xref: /linux/drivers/scsi/sym53c8xx_2/sym_glue.c (revision d642ef71)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
4  * of PCI-SCSI IO processors.
5  *
6  * Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
7  * Copyright (c) 2003-2005  Matthew Wilcox <matthew@wil.cx>
8  *
9  * This driver is derived from the Linux sym53c8xx driver.
10  * Copyright (C) 1998-2000  Gerard Roudier
11  *
12  * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
13  * a port of the FreeBSD ncr driver to Linux-1.2.13.
14  *
15  * The original ncr driver has been written for 386bsd and FreeBSD by
16  *         Wolfgang Stanglmeier        <wolf@cologne.de>
17  *         Stefan Esser                <se@mi.Uni-Koeln.de>
18  * Copyright (C) 1994  Wolfgang Stanglmeier
19  *
20  * Other major contributions:
21  *
22  * NVRAM detection and reading.
23  * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
24  *
25  *-----------------------------------------------------------------------------
26  */
27 #include <linux/ctype.h>
28 #include <linux/init.h>
29 #include <linux/module.h>
30 #include <linux/moduleparam.h>
31 #include <linux/spinlock.h>
32 #include <scsi/scsi.h>
33 #include <scsi/scsi_tcq.h>
34 #include <scsi/scsi_device.h>
35 #include <scsi/scsi_transport.h>
36 
37 #include "sym_glue.h"
38 #include "sym_nvram.h"
39 
40 #define NAME53C		"sym53c"
41 #define NAME53C8XX	"sym53c8xx"
42 
43 struct sym_driver_setup sym_driver_setup = SYM_LINUX_DRIVER_SETUP;
44 unsigned int sym_debug_flags = 0;
45 
46 static char *excl_string;
47 static char *safe_string;
48 module_param_named(cmd_per_lun, sym_driver_setup.max_tag, ushort, 0);
49 module_param_named(burst, sym_driver_setup.burst_order, byte, 0);
50 module_param_named(led, sym_driver_setup.scsi_led, byte, 0);
51 module_param_named(diff, sym_driver_setup.scsi_diff, byte, 0);
52 module_param_named(irqm, sym_driver_setup.irq_mode, byte, 0);
53 module_param_named(buschk, sym_driver_setup.scsi_bus_check, byte, 0);
54 module_param_named(hostid, sym_driver_setup.host_id, byte, 0);
55 module_param_named(verb, sym_driver_setup.verbose, byte, 0);
56 module_param_named(debug, sym_debug_flags, uint, 0);
57 module_param_named(settle, sym_driver_setup.settle_delay, byte, 0);
58 module_param_named(nvram, sym_driver_setup.use_nvram, byte, 0);
59 module_param_named(excl, excl_string, charp, 0);
60 module_param_named(safe, safe_string, charp, 0);
61 
62 MODULE_PARM_DESC(cmd_per_lun, "The maximum number of tags to use by default");
63 MODULE_PARM_DESC(burst, "Maximum burst.  0 to disable, 255 to read from registers");
64 MODULE_PARM_DESC(led, "Set to 1 to enable LED support");
65 MODULE_PARM_DESC(diff, "0 for no differential mode, 1 for BIOS, 2 for always, 3 for not GPIO3");
66 MODULE_PARM_DESC(irqm, "0 for open drain, 1 to leave alone, 2 for totem pole");
67 MODULE_PARM_DESC(buschk, "0 to not check, 1 for detach on error, 2 for warn on error");
68 MODULE_PARM_DESC(hostid, "The SCSI ID to use for the host adapters");
69 MODULE_PARM_DESC(verb, "0 for minimal verbosity, 1 for normal, 2 for excessive");
70 MODULE_PARM_DESC(debug, "Set bits to enable debugging");
71 MODULE_PARM_DESC(settle, "Settle delay in seconds.  Default 3");
72 MODULE_PARM_DESC(nvram, "Option currently not used");
73 MODULE_PARM_DESC(excl, "List ioport addresses here to prevent controllers from being attached");
74 MODULE_PARM_DESC(safe, "Set other settings to a \"safe mode\"");
75 
76 MODULE_LICENSE("GPL");
77 MODULE_VERSION(SYM_VERSION);
78 MODULE_AUTHOR("Matthew Wilcox <matthew@wil.cx>");
79 MODULE_DESCRIPTION("NCR, Symbios and LSI 8xx and 1010 PCI SCSI adapters");
80 
81 static void sym2_setup_params(void)
82 {
83 	char *p = excl_string;
84 	int xi = 0;
85 
86 	while (p && (xi < 8)) {
87 		char *next_p;
88 		int val = (int) simple_strtoul(p, &next_p, 0);
89 		sym_driver_setup.excludes[xi++] = val;
90 		p = next_p;
91 	}
92 
93 	if (safe_string) {
94 		if (*safe_string == 'y') {
95 			sym_driver_setup.max_tag = 0;
96 			sym_driver_setup.burst_order = 0;
97 			sym_driver_setup.scsi_led = 0;
98 			sym_driver_setup.scsi_diff = 1;
99 			sym_driver_setup.irq_mode = 0;
100 			sym_driver_setup.scsi_bus_check = 2;
101 			sym_driver_setup.host_id = 7;
102 			sym_driver_setup.verbose = 2;
103 			sym_driver_setup.settle_delay = 10;
104 			sym_driver_setup.use_nvram = 1;
105 		} else if (*safe_string != 'n') {
106 			printk(KERN_WARNING NAME53C8XX "Ignoring parameter %s"
107 					" passed to safe option", safe_string);
108 		}
109 	}
110 }
111 
112 static struct scsi_transport_template *sym2_transport_template = NULL;
113 
114 /*
115  *  Driver private area in the SCSI command structure.
116  */
117 struct sym_ucmd {		/* Override the SCSI pointer structure */
118 	struct completion *eh_done;		/* SCSI error handling */
119 };
120 
121 #define SYM_UCMD_PTR(cmd)  ((struct sym_ucmd *)scsi_cmd_priv(cmd))
122 #define SYM_SOFTC_PTR(cmd) sym_get_hcb(cmd->device->host)
123 
124 /*
125  *  Complete a pending CAM CCB.
126  */
127 void sym_xpt_done(struct sym_hcb *np, struct scsi_cmnd *cmd)
128 {
129 	struct sym_ucmd *ucmd = SYM_UCMD_PTR(cmd);
130 
131 	if (ucmd->eh_done)
132 		complete(ucmd->eh_done);
133 
134 	scsi_dma_unmap(cmd);
135 	scsi_done(cmd);
136 }
137 
138 /*
139  *  Tell the SCSI layer about a BUS RESET.
140  */
141 void sym_xpt_async_bus_reset(struct sym_hcb *np)
142 {
143 	printf_notice("%s: SCSI BUS has been reset.\n", sym_name(np));
144 	np->s.settle_time = jiffies + sym_driver_setup.settle_delay * HZ;
145 	np->s.settle_time_valid = 1;
146 	if (sym_verbose >= 2)
147 		printf_info("%s: command processing suspended for %d seconds\n",
148 			    sym_name(np), sym_driver_setup.settle_delay);
149 }
150 
151 /*
152  *  Choose the more appropriate CAM status if
153  *  the IO encountered an extended error.
154  */
155 static int sym_xerr_cam_status(int cam_status, int x_status)
156 {
157 	if (x_status) {
158 		if (x_status & XE_PARITY_ERR)
159 			cam_status = DID_PARITY;
160 		else
161 			cam_status = DID_ERROR;
162 	}
163 	return cam_status;
164 }
165 
166 /*
167  *  Build CAM result for a failed or auto-sensed IO.
168  */
169 void sym_set_cam_result_error(struct sym_hcb *np, struct sym_ccb *cp, int resid)
170 {
171 	struct scsi_cmnd *cmd = cp->cmd;
172 	u_int cam_status, scsi_status;
173 
174 	cam_status  = DID_OK;
175 	scsi_status = cp->ssss_status;
176 
177 	if (cp->host_flags & HF_SENSE) {
178 		scsi_status = cp->sv_scsi_status;
179 		resid = cp->sv_resid;
180 		if (sym_verbose && cp->sv_xerr_status)
181 			sym_print_xerr(cmd, cp->sv_xerr_status);
182 		if (cp->host_status == HS_COMPLETE &&
183 		    cp->ssss_status == S_GOOD &&
184 		    cp->xerr_status == 0) {
185 			cam_status = sym_xerr_cam_status(DID_OK,
186 							 cp->sv_xerr_status);
187 			/*
188 			 *  Bounce back the sense data to user.
189 			 */
190 			memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
191 			memcpy(cmd->sense_buffer, cp->sns_bbuf,
192 			       min(SCSI_SENSE_BUFFERSIZE, SYM_SNS_BBUF_LEN));
193 #if 0
194 			/*
195 			 *  If the device reports a UNIT ATTENTION condition
196 			 *  due to a RESET condition, we should consider all
197 			 *  disconnect CCBs for this unit as aborted.
198 			 */
199 			if (1) {
200 				u_char *p;
201 				p  = (u_char *) cmd->sense_data;
202 				if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29)
203 					sym_clear_tasks(np, DID_ABORT,
204 							cp->target,cp->lun, -1);
205 			}
206 #endif
207 		} else {
208 			/*
209 			 * Error return from our internal request sense.  This
210 			 * is bad: we must clear the contingent allegiance
211 			 * condition otherwise the device will always return
212 			 * BUSY.  Use a big stick.
213 			 */
214 			sym_reset_scsi_target(np, cmd->device->id);
215 			cam_status = DID_ERROR;
216 		}
217 	} else if (cp->host_status == HS_COMPLETE) 	/* Bad SCSI status */
218 		cam_status = DID_OK;
219 	else if (cp->host_status == HS_SEL_TIMEOUT)	/* Selection timeout */
220 		cam_status = DID_NO_CONNECT;
221 	else if (cp->host_status == HS_UNEXPECTED)	/* Unexpected BUS FREE*/
222 		cam_status = DID_ERROR;
223 	else {						/* Extended error */
224 		if (sym_verbose) {
225 			sym_print_addr(cmd, "COMMAND FAILED (%x %x %x).\n",
226 				cp->host_status, cp->ssss_status,
227 				cp->xerr_status);
228 		}
229 		/*
230 		 *  Set the most appropriate value for CAM status.
231 		 */
232 		cam_status = sym_xerr_cam_status(DID_ERROR, cp->xerr_status);
233 	}
234 	scsi_set_resid(cmd, resid);
235 	cmd->result = (cam_status << 16) | scsi_status;
236 }
237 
238 static int sym_scatter(struct sym_hcb *np, struct sym_ccb *cp, struct scsi_cmnd *cmd)
239 {
240 	int segment;
241 	int use_sg;
242 
243 	cp->data_len = 0;
244 
245 	use_sg = scsi_dma_map(cmd);
246 	if (use_sg > 0) {
247 		struct scatterlist *sg;
248 		struct sym_tcb *tp = &np->target[cp->target];
249 		struct sym_tblmove *data;
250 
251 		if (use_sg > SYM_CONF_MAX_SG) {
252 			scsi_dma_unmap(cmd);
253 			return -1;
254 		}
255 
256 		data = &cp->phys.data[SYM_CONF_MAX_SG - use_sg];
257 
258 		scsi_for_each_sg(cmd, sg, use_sg, segment) {
259 			dma_addr_t baddr = sg_dma_address(sg);
260 			unsigned int len = sg_dma_len(sg);
261 
262 			if ((len & 1) && (tp->head.wval & EWS)) {
263 				len++;
264 				cp->odd_byte_adjustment++;
265 			}
266 
267 			sym_build_sge(np, &data[segment], baddr, len);
268 			cp->data_len += len;
269 		}
270 	} else {
271 		segment = -2;
272 	}
273 
274 	return segment;
275 }
276 
277 /*
278  *  Queue a SCSI command.
279  */
280 static int sym_queue_command(struct sym_hcb *np, struct scsi_cmnd *cmd)
281 {
282 	struct scsi_device *sdev = cmd->device;
283 	struct sym_tcb *tp;
284 	struct sym_lcb *lp;
285 	struct sym_ccb *cp;
286 	int	order;
287 
288 	/*
289 	 *  Retrieve the target descriptor.
290 	 */
291 	tp = &np->target[sdev->id];
292 
293 	/*
294 	 *  Select tagged/untagged.
295 	 */
296 	lp = sym_lp(tp, sdev->lun);
297 	order = (lp && lp->s.reqtags) ? M_SIMPLE_TAG : 0;
298 
299 	/*
300 	 *  Queue the SCSI IO.
301 	 */
302 	cp = sym_get_ccb(np, cmd, order);
303 	if (!cp)
304 		return 1;	/* Means resource shortage */
305 	sym_queue_scsiio(np, cmd, cp);
306 	return 0;
307 }
308 
309 /*
310  *  Setup buffers and pointers that address the CDB.
311  */
312 static inline int sym_setup_cdb(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp)
313 {
314 	memcpy(cp->cdb_buf, cmd->cmnd, cmd->cmd_len);
315 
316 	cp->phys.cmd.addr = CCB_BA(cp, cdb_buf[0]);
317 	cp->phys.cmd.size = cpu_to_scr(cmd->cmd_len);
318 
319 	return 0;
320 }
321 
322 /*
323  *  Setup pointers that address the data and start the I/O.
324  */
325 int sym_setup_data_and_start(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp)
326 {
327 	u32 lastp, goalp;
328 	int dir;
329 
330 	/*
331 	 *  Build the CDB.
332 	 */
333 	if (sym_setup_cdb(np, cmd, cp))
334 		goto out_abort;
335 
336 	/*
337 	 *  No direction means no data.
338 	 */
339 	dir = cmd->sc_data_direction;
340 	if (dir != DMA_NONE) {
341 		cp->segments = sym_scatter(np, cp, cmd);
342 		if (cp->segments < 0) {
343 			sym_set_cam_status(cmd, DID_ERROR);
344 			goto out_abort;
345 		}
346 
347 		/*
348 		 *  No segments means no data.
349 		 */
350 		if (!cp->segments)
351 			dir = DMA_NONE;
352 	} else {
353 		cp->data_len = 0;
354 		cp->segments = 0;
355 	}
356 
357 	/*
358 	 *  Set the data pointer.
359 	 */
360 	switch (dir) {
361 	case DMA_BIDIRECTIONAL:
362 		scmd_printk(KERN_INFO, cmd, "got DMA_BIDIRECTIONAL command");
363 		sym_set_cam_status(cmd, DID_ERROR);
364 		goto out_abort;
365 	case DMA_TO_DEVICE:
366 		goalp = SCRIPTA_BA(np, data_out2) + 8;
367 		lastp = goalp - 8 - (cp->segments * (2*4));
368 		break;
369 	case DMA_FROM_DEVICE:
370 		cp->host_flags |= HF_DATA_IN;
371 		goalp = SCRIPTA_BA(np, data_in2) + 8;
372 		lastp = goalp - 8 - (cp->segments * (2*4));
373 		break;
374 	case DMA_NONE:
375 	default:
376 		lastp = goalp = SCRIPTB_BA(np, no_data);
377 		break;
378 	}
379 
380 	/*
381 	 *  Set all pointers values needed by SCRIPTS.
382 	 */
383 	cp->phys.head.lastp = cpu_to_scr(lastp);
384 	cp->phys.head.savep = cpu_to_scr(lastp);
385 	cp->startp	    = cp->phys.head.savep;
386 	cp->goalp	    = cpu_to_scr(goalp);
387 
388 	/*
389 	 *  When `#ifed 1', the code below makes the driver
390 	 *  panic on the first attempt to write to a SCSI device.
391 	 *  It is the first test we want to do after a driver
392 	 *  change that does not seem obviously safe. :)
393 	 */
394 #if 0
395 	switch (cp->cdb_buf[0]) {
396 	case 0x0A: case 0x2A: case 0xAA:
397 		panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n");
398 		break;
399 	default:
400 		break;
401 	}
402 #endif
403 
404 	/*
405 	 *	activate this job.
406 	 */
407 	sym_put_start_queue(np, cp);
408 	return 0;
409 
410 out_abort:
411 	sym_free_ccb(np, cp);
412 	sym_xpt_done(np, cmd);
413 	return 0;
414 }
415 
416 
417 /*
418  *  timer daemon.
419  *
420  *  Misused to keep the driver running when
421  *  interrupts are not configured correctly.
422  */
423 static void sym_timer(struct sym_hcb *np)
424 {
425 	unsigned long thistime = jiffies;
426 
427 	/*
428 	 *  Restart the timer.
429 	 */
430 	np->s.timer.expires = thistime + SYM_CONF_TIMER_INTERVAL;
431 	add_timer(&np->s.timer);
432 
433 	/*
434 	 *  If we are resetting the ncr, wait for settle_time before
435 	 *  clearing it. Then command processing will be resumed.
436 	 */
437 	if (np->s.settle_time_valid) {
438 		if (time_before_eq(np->s.settle_time, thistime)) {
439 			if (sym_verbose >= 2 )
440 				printk("%s: command processing resumed\n",
441 				       sym_name(np));
442 			np->s.settle_time_valid = 0;
443 		}
444 		return;
445 	}
446 
447 	/*
448 	 *	Nothing to do for now, but that may come.
449 	 */
450 	if (np->s.lasttime + 4*HZ < thistime) {
451 		np->s.lasttime = thistime;
452 	}
453 
454 #ifdef SYM_CONF_PCIQ_MAY_MISS_COMPLETIONS
455 	/*
456 	 *  Some way-broken PCI bridges may lead to
457 	 *  completions being lost when the clearing
458 	 *  of the INTFLY flag by the CPU occurs
459 	 *  concurrently with the chip raising this flag.
460 	 *  If this ever happen, lost completions will
461 	 * be reaped here.
462 	 */
463 	sym_wakeup_done(np);
464 #endif
465 }
466 
467 
468 /*
469  *  PCI BUS error handler.
470  */
471 void sym_log_bus_error(struct Scsi_Host *shost)
472 {
473 	struct sym_data *sym_data = shost_priv(shost);
474 	struct pci_dev *pdev = sym_data->pdev;
475 	unsigned short pci_sts;
476 	pci_read_config_word(pdev, PCI_STATUS, &pci_sts);
477 	if (pci_sts & 0xf900) {
478 		pci_write_config_word(pdev, PCI_STATUS, pci_sts);
479 		shost_printk(KERN_WARNING, shost,
480 			"PCI bus error: status = 0x%04x\n", pci_sts & 0xf900);
481 	}
482 }
483 
484 /*
485  * queuecommand method.  Entered with the host adapter lock held and
486  * interrupts disabled.
487  */
488 static int sym53c8xx_queue_command_lck(struct scsi_cmnd *cmd)
489 {
490 	struct sym_hcb *np = SYM_SOFTC_PTR(cmd);
491 	struct sym_ucmd *ucp = SYM_UCMD_PTR(cmd);
492 	int sts = 0;
493 
494 	memset(ucp, 0, sizeof(*ucp));
495 
496 	/*
497 	 *  Shorten our settle_time if needed for
498 	 *  this command not to time out.
499 	 */
500 	if (np->s.settle_time_valid && scsi_cmd_to_rq(cmd)->timeout) {
501 		unsigned long tlimit = jiffies + scsi_cmd_to_rq(cmd)->timeout;
502 		tlimit -= SYM_CONF_TIMER_INTERVAL*2;
503 		if (time_after(np->s.settle_time, tlimit)) {
504 			np->s.settle_time = tlimit;
505 		}
506 	}
507 
508 	if (np->s.settle_time_valid)
509 		return SCSI_MLQUEUE_HOST_BUSY;
510 
511 	sts = sym_queue_command(np, cmd);
512 	if (sts)
513 		return SCSI_MLQUEUE_HOST_BUSY;
514 	return 0;
515 }
516 
517 static DEF_SCSI_QCMD(sym53c8xx_queue_command)
518 
519 /*
520  *  Linux entry point of the interrupt handler.
521  */
522 static irqreturn_t sym53c8xx_intr(int irq, void *dev_id)
523 {
524 	struct Scsi_Host *shost = dev_id;
525 	struct sym_data *sym_data = shost_priv(shost);
526 	irqreturn_t result;
527 
528 	/* Avoid spinloop trying to handle interrupts on frozen device */
529 	if (pci_channel_offline(sym_data->pdev))
530 		return IRQ_NONE;
531 
532 	if (DEBUG_FLAGS & DEBUG_TINY) printf_debug ("[");
533 
534 	spin_lock(shost->host_lock);
535 	result = sym_interrupt(shost);
536 	spin_unlock(shost->host_lock);
537 
538 	if (DEBUG_FLAGS & DEBUG_TINY) printf_debug ("]\n");
539 
540 	return result;
541 }
542 
543 /*
544  *  Linux entry point of the timer handler
545  */
546 static void sym53c8xx_timer(struct timer_list *t)
547 {
548 	struct sym_hcb *np = from_timer(np, t, s.timer);
549 	unsigned long flags;
550 
551 	spin_lock_irqsave(np->s.host->host_lock, flags);
552 	sym_timer(np);
553 	spin_unlock_irqrestore(np->s.host->host_lock, flags);
554 }
555 
556 
557 /*
558  *  What the eh thread wants us to perform.
559  */
560 #define SYM_EH_ABORT		0
561 #define SYM_EH_DEVICE_RESET	1
562 
563 /*
564  *  Generic method for our eh processing.
565  *  The 'op' argument tells what we have to do.
566  */
567 /*
568  * Error handlers called from the eh thread (one thread per HBA).
569  */
570 static int sym53c8xx_eh_abort_handler(struct scsi_cmnd *cmd)
571 {
572 	struct sym_ucmd *ucmd = SYM_UCMD_PTR(cmd);
573 	struct Scsi_Host *shost = cmd->device->host;
574 	struct sym_data *sym_data = shost_priv(shost);
575 	struct pci_dev *pdev = sym_data->pdev;
576 	struct sym_hcb *np = sym_data->ncb;
577 	SYM_QUEHEAD *qp;
578 	int cmd_queued = 0;
579 	int sts = -1;
580 	struct completion eh_done;
581 
582 	scmd_printk(KERN_WARNING, cmd, "ABORT operation started\n");
583 
584 	/*
585 	 * Escalate to host reset if the PCI bus went down
586 	 */
587 	if (pci_channel_offline(pdev))
588 		return SCSI_FAILED;
589 
590 	spin_lock_irq(shost->host_lock);
591 	/* This one is queued in some place -> to wait for completion */
592 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
593 		struct sym_ccb *cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
594 		if (cp->cmd == cmd) {
595 			cmd_queued = 1;
596 			break;
597 		}
598 	}
599 
600 	sts = sym_abort_scsiio(np, cmd, 1);
601 	/* On error, restore everything and cross fingers :) */
602 	if (sts)
603 		cmd_queued = 0;
604 
605 	if (cmd_queued) {
606 		init_completion(&eh_done);
607 		ucmd->eh_done = &eh_done;
608 		spin_unlock_irq(shost->host_lock);
609 		if (!wait_for_completion_timeout(&eh_done, 5*HZ)) {
610 			ucmd->eh_done = NULL;
611 			sts = -2;
612 		}
613 	} else {
614 		spin_unlock_irq(shost->host_lock);
615 	}
616 
617 	dev_warn(&cmd->device->sdev_gendev, "ABORT operation %s.\n",
618 			sts==0 ? "complete" :sts==-2 ? "timed-out" : "failed");
619 	return sts ? SCSI_FAILED : SCSI_SUCCESS;
620 }
621 
622 static int sym53c8xx_eh_target_reset_handler(struct scsi_cmnd *cmd)
623 {
624 	struct scsi_target *starget = scsi_target(cmd->device);
625 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
626 	struct sym_data *sym_data = shost_priv(shost);
627 	struct pci_dev *pdev = sym_data->pdev;
628 	struct sym_hcb *np = sym_data->ncb;
629 	SYM_QUEHEAD *qp;
630 	int sts;
631 	struct completion eh_done;
632 
633 	starget_printk(KERN_WARNING, starget,
634 		       "TARGET RESET operation started\n");
635 
636 	/*
637 	 * Escalate to host reset if the PCI bus went down
638 	 */
639 	if (pci_channel_offline(pdev))
640 		return SCSI_FAILED;
641 
642 	spin_lock_irq(shost->host_lock);
643 	sts = sym_reset_scsi_target(np, starget->id);
644 	if (!sts) {
645 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
646 			struct sym_ccb *cp = sym_que_entry(qp, struct sym_ccb,
647 							   link_ccbq);
648 			struct scsi_cmnd *cmd = cp->cmd;
649 			struct sym_ucmd *ucmd;
650 
651 			if (!cmd || cmd->device->channel != starget->channel ||
652 			    cmd->device->id != starget->id)
653 				continue;
654 
655 			ucmd = SYM_UCMD_PTR(cmd);
656 			init_completion(&eh_done);
657 			ucmd->eh_done = &eh_done;
658 			spin_unlock_irq(shost->host_lock);
659 			if (!wait_for_completion_timeout(&eh_done, 5*HZ)) {
660 				ucmd->eh_done = NULL;
661 				sts = -2;
662 			}
663 			spin_lock_irq(shost->host_lock);
664 		}
665 	}
666 	spin_unlock_irq(shost->host_lock);
667 
668 	starget_printk(KERN_WARNING, starget, "TARGET RESET operation %s.\n",
669 			sts==0 ? "complete" :sts==-2 ? "timed-out" : "failed");
670 	return SCSI_SUCCESS;
671 }
672 
673 static int sym53c8xx_eh_bus_reset_handler(struct scsi_cmnd *cmd)
674 {
675 	struct Scsi_Host *shost = cmd->device->host;
676 	struct sym_data *sym_data = shost_priv(shost);
677 	struct pci_dev *pdev = sym_data->pdev;
678 	struct sym_hcb *np = sym_data->ncb;
679 
680 	scmd_printk(KERN_WARNING, cmd, "BUS RESET operation started\n");
681 
682 	/*
683 	 * Escalate to host reset if the PCI bus went down
684 	 */
685 	if (pci_channel_offline(pdev))
686 		return SCSI_FAILED;
687 
688 	spin_lock_irq(shost->host_lock);
689 	sym_reset_scsi_bus(np, 1);
690 	spin_unlock_irq(shost->host_lock);
691 
692 	dev_warn(&cmd->device->sdev_gendev, "BUS RESET operation complete.\n");
693 	return SCSI_SUCCESS;
694 }
695 
696 static int sym53c8xx_eh_host_reset_handler(struct scsi_cmnd *cmd)
697 {
698 	struct Scsi_Host *shost = cmd->device->host;
699 	struct sym_data *sym_data = shost_priv(shost);
700 	struct pci_dev *pdev = sym_data->pdev;
701 	struct sym_hcb *np = sym_data->ncb;
702 	struct completion eh_done;
703 	int finished_reset = 1;
704 
705 	shost_printk(KERN_WARNING, shost, "HOST RESET operation started\n");
706 
707 	/* We may be in an error condition because the PCI bus
708 	 * went down. In this case, we need to wait until the
709 	 * PCI bus is reset, the card is reset, and only then
710 	 * proceed with the scsi error recovery.  There's no
711 	 * point in hurrying; take a leisurely wait.
712 	 */
713 #define WAIT_FOR_PCI_RECOVERY	35
714 	if (pci_channel_offline(pdev)) {
715 		init_completion(&eh_done);
716 		spin_lock_irq(shost->host_lock);
717 		/* Make sure we didn't race */
718 		if (pci_channel_offline(pdev)) {
719 			BUG_ON(sym_data->io_reset);
720 			sym_data->io_reset = &eh_done;
721 			finished_reset = 0;
722 		}
723 		spin_unlock_irq(shost->host_lock);
724 		if (!finished_reset)
725 			finished_reset = wait_for_completion_timeout
726 						(sym_data->io_reset,
727 						WAIT_FOR_PCI_RECOVERY*HZ);
728 		spin_lock_irq(shost->host_lock);
729 		sym_data->io_reset = NULL;
730 		spin_unlock_irq(shost->host_lock);
731 	}
732 
733 	if (finished_reset) {
734 		sym_reset_scsi_bus(np, 0);
735 		sym_start_up(shost, 1);
736 	}
737 
738 	shost_printk(KERN_WARNING, shost, "HOST RESET operation %s.\n",
739 			finished_reset==1 ? "complete" : "failed");
740 	return finished_reset ? SCSI_SUCCESS : SCSI_FAILED;
741 }
742 
743 /*
744  *  Tune device queuing depth, according to various limits.
745  */
746 static void sym_tune_dev_queuing(struct sym_tcb *tp, int lun, u_short reqtags)
747 {
748 	struct sym_lcb *lp = sym_lp(tp, lun);
749 	u_short	oldtags;
750 
751 	if (!lp)
752 		return;
753 
754 	oldtags = lp->s.reqtags;
755 
756 	if (reqtags > lp->s.scdev_depth)
757 		reqtags = lp->s.scdev_depth;
758 
759 	lp->s.reqtags     = reqtags;
760 
761 	if (reqtags != oldtags) {
762 		dev_info(&tp->starget->dev,
763 		         "tagged command queuing %s, command queue depth %d.\n",
764 		          lp->s.reqtags ? "enabled" : "disabled", reqtags);
765 	}
766 }
767 
768 static int sym53c8xx_slave_alloc(struct scsi_device *sdev)
769 {
770 	struct sym_hcb *np = sym_get_hcb(sdev->host);
771 	struct sym_tcb *tp = &np->target[sdev->id];
772 	struct sym_lcb *lp;
773 	unsigned long flags;
774 	int error;
775 
776 	if (sdev->id >= SYM_CONF_MAX_TARGET || sdev->lun >= SYM_CONF_MAX_LUN)
777 		return -ENXIO;
778 
779 	spin_lock_irqsave(np->s.host->host_lock, flags);
780 
781 	/*
782 	 * Fail the device init if the device is flagged NOSCAN at BOOT in
783 	 * the NVRAM.  This may speed up boot and maintain coherency with
784 	 * BIOS device numbering.  Clearing the flag allows the user to
785 	 * rescan skipped devices later.  We also return an error for
786 	 * devices not flagged for SCAN LUNS in the NVRAM since some single
787 	 * lun devices behave badly when asked for a non zero LUN.
788 	 */
789 
790 	if (tp->usrflags & SYM_SCAN_BOOT_DISABLED) {
791 		tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED;
792 		starget_printk(KERN_INFO, sdev->sdev_target,
793 				"Scan at boot disabled in NVRAM\n");
794 		error = -ENXIO;
795 		goto out;
796 	}
797 
798 	if (tp->usrflags & SYM_SCAN_LUNS_DISABLED) {
799 		if (sdev->lun != 0) {
800 			error = -ENXIO;
801 			goto out;
802 		}
803 		starget_printk(KERN_INFO, sdev->sdev_target,
804 				"Multiple LUNs disabled in NVRAM\n");
805 	}
806 
807 	lp = sym_alloc_lcb(np, sdev->id, sdev->lun);
808 	if (!lp) {
809 		error = -ENOMEM;
810 		goto out;
811 	}
812 	if (tp->nlcb == 1)
813 		tp->starget = sdev->sdev_target;
814 
815 	spi_min_period(tp->starget) = tp->usr_period;
816 	spi_max_width(tp->starget) = tp->usr_width;
817 
818 	error = 0;
819 out:
820 	spin_unlock_irqrestore(np->s.host->host_lock, flags);
821 
822 	return error;
823 }
824 
825 /*
826  * Linux entry point for device queue sizing.
827  */
828 static int sym53c8xx_slave_configure(struct scsi_device *sdev)
829 {
830 	struct sym_hcb *np = sym_get_hcb(sdev->host);
831 	struct sym_tcb *tp = &np->target[sdev->id];
832 	struct sym_lcb *lp = sym_lp(tp, sdev->lun);
833 	int reqtags, depth_to_use;
834 
835 	/*
836 	 *  Get user flags.
837 	 */
838 	lp->curr_flags = lp->user_flags;
839 
840 	/*
841 	 *  Select queue depth from driver setup.
842 	 *  Do not use more than configured by user.
843 	 *  Use at least 1.
844 	 *  Do not use more than our maximum.
845 	 */
846 	reqtags = sym_driver_setup.max_tag;
847 	if (reqtags > tp->usrtags)
848 		reqtags = tp->usrtags;
849 	if (!sdev->tagged_supported)
850 		reqtags = 0;
851 	if (reqtags > SYM_CONF_MAX_TAG)
852 		reqtags = SYM_CONF_MAX_TAG;
853 	depth_to_use = reqtags ? reqtags : 1;
854 	scsi_change_queue_depth(sdev, depth_to_use);
855 	lp->s.scdev_depth = depth_to_use;
856 	sym_tune_dev_queuing(tp, sdev->lun, reqtags);
857 
858 	if (!spi_initial_dv(sdev->sdev_target))
859 		spi_dv_device(sdev);
860 
861 	return 0;
862 }
863 
864 static void sym53c8xx_slave_destroy(struct scsi_device *sdev)
865 {
866 	struct sym_hcb *np = sym_get_hcb(sdev->host);
867 	struct sym_tcb *tp = &np->target[sdev->id];
868 	struct sym_lcb *lp = sym_lp(tp, sdev->lun);
869 	unsigned long flags;
870 
871 	/* if slave_alloc returned before allocating a sym_lcb, return */
872 	if (!lp)
873 		return;
874 
875 	spin_lock_irqsave(np->s.host->host_lock, flags);
876 
877 	if (lp->busy_itlq || lp->busy_itl) {
878 		/*
879 		 * This really shouldn't happen, but we can't return an error
880 		 * so let's try to stop all on-going I/O.
881 		 */
882 		starget_printk(KERN_WARNING, tp->starget,
883 			       "Removing busy LCB (%d)\n", (u8)sdev->lun);
884 		sym_reset_scsi_bus(np, 1);
885 	}
886 
887 	if (sym_free_lcb(np, sdev->id, sdev->lun) == 0) {
888 		/*
889 		 * It was the last unit for this target.
890 		 */
891 		tp->head.sval        = 0;
892 		tp->head.wval        = np->rv_scntl3;
893 		tp->head.uval        = 0;
894 		tp->tgoal.check_nego = 1;
895 		tp->starget	     = NULL;
896 	}
897 
898 	spin_unlock_irqrestore(np->s.host->host_lock, flags);
899 }
900 
901 /*
902  *  Linux entry point for info() function
903  */
904 static const char *sym53c8xx_info (struct Scsi_Host *host)
905 {
906 	return SYM_DRIVER_NAME;
907 }
908 
909 
910 #ifdef SYM_LINUX_PROC_INFO_SUPPORT
911 /*
912  *  Proc file system stuff
913  *
914  *  A read operation returns adapter information.
915  *  A write operation is a control command.
916  *  The string is parsed in the driver code and the command is passed
917  *  to the sym_usercmd() function.
918  */
919 
920 #ifdef SYM_LINUX_USER_COMMAND_SUPPORT
921 
922 struct	sym_usrcmd {
923 	u_long	target;
924 	u_long	lun;
925 	u_long	data;
926 	u_long	cmd;
927 };
928 
929 #define UC_SETSYNC      10
930 #define UC_SETTAGS	11
931 #define UC_SETDEBUG	12
932 #define UC_SETWIDE	14
933 #define UC_SETFLAG	15
934 #define UC_SETVERBOSE	17
935 #define UC_RESETDEV	18
936 #define UC_CLEARDEV	19
937 
938 static void sym_exec_user_command (struct sym_hcb *np, struct sym_usrcmd *uc)
939 {
940 	struct sym_tcb *tp;
941 	int t, l;
942 
943 	switch (uc->cmd) {
944 	case 0: return;
945 
946 #ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT
947 	case UC_SETDEBUG:
948 		sym_debug_flags = uc->data;
949 		break;
950 #endif
951 	case UC_SETVERBOSE:
952 		np->verbose = uc->data;
953 		break;
954 	default:
955 		/*
956 		 * We assume that other commands apply to targets.
957 		 * This should always be the case and avoid the below
958 		 * 4 lines to be repeated 6 times.
959 		 */
960 		for (t = 0; t < SYM_CONF_MAX_TARGET; t++) {
961 			if (!((uc->target >> t) & 1))
962 				continue;
963 			tp = &np->target[t];
964 			if (!tp->nlcb)
965 				continue;
966 
967 			switch (uc->cmd) {
968 
969 			case UC_SETSYNC:
970 				if (!uc->data || uc->data >= 255) {
971 					tp->tgoal.iu = tp->tgoal.dt =
972 						tp->tgoal.qas = 0;
973 					tp->tgoal.offset = 0;
974 				} else if (uc->data <= 9 && np->minsync_dt) {
975 					if (uc->data < np->minsync_dt)
976 						uc->data = np->minsync_dt;
977 					tp->tgoal.iu = tp->tgoal.dt =
978 						tp->tgoal.qas = 1;
979 					tp->tgoal.width = 1;
980 					tp->tgoal.period = uc->data;
981 					tp->tgoal.offset = np->maxoffs_dt;
982 				} else {
983 					if (uc->data < np->minsync)
984 						uc->data = np->minsync;
985 					tp->tgoal.iu = tp->tgoal.dt =
986 						tp->tgoal.qas = 0;
987 					tp->tgoal.period = uc->data;
988 					tp->tgoal.offset = np->maxoffs;
989 				}
990 				tp->tgoal.check_nego = 1;
991 				break;
992 			case UC_SETWIDE:
993 				tp->tgoal.width = uc->data ? 1 : 0;
994 				tp->tgoal.check_nego = 1;
995 				break;
996 			case UC_SETTAGS:
997 				for (l = 0; l < SYM_CONF_MAX_LUN; l++)
998 					sym_tune_dev_queuing(tp, l, uc->data);
999 				break;
1000 			case UC_RESETDEV:
1001 				tp->to_reset = 1;
1002 				np->istat_sem = SEM;
1003 				OUTB(np, nc_istat, SIGP|SEM);
1004 				break;
1005 			case UC_CLEARDEV:
1006 				for (l = 0; l < SYM_CONF_MAX_LUN; l++) {
1007 					struct sym_lcb *lp = sym_lp(tp, l);
1008 					if (lp) lp->to_clear = 1;
1009 				}
1010 				np->istat_sem = SEM;
1011 				OUTB(np, nc_istat, SIGP|SEM);
1012 				break;
1013 			case UC_SETFLAG:
1014 				tp->usrflags = uc->data;
1015 				break;
1016 			}
1017 		}
1018 		break;
1019 	}
1020 }
1021 
1022 static int sym_skip_spaces(char *ptr, int len)
1023 {
1024 	int cnt, c;
1025 
1026 	for (cnt = len; cnt > 0 && (c = *ptr++) && isspace(c); cnt--);
1027 
1028 	return (len - cnt);
1029 }
1030 
1031 static int get_int_arg(char *ptr, int len, u_long *pv)
1032 {
1033 	char *end;
1034 
1035 	*pv = simple_strtoul(ptr, &end, 10);
1036 	return (end - ptr);
1037 }
1038 
1039 static int is_keyword(char *ptr, int len, char *verb)
1040 {
1041 	int verb_len = strlen(verb);
1042 
1043 	if (len >= verb_len && !memcmp(verb, ptr, verb_len))
1044 		return verb_len;
1045 	else
1046 		return 0;
1047 }
1048 
1049 #define SKIP_SPACES(ptr, len)						\
1050 	if ((arg_len = sym_skip_spaces(ptr, len)) < 1)			\
1051 		return -EINVAL;						\
1052 	ptr += arg_len; len -= arg_len;
1053 
1054 #define GET_INT_ARG(ptr, len, v)					\
1055 	if (!(arg_len = get_int_arg(ptr, len, &(v))))			\
1056 		return -EINVAL;						\
1057 	ptr += arg_len; len -= arg_len;
1058 
1059 
1060 /*
1061  * Parse a control command
1062  */
1063 
1064 static int sym_user_command(struct Scsi_Host *shost, char *buffer, int length)
1065 {
1066 	struct sym_hcb *np = sym_get_hcb(shost);
1067 	char *ptr	= buffer;
1068 	int len		= length;
1069 	struct sym_usrcmd cmd, *uc = &cmd;
1070 	int		arg_len;
1071 	u_long 		target;
1072 
1073 	memset(uc, 0, sizeof(*uc));
1074 
1075 	if (len > 0 && ptr[len-1] == '\n')
1076 		--len;
1077 
1078 	if	((arg_len = is_keyword(ptr, len, "setsync")) != 0)
1079 		uc->cmd = UC_SETSYNC;
1080 	else if	((arg_len = is_keyword(ptr, len, "settags")) != 0)
1081 		uc->cmd = UC_SETTAGS;
1082 	else if	((arg_len = is_keyword(ptr, len, "setverbose")) != 0)
1083 		uc->cmd = UC_SETVERBOSE;
1084 	else if	((arg_len = is_keyword(ptr, len, "setwide")) != 0)
1085 		uc->cmd = UC_SETWIDE;
1086 #ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT
1087 	else if	((arg_len = is_keyword(ptr, len, "setdebug")) != 0)
1088 		uc->cmd = UC_SETDEBUG;
1089 #endif
1090 	else if	((arg_len = is_keyword(ptr, len, "setflag")) != 0)
1091 		uc->cmd = UC_SETFLAG;
1092 	else if	((arg_len = is_keyword(ptr, len, "resetdev")) != 0)
1093 		uc->cmd = UC_RESETDEV;
1094 	else if	((arg_len = is_keyword(ptr, len, "cleardev")) != 0)
1095 		uc->cmd = UC_CLEARDEV;
1096 	else
1097 		arg_len = 0;
1098 
1099 #ifdef DEBUG_PROC_INFO
1100 printk("sym_user_command: arg_len=%d, cmd=%ld\n", arg_len, uc->cmd);
1101 #endif
1102 
1103 	if (!arg_len)
1104 		return -EINVAL;
1105 	ptr += arg_len; len -= arg_len;
1106 
1107 	switch(uc->cmd) {
1108 	case UC_SETSYNC:
1109 	case UC_SETTAGS:
1110 	case UC_SETWIDE:
1111 	case UC_SETFLAG:
1112 	case UC_RESETDEV:
1113 	case UC_CLEARDEV:
1114 		SKIP_SPACES(ptr, len);
1115 		if ((arg_len = is_keyword(ptr, len, "all")) != 0) {
1116 			ptr += arg_len; len -= arg_len;
1117 			uc->target = ~0;
1118 		} else {
1119 			GET_INT_ARG(ptr, len, target);
1120 			uc->target = (1<<target);
1121 #ifdef DEBUG_PROC_INFO
1122 printk("sym_user_command: target=%ld\n", target);
1123 #endif
1124 		}
1125 		break;
1126 	}
1127 
1128 	switch(uc->cmd) {
1129 	case UC_SETVERBOSE:
1130 	case UC_SETSYNC:
1131 	case UC_SETTAGS:
1132 	case UC_SETWIDE:
1133 		SKIP_SPACES(ptr, len);
1134 		GET_INT_ARG(ptr, len, uc->data);
1135 #ifdef DEBUG_PROC_INFO
1136 printk("sym_user_command: data=%ld\n", uc->data);
1137 #endif
1138 		break;
1139 #ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT
1140 	case UC_SETDEBUG:
1141 		while (len > 0) {
1142 			SKIP_SPACES(ptr, len);
1143 			if	((arg_len = is_keyword(ptr, len, "alloc")))
1144 				uc->data |= DEBUG_ALLOC;
1145 			else if	((arg_len = is_keyword(ptr, len, "phase")))
1146 				uc->data |= DEBUG_PHASE;
1147 			else if	((arg_len = is_keyword(ptr, len, "queue")))
1148 				uc->data |= DEBUG_QUEUE;
1149 			else if	((arg_len = is_keyword(ptr, len, "result")))
1150 				uc->data |= DEBUG_RESULT;
1151 			else if	((arg_len = is_keyword(ptr, len, "scatter")))
1152 				uc->data |= DEBUG_SCATTER;
1153 			else if	((arg_len = is_keyword(ptr, len, "script")))
1154 				uc->data |= DEBUG_SCRIPT;
1155 			else if	((arg_len = is_keyword(ptr, len, "tiny")))
1156 				uc->data |= DEBUG_TINY;
1157 			else if	((arg_len = is_keyword(ptr, len, "timing")))
1158 				uc->data |= DEBUG_TIMING;
1159 			else if	((arg_len = is_keyword(ptr, len, "nego")))
1160 				uc->data |= DEBUG_NEGO;
1161 			else if	((arg_len = is_keyword(ptr, len, "tags")))
1162 				uc->data |= DEBUG_TAGS;
1163 			else if	((arg_len = is_keyword(ptr, len, "pointer")))
1164 				uc->data |= DEBUG_POINTER;
1165 			else
1166 				return -EINVAL;
1167 			ptr += arg_len; len -= arg_len;
1168 		}
1169 #ifdef DEBUG_PROC_INFO
1170 printk("sym_user_command: data=%ld\n", uc->data);
1171 #endif
1172 		break;
1173 #endif /* SYM_LINUX_DEBUG_CONTROL_SUPPORT */
1174 	case UC_SETFLAG:
1175 		while (len > 0) {
1176 			SKIP_SPACES(ptr, len);
1177 			if	((arg_len = is_keyword(ptr, len, "no_disc")))
1178 				uc->data &= ~SYM_DISC_ENABLED;
1179 			else
1180 				return -EINVAL;
1181 			ptr += arg_len; len -= arg_len;
1182 		}
1183 		break;
1184 	default:
1185 		break;
1186 	}
1187 
1188 	if (len)
1189 		return -EINVAL;
1190 	else {
1191 		unsigned long flags;
1192 
1193 		spin_lock_irqsave(shost->host_lock, flags);
1194 		sym_exec_user_command(np, uc);
1195 		spin_unlock_irqrestore(shost->host_lock, flags);
1196 	}
1197 	return length;
1198 }
1199 
1200 #endif	/* SYM_LINUX_USER_COMMAND_SUPPORT */
1201 
1202 
1203 /*
1204  *  Copy formatted information into the input buffer.
1205  */
1206 static int sym_show_info(struct seq_file *m, struct Scsi_Host *shost)
1207 {
1208 #ifdef SYM_LINUX_USER_INFO_SUPPORT
1209 	struct sym_data *sym_data = shost_priv(shost);
1210 	struct pci_dev *pdev = sym_data->pdev;
1211 	struct sym_hcb *np = sym_data->ncb;
1212 
1213 	seq_printf(m, "Chip " NAME53C "%s, device id 0x%x, "
1214 		 "revision id 0x%x\n", np->s.chip_name,
1215 		 pdev->device, pdev->revision);
1216 	seq_printf(m, "At PCI address %s, IRQ %u\n",
1217 			 pci_name(pdev), pdev->irq);
1218 	seq_printf(m, "Min. period factor %d, %s SCSI BUS%s\n",
1219 		 (int) (np->minsync_dt ? np->minsync_dt : np->minsync),
1220 		 np->maxwide ? "Wide" : "Narrow",
1221 		 np->minsync_dt ? ", DT capable" : "");
1222 
1223 	seq_printf(m, "Max. started commands %d, "
1224 		 "max. commands per LUN %d\n",
1225 		 SYM_CONF_MAX_START, SYM_CONF_MAX_TAG);
1226 
1227 	return 0;
1228 #else
1229 	return -EINVAL;
1230 #endif /* SYM_LINUX_USER_INFO_SUPPORT */
1231 }
1232 
1233 #endif /* SYM_LINUX_PROC_INFO_SUPPORT */
1234 
1235 /*
1236  * Free resources claimed by sym_iomap_device().  Note that
1237  * sym_free_resources() should be used instead of this function after calling
1238  * sym_attach().
1239  */
1240 static void sym_iounmap_device(struct sym_device *device)
1241 {
1242 	if (device->s.ioaddr)
1243 		pci_iounmap(device->pdev, device->s.ioaddr);
1244 	if (device->s.ramaddr)
1245 		pci_iounmap(device->pdev, device->s.ramaddr);
1246 }
1247 
1248 /*
1249  *	Free controller resources.
1250  */
1251 static void sym_free_resources(struct sym_hcb *np, struct pci_dev *pdev,
1252 		int do_free_irq)
1253 {
1254 	/*
1255 	 *  Free O/S specific resources.
1256 	 */
1257 	if (do_free_irq)
1258 		free_irq(pdev->irq, np->s.host);
1259 	if (np->s.ioaddr)
1260 		pci_iounmap(pdev, np->s.ioaddr);
1261 	if (np->s.ramaddr)
1262 		pci_iounmap(pdev, np->s.ramaddr);
1263 	/*
1264 	 *  Free O/S independent resources.
1265 	 */
1266 	sym_hcb_free(np);
1267 
1268 	sym_mfree_dma(np, sizeof(*np), "HCB");
1269 }
1270 
1271 /*
1272  *  Host attach and initialisations.
1273  *
1274  *  Allocate host data and ncb structure.
1275  *  Remap MMIO region.
1276  *  Do chip initialization.
1277  *  If all is OK, install interrupt handling and
1278  *  start the timer daemon.
1279  */
1280 static struct Scsi_Host *sym_attach(const struct scsi_host_template *tpnt, int unit,
1281 				    struct sym_device *dev)
1282 {
1283 	struct sym_data *sym_data;
1284 	struct sym_hcb *np = NULL;
1285 	struct Scsi_Host *shost = NULL;
1286 	struct pci_dev *pdev = dev->pdev;
1287 	unsigned long flags;
1288 	struct sym_fw *fw;
1289 	int do_free_irq = 0;
1290 
1291 	printk(KERN_INFO "sym%d: <%s> rev 0x%x at pci %s irq %u\n",
1292 		unit, dev->chip.name, pdev->revision, pci_name(pdev),
1293 		pdev->irq);
1294 
1295 	/*
1296 	 *  Get the firmware for this chip.
1297 	 */
1298 	fw = sym_find_firmware(&dev->chip);
1299 	if (!fw)
1300 		goto attach_failed;
1301 
1302 	shost = scsi_host_alloc(tpnt, sizeof(*sym_data));
1303 	if (!shost)
1304 		goto attach_failed;
1305 	sym_data = shost_priv(shost);
1306 
1307 	/*
1308 	 *  Allocate immediately the host control block,
1309 	 *  since we are only expecting to succeed. :)
1310 	 *  We keep track in the HCB of all the resources that
1311 	 *  are to be released on error.
1312 	 */
1313 	np = __sym_calloc_dma(&pdev->dev, sizeof(*np), "HCB");
1314 	if (!np)
1315 		goto attach_failed;
1316 	np->bus_dmat = &pdev->dev; /* Result in 1 DMA pool per HBA */
1317 	sym_data->ncb = np;
1318 	sym_data->pdev = pdev;
1319 	np->s.host = shost;
1320 
1321 	pci_set_drvdata(pdev, shost);
1322 
1323 	/*
1324 	 *  Copy some useful infos to the HCB.
1325 	 */
1326 	np->hcb_ba	= vtobus(np);
1327 	np->verbose	= sym_driver_setup.verbose;
1328 	np->s.unit	= unit;
1329 	np->features	= dev->chip.features;
1330 	np->clock_divn	= dev->chip.nr_divisor;
1331 	np->maxoffs	= dev->chip.offset_max;
1332 	np->maxburst	= dev->chip.burst_max;
1333 	np->myaddr	= dev->host_id;
1334 	np->mmio_ba	= (u32)dev->mmio_base;
1335 	np->ram_ba	= (u32)dev->ram_base;
1336 	np->s.ioaddr	= dev->s.ioaddr;
1337 	np->s.ramaddr	= dev->s.ramaddr;
1338 
1339 	/*
1340 	 *  Edit its name.
1341 	 */
1342 	strscpy(np->s.chip_name, dev->chip.name, sizeof(np->s.chip_name));
1343 	sprintf(np->s.inst_name, "sym%d", np->s.unit);
1344 
1345 	if ((SYM_CONF_DMA_ADDRESSING_MODE > 0) && (np->features & FE_DAC) &&
1346 			!dma_set_mask(&pdev->dev, DMA_DAC_MASK)) {
1347 		set_dac(np);
1348 	} else if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) {
1349 		printf_warning("%s: No suitable DMA available\n", sym_name(np));
1350 		goto attach_failed;
1351 	}
1352 
1353 	if (sym_hcb_attach(shost, fw, dev->nvram))
1354 		goto attach_failed;
1355 
1356 	/*
1357 	 *  Install the interrupt handler.
1358 	 *  If we synchonize the C code with SCRIPTS on interrupt,
1359 	 *  we do not want to share the INTR line at all.
1360 	 */
1361 	if (request_irq(pdev->irq, sym53c8xx_intr, IRQF_SHARED, NAME53C8XX,
1362 			shost)) {
1363 		printf_err("%s: request irq %u failure\n",
1364 			sym_name(np), pdev->irq);
1365 		goto attach_failed;
1366 	}
1367 	do_free_irq = 1;
1368 
1369 	/*
1370 	 *  After SCSI devices have been opened, we cannot
1371 	 *  reset the bus safely, so we do it here.
1372 	 */
1373 	spin_lock_irqsave(shost->host_lock, flags);
1374 	if (sym_reset_scsi_bus(np, 0))
1375 		goto reset_failed;
1376 
1377 	/*
1378 	 *  Start the SCRIPTS.
1379 	 */
1380 	sym_start_up(shost, 1);
1381 
1382 	/*
1383 	 *  Start the timer daemon
1384 	 */
1385 	timer_setup(&np->s.timer, sym53c8xx_timer, 0);
1386 	np->s.lasttime=0;
1387 	sym_timer (np);
1388 
1389 	/*
1390 	 *  Fill Linux host instance structure
1391 	 *  and return success.
1392 	 */
1393 	shost->max_channel	= 0;
1394 	shost->this_id		= np->myaddr;
1395 	shost->max_id		= np->maxwide ? 16 : 8;
1396 	shost->max_lun		= SYM_CONF_MAX_LUN;
1397 	shost->unique_id	= pci_resource_start(pdev, 0);
1398 	shost->cmd_per_lun	= SYM_CONF_MAX_TAG;
1399 	shost->can_queue	= (SYM_CONF_MAX_START-2);
1400 	shost->sg_tablesize	= SYM_CONF_MAX_SG;
1401 	shost->max_cmd_len	= 16;
1402 	BUG_ON(sym2_transport_template == NULL);
1403 	shost->transportt	= sym2_transport_template;
1404 
1405 	/* 53c896 rev 1 errata: DMA may not cross 16MB boundary */
1406 	if (pdev->device == PCI_DEVICE_ID_NCR_53C896 && pdev->revision < 2)
1407 		shost->dma_boundary = 0xFFFFFF;
1408 
1409 	spin_unlock_irqrestore(shost->host_lock, flags);
1410 
1411 	return shost;
1412 
1413  reset_failed:
1414 	printf_err("%s: FATAL ERROR: CHECK SCSI BUS - CABLES, "
1415 		   "TERMINATION, DEVICE POWER etc.!\n", sym_name(np));
1416 	spin_unlock_irqrestore(shost->host_lock, flags);
1417  attach_failed:
1418 	printf_info("sym%d: giving up ...\n", unit);
1419 	if (np)
1420 		sym_free_resources(np, pdev, do_free_irq);
1421 	else
1422 		sym_iounmap_device(dev);
1423 	if (shost)
1424 		scsi_host_put(shost);
1425 
1426 	return NULL;
1427 }
1428 
1429 
1430 /*
1431  *    Detect and try to read SYMBIOS and TEKRAM NVRAM.
1432  */
1433 #if SYM_CONF_NVRAM_SUPPORT
1434 static void sym_get_nvram(struct sym_device *devp, struct sym_nvram *nvp)
1435 {
1436 	devp->nvram = nvp;
1437 	nvp->type = 0;
1438 
1439 	sym_read_nvram(devp, nvp);
1440 }
1441 #else
1442 static inline void sym_get_nvram(struct sym_device *devp, struct sym_nvram *nvp)
1443 {
1444 }
1445 #endif	/* SYM_CONF_NVRAM_SUPPORT */
1446 
1447 static int sym_check_supported(struct sym_device *device)
1448 {
1449 	struct sym_chip *chip;
1450 	struct pci_dev *pdev = device->pdev;
1451 	unsigned long io_port = pci_resource_start(pdev, 0);
1452 	int i;
1453 
1454 	/*
1455 	 *  If user excluded this chip, do not initialize it.
1456 	 *  I hate this code so much.  Must kill it.
1457 	 */
1458 	if (io_port) {
1459 		for (i = 0 ; i < 8 ; i++) {
1460 			if (sym_driver_setup.excludes[i] == io_port)
1461 				return -ENODEV;
1462 		}
1463 	}
1464 
1465 	/*
1466 	 * Check if the chip is supported.  Then copy the chip description
1467 	 * to our device structure so we can make it match the actual device
1468 	 * and options.
1469 	 */
1470 	chip = sym_lookup_chip_table(pdev->device, pdev->revision);
1471 	if (!chip) {
1472 		dev_info(&pdev->dev, "device not supported\n");
1473 		return -ENODEV;
1474 	}
1475 	memcpy(&device->chip, chip, sizeof(device->chip));
1476 
1477 	return 0;
1478 }
1479 
1480 /*
1481  * Ignore Symbios chips controlled by various RAID controllers.
1482  * These controllers set value 0x52414944 at RAM end - 16.
1483  */
1484 static int sym_check_raid(struct sym_device *device)
1485 {
1486 	unsigned int ram_size, ram_val;
1487 
1488 	if (!device->s.ramaddr)
1489 		return 0;
1490 
1491 	if (device->chip.features & FE_RAM8K)
1492 		ram_size = 8192;
1493 	else
1494 		ram_size = 4096;
1495 
1496 	ram_val = readl(device->s.ramaddr + ram_size - 16);
1497 	if (ram_val != 0x52414944)
1498 		return 0;
1499 
1500 	dev_info(&device->pdev->dev,
1501 			"not initializing, driven by RAID controller.\n");
1502 	return -ENODEV;
1503 }
1504 
1505 static int sym_set_workarounds(struct sym_device *device)
1506 {
1507 	struct sym_chip *chip = &device->chip;
1508 	struct pci_dev *pdev = device->pdev;
1509 	u_short status_reg;
1510 
1511 	/*
1512 	 *  (ITEM 12 of a DEL about the 896 I haven't yet).
1513 	 *  We must ensure the chip will use WRITE AND INVALIDATE.
1514 	 *  The revision number limit is for now arbitrary.
1515 	 */
1516 	if (pdev->device == PCI_DEVICE_ID_NCR_53C896 && pdev->revision < 0x4) {
1517 		chip->features	|= (FE_WRIE | FE_CLSE);
1518 	}
1519 
1520 	/* If the chip can do Memory Write Invalidate, enable it */
1521 	if (chip->features & FE_WRIE) {
1522 		if (pci_set_mwi(pdev))
1523 			return -ENODEV;
1524 	}
1525 
1526 	/*
1527 	 *  Work around for errant bit in 895A. The 66Mhz
1528 	 *  capable bit is set erroneously. Clear this bit.
1529 	 *  (Item 1 DEL 533)
1530 	 *
1531 	 *  Make sure Config space and Features agree.
1532 	 *
1533 	 *  Recall: writes are not normal to status register -
1534 	 *  write a 1 to clear and a 0 to leave unchanged.
1535 	 *  Can only reset bits.
1536 	 */
1537 	pci_read_config_word(pdev, PCI_STATUS, &status_reg);
1538 	if (chip->features & FE_66MHZ) {
1539 		if (!(status_reg & PCI_STATUS_66MHZ))
1540 			chip->features &= ~FE_66MHZ;
1541 	} else {
1542 		if (status_reg & PCI_STATUS_66MHZ) {
1543 			status_reg = PCI_STATUS_66MHZ;
1544 			pci_write_config_word(pdev, PCI_STATUS, status_reg);
1545 			pci_read_config_word(pdev, PCI_STATUS, &status_reg);
1546 		}
1547 	}
1548 
1549 	return 0;
1550 }
1551 
1552 /*
1553  * Map HBA registers and on-chip SRAM (if present).
1554  */
1555 static int sym_iomap_device(struct sym_device *device)
1556 {
1557 	struct pci_dev *pdev = device->pdev;
1558 	struct pci_bus_region bus_addr;
1559 	int i = 2;
1560 
1561 	pcibios_resource_to_bus(pdev->bus, &bus_addr, &pdev->resource[1]);
1562 	device->mmio_base = bus_addr.start;
1563 
1564 	if (device->chip.features & FE_RAM) {
1565 		/*
1566 		 * If the BAR is 64-bit, resource 2 will be occupied by the
1567 		 * upper 32 bits
1568 		 */
1569 		if (!pdev->resource[i].flags)
1570 			i++;
1571 		pcibios_resource_to_bus(pdev->bus, &bus_addr,
1572 					&pdev->resource[i]);
1573 		device->ram_base = bus_addr.start;
1574 	}
1575 
1576 #ifdef CONFIG_SCSI_SYM53C8XX_MMIO
1577 	if (device->mmio_base)
1578 		device->s.ioaddr = pci_iomap(pdev, 1,
1579 						pci_resource_len(pdev, 1));
1580 #endif
1581 	if (!device->s.ioaddr)
1582 		device->s.ioaddr = pci_iomap(pdev, 0,
1583 						pci_resource_len(pdev, 0));
1584 	if (!device->s.ioaddr) {
1585 		dev_err(&pdev->dev, "could not map registers; giving up.\n");
1586 		return -EIO;
1587 	}
1588 	if (device->ram_base) {
1589 		device->s.ramaddr = pci_iomap(pdev, i,
1590 						pci_resource_len(pdev, i));
1591 		if (!device->s.ramaddr) {
1592 			dev_warn(&pdev->dev,
1593 				"could not map SRAM; continuing anyway.\n");
1594 			device->ram_base = 0;
1595 		}
1596 	}
1597 
1598 	return 0;
1599 }
1600 
1601 /*
1602  * The NCR PQS and PDS cards are constructed as a DEC bridge
1603  * behind which sits a proprietary NCR memory controller and
1604  * either four or two 53c875s as separate devices.  We can tell
1605  * if an 875 is part of a PQS/PDS or not since if it is, it will
1606  * be on the same bus as the memory controller.  In its usual
1607  * mode of operation, the 875s are slaved to the memory
1608  * controller for all transfers.  To operate with the Linux
1609  * driver, the memory controller is disabled and the 875s
1610  * freed to function independently.  The only wrinkle is that
1611  * the preset SCSI ID (which may be zero) must be read in from
1612  * a special configuration space register of the 875.
1613  */
1614 static void sym_config_pqs(struct pci_dev *pdev, struct sym_device *sym_dev)
1615 {
1616 	int slot;
1617 	u8 tmp;
1618 
1619 	for (slot = 0; slot < 256; slot++) {
1620 		struct pci_dev *memc = pci_get_slot(pdev->bus, slot);
1621 
1622 		if (!memc || memc->vendor != 0x101a || memc->device == 0x0009) {
1623 			pci_dev_put(memc);
1624 			continue;
1625 		}
1626 
1627 		/* bit 1: allow individual 875 configuration */
1628 		pci_read_config_byte(memc, 0x44, &tmp);
1629 		if ((tmp & 0x2) == 0) {
1630 			tmp |= 0x2;
1631 			pci_write_config_byte(memc, 0x44, tmp);
1632 		}
1633 
1634 		/* bit 2: drive individual 875 interrupts to the bus */
1635 		pci_read_config_byte(memc, 0x45, &tmp);
1636 		if ((tmp & 0x4) == 0) {
1637 			tmp |= 0x4;
1638 			pci_write_config_byte(memc, 0x45, tmp);
1639 		}
1640 
1641 		pci_dev_put(memc);
1642 		break;
1643 	}
1644 
1645 	pci_read_config_byte(pdev, 0x84, &tmp);
1646 	sym_dev->host_id = tmp;
1647 }
1648 
1649 /*
1650  *  Called before unloading the module.
1651  *  Detach the host.
1652  *  We have to free resources and halt the NCR chip.
1653  */
1654 static int sym_detach(struct Scsi_Host *shost, struct pci_dev *pdev)
1655 {
1656 	struct sym_hcb *np = sym_get_hcb(shost);
1657 	printk("%s: detaching ...\n", sym_name(np));
1658 
1659 	del_timer_sync(&np->s.timer);
1660 
1661 	/*
1662 	 * Reset NCR chip.
1663 	 * We should use sym_soft_reset(), but we don't want to do
1664 	 * so, since we may not be safe if interrupts occur.
1665 	 */
1666 	printk("%s: resetting chip\n", sym_name(np));
1667 	OUTB(np, nc_istat, SRST);
1668 	INB(np, nc_mbox1);
1669 	udelay(10);
1670 	OUTB(np, nc_istat, 0);
1671 
1672 	sym_free_resources(np, pdev, 1);
1673 	scsi_host_put(shost);
1674 
1675 	return 1;
1676 }
1677 
1678 /*
1679  * Driver host template.
1680  */
1681 static const struct scsi_host_template sym2_template = {
1682 	.module			= THIS_MODULE,
1683 	.name			= "sym53c8xx",
1684 	.info			= sym53c8xx_info,
1685 	.cmd_size		= sizeof(struct sym_ucmd),
1686 	.queuecommand		= sym53c8xx_queue_command,
1687 	.slave_alloc		= sym53c8xx_slave_alloc,
1688 	.slave_configure	= sym53c8xx_slave_configure,
1689 	.slave_destroy		= sym53c8xx_slave_destroy,
1690 	.eh_abort_handler	= sym53c8xx_eh_abort_handler,
1691 	.eh_target_reset_handler = sym53c8xx_eh_target_reset_handler,
1692 	.eh_bus_reset_handler	= sym53c8xx_eh_bus_reset_handler,
1693 	.eh_host_reset_handler	= sym53c8xx_eh_host_reset_handler,
1694 	.this_id		= 7,
1695 	.max_sectors		= 0xFFFF,
1696 #ifdef SYM_LINUX_PROC_INFO_SUPPORT
1697 	.show_info		= sym_show_info,
1698 #ifdef	SYM_LINUX_USER_COMMAND_SUPPORT
1699 	.write_info		= sym_user_command,
1700 #endif
1701 	.proc_name		= NAME53C8XX,
1702 #endif
1703 };
1704 
1705 static int attach_count;
1706 
1707 static int sym2_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1708 {
1709 	struct sym_device sym_dev;
1710 	struct sym_nvram nvram;
1711 	struct Scsi_Host *shost;
1712 	int do_iounmap = 0;
1713 	int do_disable_device = 1;
1714 
1715 	memset(&sym_dev, 0, sizeof(sym_dev));
1716 	memset(&nvram, 0, sizeof(nvram));
1717 	sym_dev.pdev = pdev;
1718 	sym_dev.host_id = SYM_SETUP_HOST_ID;
1719 
1720 	if (pci_enable_device(pdev))
1721 		goto leave;
1722 
1723 	pci_set_master(pdev);
1724 
1725 	if (pci_request_regions(pdev, NAME53C8XX))
1726 		goto disable;
1727 
1728 	if (sym_check_supported(&sym_dev))
1729 		goto free;
1730 
1731 	if (sym_iomap_device(&sym_dev))
1732 		goto free;
1733 	do_iounmap = 1;
1734 
1735 	if (sym_check_raid(&sym_dev)) {
1736 		do_disable_device = 0;	/* Don't disable the device */
1737 		goto free;
1738 	}
1739 
1740 	if (sym_set_workarounds(&sym_dev))
1741 		goto free;
1742 
1743 	sym_config_pqs(pdev, &sym_dev);
1744 
1745 	sym_get_nvram(&sym_dev, &nvram);
1746 
1747 	do_iounmap = 0; /* Don't sym_iounmap_device() after sym_attach(). */
1748 	shost = sym_attach(&sym2_template, attach_count, &sym_dev);
1749 	if (!shost)
1750 		goto free;
1751 
1752 	if (scsi_add_host(shost, &pdev->dev))
1753 		goto detach;
1754 	scsi_scan_host(shost);
1755 
1756 	attach_count++;
1757 
1758 	return 0;
1759 
1760  detach:
1761 	sym_detach(pci_get_drvdata(pdev), pdev);
1762  free:
1763 	if (do_iounmap)
1764 		sym_iounmap_device(&sym_dev);
1765 	pci_release_regions(pdev);
1766  disable:
1767 	if (do_disable_device)
1768 		pci_disable_device(pdev);
1769  leave:
1770 	return -ENODEV;
1771 }
1772 
1773 static void sym2_remove(struct pci_dev *pdev)
1774 {
1775 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
1776 
1777 	scsi_remove_host(shost);
1778 	sym_detach(shost, pdev);
1779 	pci_release_regions(pdev);
1780 	pci_disable_device(pdev);
1781 
1782 	attach_count--;
1783 }
1784 
1785 /**
1786  * sym2_io_error_detected() - called when PCI error is detected
1787  * @pdev: pointer to PCI device
1788  * @state: current state of the PCI slot
1789  */
1790 static pci_ers_result_t sym2_io_error_detected(struct pci_dev *pdev,
1791                                          pci_channel_state_t state)
1792 {
1793 	/* If slot is permanently frozen, turn everything off */
1794 	if (state == pci_channel_io_perm_failure) {
1795 		sym2_remove(pdev);
1796 		return PCI_ERS_RESULT_DISCONNECT;
1797 	}
1798 
1799 	disable_irq(pdev->irq);
1800 	pci_disable_device(pdev);
1801 
1802 	/* Request that MMIO be enabled, so register dump can be taken. */
1803 	return PCI_ERS_RESULT_CAN_RECOVER;
1804 }
1805 
1806 /**
1807  * sym2_io_slot_dump - Enable MMIO and dump debug registers
1808  * @pdev: pointer to PCI device
1809  */
1810 static pci_ers_result_t sym2_io_slot_dump(struct pci_dev *pdev)
1811 {
1812 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
1813 
1814 	sym_dump_registers(shost);
1815 
1816 	/* Request a slot reset. */
1817 	return PCI_ERS_RESULT_NEED_RESET;
1818 }
1819 
1820 /**
1821  * sym2_reset_workarounds - hardware-specific work-arounds
1822  * @pdev: pointer to PCI device
1823  *
1824  * This routine is similar to sym_set_workarounds(), except
1825  * that, at this point, we already know that the device was
1826  * successfully initialized at least once before, and so most
1827  * of the steps taken there are un-needed here.
1828  */
1829 static void sym2_reset_workarounds(struct pci_dev *pdev)
1830 {
1831 	u_short status_reg;
1832 	struct sym_chip *chip;
1833 
1834 	chip = sym_lookup_chip_table(pdev->device, pdev->revision);
1835 
1836 	/* Work around for errant bit in 895A, in a fashion
1837 	 * similar to what is done in sym_set_workarounds().
1838 	 */
1839 	pci_read_config_word(pdev, PCI_STATUS, &status_reg);
1840 	if (!(chip->features & FE_66MHZ) && (status_reg & PCI_STATUS_66MHZ)) {
1841 		status_reg = PCI_STATUS_66MHZ;
1842 		pci_write_config_word(pdev, PCI_STATUS, status_reg);
1843 		pci_read_config_word(pdev, PCI_STATUS, &status_reg);
1844 	}
1845 }
1846 
1847 /**
1848  * sym2_io_slot_reset() - called when the pci bus has been reset.
1849  * @pdev: pointer to PCI device
1850  *
1851  * Restart the card from scratch.
1852  */
1853 static pci_ers_result_t sym2_io_slot_reset(struct pci_dev *pdev)
1854 {
1855 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
1856 	struct sym_hcb *np = sym_get_hcb(shost);
1857 
1858 	printk(KERN_INFO "%s: recovering from a PCI slot reset\n",
1859 	          sym_name(np));
1860 
1861 	if (pci_enable_device(pdev)) {
1862 		printk(KERN_ERR "%s: Unable to enable after PCI reset\n",
1863 		        sym_name(np));
1864 		return PCI_ERS_RESULT_DISCONNECT;
1865 	}
1866 
1867 	pci_set_master(pdev);
1868 	enable_irq(pdev->irq);
1869 
1870 	/* If the chip can do Memory Write Invalidate, enable it */
1871 	if (np->features & FE_WRIE) {
1872 		if (pci_set_mwi(pdev))
1873 			return PCI_ERS_RESULT_DISCONNECT;
1874 	}
1875 
1876 	/* Perform work-arounds, analogous to sym_set_workarounds() */
1877 	sym2_reset_workarounds(pdev);
1878 
1879 	/* Perform host reset only on one instance of the card */
1880 	if (PCI_FUNC(pdev->devfn) == 0) {
1881 		if (sym_reset_scsi_bus(np, 0)) {
1882 			printk(KERN_ERR "%s: Unable to reset scsi host\n",
1883 			        sym_name(np));
1884 			return PCI_ERS_RESULT_DISCONNECT;
1885 		}
1886 		sym_start_up(shost, 1);
1887 	}
1888 
1889 	return PCI_ERS_RESULT_RECOVERED;
1890 }
1891 
1892 /**
1893  * sym2_io_resume() - resume normal ops after PCI reset
1894  * @pdev: pointer to PCI device
1895  *
1896  * Called when the error recovery driver tells us that its
1897  * OK to resume normal operation. Use completion to allow
1898  * halted scsi ops to resume.
1899  */
1900 static void sym2_io_resume(struct pci_dev *pdev)
1901 {
1902 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
1903 	struct sym_data *sym_data = shost_priv(shost);
1904 
1905 	spin_lock_irq(shost->host_lock);
1906 	if (sym_data->io_reset)
1907 		complete(sym_data->io_reset);
1908 	spin_unlock_irq(shost->host_lock);
1909 }
1910 
1911 static void sym2_get_signalling(struct Scsi_Host *shost)
1912 {
1913 	struct sym_hcb *np = sym_get_hcb(shost);
1914 	enum spi_signal_type type;
1915 
1916 	switch (np->scsi_mode) {
1917 	case SMODE_SE:
1918 		type = SPI_SIGNAL_SE;
1919 		break;
1920 	case SMODE_LVD:
1921 		type = SPI_SIGNAL_LVD;
1922 		break;
1923 	case SMODE_HVD:
1924 		type = SPI_SIGNAL_HVD;
1925 		break;
1926 	default:
1927 		type = SPI_SIGNAL_UNKNOWN;
1928 		break;
1929 	}
1930 	spi_signalling(shost) = type;
1931 }
1932 
1933 static void sym2_set_offset(struct scsi_target *starget, int offset)
1934 {
1935 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
1936 	struct sym_hcb *np = sym_get_hcb(shost);
1937 	struct sym_tcb *tp = &np->target[starget->id];
1938 
1939 	tp->tgoal.offset = offset;
1940 	tp->tgoal.check_nego = 1;
1941 }
1942 
1943 static void sym2_set_period(struct scsi_target *starget, int period)
1944 {
1945 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
1946 	struct sym_hcb *np = sym_get_hcb(shost);
1947 	struct sym_tcb *tp = &np->target[starget->id];
1948 
1949 	/* have to have DT for these transfers, but DT will also
1950 	 * set width, so check that this is allowed */
1951 	if (period <= np->minsync && spi_width(starget))
1952 		tp->tgoal.dt = 1;
1953 
1954 	tp->tgoal.period = period;
1955 	tp->tgoal.check_nego = 1;
1956 }
1957 
1958 static void sym2_set_width(struct scsi_target *starget, int width)
1959 {
1960 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
1961 	struct sym_hcb *np = sym_get_hcb(shost);
1962 	struct sym_tcb *tp = &np->target[starget->id];
1963 
1964 	/* It is illegal to have DT set on narrow transfers.  If DT is
1965 	 * clear, we must also clear IU and QAS.  */
1966 	if (width == 0)
1967 		tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
1968 
1969 	tp->tgoal.width = width;
1970 	tp->tgoal.check_nego = 1;
1971 }
1972 
1973 static void sym2_set_dt(struct scsi_target *starget, int dt)
1974 {
1975 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
1976 	struct sym_hcb *np = sym_get_hcb(shost);
1977 	struct sym_tcb *tp = &np->target[starget->id];
1978 
1979 	/* We must clear QAS and IU if DT is clear */
1980 	if (dt)
1981 		tp->tgoal.dt = 1;
1982 	else
1983 		tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
1984 	tp->tgoal.check_nego = 1;
1985 }
1986 
1987 #if 0
1988 static void sym2_set_iu(struct scsi_target *starget, int iu)
1989 {
1990 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
1991 	struct sym_hcb *np = sym_get_hcb(shost);
1992 	struct sym_tcb *tp = &np->target[starget->id];
1993 
1994 	if (iu)
1995 		tp->tgoal.iu = tp->tgoal.dt = 1;
1996 	else
1997 		tp->tgoal.iu = 0;
1998 	tp->tgoal.check_nego = 1;
1999 }
2000 
2001 static void sym2_set_qas(struct scsi_target *starget, int qas)
2002 {
2003 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2004 	struct sym_hcb *np = sym_get_hcb(shost);
2005 	struct sym_tcb *tp = &np->target[starget->id];
2006 
2007 	if (qas)
2008 		tp->tgoal.dt = tp->tgoal.qas = 1;
2009 	else
2010 		tp->tgoal.qas = 0;
2011 	tp->tgoal.check_nego = 1;
2012 }
2013 #endif
2014 
2015 static struct spi_function_template sym2_transport_functions = {
2016 	.set_offset	= sym2_set_offset,
2017 	.show_offset	= 1,
2018 	.set_period	= sym2_set_period,
2019 	.show_period	= 1,
2020 	.set_width	= sym2_set_width,
2021 	.show_width	= 1,
2022 	.set_dt		= sym2_set_dt,
2023 	.show_dt	= 1,
2024 #if 0
2025 	.set_iu		= sym2_set_iu,
2026 	.show_iu	= 1,
2027 	.set_qas	= sym2_set_qas,
2028 	.show_qas	= 1,
2029 #endif
2030 	.get_signalling	= sym2_get_signalling,
2031 };
2032 
2033 static struct pci_device_id sym2_id_table[] = {
2034 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C810,
2035 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2036 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C820,
2037 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, /* new */
2038 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C825,
2039 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2040 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C815,
2041 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2042 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C810AP,
2043 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, /* new */
2044 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C860,
2045 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2046 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1510,
2047 	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_STORAGE_SCSI<<8,  0xffff00, 0UL },
2048 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C896,
2049 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2050 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C895,
2051 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2052 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C885,
2053 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2054 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C875,
2055 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2056 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C1510,
2057 	  PCI_ANY_ID, PCI_ANY_ID,  PCI_CLASS_STORAGE_SCSI<<8,  0xffff00, 0UL }, /* new */
2058 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C895A,
2059 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2060 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C875A,
2061 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2062 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1010_33,
2063 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2064 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1010_66,
2065 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2066 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C875J,
2067 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2068 	{ 0, }
2069 };
2070 
2071 MODULE_DEVICE_TABLE(pci, sym2_id_table);
2072 
2073 static const struct pci_error_handlers sym2_err_handler = {
2074 	.error_detected	= sym2_io_error_detected,
2075 	.mmio_enabled	= sym2_io_slot_dump,
2076 	.slot_reset	= sym2_io_slot_reset,
2077 	.resume		= sym2_io_resume,
2078 };
2079 
2080 static struct pci_driver sym2_driver = {
2081 	.name		= NAME53C8XX,
2082 	.id_table	= sym2_id_table,
2083 	.probe		= sym2_probe,
2084 	.remove		= sym2_remove,
2085 	.err_handler 	= &sym2_err_handler,
2086 };
2087 
2088 static int __init sym2_init(void)
2089 {
2090 	int error;
2091 
2092 	sym2_setup_params();
2093 	sym2_transport_template = spi_attach_transport(&sym2_transport_functions);
2094 	if (!sym2_transport_template)
2095 		return -ENODEV;
2096 
2097 	error = pci_register_driver(&sym2_driver);
2098 	if (error)
2099 		spi_release_transport(sym2_transport_template);
2100 	return error;
2101 }
2102 
2103 static void __exit sym2_exit(void)
2104 {
2105 	pci_unregister_driver(&sym2_driver);
2106 	spi_release_transport(sym2_transport_template);
2107 }
2108 
2109 module_init(sym2_init);
2110 module_exit(sym2_exit);
2111