xref: /linux/drivers/pwm/pwm-meson.c (revision d642ef71)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * PWM controller driver for Amlogic Meson SoCs.
4  *
5  * This PWM is only a set of Gates, Dividers and Counters:
6  * PWM output is achieved by calculating a clock that permits calculating
7  * two periods (low and high). The counter then has to be set to switch after
8  * N cycles for the first half period.
9  * The hardware has no "polarity" setting. This driver reverses the period
10  * cycles (the low length is inverted with the high length) for
11  * PWM_POLARITY_INVERSED. This means that .get_state cannot read the polarity
12  * from the hardware.
13  * Setting the duty cycle will disable and re-enable the PWM output.
14  * Disabling the PWM stops the output immediately (without waiting for the
15  * current period to complete first).
16  *
17  * The public S912 (GXM) datasheet contains some documentation for this PWM
18  * controller starting on page 543:
19  * https://dl.khadas.com/Hardware/VIM2/Datasheet/S912_Datasheet_V0.220170314publicversion-Wesion.pdf
20  * An updated version of this IP block is found in S922X (G12B) SoCs. The
21  * datasheet contains the description for this IP block revision starting at
22  * page 1084:
23  * https://dn.odroid.com/S922X/ODROID-N2/Datasheet/S922X_Public_Datasheet_V0.2.pdf
24  *
25  * Copyright (c) 2016 BayLibre, SAS.
26  * Author: Neil Armstrong <narmstrong@baylibre.com>
27  * Copyright (C) 2014 Amlogic, Inc.
28  */
29 
30 #include <linux/bitfield.h>
31 #include <linux/bits.h>
32 #include <linux/clk.h>
33 #include <linux/clk-provider.h>
34 #include <linux/err.h>
35 #include <linux/io.h>
36 #include <linux/kernel.h>
37 #include <linux/math64.h>
38 #include <linux/module.h>
39 #include <linux/of.h>
40 #include <linux/platform_device.h>
41 #include <linux/pwm.h>
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 
45 #define REG_PWM_A		0x0
46 #define REG_PWM_B		0x4
47 #define PWM_LOW_MASK		GENMASK(15, 0)
48 #define PWM_HIGH_MASK		GENMASK(31, 16)
49 
50 #define REG_MISC_AB		0x8
51 #define MISC_B_CLK_EN_SHIFT	23
52 #define MISC_A_CLK_EN_SHIFT	15
53 #define MISC_CLK_DIV_WIDTH	7
54 #define MISC_B_CLK_DIV_SHIFT	16
55 #define MISC_A_CLK_DIV_SHIFT	8
56 #define MISC_B_CLK_SEL_SHIFT	6
57 #define MISC_A_CLK_SEL_SHIFT	4
58 #define MISC_CLK_SEL_MASK	0x3
59 #define MISC_B_EN		BIT(1)
60 #define MISC_A_EN		BIT(0)
61 
62 #define MESON_NUM_PWMS		2
63 #define MESON_MAX_MUX_PARENTS	4
64 
65 static struct meson_pwm_channel_data {
66 	u8		reg_offset;
67 	u8		clk_sel_shift;
68 	u8		clk_div_shift;
69 	u8		clk_en_shift;
70 	u32		pwm_en_mask;
71 } meson_pwm_per_channel_data[MESON_NUM_PWMS] = {
72 	{
73 		.reg_offset	= REG_PWM_A,
74 		.clk_sel_shift	= MISC_A_CLK_SEL_SHIFT,
75 		.clk_div_shift	= MISC_A_CLK_DIV_SHIFT,
76 		.clk_en_shift	= MISC_A_CLK_EN_SHIFT,
77 		.pwm_en_mask	= MISC_A_EN,
78 	},
79 	{
80 		.reg_offset	= REG_PWM_B,
81 		.clk_sel_shift	= MISC_B_CLK_SEL_SHIFT,
82 		.clk_div_shift	= MISC_B_CLK_DIV_SHIFT,
83 		.clk_en_shift	= MISC_B_CLK_EN_SHIFT,
84 		.pwm_en_mask	= MISC_B_EN,
85 	}
86 };
87 
88 struct meson_pwm_channel {
89 	unsigned long rate;
90 	unsigned int hi;
91 	unsigned int lo;
92 
93 	struct clk_mux mux;
94 	struct clk_divider div;
95 	struct clk_gate gate;
96 	struct clk *clk;
97 };
98 
99 struct meson_pwm_data {
100 	const char * const *parent_names;
101 	unsigned int num_parents;
102 };
103 
104 struct meson_pwm {
105 	struct pwm_chip chip;
106 	const struct meson_pwm_data *data;
107 	struct meson_pwm_channel channels[MESON_NUM_PWMS];
108 	void __iomem *base;
109 	/*
110 	 * Protects register (write) access to the REG_MISC_AB register
111 	 * that is shared between the two PWMs.
112 	 */
113 	spinlock_t lock;
114 };
115 
116 static inline struct meson_pwm *to_meson_pwm(struct pwm_chip *chip)
117 {
118 	return container_of(chip, struct meson_pwm, chip);
119 }
120 
121 static int meson_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm)
122 {
123 	struct meson_pwm *meson = to_meson_pwm(chip);
124 	struct meson_pwm_channel *channel = &meson->channels[pwm->hwpwm];
125 	struct device *dev = chip->dev;
126 	int err;
127 
128 	err = clk_prepare_enable(channel->clk);
129 	if (err < 0) {
130 		dev_err(dev, "failed to enable clock %s: %d\n",
131 			__clk_get_name(channel->clk), err);
132 		return err;
133 	}
134 
135 	return 0;
136 }
137 
138 static void meson_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm)
139 {
140 	struct meson_pwm *meson = to_meson_pwm(chip);
141 	struct meson_pwm_channel *channel = &meson->channels[pwm->hwpwm];
142 
143 	clk_disable_unprepare(channel->clk);
144 }
145 
146 static int meson_pwm_calc(struct meson_pwm *meson, struct pwm_device *pwm,
147 			  const struct pwm_state *state)
148 {
149 	struct meson_pwm_channel *channel = &meson->channels[pwm->hwpwm];
150 	unsigned int cnt, duty_cnt;
151 	unsigned long fin_freq;
152 	u64 duty, period, freq;
153 
154 	duty = state->duty_cycle;
155 	period = state->period;
156 
157 	/*
158 	 * Note this is wrong. The result is an output wave that isn't really
159 	 * inverted and so is wrongly identified by .get_state as normal.
160 	 * Fixing this needs some care however as some machines might rely on
161 	 * this.
162 	 */
163 	if (state->polarity == PWM_POLARITY_INVERSED)
164 		duty = period - duty;
165 
166 	freq = div64_u64(NSEC_PER_SEC * 0xffffULL, period);
167 	if (freq > ULONG_MAX)
168 		freq = ULONG_MAX;
169 
170 	fin_freq = clk_round_rate(channel->clk, freq);
171 	if (fin_freq == 0) {
172 		dev_err(meson->chip.dev, "invalid source clock frequency\n");
173 		return -EINVAL;
174 	}
175 
176 	dev_dbg(meson->chip.dev, "fin_freq: %lu Hz\n", fin_freq);
177 
178 	cnt = div_u64(fin_freq * period, NSEC_PER_SEC);
179 	if (cnt > 0xffff) {
180 		dev_err(meson->chip.dev, "unable to get period cnt\n");
181 		return -EINVAL;
182 	}
183 
184 	dev_dbg(meson->chip.dev, "period=%llu cnt=%u\n", period, cnt);
185 
186 	if (duty == period) {
187 		channel->hi = cnt;
188 		channel->lo = 0;
189 	} else if (duty == 0) {
190 		channel->hi = 0;
191 		channel->lo = cnt;
192 	} else {
193 		duty_cnt = div_u64(fin_freq * duty, NSEC_PER_SEC);
194 
195 		dev_dbg(meson->chip.dev, "duty=%llu duty_cnt=%u\n", duty, duty_cnt);
196 
197 		channel->hi = duty_cnt;
198 		channel->lo = cnt - duty_cnt;
199 	}
200 
201 	channel->rate = fin_freq;
202 
203 	return 0;
204 }
205 
206 static void meson_pwm_enable(struct meson_pwm *meson, struct pwm_device *pwm)
207 {
208 	struct meson_pwm_channel *channel = &meson->channels[pwm->hwpwm];
209 	struct meson_pwm_channel_data *channel_data;
210 	unsigned long flags;
211 	u32 value;
212 	int err;
213 
214 	channel_data = &meson_pwm_per_channel_data[pwm->hwpwm];
215 
216 	err = clk_set_rate(channel->clk, channel->rate);
217 	if (err)
218 		dev_err(meson->chip.dev, "setting clock rate failed\n");
219 
220 	spin_lock_irqsave(&meson->lock, flags);
221 
222 	value = FIELD_PREP(PWM_HIGH_MASK, channel->hi) |
223 		FIELD_PREP(PWM_LOW_MASK, channel->lo);
224 	writel(value, meson->base + channel_data->reg_offset);
225 
226 	value = readl(meson->base + REG_MISC_AB);
227 	value |= channel_data->pwm_en_mask;
228 	writel(value, meson->base + REG_MISC_AB);
229 
230 	spin_unlock_irqrestore(&meson->lock, flags);
231 }
232 
233 static void meson_pwm_disable(struct meson_pwm *meson, struct pwm_device *pwm)
234 {
235 	unsigned long flags;
236 	u32 value;
237 
238 	spin_lock_irqsave(&meson->lock, flags);
239 
240 	value = readl(meson->base + REG_MISC_AB);
241 	value &= ~meson_pwm_per_channel_data[pwm->hwpwm].pwm_en_mask;
242 	writel(value, meson->base + REG_MISC_AB);
243 
244 	spin_unlock_irqrestore(&meson->lock, flags);
245 }
246 
247 static int meson_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
248 			   const struct pwm_state *state)
249 {
250 	struct meson_pwm *meson = to_meson_pwm(chip);
251 	struct meson_pwm_channel *channel = &meson->channels[pwm->hwpwm];
252 	int err = 0;
253 
254 	if (!state->enabled) {
255 		if (state->polarity == PWM_POLARITY_INVERSED) {
256 			/*
257 			 * This IP block revision doesn't have an "always high"
258 			 * setting which we can use for "inverted disabled".
259 			 * Instead we achieve this by setting mux parent with
260 			 * highest rate and minimum divider value, resulting
261 			 * in the shortest possible duration for one "count"
262 			 * and "period == duty_cycle". This results in a signal
263 			 * which is LOW for one "count", while being HIGH for
264 			 * the rest of the (so the signal is HIGH for slightly
265 			 * less than 100% of the period, but this is the best
266 			 * we can achieve).
267 			 */
268 			channel->rate = ULONG_MAX;
269 			channel->hi = ~0;
270 			channel->lo = 0;
271 
272 			meson_pwm_enable(meson, pwm);
273 		} else {
274 			meson_pwm_disable(meson, pwm);
275 		}
276 	} else {
277 		err = meson_pwm_calc(meson, pwm, state);
278 		if (err < 0)
279 			return err;
280 
281 		meson_pwm_enable(meson, pwm);
282 	}
283 
284 	return 0;
285 }
286 
287 static u64 meson_pwm_cnt_to_ns(struct pwm_chip *chip, struct pwm_device *pwm,
288 			       u32 cnt)
289 {
290 	struct meson_pwm *meson = to_meson_pwm(chip);
291 	struct meson_pwm_channel *channel;
292 	unsigned long fin_freq;
293 
294 	/* to_meson_pwm() can only be used after .get_state() is called */
295 	channel = &meson->channels[pwm->hwpwm];
296 
297 	fin_freq = clk_get_rate(channel->clk);
298 	if (fin_freq == 0)
299 		return 0;
300 
301 	return div64_ul(NSEC_PER_SEC * (u64)cnt, fin_freq);
302 }
303 
304 static int meson_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
305 			       struct pwm_state *state)
306 {
307 	struct meson_pwm *meson = to_meson_pwm(chip);
308 	struct meson_pwm_channel_data *channel_data;
309 	struct meson_pwm_channel *channel;
310 	u32 value;
311 
312 	if (!state)
313 		return 0;
314 
315 	channel = &meson->channels[pwm->hwpwm];
316 	channel_data = &meson_pwm_per_channel_data[pwm->hwpwm];
317 
318 	value = readl(meson->base + REG_MISC_AB);
319 	state->enabled = value & channel_data->pwm_en_mask;
320 
321 	value = readl(meson->base + channel_data->reg_offset);
322 	channel->lo = FIELD_GET(PWM_LOW_MASK, value);
323 	channel->hi = FIELD_GET(PWM_HIGH_MASK, value);
324 
325 	state->period = meson_pwm_cnt_to_ns(chip, pwm, channel->lo + channel->hi);
326 	state->duty_cycle = meson_pwm_cnt_to_ns(chip, pwm, channel->hi);
327 
328 	state->polarity = PWM_POLARITY_NORMAL;
329 
330 	return 0;
331 }
332 
333 static const struct pwm_ops meson_pwm_ops = {
334 	.request = meson_pwm_request,
335 	.free = meson_pwm_free,
336 	.apply = meson_pwm_apply,
337 	.get_state = meson_pwm_get_state,
338 };
339 
340 static const char * const pwm_meson8b_parent_names[] = {
341 	"xtal", NULL, "fclk_div4", "fclk_div3"
342 };
343 
344 static const struct meson_pwm_data pwm_meson8b_data = {
345 	.parent_names = pwm_meson8b_parent_names,
346 	.num_parents = ARRAY_SIZE(pwm_meson8b_parent_names),
347 };
348 
349 /*
350  * Only the 2 first inputs of the GXBB AO PWMs are valid
351  * The last 2 are grounded
352  */
353 static const char * const pwm_gxbb_ao_parent_names[] = {
354 	"xtal", "clk81"
355 };
356 
357 static const struct meson_pwm_data pwm_gxbb_ao_data = {
358 	.parent_names = pwm_gxbb_ao_parent_names,
359 	.num_parents = ARRAY_SIZE(pwm_gxbb_ao_parent_names),
360 };
361 
362 static const char * const pwm_axg_ee_parent_names[] = {
363 	"xtal", "fclk_div5", "fclk_div4", "fclk_div3"
364 };
365 
366 static const struct meson_pwm_data pwm_axg_ee_data = {
367 	.parent_names = pwm_axg_ee_parent_names,
368 	.num_parents = ARRAY_SIZE(pwm_axg_ee_parent_names),
369 };
370 
371 static const char * const pwm_axg_ao_parent_names[] = {
372 	"xtal", "axg_ao_clk81", "fclk_div4", "fclk_div5"
373 };
374 
375 static const struct meson_pwm_data pwm_axg_ao_data = {
376 	.parent_names = pwm_axg_ao_parent_names,
377 	.num_parents = ARRAY_SIZE(pwm_axg_ao_parent_names),
378 };
379 
380 static const char * const pwm_g12a_ao_ab_parent_names[] = {
381 	"xtal", "g12a_ao_clk81", "fclk_div4", "fclk_div5"
382 };
383 
384 static const struct meson_pwm_data pwm_g12a_ao_ab_data = {
385 	.parent_names = pwm_g12a_ao_ab_parent_names,
386 	.num_parents = ARRAY_SIZE(pwm_g12a_ao_ab_parent_names),
387 };
388 
389 static const char * const pwm_g12a_ao_cd_parent_names[] = {
390 	"xtal", "g12a_ao_clk81",
391 };
392 
393 static const struct meson_pwm_data pwm_g12a_ao_cd_data = {
394 	.parent_names = pwm_g12a_ao_cd_parent_names,
395 	.num_parents = ARRAY_SIZE(pwm_g12a_ao_cd_parent_names),
396 };
397 
398 static const struct of_device_id meson_pwm_matches[] = {
399 	{
400 		.compatible = "amlogic,meson8b-pwm",
401 		.data = &pwm_meson8b_data
402 	},
403 	{
404 		.compatible = "amlogic,meson-gxbb-pwm",
405 		.data = &pwm_meson8b_data
406 	},
407 	{
408 		.compatible = "amlogic,meson-gxbb-ao-pwm",
409 		.data = &pwm_gxbb_ao_data
410 	},
411 	{
412 		.compatible = "amlogic,meson-axg-ee-pwm",
413 		.data = &pwm_axg_ee_data
414 	},
415 	{
416 		.compatible = "amlogic,meson-axg-ao-pwm",
417 		.data = &pwm_axg_ao_data
418 	},
419 	{
420 		.compatible = "amlogic,meson-g12a-ee-pwm",
421 		.data = &pwm_meson8b_data
422 	},
423 	{
424 		.compatible = "amlogic,meson-g12a-ao-pwm-ab",
425 		.data = &pwm_g12a_ao_ab_data
426 	},
427 	{
428 		.compatible = "amlogic,meson-g12a-ao-pwm-cd",
429 		.data = &pwm_g12a_ao_cd_data
430 	},
431 	{},
432 };
433 MODULE_DEVICE_TABLE(of, meson_pwm_matches);
434 
435 static int meson_pwm_init_channels(struct meson_pwm *meson)
436 {
437 	struct clk_parent_data mux_parent_data[MESON_MAX_MUX_PARENTS] = {};
438 	struct device *dev = meson->chip.dev;
439 	unsigned int i;
440 	char name[255];
441 	int err;
442 
443 	for (i = 0; i < meson->data->num_parents; i++) {
444 		mux_parent_data[i].index = -1;
445 		mux_parent_data[i].name = meson->data->parent_names[i];
446 	}
447 
448 	for (i = 0; i < meson->chip.npwm; i++) {
449 		struct meson_pwm_channel *channel = &meson->channels[i];
450 		struct clk_parent_data div_parent = {}, gate_parent = {};
451 		struct clk_init_data init = {};
452 
453 		snprintf(name, sizeof(name), "%s#mux%u", dev_name(dev), i);
454 
455 		init.name = name;
456 		init.ops = &clk_mux_ops;
457 		init.flags = 0;
458 		init.parent_data = mux_parent_data;
459 		init.num_parents = meson->data->num_parents;
460 
461 		channel->mux.reg = meson->base + REG_MISC_AB;
462 		channel->mux.shift =
463 				meson_pwm_per_channel_data[i].clk_sel_shift;
464 		channel->mux.mask = MISC_CLK_SEL_MASK;
465 		channel->mux.flags = 0;
466 		channel->mux.lock = &meson->lock;
467 		channel->mux.table = NULL;
468 		channel->mux.hw.init = &init;
469 
470 		err = devm_clk_hw_register(dev, &channel->mux.hw);
471 		if (err) {
472 			dev_err(dev, "failed to register %s: %d\n", name, err);
473 			return err;
474 		}
475 
476 		snprintf(name, sizeof(name), "%s#div%u", dev_name(dev), i);
477 
478 		init.name = name;
479 		init.ops = &clk_divider_ops;
480 		init.flags = CLK_SET_RATE_PARENT;
481 		div_parent.index = -1;
482 		div_parent.hw = &channel->mux.hw;
483 		init.parent_data = &div_parent;
484 		init.num_parents = 1;
485 
486 		channel->div.reg = meson->base + REG_MISC_AB;
487 		channel->div.shift = meson_pwm_per_channel_data[i].clk_div_shift;
488 		channel->div.width = MISC_CLK_DIV_WIDTH;
489 		channel->div.hw.init = &init;
490 		channel->div.flags = 0;
491 		channel->div.lock = &meson->lock;
492 
493 		err = devm_clk_hw_register(dev, &channel->div.hw);
494 		if (err) {
495 			dev_err(dev, "failed to register %s: %d\n", name, err);
496 			return err;
497 		}
498 
499 		snprintf(name, sizeof(name), "%s#gate%u", dev_name(dev), i);
500 
501 		init.name = name;
502 		init.ops = &clk_gate_ops;
503 		init.flags = CLK_SET_RATE_PARENT | CLK_IGNORE_UNUSED;
504 		gate_parent.index = -1;
505 		gate_parent.hw = &channel->div.hw;
506 		init.parent_data = &gate_parent;
507 		init.num_parents = 1;
508 
509 		channel->gate.reg = meson->base + REG_MISC_AB;
510 		channel->gate.bit_idx = meson_pwm_per_channel_data[i].clk_en_shift;
511 		channel->gate.hw.init = &init;
512 		channel->gate.flags = 0;
513 		channel->gate.lock = &meson->lock;
514 
515 		err = devm_clk_hw_register(dev, &channel->gate.hw);
516 		if (err) {
517 			dev_err(dev, "failed to register %s: %d\n", name, err);
518 			return err;
519 		}
520 
521 		channel->clk = devm_clk_hw_get_clk(dev, &channel->gate.hw, NULL);
522 		if (IS_ERR(channel->clk)) {
523 			err = PTR_ERR(channel->clk);
524 			dev_err(dev, "failed to register %s: %d\n", name, err);
525 			return err;
526 		}
527 	}
528 
529 	return 0;
530 }
531 
532 static int meson_pwm_probe(struct platform_device *pdev)
533 {
534 	struct meson_pwm *meson;
535 	int err;
536 
537 	meson = devm_kzalloc(&pdev->dev, sizeof(*meson), GFP_KERNEL);
538 	if (!meson)
539 		return -ENOMEM;
540 
541 	meson->base = devm_platform_ioremap_resource(pdev, 0);
542 	if (IS_ERR(meson->base))
543 		return PTR_ERR(meson->base);
544 
545 	spin_lock_init(&meson->lock);
546 	meson->chip.dev = &pdev->dev;
547 	meson->chip.ops = &meson_pwm_ops;
548 	meson->chip.npwm = MESON_NUM_PWMS;
549 
550 	meson->data = of_device_get_match_data(&pdev->dev);
551 
552 	err = meson_pwm_init_channels(meson);
553 	if (err < 0)
554 		return err;
555 
556 	err = devm_pwmchip_add(&pdev->dev, &meson->chip);
557 	if (err < 0) {
558 		dev_err(&pdev->dev, "failed to register PWM chip: %d\n", err);
559 		return err;
560 	}
561 
562 	return 0;
563 }
564 
565 static struct platform_driver meson_pwm_driver = {
566 	.driver = {
567 		.name = "meson-pwm",
568 		.of_match_table = meson_pwm_matches,
569 	},
570 	.probe = meson_pwm_probe,
571 };
572 module_platform_driver(meson_pwm_driver);
573 
574 MODULE_DESCRIPTION("Amlogic Meson PWM Generator driver");
575 MODULE_AUTHOR("Neil Armstrong <narmstrong@baylibre.com>");
576 MODULE_LICENSE("Dual BSD/GPL");
577