1 // SPDX-License-Identifier: GPL-2.0
2 // ChromeOS EC communication protocol helper functions
3 //
4 // Copyright (C) 2015 Google, Inc
5 
6 #include <linux/delay.h>
7 #include <linux/device.h>
8 #include <linux/module.h>
9 #include <linux/platform_data/cros_ec_commands.h>
10 #include <linux/platform_data/cros_ec_proto.h>
11 #include <linux/slab.h>
12 #include <asm/unaligned.h>
13 
14 #include "cros_ec_trace.h"
15 
16 #define EC_COMMAND_RETRIES	50
17 
18 static const int cros_ec_error_map[] = {
19 	[EC_RES_INVALID_COMMAND] = -EOPNOTSUPP,
20 	[EC_RES_ERROR] = -EIO,
21 	[EC_RES_INVALID_PARAM] = -EINVAL,
22 	[EC_RES_ACCESS_DENIED] = -EACCES,
23 	[EC_RES_INVALID_RESPONSE] = -EPROTO,
24 	[EC_RES_INVALID_VERSION] = -ENOPROTOOPT,
25 	[EC_RES_INVALID_CHECKSUM] = -EBADMSG,
26 	[EC_RES_IN_PROGRESS] = -EINPROGRESS,
27 	[EC_RES_UNAVAILABLE] = -ENODATA,
28 	[EC_RES_TIMEOUT] = -ETIMEDOUT,
29 	[EC_RES_OVERFLOW] = -EOVERFLOW,
30 	[EC_RES_INVALID_HEADER] = -EBADR,
31 	[EC_RES_REQUEST_TRUNCATED] = -EBADR,
32 	[EC_RES_RESPONSE_TOO_BIG] = -EFBIG,
33 	[EC_RES_BUS_ERROR] = -EFAULT,
34 	[EC_RES_BUSY] = -EBUSY,
35 	[EC_RES_INVALID_HEADER_VERSION] = -EBADMSG,
36 	[EC_RES_INVALID_HEADER_CRC] = -EBADMSG,
37 	[EC_RES_INVALID_DATA_CRC] = -EBADMSG,
38 	[EC_RES_DUP_UNAVAILABLE] = -ENODATA,
39 };
40 
41 static int cros_ec_map_error(uint32_t result)
42 {
43 	int ret = 0;
44 
45 	if (result != EC_RES_SUCCESS) {
46 		if (result < ARRAY_SIZE(cros_ec_error_map) && cros_ec_error_map[result])
47 			ret = cros_ec_error_map[result];
48 		else
49 			ret = -EPROTO;
50 	}
51 
52 	return ret;
53 }
54 
55 static int prepare_packet(struct cros_ec_device *ec_dev,
56 			  struct cros_ec_command *msg)
57 {
58 	struct ec_host_request *request;
59 	u8 *out;
60 	int i;
61 	u8 csum = 0;
62 
63 	if (msg->outsize + sizeof(*request) > ec_dev->dout_size)
64 		return -EINVAL;
65 
66 	out = ec_dev->dout;
67 	request = (struct ec_host_request *)out;
68 	request->struct_version = EC_HOST_REQUEST_VERSION;
69 	request->checksum = 0;
70 	request->command = msg->command;
71 	request->command_version = msg->version;
72 	request->reserved = 0;
73 	request->data_len = msg->outsize;
74 
75 	for (i = 0; i < sizeof(*request); i++)
76 		csum += out[i];
77 
78 	/* Copy data and update checksum */
79 	memcpy(out + sizeof(*request), msg->data, msg->outsize);
80 	for (i = 0; i < msg->outsize; i++)
81 		csum += msg->data[i];
82 
83 	request->checksum = -csum;
84 
85 	return sizeof(*request) + msg->outsize;
86 }
87 
88 static int send_command(struct cros_ec_device *ec_dev,
89 			struct cros_ec_command *msg)
90 {
91 	int ret;
92 	int (*xfer_fxn)(struct cros_ec_device *ec, struct cros_ec_command *msg);
93 
94 	if (ec_dev->proto_version > 2)
95 		xfer_fxn = ec_dev->pkt_xfer;
96 	else
97 		xfer_fxn = ec_dev->cmd_xfer;
98 
99 	if (!xfer_fxn) {
100 		/*
101 		 * This error can happen if a communication error happened and
102 		 * the EC is trying to use protocol v2, on an underlying
103 		 * communication mechanism that does not support v2.
104 		 */
105 		dev_err_once(ec_dev->dev,
106 			     "missing EC transfer API, cannot send command\n");
107 		return -EIO;
108 	}
109 
110 	trace_cros_ec_request_start(msg);
111 	ret = (*xfer_fxn)(ec_dev, msg);
112 	trace_cros_ec_request_done(msg, ret);
113 	if (msg->result == EC_RES_IN_PROGRESS) {
114 		int i;
115 		struct cros_ec_command *status_msg;
116 		struct ec_response_get_comms_status *status;
117 
118 		status_msg = kmalloc(sizeof(*status_msg) + sizeof(*status),
119 				     GFP_KERNEL);
120 		if (!status_msg)
121 			return -ENOMEM;
122 
123 		status_msg->version = 0;
124 		status_msg->command = EC_CMD_GET_COMMS_STATUS;
125 		status_msg->insize = sizeof(*status);
126 		status_msg->outsize = 0;
127 
128 		/*
129 		 * Query the EC's status until it's no longer busy or
130 		 * we encounter an error.
131 		 */
132 		for (i = 0; i < EC_COMMAND_RETRIES; i++) {
133 			usleep_range(10000, 11000);
134 
135 			trace_cros_ec_request_start(status_msg);
136 			ret = (*xfer_fxn)(ec_dev, status_msg);
137 			trace_cros_ec_request_done(status_msg, ret);
138 			if (ret == -EAGAIN)
139 				continue;
140 			if (ret < 0)
141 				break;
142 
143 			msg->result = status_msg->result;
144 			if (status_msg->result != EC_RES_SUCCESS)
145 				break;
146 
147 			status = (struct ec_response_get_comms_status *)
148 				 status_msg->data;
149 			if (!(status->flags & EC_COMMS_STATUS_PROCESSING))
150 				break;
151 		}
152 
153 		kfree(status_msg);
154 	}
155 
156 	return ret;
157 }
158 
159 /**
160  * cros_ec_prepare_tx() - Prepare an outgoing message in the output buffer.
161  * @ec_dev: Device to register.
162  * @msg: Message to write.
163  *
164  * This is intended to be used by all ChromeOS EC drivers, but at present
165  * only SPI uses it. Once LPC uses the same protocol it can start using it.
166  * I2C could use it now, with a refactor of the existing code.
167  *
168  * Return: number of prepared bytes on success or negative error code.
169  */
170 int cros_ec_prepare_tx(struct cros_ec_device *ec_dev,
171 		       struct cros_ec_command *msg)
172 {
173 	u8 *out;
174 	u8 csum;
175 	int i;
176 
177 	if (ec_dev->proto_version > 2)
178 		return prepare_packet(ec_dev, msg);
179 
180 	if (msg->outsize > EC_PROTO2_MAX_PARAM_SIZE)
181 		return -EINVAL;
182 
183 	out = ec_dev->dout;
184 	out[0] = EC_CMD_VERSION0 + msg->version;
185 	out[1] = msg->command;
186 	out[2] = msg->outsize;
187 	csum = out[0] + out[1] + out[2];
188 	for (i = 0; i < msg->outsize; i++)
189 		csum += out[EC_MSG_TX_HEADER_BYTES + i] = msg->data[i];
190 	out[EC_MSG_TX_HEADER_BYTES + msg->outsize] = csum;
191 
192 	return EC_MSG_TX_PROTO_BYTES + msg->outsize;
193 }
194 EXPORT_SYMBOL(cros_ec_prepare_tx);
195 
196 /**
197  * cros_ec_check_result() - Check ec_msg->result.
198  * @ec_dev: EC device.
199  * @msg: Message to check.
200  *
201  * This is used by ChromeOS EC drivers to check the ec_msg->result for
202  * errors and to warn about them.
203  *
204  * Return: 0 on success or negative error code.
205  */
206 int cros_ec_check_result(struct cros_ec_device *ec_dev,
207 			 struct cros_ec_command *msg)
208 {
209 	switch (msg->result) {
210 	case EC_RES_SUCCESS:
211 		return 0;
212 	case EC_RES_IN_PROGRESS:
213 		dev_dbg(ec_dev->dev, "command 0x%02x in progress\n",
214 			msg->command);
215 		return -EAGAIN;
216 	default:
217 		dev_dbg(ec_dev->dev, "command 0x%02x returned %d\n",
218 			msg->command, msg->result);
219 		return 0;
220 	}
221 }
222 EXPORT_SYMBOL(cros_ec_check_result);
223 
224 /*
225  * cros_ec_get_host_event_wake_mask
226  *
227  * Get the mask of host events that cause wake from suspend.
228  *
229  * @ec_dev: EC device to call
230  * @msg: message structure to use
231  * @mask: result when function returns >=0.
232  *
233  * LOCKING:
234  * the caller has ec_dev->lock mutex, or the caller knows there is
235  * no other command in progress.
236  */
237 static int cros_ec_get_host_event_wake_mask(struct cros_ec_device *ec_dev,
238 					    struct cros_ec_command *msg,
239 					    uint32_t *mask)
240 {
241 	struct ec_response_host_event_mask *r;
242 	int ret;
243 
244 	msg->command = EC_CMD_HOST_EVENT_GET_WAKE_MASK;
245 	msg->version = 0;
246 	msg->outsize = 0;
247 	msg->insize = sizeof(*r);
248 
249 	ret = send_command(ec_dev, msg);
250 	if (ret >= 0) {
251 		if (msg->result == EC_RES_INVALID_COMMAND)
252 			return -EOPNOTSUPP;
253 		if (msg->result != EC_RES_SUCCESS)
254 			return -EPROTO;
255 	}
256 	if (ret > 0) {
257 		r = (struct ec_response_host_event_mask *)msg->data;
258 		*mask = r->mask;
259 	}
260 
261 	return ret;
262 }
263 
264 static int cros_ec_host_command_proto_query(struct cros_ec_device *ec_dev,
265 					    int devidx,
266 					    struct cros_ec_command *msg)
267 {
268 	/*
269 	 * Try using v3+ to query for supported protocols. If this
270 	 * command fails, fall back to v2. Returns the highest protocol
271 	 * supported by the EC.
272 	 * Also sets the max request/response/passthru size.
273 	 */
274 	int ret;
275 
276 	if (!ec_dev->pkt_xfer)
277 		return -EPROTONOSUPPORT;
278 
279 	memset(msg, 0, sizeof(*msg));
280 	msg->command = EC_CMD_PASSTHRU_OFFSET(devidx) | EC_CMD_GET_PROTOCOL_INFO;
281 	msg->insize = sizeof(struct ec_response_get_protocol_info);
282 
283 	ret = send_command(ec_dev, msg);
284 	/*
285 	 * Send command once again when timeout occurred.
286 	 * Fingerprint MCU (FPMCU) is restarted during system boot which
287 	 * introduces small window in which FPMCU won't respond for any
288 	 * messages sent by kernel. There is no need to wait before next
289 	 * attempt because we waited at least EC_MSG_DEADLINE_MS.
290 	 */
291 	if (ret == -ETIMEDOUT)
292 		ret = send_command(ec_dev, msg);
293 
294 	if (ret < 0) {
295 		dev_dbg(ec_dev->dev,
296 			"failed to check for EC[%d] protocol version: %d\n",
297 			devidx, ret);
298 		return ret;
299 	}
300 
301 	if (devidx > 0 && msg->result == EC_RES_INVALID_COMMAND)
302 		return -ENODEV;
303 	else if (msg->result != EC_RES_SUCCESS)
304 		return msg->result;
305 
306 	return 0;
307 }
308 
309 static int cros_ec_host_command_proto_query_v2(struct cros_ec_device *ec_dev)
310 {
311 	struct cros_ec_command *msg;
312 	struct ec_params_hello *hello_params;
313 	struct ec_response_hello *hello_response;
314 	int ret;
315 	int len = max(sizeof(*hello_params), sizeof(*hello_response));
316 
317 	msg = kmalloc(sizeof(*msg) + len, GFP_KERNEL);
318 	if (!msg)
319 		return -ENOMEM;
320 
321 	msg->version = 0;
322 	msg->command = EC_CMD_HELLO;
323 	hello_params = (struct ec_params_hello *)msg->data;
324 	msg->outsize = sizeof(*hello_params);
325 	hello_response = (struct ec_response_hello *)msg->data;
326 	msg->insize = sizeof(*hello_response);
327 
328 	hello_params->in_data = 0xa0b0c0d0;
329 
330 	ret = send_command(ec_dev, msg);
331 
332 	if (ret < 0) {
333 		dev_dbg(ec_dev->dev,
334 			"EC failed to respond to v2 hello: %d\n",
335 			ret);
336 		goto exit;
337 	} else if (msg->result != EC_RES_SUCCESS) {
338 		dev_err(ec_dev->dev,
339 			"EC responded to v2 hello with error: %d\n",
340 			msg->result);
341 		ret = msg->result;
342 		goto exit;
343 	} else if (hello_response->out_data != 0xa1b2c3d4) {
344 		dev_err(ec_dev->dev,
345 			"EC responded to v2 hello with bad result: %u\n",
346 			hello_response->out_data);
347 		ret = -EBADMSG;
348 		goto exit;
349 	}
350 
351 	ret = 0;
352 
353  exit:
354 	kfree(msg);
355 	return ret;
356 }
357 
358 /*
359  * cros_ec_get_host_command_version_mask
360  *
361  * Get the version mask of a given command.
362  *
363  * @ec_dev: EC device to call
364  * @msg: message structure to use
365  * @cmd: command to get the version of.
366  * @mask: result when function returns 0.
367  *
368  * @return 0 on success, error code otherwise
369  *
370  * LOCKING:
371  * the caller has ec_dev->lock mutex or the caller knows there is
372  * no other command in progress.
373  */
374 static int cros_ec_get_host_command_version_mask(struct cros_ec_device *ec_dev,
375 	u16 cmd, u32 *mask)
376 {
377 	struct ec_params_get_cmd_versions *pver;
378 	struct ec_response_get_cmd_versions *rver;
379 	struct cros_ec_command *msg;
380 	int ret;
381 
382 	msg = kmalloc(sizeof(*msg) + max(sizeof(*rver), sizeof(*pver)),
383 		      GFP_KERNEL);
384 	if (!msg)
385 		return -ENOMEM;
386 
387 	msg->version = 0;
388 	msg->command = EC_CMD_GET_CMD_VERSIONS;
389 	msg->insize = sizeof(*rver);
390 	msg->outsize = sizeof(*pver);
391 
392 	pver = (struct ec_params_get_cmd_versions *)msg->data;
393 	pver->cmd = cmd;
394 
395 	ret = send_command(ec_dev, msg);
396 	if (ret > 0) {
397 		rver = (struct ec_response_get_cmd_versions *)msg->data;
398 		*mask = rver->version_mask;
399 	}
400 
401 	kfree(msg);
402 
403 	return ret;
404 }
405 
406 /**
407  * cros_ec_query_all() -  Query the protocol version supported by the
408  *         ChromeOS EC.
409  * @ec_dev: Device to register.
410  *
411  * Return: 0 on success or negative error code.
412  */
413 int cros_ec_query_all(struct cros_ec_device *ec_dev)
414 {
415 	struct device *dev = ec_dev->dev;
416 	struct cros_ec_command *proto_msg;
417 	struct ec_response_get_protocol_info *proto_info;
418 	u32 ver_mask = 0;
419 	int ret;
420 
421 	proto_msg = kzalloc(sizeof(*proto_msg) + sizeof(*proto_info),
422 			    GFP_KERNEL);
423 	if (!proto_msg)
424 		return -ENOMEM;
425 
426 	/* First try sending with proto v3. */
427 	ec_dev->proto_version = 3;
428 	ret = cros_ec_host_command_proto_query(ec_dev, 0, proto_msg);
429 
430 	if (ret == 0) {
431 		proto_info = (struct ec_response_get_protocol_info *)
432 			proto_msg->data;
433 		ec_dev->max_request = proto_info->max_request_packet_size -
434 			sizeof(struct ec_host_request);
435 		ec_dev->max_response = proto_info->max_response_packet_size -
436 			sizeof(struct ec_host_response);
437 		ec_dev->proto_version =
438 			min(EC_HOST_REQUEST_VERSION,
439 					fls(proto_info->protocol_versions) - 1);
440 		dev_dbg(ec_dev->dev,
441 			"using proto v%u\n",
442 			ec_dev->proto_version);
443 
444 		ec_dev->din_size = ec_dev->max_response +
445 			sizeof(struct ec_host_response) +
446 			EC_MAX_RESPONSE_OVERHEAD;
447 		ec_dev->dout_size = ec_dev->max_request +
448 			sizeof(struct ec_host_request) +
449 			EC_MAX_REQUEST_OVERHEAD;
450 
451 		/*
452 		 * Check for PD
453 		 */
454 		ret = cros_ec_host_command_proto_query(ec_dev, 1, proto_msg);
455 
456 		if (ret) {
457 			dev_dbg(ec_dev->dev, "no PD chip found: %d\n", ret);
458 			ec_dev->max_passthru = 0;
459 		} else {
460 			dev_dbg(ec_dev->dev, "found PD chip\n");
461 			ec_dev->max_passthru =
462 				proto_info->max_request_packet_size -
463 				sizeof(struct ec_host_request);
464 		}
465 	} else {
466 		/* Try querying with a v2 hello message. */
467 		ec_dev->proto_version = 2;
468 		ret = cros_ec_host_command_proto_query_v2(ec_dev);
469 
470 		if (ret == 0) {
471 			/* V2 hello succeeded. */
472 			dev_dbg(ec_dev->dev, "falling back to proto v2\n");
473 
474 			ec_dev->max_request = EC_PROTO2_MAX_PARAM_SIZE;
475 			ec_dev->max_response = EC_PROTO2_MAX_PARAM_SIZE;
476 			ec_dev->max_passthru = 0;
477 			ec_dev->pkt_xfer = NULL;
478 			ec_dev->din_size = EC_PROTO2_MSG_BYTES;
479 			ec_dev->dout_size = EC_PROTO2_MSG_BYTES;
480 		} else {
481 			/*
482 			 * It's possible for a test to occur too early when
483 			 * the EC isn't listening. If this happens, we'll
484 			 * test later when the first command is run.
485 			 */
486 			ec_dev->proto_version = EC_PROTO_VERSION_UNKNOWN;
487 			dev_dbg(ec_dev->dev, "EC query failed: %d\n", ret);
488 			goto exit;
489 		}
490 	}
491 
492 	devm_kfree(dev, ec_dev->din);
493 	devm_kfree(dev, ec_dev->dout);
494 
495 	ec_dev->din = devm_kzalloc(dev, ec_dev->din_size, GFP_KERNEL);
496 	if (!ec_dev->din) {
497 		ret = -ENOMEM;
498 		goto exit;
499 	}
500 
501 	ec_dev->dout = devm_kzalloc(dev, ec_dev->dout_size, GFP_KERNEL);
502 	if (!ec_dev->dout) {
503 		devm_kfree(dev, ec_dev->din);
504 		ret = -ENOMEM;
505 		goto exit;
506 	}
507 
508 	/* Probe if MKBP event is supported */
509 	ret = cros_ec_get_host_command_version_mask(ec_dev,
510 						    EC_CMD_GET_NEXT_EVENT,
511 						    &ver_mask);
512 	if (ret < 0 || ver_mask == 0)
513 		ec_dev->mkbp_event_supported = 0;
514 	else
515 		ec_dev->mkbp_event_supported = fls(ver_mask);
516 
517 	dev_dbg(ec_dev->dev, "MKBP support version %u\n",
518 		ec_dev->mkbp_event_supported - 1);
519 
520 	/* Probe if host sleep v1 is supported for S0ix failure detection. */
521 	ret = cros_ec_get_host_command_version_mask(ec_dev,
522 						    EC_CMD_HOST_SLEEP_EVENT,
523 						    &ver_mask);
524 	ec_dev->host_sleep_v1 = (ret >= 0 && (ver_mask & EC_VER_MASK(1)));
525 
526 	/* Get host event wake mask. */
527 	ret = cros_ec_get_host_event_wake_mask(ec_dev, proto_msg,
528 					       &ec_dev->host_event_wake_mask);
529 	if (ret < 0) {
530 		/*
531 		 * If the EC doesn't support EC_CMD_HOST_EVENT_GET_WAKE_MASK,
532 		 * use a reasonable default. Note that we ignore various
533 		 * battery, AC status, and power-state events, because (a)
534 		 * those can be quite common (e.g., when sitting at full
535 		 * charge, on AC) and (b) these are not actionable wake events;
536 		 * if anything, we'd like to continue suspending (to save
537 		 * power), not wake up.
538 		 */
539 		ec_dev->host_event_wake_mask = U32_MAX &
540 			~(EC_HOST_EVENT_MASK(EC_HOST_EVENT_LID_CLOSED) |
541 			  EC_HOST_EVENT_MASK(EC_HOST_EVENT_AC_DISCONNECTED) |
542 			  EC_HOST_EVENT_MASK(EC_HOST_EVENT_BATTERY_LOW) |
543 			  EC_HOST_EVENT_MASK(EC_HOST_EVENT_BATTERY_CRITICAL) |
544 			  EC_HOST_EVENT_MASK(EC_HOST_EVENT_BATTERY) |
545 			  EC_HOST_EVENT_MASK(EC_HOST_EVENT_PD_MCU) |
546 			  EC_HOST_EVENT_MASK(EC_HOST_EVENT_BATTERY_STATUS));
547 		/*
548 		 * Old ECs may not support this command. Complain about all
549 		 * other errors.
550 		 */
551 		if (ret != -EOPNOTSUPP)
552 			dev_err(ec_dev->dev,
553 				"failed to retrieve wake mask: %d\n", ret);
554 	}
555 
556 	ret = 0;
557 
558 exit:
559 	kfree(proto_msg);
560 	return ret;
561 }
562 EXPORT_SYMBOL(cros_ec_query_all);
563 
564 /**
565  * cros_ec_cmd_xfer() - Send a command to the ChromeOS EC.
566  * @ec_dev: EC device.
567  * @msg: Message to write.
568  *
569  * Call this to send a command to the ChromeOS EC. This should be used instead
570  * of calling the EC's cmd_xfer() callback directly. This function does not
571  * convert EC command execution error codes to Linux error codes. Most
572  * in-kernel users will want to use cros_ec_cmd_xfer_status() instead since
573  * that function implements the conversion.
574  *
575  * Return:
576  * >0 - EC command was executed successfully. The return value is the number
577  *      of bytes returned by the EC (excluding the header).
578  * =0 - EC communication was successful. EC command execution results are
579  *      reported in msg->result. The result will be EC_RES_SUCCESS if the
580  *      command was executed successfully or report an EC command execution
581  *      error.
582  * <0 - EC communication error. Return value is the Linux error code.
583  */
584 int cros_ec_cmd_xfer(struct cros_ec_device *ec_dev, struct cros_ec_command *msg)
585 {
586 	int ret;
587 
588 	mutex_lock(&ec_dev->lock);
589 	if (ec_dev->proto_version == EC_PROTO_VERSION_UNKNOWN) {
590 		ret = cros_ec_query_all(ec_dev);
591 		if (ret) {
592 			dev_err(ec_dev->dev,
593 				"EC version unknown and query failed; aborting command\n");
594 			mutex_unlock(&ec_dev->lock);
595 			return ret;
596 		}
597 	}
598 
599 	if (msg->insize > ec_dev->max_response) {
600 		dev_dbg(ec_dev->dev, "clamping message receive buffer\n");
601 		msg->insize = ec_dev->max_response;
602 	}
603 
604 	if (msg->command < EC_CMD_PASSTHRU_OFFSET(1)) {
605 		if (msg->outsize > ec_dev->max_request) {
606 			dev_err(ec_dev->dev,
607 				"request of size %u is too big (max: %u)\n",
608 				msg->outsize,
609 				ec_dev->max_request);
610 			mutex_unlock(&ec_dev->lock);
611 			return -EMSGSIZE;
612 		}
613 	} else {
614 		if (msg->outsize > ec_dev->max_passthru) {
615 			dev_err(ec_dev->dev,
616 				"passthru rq of size %u is too big (max: %u)\n",
617 				msg->outsize,
618 				ec_dev->max_passthru);
619 			mutex_unlock(&ec_dev->lock);
620 			return -EMSGSIZE;
621 		}
622 	}
623 
624 	ret = send_command(ec_dev, msg);
625 	mutex_unlock(&ec_dev->lock);
626 
627 	return ret;
628 }
629 EXPORT_SYMBOL(cros_ec_cmd_xfer);
630 
631 /**
632  * cros_ec_cmd_xfer_status() - Send a command to the ChromeOS EC.
633  * @ec_dev: EC device.
634  * @msg: Message to write.
635  *
636  * Call this to send a command to the ChromeOS EC. This should be used instead of calling the EC's
637  * cmd_xfer() callback directly. It returns success status only if both the command was transmitted
638  * successfully and the EC replied with success status.
639  *
640  * Return:
641  * >=0 - The number of bytes transferred.
642  * <0 - Linux error code
643  */
644 int cros_ec_cmd_xfer_status(struct cros_ec_device *ec_dev,
645 			    struct cros_ec_command *msg)
646 {
647 	int ret, mapped;
648 
649 	ret = cros_ec_cmd_xfer(ec_dev, msg);
650 	if (ret < 0)
651 		return ret;
652 
653 	mapped = cros_ec_map_error(msg->result);
654 	if (mapped) {
655 		dev_dbg(ec_dev->dev, "Command result (err: %d [%d])\n",
656 			msg->result, mapped);
657 		ret = mapped;
658 	}
659 
660 	return ret;
661 }
662 EXPORT_SYMBOL(cros_ec_cmd_xfer_status);
663 
664 static int get_next_event_xfer(struct cros_ec_device *ec_dev,
665 			       struct cros_ec_command *msg,
666 			       struct ec_response_get_next_event_v1 *event,
667 			       int version, uint32_t size)
668 {
669 	int ret;
670 
671 	msg->version = version;
672 	msg->command = EC_CMD_GET_NEXT_EVENT;
673 	msg->insize = size;
674 	msg->outsize = 0;
675 
676 	ret = cros_ec_cmd_xfer_status(ec_dev, msg);
677 	if (ret > 0) {
678 		ec_dev->event_size = ret - 1;
679 		ec_dev->event_data = *event;
680 	}
681 
682 	return ret;
683 }
684 
685 static int get_next_event(struct cros_ec_device *ec_dev)
686 {
687 	struct {
688 		struct cros_ec_command msg;
689 		struct ec_response_get_next_event_v1 event;
690 	} __packed buf;
691 	struct cros_ec_command *msg = &buf.msg;
692 	struct ec_response_get_next_event_v1 *event = &buf.event;
693 	const int cmd_version = ec_dev->mkbp_event_supported - 1;
694 
695 	memset(msg, 0, sizeof(*msg));
696 	if (ec_dev->suspended) {
697 		dev_dbg(ec_dev->dev, "Device suspended.\n");
698 		return -EHOSTDOWN;
699 	}
700 
701 	if (cmd_version == 0)
702 		return get_next_event_xfer(ec_dev, msg, event, 0,
703 				  sizeof(struct ec_response_get_next_event));
704 
705 	return get_next_event_xfer(ec_dev, msg, event, cmd_version,
706 				sizeof(struct ec_response_get_next_event_v1));
707 }
708 
709 static int get_keyboard_state_event(struct cros_ec_device *ec_dev)
710 {
711 	u8 buffer[sizeof(struct cros_ec_command) +
712 		  sizeof(ec_dev->event_data.data)];
713 	struct cros_ec_command *msg = (struct cros_ec_command *)&buffer;
714 
715 	msg->version = 0;
716 	msg->command = EC_CMD_MKBP_STATE;
717 	msg->insize = sizeof(ec_dev->event_data.data);
718 	msg->outsize = 0;
719 
720 	ec_dev->event_size = cros_ec_cmd_xfer_status(ec_dev, msg);
721 	ec_dev->event_data.event_type = EC_MKBP_EVENT_KEY_MATRIX;
722 	memcpy(&ec_dev->event_data.data, msg->data,
723 	       sizeof(ec_dev->event_data.data));
724 
725 	return ec_dev->event_size;
726 }
727 
728 /**
729  * cros_ec_get_next_event() - Fetch next event from the ChromeOS EC.
730  * @ec_dev: Device to fetch event from.
731  * @wake_event: Pointer to a bool set to true upon return if the event might be
732  *              treated as a wake event. Ignored if null.
733  * @has_more_events: Pointer to bool set to true if more than one event is
734  *              pending.
735  *              Some EC will set this flag to indicate cros_ec_get_next_event()
736  *              can be called multiple times in a row.
737  *              It is an optimization to prevent issuing a EC command for
738  *              nothing or wait for another interrupt from the EC to process
739  *              the next message.
740  *              Ignored if null.
741  *
742  * Return: negative error code on errors; 0 for no data; or else number of
743  * bytes received (i.e., an event was retrieved successfully). Event types are
744  * written out to @ec_dev->event_data.event_type on success.
745  */
746 int cros_ec_get_next_event(struct cros_ec_device *ec_dev,
747 			   bool *wake_event,
748 			   bool *has_more_events)
749 {
750 	u8 event_type;
751 	u32 host_event;
752 	int ret;
753 
754 	/*
755 	 * Default value for wake_event.
756 	 * Wake up on keyboard event, wake up for spurious interrupt or link
757 	 * error to the EC.
758 	 */
759 	if (wake_event)
760 		*wake_event = true;
761 
762 	/*
763 	 * Default value for has_more_events.
764 	 * EC will raise another interrupt if AP does not process all events
765 	 * anyway.
766 	 */
767 	if (has_more_events)
768 		*has_more_events = false;
769 
770 	if (!ec_dev->mkbp_event_supported)
771 		return get_keyboard_state_event(ec_dev);
772 
773 	ret = get_next_event(ec_dev);
774 	if (ret <= 0)
775 		return ret;
776 
777 	if (has_more_events)
778 		*has_more_events = ec_dev->event_data.event_type &
779 			EC_MKBP_HAS_MORE_EVENTS;
780 	ec_dev->event_data.event_type &= EC_MKBP_EVENT_TYPE_MASK;
781 
782 	if (wake_event) {
783 		event_type = ec_dev->event_data.event_type;
784 		host_event = cros_ec_get_host_event(ec_dev);
785 
786 		/*
787 		 * Sensor events need to be parsed by the sensor sub-device.
788 		 * Defer them, and don't report the wakeup here.
789 		 */
790 		if (event_type == EC_MKBP_EVENT_SENSOR_FIFO) {
791 			*wake_event = false;
792 		} else if (host_event) {
793 			/* rtc_update_irq() already handles wakeup events. */
794 			if (host_event & EC_HOST_EVENT_MASK(EC_HOST_EVENT_RTC))
795 				*wake_event = false;
796 			/* Masked host-events should not count as wake events. */
797 			if (!(host_event & ec_dev->host_event_wake_mask))
798 				*wake_event = false;
799 		}
800 	}
801 
802 	return ret;
803 }
804 EXPORT_SYMBOL(cros_ec_get_next_event);
805 
806 /**
807  * cros_ec_get_host_event() - Return a mask of event set by the ChromeOS EC.
808  * @ec_dev: Device to fetch event from.
809  *
810  * When MKBP is supported, when the EC raises an interrupt, we collect the
811  * events raised and call the functions in the ec notifier. This function
812  * is a helper to know which events are raised.
813  *
814  * Return: 0 on error or non-zero bitmask of one or more EC_HOST_EVENT_*.
815  */
816 u32 cros_ec_get_host_event(struct cros_ec_device *ec_dev)
817 {
818 	u32 host_event;
819 
820 	if (!ec_dev->mkbp_event_supported)
821 		return 0;
822 
823 	if (ec_dev->event_data.event_type != EC_MKBP_EVENT_HOST_EVENT)
824 		return 0;
825 
826 	if (ec_dev->event_size != sizeof(host_event)) {
827 		dev_warn(ec_dev->dev, "Invalid host event size\n");
828 		return 0;
829 	}
830 
831 	host_event = get_unaligned_le32(&ec_dev->event_data.data.host_event);
832 
833 	return host_event;
834 }
835 EXPORT_SYMBOL(cros_ec_get_host_event);
836 
837 /**
838  * cros_ec_check_features() - Test for the presence of EC features
839  *
840  * @ec: EC device, does not have to be connected directly to the AP,
841  *      can be daisy chained through another device.
842  * @feature: One of ec_feature_code bit.
843  *
844  * Call this function to test whether the ChromeOS EC supports a feature.
845  *
846  * Return: true if supported, false if not (or if an error was encountered).
847  */
848 bool cros_ec_check_features(struct cros_ec_dev *ec, int feature)
849 {
850 	struct ec_response_get_features *features = &ec->features;
851 	int ret;
852 
853 	if (features->flags[0] == -1U && features->flags[1] == -1U) {
854 		/* features bitmap not read yet */
855 		ret = cros_ec_command(ec->ec_dev, 0, EC_CMD_GET_FEATURES + ec->cmd_offset,
856 				      NULL, 0, features, sizeof(*features));
857 		if (ret < 0) {
858 			dev_warn(ec->dev, "cannot get EC features: %d\n", ret);
859 			memset(features, 0, sizeof(*features));
860 		}
861 
862 		dev_dbg(ec->dev, "EC features %08x %08x\n",
863 			features->flags[0], features->flags[1]);
864 	}
865 
866 	return !!(features->flags[feature / 32] & EC_FEATURE_MASK_0(feature));
867 }
868 EXPORT_SYMBOL_GPL(cros_ec_check_features);
869 
870 /**
871  * cros_ec_get_sensor_count() - Return the number of MEMS sensors supported.
872  *
873  * @ec: EC device, does not have to be connected directly to the AP,
874  *      can be daisy chained through another device.
875  * Return: < 0 in case of error.
876  */
877 int cros_ec_get_sensor_count(struct cros_ec_dev *ec)
878 {
879 	/*
880 	 * Issue a command to get the number of sensor reported.
881 	 * If not supported, check for legacy mode.
882 	 */
883 	int ret, sensor_count;
884 	struct ec_params_motion_sense *params;
885 	struct ec_response_motion_sense *resp;
886 	struct cros_ec_command *msg;
887 	struct cros_ec_device *ec_dev = ec->ec_dev;
888 	u8 status;
889 
890 	msg = kzalloc(sizeof(*msg) + max(sizeof(*params), sizeof(*resp)),
891 		      GFP_KERNEL);
892 	if (!msg)
893 		return -ENOMEM;
894 
895 	msg->version = 1;
896 	msg->command = EC_CMD_MOTION_SENSE_CMD + ec->cmd_offset;
897 	msg->outsize = sizeof(*params);
898 	msg->insize = sizeof(*resp);
899 
900 	params = (struct ec_params_motion_sense *)msg->data;
901 	params->cmd = MOTIONSENSE_CMD_DUMP;
902 
903 	ret = cros_ec_cmd_xfer_status(ec->ec_dev, msg);
904 	if (ret < 0) {
905 		sensor_count = ret;
906 	} else {
907 		resp = (struct ec_response_motion_sense *)msg->data;
908 		sensor_count = resp->dump.sensor_count;
909 	}
910 	kfree(msg);
911 
912 	/*
913 	 * Check legacy mode: Let's find out if sensors are accessible
914 	 * via LPC interface.
915 	 */
916 	if (sensor_count < 0 && ec->cmd_offset == 0 && ec_dev->cmd_readmem) {
917 		ret = ec_dev->cmd_readmem(ec_dev, EC_MEMMAP_ACC_STATUS,
918 				1, &status);
919 		if (ret >= 0 &&
920 		    (status & EC_MEMMAP_ACC_STATUS_PRESENCE_BIT)) {
921 			/*
922 			 * We have 2 sensors, one in the lid, one in the base.
923 			 */
924 			sensor_count = 2;
925 		} else {
926 			/*
927 			 * EC uses LPC interface and no sensors are presented.
928 			 */
929 			sensor_count = 0;
930 		}
931 	}
932 	return sensor_count;
933 }
934 EXPORT_SYMBOL_GPL(cros_ec_get_sensor_count);
935 
936 /**
937  * cros_ec_command - Send a command to the EC.
938  *
939  * @ec_dev: EC device
940  * @version: EC command version
941  * @command: EC command
942  * @outdata: EC command output data
943  * @outsize: Size of outdata
944  * @indata: EC command input data
945  * @insize: Size of indata
946  *
947  * Return: >= 0 on success, negative error number on failure.
948  */
949 int cros_ec_command(struct cros_ec_device *ec_dev,
950 		    unsigned int version,
951 		    int command,
952 		    void *outdata,
953 		    int outsize,
954 		    void *indata,
955 		    int insize)
956 {
957 	struct cros_ec_command *msg;
958 	int ret;
959 
960 	msg = kzalloc(sizeof(*msg) + max(insize, outsize), GFP_KERNEL);
961 	if (!msg)
962 		return -ENOMEM;
963 
964 	msg->version = version;
965 	msg->command = command;
966 	msg->outsize = outsize;
967 	msg->insize = insize;
968 
969 	if (outsize)
970 		memcpy(msg->data, outdata, outsize);
971 
972 	ret = cros_ec_cmd_xfer_status(ec_dev, msg);
973 	if (ret < 0)
974 		goto error;
975 
976 	if (insize)
977 		memcpy(indata, msg->data, insize);
978 error:
979 	kfree(msg);
980 	return ret;
981 }
982 EXPORT_SYMBOL_GPL(cros_ec_command);
983