power.flags.power_resources &&
6378 		acpi_has_method(adev->handle, "_PR3");
6379 }
6380 EXPORT_SYMBOL_GPL(pci_pr3_present);
6381 #endif
6382 
6383 /**
6384  * pci_add_dma_alias - Add a DMA devfn alias for a device
6385  * @dev: the PCI device for which alias is added
6386  * @devfn_from: alias slot and function
6387  * @nr_devfns: number of subsequent devfns to alias
6388  *
6389  * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6390  * which is used to program permissible bus-devfn source addresses for DMA
6391  * requests in an IOMMU.  These aliases factor into IOMMU group creation
6392  * and are useful for devices generating DMA requests beyond or different
6393  * from their logical bus-devfn.  Examples include device quirks where the
6394  * device simply uses the wrong devfn, as well as non-transparent bridges
6395  * where the alias may be a proxy for devices in another domain.
6396  *
6397  * IOMMU group creation is performed during device discovery or addition,
6398  * prior to any potential DMA mapping and therefore prior to driver probing
6399  * (especially for userspace assigned devices where IOMMU group definition
6400  * cannot be left as a userspace activity).  DMA aliases should therefore
6401  * be configured via quirks, such as the PCI fixup header quirk.
6402  */
6403 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6404 		       unsigned int nr_devfns)
6405 {
6406 	int devfn_to;
6407 
6408 	nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6409 	devfn_to = devfn_from + nr_devfns - 1;
6410 
6411 	if (!dev->dma_alias_mask)
6412 		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6413 	if (!dev->dma_alias_mask) {
6414 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6415 		return;
6416 	}
6417 
6418 	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6419 
6420 	if (nr_devfns == 1)
6421 		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6422 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6423 	else if (nr_devfns > 1)
6424 		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6425 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6426 				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6427 }
6428 
6429 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6430 {
6431 	return (dev1->dma_alias_mask &&
6432 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6433 	       (dev2->dma_alias_mask &&
6434 		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6435 	       pci_real_dma_dev(dev1) == dev2 ||
6436 	       pci_real_dma_dev(dev2) == dev1;
6437 }
6438 
6439 bool pci_device_is_present(struct pci_dev *pdev)
6440 {
6441 	u32 v;
6442 
6443 	/* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6444 	pdev = pci_physfn(pdev);
6445 	if (pci_dev_is_disconnected(pdev))
6446 		return false;
6447 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6448 }
6449 EXPORT_SYMBOL_GPL(pci_device_is_present);
6450 
6451 void pci_ignore_hotplug(struct pci_dev *dev)
6452 {
6453 	struct pci_dev *bridge = dev->bus->self;
6454 
6455 	dev->ignore_hotplug = 1;
6456 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6457 	if (bridge)
6458 		bridge->ignore_hotplug = 1;
6459 }
6460 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6461 
6462 /**
6463  * pci_real_dma_dev - Get PCI DMA device for PCI device
6464  * @dev: the PCI device that may have a PCI DMA alias
6465  *
6466  * Permits the platform to provide architecture-specific functionality to
6467  * devices needing to alias DMA to another PCI device on another PCI bus. If
6468  * the PCI device is on the same bus, it is recommended to use
6469  * pci_add_dma_alias(). This is the default implementation. Architecture
6470  * implementations can override this.
6471  */
6472 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6473 {
6474 	return dev;
6475 }
6476 
6477 resource_size_t __weak pcibios_default_alignment(void)
6478 {
6479 	return 0;
6480 }
6481 
6482 /*
6483  * Arches that don't want to expose struct resource to userland as-is in
6484  * sysfs and /proc can implement their own pci_resource_to_user().
6485  */
6486 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6487 				 const struct resource *rsrc,
6488 				 resource_size_t *start, resource_size_t *end)
6489 {
6490 	*start = rsrc->start;
6491 	*end = rsrc->end;
6492 }
6493 
6494 static char *resource_alignment_param;
6495 static DEFINE_SPINLOCK(resource_alignment_lock);
6496 
6497 /**
6498  * pci_specified_resource_alignment - get resource alignment specified by user.
6499  * @dev: the PCI device to get
6500  * @resize: whether or not to change resources' size when reassigning alignment
6501  *
6502  * RETURNS: Resource alignment if it is specified.
6503  *          Zero if it is not specified.
6504  */
6505 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6506 							bool *resize)
6507 {
6508 	int align_order, count;
6509 	resource_size_t align = pcibios_default_alignment();
6510 	const char *p;
6511 	int ret;
6512 
6513 	spin_lock(&resource_alignment_lock);
6514 	p = resource_alignment_param;
6515 	if (!p || !*p)
6516 		goto out;
6517 	if (pci_has_flag(PCI_PROBE_ONLY)) {
6518 		align = 0;
6519 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6520 		goto out;
6521 	}
6522 
6523 	while (*p) {
6524 		count = 0;
6525 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6526 		    p[count] == '@') {
6527 			p += count + 1;
6528 			if (align_order > 63) {
6529 				pr_err("PCI: Invalid requested alignment (order %d)\n",
6530 				       align_order);
6531 				align_order = PAGE_SHIFT;
6532 			}
6533 		} else {
6534 			align_order = PAGE_SHIFT;
6535 		}
6536 
6537 		ret = pci_dev_str_match(dev, p, &p);
6538 		if (ret == 1) {
6539 			*resize = true;
6540 			align = 1ULL << align_order;
6541 			break;
6542 		} else if (ret < 0) {
6543 			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6544 			       p);
6545 			break;
6546 		}
6547 
6548 		if (*p != ';' && *p != ',') {
6549 			/* End of param or invalid format */
6550 			break;
6551 		}
6552 		p++;
6553 	}
6554 out:
6555 	spin_unlock(&resource_alignment_lock);
6556 	return align;
6557 }
6558 
6559 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6560 					   resource_size_t align, bool resize)
6561 {
6562 	struct resource *r = &dev->resource[bar];
6563 	resource_size_t size;
6564 
6565 	if (!(r->flags & IORESOURCE_MEM))
6566 		return;
6567 
6568 	if (r->flags & IORESOURCE_PCI_FIXED) {
6569 		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6570 			 bar, r, (unsigned long long)align);
6571 		return;
6572 	}
6573 
6574 	size = resource_size(r);
6575 	if (size >= align)
6576 		return;
6577 
6578 	/*
6579 	 * Increase the alignment of the resource.  There are two ways we
6580 	 * can do this:
6581 	 *
6582 	 * 1) Increase the size of the resource.  BARs are aligned on their
6583 	 *    size, so when we reallocate space for this resource, we'll
6584 	 *    allocate it with the larger alignment.  This also prevents
6585 	 *    assignment of any other BARs inside the alignment region, so
6586 	 *    if we're requesting page alignment, this means no other BARs
6587 	 *    will share the page.
6588 	 *
6589 	 *    The disadvantage is that this makes the resource larger than
6590 	 *    the hardware BAR, which may break drivers that compute things
6591 	 *    based on the resource size, e.g., to find registers at a
6592 	 *    fixed offset before the end of the BAR.
6593 	 *
6594 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6595 	 *    set r->start to the desired alignment.  By itself this
6596 	 *    doesn't prevent other BARs being put inside the alignment
6597 	 *    region, but if we realign *every* resource of every device in
6598 	 *    the system, none of them will share an alignment region.
6599 	 *
6600 	 * When the user has requested alignment for only some devices via
6601 	 * the "pci=resource_alignment" argument, "resize" is true and we
6602 	 * use the first method.  Otherwise we assume we're aligning all
6603 	 * devices and we use the second.
6604 	 */
6605 
6606 	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6607 		 bar, r, (unsigned long long)align);
6608 
6609 	if (resize) {
6610 		r->start = 0;
6611 		r->end = align - 1;
6612 	} else {
6613 		r->flags &= ~IORESOURCE_SIZEALIGN;
6614 		r->flags |= IORESOURCE_STARTALIGN;
6615 		r->start = align;
6616 		r->end = r->start + size - 1;
6617 	}
6618 	r->flags |= IORESOURCE_UNSET;
6619 }
6620 
6621 /*
6622  * This function disables memory decoding and releases memory resources
6623  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6624  * It also rounds up size to specified alignment.
6625  * Later on, the kernel will assign page-aligned memory resource back
6626  * to the device.
6627  */
6628 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6629 {
6630 	int i;
6631 	struct resource *r;
6632 	resource_size_t align;
6633 	u16 command;
6634 	bool resize = false;
6635 
6636 	/*
6637 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6638 	 * 3.4.1.11.  Their resources are allocated from the space
6639 	 * described by the VF BARx register in the PF's SR-IOV capability.
6640 	 * We can't influence their alignment here.
6641 	 */
6642 	if (dev->is_virtfn)
6643 		return;
6644 
6645 	/* check if specified PCI is target device to reassign */
6646 	align = pci_specified_resource_alignment(dev, &resize);
6647 	if (!align)
6648 		return;
6649 
6650 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6651 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6652 		pci_warn(dev, "Can't reassign resources to host bridge\n");
6653 		return;
6654 	}
6655 
6656 	pci_read_config_word(dev, PCI_COMMAND, &command);
6657 	command &= ~PCI_COMMAND_MEMORY;
6658 	pci_write_config_word(dev, PCI_COMMAND, command);
6659 
6660 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6661 		pci_request_resource_alignment(dev, i, align, resize);
6662 
6663 	/*
6664 	 * Need to disable bridge's resource window,
6665 	 * to enable the kernel to reassign new resource
6666 	 * window later on.
6667 	 */
6668 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6669 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6670 			r = &dev->resource[i];
6671 			if (!(r->flags & IORESOURCE_MEM))
6672 				continue;
6673 			r->flags |= IORESOURCE_UNSET;
6674 			r->end = resource_size(r) - 1;
6675 			r->start = 0;
6676 		}
6677 		pci_disable_bridge_window(dev);
6678 	}
6679 }
6680 
6681 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6682 {
6683 	size_t count = 0;
6684 
6685 	spin_lock(&resource_alignment_lock);
6686 	if (resource_alignment_param)
6687 		count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6688 	spin_unlock(&resource_alignment_lock);
6689 
6690 	return count;
6691 }
6692 
6693 static ssize_t resource_alignment_store(struct bus_type *bus,
6694 					const char *buf, size_t count)
6695 {
6696 	char *param, *old, *end;
6697 
6698 	if (count >= (PAGE_SIZE - 1))
6699 		return -EINVAL;
6700 
6701 	param = kstrndup(buf, count, GFP_KERNEL);
6702 	if (!param)
6703 		return -ENOMEM;
6704 
6705 	end = strchr(param, '\n');
6706 	if (end)
6707 		*end = '\0';
6708 
6709 	spin_lock(&resource_alignment_lock);
6710 	old = resource_alignment_param;
6711 	if (strlen(param)) {
6712 		resource_alignment_param = param;
6713 	} else {
6714 		kfree(param);
6715 		resource_alignment_param = NULL;
6716 	}
6717 	spin_unlock(&resource_alignment_lock);
6718 
6719 	kfree(old);
6720 
6721 	return count;
6722 }
6723 
6724 static BUS_ATTR_RW(resource_alignment);
6725 
6726 static int __init pci_resource_alignment_sysfs_init(void)
6727 {
6728 	return bus_create_file(&pci_bus_type,
6729 					&bus_attr_resource_alignment);
6730 }
6731 late_initcall(pci_resource_alignment_sysfs_init);
6732 
6733 static void pci_no_domains(void)
6734 {
6735 #ifdef CONFIG_PCI_DOMAINS
6736 	pci_domains_supported = 0;
6737 #endif
6738 }
6739 
6740 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6741 static DEFINE_IDA(pci_domain_nr_static_ida);
6742 static DEFINE_IDA(pci_domain_nr_dynamic_ida);
6743 
6744 static void of_pci_reserve_static_domain_nr(void)
6745 {
6746 	struct device_node *np;
6747 	int domain_nr;
6748 
6749 	for_each_node_by_type(np, "pci") {
6750 		domain_nr = of_get_pci_domain_nr(np);
6751 		if (domain_nr < 0)
6752 			continue;
6753 		/*
6754 		 * Permanently allocate domain_nr in dynamic_ida
6755 		 * to prevent it from dynamic allocation.
6756 		 */
6757 		ida_alloc_range(&pci_domain_nr_dynamic_ida,
6758 				domain_nr, domain_nr, GFP_KERNEL);
6759 	}
6760 }
6761 
6762 static int of_pci_bus_find_domain_nr(struct device *parent)
6763 {
6764 	static bool static_domains_reserved = false;
6765 	int domain_nr;
6766 
6767 	/* On the first call scan device tree for static allocations. */
6768 	if (!static_domains_reserved) {
6769 		of_pci_reserve_static_domain_nr();
6770 		static_domains_reserved = true;
6771 	}
6772 
6773 	if (parent) {
6774 		/*
6775 		 * If domain is in DT, allocate it in static IDA.  This
6776 		 * prevents duplicate static allocations in case of errors
6777 		 * in DT.
6778 		 */
6779 		domain_nr = of_get_pci_domain_nr(parent->of_node);
6780 		if (domain_nr >= 0)
6781 			return ida_alloc_range(&pci_domain_nr_static_ida,
6782 					       domain_nr, domain_nr,
6783 					       GFP_KERNEL);
6784 	}
6785 
6786 	/*
6787 	 * If domain was not specified in DT, choose a free ID from dynamic
6788 	 * allocations. All domain numbers from DT are permanently in
6789 	 * dynamic allocations to prevent assigning them to other DT nodes
6790 	 * without static domain.
6791 	 */
6792 	return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
6793 }
6794 
6795 static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6796 {
6797 	if (bus->domain_nr < 0)
6798 		return;
6799 
6800 	/* Release domain from IDA where it was allocated. */
6801 	if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr)
6802 		ida_free(&pci_domain_nr_static_ida, bus->domain_nr);
6803 	else
6804 		ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr);
6805 }
6806 
6807 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6808 {
6809 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6810 			       acpi_pci_bus_find_domain_nr(bus);
6811 }
6812 
6813 void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6814 {
6815 	if (!acpi_disabled)
6816 		return;
6817 	of_pci_bus_release_domain_nr(bus, parent);
6818 }
6819 #endif
6820 
6821 /**
6822  * pci_ext_cfg_avail - can we access extended PCI config space?
6823  *
6824  * Returns 1 if we can access PCI extended config space (offsets
6825  * greater than 0xff). This is the default implementation. Architecture
6826  * implementations can override this.
6827  */
6828 int __weak pci_ext_cfg_avail(void)
6829 {
6830 	return 1;
6831 }
6832 
6833 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6834 {
6835 }
6836 EXPORT_SYMBOL(pci_fixup_cardbus);
6837 
6838 static int __init pci_setup(char *str)
6839 {
6840 	while (str) {
6841 		char *k = strchr(str, ',');
6842 		if (k)
6843 			*k++ = 0;
6844 		if (*str && (str = pcibios_setup(str)) && *str) {
6845 			if (!strcmp(str, "nomsi")) {
6846 				pci_no_msi();
6847 			} else if (!strncmp(str, "noats", 5)) {
6848 				pr_info("PCIe: ATS is disabled\n");
6849 				pcie_ats_disabled = true;
6850 			} else if (!strcmp(str, "noaer")) {
6851 				pci_no_aer();
6852 			} else if (!strcmp(str, "earlydump")) {
6853 				pci_early_dump = true;
6854 			} else if (!strncmp(str, "realloc=", 8)) {
6855 				pci_realloc_get_opt(str + 8);
6856 			} else if (!strncmp(str, "realloc", 7)) {
6857 				pci_realloc_get_opt("on");
6858 			} else if (!strcmp(str, "nodomains")) {
6859 				pci_no_domains();
6860 			} else if (!strncmp(str, "noari", 5)) {
6861 				pcie_ari_disabled = true;
6862 			} else if (!strncmp(str, "cbiosize=", 9)) {
6863 				pci_cardbus_io_size = memparse(str + 9, &str);
6864 			} else if (!strncmp(str, "cbmemsize=", 10)) {
6865 				pci_cardbus_mem_size = memparse(str + 10, &str);
6866 			} else if (!strncmp(str, "resource_alignment=", 19)) {
6867 				resource_alignment_param = str + 19;
6868 			} else if (!strncmp(str, "ecrc=", 5)) {
6869 				pcie_ecrc_get_policy(str + 5);
6870 			} else if (!strncmp(str, "hpiosize=", 9)) {
6871 				pci_hotplug_io_size = memparse(str + 9, &str);
6872 			} else if (!strncmp(str, "hpmmiosize=", 11)) {
6873 				pci_hotplug_mmio_size = memparse(str + 11, &str);
6874 			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6875 				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6876 			} else if (!strncmp(str, "hpmemsize=", 10)) {
6877 				pci_hotplug_mmio_size = memparse(str + 10, &str);
6878 				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6879 			} else if (!strncmp(str, "hpbussize=", 10)) {
6880 				pci_hotplug_bus_size =
6881 					simple_strtoul(str + 10, &str, 0);
6882 				if (pci_hotplug_bus_size > 0xff)
6883 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6884 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6885 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6886 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6887 				pcie_bus_config = PCIE_BUS_SAFE;
6888 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6889 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6890 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6891 				pcie_bus_config = PCIE_BUS_PEER2PEER;
6892 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6893 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6894 			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6895 				disable_acs_redir_param = str + 18;
6896 			} else {
6897 				pr_err("PCI: Unknown option `%s'\n", str);
6898 			}
6899 		}
6900 		str = k;
6901 	}
6902 	return 0;
6903 }
6904 early_param("pci", pci_setup);
6905 
6906 /*
6907  * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6908  * in pci_setup(), above, to point to data in the __initdata section which
6909  * will be freed after the init sequence is complete. We can't allocate memory
6910  * in pci_setup() because some architectures do not have any memory allocation
6911  * service available during an early_param() call. So we allocate memory and
6912  * copy the variable here before the init section is freed.
6913  *
6914  */
6915 static int __init pci_realloc_setup_params(void)
6916 {
6917 	resource_alignment_param = kstrdup(resource_alignment_param,
6918 					   GFP_KERNEL);
6919 	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6920 
6921 	return 0;
6922 }
6923 pure_initcall(pci_realloc_setup_params);
6924