xref: /linux/drivers/spi/spi-imx.c (revision 82238d2c)
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
3 // Copyright (C) 2008 Juergen Beisert
4 
5 #include <linux/clk.h>
6 #include <linux/completion.h>
7 #include <linux/delay.h>
8 #include <linux/dmaengine.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/err.h>
11 #include <linux/interrupt.h>
12 #include <linux/io.h>
13 #include <linux/irq.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/pinctrl/consumer.h>
17 #include <linux/platform_device.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/slab.h>
20 #include <linux/spi/spi.h>
21 #include <linux/types.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/property.h>
25 
26 #include <linux/dma/imx-dma.h>
27 
28 #define DRIVER_NAME "spi_imx"
29 
30 static bool use_dma = true;
31 module_param(use_dma, bool, 0644);
32 MODULE_PARM_DESC(use_dma, "Enable usage of DMA when available (default)");
33 
34 /* define polling limits */
35 static unsigned int polling_limit_us = 30;
36 module_param(polling_limit_us, uint, 0664);
37 MODULE_PARM_DESC(polling_limit_us,
38 		 "time in us to run a transfer in polling mode\n");
39 
40 #define MXC_RPM_TIMEOUT		2000 /* 2000ms */
41 
42 #define MXC_CSPIRXDATA		0x00
43 #define MXC_CSPITXDATA		0x04
44 #define MXC_CSPICTRL		0x08
45 #define MXC_CSPIINT		0x0c
46 #define MXC_RESET		0x1c
47 
48 /* generic defines to abstract from the different register layouts */
49 #define MXC_INT_RR	(1 << 0) /* Receive data ready interrupt */
50 #define MXC_INT_TE	(1 << 1) /* Transmit FIFO empty interrupt */
51 #define MXC_INT_RDR	BIT(4) /* Receive date threshold interrupt */
52 
53 /* The maximum bytes that a sdma BD can transfer. */
54 #define MAX_SDMA_BD_BYTES (1 << 15)
55 #define MX51_ECSPI_CTRL_MAX_BURST	512
56 /* The maximum bytes that IMX53_ECSPI can transfer in slave mode.*/
57 #define MX53_MAX_TRANSFER_BYTES		512
58 
59 enum spi_imx_devtype {
60 	IMX1_CSPI,
61 	IMX21_CSPI,
62 	IMX27_CSPI,
63 	IMX31_CSPI,
64 	IMX35_CSPI,	/* CSPI on all i.mx except above */
65 	IMX51_ECSPI,	/* ECSPI on i.mx51 */
66 	IMX53_ECSPI,	/* ECSPI on i.mx53 and later */
67 };
68 
69 struct spi_imx_data;
70 
71 struct spi_imx_devtype_data {
72 	void (*intctrl)(struct spi_imx_data *spi_imx, int enable);
73 	int (*prepare_message)(struct spi_imx_data *spi_imx, struct spi_message *msg);
74 	int (*prepare_transfer)(struct spi_imx_data *spi_imx, struct spi_device *spi);
75 	void (*trigger)(struct spi_imx_data *spi_imx);
76 	int (*rx_available)(struct spi_imx_data *spi_imx);
77 	void (*reset)(struct spi_imx_data *spi_imx);
78 	void (*setup_wml)(struct spi_imx_data *spi_imx);
79 	void (*disable)(struct spi_imx_data *spi_imx);
80 	bool has_dmamode;
81 	bool has_slavemode;
82 	unsigned int fifo_size;
83 	bool dynamic_burst;
84 	/*
85 	 * ERR009165 fixed or not:
86 	 * https://www.nxp.com/docs/en/errata/IMX6DQCE.pdf
87 	 */
88 	bool tx_glitch_fixed;
89 	enum spi_imx_devtype devtype;
90 };
91 
92 struct spi_imx_data {
93 	struct spi_controller *controller;
94 	struct device *dev;
95 
96 	struct completion xfer_done;
97 	void __iomem *base;
98 	unsigned long base_phys;
99 
100 	struct clk *clk_per;
101 	struct clk *clk_ipg;
102 	unsigned long spi_clk;
103 	unsigned int spi_bus_clk;
104 
105 	unsigned int bits_per_word;
106 	unsigned int spi_drctl;
107 
108 	unsigned int count, remainder;
109 	void (*tx)(struct spi_imx_data *spi_imx);
110 	void (*rx)(struct spi_imx_data *spi_imx);
111 	void *rx_buf;
112 	const void *tx_buf;
113 	unsigned int txfifo; /* number of words pushed in tx FIFO */
114 	unsigned int dynamic_burst;
115 	bool rx_only;
116 
117 	/* Slave mode */
118 	bool slave_mode;
119 	bool slave_aborted;
120 	unsigned int slave_burst;
121 
122 	/* DMA */
123 	bool usedma;
124 	u32 wml;
125 	struct completion dma_rx_completion;
126 	struct completion dma_tx_completion;
127 
128 	const struct spi_imx_devtype_data *devtype_data;
129 };
130 
131 static inline int is_imx27_cspi(struct spi_imx_data *d)
132 {
133 	return d->devtype_data->devtype == IMX27_CSPI;
134 }
135 
136 static inline int is_imx35_cspi(struct spi_imx_data *d)
137 {
138 	return d->devtype_data->devtype == IMX35_CSPI;
139 }
140 
141 static inline int is_imx51_ecspi(struct spi_imx_data *d)
142 {
143 	return d->devtype_data->devtype == IMX51_ECSPI;
144 }
145 
146 static inline int is_imx53_ecspi(struct spi_imx_data *d)
147 {
148 	return d->devtype_data->devtype == IMX53_ECSPI;
149 }
150 
151 #define MXC_SPI_BUF_RX(type)						\
152 static void spi_imx_buf_rx_##type(struct spi_imx_data *spi_imx)		\
153 {									\
154 	unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA);	\
155 									\
156 	if (spi_imx->rx_buf) {						\
157 		*(type *)spi_imx->rx_buf = val;				\
158 		spi_imx->rx_buf += sizeof(type);			\
159 	}								\
160 									\
161 	spi_imx->remainder -= sizeof(type);				\
162 }
163 
164 #define MXC_SPI_BUF_TX(type)						\
165 static void spi_imx_buf_tx_##type(struct spi_imx_data *spi_imx)		\
166 {									\
167 	type val = 0;							\
168 									\
169 	if (spi_imx->tx_buf) {						\
170 		val = *(type *)spi_imx->tx_buf;				\
171 		spi_imx->tx_buf += sizeof(type);			\
172 	}								\
173 									\
174 	spi_imx->count -= sizeof(type);					\
175 									\
176 	writel(val, spi_imx->base + MXC_CSPITXDATA);			\
177 }
178 
179 MXC_SPI_BUF_RX(u8)
180 MXC_SPI_BUF_TX(u8)
181 MXC_SPI_BUF_RX(u16)
182 MXC_SPI_BUF_TX(u16)
183 MXC_SPI_BUF_RX(u32)
184 MXC_SPI_BUF_TX(u32)
185 
186 /* First entry is reserved, second entry is valid only if SDHC_SPIEN is set
187  * (which is currently not the case in this driver)
188  */
189 static int mxc_clkdivs[] = {0, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192,
190 	256, 384, 512, 768, 1024};
191 
192 /* MX21, MX27 */
193 static unsigned int spi_imx_clkdiv_1(unsigned int fin,
194 		unsigned int fspi, unsigned int max, unsigned int *fres)
195 {
196 	int i;
197 
198 	for (i = 2; i < max; i++)
199 		if (fspi * mxc_clkdivs[i] >= fin)
200 			break;
201 
202 	*fres = fin / mxc_clkdivs[i];
203 	return i;
204 }
205 
206 /* MX1, MX31, MX35, MX51 CSPI */
207 static unsigned int spi_imx_clkdiv_2(unsigned int fin,
208 		unsigned int fspi, unsigned int *fres)
209 {
210 	int i, div = 4;
211 
212 	for (i = 0; i < 7; i++) {
213 		if (fspi * div >= fin)
214 			goto out;
215 		div <<= 1;
216 	}
217 
218 out:
219 	*fres = fin / div;
220 	return i;
221 }
222 
223 static int spi_imx_bytes_per_word(const int bits_per_word)
224 {
225 	if (bits_per_word <= 8)
226 		return 1;
227 	else if (bits_per_word <= 16)
228 		return 2;
229 	else
230 		return 4;
231 }
232 
233 static bool spi_imx_can_dma(struct spi_controller *controller, struct spi_device *spi,
234 			 struct spi_transfer *transfer)
235 {
236 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
237 
238 	if (!use_dma || controller->fallback)
239 		return false;
240 
241 	if (!controller->dma_rx)
242 		return false;
243 
244 	if (spi_imx->slave_mode)
245 		return false;
246 
247 	if (transfer->len < spi_imx->devtype_data->fifo_size)
248 		return false;
249 
250 	spi_imx->dynamic_burst = 0;
251 
252 	return true;
253 }
254 
255 /*
256  * Note the number of natively supported chip selects for MX51 is 4. Some
257  * devices may have less actual SS pins but the register map supports 4. When
258  * using gpio chip selects the cs values passed into the macros below can go
259  * outside the range 0 - 3. We therefore need to limit the cs value to avoid
260  * corrupting bits outside the allocated locations.
261  *
262  * The simplest way to do this is to just mask the cs bits to 2 bits. This
263  * still allows all 4 native chip selects to work as well as gpio chip selects
264  * (which can use any of the 4 chip select configurations).
265  */
266 
267 #define MX51_ECSPI_CTRL		0x08
268 #define MX51_ECSPI_CTRL_ENABLE		(1 <<  0)
269 #define MX51_ECSPI_CTRL_XCH		(1 <<  2)
270 #define MX51_ECSPI_CTRL_SMC		(1 << 3)
271 #define MX51_ECSPI_CTRL_MODE_MASK	(0xf << 4)
272 #define MX51_ECSPI_CTRL_DRCTL(drctl)	((drctl) << 16)
273 #define MX51_ECSPI_CTRL_POSTDIV_OFFSET	8
274 #define MX51_ECSPI_CTRL_PREDIV_OFFSET	12
275 #define MX51_ECSPI_CTRL_CS(cs)		((cs & 3) << 18)
276 #define MX51_ECSPI_CTRL_BL_OFFSET	20
277 #define MX51_ECSPI_CTRL_BL_MASK		(0xfff << 20)
278 
279 #define MX51_ECSPI_CONFIG	0x0c
280 #define MX51_ECSPI_CONFIG_SCLKPHA(cs)	(1 << ((cs & 3) +  0))
281 #define MX51_ECSPI_CONFIG_SCLKPOL(cs)	(1 << ((cs & 3) +  4))
282 #define MX51_ECSPI_CONFIG_SBBCTRL(cs)	(1 << ((cs & 3) +  8))
283 #define MX51_ECSPI_CONFIG_SSBPOL(cs)	(1 << ((cs & 3) + 12))
284 #define MX51_ECSPI_CONFIG_DATACTL(cs)	(1 << ((cs & 3) + 16))
285 #define MX51_ECSPI_CONFIG_SCLKCTL(cs)	(1 << ((cs & 3) + 20))
286 
287 #define MX51_ECSPI_INT		0x10
288 #define MX51_ECSPI_INT_TEEN		(1 <<  0)
289 #define MX51_ECSPI_INT_RREN		(1 <<  3)
290 #define MX51_ECSPI_INT_RDREN		(1 <<  4)
291 
292 #define MX51_ECSPI_DMA		0x14
293 #define MX51_ECSPI_DMA_TX_WML(wml)	((wml) & 0x3f)
294 #define MX51_ECSPI_DMA_RX_WML(wml)	(((wml) & 0x3f) << 16)
295 #define MX51_ECSPI_DMA_RXT_WML(wml)	(((wml) & 0x3f) << 24)
296 
297 #define MX51_ECSPI_DMA_TEDEN		(1 << 7)
298 #define MX51_ECSPI_DMA_RXDEN		(1 << 23)
299 #define MX51_ECSPI_DMA_RXTDEN		(1 << 31)
300 
301 #define MX51_ECSPI_STAT		0x18
302 #define MX51_ECSPI_STAT_RR		(1 <<  3)
303 
304 #define MX51_ECSPI_TESTREG	0x20
305 #define MX51_ECSPI_TESTREG_LBC	BIT(31)
306 
307 static void spi_imx_buf_rx_swap_u32(struct spi_imx_data *spi_imx)
308 {
309 	unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA);
310 
311 	if (spi_imx->rx_buf) {
312 #ifdef __LITTLE_ENDIAN
313 		unsigned int bytes_per_word;
314 
315 		bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word);
316 		if (bytes_per_word == 1)
317 			swab32s(&val);
318 		else if (bytes_per_word == 2)
319 			swahw32s(&val);
320 #endif
321 		*(u32 *)spi_imx->rx_buf = val;
322 		spi_imx->rx_buf += sizeof(u32);
323 	}
324 
325 	spi_imx->remainder -= sizeof(u32);
326 }
327 
328 static void spi_imx_buf_rx_swap(struct spi_imx_data *spi_imx)
329 {
330 	int unaligned;
331 	u32 val;
332 
333 	unaligned = spi_imx->remainder % 4;
334 
335 	if (!unaligned) {
336 		spi_imx_buf_rx_swap_u32(spi_imx);
337 		return;
338 	}
339 
340 	if (spi_imx_bytes_per_word(spi_imx->bits_per_word) == 2) {
341 		spi_imx_buf_rx_u16(spi_imx);
342 		return;
343 	}
344 
345 	val = readl(spi_imx->base + MXC_CSPIRXDATA);
346 
347 	while (unaligned--) {
348 		if (spi_imx->rx_buf) {
349 			*(u8 *)spi_imx->rx_buf = (val >> (8 * unaligned)) & 0xff;
350 			spi_imx->rx_buf++;
351 		}
352 		spi_imx->remainder--;
353 	}
354 }
355 
356 static void spi_imx_buf_tx_swap_u32(struct spi_imx_data *spi_imx)
357 {
358 	u32 val = 0;
359 #ifdef __LITTLE_ENDIAN
360 	unsigned int bytes_per_word;
361 #endif
362 
363 	if (spi_imx->tx_buf) {
364 		val = *(u32 *)spi_imx->tx_buf;
365 		spi_imx->tx_buf += sizeof(u32);
366 	}
367 
368 	spi_imx->count -= sizeof(u32);
369 #ifdef __LITTLE_ENDIAN
370 	bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word);
371 
372 	if (bytes_per_word == 1)
373 		swab32s(&val);
374 	else if (bytes_per_word == 2)
375 		swahw32s(&val);
376 #endif
377 	writel(val, spi_imx->base + MXC_CSPITXDATA);
378 }
379 
380 static void spi_imx_buf_tx_swap(struct spi_imx_data *spi_imx)
381 {
382 	int unaligned;
383 	u32 val = 0;
384 
385 	unaligned = spi_imx->count % 4;
386 
387 	if (!unaligned) {
388 		spi_imx_buf_tx_swap_u32(spi_imx);
389 		return;
390 	}
391 
392 	if (spi_imx_bytes_per_word(spi_imx->bits_per_word) == 2) {
393 		spi_imx_buf_tx_u16(spi_imx);
394 		return;
395 	}
396 
397 	while (unaligned--) {
398 		if (spi_imx->tx_buf) {
399 			val |= *(u8 *)spi_imx->tx_buf << (8 * unaligned);
400 			spi_imx->tx_buf++;
401 		}
402 		spi_imx->count--;
403 	}
404 
405 	writel(val, spi_imx->base + MXC_CSPITXDATA);
406 }
407 
408 static void mx53_ecspi_rx_slave(struct spi_imx_data *spi_imx)
409 {
410 	u32 val = be32_to_cpu(readl(spi_imx->base + MXC_CSPIRXDATA));
411 
412 	if (spi_imx->rx_buf) {
413 		int n_bytes = spi_imx->slave_burst % sizeof(val);
414 
415 		if (!n_bytes)
416 			n_bytes = sizeof(val);
417 
418 		memcpy(spi_imx->rx_buf,
419 		       ((u8 *)&val) + sizeof(val) - n_bytes, n_bytes);
420 
421 		spi_imx->rx_buf += n_bytes;
422 		spi_imx->slave_burst -= n_bytes;
423 	}
424 
425 	spi_imx->remainder -= sizeof(u32);
426 }
427 
428 static void mx53_ecspi_tx_slave(struct spi_imx_data *spi_imx)
429 {
430 	u32 val = 0;
431 	int n_bytes = spi_imx->count % sizeof(val);
432 
433 	if (!n_bytes)
434 		n_bytes = sizeof(val);
435 
436 	if (spi_imx->tx_buf) {
437 		memcpy(((u8 *)&val) + sizeof(val) - n_bytes,
438 		       spi_imx->tx_buf, n_bytes);
439 		val = cpu_to_be32(val);
440 		spi_imx->tx_buf += n_bytes;
441 	}
442 
443 	spi_imx->count -= n_bytes;
444 
445 	writel(val, spi_imx->base + MXC_CSPITXDATA);
446 }
447 
448 /* MX51 eCSPI */
449 static unsigned int mx51_ecspi_clkdiv(struct spi_imx_data *spi_imx,
450 				      unsigned int fspi, unsigned int *fres)
451 {
452 	/*
453 	 * there are two 4-bit dividers, the pre-divider divides by
454 	 * $pre, the post-divider by 2^$post
455 	 */
456 	unsigned int pre, post;
457 	unsigned int fin = spi_imx->spi_clk;
458 
459 	fspi = min(fspi, fin);
460 
461 	post = fls(fin) - fls(fspi);
462 	if (fin > fspi << post)
463 		post++;
464 
465 	/* now we have: (fin <= fspi << post) with post being minimal */
466 
467 	post = max(4U, post) - 4;
468 	if (unlikely(post > 0xf)) {
469 		dev_err(spi_imx->dev, "cannot set clock freq: %u (base freq: %u)\n",
470 				fspi, fin);
471 		return 0xff;
472 	}
473 
474 	pre = DIV_ROUND_UP(fin, fspi << post) - 1;
475 
476 	dev_dbg(spi_imx->dev, "%s: fin: %u, fspi: %u, post: %u, pre: %u\n",
477 			__func__, fin, fspi, post, pre);
478 
479 	/* Resulting frequency for the SCLK line. */
480 	*fres = (fin / (pre + 1)) >> post;
481 
482 	return (pre << MX51_ECSPI_CTRL_PREDIV_OFFSET) |
483 		(post << MX51_ECSPI_CTRL_POSTDIV_OFFSET);
484 }
485 
486 static void mx51_ecspi_intctrl(struct spi_imx_data *spi_imx, int enable)
487 {
488 	unsigned int val = 0;
489 
490 	if (enable & MXC_INT_TE)
491 		val |= MX51_ECSPI_INT_TEEN;
492 
493 	if (enable & MXC_INT_RR)
494 		val |= MX51_ECSPI_INT_RREN;
495 
496 	if (enable & MXC_INT_RDR)
497 		val |= MX51_ECSPI_INT_RDREN;
498 
499 	writel(val, spi_imx->base + MX51_ECSPI_INT);
500 }
501 
502 static void mx51_ecspi_trigger(struct spi_imx_data *spi_imx)
503 {
504 	u32 reg;
505 
506 	reg = readl(spi_imx->base + MX51_ECSPI_CTRL);
507 	reg |= MX51_ECSPI_CTRL_XCH;
508 	writel(reg, spi_imx->base + MX51_ECSPI_CTRL);
509 }
510 
511 static void mx51_ecspi_disable(struct spi_imx_data *spi_imx)
512 {
513 	u32 ctrl;
514 
515 	ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
516 	ctrl &= ~MX51_ECSPI_CTRL_ENABLE;
517 	writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
518 }
519 
520 static int mx51_ecspi_channel(const struct spi_device *spi)
521 {
522 	if (!spi_get_csgpiod(spi, 0))
523 		return spi_get_chipselect(spi, 0);
524 	return spi->controller->unused_native_cs;
525 }
526 
527 static int mx51_ecspi_prepare_message(struct spi_imx_data *spi_imx,
528 				      struct spi_message *msg)
529 {
530 	struct spi_device *spi = msg->spi;
531 	struct spi_transfer *xfer;
532 	u32 ctrl = MX51_ECSPI_CTRL_ENABLE;
533 	u32 min_speed_hz = ~0U;
534 	u32 testreg, delay;
535 	u32 cfg = readl(spi_imx->base + MX51_ECSPI_CONFIG);
536 	u32 current_cfg = cfg;
537 	int channel = mx51_ecspi_channel(spi);
538 
539 	/* set Master or Slave mode */
540 	if (spi_imx->slave_mode)
541 		ctrl &= ~MX51_ECSPI_CTRL_MODE_MASK;
542 	else
543 		ctrl |= MX51_ECSPI_CTRL_MODE_MASK;
544 
545 	/*
546 	 * Enable SPI_RDY handling (falling edge/level triggered).
547 	 */
548 	if (spi->mode & SPI_READY)
549 		ctrl |= MX51_ECSPI_CTRL_DRCTL(spi_imx->spi_drctl);
550 
551 	/* set chip select to use */
552 	ctrl |= MX51_ECSPI_CTRL_CS(channel);
553 
554 	/*
555 	 * The ctrl register must be written first, with the EN bit set other
556 	 * registers must not be written to.
557 	 */
558 	writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
559 
560 	testreg = readl(spi_imx->base + MX51_ECSPI_TESTREG);
561 	if (spi->mode & SPI_LOOP)
562 		testreg |= MX51_ECSPI_TESTREG_LBC;
563 	else
564 		testreg &= ~MX51_ECSPI_TESTREG_LBC;
565 	writel(testreg, spi_imx->base + MX51_ECSPI_TESTREG);
566 
567 	/*
568 	 * eCSPI burst completion by Chip Select signal in Slave mode
569 	 * is not functional for imx53 Soc, config SPI burst completed when
570 	 * BURST_LENGTH + 1 bits are received
571 	 */
572 	if (spi_imx->slave_mode && is_imx53_ecspi(spi_imx))
573 		cfg &= ~MX51_ECSPI_CONFIG_SBBCTRL(channel);
574 	else
575 		cfg |= MX51_ECSPI_CONFIG_SBBCTRL(channel);
576 
577 	if (spi->mode & SPI_CPOL) {
578 		cfg |= MX51_ECSPI_CONFIG_SCLKPOL(channel);
579 		cfg |= MX51_ECSPI_CONFIG_SCLKCTL(channel);
580 	} else {
581 		cfg &= ~MX51_ECSPI_CONFIG_SCLKPOL(channel);
582 		cfg &= ~MX51_ECSPI_CONFIG_SCLKCTL(channel);
583 	}
584 
585 	if (spi->mode & SPI_MOSI_IDLE_LOW)
586 		cfg |= MX51_ECSPI_CONFIG_DATACTL(channel);
587 	else
588 		cfg &= ~MX51_ECSPI_CONFIG_DATACTL(channel);
589 
590 	if (spi->mode & SPI_CS_HIGH)
591 		cfg |= MX51_ECSPI_CONFIG_SSBPOL(channel);
592 	else
593 		cfg &= ~MX51_ECSPI_CONFIG_SSBPOL(channel);
594 
595 	if (cfg == current_cfg)
596 		return 0;
597 
598 	writel(cfg, spi_imx->base + MX51_ECSPI_CONFIG);
599 
600 	/*
601 	 * Wait until the changes in the configuration register CONFIGREG
602 	 * propagate into the hardware. It takes exactly one tick of the
603 	 * SCLK clock, but we will wait two SCLK clock just to be sure. The
604 	 * effect of the delay it takes for the hardware to apply changes
605 	 * is noticable if the SCLK clock run very slow. In such a case, if
606 	 * the polarity of SCLK should be inverted, the GPIO ChipSelect might
607 	 * be asserted before the SCLK polarity changes, which would disrupt
608 	 * the SPI communication as the device on the other end would consider
609 	 * the change of SCLK polarity as a clock tick already.
610 	 *
611 	 * Because spi_imx->spi_bus_clk is only set in prepare_message
612 	 * callback, iterate over all the transfers in spi_message, find the
613 	 * one with lowest bus frequency, and use that bus frequency for the
614 	 * delay calculation. In case all transfers have speed_hz == 0, then
615 	 * min_speed_hz is ~0 and the resulting delay is zero.
616 	 */
617 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
618 		if (!xfer->speed_hz)
619 			continue;
620 		min_speed_hz = min(xfer->speed_hz, min_speed_hz);
621 	}
622 
623 	delay = (2 * 1000000) / min_speed_hz;
624 	if (likely(delay < 10))	/* SCLK is faster than 200 kHz */
625 		udelay(delay);
626 	else			/* SCLK is _very_ slow */
627 		usleep_range(delay, delay + 10);
628 
629 	return 0;
630 }
631 
632 static void mx51_configure_cpha(struct spi_imx_data *spi_imx,
633 				struct spi_device *spi)
634 {
635 	bool cpha = (spi->mode & SPI_CPHA);
636 	bool flip_cpha = (spi->mode & SPI_RX_CPHA_FLIP) && spi_imx->rx_only;
637 	u32 cfg = readl(spi_imx->base + MX51_ECSPI_CONFIG);
638 	int channel = mx51_ecspi_channel(spi);
639 
640 	/* Flip cpha logical value iff flip_cpha */
641 	cpha ^= flip_cpha;
642 
643 	if (cpha)
644 		cfg |= MX51_ECSPI_CONFIG_SCLKPHA(channel);
645 	else
646 		cfg &= ~MX51_ECSPI_CONFIG_SCLKPHA(channel);
647 
648 	writel(cfg, spi_imx->base + MX51_ECSPI_CONFIG);
649 }
650 
651 static int mx51_ecspi_prepare_transfer(struct spi_imx_data *spi_imx,
652 				       struct spi_device *spi)
653 {
654 	u32 ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
655 	u32 clk;
656 
657 	/* Clear BL field and set the right value */
658 	ctrl &= ~MX51_ECSPI_CTRL_BL_MASK;
659 	if (spi_imx->slave_mode && is_imx53_ecspi(spi_imx))
660 		ctrl |= (spi_imx->slave_burst * 8 - 1)
661 			<< MX51_ECSPI_CTRL_BL_OFFSET;
662 	else
663 		ctrl |= (spi_imx->bits_per_word - 1)
664 			<< MX51_ECSPI_CTRL_BL_OFFSET;
665 
666 	/* set clock speed */
667 	ctrl &= ~(0xf << MX51_ECSPI_CTRL_POSTDIV_OFFSET |
668 		  0xf << MX51_ECSPI_CTRL_PREDIV_OFFSET);
669 	ctrl |= mx51_ecspi_clkdiv(spi_imx, spi_imx->spi_bus_clk, &clk);
670 	spi_imx->spi_bus_clk = clk;
671 
672 	mx51_configure_cpha(spi_imx, spi);
673 
674 	/*
675 	 * ERR009165: work in XHC mode instead of SMC as PIO on the chips
676 	 * before i.mx6ul.
677 	 */
678 	if (spi_imx->usedma && spi_imx->devtype_data->tx_glitch_fixed)
679 		ctrl |= MX51_ECSPI_CTRL_SMC;
680 	else
681 		ctrl &= ~MX51_ECSPI_CTRL_SMC;
682 
683 	writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
684 
685 	return 0;
686 }
687 
688 static void mx51_setup_wml(struct spi_imx_data *spi_imx)
689 {
690 	u32 tx_wml = 0;
691 
692 	if (spi_imx->devtype_data->tx_glitch_fixed)
693 		tx_wml = spi_imx->wml;
694 	/*
695 	 * Configure the DMA register: setup the watermark
696 	 * and enable DMA request.
697 	 */
698 	writel(MX51_ECSPI_DMA_RX_WML(spi_imx->wml - 1) |
699 		MX51_ECSPI_DMA_TX_WML(tx_wml) |
700 		MX51_ECSPI_DMA_RXT_WML(spi_imx->wml) |
701 		MX51_ECSPI_DMA_TEDEN | MX51_ECSPI_DMA_RXDEN |
702 		MX51_ECSPI_DMA_RXTDEN, spi_imx->base + MX51_ECSPI_DMA);
703 }
704 
705 static int mx51_ecspi_rx_available(struct spi_imx_data *spi_imx)
706 {
707 	return readl(spi_imx->base + MX51_ECSPI_STAT) & MX51_ECSPI_STAT_RR;
708 }
709 
710 static void mx51_ecspi_reset(struct spi_imx_data *spi_imx)
711 {
712 	/* drain receive buffer */
713 	while (mx51_ecspi_rx_available(spi_imx))
714 		readl(spi_imx->base + MXC_CSPIRXDATA);
715 }
716 
717 #define MX31_INTREG_TEEN	(1 << 0)
718 #define MX31_INTREG_RREN	(1 << 3)
719 
720 #define MX31_CSPICTRL_ENABLE	(1 << 0)
721 #define MX31_CSPICTRL_MASTER	(1 << 1)
722 #define MX31_CSPICTRL_XCH	(1 << 2)
723 #define MX31_CSPICTRL_SMC	(1 << 3)
724 #define MX31_CSPICTRL_POL	(1 << 4)
725 #define MX31_CSPICTRL_PHA	(1 << 5)
726 #define MX31_CSPICTRL_SSCTL	(1 << 6)
727 #define MX31_CSPICTRL_SSPOL	(1 << 7)
728 #define MX31_CSPICTRL_BC_SHIFT	8
729 #define MX35_CSPICTRL_BL_SHIFT	20
730 #define MX31_CSPICTRL_CS_SHIFT	24
731 #define MX35_CSPICTRL_CS_SHIFT	12
732 #define MX31_CSPICTRL_DR_SHIFT	16
733 
734 #define MX31_CSPI_DMAREG	0x10
735 #define MX31_DMAREG_RH_DEN	(1<<4)
736 #define MX31_DMAREG_TH_DEN	(1<<1)
737 
738 #define MX31_CSPISTATUS		0x14
739 #define MX31_STATUS_RR		(1 << 3)
740 
741 #define MX31_CSPI_TESTREG	0x1C
742 #define MX31_TEST_LBC		(1 << 14)
743 
744 /* These functions also work for the i.MX35, but be aware that
745  * the i.MX35 has a slightly different register layout for bits
746  * we do not use here.
747  */
748 static void mx31_intctrl(struct spi_imx_data *spi_imx, int enable)
749 {
750 	unsigned int val = 0;
751 
752 	if (enable & MXC_INT_TE)
753 		val |= MX31_INTREG_TEEN;
754 	if (enable & MXC_INT_RR)
755 		val |= MX31_INTREG_RREN;
756 
757 	writel(val, spi_imx->base + MXC_CSPIINT);
758 }
759 
760 static void mx31_trigger(struct spi_imx_data *spi_imx)
761 {
762 	unsigned int reg;
763 
764 	reg = readl(spi_imx->base + MXC_CSPICTRL);
765 	reg |= MX31_CSPICTRL_XCH;
766 	writel(reg, spi_imx->base + MXC_CSPICTRL);
767 }
768 
769 static int mx31_prepare_message(struct spi_imx_data *spi_imx,
770 				struct spi_message *msg)
771 {
772 	return 0;
773 }
774 
775 static int mx31_prepare_transfer(struct spi_imx_data *spi_imx,
776 				 struct spi_device *spi)
777 {
778 	unsigned int reg = MX31_CSPICTRL_ENABLE | MX31_CSPICTRL_MASTER;
779 	unsigned int clk;
780 
781 	reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, spi_imx->spi_bus_clk, &clk) <<
782 		MX31_CSPICTRL_DR_SHIFT;
783 	spi_imx->spi_bus_clk = clk;
784 
785 	if (is_imx35_cspi(spi_imx)) {
786 		reg |= (spi_imx->bits_per_word - 1) << MX35_CSPICTRL_BL_SHIFT;
787 		reg |= MX31_CSPICTRL_SSCTL;
788 	} else {
789 		reg |= (spi_imx->bits_per_word - 1) << MX31_CSPICTRL_BC_SHIFT;
790 	}
791 
792 	if (spi->mode & SPI_CPHA)
793 		reg |= MX31_CSPICTRL_PHA;
794 	if (spi->mode & SPI_CPOL)
795 		reg |= MX31_CSPICTRL_POL;
796 	if (spi->mode & SPI_CS_HIGH)
797 		reg |= MX31_CSPICTRL_SSPOL;
798 	if (!spi_get_csgpiod(spi, 0))
799 		reg |= (spi_get_chipselect(spi, 0)) <<
800 			(is_imx35_cspi(spi_imx) ? MX35_CSPICTRL_CS_SHIFT :
801 						  MX31_CSPICTRL_CS_SHIFT);
802 
803 	if (spi_imx->usedma)
804 		reg |= MX31_CSPICTRL_SMC;
805 
806 	writel(reg, spi_imx->base + MXC_CSPICTRL);
807 
808 	reg = readl(spi_imx->base + MX31_CSPI_TESTREG);
809 	if (spi->mode & SPI_LOOP)
810 		reg |= MX31_TEST_LBC;
811 	else
812 		reg &= ~MX31_TEST_LBC;
813 	writel(reg, spi_imx->base + MX31_CSPI_TESTREG);
814 
815 	if (spi_imx->usedma) {
816 		/*
817 		 * configure DMA requests when RXFIFO is half full and
818 		 * when TXFIFO is half empty
819 		 */
820 		writel(MX31_DMAREG_RH_DEN | MX31_DMAREG_TH_DEN,
821 			spi_imx->base + MX31_CSPI_DMAREG);
822 	}
823 
824 	return 0;
825 }
826 
827 static int mx31_rx_available(struct spi_imx_data *spi_imx)
828 {
829 	return readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR;
830 }
831 
832 static void mx31_reset(struct spi_imx_data *spi_imx)
833 {
834 	/* drain receive buffer */
835 	while (readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR)
836 		readl(spi_imx->base + MXC_CSPIRXDATA);
837 }
838 
839 #define MX21_INTREG_RR		(1 << 4)
840 #define MX21_INTREG_TEEN	(1 << 9)
841 #define MX21_INTREG_RREN	(1 << 13)
842 
843 #define MX21_CSPICTRL_POL	(1 << 5)
844 #define MX21_CSPICTRL_PHA	(1 << 6)
845 #define MX21_CSPICTRL_SSPOL	(1 << 8)
846 #define MX21_CSPICTRL_XCH	(1 << 9)
847 #define MX21_CSPICTRL_ENABLE	(1 << 10)
848 #define MX21_CSPICTRL_MASTER	(1 << 11)
849 #define MX21_CSPICTRL_DR_SHIFT	14
850 #define MX21_CSPICTRL_CS_SHIFT	19
851 
852 static void mx21_intctrl(struct spi_imx_data *spi_imx, int enable)
853 {
854 	unsigned int val = 0;
855 
856 	if (enable & MXC_INT_TE)
857 		val |= MX21_INTREG_TEEN;
858 	if (enable & MXC_INT_RR)
859 		val |= MX21_INTREG_RREN;
860 
861 	writel(val, spi_imx->base + MXC_CSPIINT);
862 }
863 
864 static void mx21_trigger(struct spi_imx_data *spi_imx)
865 {
866 	unsigned int reg;
867 
868 	reg = readl(spi_imx->base + MXC_CSPICTRL);
869 	reg |= MX21_CSPICTRL_XCH;
870 	writel(reg, spi_imx->base + MXC_CSPICTRL);
871 }
872 
873 static int mx21_prepare_message(struct spi_imx_data *spi_imx,
874 				struct spi_message *msg)
875 {
876 	return 0;
877 }
878 
879 static int mx21_prepare_transfer(struct spi_imx_data *spi_imx,
880 				 struct spi_device *spi)
881 {
882 	unsigned int reg = MX21_CSPICTRL_ENABLE | MX21_CSPICTRL_MASTER;
883 	unsigned int max = is_imx27_cspi(spi_imx) ? 16 : 18;
884 	unsigned int clk;
885 
886 	reg |= spi_imx_clkdiv_1(spi_imx->spi_clk, spi_imx->spi_bus_clk, max, &clk)
887 		<< MX21_CSPICTRL_DR_SHIFT;
888 	spi_imx->spi_bus_clk = clk;
889 
890 	reg |= spi_imx->bits_per_word - 1;
891 
892 	if (spi->mode & SPI_CPHA)
893 		reg |= MX21_CSPICTRL_PHA;
894 	if (spi->mode & SPI_CPOL)
895 		reg |= MX21_CSPICTRL_POL;
896 	if (spi->mode & SPI_CS_HIGH)
897 		reg |= MX21_CSPICTRL_SSPOL;
898 	if (!spi_get_csgpiod(spi, 0))
899 		reg |= spi_get_chipselect(spi, 0) << MX21_CSPICTRL_CS_SHIFT;
900 
901 	writel(reg, spi_imx->base + MXC_CSPICTRL);
902 
903 	return 0;
904 }
905 
906 static int mx21_rx_available(struct spi_imx_data *spi_imx)
907 {
908 	return readl(spi_imx->base + MXC_CSPIINT) & MX21_INTREG_RR;
909 }
910 
911 static void mx21_reset(struct spi_imx_data *spi_imx)
912 {
913 	writel(1, spi_imx->base + MXC_RESET);
914 }
915 
916 #define MX1_INTREG_RR		(1 << 3)
917 #define MX1_INTREG_TEEN		(1 << 8)
918 #define MX1_INTREG_RREN		(1 << 11)
919 
920 #define MX1_CSPICTRL_POL	(1 << 4)
921 #define MX1_CSPICTRL_PHA	(1 << 5)
922 #define MX1_CSPICTRL_XCH	(1 << 8)
923 #define MX1_CSPICTRL_ENABLE	(1 << 9)
924 #define MX1_CSPICTRL_MASTER	(1 << 10)
925 #define MX1_CSPICTRL_DR_SHIFT	13
926 
927 static void mx1_intctrl(struct spi_imx_data *spi_imx, int enable)
928 {
929 	unsigned int val = 0;
930 
931 	if (enable & MXC_INT_TE)
932 		val |= MX1_INTREG_TEEN;
933 	if (enable & MXC_INT_RR)
934 		val |= MX1_INTREG_RREN;
935 
936 	writel(val, spi_imx->base + MXC_CSPIINT);
937 }
938 
939 static void mx1_trigger(struct spi_imx_data *spi_imx)
940 {
941 	unsigned int reg;
942 
943 	reg = readl(spi_imx->base + MXC_CSPICTRL);
944 	reg |= MX1_CSPICTRL_XCH;
945 	writel(reg, spi_imx->base + MXC_CSPICTRL);
946 }
947 
948 static int mx1_prepare_message(struct spi_imx_data *spi_imx,
949 			       struct spi_message *msg)
950 {
951 	return 0;
952 }
953 
954 static int mx1_prepare_transfer(struct spi_imx_data *spi_imx,
955 				struct spi_device *spi)
956 {
957 	unsigned int reg = MX1_CSPICTRL_ENABLE | MX1_CSPICTRL_MASTER;
958 	unsigned int clk;
959 
960 	reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, spi_imx->spi_bus_clk, &clk) <<
961 		MX1_CSPICTRL_DR_SHIFT;
962 	spi_imx->spi_bus_clk = clk;
963 
964 	reg |= spi_imx->bits_per_word - 1;
965 
966 	if (spi->mode & SPI_CPHA)
967 		reg |= MX1_CSPICTRL_PHA;
968 	if (spi->mode & SPI_CPOL)
969 		reg |= MX1_CSPICTRL_POL;
970 
971 	writel(reg, spi_imx->base + MXC_CSPICTRL);
972 
973 	return 0;
974 }
975 
976 static int mx1_rx_available(struct spi_imx_data *spi_imx)
977 {
978 	return readl(spi_imx->base + MXC_CSPIINT) & MX1_INTREG_RR;
979 }
980 
981 static void mx1_reset(struct spi_imx_data *spi_imx)
982 {
983 	writel(1, spi_imx->base + MXC_RESET);
984 }
985 
986 static struct spi_imx_devtype_data imx1_cspi_devtype_data = {
987 	.intctrl = mx1_intctrl,
988 	.prepare_message = mx1_prepare_message,
989 	.prepare_transfer = mx1_prepare_transfer,
990 	.trigger = mx1_trigger,
991 	.rx_available = mx1_rx_available,
992 	.reset = mx1_reset,
993 	.fifo_size = 8,
994 	.has_dmamode = false,
995 	.dynamic_burst = false,
996 	.has_slavemode = false,
997 	.devtype = IMX1_CSPI,
998 };
999 
1000 static struct spi_imx_devtype_data imx21_cspi_devtype_data = {
1001 	.intctrl = mx21_intctrl,
1002 	.prepare_message = mx21_prepare_message,
1003 	.prepare_transfer = mx21_prepare_transfer,
1004 	.trigger = mx21_trigger,
1005 	.rx_available = mx21_rx_available,
1006 	.reset = mx21_reset,
1007 	.fifo_size = 8,
1008 	.has_dmamode = false,
1009 	.dynamic_burst = false,
1010 	.has_slavemode = false,
1011 	.devtype = IMX21_CSPI,
1012 };
1013 
1014 static struct spi_imx_devtype_data imx27_cspi_devtype_data = {
1015 	/* i.mx27 cspi shares the functions with i.mx21 one */
1016 	.intctrl = mx21_intctrl,
1017 	.prepare_message = mx21_prepare_message,
1018 	.prepare_transfer = mx21_prepare_transfer,
1019 	.trigger = mx21_trigger,
1020 	.rx_available = mx21_rx_available,
1021 	.reset = mx21_reset,
1022 	.fifo_size = 8,
1023 	.has_dmamode = false,
1024 	.dynamic_burst = false,
1025 	.has_slavemode = false,
1026 	.devtype = IMX27_CSPI,
1027 };
1028 
1029 static struct spi_imx_devtype_data imx31_cspi_devtype_data = {
1030 	.intctrl = mx31_intctrl,
1031 	.prepare_message = mx31_prepare_message,
1032 	.prepare_transfer = mx31_prepare_transfer,
1033 	.trigger = mx31_trigger,
1034 	.rx_available = mx31_rx_available,
1035 	.reset = mx31_reset,
1036 	.fifo_size = 8,
1037 	.has_dmamode = false,
1038 	.dynamic_burst = false,
1039 	.has_slavemode = false,
1040 	.devtype = IMX31_CSPI,
1041 };
1042 
1043 static struct spi_imx_devtype_data imx35_cspi_devtype_data = {
1044 	/* i.mx35 and later cspi shares the functions with i.mx31 one */
1045 	.intctrl = mx31_intctrl,
1046 	.prepare_message = mx31_prepare_message,
1047 	.prepare_transfer = mx31_prepare_transfer,
1048 	.trigger = mx31_trigger,
1049 	.rx_available = mx31_rx_available,
1050 	.reset = mx31_reset,
1051 	.fifo_size = 8,
1052 	.has_dmamode = true,
1053 	.dynamic_burst = false,
1054 	.has_slavemode = false,
1055 	.devtype = IMX35_CSPI,
1056 };
1057 
1058 static struct spi_imx_devtype_data imx51_ecspi_devtype_data = {
1059 	.intctrl = mx51_ecspi_intctrl,
1060 	.prepare_message = mx51_ecspi_prepare_message,
1061 	.prepare_transfer = mx51_ecspi_prepare_transfer,
1062 	.trigger = mx51_ecspi_trigger,
1063 	.rx_available = mx51_ecspi_rx_available,
1064 	.reset = mx51_ecspi_reset,
1065 	.setup_wml = mx51_setup_wml,
1066 	.fifo_size = 64,
1067 	.has_dmamode = true,
1068 	.dynamic_burst = true,
1069 	.has_slavemode = true,
1070 	.disable = mx51_ecspi_disable,
1071 	.devtype = IMX51_ECSPI,
1072 };
1073 
1074 static struct spi_imx_devtype_data imx53_ecspi_devtype_data = {
1075 	.intctrl = mx51_ecspi_intctrl,
1076 	.prepare_message = mx51_ecspi_prepare_message,
1077 	.prepare_transfer = mx51_ecspi_prepare_transfer,
1078 	.trigger = mx51_ecspi_trigger,
1079 	.rx_available = mx51_ecspi_rx_available,
1080 	.reset = mx51_ecspi_reset,
1081 	.fifo_size = 64,
1082 	.has_dmamode = true,
1083 	.has_slavemode = true,
1084 	.disable = mx51_ecspi_disable,
1085 	.devtype = IMX53_ECSPI,
1086 };
1087 
1088 static struct spi_imx_devtype_data imx6ul_ecspi_devtype_data = {
1089 	.intctrl = mx51_ecspi_intctrl,
1090 	.prepare_message = mx51_ecspi_prepare_message,
1091 	.prepare_transfer = mx51_ecspi_prepare_transfer,
1092 	.trigger = mx51_ecspi_trigger,
1093 	.rx_available = mx51_ecspi_rx_available,
1094 	.reset = mx51_ecspi_reset,
1095 	.setup_wml = mx51_setup_wml,
1096 	.fifo_size = 64,
1097 	.has_dmamode = true,
1098 	.dynamic_burst = true,
1099 	.has_slavemode = true,
1100 	.tx_glitch_fixed = true,
1101 	.disable = mx51_ecspi_disable,
1102 	.devtype = IMX51_ECSPI,
1103 };
1104 
1105 static const struct of_device_id spi_imx_dt_ids[] = {
1106 	{ .compatible = "fsl,imx1-cspi", .data = &imx1_cspi_devtype_data, },
1107 	{ .compatible = "fsl,imx21-cspi", .data = &imx21_cspi_devtype_data, },
1108 	{ .compatible = "fsl,imx27-cspi", .data = &imx27_cspi_devtype_data, },
1109 	{ .compatible = "fsl,imx31-cspi", .data = &imx31_cspi_devtype_data, },
1110 	{ .compatible = "fsl,imx35-cspi", .data = &imx35_cspi_devtype_data, },
1111 	{ .compatible = "fsl,imx51-ecspi", .data = &imx51_ecspi_devtype_data, },
1112 	{ .compatible = "fsl,imx53-ecspi", .data = &imx53_ecspi_devtype_data, },
1113 	{ .compatible = "fsl,imx6ul-ecspi", .data = &imx6ul_ecspi_devtype_data, },
1114 	{ /* sentinel */ }
1115 };
1116 MODULE_DEVICE_TABLE(of, spi_imx_dt_ids);
1117 
1118 static void spi_imx_set_burst_len(struct spi_imx_data *spi_imx, int n_bits)
1119 {
1120 	u32 ctrl;
1121 
1122 	ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
1123 	ctrl &= ~MX51_ECSPI_CTRL_BL_MASK;
1124 	ctrl |= ((n_bits - 1) << MX51_ECSPI_CTRL_BL_OFFSET);
1125 	writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
1126 }
1127 
1128 static void spi_imx_push(struct spi_imx_data *spi_imx)
1129 {
1130 	unsigned int burst_len;
1131 
1132 	/*
1133 	 * Reload the FIFO when the remaining bytes to be transferred in the
1134 	 * current burst is 0. This only applies when bits_per_word is a
1135 	 * multiple of 8.
1136 	 */
1137 	if (!spi_imx->remainder) {
1138 		if (spi_imx->dynamic_burst) {
1139 
1140 			/* We need to deal unaligned data first */
1141 			burst_len = spi_imx->count % MX51_ECSPI_CTRL_MAX_BURST;
1142 
1143 			if (!burst_len)
1144 				burst_len = MX51_ECSPI_CTRL_MAX_BURST;
1145 
1146 			spi_imx_set_burst_len(spi_imx, burst_len * 8);
1147 
1148 			spi_imx->remainder = burst_len;
1149 		} else {
1150 			spi_imx->remainder = spi_imx_bytes_per_word(spi_imx->bits_per_word);
1151 		}
1152 	}
1153 
1154 	while (spi_imx->txfifo < spi_imx->devtype_data->fifo_size) {
1155 		if (!spi_imx->count)
1156 			break;
1157 		if (spi_imx->dynamic_burst &&
1158 		    spi_imx->txfifo >= DIV_ROUND_UP(spi_imx->remainder, 4))
1159 			break;
1160 		spi_imx->tx(spi_imx);
1161 		spi_imx->txfifo++;
1162 	}
1163 
1164 	if (!spi_imx->slave_mode)
1165 		spi_imx->devtype_data->trigger(spi_imx);
1166 }
1167 
1168 static irqreturn_t spi_imx_isr(int irq, void *dev_id)
1169 {
1170 	struct spi_imx_data *spi_imx = dev_id;
1171 
1172 	while (spi_imx->txfifo &&
1173 	       spi_imx->devtype_data->rx_available(spi_imx)) {
1174 		spi_imx->rx(spi_imx);
1175 		spi_imx->txfifo--;
1176 	}
1177 
1178 	if (spi_imx->count) {
1179 		spi_imx_push(spi_imx);
1180 		return IRQ_HANDLED;
1181 	}
1182 
1183 	if (spi_imx->txfifo) {
1184 		/* No data left to push, but still waiting for rx data,
1185 		 * enable receive data available interrupt.
1186 		 */
1187 		spi_imx->devtype_data->intctrl(
1188 				spi_imx, MXC_INT_RR);
1189 		return IRQ_HANDLED;
1190 	}
1191 
1192 	spi_imx->devtype_data->intctrl(spi_imx, 0);
1193 	complete(&spi_imx->xfer_done);
1194 
1195 	return IRQ_HANDLED;
1196 }
1197 
1198 static int spi_imx_dma_configure(struct spi_controller *controller)
1199 {
1200 	int ret;
1201 	enum dma_slave_buswidth buswidth;
1202 	struct dma_slave_config rx = {}, tx = {};
1203 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1204 
1205 	switch (spi_imx_bytes_per_word(spi_imx->bits_per_word)) {
1206 	case 4:
1207 		buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1208 		break;
1209 	case 2:
1210 		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1211 		break;
1212 	case 1:
1213 		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1214 		break;
1215 	default:
1216 		return -EINVAL;
1217 	}
1218 
1219 	tx.direction = DMA_MEM_TO_DEV;
1220 	tx.dst_addr = spi_imx->base_phys + MXC_CSPITXDATA;
1221 	tx.dst_addr_width = buswidth;
1222 	tx.dst_maxburst = spi_imx->wml;
1223 	ret = dmaengine_slave_config(controller->dma_tx, &tx);
1224 	if (ret) {
1225 		dev_err(spi_imx->dev, "TX dma configuration failed with %d\n", ret);
1226 		return ret;
1227 	}
1228 
1229 	rx.direction = DMA_DEV_TO_MEM;
1230 	rx.src_addr = spi_imx->base_phys + MXC_CSPIRXDATA;
1231 	rx.src_addr_width = buswidth;
1232 	rx.src_maxburst = spi_imx->wml;
1233 	ret = dmaengine_slave_config(controller->dma_rx, &rx);
1234 	if (ret) {
1235 		dev_err(spi_imx->dev, "RX dma configuration failed with %d\n", ret);
1236 		return ret;
1237 	}
1238 
1239 	return 0;
1240 }
1241 
1242 static int spi_imx_setupxfer(struct spi_device *spi,
1243 				 struct spi_transfer *t)
1244 {
1245 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1246 
1247 	if (!t)
1248 		return 0;
1249 
1250 	if (!t->speed_hz) {
1251 		if (!spi->max_speed_hz) {
1252 			dev_err(&spi->dev, "no speed_hz provided!\n");
1253 			return -EINVAL;
1254 		}
1255 		dev_dbg(&spi->dev, "using spi->max_speed_hz!\n");
1256 		spi_imx->spi_bus_clk = spi->max_speed_hz;
1257 	} else
1258 		spi_imx->spi_bus_clk = t->speed_hz;
1259 
1260 	spi_imx->bits_per_word = t->bits_per_word;
1261 
1262 	/*
1263 	 * Initialize the functions for transfer. To transfer non byte-aligned
1264 	 * words, we have to use multiple word-size bursts, we can't use
1265 	 * dynamic_burst in that case.
1266 	 */
1267 	if (spi_imx->devtype_data->dynamic_burst && !spi_imx->slave_mode &&
1268 	    !(spi->mode & SPI_CS_WORD) &&
1269 	    (spi_imx->bits_per_word == 8 ||
1270 	    spi_imx->bits_per_word == 16 ||
1271 	    spi_imx->bits_per_word == 32)) {
1272 
1273 		spi_imx->rx = spi_imx_buf_rx_swap;
1274 		spi_imx->tx = spi_imx_buf_tx_swap;
1275 		spi_imx->dynamic_burst = 1;
1276 
1277 	} else {
1278 		if (spi_imx->bits_per_word <= 8) {
1279 			spi_imx->rx = spi_imx_buf_rx_u8;
1280 			spi_imx->tx = spi_imx_buf_tx_u8;
1281 		} else if (spi_imx->bits_per_word <= 16) {
1282 			spi_imx->rx = spi_imx_buf_rx_u16;
1283 			spi_imx->tx = spi_imx_buf_tx_u16;
1284 		} else {
1285 			spi_imx->rx = spi_imx_buf_rx_u32;
1286 			spi_imx->tx = spi_imx_buf_tx_u32;
1287 		}
1288 		spi_imx->dynamic_burst = 0;
1289 	}
1290 
1291 	if (spi_imx_can_dma(spi_imx->controller, spi, t))
1292 		spi_imx->usedma = true;
1293 	else
1294 		spi_imx->usedma = false;
1295 
1296 	spi_imx->rx_only = ((t->tx_buf == NULL)
1297 			|| (t->tx_buf == spi->controller->dummy_tx));
1298 
1299 	if (is_imx53_ecspi(spi_imx) && spi_imx->slave_mode) {
1300 		spi_imx->rx = mx53_ecspi_rx_slave;
1301 		spi_imx->tx = mx53_ecspi_tx_slave;
1302 		spi_imx->slave_burst = t->len;
1303 	}
1304 
1305 	spi_imx->devtype_data->prepare_transfer(spi_imx, spi);
1306 
1307 	return 0;
1308 }
1309 
1310 static void spi_imx_sdma_exit(struct spi_imx_data *spi_imx)
1311 {
1312 	struct spi_controller *controller = spi_imx->controller;
1313 
1314 	if (controller->dma_rx) {
1315 		dma_release_channel(controller->dma_rx);
1316 		controller->dma_rx = NULL;
1317 	}
1318 
1319 	if (controller->dma_tx) {
1320 		dma_release_channel(controller->dma_tx);
1321 		controller->dma_tx = NULL;
1322 	}
1323 }
1324 
1325 static int spi_imx_sdma_init(struct device *dev, struct spi_imx_data *spi_imx,
1326 			     struct spi_controller *controller)
1327 {
1328 	int ret;
1329 
1330 	spi_imx->wml = spi_imx->devtype_data->fifo_size / 2;
1331 
1332 	/* Prepare for TX DMA: */
1333 	controller->dma_tx = dma_request_chan(dev, "tx");
1334 	if (IS_ERR(controller->dma_tx)) {
1335 		ret = PTR_ERR(controller->dma_tx);
1336 		dev_dbg(dev, "can't get the TX DMA channel, error %d!\n", ret);
1337 		controller->dma_tx = NULL;
1338 		goto err;
1339 	}
1340 
1341 	/* Prepare for RX : */
1342 	controller->dma_rx = dma_request_chan(dev, "rx");
1343 	if (IS_ERR(controller->dma_rx)) {
1344 		ret = PTR_ERR(controller->dma_rx);
1345 		dev_dbg(dev, "can't get the RX DMA channel, error %d\n", ret);
1346 		controller->dma_rx = NULL;
1347 		goto err;
1348 	}
1349 
1350 	init_completion(&spi_imx->dma_rx_completion);
1351 	init_completion(&spi_imx->dma_tx_completion);
1352 	controller->can_dma = spi_imx_can_dma;
1353 	controller->max_dma_len = MAX_SDMA_BD_BYTES;
1354 	spi_imx->controller->flags = SPI_CONTROLLER_MUST_RX |
1355 					 SPI_CONTROLLER_MUST_TX;
1356 
1357 	return 0;
1358 err:
1359 	spi_imx_sdma_exit(spi_imx);
1360 	return ret;
1361 }
1362 
1363 static void spi_imx_dma_rx_callback(void *cookie)
1364 {
1365 	struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie;
1366 
1367 	complete(&spi_imx->dma_rx_completion);
1368 }
1369 
1370 static void spi_imx_dma_tx_callback(void *cookie)
1371 {
1372 	struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie;
1373 
1374 	complete(&spi_imx->dma_tx_completion);
1375 }
1376 
1377 static int spi_imx_calculate_timeout(struct spi_imx_data *spi_imx, int size)
1378 {
1379 	unsigned long timeout = 0;
1380 
1381 	/* Time with actual data transfer and CS change delay related to HW */
1382 	timeout = (8 + 4) * size / spi_imx->spi_bus_clk;
1383 
1384 	/* Add extra second for scheduler related activities */
1385 	timeout += 1;
1386 
1387 	/* Double calculated timeout */
1388 	return msecs_to_jiffies(2 * timeout * MSEC_PER_SEC);
1389 }
1390 
1391 static int spi_imx_dma_transfer(struct spi_imx_data *spi_imx,
1392 				struct spi_transfer *transfer)
1393 {
1394 	struct dma_async_tx_descriptor *desc_tx, *desc_rx;
1395 	unsigned long transfer_timeout;
1396 	unsigned long timeout;
1397 	struct spi_controller *controller = spi_imx->controller;
1398 	struct sg_table *tx = &transfer->tx_sg, *rx = &transfer->rx_sg;
1399 	struct scatterlist *last_sg = sg_last(rx->sgl, rx->nents);
1400 	unsigned int bytes_per_word, i;
1401 	int ret;
1402 
1403 	/* Get the right burst length from the last sg to ensure no tail data */
1404 	bytes_per_word = spi_imx_bytes_per_word(transfer->bits_per_word);
1405 	for (i = spi_imx->devtype_data->fifo_size / 2; i > 0; i--) {
1406 		if (!(sg_dma_len(last_sg) % (i * bytes_per_word)))
1407 			break;
1408 	}
1409 	/* Use 1 as wml in case no available burst length got */
1410 	if (i == 0)
1411 		i = 1;
1412 
1413 	spi_imx->wml =  i;
1414 
1415 	ret = spi_imx_dma_configure(controller);
1416 	if (ret)
1417 		goto dma_failure_no_start;
1418 
1419 	if (!spi_imx->devtype_data->setup_wml) {
1420 		dev_err(spi_imx->dev, "No setup_wml()?\n");
1421 		ret = -EINVAL;
1422 		goto dma_failure_no_start;
1423 	}
1424 	spi_imx->devtype_data->setup_wml(spi_imx);
1425 
1426 	/*
1427 	 * The TX DMA setup starts the transfer, so make sure RX is configured
1428 	 * before TX.
1429 	 */
1430 	desc_rx = dmaengine_prep_slave_sg(controller->dma_rx,
1431 				rx->sgl, rx->nents, DMA_DEV_TO_MEM,
1432 				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1433 	if (!desc_rx) {
1434 		ret = -EINVAL;
1435 		goto dma_failure_no_start;
1436 	}
1437 
1438 	desc_rx->callback = spi_imx_dma_rx_callback;
1439 	desc_rx->callback_param = (void *)spi_imx;
1440 	dmaengine_submit(desc_rx);
1441 	reinit_completion(&spi_imx->dma_rx_completion);
1442 	dma_async_issue_pending(controller->dma_rx);
1443 
1444 	desc_tx = dmaengine_prep_slave_sg(controller->dma_tx,
1445 				tx->sgl, tx->nents, DMA_MEM_TO_DEV,
1446 				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1447 	if (!desc_tx) {
1448 		dmaengine_terminate_all(controller->dma_tx);
1449 		dmaengine_terminate_all(controller->dma_rx);
1450 		return -EINVAL;
1451 	}
1452 
1453 	desc_tx->callback = spi_imx_dma_tx_callback;
1454 	desc_tx->callback_param = (void *)spi_imx;
1455 	dmaengine_submit(desc_tx);
1456 	reinit_completion(&spi_imx->dma_tx_completion);
1457 	dma_async_issue_pending(controller->dma_tx);
1458 
1459 	transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len);
1460 
1461 	/* Wait SDMA to finish the data transfer.*/
1462 	timeout = wait_for_completion_timeout(&spi_imx->dma_tx_completion,
1463 						transfer_timeout);
1464 	if (!timeout) {
1465 		dev_err(spi_imx->dev, "I/O Error in DMA TX\n");
1466 		dmaengine_terminate_all(controller->dma_tx);
1467 		dmaengine_terminate_all(controller->dma_rx);
1468 		return -ETIMEDOUT;
1469 	}
1470 
1471 	timeout = wait_for_completion_timeout(&spi_imx->dma_rx_completion,
1472 					      transfer_timeout);
1473 	if (!timeout) {
1474 		dev_err(&controller->dev, "I/O Error in DMA RX\n");
1475 		spi_imx->devtype_data->reset(spi_imx);
1476 		dmaengine_terminate_all(controller->dma_rx);
1477 		return -ETIMEDOUT;
1478 	}
1479 
1480 	return 0;
1481 /* fallback to pio */
1482 dma_failure_no_start:
1483 	transfer->error |= SPI_TRANS_FAIL_NO_START;
1484 	return ret;
1485 }
1486 
1487 static int spi_imx_pio_transfer(struct spi_device *spi,
1488 				struct spi_transfer *transfer)
1489 {
1490 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1491 	unsigned long transfer_timeout;
1492 	unsigned long timeout;
1493 
1494 	spi_imx->tx_buf = transfer->tx_buf;
1495 	spi_imx->rx_buf = transfer->rx_buf;
1496 	spi_imx->count = transfer->len;
1497 	spi_imx->txfifo = 0;
1498 	spi_imx->remainder = 0;
1499 
1500 	reinit_completion(&spi_imx->xfer_done);
1501 
1502 	spi_imx_push(spi_imx);
1503 
1504 	spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE);
1505 
1506 	transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len);
1507 
1508 	timeout = wait_for_completion_timeout(&spi_imx->xfer_done,
1509 					      transfer_timeout);
1510 	if (!timeout) {
1511 		dev_err(&spi->dev, "I/O Error in PIO\n");
1512 		spi_imx->devtype_data->reset(spi_imx);
1513 		return -ETIMEDOUT;
1514 	}
1515 
1516 	return 0;
1517 }
1518 
1519 static int spi_imx_poll_transfer(struct spi_device *spi,
1520 				 struct spi_transfer *transfer)
1521 {
1522 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1523 	unsigned long timeout;
1524 
1525 	spi_imx->tx_buf = transfer->tx_buf;
1526 	spi_imx->rx_buf = transfer->rx_buf;
1527 	spi_imx->count = transfer->len;
1528 	spi_imx->txfifo = 0;
1529 	spi_imx->remainder = 0;
1530 
1531 	/* fill in the fifo before timeout calculations if we are
1532 	 * interrupted here, then the data is getting transferred by
1533 	 * the HW while we are interrupted
1534 	 */
1535 	spi_imx_push(spi_imx);
1536 
1537 	timeout = spi_imx_calculate_timeout(spi_imx, transfer->len) + jiffies;
1538 	while (spi_imx->txfifo) {
1539 		/* RX */
1540 		while (spi_imx->txfifo &&
1541 		       spi_imx->devtype_data->rx_available(spi_imx)) {
1542 			spi_imx->rx(spi_imx);
1543 			spi_imx->txfifo--;
1544 		}
1545 
1546 		/* TX */
1547 		if (spi_imx->count) {
1548 			spi_imx_push(spi_imx);
1549 			continue;
1550 		}
1551 
1552 		if (spi_imx->txfifo &&
1553 		    time_after(jiffies, timeout)) {
1554 
1555 			dev_err_ratelimited(&spi->dev,
1556 					    "timeout period reached: jiffies: %lu- falling back to interrupt mode\n",
1557 					    jiffies - timeout);
1558 
1559 			/* fall back to interrupt mode */
1560 			return spi_imx_pio_transfer(spi, transfer);
1561 		}
1562 	}
1563 
1564 	return 0;
1565 }
1566 
1567 static int spi_imx_pio_transfer_slave(struct spi_device *spi,
1568 				      struct spi_transfer *transfer)
1569 {
1570 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1571 	int ret = 0;
1572 
1573 	if (is_imx53_ecspi(spi_imx) &&
1574 	    transfer->len > MX53_MAX_TRANSFER_BYTES) {
1575 		dev_err(&spi->dev, "Transaction too big, max size is %d bytes\n",
1576 			MX53_MAX_TRANSFER_BYTES);
1577 		return -EMSGSIZE;
1578 	}
1579 
1580 	spi_imx->tx_buf = transfer->tx_buf;
1581 	spi_imx->rx_buf = transfer->rx_buf;
1582 	spi_imx->count = transfer->len;
1583 	spi_imx->txfifo = 0;
1584 	spi_imx->remainder = 0;
1585 
1586 	reinit_completion(&spi_imx->xfer_done);
1587 	spi_imx->slave_aborted = false;
1588 
1589 	spi_imx_push(spi_imx);
1590 
1591 	spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE | MXC_INT_RDR);
1592 
1593 	if (wait_for_completion_interruptible(&spi_imx->xfer_done) ||
1594 	    spi_imx->slave_aborted) {
1595 		dev_dbg(&spi->dev, "interrupted\n");
1596 		ret = -EINTR;
1597 	}
1598 
1599 	/* ecspi has a HW issue when works in Slave mode,
1600 	 * after 64 words writtern to TXFIFO, even TXFIFO becomes empty,
1601 	 * ECSPI_TXDATA keeps shift out the last word data,
1602 	 * so we have to disable ECSPI when in slave mode after the
1603 	 * transfer completes
1604 	 */
1605 	if (spi_imx->devtype_data->disable)
1606 		spi_imx->devtype_data->disable(spi_imx);
1607 
1608 	return ret;
1609 }
1610 
1611 static int spi_imx_transfer_one(struct spi_controller *controller,
1612 				struct spi_device *spi,
1613 				struct spi_transfer *transfer)
1614 {
1615 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1616 	unsigned long hz_per_byte, byte_limit;
1617 
1618 	spi_imx_setupxfer(spi, transfer);
1619 	transfer->effective_speed_hz = spi_imx->spi_bus_clk;
1620 
1621 	/* flush rxfifo before transfer */
1622 	while (spi_imx->devtype_data->rx_available(spi_imx))
1623 		readl(spi_imx->base + MXC_CSPIRXDATA);
1624 
1625 	if (spi_imx->slave_mode)
1626 		return spi_imx_pio_transfer_slave(spi, transfer);
1627 
1628 	/*
1629 	 * If we decided in spi_imx_can_dma() that we want to do a DMA
1630 	 * transfer, the SPI transfer has already been mapped, so we
1631 	 * have to do the DMA transfer here.
1632 	 */
1633 	if (spi_imx->usedma)
1634 		return spi_imx_dma_transfer(spi_imx, transfer);
1635 	/*
1636 	 * Calculate the estimated time in us the transfer runs. Find
1637 	 * the number of Hz per byte per polling limit.
1638 	 */
1639 	hz_per_byte = polling_limit_us ? ((8 + 4) * USEC_PER_SEC) / polling_limit_us : 0;
1640 	byte_limit = hz_per_byte ? transfer->effective_speed_hz / hz_per_byte : 1;
1641 
1642 	/* run in polling mode for short transfers */
1643 	if (transfer->len < byte_limit)
1644 		return spi_imx_poll_transfer(spi, transfer);
1645 
1646 	return spi_imx_pio_transfer(spi, transfer);
1647 }
1648 
1649 static int spi_imx_setup(struct spi_device *spi)
1650 {
1651 	dev_dbg(&spi->dev, "%s: mode %d, %u bpw, %d hz\n", __func__,
1652 		 spi->mode, spi->bits_per_word, spi->max_speed_hz);
1653 
1654 	return 0;
1655 }
1656 
1657 static void spi_imx_cleanup(struct spi_device *spi)
1658 {
1659 }
1660 
1661 static int
1662 spi_imx_prepare_message(struct spi_controller *controller, struct spi_message *msg)
1663 {
1664 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1665 	int ret;
1666 
1667 	ret = pm_runtime_resume_and_get(spi_imx->dev);
1668 	if (ret < 0) {
1669 		dev_err(spi_imx->dev, "failed to enable clock\n");
1670 		return ret;
1671 	}
1672 
1673 	ret = spi_imx->devtype_data->prepare_message(spi_imx, msg);
1674 	if (ret) {
1675 		pm_runtime_mark_last_busy(spi_imx->dev);
1676 		pm_runtime_put_autosuspend(spi_imx->dev);
1677 	}
1678 
1679 	return ret;
1680 }
1681 
1682 static int
1683 spi_imx_unprepare_message(struct spi_controller *controller, struct spi_message *msg)
1684 {
1685 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1686 
1687 	pm_runtime_mark_last_busy(spi_imx->dev);
1688 	pm_runtime_put_autosuspend(spi_imx->dev);
1689 	return 0;
1690 }
1691 
1692 static int spi_imx_slave_abort(struct spi_controller *controller)
1693 {
1694 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1695 
1696 	spi_imx->slave_aborted = true;
1697 	complete(&spi_imx->xfer_done);
1698 
1699 	return 0;
1700 }
1701 
1702 static int spi_imx_probe(struct platform_device *pdev)
1703 {
1704 	struct device_node *np = pdev->dev.of_node;
1705 	struct spi_controller *controller;
1706 	struct spi_imx_data *spi_imx;
1707 	struct resource *res;
1708 	int ret, irq, spi_drctl;
1709 	const struct spi_imx_devtype_data *devtype_data =
1710 			of_device_get_match_data(&pdev->dev);
1711 	bool slave_mode;
1712 	u32 val;
1713 
1714 	slave_mode = devtype_data->has_slavemode &&
1715 			of_property_read_bool(np, "spi-slave");
1716 	if (slave_mode)
1717 		controller = spi_alloc_slave(&pdev->dev,
1718 					     sizeof(struct spi_imx_data));
1719 	else
1720 		controller = spi_alloc_master(&pdev->dev,
1721 					      sizeof(struct spi_imx_data));
1722 	if (!controller)
1723 		return -ENOMEM;
1724 
1725 	ret = of_property_read_u32(np, "fsl,spi-rdy-drctl", &spi_drctl);
1726 	if ((ret < 0) || (spi_drctl >= 0x3)) {
1727 		/* '11' is reserved */
1728 		spi_drctl = 0;
1729 	}
1730 
1731 	platform_set_drvdata(pdev, controller);
1732 
1733 	controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(1, 32);
1734 	controller->bus_num = np ? -1 : pdev->id;
1735 	controller->use_gpio_descriptors = true;
1736 
1737 	spi_imx = spi_controller_get_devdata(controller);
1738 	spi_imx->controller = controller;
1739 	spi_imx->dev = &pdev->dev;
1740 	spi_imx->slave_mode = slave_mode;
1741 
1742 	spi_imx->devtype_data = devtype_data;
1743 
1744 	/*
1745 	 * Get number of chip selects from device properties. This can be
1746 	 * coming from device tree or boardfiles, if it is not defined,
1747 	 * a default value of 3 chip selects will be used, as all the legacy
1748 	 * board files have <= 3 chip selects.
1749 	 */
1750 	if (!device_property_read_u32(&pdev->dev, "num-cs", &val))
1751 		controller->num_chipselect = val;
1752 	else
1753 		controller->num_chipselect = 3;
1754 
1755 	controller->transfer_one = spi_imx_transfer_one;
1756 	controller->setup = spi_imx_setup;
1757 	controller->cleanup = spi_imx_cleanup;
1758 	controller->prepare_message = spi_imx_prepare_message;
1759 	controller->unprepare_message = spi_imx_unprepare_message;
1760 	controller->slave_abort = spi_imx_slave_abort;
1761 	controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_NO_CS |
1762 				SPI_MOSI_IDLE_LOW;
1763 
1764 	if (is_imx35_cspi(spi_imx) || is_imx51_ecspi(spi_imx) ||
1765 	    is_imx53_ecspi(spi_imx))
1766 		controller->mode_bits |= SPI_LOOP | SPI_READY;
1767 
1768 	if (is_imx51_ecspi(spi_imx) || is_imx53_ecspi(spi_imx))
1769 		controller->mode_bits |= SPI_RX_CPHA_FLIP;
1770 
1771 	if (is_imx51_ecspi(spi_imx) &&
1772 	    device_property_read_u32(&pdev->dev, "cs-gpios", NULL))
1773 		/*
1774 		 * When using HW-CS implementing SPI_CS_WORD can be done by just
1775 		 * setting the burst length to the word size. This is
1776 		 * considerably faster than manually controlling the CS.
1777 		 */
1778 		controller->mode_bits |= SPI_CS_WORD;
1779 
1780 	if (is_imx51_ecspi(spi_imx) || is_imx53_ecspi(spi_imx)) {
1781 		controller->max_native_cs = 4;
1782 		controller->flags |= SPI_CONTROLLER_GPIO_SS;
1783 	}
1784 
1785 	spi_imx->spi_drctl = spi_drctl;
1786 
1787 	init_completion(&spi_imx->xfer_done);
1788 
1789 	spi_imx->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1790 	if (IS_ERR(spi_imx->base)) {
1791 		ret = PTR_ERR(spi_imx->base);
1792 		goto out_controller_put;
1793 	}
1794 	spi_imx->base_phys = res->start;
1795 
1796 	irq = platform_get_irq(pdev, 0);
1797 	if (irq < 0) {
1798 		ret = irq;
1799 		goto out_controller_put;
1800 	}
1801 
1802 	ret = devm_request_irq(&pdev->dev, irq, spi_imx_isr, 0,
1803 			       dev_name(&pdev->dev), spi_imx);
1804 	if (ret) {
1805 		dev_err(&pdev->dev, "can't get irq%d: %d\n", irq, ret);
1806 		goto out_controller_put;
1807 	}
1808 
1809 	spi_imx->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1810 	if (IS_ERR(spi_imx->clk_ipg)) {
1811 		ret = PTR_ERR(spi_imx->clk_ipg);
1812 		goto out_controller_put;
1813 	}
1814 
1815 	spi_imx->clk_per = devm_clk_get(&pdev->dev, "per");
1816 	if (IS_ERR(spi_imx->clk_per)) {
1817 		ret = PTR_ERR(spi_imx->clk_per);
1818 		goto out_controller_put;
1819 	}
1820 
1821 	ret = clk_prepare_enable(spi_imx->clk_per);
1822 	if (ret)
1823 		goto out_controller_put;
1824 
1825 	ret = clk_prepare_enable(spi_imx->clk_ipg);
1826 	if (ret)
1827 		goto out_put_per;
1828 
1829 	pm_runtime_set_autosuspend_delay(spi_imx->dev, MXC_RPM_TIMEOUT);
1830 	pm_runtime_use_autosuspend(spi_imx->dev);
1831 	pm_runtime_get_noresume(spi_imx->dev);
1832 	pm_runtime_set_active(spi_imx->dev);
1833 	pm_runtime_enable(spi_imx->dev);
1834 
1835 	spi_imx->spi_clk = clk_get_rate(spi_imx->clk_per);
1836 	/*
1837 	 * Only validated on i.mx35 and i.mx6 now, can remove the constraint
1838 	 * if validated on other chips.
1839 	 */
1840 	if (spi_imx->devtype_data->has_dmamode) {
1841 		ret = spi_imx_sdma_init(&pdev->dev, spi_imx, controller);
1842 		if (ret == -EPROBE_DEFER)
1843 			goto out_runtime_pm_put;
1844 
1845 		if (ret < 0)
1846 			dev_dbg(&pdev->dev, "dma setup error %d, use pio\n",
1847 				ret);
1848 	}
1849 
1850 	spi_imx->devtype_data->reset(spi_imx);
1851 
1852 	spi_imx->devtype_data->intctrl(spi_imx, 0);
1853 
1854 	controller->dev.of_node = pdev->dev.of_node;
1855 	ret = spi_register_controller(controller);
1856 	if (ret) {
1857 		dev_err_probe(&pdev->dev, ret, "register controller failed\n");
1858 		goto out_register_controller;
1859 	}
1860 
1861 	pm_runtime_mark_last_busy(spi_imx->dev);
1862 	pm_runtime_put_autosuspend(spi_imx->dev);
1863 
1864 	return ret;
1865 
1866 out_register_controller:
1867 	if (spi_imx->devtype_data->has_dmamode)
1868 		spi_imx_sdma_exit(spi_imx);
1869 out_runtime_pm_put:
1870 	pm_runtime_dont_use_autosuspend(spi_imx->dev);
1871 	pm_runtime_set_suspended(&pdev->dev);
1872 	pm_runtime_disable(spi_imx->dev);
1873 
1874 	clk_disable_unprepare(spi_imx->clk_ipg);
1875 out_put_per:
1876 	clk_disable_unprepare(spi_imx->clk_per);
1877 out_controller_put:
1878 	spi_controller_put(controller);
1879 
1880 	return ret;
1881 }
1882 
1883 static void spi_imx_remove(struct platform_device *pdev)
1884 {
1885 	struct spi_controller *controller = platform_get_drvdata(pdev);
1886 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1887 	int ret;
1888 
1889 	spi_unregister_controller(controller);
1890 
1891 	ret = pm_runtime_get_sync(spi_imx->dev);
1892 	if (ret >= 0)
1893 		writel(0, spi_imx->base + MXC_CSPICTRL);
1894 	else
1895 		dev_warn(spi_imx->dev, "failed to enable clock, skip hw disable\n");
1896 
1897 	pm_runtime_dont_use_autosuspend(spi_imx->dev);
1898 	pm_runtime_put_sync(spi_imx->dev);
1899 	pm_runtime_disable(spi_imx->dev);
1900 
1901 	spi_imx_sdma_exit(spi_imx);
1902 }
1903 
1904 static int __maybe_unused spi_imx_runtime_resume(struct device *dev)
1905 {
1906 	struct spi_controller *controller = dev_get_drvdata(dev);
1907 	struct spi_imx_data *spi_imx;
1908 	int ret;
1909 
1910 	spi_imx = spi_controller_get_devdata(controller);
1911 
1912 	ret = clk_prepare_enable(spi_imx->clk_per);
1913 	if (ret)
1914 		return ret;
1915 
1916 	ret = clk_prepare_enable(spi_imx->clk_ipg);
1917 	if (ret) {
1918 		clk_disable_unprepare(spi_imx->clk_per);
1919 		return ret;
1920 	}
1921 
1922 	return 0;
1923 }
1924 
1925 static int __maybe_unused spi_imx_runtime_suspend(struct device *dev)
1926 {
1927 	struct spi_controller *controller = dev_get_drvdata(dev);
1928 	struct spi_imx_data *spi_imx;
1929 
1930 	spi_imx = spi_controller_get_devdata(controller);
1931 
1932 	clk_disable_unprepare(spi_imx->clk_per);
1933 	clk_disable_unprepare(spi_imx->clk_ipg);
1934 
1935 	return 0;
1936 }
1937 
1938 static int __maybe_unused spi_imx_suspend(struct device *dev)
1939 {
1940 	pinctrl_pm_select_sleep_state(dev);
1941 	return 0;
1942 }
1943 
1944 static int __maybe_unused spi_imx_resume(struct device *dev)
1945 {
1946 	pinctrl_pm_select_default_state(dev);
1947 	return 0;
1948 }
1949 
1950 static const struct dev_pm_ops imx_spi_pm = {
1951 	SET_RUNTIME_PM_OPS(spi_imx_runtime_suspend,
1952 				spi_imx_runtime_resume, NULL)
1953 	SET_SYSTEM_SLEEP_PM_OPS(spi_imx_suspend, spi_imx_resume)
1954 };
1955 
1956 static struct platform_driver spi_imx_driver = {
1957 	.driver = {
1958 		   .name = DRIVER_NAME,
1959 		   .of_match_table = spi_imx_dt_ids,
1960 		   .pm = &imx_spi_pm,
1961 	},
1962 	.probe = spi_imx_probe,
1963 	.remove_new = spi_imx_remove,
1964 };
1965 module_platform_driver(spi_imx_driver);
1966 
1967 MODULE_DESCRIPTION("i.MX SPI Controller driver");
1968 MODULE_AUTHOR("Sascha Hauer, Pengutronix");
1969 MODULE_LICENSE("GPL");
1970 MODULE_ALIAS("platform:" DRIVER_NAME);
1971