xref: /linux/drivers/spi/spi-mtk-snfi.c (revision 84b9b44b)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Driver for the SPI-NAND mode of Mediatek NAND Flash Interface
4 //
5 // Copyright (c) 2022 Chuanhong Guo <gch981213@gmail.com>
6 //
7 // This driver is based on the SPI-NAND mtd driver from Mediatek SDK:
8 //
9 // Copyright (C) 2020 MediaTek Inc.
10 // Author: Weijie Gao <weijie.gao@mediatek.com>
11 //
12 // This controller organize the page data as several interleaved sectors
13 // like the following: (sizeof(FDM + ECC) = snf->nfi_cfg.spare_size)
14 // +---------+------+------+---------+------+------+-----+
15 // | Sector1 | FDM1 | ECC1 | Sector2 | FDM2 | ECC2 | ... |
16 // +---------+------+------+---------+------+------+-----+
17 // With auto-format turned on, DMA only returns this part:
18 // +---------+---------+-----+
19 // | Sector1 | Sector2 | ... |
20 // +---------+---------+-----+
21 // The FDM data will be filled to the registers, and ECC parity data isn't
22 // accessible.
23 // With auto-format off, all ((Sector+FDM+ECC)*nsectors) will be read over DMA
24 // in it's original order shown in the first table. ECC can't be turned on when
25 // auto-format is off.
26 //
27 // However, Linux SPI-NAND driver expects the data returned as:
28 // +------+-----+
29 // | Page | OOB |
30 // +------+-----+
31 // where the page data is continuously stored instead of interleaved.
32 // So we assume all instructions matching the page_op template between ECC
33 // prepare_io_req and finish_io_req are for page cache r/w.
34 // Here's how this spi-mem driver operates when reading:
35 //  1. Always set snf->autofmt = true in prepare_io_req (even when ECC is off).
36 //  2. Perform page ops and let the controller fill the DMA bounce buffer with
37 //     de-interleaved sector data and set FDM registers.
38 //  3. Return the data as:
39 //     +---------+---------+-----+------+------+-----+
40 //     | Sector1 | Sector2 | ... | FDM1 | FDM2 | ... |
41 //     +---------+---------+-----+------+------+-----+
42 //  4. For other matching spi_mem ops outside a prepare/finish_io_req pair,
43 //     read the data with auto-format off into the bounce buffer and copy
44 //     needed data to the buffer specified in the request.
45 //
46 // Write requests operates in a similar manner.
47 // As a limitation of this strategy, we won't be able to access any ECC parity
48 // data at all in Linux.
49 //
50 // Here's the bad block mark situation on MTK chips:
51 // In older chips like mt7622, MTK uses the first FDM byte in the first sector
52 // as the bad block mark. After de-interleaving, this byte appears at [pagesize]
53 // in the returned data, which is the BBM position expected by kernel. However,
54 // the conventional bad block mark is the first byte of the OOB, which is part
55 // of the last sector data in the interleaved layout. Instead of fixing their
56 // hardware, MTK decided to address this inconsistency in software. On these
57 // later chips, the BootROM expects the following:
58 // 1. The [pagesize] byte on a nand page is used as BBM, which will appear at
59 //    (page_size - (nsectors - 1) * spare_size) in the DMA buffer.
60 // 2. The original byte stored at that position in the DMA buffer will be stored
61 //    as the first byte of the FDM section in the last sector.
62 // We can't disagree with the BootROM, so after de-interleaving, we need to
63 // perform the following swaps in read:
64 // 1. Store the BBM at [page_size - (nsectors - 1) * spare_size] to [page_size],
65 //    which is the expected BBM position by kernel.
66 // 2. Store the page data byte at [pagesize + (nsectors-1) * fdm] back to
67 //    [page_size - (nsectors - 1) * spare_size]
68 // Similarly, when writing, we need to perform swaps in the other direction.
69 
70 #include <linux/kernel.h>
71 #include <linux/module.h>
72 #include <linux/init.h>
73 #include <linux/device.h>
74 #include <linux/mutex.h>
75 #include <linux/clk.h>
76 #include <linux/interrupt.h>
77 #include <linux/dma-mapping.h>
78 #include <linux/iopoll.h>
79 #include <linux/of_platform.h>
80 #include <linux/mtd/nand-ecc-mtk.h>
81 #include <linux/spi/spi.h>
82 #include <linux/spi/spi-mem.h>
83 #include <linux/mtd/nand.h>
84 
85 // NFI registers
86 #define NFI_CNFG 0x000
87 #define CNFG_OP_MODE_S 12
88 #define CNFG_OP_MODE_CUST 6
89 #define CNFG_OP_MODE_PROGRAM 3
90 #define CNFG_AUTO_FMT_EN BIT(9)
91 #define CNFG_HW_ECC_EN BIT(8)
92 #define CNFG_DMA_BURST_EN BIT(2)
93 #define CNFG_READ_MODE BIT(1)
94 #define CNFG_DMA_MODE BIT(0)
95 
96 #define NFI_PAGEFMT 0x0004
97 #define NFI_SPARE_SIZE_LS_S 16
98 #define NFI_FDM_ECC_NUM_S 12
99 #define NFI_FDM_NUM_S 8
100 #define NFI_SPARE_SIZE_S 4
101 #define NFI_SEC_SEL_512 BIT(2)
102 #define NFI_PAGE_SIZE_S 0
103 #define NFI_PAGE_SIZE_512_2K 0
104 #define NFI_PAGE_SIZE_2K_4K 1
105 #define NFI_PAGE_SIZE_4K_8K 2
106 #define NFI_PAGE_SIZE_8K_16K 3
107 
108 #define NFI_CON 0x008
109 #define CON_SEC_NUM_S 12
110 #define CON_BWR BIT(9)
111 #define CON_BRD BIT(8)
112 #define CON_NFI_RST BIT(1)
113 #define CON_FIFO_FLUSH BIT(0)
114 
115 #define NFI_INTR_EN 0x010
116 #define NFI_INTR_STA 0x014
117 #define NFI_IRQ_INTR_EN BIT(31)
118 #define NFI_IRQ_CUS_READ BIT(8)
119 #define NFI_IRQ_CUS_PG BIT(7)
120 
121 #define NFI_CMD 0x020
122 #define NFI_CMD_DUMMY_READ 0x00
123 #define NFI_CMD_DUMMY_WRITE 0x80
124 
125 #define NFI_STRDATA 0x040
126 #define STR_DATA BIT(0)
127 
128 #define NFI_STA 0x060
129 #define NFI_NAND_FSM_7622 GENMASK(28, 24)
130 #define NFI_NAND_FSM_7986 GENMASK(29, 23)
131 #define NFI_FSM GENMASK(19, 16)
132 #define READ_EMPTY BIT(12)
133 
134 #define NFI_FIFOSTA 0x064
135 #define FIFO_WR_REMAIN_S 8
136 #define FIFO_RD_REMAIN_S 0
137 
138 #define NFI_ADDRCNTR 0x070
139 #define SEC_CNTR GENMASK(16, 12)
140 #define SEC_CNTR_S 12
141 #define NFI_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S)
142 
143 #define NFI_STRADDR 0x080
144 
145 #define NFI_BYTELEN 0x084
146 #define BUS_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S)
147 
148 #define NFI_FDM0L 0x0a0
149 #define NFI_FDM0M 0x0a4
150 #define NFI_FDML(n) (NFI_FDM0L + (n)*8)
151 #define NFI_FDMM(n) (NFI_FDM0M + (n)*8)
152 
153 #define NFI_DEBUG_CON1 0x220
154 #define WBUF_EN BIT(2)
155 
156 #define NFI_MASTERSTA 0x224
157 #define MAS_ADDR GENMASK(11, 9)
158 #define MAS_RD GENMASK(8, 6)
159 #define MAS_WR GENMASK(5, 3)
160 #define MAS_RDDLY GENMASK(2, 0)
161 #define NFI_MASTERSTA_MASK_7622 (MAS_ADDR | MAS_RD | MAS_WR | MAS_RDDLY)
162 #define NFI_MASTERSTA_MASK_7986 3
163 
164 // SNFI registers
165 #define SNF_MAC_CTL 0x500
166 #define MAC_XIO_SEL BIT(4)
167 #define SF_MAC_EN BIT(3)
168 #define SF_TRIG BIT(2)
169 #define WIP_READY BIT(1)
170 #define WIP BIT(0)
171 
172 #define SNF_MAC_OUTL 0x504
173 #define SNF_MAC_INL 0x508
174 
175 #define SNF_RD_CTL2 0x510
176 #define DATA_READ_DUMMY_S 8
177 #define DATA_READ_MAX_DUMMY 0xf
178 #define DATA_READ_CMD_S 0
179 
180 #define SNF_RD_CTL3 0x514
181 
182 #define SNF_PG_CTL1 0x524
183 #define PG_LOAD_CMD_S 8
184 
185 #define SNF_PG_CTL2 0x528
186 
187 #define SNF_MISC_CTL 0x538
188 #define SW_RST BIT(28)
189 #define FIFO_RD_LTC_S 25
190 #define PG_LOAD_X4_EN BIT(20)
191 #define DATA_READ_MODE_S 16
192 #define DATA_READ_MODE GENMASK(18, 16)
193 #define DATA_READ_MODE_X1 0
194 #define DATA_READ_MODE_X2 1
195 #define DATA_READ_MODE_X4 2
196 #define DATA_READ_MODE_DUAL 5
197 #define DATA_READ_MODE_QUAD 6
198 #define DATA_READ_LATCH_LAT GENMASK(9, 8)
199 #define DATA_READ_LATCH_LAT_S 8
200 #define PG_LOAD_CUSTOM_EN BIT(7)
201 #define DATARD_CUSTOM_EN BIT(6)
202 #define CS_DESELECT_CYC_S 0
203 
204 #define SNF_MISC_CTL2 0x53c
205 #define PROGRAM_LOAD_BYTE_NUM_S 16
206 #define READ_DATA_BYTE_NUM_S 11
207 
208 #define SNF_DLY_CTL3 0x548
209 #define SFCK_SAM_DLY_S 0
210 #define SFCK_SAM_DLY GENMASK(5, 0)
211 #define SFCK_SAM_DLY_TOTAL 9
212 #define SFCK_SAM_DLY_RANGE 47
213 
214 #define SNF_STA_CTL1 0x550
215 #define CUS_PG_DONE BIT(28)
216 #define CUS_READ_DONE BIT(27)
217 #define SPI_STATE_S 0
218 #define SPI_STATE GENMASK(3, 0)
219 
220 #define SNF_CFG 0x55c
221 #define SPI_MODE BIT(0)
222 
223 #define SNF_GPRAM 0x800
224 #define SNF_GPRAM_SIZE 0xa0
225 
226 #define SNFI_POLL_INTERVAL 1000000
227 
228 static const u8 mt7622_spare_sizes[] = { 16, 26, 27, 28 };
229 
230 static const u8 mt7986_spare_sizes[] = {
231 	16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 61, 63, 64, 67,
232 	74
233 };
234 
235 struct mtk_snand_caps {
236 	u16 sector_size;
237 	u16 max_sectors;
238 	u16 fdm_size;
239 	u16 fdm_ecc_size;
240 	u16 fifo_size;
241 
242 	bool bbm_swap;
243 	bool empty_page_check;
244 	u32 mastersta_mask;
245 	u32 nandfsm_mask;
246 
247 	const u8 *spare_sizes;
248 	u32 num_spare_size;
249 };
250 
251 static const struct mtk_snand_caps mt7622_snand_caps = {
252 	.sector_size = 512,
253 	.max_sectors = 8,
254 	.fdm_size = 8,
255 	.fdm_ecc_size = 1,
256 	.fifo_size = 32,
257 	.bbm_swap = false,
258 	.empty_page_check = false,
259 	.mastersta_mask = NFI_MASTERSTA_MASK_7622,
260 	.nandfsm_mask = NFI_NAND_FSM_7622,
261 	.spare_sizes = mt7622_spare_sizes,
262 	.num_spare_size = ARRAY_SIZE(mt7622_spare_sizes)
263 };
264 
265 static const struct mtk_snand_caps mt7629_snand_caps = {
266 	.sector_size = 512,
267 	.max_sectors = 8,
268 	.fdm_size = 8,
269 	.fdm_ecc_size = 1,
270 	.fifo_size = 32,
271 	.bbm_swap = true,
272 	.empty_page_check = false,
273 	.mastersta_mask = NFI_MASTERSTA_MASK_7622,
274 	.nandfsm_mask = NFI_NAND_FSM_7622,
275 	.spare_sizes = mt7622_spare_sizes,
276 	.num_spare_size = ARRAY_SIZE(mt7622_spare_sizes)
277 };
278 
279 static const struct mtk_snand_caps mt7986_snand_caps = {
280 	.sector_size = 1024,
281 	.max_sectors = 8,
282 	.fdm_size = 8,
283 	.fdm_ecc_size = 1,
284 	.fifo_size = 64,
285 	.bbm_swap = true,
286 	.empty_page_check = true,
287 	.mastersta_mask = NFI_MASTERSTA_MASK_7986,
288 	.nandfsm_mask = NFI_NAND_FSM_7986,
289 	.spare_sizes = mt7986_spare_sizes,
290 	.num_spare_size = ARRAY_SIZE(mt7986_spare_sizes)
291 };
292 
293 struct mtk_snand_conf {
294 	size_t page_size;
295 	size_t oob_size;
296 	u8 nsectors;
297 	u8 spare_size;
298 };
299 
300 struct mtk_snand {
301 	struct spi_controller *ctlr;
302 	struct device *dev;
303 	struct clk *nfi_clk;
304 	struct clk *pad_clk;
305 	struct clk *nfi_hclk;
306 	void __iomem *nfi_base;
307 	int irq;
308 	struct completion op_done;
309 	const struct mtk_snand_caps *caps;
310 	struct mtk_ecc_config *ecc_cfg;
311 	struct mtk_ecc *ecc;
312 	struct mtk_snand_conf nfi_cfg;
313 	struct mtk_ecc_stats ecc_stats;
314 	struct nand_ecc_engine ecc_eng;
315 	bool autofmt;
316 	u8 *buf;
317 	size_t buf_len;
318 };
319 
320 static struct mtk_snand *nand_to_mtk_snand(struct nand_device *nand)
321 {
322 	struct nand_ecc_engine *eng = nand->ecc.engine;
323 
324 	return container_of(eng, struct mtk_snand, ecc_eng);
325 }
326 
327 static inline int snand_prepare_bouncebuf(struct mtk_snand *snf, size_t size)
328 {
329 	if (snf->buf_len >= size)
330 		return 0;
331 	kfree(snf->buf);
332 	snf->buf = kmalloc(size, GFP_KERNEL);
333 	if (!snf->buf)
334 		return -ENOMEM;
335 	snf->buf_len = size;
336 	memset(snf->buf, 0xff, snf->buf_len);
337 	return 0;
338 }
339 
340 static inline u32 nfi_read32(struct mtk_snand *snf, u32 reg)
341 {
342 	return readl(snf->nfi_base + reg);
343 }
344 
345 static inline void nfi_write32(struct mtk_snand *snf, u32 reg, u32 val)
346 {
347 	writel(val, snf->nfi_base + reg);
348 }
349 
350 static inline void nfi_write16(struct mtk_snand *snf, u32 reg, u16 val)
351 {
352 	writew(val, snf->nfi_base + reg);
353 }
354 
355 static inline void nfi_rmw32(struct mtk_snand *snf, u32 reg, u32 clr, u32 set)
356 {
357 	u32 val;
358 
359 	val = readl(snf->nfi_base + reg);
360 	val &= ~clr;
361 	val |= set;
362 	writel(val, snf->nfi_base + reg);
363 }
364 
365 static void nfi_read_data(struct mtk_snand *snf, u32 reg, u8 *data, u32 len)
366 {
367 	u32 i, val = 0, es = sizeof(u32);
368 
369 	for (i = reg; i < reg + len; i++) {
370 		if (i == reg || i % es == 0)
371 			val = nfi_read32(snf, i & ~(es - 1));
372 
373 		*data++ = (u8)(val >> (8 * (i % es)));
374 	}
375 }
376 
377 static int mtk_nfi_reset(struct mtk_snand *snf)
378 {
379 	u32 val, fifo_mask;
380 	int ret;
381 
382 	nfi_write32(snf, NFI_CON, CON_FIFO_FLUSH | CON_NFI_RST);
383 
384 	ret = readw_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val,
385 				 !(val & snf->caps->mastersta_mask), 0,
386 				 SNFI_POLL_INTERVAL);
387 	if (ret) {
388 		dev_err(snf->dev, "NFI master is still busy after reset\n");
389 		return ret;
390 	}
391 
392 	ret = readl_poll_timeout(snf->nfi_base + NFI_STA, val,
393 				 !(val & (NFI_FSM | snf->caps->nandfsm_mask)), 0,
394 				 SNFI_POLL_INTERVAL);
395 	if (ret) {
396 		dev_err(snf->dev, "Failed to reset NFI\n");
397 		return ret;
398 	}
399 
400 	fifo_mask = ((snf->caps->fifo_size - 1) << FIFO_RD_REMAIN_S) |
401 		    ((snf->caps->fifo_size - 1) << FIFO_WR_REMAIN_S);
402 	ret = readw_poll_timeout(snf->nfi_base + NFI_FIFOSTA, val,
403 				 !(val & fifo_mask), 0, SNFI_POLL_INTERVAL);
404 	if (ret) {
405 		dev_err(snf->dev, "NFI FIFOs are not empty\n");
406 		return ret;
407 	}
408 
409 	return 0;
410 }
411 
412 static int mtk_snand_mac_reset(struct mtk_snand *snf)
413 {
414 	int ret;
415 	u32 val;
416 
417 	nfi_rmw32(snf, SNF_MISC_CTL, 0, SW_RST);
418 
419 	ret = readl_poll_timeout(snf->nfi_base + SNF_STA_CTL1, val,
420 				 !(val & SPI_STATE), 0, SNFI_POLL_INTERVAL);
421 	if (ret)
422 		dev_err(snf->dev, "Failed to reset SNFI MAC\n");
423 
424 	nfi_write32(snf, SNF_MISC_CTL,
425 		    (2 << FIFO_RD_LTC_S) | (10 << CS_DESELECT_CYC_S));
426 
427 	return ret;
428 }
429 
430 static int mtk_snand_mac_trigger(struct mtk_snand *snf, u32 outlen, u32 inlen)
431 {
432 	int ret;
433 	u32 val;
434 
435 	nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN);
436 	nfi_write32(snf, SNF_MAC_OUTL, outlen);
437 	nfi_write32(snf, SNF_MAC_INL, inlen);
438 
439 	nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN | SF_TRIG);
440 
441 	ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val,
442 				 val & WIP_READY, 0, SNFI_POLL_INTERVAL);
443 	if (ret) {
444 		dev_err(snf->dev, "Timed out waiting for WIP_READY\n");
445 		goto cleanup;
446 	}
447 
448 	ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val, !(val & WIP),
449 				 0, SNFI_POLL_INTERVAL);
450 	if (ret)
451 		dev_err(snf->dev, "Timed out waiting for WIP cleared\n");
452 
453 cleanup:
454 	nfi_write32(snf, SNF_MAC_CTL, 0);
455 
456 	return ret;
457 }
458 
459 static int mtk_snand_mac_io(struct mtk_snand *snf, const struct spi_mem_op *op)
460 {
461 	u32 rx_len = 0;
462 	u32 reg_offs = 0;
463 	u32 val = 0;
464 	const u8 *tx_buf = NULL;
465 	u8 *rx_buf = NULL;
466 	int i, ret;
467 	u8 b;
468 
469 	if (op->data.dir == SPI_MEM_DATA_IN) {
470 		rx_len = op->data.nbytes;
471 		rx_buf = op->data.buf.in;
472 	} else {
473 		tx_buf = op->data.buf.out;
474 	}
475 
476 	mtk_snand_mac_reset(snf);
477 
478 	for (i = 0; i < op->cmd.nbytes; i++, reg_offs++) {
479 		b = (op->cmd.opcode >> ((op->cmd.nbytes - i - 1) * 8)) & 0xff;
480 		val |= b << (8 * (reg_offs % 4));
481 		if (reg_offs % 4 == 3) {
482 			nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
483 			val = 0;
484 		}
485 	}
486 
487 	for (i = 0; i < op->addr.nbytes; i++, reg_offs++) {
488 		b = (op->addr.val >> ((op->addr.nbytes - i - 1) * 8)) & 0xff;
489 		val |= b << (8 * (reg_offs % 4));
490 		if (reg_offs % 4 == 3) {
491 			nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
492 			val = 0;
493 		}
494 	}
495 
496 	for (i = 0; i < op->dummy.nbytes; i++, reg_offs++) {
497 		if (reg_offs % 4 == 3) {
498 			nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
499 			val = 0;
500 		}
501 	}
502 
503 	if (op->data.dir == SPI_MEM_DATA_OUT) {
504 		for (i = 0; i < op->data.nbytes; i++, reg_offs++) {
505 			val |= tx_buf[i] << (8 * (reg_offs % 4));
506 			if (reg_offs % 4 == 3) {
507 				nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
508 				val = 0;
509 			}
510 		}
511 	}
512 
513 	if (reg_offs % 4)
514 		nfi_write32(snf, SNF_GPRAM + (reg_offs & ~3), val);
515 
516 	for (i = 0; i < reg_offs; i += 4)
517 		dev_dbg(snf->dev, "%d: %08X", i,
518 			nfi_read32(snf, SNF_GPRAM + i));
519 
520 	dev_dbg(snf->dev, "SNF TX: %u RX: %u", reg_offs, rx_len);
521 
522 	ret = mtk_snand_mac_trigger(snf, reg_offs, rx_len);
523 	if (ret)
524 		return ret;
525 
526 	if (!rx_len)
527 		return 0;
528 
529 	nfi_read_data(snf, SNF_GPRAM + reg_offs, rx_buf, rx_len);
530 	return 0;
531 }
532 
533 static int mtk_snand_setup_pagefmt(struct mtk_snand *snf, u32 page_size,
534 				   u32 oob_size)
535 {
536 	int spare_idx = -1;
537 	u32 spare_size, spare_size_shift, pagesize_idx;
538 	u32 sector_size_512;
539 	u8 nsectors;
540 	int i;
541 
542 	// skip if it's already configured as required.
543 	if (snf->nfi_cfg.page_size == page_size &&
544 	    snf->nfi_cfg.oob_size == oob_size)
545 		return 0;
546 
547 	nsectors = page_size / snf->caps->sector_size;
548 	if (nsectors > snf->caps->max_sectors) {
549 		dev_err(snf->dev, "too many sectors required.\n");
550 		goto err;
551 	}
552 
553 	if (snf->caps->sector_size == 512) {
554 		sector_size_512 = NFI_SEC_SEL_512;
555 		spare_size_shift = NFI_SPARE_SIZE_S;
556 	} else {
557 		sector_size_512 = 0;
558 		spare_size_shift = NFI_SPARE_SIZE_LS_S;
559 	}
560 
561 	switch (page_size) {
562 	case SZ_512:
563 		pagesize_idx = NFI_PAGE_SIZE_512_2K;
564 		break;
565 	case SZ_2K:
566 		if (snf->caps->sector_size == 512)
567 			pagesize_idx = NFI_PAGE_SIZE_2K_4K;
568 		else
569 			pagesize_idx = NFI_PAGE_SIZE_512_2K;
570 		break;
571 	case SZ_4K:
572 		if (snf->caps->sector_size == 512)
573 			pagesize_idx = NFI_PAGE_SIZE_4K_8K;
574 		else
575 			pagesize_idx = NFI_PAGE_SIZE_2K_4K;
576 		break;
577 	case SZ_8K:
578 		if (snf->caps->sector_size == 512)
579 			pagesize_idx = NFI_PAGE_SIZE_8K_16K;
580 		else
581 			pagesize_idx = NFI_PAGE_SIZE_4K_8K;
582 		break;
583 	case SZ_16K:
584 		pagesize_idx = NFI_PAGE_SIZE_8K_16K;
585 		break;
586 	default:
587 		dev_err(snf->dev, "unsupported page size.\n");
588 		goto err;
589 	}
590 
591 	spare_size = oob_size / nsectors;
592 	// If we're using the 1KB sector size, HW will automatically double the
593 	// spare size. We should only use half of the value in this case.
594 	if (snf->caps->sector_size == 1024)
595 		spare_size /= 2;
596 
597 	for (i = snf->caps->num_spare_size - 1; i >= 0; i--) {
598 		if (snf->caps->spare_sizes[i] <= spare_size) {
599 			spare_size = snf->caps->spare_sizes[i];
600 			if (snf->caps->sector_size == 1024)
601 				spare_size *= 2;
602 			spare_idx = i;
603 			break;
604 		}
605 	}
606 
607 	if (spare_idx < 0) {
608 		dev_err(snf->dev, "unsupported spare size: %u\n", spare_size);
609 		goto err;
610 	}
611 
612 	nfi_write32(snf, NFI_PAGEFMT,
613 		    (snf->caps->fdm_ecc_size << NFI_FDM_ECC_NUM_S) |
614 			    (snf->caps->fdm_size << NFI_FDM_NUM_S) |
615 			    (spare_idx << spare_size_shift) |
616 			    (pagesize_idx << NFI_PAGE_SIZE_S) |
617 			    sector_size_512);
618 
619 	snf->nfi_cfg.page_size = page_size;
620 	snf->nfi_cfg.oob_size = oob_size;
621 	snf->nfi_cfg.nsectors = nsectors;
622 	snf->nfi_cfg.spare_size = spare_size;
623 
624 	dev_dbg(snf->dev, "page format: (%u + %u) * %u\n",
625 		snf->caps->sector_size, spare_size, nsectors);
626 	return snand_prepare_bouncebuf(snf, page_size + oob_size);
627 err:
628 	dev_err(snf->dev, "page size %u + %u is not supported\n", page_size,
629 		oob_size);
630 	return -EOPNOTSUPP;
631 }
632 
633 static int mtk_snand_ooblayout_ecc(struct mtd_info *mtd, int section,
634 				   struct mtd_oob_region *oobecc)
635 {
636 	// ECC area is not accessible
637 	return -ERANGE;
638 }
639 
640 static int mtk_snand_ooblayout_free(struct mtd_info *mtd, int section,
641 				    struct mtd_oob_region *oobfree)
642 {
643 	struct nand_device *nand = mtd_to_nanddev(mtd);
644 	struct mtk_snand *ms = nand_to_mtk_snand(nand);
645 
646 	if (section >= ms->nfi_cfg.nsectors)
647 		return -ERANGE;
648 
649 	oobfree->length = ms->caps->fdm_size - 1;
650 	oobfree->offset = section * ms->caps->fdm_size + 1;
651 	return 0;
652 }
653 
654 static const struct mtd_ooblayout_ops mtk_snand_ooblayout = {
655 	.ecc = mtk_snand_ooblayout_ecc,
656 	.free = mtk_snand_ooblayout_free,
657 };
658 
659 static int mtk_snand_ecc_init_ctx(struct nand_device *nand)
660 {
661 	struct mtk_snand *snf = nand_to_mtk_snand(nand);
662 	struct nand_ecc_props *conf = &nand->ecc.ctx.conf;
663 	struct nand_ecc_props *reqs = &nand->ecc.requirements;
664 	struct nand_ecc_props *user = &nand->ecc.user_conf;
665 	struct mtd_info *mtd = nanddev_to_mtd(nand);
666 	int step_size = 0, strength = 0, desired_correction = 0, steps;
667 	bool ecc_user = false;
668 	int ret;
669 	u32 parity_bits, max_ecc_bytes;
670 	struct mtk_ecc_config *ecc_cfg;
671 
672 	ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize,
673 				      nand->memorg.oobsize);
674 	if (ret)
675 		return ret;
676 
677 	ecc_cfg = kzalloc(sizeof(*ecc_cfg), GFP_KERNEL);
678 	if (!ecc_cfg)
679 		return -ENOMEM;
680 
681 	nand->ecc.ctx.priv = ecc_cfg;
682 
683 	if (user->step_size && user->strength) {
684 		step_size = user->step_size;
685 		strength = user->strength;
686 		ecc_user = true;
687 	} else if (reqs->step_size && reqs->strength) {
688 		step_size = reqs->step_size;
689 		strength = reqs->strength;
690 	}
691 
692 	if (step_size && strength) {
693 		steps = mtd->writesize / step_size;
694 		desired_correction = steps * strength;
695 		strength = desired_correction / snf->nfi_cfg.nsectors;
696 	}
697 
698 	ecc_cfg->mode = ECC_NFI_MODE;
699 	ecc_cfg->sectors = snf->nfi_cfg.nsectors;
700 	ecc_cfg->len = snf->caps->sector_size + snf->caps->fdm_ecc_size;
701 
702 	// calculate the max possible strength under current page format
703 	parity_bits = mtk_ecc_get_parity_bits(snf->ecc);
704 	max_ecc_bytes = snf->nfi_cfg.spare_size - snf->caps->fdm_size;
705 	ecc_cfg->strength = max_ecc_bytes * 8 / parity_bits;
706 	mtk_ecc_adjust_strength(snf->ecc, &ecc_cfg->strength);
707 
708 	// if there's a user requested strength, find the minimum strength that
709 	// meets the requirement. Otherwise use the maximum strength which is
710 	// expected by BootROM.
711 	if (ecc_user && strength) {
712 		u32 s_next = ecc_cfg->strength - 1;
713 
714 		while (1) {
715 			mtk_ecc_adjust_strength(snf->ecc, &s_next);
716 			if (s_next >= ecc_cfg->strength)
717 				break;
718 			if (s_next < strength)
719 				break;
720 			s_next = ecc_cfg->strength - 1;
721 		}
722 	}
723 
724 	mtd_set_ooblayout(mtd, &mtk_snand_ooblayout);
725 
726 	conf->step_size = snf->caps->sector_size;
727 	conf->strength = ecc_cfg->strength;
728 
729 	if (ecc_cfg->strength < strength)
730 		dev_warn(snf->dev, "unable to fulfill ECC of %u bits.\n",
731 			 strength);
732 	dev_info(snf->dev, "ECC strength: %u bits per %u bytes\n",
733 		 ecc_cfg->strength, snf->caps->sector_size);
734 
735 	return 0;
736 }
737 
738 static void mtk_snand_ecc_cleanup_ctx(struct nand_device *nand)
739 {
740 	struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand);
741 
742 	kfree(ecc_cfg);
743 }
744 
745 static int mtk_snand_ecc_prepare_io_req(struct nand_device *nand,
746 					struct nand_page_io_req *req)
747 {
748 	struct mtk_snand *snf = nand_to_mtk_snand(nand);
749 	struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand);
750 	int ret;
751 
752 	ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize,
753 				      nand->memorg.oobsize);
754 	if (ret)
755 		return ret;
756 	snf->autofmt = true;
757 	snf->ecc_cfg = ecc_cfg;
758 	return 0;
759 }
760 
761 static int mtk_snand_ecc_finish_io_req(struct nand_device *nand,
762 				       struct nand_page_io_req *req)
763 {
764 	struct mtk_snand *snf = nand_to_mtk_snand(nand);
765 	struct mtd_info *mtd = nanddev_to_mtd(nand);
766 
767 	snf->ecc_cfg = NULL;
768 	snf->autofmt = false;
769 	if ((req->mode == MTD_OPS_RAW) || (req->type != NAND_PAGE_READ))
770 		return 0;
771 
772 	if (snf->ecc_stats.failed)
773 		mtd->ecc_stats.failed += snf->ecc_stats.failed;
774 	mtd->ecc_stats.corrected += snf->ecc_stats.corrected;
775 	return snf->ecc_stats.failed ? -EBADMSG : snf->ecc_stats.bitflips;
776 }
777 
778 static struct nand_ecc_engine_ops mtk_snfi_ecc_engine_ops = {
779 	.init_ctx = mtk_snand_ecc_init_ctx,
780 	.cleanup_ctx = mtk_snand_ecc_cleanup_ctx,
781 	.prepare_io_req = mtk_snand_ecc_prepare_io_req,
782 	.finish_io_req = mtk_snand_ecc_finish_io_req,
783 };
784 
785 static void mtk_snand_read_fdm(struct mtk_snand *snf, u8 *buf)
786 {
787 	u32 vall, valm;
788 	u8 *oobptr = buf;
789 	int i, j;
790 
791 	for (i = 0; i < snf->nfi_cfg.nsectors; i++) {
792 		vall = nfi_read32(snf, NFI_FDML(i));
793 		valm = nfi_read32(snf, NFI_FDMM(i));
794 
795 		for (j = 0; j < snf->caps->fdm_size; j++)
796 			oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8);
797 
798 		oobptr += snf->caps->fdm_size;
799 	}
800 }
801 
802 static void mtk_snand_write_fdm(struct mtk_snand *snf, const u8 *buf)
803 {
804 	u32 fdm_size = snf->caps->fdm_size;
805 	const u8 *oobptr = buf;
806 	u32 vall, valm;
807 	int i, j;
808 
809 	for (i = 0; i < snf->nfi_cfg.nsectors; i++) {
810 		vall = 0;
811 		valm = 0;
812 
813 		for (j = 0; j < 8; j++) {
814 			if (j < 4)
815 				vall |= (j < fdm_size ? oobptr[j] : 0xff)
816 					<< (j * 8);
817 			else
818 				valm |= (j < fdm_size ? oobptr[j] : 0xff)
819 					<< ((j - 4) * 8);
820 		}
821 
822 		nfi_write32(snf, NFI_FDML(i), vall);
823 		nfi_write32(snf, NFI_FDMM(i), valm);
824 
825 		oobptr += fdm_size;
826 	}
827 }
828 
829 static void mtk_snand_bm_swap(struct mtk_snand *snf, u8 *buf)
830 {
831 	u32 buf_bbm_pos, fdm_bbm_pos;
832 
833 	if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1)
834 		return;
835 
836 	// swap [pagesize] byte on nand with the first fdm byte
837 	// in the last sector.
838 	buf_bbm_pos = snf->nfi_cfg.page_size -
839 		      (snf->nfi_cfg.nsectors - 1) * snf->nfi_cfg.spare_size;
840 	fdm_bbm_pos = snf->nfi_cfg.page_size +
841 		      (snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size;
842 
843 	swap(snf->buf[fdm_bbm_pos], buf[buf_bbm_pos]);
844 }
845 
846 static void mtk_snand_fdm_bm_swap(struct mtk_snand *snf)
847 {
848 	u32 fdm_bbm_pos1, fdm_bbm_pos2;
849 
850 	if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1)
851 		return;
852 
853 	// swap the first fdm byte in the first and the last sector.
854 	fdm_bbm_pos1 = snf->nfi_cfg.page_size;
855 	fdm_bbm_pos2 = snf->nfi_cfg.page_size +
856 		       (snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size;
857 	swap(snf->buf[fdm_bbm_pos1], snf->buf[fdm_bbm_pos2]);
858 }
859 
860 static int mtk_snand_read_page_cache(struct mtk_snand *snf,
861 				     const struct spi_mem_op *op)
862 {
863 	u8 *buf = snf->buf;
864 	u8 *buf_fdm = buf + snf->nfi_cfg.page_size;
865 	// the address part to be sent by the controller
866 	u32 op_addr = op->addr.val;
867 	// where to start copying data from bounce buffer
868 	u32 rd_offset = 0;
869 	u32 dummy_clk = (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth);
870 	u32 op_mode = 0;
871 	u32 dma_len = snf->buf_len;
872 	int ret = 0;
873 	u32 rd_mode, rd_bytes, val;
874 	dma_addr_t buf_dma;
875 
876 	if (snf->autofmt) {
877 		u32 last_bit;
878 		u32 mask;
879 
880 		dma_len = snf->nfi_cfg.page_size;
881 		op_mode = CNFG_AUTO_FMT_EN;
882 		if (op->data.ecc)
883 			op_mode |= CNFG_HW_ECC_EN;
884 		// extract the plane bit:
885 		// Find the highest bit set in (pagesize+oobsize).
886 		// Bits higher than that in op->addr are kept and sent over SPI
887 		// Lower bits are used as an offset for copying data from DMA
888 		// bounce buffer.
889 		last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size);
890 		mask = (1 << last_bit) - 1;
891 		rd_offset = op_addr & mask;
892 		op_addr &= ~mask;
893 
894 		// check if we can dma to the caller memory
895 		if (rd_offset == 0 && op->data.nbytes >= snf->nfi_cfg.page_size)
896 			buf = op->data.buf.in;
897 	}
898 	mtk_snand_mac_reset(snf);
899 	mtk_nfi_reset(snf);
900 
901 	// command and dummy cycles
902 	nfi_write32(snf, SNF_RD_CTL2,
903 		    (dummy_clk << DATA_READ_DUMMY_S) |
904 			    (op->cmd.opcode << DATA_READ_CMD_S));
905 
906 	// read address
907 	nfi_write32(snf, SNF_RD_CTL3, op_addr);
908 
909 	// Set read op_mode
910 	if (op->data.buswidth == 4)
911 		rd_mode = op->addr.buswidth == 4 ? DATA_READ_MODE_QUAD :
912 						   DATA_READ_MODE_X4;
913 	else if (op->data.buswidth == 2)
914 		rd_mode = op->addr.buswidth == 2 ? DATA_READ_MODE_DUAL :
915 						   DATA_READ_MODE_X2;
916 	else
917 		rd_mode = DATA_READ_MODE_X1;
918 	rd_mode <<= DATA_READ_MODE_S;
919 	nfi_rmw32(snf, SNF_MISC_CTL, DATA_READ_MODE,
920 		  rd_mode | DATARD_CUSTOM_EN);
921 
922 	// Set bytes to read
923 	rd_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) *
924 		   snf->nfi_cfg.nsectors;
925 	nfi_write32(snf, SNF_MISC_CTL2,
926 		    (rd_bytes << PROGRAM_LOAD_BYTE_NUM_S) | rd_bytes);
927 
928 	// NFI read prepare
929 	nfi_write16(snf, NFI_CNFG,
930 		    (CNFG_OP_MODE_CUST << CNFG_OP_MODE_S) | CNFG_DMA_BURST_EN |
931 			    CNFG_READ_MODE | CNFG_DMA_MODE | op_mode);
932 
933 	nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S));
934 
935 	buf_dma = dma_map_single(snf->dev, buf, dma_len, DMA_FROM_DEVICE);
936 	ret = dma_mapping_error(snf->dev, buf_dma);
937 	if (ret) {
938 		dev_err(snf->dev, "DMA mapping failed.\n");
939 		goto cleanup;
940 	}
941 	nfi_write32(snf, NFI_STRADDR, buf_dma);
942 	if (op->data.ecc) {
943 		snf->ecc_cfg->op = ECC_DECODE;
944 		ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg);
945 		if (ret)
946 			goto cleanup_dma;
947 	}
948 	// Prepare for custom read interrupt
949 	nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_READ);
950 	reinit_completion(&snf->op_done);
951 
952 	// Trigger NFI into custom mode
953 	nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_READ);
954 
955 	// Start DMA read
956 	nfi_rmw32(snf, NFI_CON, 0, CON_BRD);
957 	nfi_write16(snf, NFI_STRDATA, STR_DATA);
958 
959 	if (!wait_for_completion_timeout(
960 		    &snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) {
961 		dev_err(snf->dev, "DMA timed out for reading from cache.\n");
962 		ret = -ETIMEDOUT;
963 		goto cleanup;
964 	}
965 
966 	// Wait for BUS_SEC_CNTR returning expected value
967 	ret = readl_poll_timeout(snf->nfi_base + NFI_BYTELEN, val,
968 				 BUS_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0,
969 				 SNFI_POLL_INTERVAL);
970 	if (ret) {
971 		dev_err(snf->dev, "Timed out waiting for BUS_SEC_CNTR\n");
972 		goto cleanup2;
973 	}
974 
975 	// Wait for bus becoming idle
976 	ret = readl_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val,
977 				 !(val & snf->caps->mastersta_mask), 0,
978 				 SNFI_POLL_INTERVAL);
979 	if (ret) {
980 		dev_err(snf->dev, "Timed out waiting for bus becoming idle\n");
981 		goto cleanup2;
982 	}
983 
984 	if (op->data.ecc) {
985 		ret = mtk_ecc_wait_done(snf->ecc, ECC_DECODE);
986 		if (ret) {
987 			dev_err(snf->dev, "wait ecc done timeout\n");
988 			goto cleanup2;
989 		}
990 		// save status before disabling ecc
991 		mtk_ecc_get_stats(snf->ecc, &snf->ecc_stats,
992 				  snf->nfi_cfg.nsectors);
993 	}
994 
995 	dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE);
996 
997 	if (snf->autofmt) {
998 		mtk_snand_read_fdm(snf, buf_fdm);
999 		if (snf->caps->bbm_swap) {
1000 			mtk_snand_bm_swap(snf, buf);
1001 			mtk_snand_fdm_bm_swap(snf);
1002 		}
1003 	}
1004 
1005 	// copy data back
1006 	if (nfi_read32(snf, NFI_STA) & READ_EMPTY) {
1007 		memset(op->data.buf.in, 0xff, op->data.nbytes);
1008 		snf->ecc_stats.bitflips = 0;
1009 		snf->ecc_stats.failed = 0;
1010 		snf->ecc_stats.corrected = 0;
1011 	} else {
1012 		if (buf == op->data.buf.in) {
1013 			u32 cap_len = snf->buf_len - snf->nfi_cfg.page_size;
1014 			u32 req_left = op->data.nbytes - snf->nfi_cfg.page_size;
1015 
1016 			if (req_left)
1017 				memcpy(op->data.buf.in + snf->nfi_cfg.page_size,
1018 				       buf_fdm,
1019 				       cap_len < req_left ? cap_len : req_left);
1020 		} else if (rd_offset < snf->buf_len) {
1021 			u32 cap_len = snf->buf_len - rd_offset;
1022 
1023 			if (op->data.nbytes < cap_len)
1024 				cap_len = op->data.nbytes;
1025 			memcpy(op->data.buf.in, snf->buf + rd_offset, cap_len);
1026 		}
1027 	}
1028 cleanup2:
1029 	if (op->data.ecc)
1030 		mtk_ecc_disable(snf->ecc);
1031 cleanup_dma:
1032 	// unmap dma only if any error happens. (otherwise it's done before
1033 	// data copying)
1034 	if (ret)
1035 		dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE);
1036 cleanup:
1037 	// Stop read
1038 	nfi_write32(snf, NFI_CON, 0);
1039 	nfi_write16(snf, NFI_CNFG, 0);
1040 
1041 	// Clear SNF done flag
1042 	nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_READ_DONE);
1043 	nfi_write32(snf, SNF_STA_CTL1, 0);
1044 
1045 	// Disable interrupt
1046 	nfi_read32(snf, NFI_INTR_STA);
1047 	nfi_write32(snf, NFI_INTR_EN, 0);
1048 
1049 	nfi_rmw32(snf, SNF_MISC_CTL, DATARD_CUSTOM_EN, 0);
1050 	return ret;
1051 }
1052 
1053 static int mtk_snand_write_page_cache(struct mtk_snand *snf,
1054 				      const struct spi_mem_op *op)
1055 {
1056 	// the address part to be sent by the controller
1057 	u32 op_addr = op->addr.val;
1058 	// where to start copying data from bounce buffer
1059 	u32 wr_offset = 0;
1060 	u32 op_mode = 0;
1061 	int ret = 0;
1062 	u32 wr_mode = 0;
1063 	u32 dma_len = snf->buf_len;
1064 	u32 wr_bytes, val;
1065 	size_t cap_len;
1066 	dma_addr_t buf_dma;
1067 
1068 	if (snf->autofmt) {
1069 		u32 last_bit;
1070 		u32 mask;
1071 
1072 		dma_len = snf->nfi_cfg.page_size;
1073 		op_mode = CNFG_AUTO_FMT_EN;
1074 		if (op->data.ecc)
1075 			op_mode |= CNFG_HW_ECC_EN;
1076 
1077 		last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size);
1078 		mask = (1 << last_bit) - 1;
1079 		wr_offset = op_addr & mask;
1080 		op_addr &= ~mask;
1081 	}
1082 	mtk_snand_mac_reset(snf);
1083 	mtk_nfi_reset(snf);
1084 
1085 	if (wr_offset)
1086 		memset(snf->buf, 0xff, wr_offset);
1087 
1088 	cap_len = snf->buf_len - wr_offset;
1089 	if (op->data.nbytes < cap_len)
1090 		cap_len = op->data.nbytes;
1091 	memcpy(snf->buf + wr_offset, op->data.buf.out, cap_len);
1092 	if (snf->autofmt) {
1093 		if (snf->caps->bbm_swap) {
1094 			mtk_snand_fdm_bm_swap(snf);
1095 			mtk_snand_bm_swap(snf, snf->buf);
1096 		}
1097 		mtk_snand_write_fdm(snf, snf->buf + snf->nfi_cfg.page_size);
1098 	}
1099 
1100 	// Command
1101 	nfi_write32(snf, SNF_PG_CTL1, (op->cmd.opcode << PG_LOAD_CMD_S));
1102 
1103 	// write address
1104 	nfi_write32(snf, SNF_PG_CTL2, op_addr);
1105 
1106 	// Set read op_mode
1107 	if (op->data.buswidth == 4)
1108 		wr_mode = PG_LOAD_X4_EN;
1109 
1110 	nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_X4_EN,
1111 		  wr_mode | PG_LOAD_CUSTOM_EN);
1112 
1113 	// Set bytes to write
1114 	wr_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) *
1115 		   snf->nfi_cfg.nsectors;
1116 	nfi_write32(snf, SNF_MISC_CTL2,
1117 		    (wr_bytes << PROGRAM_LOAD_BYTE_NUM_S) | wr_bytes);
1118 
1119 	// NFI write prepare
1120 	nfi_write16(snf, NFI_CNFG,
1121 		    (CNFG_OP_MODE_PROGRAM << CNFG_OP_MODE_S) |
1122 			    CNFG_DMA_BURST_EN | CNFG_DMA_MODE | op_mode);
1123 
1124 	nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S));
1125 	buf_dma = dma_map_single(snf->dev, snf->buf, dma_len, DMA_TO_DEVICE);
1126 	ret = dma_mapping_error(snf->dev, buf_dma);
1127 	if (ret) {
1128 		dev_err(snf->dev, "DMA mapping failed.\n");
1129 		goto cleanup;
1130 	}
1131 	nfi_write32(snf, NFI_STRADDR, buf_dma);
1132 	if (op->data.ecc) {
1133 		snf->ecc_cfg->op = ECC_ENCODE;
1134 		ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg);
1135 		if (ret)
1136 			goto cleanup_dma;
1137 	}
1138 	// Prepare for custom write interrupt
1139 	nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_PG);
1140 	reinit_completion(&snf->op_done);
1141 	;
1142 
1143 	// Trigger NFI into custom mode
1144 	nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_WRITE);
1145 
1146 	// Start DMA write
1147 	nfi_rmw32(snf, NFI_CON, 0, CON_BWR);
1148 	nfi_write16(snf, NFI_STRDATA, STR_DATA);
1149 
1150 	if (!wait_for_completion_timeout(
1151 		    &snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) {
1152 		dev_err(snf->dev, "DMA timed out for program load.\n");
1153 		ret = -ETIMEDOUT;
1154 		goto cleanup_ecc;
1155 	}
1156 
1157 	// Wait for NFI_SEC_CNTR returning expected value
1158 	ret = readl_poll_timeout(snf->nfi_base + NFI_ADDRCNTR, val,
1159 				 NFI_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0,
1160 				 SNFI_POLL_INTERVAL);
1161 	if (ret)
1162 		dev_err(snf->dev, "Timed out waiting for NFI_SEC_CNTR\n");
1163 
1164 cleanup_ecc:
1165 	if (op->data.ecc)
1166 		mtk_ecc_disable(snf->ecc);
1167 cleanup_dma:
1168 	dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_TO_DEVICE);
1169 cleanup:
1170 	// Stop write
1171 	nfi_write32(snf, NFI_CON, 0);
1172 	nfi_write16(snf, NFI_CNFG, 0);
1173 
1174 	// Clear SNF done flag
1175 	nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_PG_DONE);
1176 	nfi_write32(snf, SNF_STA_CTL1, 0);
1177 
1178 	// Disable interrupt
1179 	nfi_read32(snf, NFI_INTR_STA);
1180 	nfi_write32(snf, NFI_INTR_EN, 0);
1181 
1182 	nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_CUSTOM_EN, 0);
1183 
1184 	return ret;
1185 }
1186 
1187 /**
1188  * mtk_snand_is_page_ops() - check if the op is a controller supported page op.
1189  * @op spi-mem op to check
1190  *
1191  * Check whether op can be executed with read_from_cache or program_load
1192  * mode in the controller.
1193  * This controller can execute typical Read From Cache and Program Load
1194  * instructions found on SPI-NAND with 2-byte address.
1195  * DTR and cmd buswidth & nbytes should be checked before calling this.
1196  *
1197  * Return: true if the op matches the instruction template
1198  */
1199 static bool mtk_snand_is_page_ops(const struct spi_mem_op *op)
1200 {
1201 	if (op->addr.nbytes != 2)
1202 		return false;
1203 
1204 	if (op->addr.buswidth != 1 && op->addr.buswidth != 2 &&
1205 	    op->addr.buswidth != 4)
1206 		return false;
1207 
1208 	// match read from page instructions
1209 	if (op->data.dir == SPI_MEM_DATA_IN) {
1210 		// check dummy cycle first
1211 		if (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth >
1212 		    DATA_READ_MAX_DUMMY)
1213 			return false;
1214 		// quad io / quad out
1215 		if ((op->addr.buswidth == 4 || op->addr.buswidth == 1) &&
1216 		    op->data.buswidth == 4)
1217 			return true;
1218 
1219 		// dual io / dual out
1220 		if ((op->addr.buswidth == 2 || op->addr.buswidth == 1) &&
1221 		    op->data.buswidth == 2)
1222 			return true;
1223 
1224 		// standard spi
1225 		if (op->addr.buswidth == 1 && op->data.buswidth == 1)
1226 			return true;
1227 	} else if (op->data.dir == SPI_MEM_DATA_OUT) {
1228 		// check dummy cycle first
1229 		if (op->dummy.nbytes)
1230 			return false;
1231 		// program load quad out
1232 		if (op->addr.buswidth == 1 && op->data.buswidth == 4)
1233 			return true;
1234 		// standard spi
1235 		if (op->addr.buswidth == 1 && op->data.buswidth == 1)
1236 			return true;
1237 	}
1238 	return false;
1239 }
1240 
1241 static bool mtk_snand_supports_op(struct spi_mem *mem,
1242 				  const struct spi_mem_op *op)
1243 {
1244 	if (!spi_mem_default_supports_op(mem, op))
1245 		return false;
1246 	if (op->cmd.nbytes != 1 || op->cmd.buswidth != 1)
1247 		return false;
1248 	if (mtk_snand_is_page_ops(op))
1249 		return true;
1250 	return ((op->addr.nbytes == 0 || op->addr.buswidth == 1) &&
1251 		(op->dummy.nbytes == 0 || op->dummy.buswidth == 1) &&
1252 		(op->data.nbytes == 0 || op->data.buswidth == 1));
1253 }
1254 
1255 static int mtk_snand_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
1256 {
1257 	struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->master);
1258 	// page ops transfer size must be exactly ((sector_size + spare_size) *
1259 	// nsectors). Limit the op size if the caller requests more than that.
1260 	// exec_op will read more than needed and discard the leftover if the
1261 	// caller requests less data.
1262 	if (mtk_snand_is_page_ops(op)) {
1263 		size_t l;
1264 		// skip adjust_op_size for page ops
1265 		if (ms->autofmt)
1266 			return 0;
1267 		l = ms->caps->sector_size + ms->nfi_cfg.spare_size;
1268 		l *= ms->nfi_cfg.nsectors;
1269 		if (op->data.nbytes > l)
1270 			op->data.nbytes = l;
1271 	} else {
1272 		size_t hl = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
1273 
1274 		if (hl >= SNF_GPRAM_SIZE)
1275 			return -EOPNOTSUPP;
1276 		if (op->data.nbytes > SNF_GPRAM_SIZE - hl)
1277 			op->data.nbytes = SNF_GPRAM_SIZE - hl;
1278 	}
1279 	return 0;
1280 }
1281 
1282 static int mtk_snand_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
1283 {
1284 	struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->master);
1285 
1286 	dev_dbg(ms->dev, "OP %02x ADDR %08llX@%d:%u DATA %d:%u", op->cmd.opcode,
1287 		op->addr.val, op->addr.buswidth, op->addr.nbytes,
1288 		op->data.buswidth, op->data.nbytes);
1289 	if (mtk_snand_is_page_ops(op)) {
1290 		if (op->data.dir == SPI_MEM_DATA_IN)
1291 			return mtk_snand_read_page_cache(ms, op);
1292 		else
1293 			return mtk_snand_write_page_cache(ms, op);
1294 	} else {
1295 		return mtk_snand_mac_io(ms, op);
1296 	}
1297 }
1298 
1299 static const struct spi_controller_mem_ops mtk_snand_mem_ops = {
1300 	.adjust_op_size = mtk_snand_adjust_op_size,
1301 	.supports_op = mtk_snand_supports_op,
1302 	.exec_op = mtk_snand_exec_op,
1303 };
1304 
1305 static const struct spi_controller_mem_caps mtk_snand_mem_caps = {
1306 	.ecc = true,
1307 };
1308 
1309 static irqreturn_t mtk_snand_irq(int irq, void *id)
1310 {
1311 	struct mtk_snand *snf = id;
1312 	u32 sta, ien;
1313 
1314 	sta = nfi_read32(snf, NFI_INTR_STA);
1315 	ien = nfi_read32(snf, NFI_INTR_EN);
1316 
1317 	if (!(sta & ien))
1318 		return IRQ_NONE;
1319 
1320 	nfi_write32(snf, NFI_INTR_EN, 0);
1321 	complete(&snf->op_done);
1322 	return IRQ_HANDLED;
1323 }
1324 
1325 static const struct of_device_id mtk_snand_ids[] = {
1326 	{ .compatible = "mediatek,mt7622-snand", .data = &mt7622_snand_caps },
1327 	{ .compatible = "mediatek,mt7629-snand", .data = &mt7629_snand_caps },
1328 	{ .compatible = "mediatek,mt7986-snand", .data = &mt7986_snand_caps },
1329 	{},
1330 };
1331 
1332 MODULE_DEVICE_TABLE(of, mtk_snand_ids);
1333 
1334 static int mtk_snand_enable_clk(struct mtk_snand *ms)
1335 {
1336 	int ret;
1337 
1338 	ret = clk_prepare_enable(ms->nfi_clk);
1339 	if (ret) {
1340 		dev_err(ms->dev, "unable to enable nfi clk\n");
1341 		return ret;
1342 	}
1343 	ret = clk_prepare_enable(ms->pad_clk);
1344 	if (ret) {
1345 		dev_err(ms->dev, "unable to enable pad clk\n");
1346 		goto err1;
1347 	}
1348 	ret = clk_prepare_enable(ms->nfi_hclk);
1349 	if (ret) {
1350 		dev_err(ms->dev, "unable to enable nfi hclk\n");
1351 		goto err2;
1352 	}
1353 
1354 	return 0;
1355 
1356 err2:
1357 	clk_disable_unprepare(ms->pad_clk);
1358 err1:
1359 	clk_disable_unprepare(ms->nfi_clk);
1360 	return ret;
1361 }
1362 
1363 static void mtk_snand_disable_clk(struct mtk_snand *ms)
1364 {
1365 	clk_disable_unprepare(ms->nfi_hclk);
1366 	clk_disable_unprepare(ms->pad_clk);
1367 	clk_disable_unprepare(ms->nfi_clk);
1368 }
1369 
1370 static int mtk_snand_probe(struct platform_device *pdev)
1371 {
1372 	struct device_node *np = pdev->dev.of_node;
1373 	const struct of_device_id *dev_id;
1374 	struct spi_controller *ctlr;
1375 	struct mtk_snand *ms;
1376 	unsigned long spi_freq;
1377 	u32 val = 0;
1378 	int ret;
1379 
1380 	dev_id = of_match_node(mtk_snand_ids, np);
1381 	if (!dev_id)
1382 		return -EINVAL;
1383 
1384 	ctlr = devm_spi_alloc_master(&pdev->dev, sizeof(*ms));
1385 	if (!ctlr)
1386 		return -ENOMEM;
1387 	platform_set_drvdata(pdev, ctlr);
1388 
1389 	ms = spi_controller_get_devdata(ctlr);
1390 
1391 	ms->ctlr = ctlr;
1392 	ms->caps = dev_id->data;
1393 
1394 	ms->ecc = of_mtk_ecc_get(np);
1395 	if (IS_ERR(ms->ecc))
1396 		return PTR_ERR(ms->ecc);
1397 	else if (!ms->ecc)
1398 		return -ENODEV;
1399 
1400 	ms->nfi_base = devm_platform_ioremap_resource(pdev, 0);
1401 	if (IS_ERR(ms->nfi_base)) {
1402 		ret = PTR_ERR(ms->nfi_base);
1403 		goto release_ecc;
1404 	}
1405 
1406 	ms->dev = &pdev->dev;
1407 
1408 	ms->nfi_clk = devm_clk_get(&pdev->dev, "nfi_clk");
1409 	if (IS_ERR(ms->nfi_clk)) {
1410 		ret = PTR_ERR(ms->nfi_clk);
1411 		dev_err(&pdev->dev, "unable to get nfi_clk, err = %d\n", ret);
1412 		goto release_ecc;
1413 	}
1414 
1415 	ms->pad_clk = devm_clk_get(&pdev->dev, "pad_clk");
1416 	if (IS_ERR(ms->pad_clk)) {
1417 		ret = PTR_ERR(ms->pad_clk);
1418 		dev_err(&pdev->dev, "unable to get pad_clk, err = %d\n", ret);
1419 		goto release_ecc;
1420 	}
1421 
1422 	ms->nfi_hclk = devm_clk_get_optional(&pdev->dev, "nfi_hclk");
1423 	if (IS_ERR(ms->nfi_hclk)) {
1424 		ret = PTR_ERR(ms->nfi_hclk);
1425 		dev_err(&pdev->dev, "unable to get nfi_hclk, err = %d\n", ret);
1426 		goto release_ecc;
1427 	}
1428 
1429 	ret = mtk_snand_enable_clk(ms);
1430 	if (ret)
1431 		goto release_ecc;
1432 
1433 	init_completion(&ms->op_done);
1434 
1435 	ms->irq = platform_get_irq(pdev, 0);
1436 	if (ms->irq < 0) {
1437 		ret = ms->irq;
1438 		goto disable_clk;
1439 	}
1440 	ret = devm_request_irq(ms->dev, ms->irq, mtk_snand_irq, 0x0,
1441 			       "mtk-snand", ms);
1442 	if (ret) {
1443 		dev_err(ms->dev, "failed to request snfi irq\n");
1444 		goto disable_clk;
1445 	}
1446 
1447 	ret = dma_set_mask(ms->dev, DMA_BIT_MASK(32));
1448 	if (ret) {
1449 		dev_err(ms->dev, "failed to set dma mask\n");
1450 		goto disable_clk;
1451 	}
1452 
1453 	// switch to SNFI mode
1454 	nfi_write32(ms, SNF_CFG, SPI_MODE);
1455 
1456 	ret = of_property_read_u32(np, "rx-sample-delay-ns", &val);
1457 	if (!ret)
1458 		nfi_rmw32(ms, SNF_DLY_CTL3, SFCK_SAM_DLY,
1459 			  val * SFCK_SAM_DLY_RANGE / SFCK_SAM_DLY_TOTAL);
1460 
1461 	ret = of_property_read_u32(np, "mediatek,rx-latch-latency-ns", &val);
1462 	if (!ret) {
1463 		spi_freq = clk_get_rate(ms->pad_clk);
1464 		val = DIV_ROUND_CLOSEST(val, NSEC_PER_SEC / spi_freq);
1465 		nfi_rmw32(ms, SNF_MISC_CTL, DATA_READ_LATCH_LAT,
1466 			  val << DATA_READ_LATCH_LAT_S);
1467 	}
1468 
1469 	// setup an initial page format for ops matching page_cache_op template
1470 	// before ECC is called.
1471 	ret = mtk_snand_setup_pagefmt(ms, SZ_2K, SZ_64);
1472 	if (ret) {
1473 		dev_err(ms->dev, "failed to set initial page format\n");
1474 		goto disable_clk;
1475 	}
1476 
1477 	// setup ECC engine
1478 	ms->ecc_eng.dev = &pdev->dev;
1479 	ms->ecc_eng.integration = NAND_ECC_ENGINE_INTEGRATION_PIPELINED;
1480 	ms->ecc_eng.ops = &mtk_snfi_ecc_engine_ops;
1481 	ms->ecc_eng.priv = ms;
1482 
1483 	ret = nand_ecc_register_on_host_hw_engine(&ms->ecc_eng);
1484 	if (ret) {
1485 		dev_err(&pdev->dev, "failed to register ecc engine.\n");
1486 		goto disable_clk;
1487 	}
1488 
1489 	ctlr->num_chipselect = 1;
1490 	ctlr->mem_ops = &mtk_snand_mem_ops;
1491 	ctlr->mem_caps = &mtk_snand_mem_caps;
1492 	ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
1493 	ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_TX_DUAL | SPI_TX_QUAD;
1494 	ctlr->dev.of_node = pdev->dev.of_node;
1495 	ret = spi_register_controller(ctlr);
1496 	if (ret) {
1497 		dev_err(&pdev->dev, "spi_register_controller failed.\n");
1498 		goto disable_clk;
1499 	}
1500 
1501 	return 0;
1502 disable_clk:
1503 	mtk_snand_disable_clk(ms);
1504 release_ecc:
1505 	mtk_ecc_release(ms->ecc);
1506 	return ret;
1507 }
1508 
1509 static void mtk_snand_remove(struct platform_device *pdev)
1510 {
1511 	struct spi_controller *ctlr = platform_get_drvdata(pdev);
1512 	struct mtk_snand *ms = spi_controller_get_devdata(ctlr);
1513 
1514 	spi_unregister_controller(ctlr);
1515 	mtk_snand_disable_clk(ms);
1516 	mtk_ecc_release(ms->ecc);
1517 	kfree(ms->buf);
1518 }
1519 
1520 static struct platform_driver mtk_snand_driver = {
1521 	.probe = mtk_snand_probe,
1522 	.remove_new = mtk_snand_remove,
1523 	.driver = {
1524 		.name = "mtk-snand",
1525 		.of_match_table = mtk_snand_ids,
1526 	},
1527 };
1528 
1529 module_platform_driver(mtk_snand_driver);
1530 
1531 MODULE_LICENSE("GPL");
1532 MODULE_AUTHOR("Chuanhong Guo <gch981213@gmail.com>");
1533 MODULE_DESCRIPTION("MeidaTek SPI-NAND Flash Controller Driver");
1534