xref: /linux/drivers/regulator/core.c (revision 0be3ff0c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c  --  Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
29 
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32 
33 #include "dummy.h"
34 #include "internal.h"
35 
36 static DEFINE_WW_CLASS(regulator_ww_class);
37 static DEFINE_MUTEX(regulator_nesting_mutex);
38 static DEFINE_MUTEX(regulator_list_mutex);
39 static LIST_HEAD(regulator_map_list);
40 static LIST_HEAD(regulator_ena_gpio_list);
41 static LIST_HEAD(regulator_supply_alias_list);
42 static LIST_HEAD(regulator_coupler_list);
43 static bool has_full_constraints;
44 
45 static struct dentry *debugfs_root;
46 
47 /*
48  * struct regulator_map
49  *
50  * Used to provide symbolic supply names to devices.
51  */
52 struct regulator_map {
53 	struct list_head list;
54 	const char *dev_name;   /* The dev_name() for the consumer */
55 	const char *supply;
56 	struct regulator_dev *regulator;
57 };
58 
59 /*
60  * struct regulator_enable_gpio
61  *
62  * Management for shared enable GPIO pin
63  */
64 struct regulator_enable_gpio {
65 	struct list_head list;
66 	struct gpio_desc *gpiod;
67 	u32 enable_count;	/* a number of enabled shared GPIO */
68 	u32 request_count;	/* a number of requested shared GPIO */
69 };
70 
71 /*
72  * struct regulator_supply_alias
73  *
74  * Used to map lookups for a supply onto an alternative device.
75  */
76 struct regulator_supply_alias {
77 	struct list_head list;
78 	struct device *src_dev;
79 	const char *src_supply;
80 	struct device *alias_dev;
81 	const char *alias_supply;
82 };
83 
84 static int _regulator_is_enabled(struct regulator_dev *rdev);
85 static int _regulator_disable(struct regulator *regulator);
86 static int _regulator_get_current_limit(struct regulator_dev *rdev);
87 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
88 static int _notifier_call_chain(struct regulator_dev *rdev,
89 				  unsigned long event, void *data);
90 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
91 				     int min_uV, int max_uV);
92 static int regulator_balance_voltage(struct regulator_dev *rdev,
93 				     suspend_state_t state);
94 static struct regulator *create_regulator(struct regulator_dev *rdev,
95 					  struct device *dev,
96 					  const char *supply_name);
97 static void destroy_regulator(struct regulator *regulator);
98 static void _regulator_put(struct regulator *regulator);
99 
100 const char *rdev_get_name(struct regulator_dev *rdev)
101 {
102 	if (rdev->constraints && rdev->constraints->name)
103 		return rdev->constraints->name;
104 	else if (rdev->desc->name)
105 		return rdev->desc->name;
106 	else
107 		return "";
108 }
109 EXPORT_SYMBOL_GPL(rdev_get_name);
110 
111 static bool have_full_constraints(void)
112 {
113 	return has_full_constraints || of_have_populated_dt();
114 }
115 
116 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
117 {
118 	if (!rdev->constraints) {
119 		rdev_err(rdev, "no constraints\n");
120 		return false;
121 	}
122 
123 	if (rdev->constraints->valid_ops_mask & ops)
124 		return true;
125 
126 	return false;
127 }
128 
129 /**
130  * regulator_lock_nested - lock a single regulator
131  * @rdev:		regulator source
132  * @ww_ctx:		w/w mutex acquire context
133  *
134  * This function can be called many times by one task on
135  * a single regulator and its mutex will be locked only
136  * once. If a task, which is calling this function is other
137  * than the one, which initially locked the mutex, it will
138  * wait on mutex.
139  */
140 static inline int regulator_lock_nested(struct regulator_dev *rdev,
141 					struct ww_acquire_ctx *ww_ctx)
142 {
143 	bool lock = false;
144 	int ret = 0;
145 
146 	mutex_lock(&regulator_nesting_mutex);
147 
148 	if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
149 		if (rdev->mutex_owner == current)
150 			rdev->ref_cnt++;
151 		else
152 			lock = true;
153 
154 		if (lock) {
155 			mutex_unlock(&regulator_nesting_mutex);
156 			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
157 			mutex_lock(&regulator_nesting_mutex);
158 		}
159 	} else {
160 		lock = true;
161 	}
162 
163 	if (lock && ret != -EDEADLK) {
164 		rdev->ref_cnt++;
165 		rdev->mutex_owner = current;
166 	}
167 
168 	mutex_unlock(&regulator_nesting_mutex);
169 
170 	return ret;
171 }
172 
173 /**
174  * regulator_lock - lock a single regulator
175  * @rdev:		regulator source
176  *
177  * This function can be called many times by one task on
178  * a single regulator and its mutex will be locked only
179  * once. If a task, which is calling this function is other
180  * than the one, which initially locked the mutex, it will
181  * wait on mutex.
182  */
183 static void regulator_lock(struct regulator_dev *rdev)
184 {
185 	regulator_lock_nested(rdev, NULL);
186 }
187 
188 /**
189  * regulator_unlock - unlock a single regulator
190  * @rdev:		regulator_source
191  *
192  * This function unlocks the mutex when the
193  * reference counter reaches 0.
194  */
195 static void regulator_unlock(struct regulator_dev *rdev)
196 {
197 	mutex_lock(&regulator_nesting_mutex);
198 
199 	if (--rdev->ref_cnt == 0) {
200 		rdev->mutex_owner = NULL;
201 		ww_mutex_unlock(&rdev->mutex);
202 	}
203 
204 	WARN_ON_ONCE(rdev->ref_cnt < 0);
205 
206 	mutex_unlock(&regulator_nesting_mutex);
207 }
208 
209 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
210 {
211 	struct regulator_dev *c_rdev;
212 	int i;
213 
214 	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
215 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
216 
217 		if (rdev->supply->rdev == c_rdev)
218 			return true;
219 	}
220 
221 	return false;
222 }
223 
224 static void regulator_unlock_recursive(struct regulator_dev *rdev,
225 				       unsigned int n_coupled)
226 {
227 	struct regulator_dev *c_rdev, *supply_rdev;
228 	int i, supply_n_coupled;
229 
230 	for (i = n_coupled; i > 0; i--) {
231 		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
232 
233 		if (!c_rdev)
234 			continue;
235 
236 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
237 			supply_rdev = c_rdev->supply->rdev;
238 			supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
239 
240 			regulator_unlock_recursive(supply_rdev,
241 						   supply_n_coupled);
242 		}
243 
244 		regulator_unlock(c_rdev);
245 	}
246 }
247 
248 static int regulator_lock_recursive(struct regulator_dev *rdev,
249 				    struct regulator_dev **new_contended_rdev,
250 				    struct regulator_dev **old_contended_rdev,
251 				    struct ww_acquire_ctx *ww_ctx)
252 {
253 	struct regulator_dev *c_rdev;
254 	int i, err;
255 
256 	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
257 		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
258 
259 		if (!c_rdev)
260 			continue;
261 
262 		if (c_rdev != *old_contended_rdev) {
263 			err = regulator_lock_nested(c_rdev, ww_ctx);
264 			if (err) {
265 				if (err == -EDEADLK) {
266 					*new_contended_rdev = c_rdev;
267 					goto err_unlock;
268 				}
269 
270 				/* shouldn't happen */
271 				WARN_ON_ONCE(err != -EALREADY);
272 			}
273 		} else {
274 			*old_contended_rdev = NULL;
275 		}
276 
277 		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
278 			err = regulator_lock_recursive(c_rdev->supply->rdev,
279 						       new_contended_rdev,
280 						       old_contended_rdev,
281 						       ww_ctx);
282 			if (err) {
283 				regulator_unlock(c_rdev);
284 				goto err_unlock;
285 			}
286 		}
287 	}
288 
289 	return 0;
290 
291 err_unlock:
292 	regulator_unlock_recursive(rdev, i);
293 
294 	return err;
295 }
296 
297 /**
298  * regulator_unlock_dependent - unlock regulator's suppliers and coupled
299  *				regulators
300  * @rdev:			regulator source
301  * @ww_ctx:			w/w mutex acquire context
302  *
303  * Unlock all regulators related with rdev by coupling or supplying.
304  */
305 static void regulator_unlock_dependent(struct regulator_dev *rdev,
306 				       struct ww_acquire_ctx *ww_ctx)
307 {
308 	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
309 	ww_acquire_fini(ww_ctx);
310 }
311 
312 /**
313  * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
314  * @rdev:			regulator source
315  * @ww_ctx:			w/w mutex acquire context
316  *
317  * This function as a wrapper on regulator_lock_recursive(), which locks
318  * all regulators related with rdev by coupling or supplying.
319  */
320 static void regulator_lock_dependent(struct regulator_dev *rdev,
321 				     struct ww_acquire_ctx *ww_ctx)
322 {
323 	struct regulator_dev *new_contended_rdev = NULL;
324 	struct regulator_dev *old_contended_rdev = NULL;
325 	int err;
326 
327 	mutex_lock(&regulator_list_mutex);
328 
329 	ww_acquire_init(ww_ctx, &regulator_ww_class);
330 
331 	do {
332 		if (new_contended_rdev) {
333 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
334 			old_contended_rdev = new_contended_rdev;
335 			old_contended_rdev->ref_cnt++;
336 		}
337 
338 		err = regulator_lock_recursive(rdev,
339 					       &new_contended_rdev,
340 					       &old_contended_rdev,
341 					       ww_ctx);
342 
343 		if (old_contended_rdev)
344 			regulator_unlock(old_contended_rdev);
345 
346 	} while (err == -EDEADLK);
347 
348 	ww_acquire_done(ww_ctx);
349 
350 	mutex_unlock(&regulator_list_mutex);
351 }
352 
353 /**
354  * of_get_child_regulator - get a child regulator device node
355  * based on supply name
356  * @parent: Parent device node
357  * @prop_name: Combination regulator supply name and "-supply"
358  *
359  * Traverse all child nodes.
360  * Extract the child regulator device node corresponding to the supply name.
361  * returns the device node corresponding to the regulator if found, else
362  * returns NULL.
363  */
364 static struct device_node *of_get_child_regulator(struct device_node *parent,
365 						  const char *prop_name)
366 {
367 	struct device_node *regnode = NULL;
368 	struct device_node *child = NULL;
369 
370 	for_each_child_of_node(parent, child) {
371 		regnode = of_parse_phandle(child, prop_name, 0);
372 
373 		if (!regnode) {
374 			regnode = of_get_child_regulator(child, prop_name);
375 			if (regnode)
376 				goto err_node_put;
377 		} else {
378 			goto err_node_put;
379 		}
380 	}
381 	return NULL;
382 
383 err_node_put:
384 	of_node_put(child);
385 	return regnode;
386 }
387 
388 /**
389  * of_get_regulator - get a regulator device node based on supply name
390  * @dev: Device pointer for the consumer (of regulator) device
391  * @supply: regulator supply name
392  *
393  * Extract the regulator device node corresponding to the supply name.
394  * returns the device node corresponding to the regulator if found, else
395  * returns NULL.
396  */
397 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
398 {
399 	struct device_node *regnode = NULL;
400 	char prop_name[64]; /* 64 is max size of property name */
401 
402 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
403 
404 	snprintf(prop_name, 64, "%s-supply", supply);
405 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
406 
407 	if (!regnode) {
408 		regnode = of_get_child_regulator(dev->of_node, prop_name);
409 		if (regnode)
410 			return regnode;
411 
412 		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
413 				prop_name, dev->of_node);
414 		return NULL;
415 	}
416 	return regnode;
417 }
418 
419 /* Platform voltage constraint check */
420 int regulator_check_voltage(struct regulator_dev *rdev,
421 			    int *min_uV, int *max_uV)
422 {
423 	BUG_ON(*min_uV > *max_uV);
424 
425 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
426 		rdev_err(rdev, "voltage operation not allowed\n");
427 		return -EPERM;
428 	}
429 
430 	if (*max_uV > rdev->constraints->max_uV)
431 		*max_uV = rdev->constraints->max_uV;
432 	if (*min_uV < rdev->constraints->min_uV)
433 		*min_uV = rdev->constraints->min_uV;
434 
435 	if (*min_uV > *max_uV) {
436 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
437 			 *min_uV, *max_uV);
438 		return -EINVAL;
439 	}
440 
441 	return 0;
442 }
443 
444 /* return 0 if the state is valid */
445 static int regulator_check_states(suspend_state_t state)
446 {
447 	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
448 }
449 
450 /* Make sure we select a voltage that suits the needs of all
451  * regulator consumers
452  */
453 int regulator_check_consumers(struct regulator_dev *rdev,
454 			      int *min_uV, int *max_uV,
455 			      suspend_state_t state)
456 {
457 	struct regulator *regulator;
458 	struct regulator_voltage *voltage;
459 
460 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
461 		voltage = &regulator->voltage[state];
462 		/*
463 		 * Assume consumers that didn't say anything are OK
464 		 * with anything in the constraint range.
465 		 */
466 		if (!voltage->min_uV && !voltage->max_uV)
467 			continue;
468 
469 		if (*max_uV > voltage->max_uV)
470 			*max_uV = voltage->max_uV;
471 		if (*min_uV < voltage->min_uV)
472 			*min_uV = voltage->min_uV;
473 	}
474 
475 	if (*min_uV > *max_uV) {
476 		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
477 			*min_uV, *max_uV);
478 		return -EINVAL;
479 	}
480 
481 	return 0;
482 }
483 
484 /* current constraint check */
485 static int regulator_check_current_limit(struct regulator_dev *rdev,
486 					int *min_uA, int *max_uA)
487 {
488 	BUG_ON(*min_uA > *max_uA);
489 
490 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
491 		rdev_err(rdev, "current operation not allowed\n");
492 		return -EPERM;
493 	}
494 
495 	if (*max_uA > rdev->constraints->max_uA)
496 		*max_uA = rdev->constraints->max_uA;
497 	if (*min_uA < rdev->constraints->min_uA)
498 		*min_uA = rdev->constraints->min_uA;
499 
500 	if (*min_uA > *max_uA) {
501 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
502 			 *min_uA, *max_uA);
503 		return -EINVAL;
504 	}
505 
506 	return 0;
507 }
508 
509 /* operating mode constraint check */
510 static int regulator_mode_constrain(struct regulator_dev *rdev,
511 				    unsigned int *mode)
512 {
513 	switch (*mode) {
514 	case REGULATOR_MODE_FAST:
515 	case REGULATOR_MODE_NORMAL:
516 	case REGULATOR_MODE_IDLE:
517 	case REGULATOR_MODE_STANDBY:
518 		break;
519 	default:
520 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
521 		return -EINVAL;
522 	}
523 
524 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
525 		rdev_err(rdev, "mode operation not allowed\n");
526 		return -EPERM;
527 	}
528 
529 	/* The modes are bitmasks, the most power hungry modes having
530 	 * the lowest values. If the requested mode isn't supported
531 	 * try higher modes.
532 	 */
533 	while (*mode) {
534 		if (rdev->constraints->valid_modes_mask & *mode)
535 			return 0;
536 		*mode /= 2;
537 	}
538 
539 	return -EINVAL;
540 }
541 
542 static inline struct regulator_state *
543 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
544 {
545 	if (rdev->constraints == NULL)
546 		return NULL;
547 
548 	switch (state) {
549 	case PM_SUSPEND_STANDBY:
550 		return &rdev->constraints->state_standby;
551 	case PM_SUSPEND_MEM:
552 		return &rdev->constraints->state_mem;
553 	case PM_SUSPEND_MAX:
554 		return &rdev->constraints->state_disk;
555 	default:
556 		return NULL;
557 	}
558 }
559 
560 static const struct regulator_state *
561 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
562 {
563 	const struct regulator_state *rstate;
564 
565 	rstate = regulator_get_suspend_state(rdev, state);
566 	if (rstate == NULL)
567 		return NULL;
568 
569 	/* If we have no suspend mode configuration don't set anything;
570 	 * only warn if the driver implements set_suspend_voltage or
571 	 * set_suspend_mode callback.
572 	 */
573 	if (rstate->enabled != ENABLE_IN_SUSPEND &&
574 	    rstate->enabled != DISABLE_IN_SUSPEND) {
575 		if (rdev->desc->ops->set_suspend_voltage ||
576 		    rdev->desc->ops->set_suspend_mode)
577 			rdev_warn(rdev, "No configuration\n");
578 		return NULL;
579 	}
580 
581 	return rstate;
582 }
583 
584 static ssize_t microvolts_show(struct device *dev,
585 			       struct device_attribute *attr, char *buf)
586 {
587 	struct regulator_dev *rdev = dev_get_drvdata(dev);
588 	int uV;
589 
590 	regulator_lock(rdev);
591 	uV = regulator_get_voltage_rdev(rdev);
592 	regulator_unlock(rdev);
593 
594 	if (uV < 0)
595 		return uV;
596 	return sprintf(buf, "%d\n", uV);
597 }
598 static DEVICE_ATTR_RO(microvolts);
599 
600 static ssize_t microamps_show(struct device *dev,
601 			      struct device_attribute *attr, char *buf)
602 {
603 	struct regulator_dev *rdev = dev_get_drvdata(dev);
604 
605 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
606 }
607 static DEVICE_ATTR_RO(microamps);
608 
609 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
610 			 char *buf)
611 {
612 	struct regulator_dev *rdev = dev_get_drvdata(dev);
613 
614 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
615 }
616 static DEVICE_ATTR_RO(name);
617 
618 static const char *regulator_opmode_to_str(int mode)
619 {
620 	switch (mode) {
621 	case REGULATOR_MODE_FAST:
622 		return "fast";
623 	case REGULATOR_MODE_NORMAL:
624 		return "normal";
625 	case REGULATOR_MODE_IDLE:
626 		return "idle";
627 	case REGULATOR_MODE_STANDBY:
628 		return "standby";
629 	}
630 	return "unknown";
631 }
632 
633 static ssize_t regulator_print_opmode(char *buf, int mode)
634 {
635 	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
636 }
637 
638 static ssize_t opmode_show(struct device *dev,
639 			   struct device_attribute *attr, char *buf)
640 {
641 	struct regulator_dev *rdev = dev_get_drvdata(dev);
642 
643 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
644 }
645 static DEVICE_ATTR_RO(opmode);
646 
647 static ssize_t regulator_print_state(char *buf, int state)
648 {
649 	if (state > 0)
650 		return sprintf(buf, "enabled\n");
651 	else if (state == 0)
652 		return sprintf(buf, "disabled\n");
653 	else
654 		return sprintf(buf, "unknown\n");
655 }
656 
657 static ssize_t state_show(struct device *dev,
658 			  struct device_attribute *attr, char *buf)
659 {
660 	struct regulator_dev *rdev = dev_get_drvdata(dev);
661 	ssize_t ret;
662 
663 	regulator_lock(rdev);
664 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
665 	regulator_unlock(rdev);
666 
667 	return ret;
668 }
669 static DEVICE_ATTR_RO(state);
670 
671 static ssize_t status_show(struct device *dev,
672 			   struct device_attribute *attr, char *buf)
673 {
674 	struct regulator_dev *rdev = dev_get_drvdata(dev);
675 	int status;
676 	char *label;
677 
678 	status = rdev->desc->ops->get_status(rdev);
679 	if (status < 0)
680 		return status;
681 
682 	switch (status) {
683 	case REGULATOR_STATUS_OFF:
684 		label = "off";
685 		break;
686 	case REGULATOR_STATUS_ON:
687 		label = "on";
688 		break;
689 	case REGULATOR_STATUS_ERROR:
690 		label = "error";
691 		break;
692 	case REGULATOR_STATUS_FAST:
693 		label = "fast";
694 		break;
695 	case REGULATOR_STATUS_NORMAL:
696 		label = "normal";
697 		break;
698 	case REGULATOR_STATUS_IDLE:
699 		label = "idle";
700 		break;
701 	case REGULATOR_STATUS_STANDBY:
702 		label = "standby";
703 		break;
704 	case REGULATOR_STATUS_BYPASS:
705 		label = "bypass";
706 		break;
707 	case REGULATOR_STATUS_UNDEFINED:
708 		label = "undefined";
709 		break;
710 	default:
711 		return -ERANGE;
712 	}
713 
714 	return sprintf(buf, "%s\n", label);
715 }
716 static DEVICE_ATTR_RO(status);
717 
718 static ssize_t min_microamps_show(struct device *dev,
719 				  struct device_attribute *attr, char *buf)
720 {
721 	struct regulator_dev *rdev = dev_get_drvdata(dev);
722 
723 	if (!rdev->constraints)
724 		return sprintf(buf, "constraint not defined\n");
725 
726 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
727 }
728 static DEVICE_ATTR_RO(min_microamps);
729 
730 static ssize_t max_microamps_show(struct device *dev,
731 				  struct device_attribute *attr, char *buf)
732 {
733 	struct regulator_dev *rdev = dev_get_drvdata(dev);
734 
735 	if (!rdev->constraints)
736 		return sprintf(buf, "constraint not defined\n");
737 
738 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
739 }
740 static DEVICE_ATTR_RO(max_microamps);
741 
742 static ssize_t min_microvolts_show(struct device *dev,
743 				   struct device_attribute *attr, char *buf)
744 {
745 	struct regulator_dev *rdev = dev_get_drvdata(dev);
746 
747 	if (!rdev->constraints)
748 		return sprintf(buf, "constraint not defined\n");
749 
750 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
751 }
752 static DEVICE_ATTR_RO(min_microvolts);
753 
754 static ssize_t max_microvolts_show(struct device *dev,
755 				   struct device_attribute *attr, char *buf)
756 {
757 	struct regulator_dev *rdev = dev_get_drvdata(dev);
758 
759 	if (!rdev->constraints)
760 		return sprintf(buf, "constraint not defined\n");
761 
762 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
763 }
764 static DEVICE_ATTR_RO(max_microvolts);
765 
766 static ssize_t requested_microamps_show(struct device *dev,
767 					struct device_attribute *attr, char *buf)
768 {
769 	struct regulator_dev *rdev = dev_get_drvdata(dev);
770 	struct regulator *regulator;
771 	int uA = 0;
772 
773 	regulator_lock(rdev);
774 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
775 		if (regulator->enable_count)
776 			uA += regulator->uA_load;
777 	}
778 	regulator_unlock(rdev);
779 	return sprintf(buf, "%d\n", uA);
780 }
781 static DEVICE_ATTR_RO(requested_microamps);
782 
783 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
784 			      char *buf)
785 {
786 	struct regulator_dev *rdev = dev_get_drvdata(dev);
787 	return sprintf(buf, "%d\n", rdev->use_count);
788 }
789 static DEVICE_ATTR_RO(num_users);
790 
791 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
792 			 char *buf)
793 {
794 	struct regulator_dev *rdev = dev_get_drvdata(dev);
795 
796 	switch (rdev->desc->type) {
797 	case REGULATOR_VOLTAGE:
798 		return sprintf(buf, "voltage\n");
799 	case REGULATOR_CURRENT:
800 		return sprintf(buf, "current\n");
801 	}
802 	return sprintf(buf, "unknown\n");
803 }
804 static DEVICE_ATTR_RO(type);
805 
806 static ssize_t suspend_mem_microvolts_show(struct device *dev,
807 					   struct device_attribute *attr, char *buf)
808 {
809 	struct regulator_dev *rdev = dev_get_drvdata(dev);
810 
811 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
812 }
813 static DEVICE_ATTR_RO(suspend_mem_microvolts);
814 
815 static ssize_t suspend_disk_microvolts_show(struct device *dev,
816 					    struct device_attribute *attr, char *buf)
817 {
818 	struct regulator_dev *rdev = dev_get_drvdata(dev);
819 
820 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
821 }
822 static DEVICE_ATTR_RO(suspend_disk_microvolts);
823 
824 static ssize_t suspend_standby_microvolts_show(struct device *dev,
825 					       struct device_attribute *attr, char *buf)
826 {
827 	struct regulator_dev *rdev = dev_get_drvdata(dev);
828 
829 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
830 }
831 static DEVICE_ATTR_RO(suspend_standby_microvolts);
832 
833 static ssize_t suspend_mem_mode_show(struct device *dev,
834 				     struct device_attribute *attr, char *buf)
835 {
836 	struct regulator_dev *rdev = dev_get_drvdata(dev);
837 
838 	return regulator_print_opmode(buf,
839 		rdev->constraints->state_mem.mode);
840 }
841 static DEVICE_ATTR_RO(suspend_mem_mode);
842 
843 static ssize_t suspend_disk_mode_show(struct device *dev,
844 				      struct device_attribute *attr, char *buf)
845 {
846 	struct regulator_dev *rdev = dev_get_drvdata(dev);
847 
848 	return regulator_print_opmode(buf,
849 		rdev->constraints->state_disk.mode);
850 }
851 static DEVICE_ATTR_RO(suspend_disk_mode);
852 
853 static ssize_t suspend_standby_mode_show(struct device *dev,
854 					 struct device_attribute *attr, char *buf)
855 {
856 	struct regulator_dev *rdev = dev_get_drvdata(dev);
857 
858 	return regulator_print_opmode(buf,
859 		rdev->constraints->state_standby.mode);
860 }
861 static DEVICE_ATTR_RO(suspend_standby_mode);
862 
863 static ssize_t suspend_mem_state_show(struct device *dev,
864 				      struct device_attribute *attr, char *buf)
865 {
866 	struct regulator_dev *rdev = dev_get_drvdata(dev);
867 
868 	return regulator_print_state(buf,
869 			rdev->constraints->state_mem.enabled);
870 }
871 static DEVICE_ATTR_RO(suspend_mem_state);
872 
873 static ssize_t suspend_disk_state_show(struct device *dev,
874 				       struct device_attribute *attr, char *buf)
875 {
876 	struct regulator_dev *rdev = dev_get_drvdata(dev);
877 
878 	return regulator_print_state(buf,
879 			rdev->constraints->state_disk.enabled);
880 }
881 static DEVICE_ATTR_RO(suspend_disk_state);
882 
883 static ssize_t suspend_standby_state_show(struct device *dev,
884 					  struct device_attribute *attr, char *buf)
885 {
886 	struct regulator_dev *rdev = dev_get_drvdata(dev);
887 
888 	return regulator_print_state(buf,
889 			rdev->constraints->state_standby.enabled);
890 }
891 static DEVICE_ATTR_RO(suspend_standby_state);
892 
893 static ssize_t bypass_show(struct device *dev,
894 			   struct device_attribute *attr, char *buf)
895 {
896 	struct regulator_dev *rdev = dev_get_drvdata(dev);
897 	const char *report;
898 	bool bypass;
899 	int ret;
900 
901 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
902 
903 	if (ret != 0)
904 		report = "unknown";
905 	else if (bypass)
906 		report = "enabled";
907 	else
908 		report = "disabled";
909 
910 	return sprintf(buf, "%s\n", report);
911 }
912 static DEVICE_ATTR_RO(bypass);
913 
914 /* Calculate the new optimum regulator operating mode based on the new total
915  * consumer load. All locks held by caller
916  */
917 static int drms_uA_update(struct regulator_dev *rdev)
918 {
919 	struct regulator *sibling;
920 	int current_uA = 0, output_uV, input_uV, err;
921 	unsigned int mode;
922 
923 	/*
924 	 * first check to see if we can set modes at all, otherwise just
925 	 * tell the consumer everything is OK.
926 	 */
927 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
928 		rdev_dbg(rdev, "DRMS operation not allowed\n");
929 		return 0;
930 	}
931 
932 	if (!rdev->desc->ops->get_optimum_mode &&
933 	    !rdev->desc->ops->set_load)
934 		return 0;
935 
936 	if (!rdev->desc->ops->set_mode &&
937 	    !rdev->desc->ops->set_load)
938 		return -EINVAL;
939 
940 	/* calc total requested load */
941 	list_for_each_entry(sibling, &rdev->consumer_list, list) {
942 		if (sibling->enable_count)
943 			current_uA += sibling->uA_load;
944 	}
945 
946 	current_uA += rdev->constraints->system_load;
947 
948 	if (rdev->desc->ops->set_load) {
949 		/* set the optimum mode for our new total regulator load */
950 		err = rdev->desc->ops->set_load(rdev, current_uA);
951 		if (err < 0)
952 			rdev_err(rdev, "failed to set load %d: %pe\n",
953 				 current_uA, ERR_PTR(err));
954 	} else {
955 		/* get output voltage */
956 		output_uV = regulator_get_voltage_rdev(rdev);
957 		if (output_uV <= 0) {
958 			rdev_err(rdev, "invalid output voltage found\n");
959 			return -EINVAL;
960 		}
961 
962 		/* get input voltage */
963 		input_uV = 0;
964 		if (rdev->supply)
965 			input_uV = regulator_get_voltage(rdev->supply);
966 		if (input_uV <= 0)
967 			input_uV = rdev->constraints->input_uV;
968 		if (input_uV <= 0) {
969 			rdev_err(rdev, "invalid input voltage found\n");
970 			return -EINVAL;
971 		}
972 
973 		/* now get the optimum mode for our new total regulator load */
974 		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
975 							 output_uV, current_uA);
976 
977 		/* check the new mode is allowed */
978 		err = regulator_mode_constrain(rdev, &mode);
979 		if (err < 0) {
980 			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
981 				 current_uA, input_uV, output_uV, ERR_PTR(err));
982 			return err;
983 		}
984 
985 		err = rdev->desc->ops->set_mode(rdev, mode);
986 		if (err < 0)
987 			rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
988 				 mode, ERR_PTR(err));
989 	}
990 
991 	return err;
992 }
993 
994 static int __suspend_set_state(struct regulator_dev *rdev,
995 			       const struct regulator_state *rstate)
996 {
997 	int ret = 0;
998 
999 	if (rstate->enabled == ENABLE_IN_SUSPEND &&
1000 		rdev->desc->ops->set_suspend_enable)
1001 		ret = rdev->desc->ops->set_suspend_enable(rdev);
1002 	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1003 		rdev->desc->ops->set_suspend_disable)
1004 		ret = rdev->desc->ops->set_suspend_disable(rdev);
1005 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1006 		ret = 0;
1007 
1008 	if (ret < 0) {
1009 		rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1010 		return ret;
1011 	}
1012 
1013 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1014 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1015 		if (ret < 0) {
1016 			rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1017 			return ret;
1018 		}
1019 	}
1020 
1021 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1022 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1023 		if (ret < 0) {
1024 			rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1025 			return ret;
1026 		}
1027 	}
1028 
1029 	return ret;
1030 }
1031 
1032 static int suspend_set_initial_state(struct regulator_dev *rdev)
1033 {
1034 	const struct regulator_state *rstate;
1035 
1036 	rstate = regulator_get_suspend_state_check(rdev,
1037 			rdev->constraints->initial_state);
1038 	if (!rstate)
1039 		return 0;
1040 
1041 	return __suspend_set_state(rdev, rstate);
1042 }
1043 
1044 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1045 static void print_constraints_debug(struct regulator_dev *rdev)
1046 {
1047 	struct regulation_constraints *constraints = rdev->constraints;
1048 	char buf[160] = "";
1049 	size_t len = sizeof(buf) - 1;
1050 	int count = 0;
1051 	int ret;
1052 
1053 	if (constraints->min_uV && constraints->max_uV) {
1054 		if (constraints->min_uV == constraints->max_uV)
1055 			count += scnprintf(buf + count, len - count, "%d mV ",
1056 					   constraints->min_uV / 1000);
1057 		else
1058 			count += scnprintf(buf + count, len - count,
1059 					   "%d <--> %d mV ",
1060 					   constraints->min_uV / 1000,
1061 					   constraints->max_uV / 1000);
1062 	}
1063 
1064 	if (!constraints->min_uV ||
1065 	    constraints->min_uV != constraints->max_uV) {
1066 		ret = regulator_get_voltage_rdev(rdev);
1067 		if (ret > 0)
1068 			count += scnprintf(buf + count, len - count,
1069 					   "at %d mV ", ret / 1000);
1070 	}
1071 
1072 	if (constraints->uV_offset)
1073 		count += scnprintf(buf + count, len - count, "%dmV offset ",
1074 				   constraints->uV_offset / 1000);
1075 
1076 	if (constraints->min_uA && constraints->max_uA) {
1077 		if (constraints->min_uA == constraints->max_uA)
1078 			count += scnprintf(buf + count, len - count, "%d mA ",
1079 					   constraints->min_uA / 1000);
1080 		else
1081 			count += scnprintf(buf + count, len - count,
1082 					   "%d <--> %d mA ",
1083 					   constraints->min_uA / 1000,
1084 					   constraints->max_uA / 1000);
1085 	}
1086 
1087 	if (!constraints->min_uA ||
1088 	    constraints->min_uA != constraints->max_uA) {
1089 		ret = _regulator_get_current_limit(rdev);
1090 		if (ret > 0)
1091 			count += scnprintf(buf + count, len - count,
1092 					   "at %d mA ", ret / 1000);
1093 	}
1094 
1095 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1096 		count += scnprintf(buf + count, len - count, "fast ");
1097 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1098 		count += scnprintf(buf + count, len - count, "normal ");
1099 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1100 		count += scnprintf(buf + count, len - count, "idle ");
1101 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1102 		count += scnprintf(buf + count, len - count, "standby ");
1103 
1104 	if (!count)
1105 		count = scnprintf(buf, len, "no parameters");
1106 	else
1107 		--count;
1108 
1109 	count += scnprintf(buf + count, len - count, ", %s",
1110 		_regulator_is_enabled(rdev) ? "enabled" : "disabled");
1111 
1112 	rdev_dbg(rdev, "%s\n", buf);
1113 }
1114 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1115 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1116 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1117 
1118 static void print_constraints(struct regulator_dev *rdev)
1119 {
1120 	struct regulation_constraints *constraints = rdev->constraints;
1121 
1122 	print_constraints_debug(rdev);
1123 
1124 	if ((constraints->min_uV != constraints->max_uV) &&
1125 	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1126 		rdev_warn(rdev,
1127 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1128 }
1129 
1130 static int machine_constraints_voltage(struct regulator_dev *rdev,
1131 	struct regulation_constraints *constraints)
1132 {
1133 	const struct regulator_ops *ops = rdev->desc->ops;
1134 	int ret;
1135 
1136 	/* do we need to apply the constraint voltage */
1137 	if (rdev->constraints->apply_uV &&
1138 	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
1139 		int target_min, target_max;
1140 		int current_uV = regulator_get_voltage_rdev(rdev);
1141 
1142 		if (current_uV == -ENOTRECOVERABLE) {
1143 			/* This regulator can't be read and must be initialized */
1144 			rdev_info(rdev, "Setting %d-%duV\n",
1145 				  rdev->constraints->min_uV,
1146 				  rdev->constraints->max_uV);
1147 			_regulator_do_set_voltage(rdev,
1148 						  rdev->constraints->min_uV,
1149 						  rdev->constraints->max_uV);
1150 			current_uV = regulator_get_voltage_rdev(rdev);
1151 		}
1152 
1153 		if (current_uV < 0) {
1154 			if (current_uV != -EPROBE_DEFER)
1155 				rdev_err(rdev,
1156 					 "failed to get the current voltage: %pe\n",
1157 					 ERR_PTR(current_uV));
1158 			return current_uV;
1159 		}
1160 
1161 		/*
1162 		 * If we're below the minimum voltage move up to the
1163 		 * minimum voltage, if we're above the maximum voltage
1164 		 * then move down to the maximum.
1165 		 */
1166 		target_min = current_uV;
1167 		target_max = current_uV;
1168 
1169 		if (current_uV < rdev->constraints->min_uV) {
1170 			target_min = rdev->constraints->min_uV;
1171 			target_max = rdev->constraints->min_uV;
1172 		}
1173 
1174 		if (current_uV > rdev->constraints->max_uV) {
1175 			target_min = rdev->constraints->max_uV;
1176 			target_max = rdev->constraints->max_uV;
1177 		}
1178 
1179 		if (target_min != current_uV || target_max != current_uV) {
1180 			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1181 				  current_uV, target_min, target_max);
1182 			ret = _regulator_do_set_voltage(
1183 				rdev, target_min, target_max);
1184 			if (ret < 0) {
1185 				rdev_err(rdev,
1186 					"failed to apply %d-%duV constraint: %pe\n",
1187 					target_min, target_max, ERR_PTR(ret));
1188 				return ret;
1189 			}
1190 		}
1191 	}
1192 
1193 	/* constrain machine-level voltage specs to fit
1194 	 * the actual range supported by this regulator.
1195 	 */
1196 	if (ops->list_voltage && rdev->desc->n_voltages) {
1197 		int	count = rdev->desc->n_voltages;
1198 		int	i;
1199 		int	min_uV = INT_MAX;
1200 		int	max_uV = INT_MIN;
1201 		int	cmin = constraints->min_uV;
1202 		int	cmax = constraints->max_uV;
1203 
1204 		/* it's safe to autoconfigure fixed-voltage supplies
1205 		 * and the constraints are used by list_voltage.
1206 		 */
1207 		if (count == 1 && !cmin) {
1208 			cmin = 1;
1209 			cmax = INT_MAX;
1210 			constraints->min_uV = cmin;
1211 			constraints->max_uV = cmax;
1212 		}
1213 
1214 		/* voltage constraints are optional */
1215 		if ((cmin == 0) && (cmax == 0))
1216 			return 0;
1217 
1218 		/* else require explicit machine-level constraints */
1219 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1220 			rdev_err(rdev, "invalid voltage constraints\n");
1221 			return -EINVAL;
1222 		}
1223 
1224 		/* no need to loop voltages if range is continuous */
1225 		if (rdev->desc->continuous_voltage_range)
1226 			return 0;
1227 
1228 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1229 		for (i = 0; i < count; i++) {
1230 			int	value;
1231 
1232 			value = ops->list_voltage(rdev, i);
1233 			if (value <= 0)
1234 				continue;
1235 
1236 			/* maybe adjust [min_uV..max_uV] */
1237 			if (value >= cmin && value < min_uV)
1238 				min_uV = value;
1239 			if (value <= cmax && value > max_uV)
1240 				max_uV = value;
1241 		}
1242 
1243 		/* final: [min_uV..max_uV] valid iff constraints valid */
1244 		if (max_uV < min_uV) {
1245 			rdev_err(rdev,
1246 				 "unsupportable voltage constraints %u-%uuV\n",
1247 				 min_uV, max_uV);
1248 			return -EINVAL;
1249 		}
1250 
1251 		/* use regulator's subset of machine constraints */
1252 		if (constraints->min_uV < min_uV) {
1253 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1254 				 constraints->min_uV, min_uV);
1255 			constraints->min_uV = min_uV;
1256 		}
1257 		if (constraints->max_uV > max_uV) {
1258 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1259 				 constraints->max_uV, max_uV);
1260 			constraints->max_uV = max_uV;
1261 		}
1262 	}
1263 
1264 	return 0;
1265 }
1266 
1267 static int machine_constraints_current(struct regulator_dev *rdev,
1268 	struct regulation_constraints *constraints)
1269 {
1270 	const struct regulator_ops *ops = rdev->desc->ops;
1271 	int ret;
1272 
1273 	if (!constraints->min_uA && !constraints->max_uA)
1274 		return 0;
1275 
1276 	if (constraints->min_uA > constraints->max_uA) {
1277 		rdev_err(rdev, "Invalid current constraints\n");
1278 		return -EINVAL;
1279 	}
1280 
1281 	if (!ops->set_current_limit || !ops->get_current_limit) {
1282 		rdev_warn(rdev, "Operation of current configuration missing\n");
1283 		return 0;
1284 	}
1285 
1286 	/* Set regulator current in constraints range */
1287 	ret = ops->set_current_limit(rdev, constraints->min_uA,
1288 			constraints->max_uA);
1289 	if (ret < 0) {
1290 		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1291 		return ret;
1292 	}
1293 
1294 	return 0;
1295 }
1296 
1297 static int _regulator_do_enable(struct regulator_dev *rdev);
1298 
1299 static int notif_set_limit(struct regulator_dev *rdev,
1300 			   int (*set)(struct regulator_dev *, int, int, bool),
1301 			   int limit, int severity)
1302 {
1303 	bool enable;
1304 
1305 	if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1306 		enable = false;
1307 		limit = 0;
1308 	} else {
1309 		enable = true;
1310 	}
1311 
1312 	if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1313 		limit = 0;
1314 
1315 	return set(rdev, limit, severity, enable);
1316 }
1317 
1318 static int handle_notify_limits(struct regulator_dev *rdev,
1319 			int (*set)(struct regulator_dev *, int, int, bool),
1320 			struct notification_limit *limits)
1321 {
1322 	int ret = 0;
1323 
1324 	if (!set)
1325 		return -EOPNOTSUPP;
1326 
1327 	if (limits->prot)
1328 		ret = notif_set_limit(rdev, set, limits->prot,
1329 				      REGULATOR_SEVERITY_PROT);
1330 	if (ret)
1331 		return ret;
1332 
1333 	if (limits->err)
1334 		ret = notif_set_limit(rdev, set, limits->err,
1335 				      REGULATOR_SEVERITY_ERR);
1336 	if (ret)
1337 		return ret;
1338 
1339 	if (limits->warn)
1340 		ret = notif_set_limit(rdev, set, limits->warn,
1341 				      REGULATOR_SEVERITY_WARN);
1342 
1343 	return ret;
1344 }
1345 /**
1346  * set_machine_constraints - sets regulator constraints
1347  * @rdev: regulator source
1348  *
1349  * Allows platform initialisation code to define and constrain
1350  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1351  * Constraints *must* be set by platform code in order for some
1352  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1353  * set_mode.
1354  */
1355 static int set_machine_constraints(struct regulator_dev *rdev)
1356 {
1357 	int ret = 0;
1358 	const struct regulator_ops *ops = rdev->desc->ops;
1359 
1360 	ret = machine_constraints_voltage(rdev, rdev->constraints);
1361 	if (ret != 0)
1362 		return ret;
1363 
1364 	ret = machine_constraints_current(rdev, rdev->constraints);
1365 	if (ret != 0)
1366 		return ret;
1367 
1368 	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1369 		ret = ops->set_input_current_limit(rdev,
1370 						   rdev->constraints->ilim_uA);
1371 		if (ret < 0) {
1372 			rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1373 			return ret;
1374 		}
1375 	}
1376 
1377 	/* do we need to setup our suspend state */
1378 	if (rdev->constraints->initial_state) {
1379 		ret = suspend_set_initial_state(rdev);
1380 		if (ret < 0) {
1381 			rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1382 			return ret;
1383 		}
1384 	}
1385 
1386 	if (rdev->constraints->initial_mode) {
1387 		if (!ops->set_mode) {
1388 			rdev_err(rdev, "no set_mode operation\n");
1389 			return -EINVAL;
1390 		}
1391 
1392 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1393 		if (ret < 0) {
1394 			rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1395 			return ret;
1396 		}
1397 	} else if (rdev->constraints->system_load) {
1398 		/*
1399 		 * We'll only apply the initial system load if an
1400 		 * initial mode wasn't specified.
1401 		 */
1402 		drms_uA_update(rdev);
1403 	}
1404 
1405 	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1406 		&& ops->set_ramp_delay) {
1407 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1408 		if (ret < 0) {
1409 			rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1410 			return ret;
1411 		}
1412 	}
1413 
1414 	if (rdev->constraints->pull_down && ops->set_pull_down) {
1415 		ret = ops->set_pull_down(rdev);
1416 		if (ret < 0) {
1417 			rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1418 			return ret;
1419 		}
1420 	}
1421 
1422 	if (rdev->constraints->soft_start && ops->set_soft_start) {
1423 		ret = ops->set_soft_start(rdev);
1424 		if (ret < 0) {
1425 			rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1426 			return ret;
1427 		}
1428 	}
1429 
1430 	/*
1431 	 * Existing logic does not warn if over_current_protection is given as
1432 	 * a constraint but driver does not support that. I think we should
1433 	 * warn about this type of issues as it is possible someone changes
1434 	 * PMIC on board to another type - and the another PMIC's driver does
1435 	 * not support setting protection. Board composer may happily believe
1436 	 * the DT limits are respected - especially if the new PMIC HW also
1437 	 * supports protection but the driver does not. I won't change the logic
1438 	 * without hearing more experienced opinion on this though.
1439 	 *
1440 	 * If warning is seen as a good idea then we can merge handling the
1441 	 * over-curret protection and detection and get rid of this special
1442 	 * handling.
1443 	 */
1444 	if (rdev->constraints->over_current_protection
1445 		&& ops->set_over_current_protection) {
1446 		int lim = rdev->constraints->over_curr_limits.prot;
1447 
1448 		ret = ops->set_over_current_protection(rdev, lim,
1449 						       REGULATOR_SEVERITY_PROT,
1450 						       true);
1451 		if (ret < 0) {
1452 			rdev_err(rdev, "failed to set over current protection: %pe\n",
1453 				 ERR_PTR(ret));
1454 			return ret;
1455 		}
1456 	}
1457 
1458 	if (rdev->constraints->over_current_detection)
1459 		ret = handle_notify_limits(rdev,
1460 					   ops->set_over_current_protection,
1461 					   &rdev->constraints->over_curr_limits);
1462 	if (ret) {
1463 		if (ret != -EOPNOTSUPP) {
1464 			rdev_err(rdev, "failed to set over current limits: %pe\n",
1465 				 ERR_PTR(ret));
1466 			return ret;
1467 		}
1468 		rdev_warn(rdev,
1469 			  "IC does not support requested over-current limits\n");
1470 	}
1471 
1472 	if (rdev->constraints->over_voltage_detection)
1473 		ret = handle_notify_limits(rdev,
1474 					   ops->set_over_voltage_protection,
1475 					   &rdev->constraints->over_voltage_limits);
1476 	if (ret) {
1477 		if (ret != -EOPNOTSUPP) {
1478 			rdev_err(rdev, "failed to set over voltage limits %pe\n",
1479 				 ERR_PTR(ret));
1480 			return ret;
1481 		}
1482 		rdev_warn(rdev,
1483 			  "IC does not support requested over voltage limits\n");
1484 	}
1485 
1486 	if (rdev->constraints->under_voltage_detection)
1487 		ret = handle_notify_limits(rdev,
1488 					   ops->set_under_voltage_protection,
1489 					   &rdev->constraints->under_voltage_limits);
1490 	if (ret) {
1491 		if (ret != -EOPNOTSUPP) {
1492 			rdev_err(rdev, "failed to set under voltage limits %pe\n",
1493 				 ERR_PTR(ret));
1494 			return ret;
1495 		}
1496 		rdev_warn(rdev,
1497 			  "IC does not support requested under voltage limits\n");
1498 	}
1499 
1500 	if (rdev->constraints->over_temp_detection)
1501 		ret = handle_notify_limits(rdev,
1502 					   ops->set_thermal_protection,
1503 					   &rdev->constraints->temp_limits);
1504 	if (ret) {
1505 		if (ret != -EOPNOTSUPP) {
1506 			rdev_err(rdev, "failed to set temperature limits %pe\n",
1507 				 ERR_PTR(ret));
1508 			return ret;
1509 		}
1510 		rdev_warn(rdev,
1511 			  "IC does not support requested temperature limits\n");
1512 	}
1513 
1514 	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1515 		bool ad_state = (rdev->constraints->active_discharge ==
1516 			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1517 
1518 		ret = ops->set_active_discharge(rdev, ad_state);
1519 		if (ret < 0) {
1520 			rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1521 			return ret;
1522 		}
1523 	}
1524 
1525 	/* If the constraints say the regulator should be on at this point
1526 	 * and we have control then make sure it is enabled.
1527 	 */
1528 	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1529 		/* If we want to enable this regulator, make sure that we know
1530 		 * the supplying regulator.
1531 		 */
1532 		if (rdev->supply_name && !rdev->supply)
1533 			return -EPROBE_DEFER;
1534 
1535 		if (rdev->supply) {
1536 			ret = regulator_enable(rdev->supply);
1537 			if (ret < 0) {
1538 				_regulator_put(rdev->supply);
1539 				rdev->supply = NULL;
1540 				return ret;
1541 			}
1542 		}
1543 
1544 		ret = _regulator_do_enable(rdev);
1545 		if (ret < 0 && ret != -EINVAL) {
1546 			rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1547 			return ret;
1548 		}
1549 
1550 		if (rdev->constraints->always_on)
1551 			rdev->use_count++;
1552 	} else if (rdev->desc->off_on_delay) {
1553 		rdev->last_off = ktime_get();
1554 	}
1555 
1556 	print_constraints(rdev);
1557 	return 0;
1558 }
1559 
1560 /**
1561  * set_supply - set regulator supply regulator
1562  * @rdev: regulator name
1563  * @supply_rdev: supply regulator name
1564  *
1565  * Called by platform initialisation code to set the supply regulator for this
1566  * regulator. This ensures that a regulators supply will also be enabled by the
1567  * core if it's child is enabled.
1568  */
1569 static int set_supply(struct regulator_dev *rdev,
1570 		      struct regulator_dev *supply_rdev)
1571 {
1572 	int err;
1573 
1574 	rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1575 
1576 	if (!try_module_get(supply_rdev->owner))
1577 		return -ENODEV;
1578 
1579 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1580 	if (rdev->supply == NULL) {
1581 		err = -ENOMEM;
1582 		return err;
1583 	}
1584 	supply_rdev->open_count++;
1585 
1586 	return 0;
1587 }
1588 
1589 /**
1590  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1591  * @rdev:         regulator source
1592  * @consumer_dev_name: dev_name() string for device supply applies to
1593  * @supply:       symbolic name for supply
1594  *
1595  * Allows platform initialisation code to map physical regulator
1596  * sources to symbolic names for supplies for use by devices.  Devices
1597  * should use these symbolic names to request regulators, avoiding the
1598  * need to provide board-specific regulator names as platform data.
1599  */
1600 static int set_consumer_device_supply(struct regulator_dev *rdev,
1601 				      const char *consumer_dev_name,
1602 				      const char *supply)
1603 {
1604 	struct regulator_map *node, *new_node;
1605 	int has_dev;
1606 
1607 	if (supply == NULL)
1608 		return -EINVAL;
1609 
1610 	if (consumer_dev_name != NULL)
1611 		has_dev = 1;
1612 	else
1613 		has_dev = 0;
1614 
1615 	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1616 	if (new_node == NULL)
1617 		return -ENOMEM;
1618 
1619 	new_node->regulator = rdev;
1620 	new_node->supply = supply;
1621 
1622 	if (has_dev) {
1623 		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1624 		if (new_node->dev_name == NULL) {
1625 			kfree(new_node);
1626 			return -ENOMEM;
1627 		}
1628 	}
1629 
1630 	mutex_lock(&regulator_list_mutex);
1631 	list_for_each_entry(node, &regulator_map_list, list) {
1632 		if (node->dev_name && consumer_dev_name) {
1633 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1634 				continue;
1635 		} else if (node->dev_name || consumer_dev_name) {
1636 			continue;
1637 		}
1638 
1639 		if (strcmp(node->supply, supply) != 0)
1640 			continue;
1641 
1642 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1643 			 consumer_dev_name,
1644 			 dev_name(&node->regulator->dev),
1645 			 node->regulator->desc->name,
1646 			 supply,
1647 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1648 		goto fail;
1649 	}
1650 
1651 	list_add(&new_node->list, &regulator_map_list);
1652 	mutex_unlock(&regulator_list_mutex);
1653 
1654 	return 0;
1655 
1656 fail:
1657 	mutex_unlock(&regulator_list_mutex);
1658 	kfree(new_node->dev_name);
1659 	kfree(new_node);
1660 	return -EBUSY;
1661 }
1662 
1663 static void unset_regulator_supplies(struct regulator_dev *rdev)
1664 {
1665 	struct regulator_map *node, *n;
1666 
1667 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1668 		if (rdev == node->regulator) {
1669 			list_del(&node->list);
1670 			kfree(node->dev_name);
1671 			kfree(node);
1672 		}
1673 	}
1674 }
1675 
1676 #ifdef CONFIG_DEBUG_FS
1677 static ssize_t constraint_flags_read_file(struct file *file,
1678 					  char __user *user_buf,
1679 					  size_t count, loff_t *ppos)
1680 {
1681 	const struct regulator *regulator = file->private_data;
1682 	const struct regulation_constraints *c = regulator->rdev->constraints;
1683 	char *buf;
1684 	ssize_t ret;
1685 
1686 	if (!c)
1687 		return 0;
1688 
1689 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1690 	if (!buf)
1691 		return -ENOMEM;
1692 
1693 	ret = snprintf(buf, PAGE_SIZE,
1694 			"always_on: %u\n"
1695 			"boot_on: %u\n"
1696 			"apply_uV: %u\n"
1697 			"ramp_disable: %u\n"
1698 			"soft_start: %u\n"
1699 			"pull_down: %u\n"
1700 			"over_current_protection: %u\n",
1701 			c->always_on,
1702 			c->boot_on,
1703 			c->apply_uV,
1704 			c->ramp_disable,
1705 			c->soft_start,
1706 			c->pull_down,
1707 			c->over_current_protection);
1708 
1709 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1710 	kfree(buf);
1711 
1712 	return ret;
1713 }
1714 
1715 #endif
1716 
1717 static const struct file_operations constraint_flags_fops = {
1718 #ifdef CONFIG_DEBUG_FS
1719 	.open = simple_open,
1720 	.read = constraint_flags_read_file,
1721 	.llseek = default_llseek,
1722 #endif
1723 };
1724 
1725 #define REG_STR_SIZE	64
1726 
1727 static struct regulator *create_regulator(struct regulator_dev *rdev,
1728 					  struct device *dev,
1729 					  const char *supply_name)
1730 {
1731 	struct regulator *regulator;
1732 	int err = 0;
1733 
1734 	if (dev) {
1735 		char buf[REG_STR_SIZE];
1736 		int size;
1737 
1738 		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1739 				dev->kobj.name, supply_name);
1740 		if (size >= REG_STR_SIZE)
1741 			return NULL;
1742 
1743 		supply_name = kstrdup(buf, GFP_KERNEL);
1744 		if (supply_name == NULL)
1745 			return NULL;
1746 	} else {
1747 		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1748 		if (supply_name == NULL)
1749 			return NULL;
1750 	}
1751 
1752 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1753 	if (regulator == NULL) {
1754 		kfree(supply_name);
1755 		return NULL;
1756 	}
1757 
1758 	regulator->rdev = rdev;
1759 	regulator->supply_name = supply_name;
1760 
1761 	regulator_lock(rdev);
1762 	list_add(&regulator->list, &rdev->consumer_list);
1763 	regulator_unlock(rdev);
1764 
1765 	if (dev) {
1766 		regulator->dev = dev;
1767 
1768 		/* Add a link to the device sysfs entry */
1769 		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1770 					       supply_name);
1771 		if (err) {
1772 			rdev_dbg(rdev, "could not add device link %s: %pe\n",
1773 				  dev->kobj.name, ERR_PTR(err));
1774 			/* non-fatal */
1775 		}
1776 	}
1777 
1778 	if (err != -EEXIST)
1779 		regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1780 	if (!regulator->debugfs) {
1781 		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1782 	} else {
1783 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1784 				   &regulator->uA_load);
1785 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1786 				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1787 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1788 				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1789 		debugfs_create_file("constraint_flags", 0444,
1790 				    regulator->debugfs, regulator,
1791 				    &constraint_flags_fops);
1792 	}
1793 
1794 	/*
1795 	 * Check now if the regulator is an always on regulator - if
1796 	 * it is then we don't need to do nearly so much work for
1797 	 * enable/disable calls.
1798 	 */
1799 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1800 	    _regulator_is_enabled(rdev))
1801 		regulator->always_on = true;
1802 
1803 	return regulator;
1804 }
1805 
1806 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1807 {
1808 	if (rdev->constraints && rdev->constraints->enable_time)
1809 		return rdev->constraints->enable_time;
1810 	if (rdev->desc->ops->enable_time)
1811 		return rdev->desc->ops->enable_time(rdev);
1812 	return rdev->desc->enable_time;
1813 }
1814 
1815 static struct regulator_supply_alias *regulator_find_supply_alias(
1816 		struct device *dev, const char *supply)
1817 {
1818 	struct regulator_supply_alias *map;
1819 
1820 	list_for_each_entry(map, &regulator_supply_alias_list, list)
1821 		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1822 			return map;
1823 
1824 	return NULL;
1825 }
1826 
1827 static void regulator_supply_alias(struct device **dev, const char **supply)
1828 {
1829 	struct regulator_supply_alias *map;
1830 
1831 	map = regulator_find_supply_alias(*dev, *supply);
1832 	if (map) {
1833 		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1834 				*supply, map->alias_supply,
1835 				dev_name(map->alias_dev));
1836 		*dev = map->alias_dev;
1837 		*supply = map->alias_supply;
1838 	}
1839 }
1840 
1841 static int regulator_match(struct device *dev, const void *data)
1842 {
1843 	struct regulator_dev *r = dev_to_rdev(dev);
1844 
1845 	return strcmp(rdev_get_name(r), data) == 0;
1846 }
1847 
1848 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1849 {
1850 	struct device *dev;
1851 
1852 	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1853 
1854 	return dev ? dev_to_rdev(dev) : NULL;
1855 }
1856 
1857 /**
1858  * regulator_dev_lookup - lookup a regulator device.
1859  * @dev: device for regulator "consumer".
1860  * @supply: Supply name or regulator ID.
1861  *
1862  * If successful, returns a struct regulator_dev that corresponds to the name
1863  * @supply and with the embedded struct device refcount incremented by one.
1864  * The refcount must be dropped by calling put_device().
1865  * On failure one of the following ERR-PTR-encoded values is returned:
1866  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1867  * in the future.
1868  */
1869 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1870 						  const char *supply)
1871 {
1872 	struct regulator_dev *r = NULL;
1873 	struct device_node *node;
1874 	struct regulator_map *map;
1875 	const char *devname = NULL;
1876 
1877 	regulator_supply_alias(&dev, &supply);
1878 
1879 	/* first do a dt based lookup */
1880 	if (dev && dev->of_node) {
1881 		node = of_get_regulator(dev, supply);
1882 		if (node) {
1883 			r = of_find_regulator_by_node(node);
1884 			if (r)
1885 				return r;
1886 
1887 			/*
1888 			 * We have a node, but there is no device.
1889 			 * assume it has not registered yet.
1890 			 */
1891 			return ERR_PTR(-EPROBE_DEFER);
1892 		}
1893 	}
1894 
1895 	/* if not found, try doing it non-dt way */
1896 	if (dev)
1897 		devname = dev_name(dev);
1898 
1899 	mutex_lock(&regulator_list_mutex);
1900 	list_for_each_entry(map, &regulator_map_list, list) {
1901 		/* If the mapping has a device set up it must match */
1902 		if (map->dev_name &&
1903 		    (!devname || strcmp(map->dev_name, devname)))
1904 			continue;
1905 
1906 		if (strcmp(map->supply, supply) == 0 &&
1907 		    get_device(&map->regulator->dev)) {
1908 			r = map->regulator;
1909 			break;
1910 		}
1911 	}
1912 	mutex_unlock(&regulator_list_mutex);
1913 
1914 	if (r)
1915 		return r;
1916 
1917 	r = regulator_lookup_by_name(supply);
1918 	if (r)
1919 		return r;
1920 
1921 	return ERR_PTR(-ENODEV);
1922 }
1923 
1924 static int regulator_resolve_supply(struct regulator_dev *rdev)
1925 {
1926 	struct regulator_dev *r;
1927 	struct device *dev = rdev->dev.parent;
1928 	int ret = 0;
1929 
1930 	/* No supply to resolve? */
1931 	if (!rdev->supply_name)
1932 		return 0;
1933 
1934 	/* Supply already resolved? (fast-path without locking contention) */
1935 	if (rdev->supply)
1936 		return 0;
1937 
1938 	r = regulator_dev_lookup(dev, rdev->supply_name);
1939 	if (IS_ERR(r)) {
1940 		ret = PTR_ERR(r);
1941 
1942 		/* Did the lookup explicitly defer for us? */
1943 		if (ret == -EPROBE_DEFER)
1944 			goto out;
1945 
1946 		if (have_full_constraints()) {
1947 			r = dummy_regulator_rdev;
1948 			get_device(&r->dev);
1949 		} else {
1950 			dev_err(dev, "Failed to resolve %s-supply for %s\n",
1951 				rdev->supply_name, rdev->desc->name);
1952 			ret = -EPROBE_DEFER;
1953 			goto out;
1954 		}
1955 	}
1956 
1957 	if (r == rdev) {
1958 		dev_err(dev, "Supply for %s (%s) resolved to itself\n",
1959 			rdev->desc->name, rdev->supply_name);
1960 		if (!have_full_constraints()) {
1961 			ret = -EINVAL;
1962 			goto out;
1963 		}
1964 		r = dummy_regulator_rdev;
1965 		get_device(&r->dev);
1966 	}
1967 
1968 	/*
1969 	 * If the supply's parent device is not the same as the
1970 	 * regulator's parent device, then ensure the parent device
1971 	 * is bound before we resolve the supply, in case the parent
1972 	 * device get probe deferred and unregisters the supply.
1973 	 */
1974 	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1975 		if (!device_is_bound(r->dev.parent)) {
1976 			put_device(&r->dev);
1977 			ret = -EPROBE_DEFER;
1978 			goto out;
1979 		}
1980 	}
1981 
1982 	/* Recursively resolve the supply of the supply */
1983 	ret = regulator_resolve_supply(r);
1984 	if (ret < 0) {
1985 		put_device(&r->dev);
1986 		goto out;
1987 	}
1988 
1989 	/*
1990 	 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
1991 	 * between rdev->supply null check and setting rdev->supply in
1992 	 * set_supply() from concurrent tasks.
1993 	 */
1994 	regulator_lock(rdev);
1995 
1996 	/* Supply just resolved by a concurrent task? */
1997 	if (rdev->supply) {
1998 		regulator_unlock(rdev);
1999 		put_device(&r->dev);
2000 		goto out;
2001 	}
2002 
2003 	ret = set_supply(rdev, r);
2004 	if (ret < 0) {
2005 		regulator_unlock(rdev);
2006 		put_device(&r->dev);
2007 		goto out;
2008 	}
2009 
2010 	regulator_unlock(rdev);
2011 
2012 	/*
2013 	 * In set_machine_constraints() we may have turned this regulator on
2014 	 * but we couldn't propagate to the supply if it hadn't been resolved
2015 	 * yet.  Do it now.
2016 	 */
2017 	if (rdev->use_count) {
2018 		ret = regulator_enable(rdev->supply);
2019 		if (ret < 0) {
2020 			_regulator_put(rdev->supply);
2021 			rdev->supply = NULL;
2022 			goto out;
2023 		}
2024 	}
2025 
2026 out:
2027 	return ret;
2028 }
2029 
2030 /* Internal regulator request function */
2031 struct regulator *_regulator_get(struct device *dev, const char *id,
2032 				 enum regulator_get_type get_type)
2033 {
2034 	struct regulator_dev *rdev;
2035 	struct regulator *regulator;
2036 	struct device_link *link;
2037 	int ret;
2038 
2039 	if (get_type >= MAX_GET_TYPE) {
2040 		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2041 		return ERR_PTR(-EINVAL);
2042 	}
2043 
2044 	if (id == NULL) {
2045 		pr_err("get() with no identifier\n");
2046 		return ERR_PTR(-EINVAL);
2047 	}
2048 
2049 	rdev = regulator_dev_lookup(dev, id);
2050 	if (IS_ERR(rdev)) {
2051 		ret = PTR_ERR(rdev);
2052 
2053 		/*
2054 		 * If regulator_dev_lookup() fails with error other
2055 		 * than -ENODEV our job here is done, we simply return it.
2056 		 */
2057 		if (ret != -ENODEV)
2058 			return ERR_PTR(ret);
2059 
2060 		if (!have_full_constraints()) {
2061 			dev_warn(dev,
2062 				 "incomplete constraints, dummy supplies not allowed\n");
2063 			return ERR_PTR(-ENODEV);
2064 		}
2065 
2066 		switch (get_type) {
2067 		case NORMAL_GET:
2068 			/*
2069 			 * Assume that a regulator is physically present and
2070 			 * enabled, even if it isn't hooked up, and just
2071 			 * provide a dummy.
2072 			 */
2073 			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2074 			rdev = dummy_regulator_rdev;
2075 			get_device(&rdev->dev);
2076 			break;
2077 
2078 		case EXCLUSIVE_GET:
2079 			dev_warn(dev,
2080 				 "dummy supplies not allowed for exclusive requests\n");
2081 			fallthrough;
2082 
2083 		default:
2084 			return ERR_PTR(-ENODEV);
2085 		}
2086 	}
2087 
2088 	if (rdev->exclusive) {
2089 		regulator = ERR_PTR(-EPERM);
2090 		put_device(&rdev->dev);
2091 		return regulator;
2092 	}
2093 
2094 	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2095 		regulator = ERR_PTR(-EBUSY);
2096 		put_device(&rdev->dev);
2097 		return regulator;
2098 	}
2099 
2100 	mutex_lock(&regulator_list_mutex);
2101 	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2102 	mutex_unlock(&regulator_list_mutex);
2103 
2104 	if (ret != 0) {
2105 		regulator = ERR_PTR(-EPROBE_DEFER);
2106 		put_device(&rdev->dev);
2107 		return regulator;
2108 	}
2109 
2110 	ret = regulator_resolve_supply(rdev);
2111 	if (ret < 0) {
2112 		regulator = ERR_PTR(ret);
2113 		put_device(&rdev->dev);
2114 		return regulator;
2115 	}
2116 
2117 	if (!try_module_get(rdev->owner)) {
2118 		regulator = ERR_PTR(-EPROBE_DEFER);
2119 		put_device(&rdev->dev);
2120 		return regulator;
2121 	}
2122 
2123 	regulator = create_regulator(rdev, dev, id);
2124 	if (regulator == NULL) {
2125 		regulator = ERR_PTR(-ENOMEM);
2126 		module_put(rdev->owner);
2127 		put_device(&rdev->dev);
2128 		return regulator;
2129 	}
2130 
2131 	rdev->open_count++;
2132 	if (get_type == EXCLUSIVE_GET) {
2133 		rdev->exclusive = 1;
2134 
2135 		ret = _regulator_is_enabled(rdev);
2136 		if (ret > 0)
2137 			rdev->use_count = 1;
2138 		else
2139 			rdev->use_count = 0;
2140 	}
2141 
2142 	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2143 	if (!IS_ERR_OR_NULL(link))
2144 		regulator->device_link = true;
2145 
2146 	return regulator;
2147 }
2148 
2149 /**
2150  * regulator_get - lookup and obtain a reference to a regulator.
2151  * @dev: device for regulator "consumer"
2152  * @id: Supply name or regulator ID.
2153  *
2154  * Returns a struct regulator corresponding to the regulator producer,
2155  * or IS_ERR() condition containing errno.
2156  *
2157  * Use of supply names configured via set_consumer_device_supply() is
2158  * strongly encouraged.  It is recommended that the supply name used
2159  * should match the name used for the supply and/or the relevant
2160  * device pins in the datasheet.
2161  */
2162 struct regulator *regulator_get(struct device *dev, const char *id)
2163 {
2164 	return _regulator_get(dev, id, NORMAL_GET);
2165 }
2166 EXPORT_SYMBOL_GPL(regulator_get);
2167 
2168 /**
2169  * regulator_get_exclusive - obtain exclusive access to a regulator.
2170  * @dev: device for regulator "consumer"
2171  * @id: Supply name or regulator ID.
2172  *
2173  * Returns a struct regulator corresponding to the regulator producer,
2174  * or IS_ERR() condition containing errno.  Other consumers will be
2175  * unable to obtain this regulator while this reference is held and the
2176  * use count for the regulator will be initialised to reflect the current
2177  * state of the regulator.
2178  *
2179  * This is intended for use by consumers which cannot tolerate shared
2180  * use of the regulator such as those which need to force the
2181  * regulator off for correct operation of the hardware they are
2182  * controlling.
2183  *
2184  * Use of supply names configured via set_consumer_device_supply() is
2185  * strongly encouraged.  It is recommended that the supply name used
2186  * should match the name used for the supply and/or the relevant
2187  * device pins in the datasheet.
2188  */
2189 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2190 {
2191 	return _regulator_get(dev, id, EXCLUSIVE_GET);
2192 }
2193 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2194 
2195 /**
2196  * regulator_get_optional - obtain optional access to a regulator.
2197  * @dev: device for regulator "consumer"
2198  * @id: Supply name or regulator ID.
2199  *
2200  * Returns a struct regulator corresponding to the regulator producer,
2201  * or IS_ERR() condition containing errno.
2202  *
2203  * This is intended for use by consumers for devices which can have
2204  * some supplies unconnected in normal use, such as some MMC devices.
2205  * It can allow the regulator core to provide stub supplies for other
2206  * supplies requested using normal regulator_get() calls without
2207  * disrupting the operation of drivers that can handle absent
2208  * supplies.
2209  *
2210  * Use of supply names configured via set_consumer_device_supply() is
2211  * strongly encouraged.  It is recommended that the supply name used
2212  * should match the name used for the supply and/or the relevant
2213  * device pins in the datasheet.
2214  */
2215 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2216 {
2217 	return _regulator_get(dev, id, OPTIONAL_GET);
2218 }
2219 EXPORT_SYMBOL_GPL(regulator_get_optional);
2220 
2221 static void destroy_regulator(struct regulator *regulator)
2222 {
2223 	struct regulator_dev *rdev = regulator->rdev;
2224 
2225 	debugfs_remove_recursive(regulator->debugfs);
2226 
2227 	if (regulator->dev) {
2228 		if (regulator->device_link)
2229 			device_link_remove(regulator->dev, &rdev->dev);
2230 
2231 		/* remove any sysfs entries */
2232 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2233 	}
2234 
2235 	regulator_lock(rdev);
2236 	list_del(&regulator->list);
2237 
2238 	rdev->open_count--;
2239 	rdev->exclusive = 0;
2240 	regulator_unlock(rdev);
2241 
2242 	kfree_const(regulator->supply_name);
2243 	kfree(regulator);
2244 }
2245 
2246 /* regulator_list_mutex lock held by regulator_put() */
2247 static void _regulator_put(struct regulator *regulator)
2248 {
2249 	struct regulator_dev *rdev;
2250 
2251 	if (IS_ERR_OR_NULL(regulator))
2252 		return;
2253 
2254 	lockdep_assert_held_once(&regulator_list_mutex);
2255 
2256 	/* Docs say you must disable before calling regulator_put() */
2257 	WARN_ON(regulator->enable_count);
2258 
2259 	rdev = regulator->rdev;
2260 
2261 	destroy_regulator(regulator);
2262 
2263 	module_put(rdev->owner);
2264 	put_device(&rdev->dev);
2265 }
2266 
2267 /**
2268  * regulator_put - "free" the regulator source
2269  * @regulator: regulator source
2270  *
2271  * Note: drivers must ensure that all regulator_enable calls made on this
2272  * regulator source are balanced by regulator_disable calls prior to calling
2273  * this function.
2274  */
2275 void regulator_put(struct regulator *regulator)
2276 {
2277 	mutex_lock(&regulator_list_mutex);
2278 	_regulator_put(regulator);
2279 	mutex_unlock(&regulator_list_mutex);
2280 }
2281 EXPORT_SYMBOL_GPL(regulator_put);
2282 
2283 /**
2284  * regulator_register_supply_alias - Provide device alias for supply lookup
2285  *
2286  * @dev: device that will be given as the regulator "consumer"
2287  * @id: Supply name or regulator ID
2288  * @alias_dev: device that should be used to lookup the supply
2289  * @alias_id: Supply name or regulator ID that should be used to lookup the
2290  * supply
2291  *
2292  * All lookups for id on dev will instead be conducted for alias_id on
2293  * alias_dev.
2294  */
2295 int regulator_register_supply_alias(struct device *dev, const char *id,
2296 				    struct device *alias_dev,
2297 				    const char *alias_id)
2298 {
2299 	struct regulator_supply_alias *map;
2300 
2301 	map = regulator_find_supply_alias(dev, id);
2302 	if (map)
2303 		return -EEXIST;
2304 
2305 	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2306 	if (!map)
2307 		return -ENOMEM;
2308 
2309 	map->src_dev = dev;
2310 	map->src_supply = id;
2311 	map->alias_dev = alias_dev;
2312 	map->alias_supply = alias_id;
2313 
2314 	list_add(&map->list, &regulator_supply_alias_list);
2315 
2316 	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2317 		id, dev_name(dev), alias_id, dev_name(alias_dev));
2318 
2319 	return 0;
2320 }
2321 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2322 
2323 /**
2324  * regulator_unregister_supply_alias - Remove device alias
2325  *
2326  * @dev: device that will be given as the regulator "consumer"
2327  * @id: Supply name or regulator ID
2328  *
2329  * Remove a lookup alias if one exists for id on dev.
2330  */
2331 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2332 {
2333 	struct regulator_supply_alias *map;
2334 
2335 	map = regulator_find_supply_alias(dev, id);
2336 	if (map) {
2337 		list_del(&map->list);
2338 		kfree(map);
2339 	}
2340 }
2341 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2342 
2343 /**
2344  * regulator_bulk_register_supply_alias - register multiple aliases
2345  *
2346  * @dev: device that will be given as the regulator "consumer"
2347  * @id: List of supply names or regulator IDs
2348  * @alias_dev: device that should be used to lookup the supply
2349  * @alias_id: List of supply names or regulator IDs that should be used to
2350  * lookup the supply
2351  * @num_id: Number of aliases to register
2352  *
2353  * @return 0 on success, an errno on failure.
2354  *
2355  * This helper function allows drivers to register several supply
2356  * aliases in one operation.  If any of the aliases cannot be
2357  * registered any aliases that were registered will be removed
2358  * before returning to the caller.
2359  */
2360 int regulator_bulk_register_supply_alias(struct device *dev,
2361 					 const char *const *id,
2362 					 struct device *alias_dev,
2363 					 const char *const *alias_id,
2364 					 int num_id)
2365 {
2366 	int i;
2367 	int ret;
2368 
2369 	for (i = 0; i < num_id; ++i) {
2370 		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2371 						      alias_id[i]);
2372 		if (ret < 0)
2373 			goto err;
2374 	}
2375 
2376 	return 0;
2377 
2378 err:
2379 	dev_err(dev,
2380 		"Failed to create supply alias %s,%s -> %s,%s\n",
2381 		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2382 
2383 	while (--i >= 0)
2384 		regulator_unregister_supply_alias(dev, id[i]);
2385 
2386 	return ret;
2387 }
2388 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2389 
2390 /**
2391  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2392  *
2393  * @dev: device that will be given as the regulator "consumer"
2394  * @id: List of supply names or regulator IDs
2395  * @num_id: Number of aliases to unregister
2396  *
2397  * This helper function allows drivers to unregister several supply
2398  * aliases in one operation.
2399  */
2400 void regulator_bulk_unregister_supply_alias(struct device *dev,
2401 					    const char *const *id,
2402 					    int num_id)
2403 {
2404 	int i;
2405 
2406 	for (i = 0; i < num_id; ++i)
2407 		regulator_unregister_supply_alias(dev, id[i]);
2408 }
2409 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2410 
2411 
2412 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2413 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2414 				const struct regulator_config *config)
2415 {
2416 	struct regulator_enable_gpio *pin, *new_pin;
2417 	struct gpio_desc *gpiod;
2418 
2419 	gpiod = config->ena_gpiod;
2420 	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2421 
2422 	mutex_lock(&regulator_list_mutex);
2423 
2424 	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2425 		if (pin->gpiod == gpiod) {
2426 			rdev_dbg(rdev, "GPIO is already used\n");
2427 			goto update_ena_gpio_to_rdev;
2428 		}
2429 	}
2430 
2431 	if (new_pin == NULL) {
2432 		mutex_unlock(&regulator_list_mutex);
2433 		return -ENOMEM;
2434 	}
2435 
2436 	pin = new_pin;
2437 	new_pin = NULL;
2438 
2439 	pin->gpiod = gpiod;
2440 	list_add(&pin->list, &regulator_ena_gpio_list);
2441 
2442 update_ena_gpio_to_rdev:
2443 	pin->request_count++;
2444 	rdev->ena_pin = pin;
2445 
2446 	mutex_unlock(&regulator_list_mutex);
2447 	kfree(new_pin);
2448 
2449 	return 0;
2450 }
2451 
2452 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2453 {
2454 	struct regulator_enable_gpio *pin, *n;
2455 
2456 	if (!rdev->ena_pin)
2457 		return;
2458 
2459 	/* Free the GPIO only in case of no use */
2460 	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2461 		if (pin != rdev->ena_pin)
2462 			continue;
2463 
2464 		if (--pin->request_count)
2465 			break;
2466 
2467 		gpiod_put(pin->gpiod);
2468 		list_del(&pin->list);
2469 		kfree(pin);
2470 		break;
2471 	}
2472 
2473 	rdev->ena_pin = NULL;
2474 }
2475 
2476 /**
2477  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2478  * @rdev: regulator_dev structure
2479  * @enable: enable GPIO at initial use?
2480  *
2481  * GPIO is enabled in case of initial use. (enable_count is 0)
2482  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2483  */
2484 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2485 {
2486 	struct regulator_enable_gpio *pin = rdev->ena_pin;
2487 
2488 	if (!pin)
2489 		return -EINVAL;
2490 
2491 	if (enable) {
2492 		/* Enable GPIO at initial use */
2493 		if (pin->enable_count == 0)
2494 			gpiod_set_value_cansleep(pin->gpiod, 1);
2495 
2496 		pin->enable_count++;
2497 	} else {
2498 		if (pin->enable_count > 1) {
2499 			pin->enable_count--;
2500 			return 0;
2501 		}
2502 
2503 		/* Disable GPIO if not used */
2504 		if (pin->enable_count <= 1) {
2505 			gpiod_set_value_cansleep(pin->gpiod, 0);
2506 			pin->enable_count = 0;
2507 		}
2508 	}
2509 
2510 	return 0;
2511 }
2512 
2513 /**
2514  * _regulator_enable_delay - a delay helper function
2515  * @delay: time to delay in microseconds
2516  *
2517  * Delay for the requested amount of time as per the guidelines in:
2518  *
2519  *     Documentation/timers/timers-howto.rst
2520  *
2521  * The assumption here is that regulators will never be enabled in
2522  * atomic context and therefore sleeping functions can be used.
2523  */
2524 static void _regulator_enable_delay(unsigned int delay)
2525 {
2526 	unsigned int ms = delay / 1000;
2527 	unsigned int us = delay % 1000;
2528 
2529 	if (ms > 0) {
2530 		/*
2531 		 * For small enough values, handle super-millisecond
2532 		 * delays in the usleep_range() call below.
2533 		 */
2534 		if (ms < 20)
2535 			us += ms * 1000;
2536 		else
2537 			msleep(ms);
2538 	}
2539 
2540 	/*
2541 	 * Give the scheduler some room to coalesce with any other
2542 	 * wakeup sources. For delays shorter than 10 us, don't even
2543 	 * bother setting up high-resolution timers and just busy-
2544 	 * loop.
2545 	 */
2546 	if (us >= 10)
2547 		usleep_range(us, us + 100);
2548 	else
2549 		udelay(us);
2550 }
2551 
2552 /**
2553  * _regulator_check_status_enabled
2554  *
2555  * A helper function to check if the regulator status can be interpreted
2556  * as 'regulator is enabled'.
2557  * @rdev: the regulator device to check
2558  *
2559  * Return:
2560  * * 1			- if status shows regulator is in enabled state
2561  * * 0			- if not enabled state
2562  * * Error Value	- as received from ops->get_status()
2563  */
2564 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2565 {
2566 	int ret = rdev->desc->ops->get_status(rdev);
2567 
2568 	if (ret < 0) {
2569 		rdev_info(rdev, "get_status returned error: %d\n", ret);
2570 		return ret;
2571 	}
2572 
2573 	switch (ret) {
2574 	case REGULATOR_STATUS_OFF:
2575 	case REGULATOR_STATUS_ERROR:
2576 	case REGULATOR_STATUS_UNDEFINED:
2577 		return 0;
2578 	default:
2579 		return 1;
2580 	}
2581 }
2582 
2583 static int _regulator_do_enable(struct regulator_dev *rdev)
2584 {
2585 	int ret, delay;
2586 
2587 	/* Query before enabling in case configuration dependent.  */
2588 	ret = _regulator_get_enable_time(rdev);
2589 	if (ret >= 0) {
2590 		delay = ret;
2591 	} else {
2592 		rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2593 		delay = 0;
2594 	}
2595 
2596 	trace_regulator_enable(rdev_get_name(rdev));
2597 
2598 	if (rdev->desc->off_on_delay && rdev->last_off) {
2599 		/* if needed, keep a distance of off_on_delay from last time
2600 		 * this regulator was disabled.
2601 		 */
2602 		ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2603 		s64 remaining = ktime_us_delta(end, ktime_get());
2604 
2605 		if (remaining > 0)
2606 			_regulator_enable_delay(remaining);
2607 	}
2608 
2609 	if (rdev->ena_pin) {
2610 		if (!rdev->ena_gpio_state) {
2611 			ret = regulator_ena_gpio_ctrl(rdev, true);
2612 			if (ret < 0)
2613 				return ret;
2614 			rdev->ena_gpio_state = 1;
2615 		}
2616 	} else if (rdev->desc->ops->enable) {
2617 		ret = rdev->desc->ops->enable(rdev);
2618 		if (ret < 0)
2619 			return ret;
2620 	} else {
2621 		return -EINVAL;
2622 	}
2623 
2624 	/* Allow the regulator to ramp; it would be useful to extend
2625 	 * this for bulk operations so that the regulators can ramp
2626 	 * together.
2627 	 */
2628 	trace_regulator_enable_delay(rdev_get_name(rdev));
2629 
2630 	/* If poll_enabled_time is set, poll upto the delay calculated
2631 	 * above, delaying poll_enabled_time uS to check if the regulator
2632 	 * actually got enabled.
2633 	 * If the regulator isn't enabled after enable_delay has
2634 	 * expired, return -ETIMEDOUT.
2635 	 */
2636 	if (rdev->desc->poll_enabled_time) {
2637 		unsigned int time_remaining = delay;
2638 
2639 		while (time_remaining > 0) {
2640 			_regulator_enable_delay(rdev->desc->poll_enabled_time);
2641 
2642 			if (rdev->desc->ops->get_status) {
2643 				ret = _regulator_check_status_enabled(rdev);
2644 				if (ret < 0)
2645 					return ret;
2646 				else if (ret)
2647 					break;
2648 			} else if (rdev->desc->ops->is_enabled(rdev))
2649 				break;
2650 
2651 			time_remaining -= rdev->desc->poll_enabled_time;
2652 		}
2653 
2654 		if (time_remaining <= 0) {
2655 			rdev_err(rdev, "Enabled check timed out\n");
2656 			return -ETIMEDOUT;
2657 		}
2658 	} else {
2659 		_regulator_enable_delay(delay);
2660 	}
2661 
2662 	trace_regulator_enable_complete(rdev_get_name(rdev));
2663 
2664 	return 0;
2665 }
2666 
2667 /**
2668  * _regulator_handle_consumer_enable - handle that a consumer enabled
2669  * @regulator: regulator source
2670  *
2671  * Some things on a regulator consumer (like the contribution towards total
2672  * load on the regulator) only have an effect when the consumer wants the
2673  * regulator enabled.  Explained in example with two consumers of the same
2674  * regulator:
2675  *   consumer A: set_load(100);       => total load = 0
2676  *   consumer A: regulator_enable();  => total load = 100
2677  *   consumer B: set_load(1000);      => total load = 100
2678  *   consumer B: regulator_enable();  => total load = 1100
2679  *   consumer A: regulator_disable(); => total_load = 1000
2680  *
2681  * This function (together with _regulator_handle_consumer_disable) is
2682  * responsible for keeping track of the refcount for a given regulator consumer
2683  * and applying / unapplying these things.
2684  *
2685  * Returns 0 upon no error; -error upon error.
2686  */
2687 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2688 {
2689 	struct regulator_dev *rdev = regulator->rdev;
2690 
2691 	lockdep_assert_held_once(&rdev->mutex.base);
2692 
2693 	regulator->enable_count++;
2694 	if (regulator->uA_load && regulator->enable_count == 1)
2695 		return drms_uA_update(rdev);
2696 
2697 	return 0;
2698 }
2699 
2700 /**
2701  * _regulator_handle_consumer_disable - handle that a consumer disabled
2702  * @regulator: regulator source
2703  *
2704  * The opposite of _regulator_handle_consumer_enable().
2705  *
2706  * Returns 0 upon no error; -error upon error.
2707  */
2708 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2709 {
2710 	struct regulator_dev *rdev = regulator->rdev;
2711 
2712 	lockdep_assert_held_once(&rdev->mutex.base);
2713 
2714 	if (!regulator->enable_count) {
2715 		rdev_err(rdev, "Underflow of regulator enable count\n");
2716 		return -EINVAL;
2717 	}
2718 
2719 	regulator->enable_count--;
2720 	if (regulator->uA_load && regulator->enable_count == 0)
2721 		return drms_uA_update(rdev);
2722 
2723 	return 0;
2724 }
2725 
2726 /* locks held by regulator_enable() */
2727 static int _regulator_enable(struct regulator *regulator)
2728 {
2729 	struct regulator_dev *rdev = regulator->rdev;
2730 	int ret;
2731 
2732 	lockdep_assert_held_once(&rdev->mutex.base);
2733 
2734 	if (rdev->use_count == 0 && rdev->supply) {
2735 		ret = _regulator_enable(rdev->supply);
2736 		if (ret < 0)
2737 			return ret;
2738 	}
2739 
2740 	/* balance only if there are regulators coupled */
2741 	if (rdev->coupling_desc.n_coupled > 1) {
2742 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2743 		if (ret < 0)
2744 			goto err_disable_supply;
2745 	}
2746 
2747 	ret = _regulator_handle_consumer_enable(regulator);
2748 	if (ret < 0)
2749 		goto err_disable_supply;
2750 
2751 	if (rdev->use_count == 0) {
2752 		/*
2753 		 * The regulator may already be enabled if it's not switchable
2754 		 * or was left on
2755 		 */
2756 		ret = _regulator_is_enabled(rdev);
2757 		if (ret == -EINVAL || ret == 0) {
2758 			if (!regulator_ops_is_valid(rdev,
2759 					REGULATOR_CHANGE_STATUS)) {
2760 				ret = -EPERM;
2761 				goto err_consumer_disable;
2762 			}
2763 
2764 			ret = _regulator_do_enable(rdev);
2765 			if (ret < 0)
2766 				goto err_consumer_disable;
2767 
2768 			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2769 					     NULL);
2770 		} else if (ret < 0) {
2771 			rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2772 			goto err_consumer_disable;
2773 		}
2774 		/* Fallthrough on positive return values - already enabled */
2775 	}
2776 
2777 	rdev->use_count++;
2778 
2779 	return 0;
2780 
2781 err_consumer_disable:
2782 	_regulator_handle_consumer_disable(regulator);
2783 
2784 err_disable_supply:
2785 	if (rdev->use_count == 0 && rdev->supply)
2786 		_regulator_disable(rdev->supply);
2787 
2788 	return ret;
2789 }
2790 
2791 /**
2792  * regulator_enable - enable regulator output
2793  * @regulator: regulator source
2794  *
2795  * Request that the regulator be enabled with the regulator output at
2796  * the predefined voltage or current value.  Calls to regulator_enable()
2797  * must be balanced with calls to regulator_disable().
2798  *
2799  * NOTE: the output value can be set by other drivers, boot loader or may be
2800  * hardwired in the regulator.
2801  */
2802 int regulator_enable(struct regulator *regulator)
2803 {
2804 	struct regulator_dev *rdev = regulator->rdev;
2805 	struct ww_acquire_ctx ww_ctx;
2806 	int ret;
2807 
2808 	regulator_lock_dependent(rdev, &ww_ctx);
2809 	ret = _regulator_enable(regulator);
2810 	regulator_unlock_dependent(rdev, &ww_ctx);
2811 
2812 	return ret;
2813 }
2814 EXPORT_SYMBOL_GPL(regulator_enable);
2815 
2816 static int _regulator_do_disable(struct regulator_dev *rdev)
2817 {
2818 	int ret;
2819 
2820 	trace_regulator_disable(rdev_get_name(rdev));
2821 
2822 	if (rdev->ena_pin) {
2823 		if (rdev->ena_gpio_state) {
2824 			ret = regulator_ena_gpio_ctrl(rdev, false);
2825 			if (ret < 0)
2826 				return ret;
2827 			rdev->ena_gpio_state = 0;
2828 		}
2829 
2830 	} else if (rdev->desc->ops->disable) {
2831 		ret = rdev->desc->ops->disable(rdev);
2832 		if (ret != 0)
2833 			return ret;
2834 	}
2835 
2836 	if (rdev->desc->off_on_delay)
2837 		rdev->last_off = ktime_get();
2838 
2839 	trace_regulator_disable_complete(rdev_get_name(rdev));
2840 
2841 	return 0;
2842 }
2843 
2844 /* locks held by regulator_disable() */
2845 static int _regulator_disable(struct regulator *regulator)
2846 {
2847 	struct regulator_dev *rdev = regulator->rdev;
2848 	int ret = 0;
2849 
2850 	lockdep_assert_held_once(&rdev->mutex.base);
2851 
2852 	if (WARN(rdev->use_count <= 0,
2853 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2854 		return -EIO;
2855 
2856 	/* are we the last user and permitted to disable ? */
2857 	if (rdev->use_count == 1 &&
2858 	    (rdev->constraints && !rdev->constraints->always_on)) {
2859 
2860 		/* we are last user */
2861 		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2862 			ret = _notifier_call_chain(rdev,
2863 						   REGULATOR_EVENT_PRE_DISABLE,
2864 						   NULL);
2865 			if (ret & NOTIFY_STOP_MASK)
2866 				return -EINVAL;
2867 
2868 			ret = _regulator_do_disable(rdev);
2869 			if (ret < 0) {
2870 				rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2871 				_notifier_call_chain(rdev,
2872 						REGULATOR_EVENT_ABORT_DISABLE,
2873 						NULL);
2874 				return ret;
2875 			}
2876 			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2877 					NULL);
2878 		}
2879 
2880 		rdev->use_count = 0;
2881 	} else if (rdev->use_count > 1) {
2882 		rdev->use_count--;
2883 	}
2884 
2885 	if (ret == 0)
2886 		ret = _regulator_handle_consumer_disable(regulator);
2887 
2888 	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2889 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2890 
2891 	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2892 		ret = _regulator_disable(rdev->supply);
2893 
2894 	return ret;
2895 }
2896 
2897 /**
2898  * regulator_disable - disable regulator output
2899  * @regulator: regulator source
2900  *
2901  * Disable the regulator output voltage or current.  Calls to
2902  * regulator_enable() must be balanced with calls to
2903  * regulator_disable().
2904  *
2905  * NOTE: this will only disable the regulator output if no other consumer
2906  * devices have it enabled, the regulator device supports disabling and
2907  * machine constraints permit this operation.
2908  */
2909 int regulator_disable(struct regulator *regulator)
2910 {
2911 	struct regulator_dev *rdev = regulator->rdev;
2912 	struct ww_acquire_ctx ww_ctx;
2913 	int ret;
2914 
2915 	regulator_lock_dependent(rdev, &ww_ctx);
2916 	ret = _regulator_disable(regulator);
2917 	regulator_unlock_dependent(rdev, &ww_ctx);
2918 
2919 	return ret;
2920 }
2921 EXPORT_SYMBOL_GPL(regulator_disable);
2922 
2923 /* locks held by regulator_force_disable() */
2924 static int _regulator_force_disable(struct regulator_dev *rdev)
2925 {
2926 	int ret = 0;
2927 
2928 	lockdep_assert_held_once(&rdev->mutex.base);
2929 
2930 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2931 			REGULATOR_EVENT_PRE_DISABLE, NULL);
2932 	if (ret & NOTIFY_STOP_MASK)
2933 		return -EINVAL;
2934 
2935 	ret = _regulator_do_disable(rdev);
2936 	if (ret < 0) {
2937 		rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
2938 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2939 				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2940 		return ret;
2941 	}
2942 
2943 	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2944 			REGULATOR_EVENT_DISABLE, NULL);
2945 
2946 	return 0;
2947 }
2948 
2949 /**
2950  * regulator_force_disable - force disable regulator output
2951  * @regulator: regulator source
2952  *
2953  * Forcibly disable the regulator output voltage or current.
2954  * NOTE: this *will* disable the regulator output even if other consumer
2955  * devices have it enabled. This should be used for situations when device
2956  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2957  */
2958 int regulator_force_disable(struct regulator *regulator)
2959 {
2960 	struct regulator_dev *rdev = regulator->rdev;
2961 	struct ww_acquire_ctx ww_ctx;
2962 	int ret;
2963 
2964 	regulator_lock_dependent(rdev, &ww_ctx);
2965 
2966 	ret = _regulator_force_disable(regulator->rdev);
2967 
2968 	if (rdev->coupling_desc.n_coupled > 1)
2969 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2970 
2971 	if (regulator->uA_load) {
2972 		regulator->uA_load = 0;
2973 		ret = drms_uA_update(rdev);
2974 	}
2975 
2976 	if (rdev->use_count != 0 && rdev->supply)
2977 		_regulator_disable(rdev->supply);
2978 
2979 	regulator_unlock_dependent(rdev, &ww_ctx);
2980 
2981 	return ret;
2982 }
2983 EXPORT_SYMBOL_GPL(regulator_force_disable);
2984 
2985 static void regulator_disable_work(struct work_struct *work)
2986 {
2987 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2988 						  disable_work.work);
2989 	struct ww_acquire_ctx ww_ctx;
2990 	int count, i, ret;
2991 	struct regulator *regulator;
2992 	int total_count = 0;
2993 
2994 	regulator_lock_dependent(rdev, &ww_ctx);
2995 
2996 	/*
2997 	 * Workqueue functions queue the new work instance while the previous
2998 	 * work instance is being processed. Cancel the queued work instance
2999 	 * as the work instance under processing does the job of the queued
3000 	 * work instance.
3001 	 */
3002 	cancel_delayed_work(&rdev->disable_work);
3003 
3004 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3005 		count = regulator->deferred_disables;
3006 
3007 		if (!count)
3008 			continue;
3009 
3010 		total_count += count;
3011 		regulator->deferred_disables = 0;
3012 
3013 		for (i = 0; i < count; i++) {
3014 			ret = _regulator_disable(regulator);
3015 			if (ret != 0)
3016 				rdev_err(rdev, "Deferred disable failed: %pe\n",
3017 					 ERR_PTR(ret));
3018 		}
3019 	}
3020 	WARN_ON(!total_count);
3021 
3022 	if (rdev->coupling_desc.n_coupled > 1)
3023 		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3024 
3025 	regulator_unlock_dependent(rdev, &ww_ctx);
3026 }
3027 
3028 /**
3029  * regulator_disable_deferred - disable regulator output with delay
3030  * @regulator: regulator source
3031  * @ms: milliseconds until the regulator is disabled
3032  *
3033  * Execute regulator_disable() on the regulator after a delay.  This
3034  * is intended for use with devices that require some time to quiesce.
3035  *
3036  * NOTE: this will only disable the regulator output if no other consumer
3037  * devices have it enabled, the regulator device supports disabling and
3038  * machine constraints permit this operation.
3039  */
3040 int regulator_disable_deferred(struct regulator *regulator, int ms)
3041 {
3042 	struct regulator_dev *rdev = regulator->rdev;
3043 
3044 	if (!ms)
3045 		return regulator_disable(regulator);
3046 
3047 	regulator_lock(rdev);
3048 	regulator->deferred_disables++;
3049 	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3050 			 msecs_to_jiffies(ms));
3051 	regulator_unlock(rdev);
3052 
3053 	return 0;
3054 }
3055 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3056 
3057 static int _regulator_is_enabled(struct regulator_dev *rdev)
3058 {
3059 	/* A GPIO control always takes precedence */
3060 	if (rdev->ena_pin)
3061 		return rdev->ena_gpio_state;
3062 
3063 	/* If we don't know then assume that the regulator is always on */
3064 	if (!rdev->desc->ops->is_enabled)
3065 		return 1;
3066 
3067 	return rdev->desc->ops->is_enabled(rdev);
3068 }
3069 
3070 static int _regulator_list_voltage(struct regulator_dev *rdev,
3071 				   unsigned selector, int lock)
3072 {
3073 	const struct regulator_ops *ops = rdev->desc->ops;
3074 	int ret;
3075 
3076 	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3077 		return rdev->desc->fixed_uV;
3078 
3079 	if (ops->list_voltage) {
3080 		if (selector >= rdev->desc->n_voltages)
3081 			return -EINVAL;
3082 		if (selector < rdev->desc->linear_min_sel)
3083 			return 0;
3084 		if (lock)
3085 			regulator_lock(rdev);
3086 		ret = ops->list_voltage(rdev, selector);
3087 		if (lock)
3088 			regulator_unlock(rdev);
3089 	} else if (rdev->is_switch && rdev->supply) {
3090 		ret = _regulator_list_voltage(rdev->supply->rdev,
3091 					      selector, lock);
3092 	} else {
3093 		return -EINVAL;
3094 	}
3095 
3096 	if (ret > 0) {
3097 		if (ret < rdev->constraints->min_uV)
3098 			ret = 0;
3099 		else if (ret > rdev->constraints->max_uV)
3100 			ret = 0;
3101 	}
3102 
3103 	return ret;
3104 }
3105 
3106 /**
3107  * regulator_is_enabled - is the regulator output enabled
3108  * @regulator: regulator source
3109  *
3110  * Returns positive if the regulator driver backing the source/client
3111  * has requested that the device be enabled, zero if it hasn't, else a
3112  * negative errno code.
3113  *
3114  * Note that the device backing this regulator handle can have multiple
3115  * users, so it might be enabled even if regulator_enable() was never
3116  * called for this particular source.
3117  */
3118 int regulator_is_enabled(struct regulator *regulator)
3119 {
3120 	int ret;
3121 
3122 	if (regulator->always_on)
3123 		return 1;
3124 
3125 	regulator_lock(regulator->rdev);
3126 	ret = _regulator_is_enabled(regulator->rdev);
3127 	regulator_unlock(regulator->rdev);
3128 
3129 	return ret;
3130 }
3131 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3132 
3133 /**
3134  * regulator_count_voltages - count regulator_list_voltage() selectors
3135  * @regulator: regulator source
3136  *
3137  * Returns number of selectors, or negative errno.  Selectors are
3138  * numbered starting at zero, and typically correspond to bitfields
3139  * in hardware registers.
3140  */
3141 int regulator_count_voltages(struct regulator *regulator)
3142 {
3143 	struct regulator_dev	*rdev = regulator->rdev;
3144 
3145 	if (rdev->desc->n_voltages)
3146 		return rdev->desc->n_voltages;
3147 
3148 	if (!rdev->is_switch || !rdev->supply)
3149 		return -EINVAL;
3150 
3151 	return regulator_count_voltages(rdev->supply);
3152 }
3153 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3154 
3155 /**
3156  * regulator_list_voltage - enumerate supported voltages
3157  * @regulator: regulator source
3158  * @selector: identify voltage to list
3159  * Context: can sleep
3160  *
3161  * Returns a voltage that can be passed to @regulator_set_voltage(),
3162  * zero if this selector code can't be used on this system, or a
3163  * negative errno.
3164  */
3165 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3166 {
3167 	return _regulator_list_voltage(regulator->rdev, selector, 1);
3168 }
3169 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3170 
3171 /**
3172  * regulator_get_regmap - get the regulator's register map
3173  * @regulator: regulator source
3174  *
3175  * Returns the register map for the given regulator, or an ERR_PTR value
3176  * if the regulator doesn't use regmap.
3177  */
3178 struct regmap *regulator_get_regmap(struct regulator *regulator)
3179 {
3180 	struct regmap *map = regulator->rdev->regmap;
3181 
3182 	return map ? map : ERR_PTR(-EOPNOTSUPP);
3183 }
3184 
3185 /**
3186  * regulator_get_hardware_vsel_register - get the HW voltage selector register
3187  * @regulator: regulator source
3188  * @vsel_reg: voltage selector register, output parameter
3189  * @vsel_mask: mask for voltage selector bitfield, output parameter
3190  *
3191  * Returns the hardware register offset and bitmask used for setting the
3192  * regulator voltage. This might be useful when configuring voltage-scaling
3193  * hardware or firmware that can make I2C requests behind the kernel's back,
3194  * for example.
3195  *
3196  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3197  * and 0 is returned, otherwise a negative errno is returned.
3198  */
3199 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3200 					 unsigned *vsel_reg,
3201 					 unsigned *vsel_mask)
3202 {
3203 	struct regulator_dev *rdev = regulator->rdev;
3204 	const struct regulator_ops *ops = rdev->desc->ops;
3205 
3206 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3207 		return -EOPNOTSUPP;
3208 
3209 	*vsel_reg = rdev->desc->vsel_reg;
3210 	*vsel_mask = rdev->desc->vsel_mask;
3211 
3212 	return 0;
3213 }
3214 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3215 
3216 /**
3217  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3218  * @regulator: regulator source
3219  * @selector: identify voltage to list
3220  *
3221  * Converts the selector to a hardware-specific voltage selector that can be
3222  * directly written to the regulator registers. The address of the voltage
3223  * register can be determined by calling @regulator_get_hardware_vsel_register.
3224  *
3225  * On error a negative errno is returned.
3226  */
3227 int regulator_list_hardware_vsel(struct regulator *regulator,
3228 				 unsigned selector)
3229 {
3230 	struct regulator_dev *rdev = regulator->rdev;
3231 	const struct regulator_ops *ops = rdev->desc->ops;
3232 
3233 	if (selector >= rdev->desc->n_voltages)
3234 		return -EINVAL;
3235 	if (selector < rdev->desc->linear_min_sel)
3236 		return 0;
3237 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3238 		return -EOPNOTSUPP;
3239 
3240 	return selector;
3241 }
3242 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3243 
3244 /**
3245  * regulator_get_linear_step - return the voltage step size between VSEL values
3246  * @regulator: regulator source
3247  *
3248  * Returns the voltage step size between VSEL values for linear
3249  * regulators, or return 0 if the regulator isn't a linear regulator.
3250  */
3251 unsigned int regulator_get_linear_step(struct regulator *regulator)
3252 {
3253 	struct regulator_dev *rdev = regulator->rdev;
3254 
3255 	return rdev->desc->uV_step;
3256 }
3257 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3258 
3259 /**
3260  * regulator_is_supported_voltage - check if a voltage range can be supported
3261  *
3262  * @regulator: Regulator to check.
3263  * @min_uV: Minimum required voltage in uV.
3264  * @max_uV: Maximum required voltage in uV.
3265  *
3266  * Returns a boolean.
3267  */
3268 int regulator_is_supported_voltage(struct regulator *regulator,
3269 				   int min_uV, int max_uV)
3270 {
3271 	struct regulator_dev *rdev = regulator->rdev;
3272 	int i, voltages, ret;
3273 
3274 	/* If we can't change voltage check the current voltage */
3275 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3276 		ret = regulator_get_voltage(regulator);
3277 		if (ret >= 0)
3278 			return min_uV <= ret && ret <= max_uV;
3279 		else
3280 			return ret;
3281 	}
3282 
3283 	/* Any voltage within constrains range is fine? */
3284 	if (rdev->desc->continuous_voltage_range)
3285 		return min_uV >= rdev->constraints->min_uV &&
3286 				max_uV <= rdev->constraints->max_uV;
3287 
3288 	ret = regulator_count_voltages(regulator);
3289 	if (ret < 0)
3290 		return 0;
3291 	voltages = ret;
3292 
3293 	for (i = 0; i < voltages; i++) {
3294 		ret = regulator_list_voltage(regulator, i);
3295 
3296 		if (ret >= min_uV && ret <= max_uV)
3297 			return 1;
3298 	}
3299 
3300 	return 0;
3301 }
3302 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3303 
3304 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3305 				 int max_uV)
3306 {
3307 	const struct regulator_desc *desc = rdev->desc;
3308 
3309 	if (desc->ops->map_voltage)
3310 		return desc->ops->map_voltage(rdev, min_uV, max_uV);
3311 
3312 	if (desc->ops->list_voltage == regulator_list_voltage_linear)
3313 		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3314 
3315 	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3316 		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3317 
3318 	if (desc->ops->list_voltage ==
3319 		regulator_list_voltage_pickable_linear_range)
3320 		return regulator_map_voltage_pickable_linear_range(rdev,
3321 							min_uV, max_uV);
3322 
3323 	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3324 }
3325 
3326 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3327 				       int min_uV, int max_uV,
3328 				       unsigned *selector)
3329 {
3330 	struct pre_voltage_change_data data;
3331 	int ret;
3332 
3333 	data.old_uV = regulator_get_voltage_rdev(rdev);
3334 	data.min_uV = min_uV;
3335 	data.max_uV = max_uV;
3336 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3337 				   &data);
3338 	if (ret & NOTIFY_STOP_MASK)
3339 		return -EINVAL;
3340 
3341 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3342 	if (ret >= 0)
3343 		return ret;
3344 
3345 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3346 			     (void *)data.old_uV);
3347 
3348 	return ret;
3349 }
3350 
3351 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3352 					   int uV, unsigned selector)
3353 {
3354 	struct pre_voltage_change_data data;
3355 	int ret;
3356 
3357 	data.old_uV = regulator_get_voltage_rdev(rdev);
3358 	data.min_uV = uV;
3359 	data.max_uV = uV;
3360 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3361 				   &data);
3362 	if (ret & NOTIFY_STOP_MASK)
3363 		return -EINVAL;
3364 
3365 	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3366 	if (ret >= 0)
3367 		return ret;
3368 
3369 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3370 			     (void *)data.old_uV);
3371 
3372 	return ret;
3373 }
3374 
3375 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3376 					   int uV, int new_selector)
3377 {
3378 	const struct regulator_ops *ops = rdev->desc->ops;
3379 	int diff, old_sel, curr_sel, ret;
3380 
3381 	/* Stepping is only needed if the regulator is enabled. */
3382 	if (!_regulator_is_enabled(rdev))
3383 		goto final_set;
3384 
3385 	if (!ops->get_voltage_sel)
3386 		return -EINVAL;
3387 
3388 	old_sel = ops->get_voltage_sel(rdev);
3389 	if (old_sel < 0)
3390 		return old_sel;
3391 
3392 	diff = new_selector - old_sel;
3393 	if (diff == 0)
3394 		return 0; /* No change needed. */
3395 
3396 	if (diff > 0) {
3397 		/* Stepping up. */
3398 		for (curr_sel = old_sel + rdev->desc->vsel_step;
3399 		     curr_sel < new_selector;
3400 		     curr_sel += rdev->desc->vsel_step) {
3401 			/*
3402 			 * Call the callback directly instead of using
3403 			 * _regulator_call_set_voltage_sel() as we don't
3404 			 * want to notify anyone yet. Same in the branch
3405 			 * below.
3406 			 */
3407 			ret = ops->set_voltage_sel(rdev, curr_sel);
3408 			if (ret)
3409 				goto try_revert;
3410 		}
3411 	} else {
3412 		/* Stepping down. */
3413 		for (curr_sel = old_sel - rdev->desc->vsel_step;
3414 		     curr_sel > new_selector;
3415 		     curr_sel -= rdev->desc->vsel_step) {
3416 			ret = ops->set_voltage_sel(rdev, curr_sel);
3417 			if (ret)
3418 				goto try_revert;
3419 		}
3420 	}
3421 
3422 final_set:
3423 	/* The final selector will trigger the notifiers. */
3424 	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3425 
3426 try_revert:
3427 	/*
3428 	 * At least try to return to the previous voltage if setting a new
3429 	 * one failed.
3430 	 */
3431 	(void)ops->set_voltage_sel(rdev, old_sel);
3432 	return ret;
3433 }
3434 
3435 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3436 				       int old_uV, int new_uV)
3437 {
3438 	unsigned int ramp_delay = 0;
3439 
3440 	if (rdev->constraints->ramp_delay)
3441 		ramp_delay = rdev->constraints->ramp_delay;
3442 	else if (rdev->desc->ramp_delay)
3443 		ramp_delay = rdev->desc->ramp_delay;
3444 	else if (rdev->constraints->settling_time)
3445 		return rdev->constraints->settling_time;
3446 	else if (rdev->constraints->settling_time_up &&
3447 		 (new_uV > old_uV))
3448 		return rdev->constraints->settling_time_up;
3449 	else if (rdev->constraints->settling_time_down &&
3450 		 (new_uV < old_uV))
3451 		return rdev->constraints->settling_time_down;
3452 
3453 	if (ramp_delay == 0) {
3454 		rdev_dbg(rdev, "ramp_delay not set\n");
3455 		return 0;
3456 	}
3457 
3458 	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3459 }
3460 
3461 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3462 				     int min_uV, int max_uV)
3463 {
3464 	int ret;
3465 	int delay = 0;
3466 	int best_val = 0;
3467 	unsigned int selector;
3468 	int old_selector = -1;
3469 	const struct regulator_ops *ops = rdev->desc->ops;
3470 	int old_uV = regulator_get_voltage_rdev(rdev);
3471 
3472 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3473 
3474 	min_uV += rdev->constraints->uV_offset;
3475 	max_uV += rdev->constraints->uV_offset;
3476 
3477 	/*
3478 	 * If we can't obtain the old selector there is not enough
3479 	 * info to call set_voltage_time_sel().
3480 	 */
3481 	if (_regulator_is_enabled(rdev) &&
3482 	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
3483 		old_selector = ops->get_voltage_sel(rdev);
3484 		if (old_selector < 0)
3485 			return old_selector;
3486 	}
3487 
3488 	if (ops->set_voltage) {
3489 		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3490 						  &selector);
3491 
3492 		if (ret >= 0) {
3493 			if (ops->list_voltage)
3494 				best_val = ops->list_voltage(rdev,
3495 							     selector);
3496 			else
3497 				best_val = regulator_get_voltage_rdev(rdev);
3498 		}
3499 
3500 	} else if (ops->set_voltage_sel) {
3501 		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3502 		if (ret >= 0) {
3503 			best_val = ops->list_voltage(rdev, ret);
3504 			if (min_uV <= best_val && max_uV >= best_val) {
3505 				selector = ret;
3506 				if (old_selector == selector)
3507 					ret = 0;
3508 				else if (rdev->desc->vsel_step)
3509 					ret = _regulator_set_voltage_sel_step(
3510 						rdev, best_val, selector);
3511 				else
3512 					ret = _regulator_call_set_voltage_sel(
3513 						rdev, best_val, selector);
3514 			} else {
3515 				ret = -EINVAL;
3516 			}
3517 		}
3518 	} else {
3519 		ret = -EINVAL;
3520 	}
3521 
3522 	if (ret)
3523 		goto out;
3524 
3525 	if (ops->set_voltage_time_sel) {
3526 		/*
3527 		 * Call set_voltage_time_sel if successfully obtained
3528 		 * old_selector
3529 		 */
3530 		if (old_selector >= 0 && old_selector != selector)
3531 			delay = ops->set_voltage_time_sel(rdev, old_selector,
3532 							  selector);
3533 	} else {
3534 		if (old_uV != best_val) {
3535 			if (ops->set_voltage_time)
3536 				delay = ops->set_voltage_time(rdev, old_uV,
3537 							      best_val);
3538 			else
3539 				delay = _regulator_set_voltage_time(rdev,
3540 								    old_uV,
3541 								    best_val);
3542 		}
3543 	}
3544 
3545 	if (delay < 0) {
3546 		rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3547 		delay = 0;
3548 	}
3549 
3550 	/* Insert any necessary delays */
3551 	if (delay >= 1000) {
3552 		mdelay(delay / 1000);
3553 		udelay(delay % 1000);
3554 	} else if (delay) {
3555 		udelay(delay);
3556 	}
3557 
3558 	if (best_val >= 0) {
3559 		unsigned long data = best_val;
3560 
3561 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3562 				     (void *)data);
3563 	}
3564 
3565 out:
3566 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3567 
3568 	return ret;
3569 }
3570 
3571 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3572 				  int min_uV, int max_uV, suspend_state_t state)
3573 {
3574 	struct regulator_state *rstate;
3575 	int uV, sel;
3576 
3577 	rstate = regulator_get_suspend_state(rdev, state);
3578 	if (rstate == NULL)
3579 		return -EINVAL;
3580 
3581 	if (min_uV < rstate->min_uV)
3582 		min_uV = rstate->min_uV;
3583 	if (max_uV > rstate->max_uV)
3584 		max_uV = rstate->max_uV;
3585 
3586 	sel = regulator_map_voltage(rdev, min_uV, max_uV);
3587 	if (sel < 0)
3588 		return sel;
3589 
3590 	uV = rdev->desc->ops->list_voltage(rdev, sel);
3591 	if (uV >= min_uV && uV <= max_uV)
3592 		rstate->uV = uV;
3593 
3594 	return 0;
3595 }
3596 
3597 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3598 					  int min_uV, int max_uV,
3599 					  suspend_state_t state)
3600 {
3601 	struct regulator_dev *rdev = regulator->rdev;
3602 	struct regulator_voltage *voltage = &regulator->voltage[state];
3603 	int ret = 0;
3604 	int old_min_uV, old_max_uV;
3605 	int current_uV;
3606 
3607 	/* If we're setting the same range as last time the change
3608 	 * should be a noop (some cpufreq implementations use the same
3609 	 * voltage for multiple frequencies, for example).
3610 	 */
3611 	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3612 		goto out;
3613 
3614 	/* If we're trying to set a range that overlaps the current voltage,
3615 	 * return successfully even though the regulator does not support
3616 	 * changing the voltage.
3617 	 */
3618 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3619 		current_uV = regulator_get_voltage_rdev(rdev);
3620 		if (min_uV <= current_uV && current_uV <= max_uV) {
3621 			voltage->min_uV = min_uV;
3622 			voltage->max_uV = max_uV;
3623 			goto out;
3624 		}
3625 	}
3626 
3627 	/* sanity check */
3628 	if (!rdev->desc->ops->set_voltage &&
3629 	    !rdev->desc->ops->set_voltage_sel) {
3630 		ret = -EINVAL;
3631 		goto out;
3632 	}
3633 
3634 	/* constraints check */
3635 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3636 	if (ret < 0)
3637 		goto out;
3638 
3639 	/* restore original values in case of error */
3640 	old_min_uV = voltage->min_uV;
3641 	old_max_uV = voltage->max_uV;
3642 	voltage->min_uV = min_uV;
3643 	voltage->max_uV = max_uV;
3644 
3645 	/* for not coupled regulators this will just set the voltage */
3646 	ret = regulator_balance_voltage(rdev, state);
3647 	if (ret < 0) {
3648 		voltage->min_uV = old_min_uV;
3649 		voltage->max_uV = old_max_uV;
3650 	}
3651 
3652 out:
3653 	return ret;
3654 }
3655 
3656 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3657 			       int max_uV, suspend_state_t state)
3658 {
3659 	int best_supply_uV = 0;
3660 	int supply_change_uV = 0;
3661 	int ret;
3662 
3663 	if (rdev->supply &&
3664 	    regulator_ops_is_valid(rdev->supply->rdev,
3665 				   REGULATOR_CHANGE_VOLTAGE) &&
3666 	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3667 					   rdev->desc->ops->get_voltage_sel))) {
3668 		int current_supply_uV;
3669 		int selector;
3670 
3671 		selector = regulator_map_voltage(rdev, min_uV, max_uV);
3672 		if (selector < 0) {
3673 			ret = selector;
3674 			goto out;
3675 		}
3676 
3677 		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3678 		if (best_supply_uV < 0) {
3679 			ret = best_supply_uV;
3680 			goto out;
3681 		}
3682 
3683 		best_supply_uV += rdev->desc->min_dropout_uV;
3684 
3685 		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3686 		if (current_supply_uV < 0) {
3687 			ret = current_supply_uV;
3688 			goto out;
3689 		}
3690 
3691 		supply_change_uV = best_supply_uV - current_supply_uV;
3692 	}
3693 
3694 	if (supply_change_uV > 0) {
3695 		ret = regulator_set_voltage_unlocked(rdev->supply,
3696 				best_supply_uV, INT_MAX, state);
3697 		if (ret) {
3698 			dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3699 				ERR_PTR(ret));
3700 			goto out;
3701 		}
3702 	}
3703 
3704 	if (state == PM_SUSPEND_ON)
3705 		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3706 	else
3707 		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3708 							max_uV, state);
3709 	if (ret < 0)
3710 		goto out;
3711 
3712 	if (supply_change_uV < 0) {
3713 		ret = regulator_set_voltage_unlocked(rdev->supply,
3714 				best_supply_uV, INT_MAX, state);
3715 		if (ret)
3716 			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3717 				 ERR_PTR(ret));
3718 		/* No need to fail here */
3719 		ret = 0;
3720 	}
3721 
3722 out:
3723 	return ret;
3724 }
3725 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3726 
3727 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3728 					int *current_uV, int *min_uV)
3729 {
3730 	struct regulation_constraints *constraints = rdev->constraints;
3731 
3732 	/* Limit voltage change only if necessary */
3733 	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3734 		return 1;
3735 
3736 	if (*current_uV < 0) {
3737 		*current_uV = regulator_get_voltage_rdev(rdev);
3738 
3739 		if (*current_uV < 0)
3740 			return *current_uV;
3741 	}
3742 
3743 	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3744 		return 1;
3745 
3746 	/* Clamp target voltage within the given step */
3747 	if (*current_uV < *min_uV)
3748 		*min_uV = min(*current_uV + constraints->max_uV_step,
3749 			      *min_uV);
3750 	else
3751 		*min_uV = max(*current_uV - constraints->max_uV_step,
3752 			      *min_uV);
3753 
3754 	return 0;
3755 }
3756 
3757 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3758 					 int *current_uV,
3759 					 int *min_uV, int *max_uV,
3760 					 suspend_state_t state,
3761 					 int n_coupled)
3762 {
3763 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3764 	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3765 	struct regulation_constraints *constraints = rdev->constraints;
3766 	int desired_min_uV = 0, desired_max_uV = INT_MAX;
3767 	int max_current_uV = 0, min_current_uV = INT_MAX;
3768 	int highest_min_uV = 0, target_uV, possible_uV;
3769 	int i, ret, max_spread;
3770 	bool done;
3771 
3772 	*current_uV = -1;
3773 
3774 	/*
3775 	 * If there are no coupled regulators, simply set the voltage
3776 	 * demanded by consumers.
3777 	 */
3778 	if (n_coupled == 1) {
3779 		/*
3780 		 * If consumers don't provide any demands, set voltage
3781 		 * to min_uV
3782 		 */
3783 		desired_min_uV = constraints->min_uV;
3784 		desired_max_uV = constraints->max_uV;
3785 
3786 		ret = regulator_check_consumers(rdev,
3787 						&desired_min_uV,
3788 						&desired_max_uV, state);
3789 		if (ret < 0)
3790 			return ret;
3791 
3792 		possible_uV = desired_min_uV;
3793 		done = true;
3794 
3795 		goto finish;
3796 	}
3797 
3798 	/* Find highest min desired voltage */
3799 	for (i = 0; i < n_coupled; i++) {
3800 		int tmp_min = 0;
3801 		int tmp_max = INT_MAX;
3802 
3803 		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3804 
3805 		ret = regulator_check_consumers(c_rdevs[i],
3806 						&tmp_min,
3807 						&tmp_max, state);
3808 		if (ret < 0)
3809 			return ret;
3810 
3811 		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3812 		if (ret < 0)
3813 			return ret;
3814 
3815 		highest_min_uV = max(highest_min_uV, tmp_min);
3816 
3817 		if (i == 0) {
3818 			desired_min_uV = tmp_min;
3819 			desired_max_uV = tmp_max;
3820 		}
3821 	}
3822 
3823 	max_spread = constraints->max_spread[0];
3824 
3825 	/*
3826 	 * Let target_uV be equal to the desired one if possible.
3827 	 * If not, set it to minimum voltage, allowed by other coupled
3828 	 * regulators.
3829 	 */
3830 	target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3831 
3832 	/*
3833 	 * Find min and max voltages, which currently aren't violating
3834 	 * max_spread.
3835 	 */
3836 	for (i = 1; i < n_coupled; i++) {
3837 		int tmp_act;
3838 
3839 		if (!_regulator_is_enabled(c_rdevs[i]))
3840 			continue;
3841 
3842 		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3843 		if (tmp_act < 0)
3844 			return tmp_act;
3845 
3846 		min_current_uV = min(tmp_act, min_current_uV);
3847 		max_current_uV = max(tmp_act, max_current_uV);
3848 	}
3849 
3850 	/* There aren't any other regulators enabled */
3851 	if (max_current_uV == 0) {
3852 		possible_uV = target_uV;
3853 	} else {
3854 		/*
3855 		 * Correct target voltage, so as it currently isn't
3856 		 * violating max_spread
3857 		 */
3858 		possible_uV = max(target_uV, max_current_uV - max_spread);
3859 		possible_uV = min(possible_uV, min_current_uV + max_spread);
3860 	}
3861 
3862 	if (possible_uV > desired_max_uV)
3863 		return -EINVAL;
3864 
3865 	done = (possible_uV == target_uV);
3866 	desired_min_uV = possible_uV;
3867 
3868 finish:
3869 	/* Apply max_uV_step constraint if necessary */
3870 	if (state == PM_SUSPEND_ON) {
3871 		ret = regulator_limit_voltage_step(rdev, current_uV,
3872 						   &desired_min_uV);
3873 		if (ret < 0)
3874 			return ret;
3875 
3876 		if (ret == 0)
3877 			done = false;
3878 	}
3879 
3880 	/* Set current_uV if wasn't done earlier in the code and if necessary */
3881 	if (n_coupled > 1 && *current_uV == -1) {
3882 
3883 		if (_regulator_is_enabled(rdev)) {
3884 			ret = regulator_get_voltage_rdev(rdev);
3885 			if (ret < 0)
3886 				return ret;
3887 
3888 			*current_uV = ret;
3889 		} else {
3890 			*current_uV = desired_min_uV;
3891 		}
3892 	}
3893 
3894 	*min_uV = desired_min_uV;
3895 	*max_uV = desired_max_uV;
3896 
3897 	return done;
3898 }
3899 
3900 int regulator_do_balance_voltage(struct regulator_dev *rdev,
3901 				 suspend_state_t state, bool skip_coupled)
3902 {
3903 	struct regulator_dev **c_rdevs;
3904 	struct regulator_dev *best_rdev;
3905 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3906 	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3907 	unsigned int delta, best_delta;
3908 	unsigned long c_rdev_done = 0;
3909 	bool best_c_rdev_done;
3910 
3911 	c_rdevs = c_desc->coupled_rdevs;
3912 	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3913 
3914 	/*
3915 	 * Find the best possible voltage change on each loop. Leave the loop
3916 	 * if there isn't any possible change.
3917 	 */
3918 	do {
3919 		best_c_rdev_done = false;
3920 		best_delta = 0;
3921 		best_min_uV = 0;
3922 		best_max_uV = 0;
3923 		best_c_rdev = 0;
3924 		best_rdev = NULL;
3925 
3926 		/*
3927 		 * Find highest difference between optimal voltage
3928 		 * and current voltage.
3929 		 */
3930 		for (i = 0; i < n_coupled; i++) {
3931 			/*
3932 			 * optimal_uV is the best voltage that can be set for
3933 			 * i-th regulator at the moment without violating
3934 			 * max_spread constraint in order to balance
3935 			 * the coupled voltages.
3936 			 */
3937 			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3938 
3939 			if (test_bit(i, &c_rdev_done))
3940 				continue;
3941 
3942 			ret = regulator_get_optimal_voltage(c_rdevs[i],
3943 							    &current_uV,
3944 							    &optimal_uV,
3945 							    &optimal_max_uV,
3946 							    state, n_coupled);
3947 			if (ret < 0)
3948 				goto out;
3949 
3950 			delta = abs(optimal_uV - current_uV);
3951 
3952 			if (delta && best_delta <= delta) {
3953 				best_c_rdev_done = ret;
3954 				best_delta = delta;
3955 				best_rdev = c_rdevs[i];
3956 				best_min_uV = optimal_uV;
3957 				best_max_uV = optimal_max_uV;
3958 				best_c_rdev = i;
3959 			}
3960 		}
3961 
3962 		/* Nothing to change, return successfully */
3963 		if (!best_rdev) {
3964 			ret = 0;
3965 			goto out;
3966 		}
3967 
3968 		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3969 						 best_max_uV, state);
3970 
3971 		if (ret < 0)
3972 			goto out;
3973 
3974 		if (best_c_rdev_done)
3975 			set_bit(best_c_rdev, &c_rdev_done);
3976 
3977 	} while (n_coupled > 1);
3978 
3979 out:
3980 	return ret;
3981 }
3982 
3983 static int regulator_balance_voltage(struct regulator_dev *rdev,
3984 				     suspend_state_t state)
3985 {
3986 	struct coupling_desc *c_desc = &rdev->coupling_desc;
3987 	struct regulator_coupler *coupler = c_desc->coupler;
3988 	bool skip_coupled = false;
3989 
3990 	/*
3991 	 * If system is in a state other than PM_SUSPEND_ON, don't check
3992 	 * other coupled regulators.
3993 	 */
3994 	if (state != PM_SUSPEND_ON)
3995 		skip_coupled = true;
3996 
3997 	if (c_desc->n_resolved < c_desc->n_coupled) {
3998 		rdev_err(rdev, "Not all coupled regulators registered\n");
3999 		return -EPERM;
4000 	}
4001 
4002 	/* Invoke custom balancer for customized couplers */
4003 	if (coupler && coupler->balance_voltage)
4004 		return coupler->balance_voltage(coupler, rdev, state);
4005 
4006 	return regulator_do_balance_voltage(rdev, state, skip_coupled);
4007 }
4008 
4009 /**
4010  * regulator_set_voltage - set regulator output voltage
4011  * @regulator: regulator source
4012  * @min_uV: Minimum required voltage in uV
4013  * @max_uV: Maximum acceptable voltage in uV
4014  *
4015  * Sets a voltage regulator to the desired output voltage. This can be set
4016  * during any regulator state. IOW, regulator can be disabled or enabled.
4017  *
4018  * If the regulator is enabled then the voltage will change to the new value
4019  * immediately otherwise if the regulator is disabled the regulator will
4020  * output at the new voltage when enabled.
4021  *
4022  * NOTE: If the regulator is shared between several devices then the lowest
4023  * request voltage that meets the system constraints will be used.
4024  * Regulator system constraints must be set for this regulator before
4025  * calling this function otherwise this call will fail.
4026  */
4027 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4028 {
4029 	struct ww_acquire_ctx ww_ctx;
4030 	int ret;
4031 
4032 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4033 
4034 	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4035 					     PM_SUSPEND_ON);
4036 
4037 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4038 
4039 	return ret;
4040 }
4041 EXPORT_SYMBOL_GPL(regulator_set_voltage);
4042 
4043 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4044 					   suspend_state_t state, bool en)
4045 {
4046 	struct regulator_state *rstate;
4047 
4048 	rstate = regulator_get_suspend_state(rdev, state);
4049 	if (rstate == NULL)
4050 		return -EINVAL;
4051 
4052 	if (!rstate->changeable)
4053 		return -EPERM;
4054 
4055 	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4056 
4057 	return 0;
4058 }
4059 
4060 int regulator_suspend_enable(struct regulator_dev *rdev,
4061 				    suspend_state_t state)
4062 {
4063 	return regulator_suspend_toggle(rdev, state, true);
4064 }
4065 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4066 
4067 int regulator_suspend_disable(struct regulator_dev *rdev,
4068 				     suspend_state_t state)
4069 {
4070 	struct regulator *regulator;
4071 	struct regulator_voltage *voltage;
4072 
4073 	/*
4074 	 * if any consumer wants this regulator device keeping on in
4075 	 * suspend states, don't set it as disabled.
4076 	 */
4077 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
4078 		voltage = &regulator->voltage[state];
4079 		if (voltage->min_uV || voltage->max_uV)
4080 			return 0;
4081 	}
4082 
4083 	return regulator_suspend_toggle(rdev, state, false);
4084 }
4085 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4086 
4087 static int _regulator_set_suspend_voltage(struct regulator *regulator,
4088 					  int min_uV, int max_uV,
4089 					  suspend_state_t state)
4090 {
4091 	struct regulator_dev *rdev = regulator->rdev;
4092 	struct regulator_state *rstate;
4093 
4094 	rstate = regulator_get_suspend_state(rdev, state);
4095 	if (rstate == NULL)
4096 		return -EINVAL;
4097 
4098 	if (rstate->min_uV == rstate->max_uV) {
4099 		rdev_err(rdev, "The suspend voltage can't be changed!\n");
4100 		return -EPERM;
4101 	}
4102 
4103 	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4104 }
4105 
4106 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4107 				  int max_uV, suspend_state_t state)
4108 {
4109 	struct ww_acquire_ctx ww_ctx;
4110 	int ret;
4111 
4112 	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4113 	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4114 		return -EINVAL;
4115 
4116 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4117 
4118 	ret = _regulator_set_suspend_voltage(regulator, min_uV,
4119 					     max_uV, state);
4120 
4121 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4122 
4123 	return ret;
4124 }
4125 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4126 
4127 /**
4128  * regulator_set_voltage_time - get raise/fall time
4129  * @regulator: regulator source
4130  * @old_uV: starting voltage in microvolts
4131  * @new_uV: target voltage in microvolts
4132  *
4133  * Provided with the starting and ending voltage, this function attempts to
4134  * calculate the time in microseconds required to rise or fall to this new
4135  * voltage.
4136  */
4137 int regulator_set_voltage_time(struct regulator *regulator,
4138 			       int old_uV, int new_uV)
4139 {
4140 	struct regulator_dev *rdev = regulator->rdev;
4141 	const struct regulator_ops *ops = rdev->desc->ops;
4142 	int old_sel = -1;
4143 	int new_sel = -1;
4144 	int voltage;
4145 	int i;
4146 
4147 	if (ops->set_voltage_time)
4148 		return ops->set_voltage_time(rdev, old_uV, new_uV);
4149 	else if (!ops->set_voltage_time_sel)
4150 		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4151 
4152 	/* Currently requires operations to do this */
4153 	if (!ops->list_voltage || !rdev->desc->n_voltages)
4154 		return -EINVAL;
4155 
4156 	for (i = 0; i < rdev->desc->n_voltages; i++) {
4157 		/* We only look for exact voltage matches here */
4158 		if (i < rdev->desc->linear_min_sel)
4159 			continue;
4160 
4161 		if (old_sel >= 0 && new_sel >= 0)
4162 			break;
4163 
4164 		voltage = regulator_list_voltage(regulator, i);
4165 		if (voltage < 0)
4166 			return -EINVAL;
4167 		if (voltage == 0)
4168 			continue;
4169 		if (voltage == old_uV)
4170 			old_sel = i;
4171 		if (voltage == new_uV)
4172 			new_sel = i;
4173 	}
4174 
4175 	if (old_sel < 0 || new_sel < 0)
4176 		return -EINVAL;
4177 
4178 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4179 }
4180 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4181 
4182 /**
4183  * regulator_set_voltage_time_sel - get raise/fall time
4184  * @rdev: regulator source device
4185  * @old_selector: selector for starting voltage
4186  * @new_selector: selector for target voltage
4187  *
4188  * Provided with the starting and target voltage selectors, this function
4189  * returns time in microseconds required to rise or fall to this new voltage
4190  *
4191  * Drivers providing ramp_delay in regulation_constraints can use this as their
4192  * set_voltage_time_sel() operation.
4193  */
4194 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4195 				   unsigned int old_selector,
4196 				   unsigned int new_selector)
4197 {
4198 	int old_volt, new_volt;
4199 
4200 	/* sanity check */
4201 	if (!rdev->desc->ops->list_voltage)
4202 		return -EINVAL;
4203 
4204 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4205 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4206 
4207 	if (rdev->desc->ops->set_voltage_time)
4208 		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4209 							 new_volt);
4210 	else
4211 		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4212 }
4213 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4214 
4215 int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4216 {
4217 	int ret;
4218 
4219 	regulator_lock(rdev);
4220 
4221 	if (!rdev->desc->ops->set_voltage &&
4222 	    !rdev->desc->ops->set_voltage_sel) {
4223 		ret = -EINVAL;
4224 		goto out;
4225 	}
4226 
4227 	/* balance only, if regulator is coupled */
4228 	if (rdev->coupling_desc.n_coupled > 1)
4229 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4230 	else
4231 		ret = -EOPNOTSUPP;
4232 
4233 out:
4234 	regulator_unlock(rdev);
4235 	return ret;
4236 }
4237 
4238 /**
4239  * regulator_sync_voltage - re-apply last regulator output voltage
4240  * @regulator: regulator source
4241  *
4242  * Re-apply the last configured voltage.  This is intended to be used
4243  * where some external control source the consumer is cooperating with
4244  * has caused the configured voltage to change.
4245  */
4246 int regulator_sync_voltage(struct regulator *regulator)
4247 {
4248 	struct regulator_dev *rdev = regulator->rdev;
4249 	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4250 	int ret, min_uV, max_uV;
4251 
4252 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4253 		return 0;
4254 
4255 	regulator_lock(rdev);
4256 
4257 	if (!rdev->desc->ops->set_voltage &&
4258 	    !rdev->desc->ops->set_voltage_sel) {
4259 		ret = -EINVAL;
4260 		goto out;
4261 	}
4262 
4263 	/* This is only going to work if we've had a voltage configured. */
4264 	if (!voltage->min_uV && !voltage->max_uV) {
4265 		ret = -EINVAL;
4266 		goto out;
4267 	}
4268 
4269 	min_uV = voltage->min_uV;
4270 	max_uV = voltage->max_uV;
4271 
4272 	/* This should be a paranoia check... */
4273 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4274 	if (ret < 0)
4275 		goto out;
4276 
4277 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4278 	if (ret < 0)
4279 		goto out;
4280 
4281 	/* balance only, if regulator is coupled */
4282 	if (rdev->coupling_desc.n_coupled > 1)
4283 		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4284 	else
4285 		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4286 
4287 out:
4288 	regulator_unlock(rdev);
4289 	return ret;
4290 }
4291 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4292 
4293 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4294 {
4295 	int sel, ret;
4296 	bool bypassed;
4297 
4298 	if (rdev->desc->ops->get_bypass) {
4299 		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4300 		if (ret < 0)
4301 			return ret;
4302 		if (bypassed) {
4303 			/* if bypassed the regulator must have a supply */
4304 			if (!rdev->supply) {
4305 				rdev_err(rdev,
4306 					 "bypassed regulator has no supply!\n");
4307 				return -EPROBE_DEFER;
4308 			}
4309 
4310 			return regulator_get_voltage_rdev(rdev->supply->rdev);
4311 		}
4312 	}
4313 
4314 	if (rdev->desc->ops->get_voltage_sel) {
4315 		sel = rdev->desc->ops->get_voltage_sel(rdev);
4316 		if (sel < 0)
4317 			return sel;
4318 		ret = rdev->desc->ops->list_voltage(rdev, sel);
4319 	} else if (rdev->desc->ops->get_voltage) {
4320 		ret = rdev->desc->ops->get_voltage(rdev);
4321 	} else if (rdev->desc->ops->list_voltage) {
4322 		ret = rdev->desc->ops->list_voltage(rdev, 0);
4323 	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4324 		ret = rdev->desc->fixed_uV;
4325 	} else if (rdev->supply) {
4326 		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4327 	} else if (rdev->supply_name) {
4328 		return -EPROBE_DEFER;
4329 	} else {
4330 		return -EINVAL;
4331 	}
4332 
4333 	if (ret < 0)
4334 		return ret;
4335 	return ret - rdev->constraints->uV_offset;
4336 }
4337 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4338 
4339 /**
4340  * regulator_get_voltage - get regulator output voltage
4341  * @regulator: regulator source
4342  *
4343  * This returns the current regulator voltage in uV.
4344  *
4345  * NOTE: If the regulator is disabled it will return the voltage value. This
4346  * function should not be used to determine regulator state.
4347  */
4348 int regulator_get_voltage(struct regulator *regulator)
4349 {
4350 	struct ww_acquire_ctx ww_ctx;
4351 	int ret;
4352 
4353 	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4354 	ret = regulator_get_voltage_rdev(regulator->rdev);
4355 	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4356 
4357 	return ret;
4358 }
4359 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4360 
4361 /**
4362  * regulator_set_current_limit - set regulator output current limit
4363  * @regulator: regulator source
4364  * @min_uA: Minimum supported current in uA
4365  * @max_uA: Maximum supported current in uA
4366  *
4367  * Sets current sink to the desired output current. This can be set during
4368  * any regulator state. IOW, regulator can be disabled or enabled.
4369  *
4370  * If the regulator is enabled then the current will change to the new value
4371  * immediately otherwise if the regulator is disabled the regulator will
4372  * output at the new current when enabled.
4373  *
4374  * NOTE: Regulator system constraints must be set for this regulator before
4375  * calling this function otherwise this call will fail.
4376  */
4377 int regulator_set_current_limit(struct regulator *regulator,
4378 			       int min_uA, int max_uA)
4379 {
4380 	struct regulator_dev *rdev = regulator->rdev;
4381 	int ret;
4382 
4383 	regulator_lock(rdev);
4384 
4385 	/* sanity check */
4386 	if (!rdev->desc->ops->set_current_limit) {
4387 		ret = -EINVAL;
4388 		goto out;
4389 	}
4390 
4391 	/* constraints check */
4392 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4393 	if (ret < 0)
4394 		goto out;
4395 
4396 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4397 out:
4398 	regulator_unlock(rdev);
4399 	return ret;
4400 }
4401 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4402 
4403 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4404 {
4405 	/* sanity check */
4406 	if (!rdev->desc->ops->get_current_limit)
4407 		return -EINVAL;
4408 
4409 	return rdev->desc->ops->get_current_limit(rdev);
4410 }
4411 
4412 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4413 {
4414 	int ret;
4415 
4416 	regulator_lock(rdev);
4417 	ret = _regulator_get_current_limit_unlocked(rdev);
4418 	regulator_unlock(rdev);
4419 
4420 	return ret;
4421 }
4422 
4423 /**
4424  * regulator_get_current_limit - get regulator output current
4425  * @regulator: regulator source
4426  *
4427  * This returns the current supplied by the specified current sink in uA.
4428  *
4429  * NOTE: If the regulator is disabled it will return the current value. This
4430  * function should not be used to determine regulator state.
4431  */
4432 int regulator_get_current_limit(struct regulator *regulator)
4433 {
4434 	return _regulator_get_current_limit(regulator->rdev);
4435 }
4436 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4437 
4438 /**
4439  * regulator_set_mode - set regulator operating mode
4440  * @regulator: regulator source
4441  * @mode: operating mode - one of the REGULATOR_MODE constants
4442  *
4443  * Set regulator operating mode to increase regulator efficiency or improve
4444  * regulation performance.
4445  *
4446  * NOTE: Regulator system constraints must be set for this regulator before
4447  * calling this function otherwise this call will fail.
4448  */
4449 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4450 {
4451 	struct regulator_dev *rdev = regulator->rdev;
4452 	int ret;
4453 	int regulator_curr_mode;
4454 
4455 	regulator_lock(rdev);
4456 
4457 	/* sanity check */
4458 	if (!rdev->desc->ops->set_mode) {
4459 		ret = -EINVAL;
4460 		goto out;
4461 	}
4462 
4463 	/* return if the same mode is requested */
4464 	if (rdev->desc->ops->get_mode) {
4465 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4466 		if (regulator_curr_mode == mode) {
4467 			ret = 0;
4468 			goto out;
4469 		}
4470 	}
4471 
4472 	/* constraints check */
4473 	ret = regulator_mode_constrain(rdev, &mode);
4474 	if (ret < 0)
4475 		goto out;
4476 
4477 	ret = rdev->desc->ops->set_mode(rdev, mode);
4478 out:
4479 	regulator_unlock(rdev);
4480 	return ret;
4481 }
4482 EXPORT_SYMBOL_GPL(regulator_set_mode);
4483 
4484 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4485 {
4486 	/* sanity check */
4487 	if (!rdev->desc->ops->get_mode)
4488 		return -EINVAL;
4489 
4490 	return rdev->desc->ops->get_mode(rdev);
4491 }
4492 
4493 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4494 {
4495 	int ret;
4496 
4497 	regulator_lock(rdev);
4498 	ret = _regulator_get_mode_unlocked(rdev);
4499 	regulator_unlock(rdev);
4500 
4501 	return ret;
4502 }
4503 
4504 /**
4505  * regulator_get_mode - get regulator operating mode
4506  * @regulator: regulator source
4507  *
4508  * Get the current regulator operating mode.
4509  */
4510 unsigned int regulator_get_mode(struct regulator *regulator)
4511 {
4512 	return _regulator_get_mode(regulator->rdev);
4513 }
4514 EXPORT_SYMBOL_GPL(regulator_get_mode);
4515 
4516 static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4517 {
4518 	int ret = 0;
4519 
4520 	if (rdev->use_cached_err) {
4521 		spin_lock(&rdev->err_lock);
4522 		ret = rdev->cached_err;
4523 		spin_unlock(&rdev->err_lock);
4524 	}
4525 	return ret;
4526 }
4527 
4528 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4529 					unsigned int *flags)
4530 {
4531 	int cached_flags, ret = 0;
4532 
4533 	regulator_lock(rdev);
4534 
4535 	cached_flags = rdev_get_cached_err_flags(rdev);
4536 
4537 	if (rdev->desc->ops->get_error_flags)
4538 		ret = rdev->desc->ops->get_error_flags(rdev, flags);
4539 	else if (!rdev->use_cached_err)
4540 		ret = -EINVAL;
4541 
4542 	*flags |= cached_flags;
4543 
4544 	regulator_unlock(rdev);
4545 
4546 	return ret;
4547 }
4548 
4549 /**
4550  * regulator_get_error_flags - get regulator error information
4551  * @regulator: regulator source
4552  * @flags: pointer to store error flags
4553  *
4554  * Get the current regulator error information.
4555  */
4556 int regulator_get_error_flags(struct regulator *regulator,
4557 				unsigned int *flags)
4558 {
4559 	return _regulator_get_error_flags(regulator->rdev, flags);
4560 }
4561 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4562 
4563 /**
4564  * regulator_set_load - set regulator load
4565  * @regulator: regulator source
4566  * @uA_load: load current
4567  *
4568  * Notifies the regulator core of a new device load. This is then used by
4569  * DRMS (if enabled by constraints) to set the most efficient regulator
4570  * operating mode for the new regulator loading.
4571  *
4572  * Consumer devices notify their supply regulator of the maximum power
4573  * they will require (can be taken from device datasheet in the power
4574  * consumption tables) when they change operational status and hence power
4575  * state. Examples of operational state changes that can affect power
4576  * consumption are :-
4577  *
4578  *    o Device is opened / closed.
4579  *    o Device I/O is about to begin or has just finished.
4580  *    o Device is idling in between work.
4581  *
4582  * This information is also exported via sysfs to userspace.
4583  *
4584  * DRMS will sum the total requested load on the regulator and change
4585  * to the most efficient operating mode if platform constraints allow.
4586  *
4587  * NOTE: when a regulator consumer requests to have a regulator
4588  * disabled then any load that consumer requested no longer counts
4589  * toward the total requested load.  If the regulator is re-enabled
4590  * then the previously requested load will start counting again.
4591  *
4592  * If a regulator is an always-on regulator then an individual consumer's
4593  * load will still be removed if that consumer is fully disabled.
4594  *
4595  * On error a negative errno is returned.
4596  */
4597 int regulator_set_load(struct regulator *regulator, int uA_load)
4598 {
4599 	struct regulator_dev *rdev = regulator->rdev;
4600 	int old_uA_load;
4601 	int ret = 0;
4602 
4603 	regulator_lock(rdev);
4604 	old_uA_load = regulator->uA_load;
4605 	regulator->uA_load = uA_load;
4606 	if (regulator->enable_count && old_uA_load != uA_load) {
4607 		ret = drms_uA_update(rdev);
4608 		if (ret < 0)
4609 			regulator->uA_load = old_uA_load;
4610 	}
4611 	regulator_unlock(rdev);
4612 
4613 	return ret;
4614 }
4615 EXPORT_SYMBOL_GPL(regulator_set_load);
4616 
4617 /**
4618  * regulator_allow_bypass - allow the regulator to go into bypass mode
4619  *
4620  * @regulator: Regulator to configure
4621  * @enable: enable or disable bypass mode
4622  *
4623  * Allow the regulator to go into bypass mode if all other consumers
4624  * for the regulator also enable bypass mode and the machine
4625  * constraints allow this.  Bypass mode means that the regulator is
4626  * simply passing the input directly to the output with no regulation.
4627  */
4628 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4629 {
4630 	struct regulator_dev *rdev = regulator->rdev;
4631 	const char *name = rdev_get_name(rdev);
4632 	int ret = 0;
4633 
4634 	if (!rdev->desc->ops->set_bypass)
4635 		return 0;
4636 
4637 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4638 		return 0;
4639 
4640 	regulator_lock(rdev);
4641 
4642 	if (enable && !regulator->bypass) {
4643 		rdev->bypass_count++;
4644 
4645 		if (rdev->bypass_count == rdev->open_count) {
4646 			trace_regulator_bypass_enable(name);
4647 
4648 			ret = rdev->desc->ops->set_bypass(rdev, enable);
4649 			if (ret != 0)
4650 				rdev->bypass_count--;
4651 			else
4652 				trace_regulator_bypass_enable_complete(name);
4653 		}
4654 
4655 	} else if (!enable && regulator->bypass) {
4656 		rdev->bypass_count--;
4657 
4658 		if (rdev->bypass_count != rdev->open_count) {
4659 			trace_regulator_bypass_disable(name);
4660 
4661 			ret = rdev->desc->ops->set_bypass(rdev, enable);
4662 			if (ret != 0)
4663 				rdev->bypass_count++;
4664 			else
4665 				trace_regulator_bypass_disable_complete(name);
4666 		}
4667 	}
4668 
4669 	if (ret == 0)
4670 		regulator->bypass = enable;
4671 
4672 	regulator_unlock(rdev);
4673 
4674 	return ret;
4675 }
4676 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4677 
4678 /**
4679  * regulator_register_notifier - register regulator event notifier
4680  * @regulator: regulator source
4681  * @nb: notifier block
4682  *
4683  * Register notifier block to receive regulator events.
4684  */
4685 int regulator_register_notifier(struct regulator *regulator,
4686 			      struct notifier_block *nb)
4687 {
4688 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
4689 						nb);
4690 }
4691 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4692 
4693 /**
4694  * regulator_unregister_notifier - unregister regulator event notifier
4695  * @regulator: regulator source
4696  * @nb: notifier block
4697  *
4698  * Unregister regulator event notifier block.
4699  */
4700 int regulator_unregister_notifier(struct regulator *regulator,
4701 				struct notifier_block *nb)
4702 {
4703 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4704 						  nb);
4705 }
4706 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4707 
4708 /* notify regulator consumers and downstream regulator consumers.
4709  * Note mutex must be held by caller.
4710  */
4711 static int _notifier_call_chain(struct regulator_dev *rdev,
4712 				  unsigned long event, void *data)
4713 {
4714 	/* call rdev chain first */
4715 	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4716 }
4717 
4718 /**
4719  * regulator_bulk_get - get multiple regulator consumers
4720  *
4721  * @dev:           Device to supply
4722  * @num_consumers: Number of consumers to register
4723  * @consumers:     Configuration of consumers; clients are stored here.
4724  *
4725  * @return 0 on success, an errno on failure.
4726  *
4727  * This helper function allows drivers to get several regulator
4728  * consumers in one operation.  If any of the regulators cannot be
4729  * acquired then any regulators that were allocated will be freed
4730  * before returning to the caller.
4731  */
4732 int regulator_bulk_get(struct device *dev, int num_consumers,
4733 		       struct regulator_bulk_data *consumers)
4734 {
4735 	int i;
4736 	int ret;
4737 
4738 	for (i = 0; i < num_consumers; i++)
4739 		consumers[i].consumer = NULL;
4740 
4741 	for (i = 0; i < num_consumers; i++) {
4742 		consumers[i].consumer = regulator_get(dev,
4743 						      consumers[i].supply);
4744 		if (IS_ERR(consumers[i].consumer)) {
4745 			ret = PTR_ERR(consumers[i].consumer);
4746 			consumers[i].consumer = NULL;
4747 			goto err;
4748 		}
4749 	}
4750 
4751 	return 0;
4752 
4753 err:
4754 	if (ret != -EPROBE_DEFER)
4755 		dev_err(dev, "Failed to get supply '%s': %pe\n",
4756 			consumers[i].supply, ERR_PTR(ret));
4757 	else
4758 		dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4759 			consumers[i].supply);
4760 
4761 	while (--i >= 0)
4762 		regulator_put(consumers[i].consumer);
4763 
4764 	return ret;
4765 }
4766 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4767 
4768 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4769 {
4770 	struct regulator_bulk_data *bulk = data;
4771 
4772 	bulk->ret = regulator_enable(bulk->consumer);
4773 }
4774 
4775 /**
4776  * regulator_bulk_enable - enable multiple regulator consumers
4777  *
4778  * @num_consumers: Number of consumers
4779  * @consumers:     Consumer data; clients are stored here.
4780  * @return         0 on success, an errno on failure
4781  *
4782  * This convenience API allows consumers to enable multiple regulator
4783  * clients in a single API call.  If any consumers cannot be enabled
4784  * then any others that were enabled will be disabled again prior to
4785  * return.
4786  */
4787 int regulator_bulk_enable(int num_consumers,
4788 			  struct regulator_bulk_data *consumers)
4789 {
4790 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4791 	int i;
4792 	int ret = 0;
4793 
4794 	for (i = 0; i < num_consumers; i++) {
4795 		async_schedule_domain(regulator_bulk_enable_async,
4796 				      &consumers[i], &async_domain);
4797 	}
4798 
4799 	async_synchronize_full_domain(&async_domain);
4800 
4801 	/* If any consumer failed we need to unwind any that succeeded */
4802 	for (i = 0; i < num_consumers; i++) {
4803 		if (consumers[i].ret != 0) {
4804 			ret = consumers[i].ret;
4805 			goto err;
4806 		}
4807 	}
4808 
4809 	return 0;
4810 
4811 err:
4812 	for (i = 0; i < num_consumers; i++) {
4813 		if (consumers[i].ret < 0)
4814 			pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4815 			       ERR_PTR(consumers[i].ret));
4816 		else
4817 			regulator_disable(consumers[i].consumer);
4818 	}
4819 
4820 	return ret;
4821 }
4822 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4823 
4824 /**
4825  * regulator_bulk_disable - disable multiple regulator consumers
4826  *
4827  * @num_consumers: Number of consumers
4828  * @consumers:     Consumer data; clients are stored here.
4829  * @return         0 on success, an errno on failure
4830  *
4831  * This convenience API allows consumers to disable multiple regulator
4832  * clients in a single API call.  If any consumers cannot be disabled
4833  * then any others that were disabled will be enabled again prior to
4834  * return.
4835  */
4836 int regulator_bulk_disable(int num_consumers,
4837 			   struct regulator_bulk_data *consumers)
4838 {
4839 	int i;
4840 	int ret, r;
4841 
4842 	for (i = num_consumers - 1; i >= 0; --i) {
4843 		ret = regulator_disable(consumers[i].consumer);
4844 		if (ret != 0)
4845 			goto err;
4846 	}
4847 
4848 	return 0;
4849 
4850 err:
4851 	pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4852 	for (++i; i < num_consumers; ++i) {
4853 		r = regulator_enable(consumers[i].consumer);
4854 		if (r != 0)
4855 			pr_err("Failed to re-enable %s: %pe\n",
4856 			       consumers[i].supply, ERR_PTR(r));
4857 	}
4858 
4859 	return ret;
4860 }
4861 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4862 
4863 /**
4864  * regulator_bulk_force_disable - force disable multiple regulator consumers
4865  *
4866  * @num_consumers: Number of consumers
4867  * @consumers:     Consumer data; clients are stored here.
4868  * @return         0 on success, an errno on failure
4869  *
4870  * This convenience API allows consumers to forcibly disable multiple regulator
4871  * clients in a single API call.
4872  * NOTE: This should be used for situations when device damage will
4873  * likely occur if the regulators are not disabled (e.g. over temp).
4874  * Although regulator_force_disable function call for some consumers can
4875  * return error numbers, the function is called for all consumers.
4876  */
4877 int regulator_bulk_force_disable(int num_consumers,
4878 			   struct regulator_bulk_data *consumers)
4879 {
4880 	int i;
4881 	int ret = 0;
4882 
4883 	for (i = 0; i < num_consumers; i++) {
4884 		consumers[i].ret =
4885 			    regulator_force_disable(consumers[i].consumer);
4886 
4887 		/* Store first error for reporting */
4888 		if (consumers[i].ret && !ret)
4889 			ret = consumers[i].ret;
4890 	}
4891 
4892 	return ret;
4893 }
4894 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4895 
4896 /**
4897  * regulator_bulk_free - free multiple regulator consumers
4898  *
4899  * @num_consumers: Number of consumers
4900  * @consumers:     Consumer data; clients are stored here.
4901  *
4902  * This convenience API allows consumers to free multiple regulator
4903  * clients in a single API call.
4904  */
4905 void regulator_bulk_free(int num_consumers,
4906 			 struct regulator_bulk_data *consumers)
4907 {
4908 	int i;
4909 
4910 	for (i = 0; i < num_consumers; i++) {
4911 		regulator_put(consumers[i].consumer);
4912 		consumers[i].consumer = NULL;
4913 	}
4914 }
4915 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4916 
4917 /**
4918  * regulator_notifier_call_chain - call regulator event notifier
4919  * @rdev: regulator source
4920  * @event: notifier block
4921  * @data: callback-specific data.
4922  *
4923  * Called by regulator drivers to notify clients a regulator event has
4924  * occurred.
4925  */
4926 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4927 				  unsigned long event, void *data)
4928 {
4929 	_notifier_call_chain(rdev, event, data);
4930 	return NOTIFY_DONE;
4931 
4932 }
4933 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4934 
4935 /**
4936  * regulator_mode_to_status - convert a regulator mode into a status
4937  *
4938  * @mode: Mode to convert
4939  *
4940  * Convert a regulator mode into a status.
4941  */
4942 int regulator_mode_to_status(unsigned int mode)
4943 {
4944 	switch (mode) {
4945 	case REGULATOR_MODE_FAST:
4946 		return REGULATOR_STATUS_FAST;
4947 	case REGULATOR_MODE_NORMAL:
4948 		return REGULATOR_STATUS_NORMAL;
4949 	case REGULATOR_MODE_IDLE:
4950 		return REGULATOR_STATUS_IDLE;
4951 	case REGULATOR_MODE_STANDBY:
4952 		return REGULATOR_STATUS_STANDBY;
4953 	default:
4954 		return REGULATOR_STATUS_UNDEFINED;
4955 	}
4956 }
4957 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4958 
4959 static struct attribute *regulator_dev_attrs[] = {
4960 	&dev_attr_name.attr,
4961 	&dev_attr_num_users.attr,
4962 	&dev_attr_type.attr,
4963 	&dev_attr_microvolts.attr,
4964 	&dev_attr_microamps.attr,
4965 	&dev_attr_opmode.attr,
4966 	&dev_attr_state.attr,
4967 	&dev_attr_status.attr,
4968 	&dev_attr_bypass.attr,
4969 	&dev_attr_requested_microamps.attr,
4970 	&dev_attr_min_microvolts.attr,
4971 	&dev_attr_max_microvolts.attr,
4972 	&dev_attr_min_microamps.attr,
4973 	&dev_attr_max_microamps.attr,
4974 	&dev_attr_suspend_standby_state.attr,
4975 	&dev_attr_suspend_mem_state.attr,
4976 	&dev_attr_suspend_disk_state.attr,
4977 	&dev_attr_suspend_standby_microvolts.attr,
4978 	&dev_attr_suspend_mem_microvolts.attr,
4979 	&dev_attr_suspend_disk_microvolts.attr,
4980 	&dev_attr_suspend_standby_mode.attr,
4981 	&dev_attr_suspend_mem_mode.attr,
4982 	&dev_attr_suspend_disk_mode.attr,
4983 	NULL
4984 };
4985 
4986 /*
4987  * To avoid cluttering sysfs (and memory) with useless state, only
4988  * create attributes that can be meaningfully displayed.
4989  */
4990 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4991 					 struct attribute *attr, int idx)
4992 {
4993 	struct device *dev = kobj_to_dev(kobj);
4994 	struct regulator_dev *rdev = dev_to_rdev(dev);
4995 	const struct regulator_ops *ops = rdev->desc->ops;
4996 	umode_t mode = attr->mode;
4997 
4998 	/* these three are always present */
4999 	if (attr == &dev_attr_name.attr ||
5000 	    attr == &dev_attr_num_users.attr ||
5001 	    attr == &dev_attr_type.attr)
5002 		return mode;
5003 
5004 	/* some attributes need specific methods to be displayed */
5005 	if (attr == &dev_attr_microvolts.attr) {
5006 		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5007 		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5008 		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5009 		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5010 			return mode;
5011 		return 0;
5012 	}
5013 
5014 	if (attr == &dev_attr_microamps.attr)
5015 		return ops->get_current_limit ? mode : 0;
5016 
5017 	if (attr == &dev_attr_opmode.attr)
5018 		return ops->get_mode ? mode : 0;
5019 
5020 	if (attr == &dev_attr_state.attr)
5021 		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5022 
5023 	if (attr == &dev_attr_status.attr)
5024 		return ops->get_status ? mode : 0;
5025 
5026 	if (attr == &dev_attr_bypass.attr)
5027 		return ops->get_bypass ? mode : 0;
5028 
5029 	/* constraints need specific supporting methods */
5030 	if (attr == &dev_attr_min_microvolts.attr ||
5031 	    attr == &dev_attr_max_microvolts.attr)
5032 		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5033 
5034 	if (attr == &dev_attr_min_microamps.attr ||
5035 	    attr == &dev_attr_max_microamps.attr)
5036 		return ops->set_current_limit ? mode : 0;
5037 
5038 	if (attr == &dev_attr_suspend_standby_state.attr ||
5039 	    attr == &dev_attr_suspend_mem_state.attr ||
5040 	    attr == &dev_attr_suspend_disk_state.attr)
5041 		return mode;
5042 
5043 	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5044 	    attr == &dev_attr_suspend_mem_microvolts.attr ||
5045 	    attr == &dev_attr_suspend_disk_microvolts.attr)
5046 		return ops->set_suspend_voltage ? mode : 0;
5047 
5048 	if (attr == &dev_attr_suspend_standby_mode.attr ||
5049 	    attr == &dev_attr_suspend_mem_mode.attr ||
5050 	    attr == &dev_attr_suspend_disk_mode.attr)
5051 		return ops->set_suspend_mode ? mode : 0;
5052 
5053 	return mode;
5054 }
5055 
5056 static const struct attribute_group regulator_dev_group = {
5057 	.attrs = regulator_dev_attrs,
5058 	.is_visible = regulator_attr_is_visible,
5059 };
5060 
5061 static const struct attribute_group *regulator_dev_groups[] = {
5062 	&regulator_dev_group,
5063 	NULL
5064 };
5065 
5066 static void regulator_dev_release(struct device *dev)
5067 {
5068 	struct regulator_dev *rdev = dev_get_drvdata(dev);
5069 
5070 	kfree(rdev->constraints);
5071 	of_node_put(rdev->dev.of_node);
5072 	kfree(rdev);
5073 }
5074 
5075 static void rdev_init_debugfs(struct regulator_dev *rdev)
5076 {
5077 	struct device *parent = rdev->dev.parent;
5078 	const char *rname = rdev_get_name(rdev);
5079 	char name[NAME_MAX];
5080 
5081 	/* Avoid duplicate debugfs directory names */
5082 	if (parent && rname == rdev->desc->name) {
5083 		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5084 			 rname);
5085 		rname = name;
5086 	}
5087 
5088 	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5089 	if (!rdev->debugfs) {
5090 		rdev_warn(rdev, "Failed to create debugfs directory\n");
5091 		return;
5092 	}
5093 
5094 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
5095 			   &rdev->use_count);
5096 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
5097 			   &rdev->open_count);
5098 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5099 			   &rdev->bypass_count);
5100 }
5101 
5102 static int regulator_register_resolve_supply(struct device *dev, void *data)
5103 {
5104 	struct regulator_dev *rdev = dev_to_rdev(dev);
5105 
5106 	if (regulator_resolve_supply(rdev))
5107 		rdev_dbg(rdev, "unable to resolve supply\n");
5108 
5109 	return 0;
5110 }
5111 
5112 int regulator_coupler_register(struct regulator_coupler *coupler)
5113 {
5114 	mutex_lock(&regulator_list_mutex);
5115 	list_add_tail(&coupler->list, &regulator_coupler_list);
5116 	mutex_unlock(&regulator_list_mutex);
5117 
5118 	return 0;
5119 }
5120 
5121 static struct regulator_coupler *
5122 regulator_find_coupler(struct regulator_dev *rdev)
5123 {
5124 	struct regulator_coupler *coupler;
5125 	int err;
5126 
5127 	/*
5128 	 * Note that regulators are appended to the list and the generic
5129 	 * coupler is registered first, hence it will be attached at last
5130 	 * if nobody cared.
5131 	 */
5132 	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
5133 		err = coupler->attach_regulator(coupler, rdev);
5134 		if (!err) {
5135 			if (!coupler->balance_voltage &&
5136 			    rdev->coupling_desc.n_coupled > 2)
5137 				goto err_unsupported;
5138 
5139 			return coupler;
5140 		}
5141 
5142 		if (err < 0)
5143 			return ERR_PTR(err);
5144 
5145 		if (err == 1)
5146 			continue;
5147 
5148 		break;
5149 	}
5150 
5151 	return ERR_PTR(-EINVAL);
5152 
5153 err_unsupported:
5154 	if (coupler->detach_regulator)
5155 		coupler->detach_regulator(coupler, rdev);
5156 
5157 	rdev_err(rdev,
5158 		"Voltage balancing for multiple regulator couples is unimplemented\n");
5159 
5160 	return ERR_PTR(-EPERM);
5161 }
5162 
5163 static void regulator_resolve_coupling(struct regulator_dev *rdev)
5164 {
5165 	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5166 	struct coupling_desc *c_desc = &rdev->coupling_desc;
5167 	int n_coupled = c_desc->n_coupled;
5168 	struct regulator_dev *c_rdev;
5169 	int i;
5170 
5171 	for (i = 1; i < n_coupled; i++) {
5172 		/* already resolved */
5173 		if (c_desc->coupled_rdevs[i])
5174 			continue;
5175 
5176 		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5177 
5178 		if (!c_rdev)
5179 			continue;
5180 
5181 		if (c_rdev->coupling_desc.coupler != coupler) {
5182 			rdev_err(rdev, "coupler mismatch with %s\n",
5183 				 rdev_get_name(c_rdev));
5184 			return;
5185 		}
5186 
5187 		c_desc->coupled_rdevs[i] = c_rdev;
5188 		c_desc->n_resolved++;
5189 
5190 		regulator_resolve_coupling(c_rdev);
5191 	}
5192 }
5193 
5194 static void regulator_remove_coupling(struct regulator_dev *rdev)
5195 {
5196 	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5197 	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5198 	struct regulator_dev *__c_rdev, *c_rdev;
5199 	unsigned int __n_coupled, n_coupled;
5200 	int i, k;
5201 	int err;
5202 
5203 	n_coupled = c_desc->n_coupled;
5204 
5205 	for (i = 1; i < n_coupled; i++) {
5206 		c_rdev = c_desc->coupled_rdevs[i];
5207 
5208 		if (!c_rdev)
5209 			continue;
5210 
5211 		regulator_lock(c_rdev);
5212 
5213 		__c_desc = &c_rdev->coupling_desc;
5214 		__n_coupled = __c_desc->n_coupled;
5215 
5216 		for (k = 1; k < __n_coupled; k++) {
5217 			__c_rdev = __c_desc->coupled_rdevs[k];
5218 
5219 			if (__c_rdev == rdev) {
5220 				__c_desc->coupled_rdevs[k] = NULL;
5221 				__c_desc->n_resolved--;
5222 				break;
5223 			}
5224 		}
5225 
5226 		regulator_unlock(c_rdev);
5227 
5228 		c_desc->coupled_rdevs[i] = NULL;
5229 		c_desc->n_resolved--;
5230 	}
5231 
5232 	if (coupler && coupler->detach_regulator) {
5233 		err = coupler->detach_regulator(coupler, rdev);
5234 		if (err)
5235 			rdev_err(rdev, "failed to detach from coupler: %pe\n",
5236 				 ERR_PTR(err));
5237 	}
5238 
5239 	kfree(rdev->coupling_desc.coupled_rdevs);
5240 	rdev->coupling_desc.coupled_rdevs = NULL;
5241 }
5242 
5243 static int regulator_init_coupling(struct regulator_dev *rdev)
5244 {
5245 	struct regulator_dev **coupled;
5246 	int err, n_phandles;
5247 
5248 	if (!IS_ENABLED(CONFIG_OF))
5249 		n_phandles = 0;
5250 	else
5251 		n_phandles = of_get_n_coupled(rdev);
5252 
5253 	coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5254 	if (!coupled)
5255 		return -ENOMEM;
5256 
5257 	rdev->coupling_desc.coupled_rdevs = coupled;
5258 
5259 	/*
5260 	 * Every regulator should always have coupling descriptor filled with
5261 	 * at least pointer to itself.
5262 	 */
5263 	rdev->coupling_desc.coupled_rdevs[0] = rdev;
5264 	rdev->coupling_desc.n_coupled = n_phandles + 1;
5265 	rdev->coupling_desc.n_resolved++;
5266 
5267 	/* regulator isn't coupled */
5268 	if (n_phandles == 0)
5269 		return 0;
5270 
5271 	if (!of_check_coupling_data(rdev))
5272 		return -EPERM;
5273 
5274 	mutex_lock(&regulator_list_mutex);
5275 	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5276 	mutex_unlock(&regulator_list_mutex);
5277 
5278 	if (IS_ERR(rdev->coupling_desc.coupler)) {
5279 		err = PTR_ERR(rdev->coupling_desc.coupler);
5280 		rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5281 		return err;
5282 	}
5283 
5284 	return 0;
5285 }
5286 
5287 static int generic_coupler_attach(struct regulator_coupler *coupler,
5288 				  struct regulator_dev *rdev)
5289 {
5290 	if (rdev->coupling_desc.n_coupled > 2) {
5291 		rdev_err(rdev,
5292 			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5293 		return -EPERM;
5294 	}
5295 
5296 	if (!rdev->constraints->always_on) {
5297 		rdev_err(rdev,
5298 			 "Coupling of a non always-on regulator is unimplemented\n");
5299 		return -ENOTSUPP;
5300 	}
5301 
5302 	return 0;
5303 }
5304 
5305 static struct regulator_coupler generic_regulator_coupler = {
5306 	.attach_regulator = generic_coupler_attach,
5307 };
5308 
5309 /**
5310  * regulator_register - register regulator
5311  * @regulator_desc: regulator to register
5312  * @cfg: runtime configuration for regulator
5313  *
5314  * Called by regulator drivers to register a regulator.
5315  * Returns a valid pointer to struct regulator_dev on success
5316  * or an ERR_PTR() on error.
5317  */
5318 struct regulator_dev *
5319 regulator_register(const struct regulator_desc *regulator_desc,
5320 		   const struct regulator_config *cfg)
5321 {
5322 	const struct regulator_init_data *init_data;
5323 	struct regulator_config *config = NULL;
5324 	static atomic_t regulator_no = ATOMIC_INIT(-1);
5325 	struct regulator_dev *rdev;
5326 	bool dangling_cfg_gpiod = false;
5327 	bool dangling_of_gpiod = false;
5328 	struct device *dev;
5329 	int ret, i;
5330 
5331 	if (cfg == NULL)
5332 		return ERR_PTR(-EINVAL);
5333 	if (cfg->ena_gpiod)
5334 		dangling_cfg_gpiod = true;
5335 	if (regulator_desc == NULL) {
5336 		ret = -EINVAL;
5337 		goto rinse;
5338 	}
5339 
5340 	dev = cfg->dev;
5341 	WARN_ON(!dev);
5342 
5343 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5344 		ret = -EINVAL;
5345 		goto rinse;
5346 	}
5347 
5348 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5349 	    regulator_desc->type != REGULATOR_CURRENT) {
5350 		ret = -EINVAL;
5351 		goto rinse;
5352 	}
5353 
5354 	/* Only one of each should be implemented */
5355 	WARN_ON(regulator_desc->ops->get_voltage &&
5356 		regulator_desc->ops->get_voltage_sel);
5357 	WARN_ON(regulator_desc->ops->set_voltage &&
5358 		regulator_desc->ops->set_voltage_sel);
5359 
5360 	/* If we're using selectors we must implement list_voltage. */
5361 	if (regulator_desc->ops->get_voltage_sel &&
5362 	    !regulator_desc->ops->list_voltage) {
5363 		ret = -EINVAL;
5364 		goto rinse;
5365 	}
5366 	if (regulator_desc->ops->set_voltage_sel &&
5367 	    !regulator_desc->ops->list_voltage) {
5368 		ret = -EINVAL;
5369 		goto rinse;
5370 	}
5371 
5372 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5373 	if (rdev == NULL) {
5374 		ret = -ENOMEM;
5375 		goto rinse;
5376 	}
5377 	device_initialize(&rdev->dev);
5378 	spin_lock_init(&rdev->err_lock);
5379 
5380 	/*
5381 	 * Duplicate the config so the driver could override it after
5382 	 * parsing init data.
5383 	 */
5384 	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5385 	if (config == NULL) {
5386 		ret = -ENOMEM;
5387 		goto clean;
5388 	}
5389 
5390 	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5391 					       &rdev->dev.of_node);
5392 
5393 	/*
5394 	 * Sometimes not all resources are probed already so we need to take
5395 	 * that into account. This happens most the time if the ena_gpiod comes
5396 	 * from a gpio extender or something else.
5397 	 */
5398 	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5399 		ret = -EPROBE_DEFER;
5400 		goto clean;
5401 	}
5402 
5403 	/*
5404 	 * We need to keep track of any GPIO descriptor coming from the
5405 	 * device tree until we have handled it over to the core. If the
5406 	 * config that was passed in to this function DOES NOT contain
5407 	 * a descriptor, and the config after this call DOES contain
5408 	 * a descriptor, we definitely got one from parsing the device
5409 	 * tree.
5410 	 */
5411 	if (!cfg->ena_gpiod && config->ena_gpiod)
5412 		dangling_of_gpiod = true;
5413 	if (!init_data) {
5414 		init_data = config->init_data;
5415 		rdev->dev.of_node = of_node_get(config->of_node);
5416 	}
5417 
5418 	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5419 	rdev->reg_data = config->driver_data;
5420 	rdev->owner = regulator_desc->owner;
5421 	rdev->desc = regulator_desc;
5422 	if (config->regmap)
5423 		rdev->regmap = config->regmap;
5424 	else if (dev_get_regmap(dev, NULL))
5425 		rdev->regmap = dev_get_regmap(dev, NULL);
5426 	else if (dev->parent)
5427 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5428 	INIT_LIST_HEAD(&rdev->consumer_list);
5429 	INIT_LIST_HEAD(&rdev->list);
5430 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5431 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5432 
5433 	/* preform any regulator specific init */
5434 	if (init_data && init_data->regulator_init) {
5435 		ret = init_data->regulator_init(rdev->reg_data);
5436 		if (ret < 0)
5437 			goto clean;
5438 	}
5439 
5440 	if (config->ena_gpiod) {
5441 		ret = regulator_ena_gpio_request(rdev, config);
5442 		if (ret != 0) {
5443 			rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5444 				 ERR_PTR(ret));
5445 			goto clean;
5446 		}
5447 		/* The regulator core took over the GPIO descriptor */
5448 		dangling_cfg_gpiod = false;
5449 		dangling_of_gpiod = false;
5450 	}
5451 
5452 	/* register with sysfs */
5453 	rdev->dev.class = &regulator_class;
5454 	rdev->dev.parent = dev;
5455 	dev_set_name(&rdev->dev, "regulator.%lu",
5456 		    (unsigned long) atomic_inc_return(&regulator_no));
5457 	dev_set_drvdata(&rdev->dev, rdev);
5458 
5459 	/* set regulator constraints */
5460 	if (init_data)
5461 		rdev->constraints = kmemdup(&init_data->constraints,
5462 					    sizeof(*rdev->constraints),
5463 					    GFP_KERNEL);
5464 	else
5465 		rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5466 					    GFP_KERNEL);
5467 	if (!rdev->constraints) {
5468 		ret = -ENOMEM;
5469 		goto wash;
5470 	}
5471 
5472 	if (init_data && init_data->supply_regulator)
5473 		rdev->supply_name = init_data->supply_regulator;
5474 	else if (regulator_desc->supply_name)
5475 		rdev->supply_name = regulator_desc->supply_name;
5476 
5477 	ret = set_machine_constraints(rdev);
5478 	if (ret == -EPROBE_DEFER) {
5479 		/* Regulator might be in bypass mode and so needs its supply
5480 		 * to set the constraints
5481 		 */
5482 		/* FIXME: this currently triggers a chicken-and-egg problem
5483 		 * when creating -SUPPLY symlink in sysfs to a regulator
5484 		 * that is just being created
5485 		 */
5486 		rdev_dbg(rdev, "will resolve supply early: %s\n",
5487 			 rdev->supply_name);
5488 		ret = regulator_resolve_supply(rdev);
5489 		if (!ret)
5490 			ret = set_machine_constraints(rdev);
5491 		else
5492 			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5493 				 ERR_PTR(ret));
5494 	}
5495 	if (ret < 0)
5496 		goto wash;
5497 
5498 	ret = regulator_init_coupling(rdev);
5499 	if (ret < 0)
5500 		goto wash;
5501 
5502 	/* add consumers devices */
5503 	if (init_data) {
5504 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
5505 			ret = set_consumer_device_supply(rdev,
5506 				init_data->consumer_supplies[i].dev_name,
5507 				init_data->consumer_supplies[i].supply);
5508 			if (ret < 0) {
5509 				dev_err(dev, "Failed to set supply %s\n",
5510 					init_data->consumer_supplies[i].supply);
5511 				goto unset_supplies;
5512 			}
5513 		}
5514 	}
5515 
5516 	if (!rdev->desc->ops->get_voltage &&
5517 	    !rdev->desc->ops->list_voltage &&
5518 	    !rdev->desc->fixed_uV)
5519 		rdev->is_switch = true;
5520 
5521 	ret = device_add(&rdev->dev);
5522 	if (ret != 0)
5523 		goto unset_supplies;
5524 
5525 	rdev_init_debugfs(rdev);
5526 
5527 	/* try to resolve regulators coupling since a new one was registered */
5528 	mutex_lock(&regulator_list_mutex);
5529 	regulator_resolve_coupling(rdev);
5530 	mutex_unlock(&regulator_list_mutex);
5531 
5532 	/* try to resolve regulators supply since a new one was registered */
5533 	class_for_each_device(&regulator_class, NULL, NULL,
5534 			      regulator_register_resolve_supply);
5535 	kfree(config);
5536 	return rdev;
5537 
5538 unset_supplies:
5539 	mutex_lock(&regulator_list_mutex);
5540 	unset_regulator_supplies(rdev);
5541 	regulator_remove_coupling(rdev);
5542 	mutex_unlock(&regulator_list_mutex);
5543 wash:
5544 	kfree(rdev->coupling_desc.coupled_rdevs);
5545 	mutex_lock(&regulator_list_mutex);
5546 	regulator_ena_gpio_free(rdev);
5547 	mutex_unlock(&regulator_list_mutex);
5548 clean:
5549 	if (dangling_of_gpiod)
5550 		gpiod_put(config->ena_gpiod);
5551 	kfree(config);
5552 	put_device(&rdev->dev);
5553 rinse:
5554 	if (dangling_cfg_gpiod)
5555 		gpiod_put(cfg->ena_gpiod);
5556 	return ERR_PTR(ret);
5557 }
5558 EXPORT_SYMBOL_GPL(regulator_register);
5559 
5560 /**
5561  * regulator_unregister - unregister regulator
5562  * @rdev: regulator to unregister
5563  *
5564  * Called by regulator drivers to unregister a regulator.
5565  */
5566 void regulator_unregister(struct regulator_dev *rdev)
5567 {
5568 	if (rdev == NULL)
5569 		return;
5570 
5571 	if (rdev->supply) {
5572 		while (rdev->use_count--)
5573 			regulator_disable(rdev->supply);
5574 		regulator_put(rdev->supply);
5575 	}
5576 
5577 	flush_work(&rdev->disable_work.work);
5578 
5579 	mutex_lock(&regulator_list_mutex);
5580 
5581 	debugfs_remove_recursive(rdev->debugfs);
5582 	WARN_ON(rdev->open_count);
5583 	regulator_remove_coupling(rdev);
5584 	unset_regulator_supplies(rdev);
5585 	list_del(&rdev->list);
5586 	regulator_ena_gpio_free(rdev);
5587 	device_unregister(&rdev->dev);
5588 
5589 	mutex_unlock(&regulator_list_mutex);
5590 }
5591 EXPORT_SYMBOL_GPL(regulator_unregister);
5592 
5593 #ifdef CONFIG_SUSPEND
5594 /**
5595  * regulator_suspend - prepare regulators for system wide suspend
5596  * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5597  *
5598  * Configure each regulator with it's suspend operating parameters for state.
5599  */
5600 static int regulator_suspend(struct device *dev)
5601 {
5602 	struct regulator_dev *rdev = dev_to_rdev(dev);
5603 	suspend_state_t state = pm_suspend_target_state;
5604 	int ret;
5605 	const struct regulator_state *rstate;
5606 
5607 	rstate = regulator_get_suspend_state_check(rdev, state);
5608 	if (!rstate)
5609 		return 0;
5610 
5611 	regulator_lock(rdev);
5612 	ret = __suspend_set_state(rdev, rstate);
5613 	regulator_unlock(rdev);
5614 
5615 	return ret;
5616 }
5617 
5618 static int regulator_resume(struct device *dev)
5619 {
5620 	suspend_state_t state = pm_suspend_target_state;
5621 	struct regulator_dev *rdev = dev_to_rdev(dev);
5622 	struct regulator_state *rstate;
5623 	int ret = 0;
5624 
5625 	rstate = regulator_get_suspend_state(rdev, state);
5626 	if (rstate == NULL)
5627 		return 0;
5628 
5629 	/* Avoid grabbing the lock if we don't need to */
5630 	if (!rdev->desc->ops->resume)
5631 		return 0;
5632 
5633 	regulator_lock(rdev);
5634 
5635 	if (rstate->enabled == ENABLE_IN_SUSPEND ||
5636 	    rstate->enabled == DISABLE_IN_SUSPEND)
5637 		ret = rdev->desc->ops->resume(rdev);
5638 
5639 	regulator_unlock(rdev);
5640 
5641 	return ret;
5642 }
5643 #else /* !CONFIG_SUSPEND */
5644 
5645 #define regulator_suspend	NULL
5646 #define regulator_resume	NULL
5647 
5648 #endif /* !CONFIG_SUSPEND */
5649 
5650 #ifdef CONFIG_PM
5651 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5652 	.suspend	= regulator_suspend,
5653 	.resume		= regulator_resume,
5654 };
5655 #endif
5656 
5657 struct class regulator_class = {
5658 	.name = "regulator",
5659 	.dev_release = regulator_dev_release,
5660 	.dev_groups = regulator_dev_groups,
5661 #ifdef CONFIG_PM
5662 	.pm = &regulator_pm_ops,
5663 #endif
5664 };
5665 /**
5666  * regulator_has_full_constraints - the system has fully specified constraints
5667  *
5668  * Calling this function will cause the regulator API to disable all
5669  * regulators which have a zero use count and don't have an always_on
5670  * constraint in a late_initcall.
5671  *
5672  * The intention is that this will become the default behaviour in a
5673  * future kernel release so users are encouraged to use this facility
5674  * now.
5675  */
5676 void regulator_has_full_constraints(void)
5677 {
5678 	has_full_constraints = 1;
5679 }
5680 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5681 
5682 /**
5683  * rdev_get_drvdata - get rdev regulator driver data
5684  * @rdev: regulator
5685  *
5686  * Get rdev regulator driver private data. This call can be used in the
5687  * regulator driver context.
5688  */
5689 void *rdev_get_drvdata(struct regulator_dev *rdev)
5690 {
5691 	return rdev->reg_data;
5692 }
5693 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5694 
5695 /**
5696  * regulator_get_drvdata - get regulator driver data
5697  * @regulator: regulator
5698  *
5699  * Get regulator driver private data. This call can be used in the consumer
5700  * driver context when non API regulator specific functions need to be called.
5701  */
5702 void *regulator_get_drvdata(struct regulator *regulator)
5703 {
5704 	return regulator->rdev->reg_data;
5705 }
5706 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5707 
5708 /**
5709  * regulator_set_drvdata - set regulator driver data
5710  * @regulator: regulator
5711  * @data: data
5712  */
5713 void regulator_set_drvdata(struct regulator *regulator, void *data)
5714 {
5715 	regulator->rdev->reg_data = data;
5716 }
5717 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5718 
5719 /**
5720  * rdev_get_id - get regulator ID
5721  * @rdev: regulator
5722  */
5723 int rdev_get_id(struct regulator_dev *rdev)
5724 {
5725 	return rdev->desc->id;
5726 }
5727 EXPORT_SYMBOL_GPL(rdev_get_id);
5728 
5729 struct device *rdev_get_dev(struct regulator_dev *rdev)
5730 {
5731 	return &rdev->dev;
5732 }
5733 EXPORT_SYMBOL_GPL(rdev_get_dev);
5734 
5735 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5736 {
5737 	return rdev->regmap;
5738 }
5739 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5740 
5741 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5742 {
5743 	return reg_init_data->driver_data;
5744 }
5745 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5746 
5747 #ifdef CONFIG_DEBUG_FS
5748 static int supply_map_show(struct seq_file *sf, void *data)
5749 {
5750 	struct regulator_map *map;
5751 
5752 	list_for_each_entry(map, &regulator_map_list, list) {
5753 		seq_printf(sf, "%s -> %s.%s\n",
5754 				rdev_get_name(map->regulator), map->dev_name,
5755 				map->supply);
5756 	}
5757 
5758 	return 0;
5759 }
5760 DEFINE_SHOW_ATTRIBUTE(supply_map);
5761 
5762 struct summary_data {
5763 	struct seq_file *s;
5764 	struct regulator_dev *parent;
5765 	int level;
5766 };
5767 
5768 static void regulator_summary_show_subtree(struct seq_file *s,
5769 					   struct regulator_dev *rdev,
5770 					   int level);
5771 
5772 static int regulator_summary_show_children(struct device *dev, void *data)
5773 {
5774 	struct regulator_dev *rdev = dev_to_rdev(dev);
5775 	struct summary_data *summary_data = data;
5776 
5777 	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5778 		regulator_summary_show_subtree(summary_data->s, rdev,
5779 					       summary_data->level + 1);
5780 
5781 	return 0;
5782 }
5783 
5784 static void regulator_summary_show_subtree(struct seq_file *s,
5785 					   struct regulator_dev *rdev,
5786 					   int level)
5787 {
5788 	struct regulation_constraints *c;
5789 	struct regulator *consumer;
5790 	struct summary_data summary_data;
5791 	unsigned int opmode;
5792 
5793 	if (!rdev)
5794 		return;
5795 
5796 	opmode = _regulator_get_mode_unlocked(rdev);
5797 	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5798 		   level * 3 + 1, "",
5799 		   30 - level * 3, rdev_get_name(rdev),
5800 		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5801 		   regulator_opmode_to_str(opmode));
5802 
5803 	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5804 	seq_printf(s, "%5dmA ",
5805 		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5806 
5807 	c = rdev->constraints;
5808 	if (c) {
5809 		switch (rdev->desc->type) {
5810 		case REGULATOR_VOLTAGE:
5811 			seq_printf(s, "%5dmV %5dmV ",
5812 				   c->min_uV / 1000, c->max_uV / 1000);
5813 			break;
5814 		case REGULATOR_CURRENT:
5815 			seq_printf(s, "%5dmA %5dmA ",
5816 				   c->min_uA / 1000, c->max_uA / 1000);
5817 			break;
5818 		}
5819 	}
5820 
5821 	seq_puts(s, "\n");
5822 
5823 	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5824 		if (consumer->dev && consumer->dev->class == &regulator_class)
5825 			continue;
5826 
5827 		seq_printf(s, "%*s%-*s ",
5828 			   (level + 1) * 3 + 1, "",
5829 			   30 - (level + 1) * 3,
5830 			   consumer->supply_name ? consumer->supply_name :
5831 			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5832 
5833 		switch (rdev->desc->type) {
5834 		case REGULATOR_VOLTAGE:
5835 			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5836 				   consumer->enable_count,
5837 				   consumer->uA_load / 1000,
5838 				   consumer->uA_load && !consumer->enable_count ?
5839 				   '*' : ' ',
5840 				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5841 				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5842 			break;
5843 		case REGULATOR_CURRENT:
5844 			break;
5845 		}
5846 
5847 		seq_puts(s, "\n");
5848 	}
5849 
5850 	summary_data.s = s;
5851 	summary_data.level = level;
5852 	summary_data.parent = rdev;
5853 
5854 	class_for_each_device(&regulator_class, NULL, &summary_data,
5855 			      regulator_summary_show_children);
5856 }
5857 
5858 struct summary_lock_data {
5859 	struct ww_acquire_ctx *ww_ctx;
5860 	struct regulator_dev **new_contended_rdev;
5861 	struct regulator_dev **old_contended_rdev;
5862 };
5863 
5864 static int regulator_summary_lock_one(struct device *dev, void *data)
5865 {
5866 	struct regulator_dev *rdev = dev_to_rdev(dev);
5867 	struct summary_lock_data *lock_data = data;
5868 	int ret = 0;
5869 
5870 	if (rdev != *lock_data->old_contended_rdev) {
5871 		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5872 
5873 		if (ret == -EDEADLK)
5874 			*lock_data->new_contended_rdev = rdev;
5875 		else
5876 			WARN_ON_ONCE(ret);
5877 	} else {
5878 		*lock_data->old_contended_rdev = NULL;
5879 	}
5880 
5881 	return ret;
5882 }
5883 
5884 static int regulator_summary_unlock_one(struct device *dev, void *data)
5885 {
5886 	struct regulator_dev *rdev = dev_to_rdev(dev);
5887 	struct summary_lock_data *lock_data = data;
5888 
5889 	if (lock_data) {
5890 		if (rdev == *lock_data->new_contended_rdev)
5891 			return -EDEADLK;
5892 	}
5893 
5894 	regulator_unlock(rdev);
5895 
5896 	return 0;
5897 }
5898 
5899 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5900 				      struct regulator_dev **new_contended_rdev,
5901 				      struct regulator_dev **old_contended_rdev)
5902 {
5903 	struct summary_lock_data lock_data;
5904 	int ret;
5905 
5906 	lock_data.ww_ctx = ww_ctx;
5907 	lock_data.new_contended_rdev = new_contended_rdev;
5908 	lock_data.old_contended_rdev = old_contended_rdev;
5909 
5910 	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5911 				    regulator_summary_lock_one);
5912 	if (ret)
5913 		class_for_each_device(&regulator_class, NULL, &lock_data,
5914 				      regulator_summary_unlock_one);
5915 
5916 	return ret;
5917 }
5918 
5919 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5920 {
5921 	struct regulator_dev *new_contended_rdev = NULL;
5922 	struct regulator_dev *old_contended_rdev = NULL;
5923 	int err;
5924 
5925 	mutex_lock(&regulator_list_mutex);
5926 
5927 	ww_acquire_init(ww_ctx, &regulator_ww_class);
5928 
5929 	do {
5930 		if (new_contended_rdev) {
5931 			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5932 			old_contended_rdev = new_contended_rdev;
5933 			old_contended_rdev->ref_cnt++;
5934 		}
5935 
5936 		err = regulator_summary_lock_all(ww_ctx,
5937 						 &new_contended_rdev,
5938 						 &old_contended_rdev);
5939 
5940 		if (old_contended_rdev)
5941 			regulator_unlock(old_contended_rdev);
5942 
5943 	} while (err == -EDEADLK);
5944 
5945 	ww_acquire_done(ww_ctx);
5946 }
5947 
5948 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5949 {
5950 	class_for_each_device(&regulator_class, NULL, NULL,
5951 			      regulator_summary_unlock_one);
5952 	ww_acquire_fini(ww_ctx);
5953 
5954 	mutex_unlock(&regulator_list_mutex);
5955 }
5956 
5957 static int regulator_summary_show_roots(struct device *dev, void *data)
5958 {
5959 	struct regulator_dev *rdev = dev_to_rdev(dev);
5960 	struct seq_file *s = data;
5961 
5962 	if (!rdev->supply)
5963 		regulator_summary_show_subtree(s, rdev, 0);
5964 
5965 	return 0;
5966 }
5967 
5968 static int regulator_summary_show(struct seq_file *s, void *data)
5969 {
5970 	struct ww_acquire_ctx ww_ctx;
5971 
5972 	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
5973 	seq_puts(s, "---------------------------------------------------------------------------------------\n");
5974 
5975 	regulator_summary_lock(&ww_ctx);
5976 
5977 	class_for_each_device(&regulator_class, NULL, s,
5978 			      regulator_summary_show_roots);
5979 
5980 	regulator_summary_unlock(&ww_ctx);
5981 
5982 	return 0;
5983 }
5984 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5985 #endif /* CONFIG_DEBUG_FS */
5986 
5987 static int __init regulator_init(void)
5988 {
5989 	int ret;
5990 
5991 	ret = class_register(&regulator_class);
5992 
5993 	debugfs_root = debugfs_create_dir("regulator", NULL);
5994 	if (!debugfs_root)
5995 		pr_warn("regulator: Failed to create debugfs directory\n");
5996 
5997 #ifdef CONFIG_DEBUG_FS
5998 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5999 			    &supply_map_fops);
6000 
6001 	debugfs_create_file("regulator_summary", 0444, debugfs_root,
6002 			    NULL, &regulator_summary_fops);
6003 #endif
6004 	regulator_dummy_init();
6005 
6006 	regulator_coupler_register(&generic_regulator_coupler);
6007 
6008 	return ret;
6009 }
6010 
6011 /* init early to allow our consumers to complete system booting */
6012 core_initcall(regulator_init);
6013 
6014 static int regulator_late_cleanup(struct device *dev, void *data)
6015 {
6016 	struct regulator_dev *rdev = dev_to_rdev(dev);
6017 	struct regulation_constraints *c = rdev->constraints;
6018 	int ret;
6019 
6020 	if (c && c->always_on)
6021 		return 0;
6022 
6023 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6024 		return 0;
6025 
6026 	regulator_lock(rdev);
6027 
6028 	if (rdev->use_count)
6029 		goto unlock;
6030 
6031 	/* If reading the status failed, assume that it's off. */
6032 	if (_regulator_is_enabled(rdev) <= 0)
6033 		goto unlock;
6034 
6035 	if (have_full_constraints()) {
6036 		/* We log since this may kill the system if it goes
6037 		 * wrong.
6038 		 */
6039 		rdev_info(rdev, "disabling\n");
6040 		ret = _regulator_do_disable(rdev);
6041 		if (ret != 0)
6042 			rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6043 	} else {
6044 		/* The intention is that in future we will
6045 		 * assume that full constraints are provided
6046 		 * so warn even if we aren't going to do
6047 		 * anything here.
6048 		 */
6049 		rdev_warn(rdev, "incomplete constraints, leaving on\n");
6050 	}
6051 
6052 unlock:
6053 	regulator_unlock(rdev);
6054 
6055 	return 0;
6056 }
6057 
6058 static void regulator_init_complete_work_function(struct work_struct *work)
6059 {
6060 	/*
6061 	 * Regulators may had failed to resolve their input supplies
6062 	 * when were registered, either because the input supply was
6063 	 * not registered yet or because its parent device was not
6064 	 * bound yet. So attempt to resolve the input supplies for
6065 	 * pending regulators before trying to disable unused ones.
6066 	 */
6067 	class_for_each_device(&regulator_class, NULL, NULL,
6068 			      regulator_register_resolve_supply);
6069 
6070 	/* If we have a full configuration then disable any regulators
6071 	 * we have permission to change the status for and which are
6072 	 * not in use or always_on.  This is effectively the default
6073 	 * for DT and ACPI as they have full constraints.
6074 	 */
6075 	class_for_each_device(&regulator_class, NULL, NULL,
6076 			      regulator_late_cleanup);
6077 }
6078 
6079 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6080 			    regulator_init_complete_work_function);
6081 
6082 static int __init regulator_init_complete(void)
6083 {
6084 	/*
6085 	 * Since DT doesn't provide an idiomatic mechanism for
6086 	 * enabling full constraints and since it's much more natural
6087 	 * with DT to provide them just assume that a DT enabled
6088 	 * system has full constraints.
6089 	 */
6090 	if (of_have_populated_dt())
6091 		has_full_constraints = true;
6092 
6093 	/*
6094 	 * We punt completion for an arbitrary amount of time since
6095 	 * systems like distros will load many drivers from userspace
6096 	 * so consumers might not always be ready yet, this is
6097 	 * particularly an issue with laptops where this might bounce
6098 	 * the display off then on.  Ideally we'd get a notification
6099 	 * from userspace when this happens but we don't so just wait
6100 	 * a bit and hope we waited long enough.  It'd be better if
6101 	 * we'd only do this on systems that need it, and a kernel
6102 	 * command line option might be useful.
6103 	 */
6104 	schedule_delayed_work(&regulator_init_complete_work,
6105 			      msecs_to_jiffies(30000));
6106 
6107 	return 0;
6108 }
6109 late_initcall_sync(regulator_init_complete);
6110