xref: /linux/drivers/spi/spi.c (revision 44f57d78)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6 
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
36 
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
41 
42 #include "internals.h"
43 
44 static DEFINE_IDR(spi_master_idr);
45 
46 static void spidev_release(struct device *dev)
47 {
48 	struct spi_device	*spi = to_spi_device(dev);
49 
50 	/* spi controllers may cleanup for released devices */
51 	if (spi->controller->cleanup)
52 		spi->controller->cleanup(spi);
53 
54 	spi_controller_put(spi->controller);
55 	kfree(spi->driver_override);
56 	kfree(spi);
57 }
58 
59 static ssize_t
60 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
61 {
62 	const struct spi_device	*spi = to_spi_device(dev);
63 	int len;
64 
65 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
66 	if (len != -ENODEV)
67 		return len;
68 
69 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
70 }
71 static DEVICE_ATTR_RO(modalias);
72 
73 static ssize_t driver_override_store(struct device *dev,
74 				     struct device_attribute *a,
75 				     const char *buf, size_t count)
76 {
77 	struct spi_device *spi = to_spi_device(dev);
78 	const char *end = memchr(buf, '\n', count);
79 	const size_t len = end ? end - buf : count;
80 	const char *driver_override, *old;
81 
82 	/* We need to keep extra room for a newline when displaying value */
83 	if (len >= (PAGE_SIZE - 1))
84 		return -EINVAL;
85 
86 	driver_override = kstrndup(buf, len, GFP_KERNEL);
87 	if (!driver_override)
88 		return -ENOMEM;
89 
90 	device_lock(dev);
91 	old = spi->driver_override;
92 	if (len) {
93 		spi->driver_override = driver_override;
94 	} else {
95 		/* Emptry string, disable driver override */
96 		spi->driver_override = NULL;
97 		kfree(driver_override);
98 	}
99 	device_unlock(dev);
100 	kfree(old);
101 
102 	return count;
103 }
104 
105 static ssize_t driver_override_show(struct device *dev,
106 				    struct device_attribute *a, char *buf)
107 {
108 	const struct spi_device *spi = to_spi_device(dev);
109 	ssize_t len;
110 
111 	device_lock(dev);
112 	len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
113 	device_unlock(dev);
114 	return len;
115 }
116 static DEVICE_ATTR_RW(driver_override);
117 
118 #define SPI_STATISTICS_ATTRS(field, file)				\
119 static ssize_t spi_controller_##field##_show(struct device *dev,	\
120 					     struct device_attribute *attr, \
121 					     char *buf)			\
122 {									\
123 	struct spi_controller *ctlr = container_of(dev,			\
124 					 struct spi_controller, dev);	\
125 	return spi_statistics_##field##_show(&ctlr->statistics, buf);	\
126 }									\
127 static struct device_attribute dev_attr_spi_controller_##field = {	\
128 	.attr = { .name = file, .mode = 0444 },				\
129 	.show = spi_controller_##field##_show,				\
130 };									\
131 static ssize_t spi_device_##field##_show(struct device *dev,		\
132 					 struct device_attribute *attr,	\
133 					char *buf)			\
134 {									\
135 	struct spi_device *spi = to_spi_device(dev);			\
136 	return spi_statistics_##field##_show(&spi->statistics, buf);	\
137 }									\
138 static struct device_attribute dev_attr_spi_device_##field = {		\
139 	.attr = { .name = file, .mode = 0444 },				\
140 	.show = spi_device_##field##_show,				\
141 }
142 
143 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
144 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
145 					    char *buf)			\
146 {									\
147 	unsigned long flags;						\
148 	ssize_t len;							\
149 	spin_lock_irqsave(&stat->lock, flags);				\
150 	len = sprintf(buf, format_string, stat->field);			\
151 	spin_unlock_irqrestore(&stat->lock, flags);			\
152 	return len;							\
153 }									\
154 SPI_STATISTICS_ATTRS(name, file)
155 
156 #define SPI_STATISTICS_SHOW(field, format_string)			\
157 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
158 				 field, format_string)
159 
160 SPI_STATISTICS_SHOW(messages, "%lu");
161 SPI_STATISTICS_SHOW(transfers, "%lu");
162 SPI_STATISTICS_SHOW(errors, "%lu");
163 SPI_STATISTICS_SHOW(timedout, "%lu");
164 
165 SPI_STATISTICS_SHOW(spi_sync, "%lu");
166 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
167 SPI_STATISTICS_SHOW(spi_async, "%lu");
168 
169 SPI_STATISTICS_SHOW(bytes, "%llu");
170 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
171 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
172 
173 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
174 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
175 				 "transfer_bytes_histo_" number,	\
176 				 transfer_bytes_histo[index],  "%lu")
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
192 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
193 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
194 
195 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
196 
197 static struct attribute *spi_dev_attrs[] = {
198 	&dev_attr_modalias.attr,
199 	&dev_attr_driver_override.attr,
200 	NULL,
201 };
202 
203 static const struct attribute_group spi_dev_group = {
204 	.attrs  = spi_dev_attrs,
205 };
206 
207 static struct attribute *spi_device_statistics_attrs[] = {
208 	&dev_attr_spi_device_messages.attr,
209 	&dev_attr_spi_device_transfers.attr,
210 	&dev_attr_spi_device_errors.attr,
211 	&dev_attr_spi_device_timedout.attr,
212 	&dev_attr_spi_device_spi_sync.attr,
213 	&dev_attr_spi_device_spi_sync_immediate.attr,
214 	&dev_attr_spi_device_spi_async.attr,
215 	&dev_attr_spi_device_bytes.attr,
216 	&dev_attr_spi_device_bytes_rx.attr,
217 	&dev_attr_spi_device_bytes_tx.attr,
218 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
219 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
220 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
221 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
222 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
223 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
224 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
225 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
226 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
227 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
228 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
229 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
230 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
231 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
232 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
233 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
234 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
235 	&dev_attr_spi_device_transfers_split_maxsize.attr,
236 	NULL,
237 };
238 
239 static const struct attribute_group spi_device_statistics_group = {
240 	.name  = "statistics",
241 	.attrs  = spi_device_statistics_attrs,
242 };
243 
244 static const struct attribute_group *spi_dev_groups[] = {
245 	&spi_dev_group,
246 	&spi_device_statistics_group,
247 	NULL,
248 };
249 
250 static struct attribute *spi_controller_statistics_attrs[] = {
251 	&dev_attr_spi_controller_messages.attr,
252 	&dev_attr_spi_controller_transfers.attr,
253 	&dev_attr_spi_controller_errors.attr,
254 	&dev_attr_spi_controller_timedout.attr,
255 	&dev_attr_spi_controller_spi_sync.attr,
256 	&dev_attr_spi_controller_spi_sync_immediate.attr,
257 	&dev_attr_spi_controller_spi_async.attr,
258 	&dev_attr_spi_controller_bytes.attr,
259 	&dev_attr_spi_controller_bytes_rx.attr,
260 	&dev_attr_spi_controller_bytes_tx.attr,
261 	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
262 	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
263 	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
264 	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
265 	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
266 	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
267 	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
268 	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
269 	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
270 	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
271 	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
272 	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
273 	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
274 	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
275 	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
276 	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
277 	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
278 	&dev_attr_spi_controller_transfers_split_maxsize.attr,
279 	NULL,
280 };
281 
282 static const struct attribute_group spi_controller_statistics_group = {
283 	.name  = "statistics",
284 	.attrs  = spi_controller_statistics_attrs,
285 };
286 
287 static const struct attribute_group *spi_master_groups[] = {
288 	&spi_controller_statistics_group,
289 	NULL,
290 };
291 
292 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
293 				       struct spi_transfer *xfer,
294 				       struct spi_controller *ctlr)
295 {
296 	unsigned long flags;
297 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
298 
299 	if (l2len < 0)
300 		l2len = 0;
301 
302 	spin_lock_irqsave(&stats->lock, flags);
303 
304 	stats->transfers++;
305 	stats->transfer_bytes_histo[l2len]++;
306 
307 	stats->bytes += xfer->len;
308 	if ((xfer->tx_buf) &&
309 	    (xfer->tx_buf != ctlr->dummy_tx))
310 		stats->bytes_tx += xfer->len;
311 	if ((xfer->rx_buf) &&
312 	    (xfer->rx_buf != ctlr->dummy_rx))
313 		stats->bytes_rx += xfer->len;
314 
315 	spin_unlock_irqrestore(&stats->lock, flags);
316 }
317 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
318 
319 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
320  * and the sysfs version makes coldplug work too.
321  */
322 
323 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
324 						const struct spi_device *sdev)
325 {
326 	while (id->name[0]) {
327 		if (!strcmp(sdev->modalias, id->name))
328 			return id;
329 		id++;
330 	}
331 	return NULL;
332 }
333 
334 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
335 {
336 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
337 
338 	return spi_match_id(sdrv->id_table, sdev);
339 }
340 EXPORT_SYMBOL_GPL(spi_get_device_id);
341 
342 static int spi_match_device(struct device *dev, struct device_driver *drv)
343 {
344 	const struct spi_device	*spi = to_spi_device(dev);
345 	const struct spi_driver	*sdrv = to_spi_driver(drv);
346 
347 	/* Check override first, and if set, only use the named driver */
348 	if (spi->driver_override)
349 		return strcmp(spi->driver_override, drv->name) == 0;
350 
351 	/* Attempt an OF style match */
352 	if (of_driver_match_device(dev, drv))
353 		return 1;
354 
355 	/* Then try ACPI */
356 	if (acpi_driver_match_device(dev, drv))
357 		return 1;
358 
359 	if (sdrv->id_table)
360 		return !!spi_match_id(sdrv->id_table, spi);
361 
362 	return strcmp(spi->modalias, drv->name) == 0;
363 }
364 
365 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
366 {
367 	const struct spi_device		*spi = to_spi_device(dev);
368 	int rc;
369 
370 	rc = acpi_device_uevent_modalias(dev, env);
371 	if (rc != -ENODEV)
372 		return rc;
373 
374 	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
375 }
376 
377 struct bus_type spi_bus_type = {
378 	.name		= "spi",
379 	.dev_groups	= spi_dev_groups,
380 	.match		= spi_match_device,
381 	.uevent		= spi_uevent,
382 };
383 EXPORT_SYMBOL_GPL(spi_bus_type);
384 
385 
386 static int spi_drv_probe(struct device *dev)
387 {
388 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
389 	struct spi_device		*spi = to_spi_device(dev);
390 	int ret;
391 
392 	ret = of_clk_set_defaults(dev->of_node, false);
393 	if (ret)
394 		return ret;
395 
396 	if (dev->of_node) {
397 		spi->irq = of_irq_get(dev->of_node, 0);
398 		if (spi->irq == -EPROBE_DEFER)
399 			return -EPROBE_DEFER;
400 		if (spi->irq < 0)
401 			spi->irq = 0;
402 	}
403 
404 	ret = dev_pm_domain_attach(dev, true);
405 	if (ret)
406 		return ret;
407 
408 	ret = sdrv->probe(spi);
409 	if (ret)
410 		dev_pm_domain_detach(dev, true);
411 
412 	return ret;
413 }
414 
415 static int spi_drv_remove(struct device *dev)
416 {
417 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
418 	int ret;
419 
420 	ret = sdrv->remove(to_spi_device(dev));
421 	dev_pm_domain_detach(dev, true);
422 
423 	return ret;
424 }
425 
426 static void spi_drv_shutdown(struct device *dev)
427 {
428 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
429 
430 	sdrv->shutdown(to_spi_device(dev));
431 }
432 
433 /**
434  * __spi_register_driver - register a SPI driver
435  * @owner: owner module of the driver to register
436  * @sdrv: the driver to register
437  * Context: can sleep
438  *
439  * Return: zero on success, else a negative error code.
440  */
441 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
442 {
443 	sdrv->driver.owner = owner;
444 	sdrv->driver.bus = &spi_bus_type;
445 	if (sdrv->probe)
446 		sdrv->driver.probe = spi_drv_probe;
447 	if (sdrv->remove)
448 		sdrv->driver.remove = spi_drv_remove;
449 	if (sdrv->shutdown)
450 		sdrv->driver.shutdown = spi_drv_shutdown;
451 	return driver_register(&sdrv->driver);
452 }
453 EXPORT_SYMBOL_GPL(__spi_register_driver);
454 
455 /*-------------------------------------------------------------------------*/
456 
457 /* SPI devices should normally not be created by SPI device drivers; that
458  * would make them board-specific.  Similarly with SPI controller drivers.
459  * Device registration normally goes into like arch/.../mach.../board-YYY.c
460  * with other readonly (flashable) information about mainboard devices.
461  */
462 
463 struct boardinfo {
464 	struct list_head	list;
465 	struct spi_board_info	board_info;
466 };
467 
468 static LIST_HEAD(board_list);
469 static LIST_HEAD(spi_controller_list);
470 
471 /*
472  * Used to protect add/del opertion for board_info list and
473  * spi_controller list, and their matching process
474  * also used to protect object of type struct idr
475  */
476 static DEFINE_MUTEX(board_lock);
477 
478 /**
479  * spi_alloc_device - Allocate a new SPI device
480  * @ctlr: Controller to which device is connected
481  * Context: can sleep
482  *
483  * Allows a driver to allocate and initialize a spi_device without
484  * registering it immediately.  This allows a driver to directly
485  * fill the spi_device with device parameters before calling
486  * spi_add_device() on it.
487  *
488  * Caller is responsible to call spi_add_device() on the returned
489  * spi_device structure to add it to the SPI controller.  If the caller
490  * needs to discard the spi_device without adding it, then it should
491  * call spi_dev_put() on it.
492  *
493  * Return: a pointer to the new device, or NULL.
494  */
495 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
496 {
497 	struct spi_device	*spi;
498 
499 	if (!spi_controller_get(ctlr))
500 		return NULL;
501 
502 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
503 	if (!spi) {
504 		spi_controller_put(ctlr);
505 		return NULL;
506 	}
507 
508 	spi->master = spi->controller = ctlr;
509 	spi->dev.parent = &ctlr->dev;
510 	spi->dev.bus = &spi_bus_type;
511 	spi->dev.release = spidev_release;
512 	spi->cs_gpio = -ENOENT;
513 
514 	spin_lock_init(&spi->statistics.lock);
515 
516 	device_initialize(&spi->dev);
517 	return spi;
518 }
519 EXPORT_SYMBOL_GPL(spi_alloc_device);
520 
521 static void spi_dev_set_name(struct spi_device *spi)
522 {
523 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
524 
525 	if (adev) {
526 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
527 		return;
528 	}
529 
530 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
531 		     spi->chip_select);
532 }
533 
534 static int spi_dev_check(struct device *dev, void *data)
535 {
536 	struct spi_device *spi = to_spi_device(dev);
537 	struct spi_device *new_spi = data;
538 
539 	if (spi->controller == new_spi->controller &&
540 	    spi->chip_select == new_spi->chip_select)
541 		return -EBUSY;
542 	return 0;
543 }
544 
545 /**
546  * spi_add_device - Add spi_device allocated with spi_alloc_device
547  * @spi: spi_device to register
548  *
549  * Companion function to spi_alloc_device.  Devices allocated with
550  * spi_alloc_device can be added onto the spi bus with this function.
551  *
552  * Return: 0 on success; negative errno on failure
553  */
554 int spi_add_device(struct spi_device *spi)
555 {
556 	static DEFINE_MUTEX(spi_add_lock);
557 	struct spi_controller *ctlr = spi->controller;
558 	struct device *dev = ctlr->dev.parent;
559 	int status;
560 
561 	/* Chipselects are numbered 0..max; validate. */
562 	if (spi->chip_select >= ctlr->num_chipselect) {
563 		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
564 			ctlr->num_chipselect);
565 		return -EINVAL;
566 	}
567 
568 	/* Set the bus ID string */
569 	spi_dev_set_name(spi);
570 
571 	/* We need to make sure there's no other device with this
572 	 * chipselect **BEFORE** we call setup(), else we'll trash
573 	 * its configuration.  Lock against concurrent add() calls.
574 	 */
575 	mutex_lock(&spi_add_lock);
576 
577 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
578 	if (status) {
579 		dev_err(dev, "chipselect %d already in use\n",
580 				spi->chip_select);
581 		goto done;
582 	}
583 
584 	/* Descriptors take precedence */
585 	if (ctlr->cs_gpiods)
586 		spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
587 	else if (ctlr->cs_gpios)
588 		spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
589 
590 	/* Drivers may modify this initial i/o setup, but will
591 	 * normally rely on the device being setup.  Devices
592 	 * using SPI_CS_HIGH can't coexist well otherwise...
593 	 */
594 	status = spi_setup(spi);
595 	if (status < 0) {
596 		dev_err(dev, "can't setup %s, status %d\n",
597 				dev_name(&spi->dev), status);
598 		goto done;
599 	}
600 
601 	/* Device may be bound to an active driver when this returns */
602 	status = device_add(&spi->dev);
603 	if (status < 0)
604 		dev_err(dev, "can't add %s, status %d\n",
605 				dev_name(&spi->dev), status);
606 	else
607 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
608 
609 done:
610 	mutex_unlock(&spi_add_lock);
611 	return status;
612 }
613 EXPORT_SYMBOL_GPL(spi_add_device);
614 
615 /**
616  * spi_new_device - instantiate one new SPI device
617  * @ctlr: Controller to which device is connected
618  * @chip: Describes the SPI device
619  * Context: can sleep
620  *
621  * On typical mainboards, this is purely internal; and it's not needed
622  * after board init creates the hard-wired devices.  Some development
623  * platforms may not be able to use spi_register_board_info though, and
624  * this is exported so that for example a USB or parport based adapter
625  * driver could add devices (which it would learn about out-of-band).
626  *
627  * Return: the new device, or NULL.
628  */
629 struct spi_device *spi_new_device(struct spi_controller *ctlr,
630 				  struct spi_board_info *chip)
631 {
632 	struct spi_device	*proxy;
633 	int			status;
634 
635 	/* NOTE:  caller did any chip->bus_num checks necessary.
636 	 *
637 	 * Also, unless we change the return value convention to use
638 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
639 	 * suggests syslogged diagnostics are best here (ugh).
640 	 */
641 
642 	proxy = spi_alloc_device(ctlr);
643 	if (!proxy)
644 		return NULL;
645 
646 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
647 
648 	proxy->chip_select = chip->chip_select;
649 	proxy->max_speed_hz = chip->max_speed_hz;
650 	proxy->mode = chip->mode;
651 	proxy->irq = chip->irq;
652 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
653 	proxy->dev.platform_data = (void *) chip->platform_data;
654 	proxy->controller_data = chip->controller_data;
655 	proxy->controller_state = NULL;
656 
657 	if (chip->properties) {
658 		status = device_add_properties(&proxy->dev, chip->properties);
659 		if (status) {
660 			dev_err(&ctlr->dev,
661 				"failed to add properties to '%s': %d\n",
662 				chip->modalias, status);
663 			goto err_dev_put;
664 		}
665 	}
666 
667 	status = spi_add_device(proxy);
668 	if (status < 0)
669 		goto err_remove_props;
670 
671 	return proxy;
672 
673 err_remove_props:
674 	if (chip->properties)
675 		device_remove_properties(&proxy->dev);
676 err_dev_put:
677 	spi_dev_put(proxy);
678 	return NULL;
679 }
680 EXPORT_SYMBOL_GPL(spi_new_device);
681 
682 /**
683  * spi_unregister_device - unregister a single SPI device
684  * @spi: spi_device to unregister
685  *
686  * Start making the passed SPI device vanish. Normally this would be handled
687  * by spi_unregister_controller().
688  */
689 void spi_unregister_device(struct spi_device *spi)
690 {
691 	if (!spi)
692 		return;
693 
694 	if (spi->dev.of_node) {
695 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
696 		of_node_put(spi->dev.of_node);
697 	}
698 	if (ACPI_COMPANION(&spi->dev))
699 		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
700 	device_unregister(&spi->dev);
701 }
702 EXPORT_SYMBOL_GPL(spi_unregister_device);
703 
704 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
705 					      struct spi_board_info *bi)
706 {
707 	struct spi_device *dev;
708 
709 	if (ctlr->bus_num != bi->bus_num)
710 		return;
711 
712 	dev = spi_new_device(ctlr, bi);
713 	if (!dev)
714 		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
715 			bi->modalias);
716 }
717 
718 /**
719  * spi_register_board_info - register SPI devices for a given board
720  * @info: array of chip descriptors
721  * @n: how many descriptors are provided
722  * Context: can sleep
723  *
724  * Board-specific early init code calls this (probably during arch_initcall)
725  * with segments of the SPI device table.  Any device nodes are created later,
726  * after the relevant parent SPI controller (bus_num) is defined.  We keep
727  * this table of devices forever, so that reloading a controller driver will
728  * not make Linux forget about these hard-wired devices.
729  *
730  * Other code can also call this, e.g. a particular add-on board might provide
731  * SPI devices through its expansion connector, so code initializing that board
732  * would naturally declare its SPI devices.
733  *
734  * The board info passed can safely be __initdata ... but be careful of
735  * any embedded pointers (platform_data, etc), they're copied as-is.
736  * Device properties are deep-copied though.
737  *
738  * Return: zero on success, else a negative error code.
739  */
740 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
741 {
742 	struct boardinfo *bi;
743 	int i;
744 
745 	if (!n)
746 		return 0;
747 
748 	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
749 	if (!bi)
750 		return -ENOMEM;
751 
752 	for (i = 0; i < n; i++, bi++, info++) {
753 		struct spi_controller *ctlr;
754 
755 		memcpy(&bi->board_info, info, sizeof(*info));
756 		if (info->properties) {
757 			bi->board_info.properties =
758 					property_entries_dup(info->properties);
759 			if (IS_ERR(bi->board_info.properties))
760 				return PTR_ERR(bi->board_info.properties);
761 		}
762 
763 		mutex_lock(&board_lock);
764 		list_add_tail(&bi->list, &board_list);
765 		list_for_each_entry(ctlr, &spi_controller_list, list)
766 			spi_match_controller_to_boardinfo(ctlr,
767 							  &bi->board_info);
768 		mutex_unlock(&board_lock);
769 	}
770 
771 	return 0;
772 }
773 
774 /*-------------------------------------------------------------------------*/
775 
776 static void spi_set_cs(struct spi_device *spi, bool enable)
777 {
778 	if (spi->mode & SPI_CS_HIGH)
779 		enable = !enable;
780 
781 	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
782 		/*
783 		 * Honour the SPI_NO_CS flag and invert the enable line, as
784 		 * active low is default for SPI. Execution paths that handle
785 		 * polarity inversion in gpiolib (such as device tree) will
786 		 * enforce active high using the SPI_CS_HIGH resulting in a
787 		 * double inversion through the code above.
788 		 */
789 		if (!(spi->mode & SPI_NO_CS)) {
790 			if (spi->cs_gpiod)
791 				gpiod_set_value_cansleep(spi->cs_gpiod,
792 							 !enable);
793 			else
794 				gpio_set_value_cansleep(spi->cs_gpio, !enable);
795 		}
796 		/* Some SPI masters need both GPIO CS & slave_select */
797 		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
798 		    spi->controller->set_cs)
799 			spi->controller->set_cs(spi, !enable);
800 	} else if (spi->controller->set_cs) {
801 		spi->controller->set_cs(spi, !enable);
802 	}
803 }
804 
805 #ifdef CONFIG_HAS_DMA
806 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
807 		struct sg_table *sgt, void *buf, size_t len,
808 		enum dma_data_direction dir)
809 {
810 	const bool vmalloced_buf = is_vmalloc_addr(buf);
811 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
812 #ifdef CONFIG_HIGHMEM
813 	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
814 				(unsigned long)buf < (PKMAP_BASE +
815 					(LAST_PKMAP * PAGE_SIZE)));
816 #else
817 	const bool kmap_buf = false;
818 #endif
819 	int desc_len;
820 	int sgs;
821 	struct page *vm_page;
822 	struct scatterlist *sg;
823 	void *sg_buf;
824 	size_t min;
825 	int i, ret;
826 
827 	if (vmalloced_buf || kmap_buf) {
828 		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
829 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
830 	} else if (virt_addr_valid(buf)) {
831 		desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
832 		sgs = DIV_ROUND_UP(len, desc_len);
833 	} else {
834 		return -EINVAL;
835 	}
836 
837 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
838 	if (ret != 0)
839 		return ret;
840 
841 	sg = &sgt->sgl[0];
842 	for (i = 0; i < sgs; i++) {
843 
844 		if (vmalloced_buf || kmap_buf) {
845 			/*
846 			 * Next scatterlist entry size is the minimum between
847 			 * the desc_len and the remaining buffer length that
848 			 * fits in a page.
849 			 */
850 			min = min_t(size_t, desc_len,
851 				    min_t(size_t, len,
852 					  PAGE_SIZE - offset_in_page(buf)));
853 			if (vmalloced_buf)
854 				vm_page = vmalloc_to_page(buf);
855 			else
856 				vm_page = kmap_to_page(buf);
857 			if (!vm_page) {
858 				sg_free_table(sgt);
859 				return -ENOMEM;
860 			}
861 			sg_set_page(sg, vm_page,
862 				    min, offset_in_page(buf));
863 		} else {
864 			min = min_t(size_t, len, desc_len);
865 			sg_buf = buf;
866 			sg_set_buf(sg, sg_buf, min);
867 		}
868 
869 		buf += min;
870 		len -= min;
871 		sg = sg_next(sg);
872 	}
873 
874 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
875 	if (!ret)
876 		ret = -ENOMEM;
877 	if (ret < 0) {
878 		sg_free_table(sgt);
879 		return ret;
880 	}
881 
882 	sgt->nents = ret;
883 
884 	return 0;
885 }
886 
887 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
888 		   struct sg_table *sgt, enum dma_data_direction dir)
889 {
890 	if (sgt->orig_nents) {
891 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
892 		sg_free_table(sgt);
893 	}
894 }
895 
896 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
897 {
898 	struct device *tx_dev, *rx_dev;
899 	struct spi_transfer *xfer;
900 	int ret;
901 
902 	if (!ctlr->can_dma)
903 		return 0;
904 
905 	if (ctlr->dma_tx)
906 		tx_dev = ctlr->dma_tx->device->dev;
907 	else
908 		tx_dev = ctlr->dev.parent;
909 
910 	if (ctlr->dma_rx)
911 		rx_dev = ctlr->dma_rx->device->dev;
912 	else
913 		rx_dev = ctlr->dev.parent;
914 
915 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
916 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
917 			continue;
918 
919 		if (xfer->tx_buf != NULL) {
920 			ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
921 					  (void *)xfer->tx_buf, xfer->len,
922 					  DMA_TO_DEVICE);
923 			if (ret != 0)
924 				return ret;
925 		}
926 
927 		if (xfer->rx_buf != NULL) {
928 			ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
929 					  xfer->rx_buf, xfer->len,
930 					  DMA_FROM_DEVICE);
931 			if (ret != 0) {
932 				spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
933 					      DMA_TO_DEVICE);
934 				return ret;
935 			}
936 		}
937 	}
938 
939 	ctlr->cur_msg_mapped = true;
940 
941 	return 0;
942 }
943 
944 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
945 {
946 	struct spi_transfer *xfer;
947 	struct device *tx_dev, *rx_dev;
948 
949 	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
950 		return 0;
951 
952 	if (ctlr->dma_tx)
953 		tx_dev = ctlr->dma_tx->device->dev;
954 	else
955 		tx_dev = ctlr->dev.parent;
956 
957 	if (ctlr->dma_rx)
958 		rx_dev = ctlr->dma_rx->device->dev;
959 	else
960 		rx_dev = ctlr->dev.parent;
961 
962 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
963 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
964 			continue;
965 
966 		spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
967 		spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
968 	}
969 
970 	return 0;
971 }
972 #else /* !CONFIG_HAS_DMA */
973 static inline int __spi_map_msg(struct spi_controller *ctlr,
974 				struct spi_message *msg)
975 {
976 	return 0;
977 }
978 
979 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
980 				  struct spi_message *msg)
981 {
982 	return 0;
983 }
984 #endif /* !CONFIG_HAS_DMA */
985 
986 static inline int spi_unmap_msg(struct spi_controller *ctlr,
987 				struct spi_message *msg)
988 {
989 	struct spi_transfer *xfer;
990 
991 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
992 		/*
993 		 * Restore the original value of tx_buf or rx_buf if they are
994 		 * NULL.
995 		 */
996 		if (xfer->tx_buf == ctlr->dummy_tx)
997 			xfer->tx_buf = NULL;
998 		if (xfer->rx_buf == ctlr->dummy_rx)
999 			xfer->rx_buf = NULL;
1000 	}
1001 
1002 	return __spi_unmap_msg(ctlr, msg);
1003 }
1004 
1005 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1006 {
1007 	struct spi_transfer *xfer;
1008 	void *tmp;
1009 	unsigned int max_tx, max_rx;
1010 
1011 	if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
1012 		max_tx = 0;
1013 		max_rx = 0;
1014 
1015 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1016 			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1017 			    !xfer->tx_buf)
1018 				max_tx = max(xfer->len, max_tx);
1019 			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1020 			    !xfer->rx_buf)
1021 				max_rx = max(xfer->len, max_rx);
1022 		}
1023 
1024 		if (max_tx) {
1025 			tmp = krealloc(ctlr->dummy_tx, max_tx,
1026 				       GFP_KERNEL | GFP_DMA);
1027 			if (!tmp)
1028 				return -ENOMEM;
1029 			ctlr->dummy_tx = tmp;
1030 			memset(tmp, 0, max_tx);
1031 		}
1032 
1033 		if (max_rx) {
1034 			tmp = krealloc(ctlr->dummy_rx, max_rx,
1035 				       GFP_KERNEL | GFP_DMA);
1036 			if (!tmp)
1037 				return -ENOMEM;
1038 			ctlr->dummy_rx = tmp;
1039 		}
1040 
1041 		if (max_tx || max_rx) {
1042 			list_for_each_entry(xfer, &msg->transfers,
1043 					    transfer_list) {
1044 				if (!xfer->len)
1045 					continue;
1046 				if (!xfer->tx_buf)
1047 					xfer->tx_buf = ctlr->dummy_tx;
1048 				if (!xfer->rx_buf)
1049 					xfer->rx_buf = ctlr->dummy_rx;
1050 			}
1051 		}
1052 	}
1053 
1054 	return __spi_map_msg(ctlr, msg);
1055 }
1056 
1057 static int spi_transfer_wait(struct spi_controller *ctlr,
1058 			     struct spi_message *msg,
1059 			     struct spi_transfer *xfer)
1060 {
1061 	struct spi_statistics *statm = &ctlr->statistics;
1062 	struct spi_statistics *stats = &msg->spi->statistics;
1063 	unsigned long long ms = 1;
1064 
1065 	if (spi_controller_is_slave(ctlr)) {
1066 		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1067 			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1068 			return -EINTR;
1069 		}
1070 	} else {
1071 		ms = 8LL * 1000LL * xfer->len;
1072 		do_div(ms, xfer->speed_hz);
1073 		ms += ms + 200; /* some tolerance */
1074 
1075 		if (ms > UINT_MAX)
1076 			ms = UINT_MAX;
1077 
1078 		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1079 						 msecs_to_jiffies(ms));
1080 
1081 		if (ms == 0) {
1082 			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1083 			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1084 			dev_err(&msg->spi->dev,
1085 				"SPI transfer timed out\n");
1086 			return -ETIMEDOUT;
1087 		}
1088 	}
1089 
1090 	return 0;
1091 }
1092 
1093 /*
1094  * spi_transfer_one_message - Default implementation of transfer_one_message()
1095  *
1096  * This is a standard implementation of transfer_one_message() for
1097  * drivers which implement a transfer_one() operation.  It provides
1098  * standard handling of delays and chip select management.
1099  */
1100 static int spi_transfer_one_message(struct spi_controller *ctlr,
1101 				    struct spi_message *msg)
1102 {
1103 	struct spi_transfer *xfer;
1104 	bool keep_cs = false;
1105 	int ret = 0;
1106 	struct spi_statistics *statm = &ctlr->statistics;
1107 	struct spi_statistics *stats = &msg->spi->statistics;
1108 
1109 	spi_set_cs(msg->spi, true);
1110 
1111 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1112 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1113 
1114 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1115 		trace_spi_transfer_start(msg, xfer);
1116 
1117 		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1118 		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1119 
1120 		if (xfer->tx_buf || xfer->rx_buf) {
1121 			reinit_completion(&ctlr->xfer_completion);
1122 
1123 			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1124 			if (ret < 0) {
1125 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1126 							       errors);
1127 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1128 							       errors);
1129 				dev_err(&msg->spi->dev,
1130 					"SPI transfer failed: %d\n", ret);
1131 				goto out;
1132 			}
1133 
1134 			if (ret > 0) {
1135 				ret = spi_transfer_wait(ctlr, msg, xfer);
1136 				if (ret < 0)
1137 					msg->status = ret;
1138 			}
1139 		} else {
1140 			if (xfer->len)
1141 				dev_err(&msg->spi->dev,
1142 					"Bufferless transfer has length %u\n",
1143 					xfer->len);
1144 		}
1145 
1146 		trace_spi_transfer_stop(msg, xfer);
1147 
1148 		if (msg->status != -EINPROGRESS)
1149 			goto out;
1150 
1151 		if (xfer->delay_usecs) {
1152 			u16 us = xfer->delay_usecs;
1153 
1154 			if (us <= 10)
1155 				udelay(us);
1156 			else
1157 				usleep_range(us, us + DIV_ROUND_UP(us, 10));
1158 		}
1159 
1160 		if (xfer->cs_change) {
1161 			if (list_is_last(&xfer->transfer_list,
1162 					 &msg->transfers)) {
1163 				keep_cs = true;
1164 			} else {
1165 				spi_set_cs(msg->spi, false);
1166 				udelay(10);
1167 				spi_set_cs(msg->spi, true);
1168 			}
1169 		}
1170 
1171 		msg->actual_length += xfer->len;
1172 	}
1173 
1174 out:
1175 	if (ret != 0 || !keep_cs)
1176 		spi_set_cs(msg->spi, false);
1177 
1178 	if (msg->status == -EINPROGRESS)
1179 		msg->status = ret;
1180 
1181 	if (msg->status && ctlr->handle_err)
1182 		ctlr->handle_err(ctlr, msg);
1183 
1184 	spi_res_release(ctlr, msg);
1185 
1186 	spi_finalize_current_message(ctlr);
1187 
1188 	return ret;
1189 }
1190 
1191 /**
1192  * spi_finalize_current_transfer - report completion of a transfer
1193  * @ctlr: the controller reporting completion
1194  *
1195  * Called by SPI drivers using the core transfer_one_message()
1196  * implementation to notify it that the current interrupt driven
1197  * transfer has finished and the next one may be scheduled.
1198  */
1199 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1200 {
1201 	complete(&ctlr->xfer_completion);
1202 }
1203 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1204 
1205 /**
1206  * __spi_pump_messages - function which processes spi message queue
1207  * @ctlr: controller to process queue for
1208  * @in_kthread: true if we are in the context of the message pump thread
1209  *
1210  * This function checks if there is any spi message in the queue that
1211  * needs processing and if so call out to the driver to initialize hardware
1212  * and transfer each message.
1213  *
1214  * Note that it is called both from the kthread itself and also from
1215  * inside spi_sync(); the queue extraction handling at the top of the
1216  * function should deal with this safely.
1217  */
1218 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1219 {
1220 	unsigned long flags;
1221 	bool was_busy = false;
1222 	int ret;
1223 
1224 	/* Lock queue */
1225 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1226 
1227 	/* Make sure we are not already running a message */
1228 	if (ctlr->cur_msg) {
1229 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1230 		return;
1231 	}
1232 
1233 	/* If another context is idling the device then defer */
1234 	if (ctlr->idling) {
1235 		kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1236 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1237 		return;
1238 	}
1239 
1240 	/* Check if the queue is idle */
1241 	if (list_empty(&ctlr->queue) || !ctlr->running) {
1242 		if (!ctlr->busy) {
1243 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1244 			return;
1245 		}
1246 
1247 		/* Only do teardown in the thread */
1248 		if (!in_kthread) {
1249 			kthread_queue_work(&ctlr->kworker,
1250 					   &ctlr->pump_messages);
1251 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1252 			return;
1253 		}
1254 
1255 		ctlr->busy = false;
1256 		ctlr->idling = true;
1257 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1258 
1259 		kfree(ctlr->dummy_rx);
1260 		ctlr->dummy_rx = NULL;
1261 		kfree(ctlr->dummy_tx);
1262 		ctlr->dummy_tx = NULL;
1263 		if (ctlr->unprepare_transfer_hardware &&
1264 		    ctlr->unprepare_transfer_hardware(ctlr))
1265 			dev_err(&ctlr->dev,
1266 				"failed to unprepare transfer hardware\n");
1267 		if (ctlr->auto_runtime_pm) {
1268 			pm_runtime_mark_last_busy(ctlr->dev.parent);
1269 			pm_runtime_put_autosuspend(ctlr->dev.parent);
1270 		}
1271 		trace_spi_controller_idle(ctlr);
1272 
1273 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1274 		ctlr->idling = false;
1275 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1276 		return;
1277 	}
1278 
1279 	/* Extract head of queue */
1280 	ctlr->cur_msg =
1281 		list_first_entry(&ctlr->queue, struct spi_message, queue);
1282 
1283 	list_del_init(&ctlr->cur_msg->queue);
1284 	if (ctlr->busy)
1285 		was_busy = true;
1286 	else
1287 		ctlr->busy = true;
1288 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1289 
1290 	mutex_lock(&ctlr->io_mutex);
1291 
1292 	if (!was_busy && ctlr->auto_runtime_pm) {
1293 		ret = pm_runtime_get_sync(ctlr->dev.parent);
1294 		if (ret < 0) {
1295 			pm_runtime_put_noidle(ctlr->dev.parent);
1296 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1297 				ret);
1298 			mutex_unlock(&ctlr->io_mutex);
1299 			return;
1300 		}
1301 	}
1302 
1303 	if (!was_busy)
1304 		trace_spi_controller_busy(ctlr);
1305 
1306 	if (!was_busy && ctlr->prepare_transfer_hardware) {
1307 		ret = ctlr->prepare_transfer_hardware(ctlr);
1308 		if (ret) {
1309 			dev_err(&ctlr->dev,
1310 				"failed to prepare transfer hardware: %d\n",
1311 				ret);
1312 
1313 			if (ctlr->auto_runtime_pm)
1314 				pm_runtime_put(ctlr->dev.parent);
1315 
1316 			ctlr->cur_msg->status = ret;
1317 			spi_finalize_current_message(ctlr);
1318 
1319 			mutex_unlock(&ctlr->io_mutex);
1320 			return;
1321 		}
1322 	}
1323 
1324 	trace_spi_message_start(ctlr->cur_msg);
1325 
1326 	if (ctlr->prepare_message) {
1327 		ret = ctlr->prepare_message(ctlr, ctlr->cur_msg);
1328 		if (ret) {
1329 			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1330 				ret);
1331 			ctlr->cur_msg->status = ret;
1332 			spi_finalize_current_message(ctlr);
1333 			goto out;
1334 		}
1335 		ctlr->cur_msg_prepared = true;
1336 	}
1337 
1338 	ret = spi_map_msg(ctlr, ctlr->cur_msg);
1339 	if (ret) {
1340 		ctlr->cur_msg->status = ret;
1341 		spi_finalize_current_message(ctlr);
1342 		goto out;
1343 	}
1344 
1345 	ret = ctlr->transfer_one_message(ctlr, ctlr->cur_msg);
1346 	if (ret) {
1347 		dev_err(&ctlr->dev,
1348 			"failed to transfer one message from queue\n");
1349 		goto out;
1350 	}
1351 
1352 out:
1353 	mutex_unlock(&ctlr->io_mutex);
1354 
1355 	/* Prod the scheduler in case transfer_one() was busy waiting */
1356 	if (!ret)
1357 		cond_resched();
1358 }
1359 
1360 /**
1361  * spi_pump_messages - kthread work function which processes spi message queue
1362  * @work: pointer to kthread work struct contained in the controller struct
1363  */
1364 static void spi_pump_messages(struct kthread_work *work)
1365 {
1366 	struct spi_controller *ctlr =
1367 		container_of(work, struct spi_controller, pump_messages);
1368 
1369 	__spi_pump_messages(ctlr, true);
1370 }
1371 
1372 static int spi_init_queue(struct spi_controller *ctlr)
1373 {
1374 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1375 
1376 	ctlr->running = false;
1377 	ctlr->busy = false;
1378 
1379 	kthread_init_worker(&ctlr->kworker);
1380 	ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1381 					 "%s", dev_name(&ctlr->dev));
1382 	if (IS_ERR(ctlr->kworker_task)) {
1383 		dev_err(&ctlr->dev, "failed to create message pump task\n");
1384 		return PTR_ERR(ctlr->kworker_task);
1385 	}
1386 	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1387 
1388 	/*
1389 	 * Controller config will indicate if this controller should run the
1390 	 * message pump with high (realtime) priority to reduce the transfer
1391 	 * latency on the bus by minimising the delay between a transfer
1392 	 * request and the scheduling of the message pump thread. Without this
1393 	 * setting the message pump thread will remain at default priority.
1394 	 */
1395 	if (ctlr->rt) {
1396 		dev_info(&ctlr->dev,
1397 			"will run message pump with realtime priority\n");
1398 		sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, &param);
1399 	}
1400 
1401 	return 0;
1402 }
1403 
1404 /**
1405  * spi_get_next_queued_message() - called by driver to check for queued
1406  * messages
1407  * @ctlr: the controller to check for queued messages
1408  *
1409  * If there are more messages in the queue, the next message is returned from
1410  * this call.
1411  *
1412  * Return: the next message in the queue, else NULL if the queue is empty.
1413  */
1414 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1415 {
1416 	struct spi_message *next;
1417 	unsigned long flags;
1418 
1419 	/* get a pointer to the next message, if any */
1420 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1421 	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1422 					queue);
1423 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1424 
1425 	return next;
1426 }
1427 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1428 
1429 /**
1430  * spi_finalize_current_message() - the current message is complete
1431  * @ctlr: the controller to return the message to
1432  *
1433  * Called by the driver to notify the core that the message in the front of the
1434  * queue is complete and can be removed from the queue.
1435  */
1436 void spi_finalize_current_message(struct spi_controller *ctlr)
1437 {
1438 	struct spi_message *mesg;
1439 	unsigned long flags;
1440 	int ret;
1441 
1442 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1443 	mesg = ctlr->cur_msg;
1444 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1445 
1446 	spi_unmap_msg(ctlr, mesg);
1447 
1448 	if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1449 		ret = ctlr->unprepare_message(ctlr, mesg);
1450 		if (ret) {
1451 			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1452 				ret);
1453 		}
1454 	}
1455 
1456 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1457 	ctlr->cur_msg = NULL;
1458 	ctlr->cur_msg_prepared = false;
1459 	kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1460 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1461 
1462 	trace_spi_message_done(mesg);
1463 
1464 	mesg->state = NULL;
1465 	if (mesg->complete)
1466 		mesg->complete(mesg->context);
1467 }
1468 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1469 
1470 static int spi_start_queue(struct spi_controller *ctlr)
1471 {
1472 	unsigned long flags;
1473 
1474 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1475 
1476 	if (ctlr->running || ctlr->busy) {
1477 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1478 		return -EBUSY;
1479 	}
1480 
1481 	ctlr->running = true;
1482 	ctlr->cur_msg = NULL;
1483 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1484 
1485 	kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1486 
1487 	return 0;
1488 }
1489 
1490 static int spi_stop_queue(struct spi_controller *ctlr)
1491 {
1492 	unsigned long flags;
1493 	unsigned limit = 500;
1494 	int ret = 0;
1495 
1496 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1497 
1498 	/*
1499 	 * This is a bit lame, but is optimized for the common execution path.
1500 	 * A wait_queue on the ctlr->busy could be used, but then the common
1501 	 * execution path (pump_messages) would be required to call wake_up or
1502 	 * friends on every SPI message. Do this instead.
1503 	 */
1504 	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1505 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1506 		usleep_range(10000, 11000);
1507 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1508 	}
1509 
1510 	if (!list_empty(&ctlr->queue) || ctlr->busy)
1511 		ret = -EBUSY;
1512 	else
1513 		ctlr->running = false;
1514 
1515 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1516 
1517 	if (ret) {
1518 		dev_warn(&ctlr->dev, "could not stop message queue\n");
1519 		return ret;
1520 	}
1521 	return ret;
1522 }
1523 
1524 static int spi_destroy_queue(struct spi_controller *ctlr)
1525 {
1526 	int ret;
1527 
1528 	ret = spi_stop_queue(ctlr);
1529 
1530 	/*
1531 	 * kthread_flush_worker will block until all work is done.
1532 	 * If the reason that stop_queue timed out is that the work will never
1533 	 * finish, then it does no good to call flush/stop thread, so
1534 	 * return anyway.
1535 	 */
1536 	if (ret) {
1537 		dev_err(&ctlr->dev, "problem destroying queue\n");
1538 		return ret;
1539 	}
1540 
1541 	kthread_flush_worker(&ctlr->kworker);
1542 	kthread_stop(ctlr->kworker_task);
1543 
1544 	return 0;
1545 }
1546 
1547 static int __spi_queued_transfer(struct spi_device *spi,
1548 				 struct spi_message *msg,
1549 				 bool need_pump)
1550 {
1551 	struct spi_controller *ctlr = spi->controller;
1552 	unsigned long flags;
1553 
1554 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1555 
1556 	if (!ctlr->running) {
1557 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1558 		return -ESHUTDOWN;
1559 	}
1560 	msg->actual_length = 0;
1561 	msg->status = -EINPROGRESS;
1562 
1563 	list_add_tail(&msg->queue, &ctlr->queue);
1564 	if (!ctlr->busy && need_pump)
1565 		kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1566 
1567 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1568 	return 0;
1569 }
1570 
1571 /**
1572  * spi_queued_transfer - transfer function for queued transfers
1573  * @spi: spi device which is requesting transfer
1574  * @msg: spi message which is to handled is queued to driver queue
1575  *
1576  * Return: zero on success, else a negative error code.
1577  */
1578 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1579 {
1580 	return __spi_queued_transfer(spi, msg, true);
1581 }
1582 
1583 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1584 {
1585 	int ret;
1586 
1587 	ctlr->transfer = spi_queued_transfer;
1588 	if (!ctlr->transfer_one_message)
1589 		ctlr->transfer_one_message = spi_transfer_one_message;
1590 
1591 	/* Initialize and start queue */
1592 	ret = spi_init_queue(ctlr);
1593 	if (ret) {
1594 		dev_err(&ctlr->dev, "problem initializing queue\n");
1595 		goto err_init_queue;
1596 	}
1597 	ctlr->queued = true;
1598 	ret = spi_start_queue(ctlr);
1599 	if (ret) {
1600 		dev_err(&ctlr->dev, "problem starting queue\n");
1601 		goto err_start_queue;
1602 	}
1603 
1604 	return 0;
1605 
1606 err_start_queue:
1607 	spi_destroy_queue(ctlr);
1608 err_init_queue:
1609 	return ret;
1610 }
1611 
1612 /**
1613  * spi_flush_queue - Send all pending messages in the queue from the callers'
1614  *		     context
1615  * @ctlr: controller to process queue for
1616  *
1617  * This should be used when one wants to ensure all pending messages have been
1618  * sent before doing something. Is used by the spi-mem code to make sure SPI
1619  * memory operations do not preempt regular SPI transfers that have been queued
1620  * before the spi-mem operation.
1621  */
1622 void spi_flush_queue(struct spi_controller *ctlr)
1623 {
1624 	if (ctlr->transfer == spi_queued_transfer)
1625 		__spi_pump_messages(ctlr, false);
1626 }
1627 
1628 /*-------------------------------------------------------------------------*/
1629 
1630 #if defined(CONFIG_OF)
1631 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1632 			   struct device_node *nc)
1633 {
1634 	u32 value;
1635 	int rc;
1636 
1637 	/* Mode (clock phase/polarity/etc.) */
1638 	if (of_property_read_bool(nc, "spi-cpha"))
1639 		spi->mode |= SPI_CPHA;
1640 	if (of_property_read_bool(nc, "spi-cpol"))
1641 		spi->mode |= SPI_CPOL;
1642 	if (of_property_read_bool(nc, "spi-3wire"))
1643 		spi->mode |= SPI_3WIRE;
1644 	if (of_property_read_bool(nc, "spi-lsb-first"))
1645 		spi->mode |= SPI_LSB_FIRST;
1646 
1647 	/*
1648 	 * For descriptors associated with the device, polarity inversion is
1649 	 * handled in the gpiolib, so all chip selects are "active high" in
1650 	 * the logical sense, the gpiolib will invert the line if need be.
1651 	 */
1652 	if (ctlr->use_gpio_descriptors)
1653 		spi->mode |= SPI_CS_HIGH;
1654 	else if (of_property_read_bool(nc, "spi-cs-high"))
1655 		spi->mode |= SPI_CS_HIGH;
1656 
1657 	/* Device DUAL/QUAD mode */
1658 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1659 		switch (value) {
1660 		case 1:
1661 			break;
1662 		case 2:
1663 			spi->mode |= SPI_TX_DUAL;
1664 			break;
1665 		case 4:
1666 			spi->mode |= SPI_TX_QUAD;
1667 			break;
1668 		case 8:
1669 			spi->mode |= SPI_TX_OCTAL;
1670 			break;
1671 		default:
1672 			dev_warn(&ctlr->dev,
1673 				"spi-tx-bus-width %d not supported\n",
1674 				value);
1675 			break;
1676 		}
1677 	}
1678 
1679 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1680 		switch (value) {
1681 		case 1:
1682 			break;
1683 		case 2:
1684 			spi->mode |= SPI_RX_DUAL;
1685 			break;
1686 		case 4:
1687 			spi->mode |= SPI_RX_QUAD;
1688 			break;
1689 		case 8:
1690 			spi->mode |= SPI_RX_OCTAL;
1691 			break;
1692 		default:
1693 			dev_warn(&ctlr->dev,
1694 				"spi-rx-bus-width %d not supported\n",
1695 				value);
1696 			break;
1697 		}
1698 	}
1699 
1700 	if (spi_controller_is_slave(ctlr)) {
1701 		if (!of_node_name_eq(nc, "slave")) {
1702 			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1703 				nc);
1704 			return -EINVAL;
1705 		}
1706 		return 0;
1707 	}
1708 
1709 	/* Device address */
1710 	rc = of_property_read_u32(nc, "reg", &value);
1711 	if (rc) {
1712 		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1713 			nc, rc);
1714 		return rc;
1715 	}
1716 	spi->chip_select = value;
1717 
1718 	/* Device speed */
1719 	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1720 	if (rc) {
1721 		dev_err(&ctlr->dev,
1722 			"%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc);
1723 		return rc;
1724 	}
1725 	spi->max_speed_hz = value;
1726 
1727 	return 0;
1728 }
1729 
1730 static struct spi_device *
1731 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1732 {
1733 	struct spi_device *spi;
1734 	int rc;
1735 
1736 	/* Alloc an spi_device */
1737 	spi = spi_alloc_device(ctlr);
1738 	if (!spi) {
1739 		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
1740 		rc = -ENOMEM;
1741 		goto err_out;
1742 	}
1743 
1744 	/* Select device driver */
1745 	rc = of_modalias_node(nc, spi->modalias,
1746 				sizeof(spi->modalias));
1747 	if (rc < 0) {
1748 		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
1749 		goto err_out;
1750 	}
1751 
1752 	rc = of_spi_parse_dt(ctlr, spi, nc);
1753 	if (rc)
1754 		goto err_out;
1755 
1756 	/* Store a pointer to the node in the device structure */
1757 	of_node_get(nc);
1758 	spi->dev.of_node = nc;
1759 
1760 	/* Register the new device */
1761 	rc = spi_add_device(spi);
1762 	if (rc) {
1763 		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
1764 		goto err_of_node_put;
1765 	}
1766 
1767 	return spi;
1768 
1769 err_of_node_put:
1770 	of_node_put(nc);
1771 err_out:
1772 	spi_dev_put(spi);
1773 	return ERR_PTR(rc);
1774 }
1775 
1776 /**
1777  * of_register_spi_devices() - Register child devices onto the SPI bus
1778  * @ctlr:	Pointer to spi_controller device
1779  *
1780  * Registers an spi_device for each child node of controller node which
1781  * represents a valid SPI slave.
1782  */
1783 static void of_register_spi_devices(struct spi_controller *ctlr)
1784 {
1785 	struct spi_device *spi;
1786 	struct device_node *nc;
1787 
1788 	if (!ctlr->dev.of_node)
1789 		return;
1790 
1791 	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
1792 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
1793 			continue;
1794 		spi = of_register_spi_device(ctlr, nc);
1795 		if (IS_ERR(spi)) {
1796 			dev_warn(&ctlr->dev,
1797 				 "Failed to create SPI device for %pOF\n", nc);
1798 			of_node_clear_flag(nc, OF_POPULATED);
1799 		}
1800 	}
1801 }
1802 #else
1803 static void of_register_spi_devices(struct spi_controller *ctlr) { }
1804 #endif
1805 
1806 #ifdef CONFIG_ACPI
1807 static void acpi_spi_parse_apple_properties(struct spi_device *spi)
1808 {
1809 	struct acpi_device *dev = ACPI_COMPANION(&spi->dev);
1810 	const union acpi_object *obj;
1811 
1812 	if (!x86_apple_machine)
1813 		return;
1814 
1815 	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
1816 	    && obj->buffer.length >= 4)
1817 		spi->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
1818 
1819 	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
1820 	    && obj->buffer.length == 8)
1821 		spi->bits_per_word = *(u64 *)obj->buffer.pointer;
1822 
1823 	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
1824 	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
1825 		spi->mode |= SPI_LSB_FIRST;
1826 
1827 	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
1828 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
1829 		spi->mode |= SPI_CPOL;
1830 
1831 	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
1832 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
1833 		spi->mode |= SPI_CPHA;
1834 }
1835 
1836 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1837 {
1838 	struct spi_device *spi = data;
1839 	struct spi_controller *ctlr = spi->controller;
1840 
1841 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1842 		struct acpi_resource_spi_serialbus *sb;
1843 
1844 		sb = &ares->data.spi_serial_bus;
1845 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1846 			/*
1847 			 * ACPI DeviceSelection numbering is handled by the
1848 			 * host controller driver in Windows and can vary
1849 			 * from driver to driver. In Linux we always expect
1850 			 * 0 .. max - 1 so we need to ask the driver to
1851 			 * translate between the two schemes.
1852 			 */
1853 			if (ctlr->fw_translate_cs) {
1854 				int cs = ctlr->fw_translate_cs(ctlr,
1855 						sb->device_selection);
1856 				if (cs < 0)
1857 					return cs;
1858 				spi->chip_select = cs;
1859 			} else {
1860 				spi->chip_select = sb->device_selection;
1861 			}
1862 
1863 			spi->max_speed_hz = sb->connection_speed;
1864 
1865 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1866 				spi->mode |= SPI_CPHA;
1867 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1868 				spi->mode |= SPI_CPOL;
1869 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1870 				spi->mode |= SPI_CS_HIGH;
1871 		}
1872 	} else if (spi->irq < 0) {
1873 		struct resource r;
1874 
1875 		if (acpi_dev_resource_interrupt(ares, 0, &r))
1876 			spi->irq = r.start;
1877 	}
1878 
1879 	/* Always tell the ACPI core to skip this resource */
1880 	return 1;
1881 }
1882 
1883 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
1884 					    struct acpi_device *adev)
1885 {
1886 	struct list_head resource_list;
1887 	struct spi_device *spi;
1888 	int ret;
1889 
1890 	if (acpi_bus_get_status(adev) || !adev->status.present ||
1891 	    acpi_device_enumerated(adev))
1892 		return AE_OK;
1893 
1894 	spi = spi_alloc_device(ctlr);
1895 	if (!spi) {
1896 		dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
1897 			dev_name(&adev->dev));
1898 		return AE_NO_MEMORY;
1899 	}
1900 
1901 	ACPI_COMPANION_SET(&spi->dev, adev);
1902 	spi->irq = -1;
1903 
1904 	INIT_LIST_HEAD(&resource_list);
1905 	ret = acpi_dev_get_resources(adev, &resource_list,
1906 				     acpi_spi_add_resource, spi);
1907 	acpi_dev_free_resource_list(&resource_list);
1908 
1909 	acpi_spi_parse_apple_properties(spi);
1910 
1911 	if (ret < 0 || !spi->max_speed_hz) {
1912 		spi_dev_put(spi);
1913 		return AE_OK;
1914 	}
1915 
1916 	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
1917 			  sizeof(spi->modalias));
1918 
1919 	if (spi->irq < 0)
1920 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1921 
1922 	acpi_device_set_enumerated(adev);
1923 
1924 	adev->power.flags.ignore_parent = true;
1925 	if (spi_add_device(spi)) {
1926 		adev->power.flags.ignore_parent = false;
1927 		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
1928 			dev_name(&adev->dev));
1929 		spi_dev_put(spi);
1930 	}
1931 
1932 	return AE_OK;
1933 }
1934 
1935 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1936 				       void *data, void **return_value)
1937 {
1938 	struct spi_controller *ctlr = data;
1939 	struct acpi_device *adev;
1940 
1941 	if (acpi_bus_get_device(handle, &adev))
1942 		return AE_OK;
1943 
1944 	return acpi_register_spi_device(ctlr, adev);
1945 }
1946 
1947 static void acpi_register_spi_devices(struct spi_controller *ctlr)
1948 {
1949 	acpi_status status;
1950 	acpi_handle handle;
1951 
1952 	handle = ACPI_HANDLE(ctlr->dev.parent);
1953 	if (!handle)
1954 		return;
1955 
1956 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1957 				     acpi_spi_add_device, NULL, ctlr, NULL);
1958 	if (ACPI_FAILURE(status))
1959 		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
1960 }
1961 #else
1962 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
1963 #endif /* CONFIG_ACPI */
1964 
1965 static void spi_controller_release(struct device *dev)
1966 {
1967 	struct spi_controller *ctlr;
1968 
1969 	ctlr = container_of(dev, struct spi_controller, dev);
1970 	kfree(ctlr);
1971 }
1972 
1973 static struct class spi_master_class = {
1974 	.name		= "spi_master",
1975 	.owner		= THIS_MODULE,
1976 	.dev_release	= spi_controller_release,
1977 	.dev_groups	= spi_master_groups,
1978 };
1979 
1980 #ifdef CONFIG_SPI_SLAVE
1981 /**
1982  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
1983  *		     controller
1984  * @spi: device used for the current transfer
1985  */
1986 int spi_slave_abort(struct spi_device *spi)
1987 {
1988 	struct spi_controller *ctlr = spi->controller;
1989 
1990 	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
1991 		return ctlr->slave_abort(ctlr);
1992 
1993 	return -ENOTSUPP;
1994 }
1995 EXPORT_SYMBOL_GPL(spi_slave_abort);
1996 
1997 static int match_true(struct device *dev, void *data)
1998 {
1999 	return 1;
2000 }
2001 
2002 static ssize_t spi_slave_show(struct device *dev,
2003 			      struct device_attribute *attr, char *buf)
2004 {
2005 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2006 						   dev);
2007 	struct device *child;
2008 
2009 	child = device_find_child(&ctlr->dev, NULL, match_true);
2010 	return sprintf(buf, "%s\n",
2011 		       child ? to_spi_device(child)->modalias : NULL);
2012 }
2013 
2014 static ssize_t spi_slave_store(struct device *dev,
2015 			       struct device_attribute *attr, const char *buf,
2016 			       size_t count)
2017 {
2018 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2019 						   dev);
2020 	struct spi_device *spi;
2021 	struct device *child;
2022 	char name[32];
2023 	int rc;
2024 
2025 	rc = sscanf(buf, "%31s", name);
2026 	if (rc != 1 || !name[0])
2027 		return -EINVAL;
2028 
2029 	child = device_find_child(&ctlr->dev, NULL, match_true);
2030 	if (child) {
2031 		/* Remove registered slave */
2032 		device_unregister(child);
2033 		put_device(child);
2034 	}
2035 
2036 	if (strcmp(name, "(null)")) {
2037 		/* Register new slave */
2038 		spi = spi_alloc_device(ctlr);
2039 		if (!spi)
2040 			return -ENOMEM;
2041 
2042 		strlcpy(spi->modalias, name, sizeof(spi->modalias));
2043 
2044 		rc = spi_add_device(spi);
2045 		if (rc) {
2046 			spi_dev_put(spi);
2047 			return rc;
2048 		}
2049 	}
2050 
2051 	return count;
2052 }
2053 
2054 static DEVICE_ATTR(slave, 0644, spi_slave_show, spi_slave_store);
2055 
2056 static struct attribute *spi_slave_attrs[] = {
2057 	&dev_attr_slave.attr,
2058 	NULL,
2059 };
2060 
2061 static const struct attribute_group spi_slave_group = {
2062 	.attrs = spi_slave_attrs,
2063 };
2064 
2065 static const struct attribute_group *spi_slave_groups[] = {
2066 	&spi_controller_statistics_group,
2067 	&spi_slave_group,
2068 	NULL,
2069 };
2070 
2071 static struct class spi_slave_class = {
2072 	.name		= "spi_slave",
2073 	.owner		= THIS_MODULE,
2074 	.dev_release	= spi_controller_release,
2075 	.dev_groups	= spi_slave_groups,
2076 };
2077 #else
2078 extern struct class spi_slave_class;	/* dummy */
2079 #endif
2080 
2081 /**
2082  * __spi_alloc_controller - allocate an SPI master or slave controller
2083  * @dev: the controller, possibly using the platform_bus
2084  * @size: how much zeroed driver-private data to allocate; the pointer to this
2085  *	memory is in the driver_data field of the returned device,
2086  *	accessible with spi_controller_get_devdata().
2087  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2088  *	slave (true) controller
2089  * Context: can sleep
2090  *
2091  * This call is used only by SPI controller drivers, which are the
2092  * only ones directly touching chip registers.  It's how they allocate
2093  * an spi_controller structure, prior to calling spi_register_controller().
2094  *
2095  * This must be called from context that can sleep.
2096  *
2097  * The caller is responsible for assigning the bus number and initializing the
2098  * controller's methods before calling spi_register_controller(); and (after
2099  * errors adding the device) calling spi_controller_put() to prevent a memory
2100  * leak.
2101  *
2102  * Return: the SPI controller structure on success, else NULL.
2103  */
2104 struct spi_controller *__spi_alloc_controller(struct device *dev,
2105 					      unsigned int size, bool slave)
2106 {
2107 	struct spi_controller	*ctlr;
2108 
2109 	if (!dev)
2110 		return NULL;
2111 
2112 	ctlr = kzalloc(size + sizeof(*ctlr), GFP_KERNEL);
2113 	if (!ctlr)
2114 		return NULL;
2115 
2116 	device_initialize(&ctlr->dev);
2117 	ctlr->bus_num = -1;
2118 	ctlr->num_chipselect = 1;
2119 	ctlr->slave = slave;
2120 	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2121 		ctlr->dev.class = &spi_slave_class;
2122 	else
2123 		ctlr->dev.class = &spi_master_class;
2124 	ctlr->dev.parent = dev;
2125 	pm_suspend_ignore_children(&ctlr->dev, true);
2126 	spi_controller_set_devdata(ctlr, &ctlr[1]);
2127 
2128 	return ctlr;
2129 }
2130 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2131 
2132 #ifdef CONFIG_OF
2133 static int of_spi_register_master(struct spi_controller *ctlr)
2134 {
2135 	int nb, i, *cs;
2136 	struct device_node *np = ctlr->dev.of_node;
2137 
2138 	if (!np)
2139 		return 0;
2140 
2141 	nb = of_gpio_named_count(np, "cs-gpios");
2142 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2143 
2144 	/* Return error only for an incorrectly formed cs-gpios property */
2145 	if (nb == 0 || nb == -ENOENT)
2146 		return 0;
2147 	else if (nb < 0)
2148 		return nb;
2149 
2150 	cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2151 			  GFP_KERNEL);
2152 	ctlr->cs_gpios = cs;
2153 
2154 	if (!ctlr->cs_gpios)
2155 		return -ENOMEM;
2156 
2157 	for (i = 0; i < ctlr->num_chipselect; i++)
2158 		cs[i] = -ENOENT;
2159 
2160 	for (i = 0; i < nb; i++)
2161 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2162 
2163 	return 0;
2164 }
2165 #else
2166 static int of_spi_register_master(struct spi_controller *ctlr)
2167 {
2168 	return 0;
2169 }
2170 #endif
2171 
2172 /**
2173  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2174  * @ctlr: The SPI master to grab GPIO descriptors for
2175  */
2176 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2177 {
2178 	int nb, i;
2179 	struct gpio_desc **cs;
2180 	struct device *dev = &ctlr->dev;
2181 
2182 	nb = gpiod_count(dev, "cs");
2183 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2184 
2185 	/* No GPIOs at all is fine, else return the error */
2186 	if (nb == 0 || nb == -ENOENT)
2187 		return 0;
2188 	else if (nb < 0)
2189 		return nb;
2190 
2191 	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2192 			  GFP_KERNEL);
2193 	if (!cs)
2194 		return -ENOMEM;
2195 	ctlr->cs_gpiods = cs;
2196 
2197 	for (i = 0; i < nb; i++) {
2198 		/*
2199 		 * Most chipselects are active low, the inverted
2200 		 * semantics are handled by special quirks in gpiolib,
2201 		 * so initializing them GPIOD_OUT_LOW here means
2202 		 * "unasserted", in most cases this will drive the physical
2203 		 * line high.
2204 		 */
2205 		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2206 						      GPIOD_OUT_LOW);
2207 		if (IS_ERR(cs[i]))
2208 			return PTR_ERR(cs[i]);
2209 
2210 		if (cs[i]) {
2211 			/*
2212 			 * If we find a CS GPIO, name it after the device and
2213 			 * chip select line.
2214 			 */
2215 			char *gpioname;
2216 
2217 			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2218 						  dev_name(dev), i);
2219 			if (!gpioname)
2220 				return -ENOMEM;
2221 			gpiod_set_consumer_name(cs[i], gpioname);
2222 		}
2223 	}
2224 
2225 	return 0;
2226 }
2227 
2228 static int spi_controller_check_ops(struct spi_controller *ctlr)
2229 {
2230 	/*
2231 	 * The controller may implement only the high-level SPI-memory like
2232 	 * operations if it does not support regular SPI transfers, and this is
2233 	 * valid use case.
2234 	 * If ->mem_ops is NULL, we request that at least one of the
2235 	 * ->transfer_xxx() method be implemented.
2236 	 */
2237 	if (ctlr->mem_ops) {
2238 		if (!ctlr->mem_ops->exec_op)
2239 			return -EINVAL;
2240 	} else if (!ctlr->transfer && !ctlr->transfer_one &&
2241 		   !ctlr->transfer_one_message) {
2242 		return -EINVAL;
2243 	}
2244 
2245 	return 0;
2246 }
2247 
2248 /**
2249  * spi_register_controller - register SPI master or slave controller
2250  * @ctlr: initialized master, originally from spi_alloc_master() or
2251  *	spi_alloc_slave()
2252  * Context: can sleep
2253  *
2254  * SPI controllers connect to their drivers using some non-SPI bus,
2255  * such as the platform bus.  The final stage of probe() in that code
2256  * includes calling spi_register_controller() to hook up to this SPI bus glue.
2257  *
2258  * SPI controllers use board specific (often SOC specific) bus numbers,
2259  * and board-specific addressing for SPI devices combines those numbers
2260  * with chip select numbers.  Since SPI does not directly support dynamic
2261  * device identification, boards need configuration tables telling which
2262  * chip is at which address.
2263  *
2264  * This must be called from context that can sleep.  It returns zero on
2265  * success, else a negative error code (dropping the controller's refcount).
2266  * After a successful return, the caller is responsible for calling
2267  * spi_unregister_controller().
2268  *
2269  * Return: zero on success, else a negative error code.
2270  */
2271 int spi_register_controller(struct spi_controller *ctlr)
2272 {
2273 	struct device		*dev = ctlr->dev.parent;
2274 	struct boardinfo	*bi;
2275 	int			status;
2276 	int			id, first_dynamic;
2277 
2278 	if (!dev)
2279 		return -ENODEV;
2280 
2281 	/*
2282 	 * Make sure all necessary hooks are implemented before registering
2283 	 * the SPI controller.
2284 	 */
2285 	status = spi_controller_check_ops(ctlr);
2286 	if (status)
2287 		return status;
2288 
2289 	/* even if it's just one always-selected device, there must
2290 	 * be at least one chipselect
2291 	 */
2292 	if (ctlr->num_chipselect == 0)
2293 		return -EINVAL;
2294 	if (ctlr->bus_num >= 0) {
2295 		/* devices with a fixed bus num must check-in with the num */
2296 		mutex_lock(&board_lock);
2297 		id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2298 			ctlr->bus_num + 1, GFP_KERNEL);
2299 		mutex_unlock(&board_lock);
2300 		if (WARN(id < 0, "couldn't get idr"))
2301 			return id == -ENOSPC ? -EBUSY : id;
2302 		ctlr->bus_num = id;
2303 	} else if (ctlr->dev.of_node) {
2304 		/* allocate dynamic bus number using Linux idr */
2305 		id = of_alias_get_id(ctlr->dev.of_node, "spi");
2306 		if (id >= 0) {
2307 			ctlr->bus_num = id;
2308 			mutex_lock(&board_lock);
2309 			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2310 				       ctlr->bus_num + 1, GFP_KERNEL);
2311 			mutex_unlock(&board_lock);
2312 			if (WARN(id < 0, "couldn't get idr"))
2313 				return id == -ENOSPC ? -EBUSY : id;
2314 		}
2315 	}
2316 	if (ctlr->bus_num < 0) {
2317 		first_dynamic = of_alias_get_highest_id("spi");
2318 		if (first_dynamic < 0)
2319 			first_dynamic = 0;
2320 		else
2321 			first_dynamic++;
2322 
2323 		mutex_lock(&board_lock);
2324 		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2325 			       0, GFP_KERNEL);
2326 		mutex_unlock(&board_lock);
2327 		if (WARN(id < 0, "couldn't get idr"))
2328 			return id;
2329 		ctlr->bus_num = id;
2330 	}
2331 	INIT_LIST_HEAD(&ctlr->queue);
2332 	spin_lock_init(&ctlr->queue_lock);
2333 	spin_lock_init(&ctlr->bus_lock_spinlock);
2334 	mutex_init(&ctlr->bus_lock_mutex);
2335 	mutex_init(&ctlr->io_mutex);
2336 	ctlr->bus_lock_flag = 0;
2337 	init_completion(&ctlr->xfer_completion);
2338 	if (!ctlr->max_dma_len)
2339 		ctlr->max_dma_len = INT_MAX;
2340 
2341 	/* register the device, then userspace will see it.
2342 	 * registration fails if the bus ID is in use.
2343 	 */
2344 	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2345 
2346 	if (!spi_controller_is_slave(ctlr)) {
2347 		if (ctlr->use_gpio_descriptors) {
2348 			status = spi_get_gpio_descs(ctlr);
2349 			if (status)
2350 				return status;
2351 			/*
2352 			 * A controller using GPIO descriptors always
2353 			 * supports SPI_CS_HIGH if need be.
2354 			 */
2355 			ctlr->mode_bits |= SPI_CS_HIGH;
2356 		} else {
2357 			/* Legacy code path for GPIOs from DT */
2358 			status = of_spi_register_master(ctlr);
2359 			if (status)
2360 				return status;
2361 		}
2362 	}
2363 
2364 	status = device_add(&ctlr->dev);
2365 	if (status < 0) {
2366 		/* free bus id */
2367 		mutex_lock(&board_lock);
2368 		idr_remove(&spi_master_idr, ctlr->bus_num);
2369 		mutex_unlock(&board_lock);
2370 		goto done;
2371 	}
2372 	dev_dbg(dev, "registered %s %s\n",
2373 			spi_controller_is_slave(ctlr) ? "slave" : "master",
2374 			dev_name(&ctlr->dev));
2375 
2376 	/*
2377 	 * If we're using a queued driver, start the queue. Note that we don't
2378 	 * need the queueing logic if the driver is only supporting high-level
2379 	 * memory operations.
2380 	 */
2381 	if (ctlr->transfer) {
2382 		dev_info(dev, "controller is unqueued, this is deprecated\n");
2383 	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2384 		status = spi_controller_initialize_queue(ctlr);
2385 		if (status) {
2386 			device_del(&ctlr->dev);
2387 			/* free bus id */
2388 			mutex_lock(&board_lock);
2389 			idr_remove(&spi_master_idr, ctlr->bus_num);
2390 			mutex_unlock(&board_lock);
2391 			goto done;
2392 		}
2393 	}
2394 	/* add statistics */
2395 	spin_lock_init(&ctlr->statistics.lock);
2396 
2397 	mutex_lock(&board_lock);
2398 	list_add_tail(&ctlr->list, &spi_controller_list);
2399 	list_for_each_entry(bi, &board_list, list)
2400 		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2401 	mutex_unlock(&board_lock);
2402 
2403 	/* Register devices from the device tree and ACPI */
2404 	of_register_spi_devices(ctlr);
2405 	acpi_register_spi_devices(ctlr);
2406 done:
2407 	return status;
2408 }
2409 EXPORT_SYMBOL_GPL(spi_register_controller);
2410 
2411 static void devm_spi_unregister(struct device *dev, void *res)
2412 {
2413 	spi_unregister_controller(*(struct spi_controller **)res);
2414 }
2415 
2416 /**
2417  * devm_spi_register_controller - register managed SPI master or slave
2418  *	controller
2419  * @dev:    device managing SPI controller
2420  * @ctlr: initialized controller, originally from spi_alloc_master() or
2421  *	spi_alloc_slave()
2422  * Context: can sleep
2423  *
2424  * Register a SPI device as with spi_register_controller() which will
2425  * automatically be unregistered and freed.
2426  *
2427  * Return: zero on success, else a negative error code.
2428  */
2429 int devm_spi_register_controller(struct device *dev,
2430 				 struct spi_controller *ctlr)
2431 {
2432 	struct spi_controller **ptr;
2433 	int ret;
2434 
2435 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2436 	if (!ptr)
2437 		return -ENOMEM;
2438 
2439 	ret = spi_register_controller(ctlr);
2440 	if (!ret) {
2441 		*ptr = ctlr;
2442 		devres_add(dev, ptr);
2443 	} else {
2444 		devres_free(ptr);
2445 	}
2446 
2447 	return ret;
2448 }
2449 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2450 
2451 static int __unregister(struct device *dev, void *null)
2452 {
2453 	spi_unregister_device(to_spi_device(dev));
2454 	return 0;
2455 }
2456 
2457 /**
2458  * spi_unregister_controller - unregister SPI master or slave controller
2459  * @ctlr: the controller being unregistered
2460  * Context: can sleep
2461  *
2462  * This call is used only by SPI controller drivers, which are the
2463  * only ones directly touching chip registers.
2464  *
2465  * This must be called from context that can sleep.
2466  *
2467  * Note that this function also drops a reference to the controller.
2468  */
2469 void spi_unregister_controller(struct spi_controller *ctlr)
2470 {
2471 	struct spi_controller *found;
2472 	int id = ctlr->bus_num;
2473 	int dummy;
2474 
2475 	/* First make sure that this controller was ever added */
2476 	mutex_lock(&board_lock);
2477 	found = idr_find(&spi_master_idr, id);
2478 	mutex_unlock(&board_lock);
2479 	if (ctlr->queued) {
2480 		if (spi_destroy_queue(ctlr))
2481 			dev_err(&ctlr->dev, "queue remove failed\n");
2482 	}
2483 	mutex_lock(&board_lock);
2484 	list_del(&ctlr->list);
2485 	mutex_unlock(&board_lock);
2486 
2487 	dummy = device_for_each_child(&ctlr->dev, NULL, __unregister);
2488 	device_unregister(&ctlr->dev);
2489 	/* free bus id */
2490 	mutex_lock(&board_lock);
2491 	if (found == ctlr)
2492 		idr_remove(&spi_master_idr, id);
2493 	mutex_unlock(&board_lock);
2494 }
2495 EXPORT_SYMBOL_GPL(spi_unregister_controller);
2496 
2497 int spi_controller_suspend(struct spi_controller *ctlr)
2498 {
2499 	int ret;
2500 
2501 	/* Basically no-ops for non-queued controllers */
2502 	if (!ctlr->queued)
2503 		return 0;
2504 
2505 	ret = spi_stop_queue(ctlr);
2506 	if (ret)
2507 		dev_err(&ctlr->dev, "queue stop failed\n");
2508 
2509 	return ret;
2510 }
2511 EXPORT_SYMBOL_GPL(spi_controller_suspend);
2512 
2513 int spi_controller_resume(struct spi_controller *ctlr)
2514 {
2515 	int ret;
2516 
2517 	if (!ctlr->queued)
2518 		return 0;
2519 
2520 	ret = spi_start_queue(ctlr);
2521 	if (ret)
2522 		dev_err(&ctlr->dev, "queue restart failed\n");
2523 
2524 	return ret;
2525 }
2526 EXPORT_SYMBOL_GPL(spi_controller_resume);
2527 
2528 static int __spi_controller_match(struct device *dev, const void *data)
2529 {
2530 	struct spi_controller *ctlr;
2531 	const u16 *bus_num = data;
2532 
2533 	ctlr = container_of(dev, struct spi_controller, dev);
2534 	return ctlr->bus_num == *bus_num;
2535 }
2536 
2537 /**
2538  * spi_busnum_to_master - look up master associated with bus_num
2539  * @bus_num: the master's bus number
2540  * Context: can sleep
2541  *
2542  * This call may be used with devices that are registered after
2543  * arch init time.  It returns a refcounted pointer to the relevant
2544  * spi_controller (which the caller must release), or NULL if there is
2545  * no such master registered.
2546  *
2547  * Return: the SPI master structure on success, else NULL.
2548  */
2549 struct spi_controller *spi_busnum_to_master(u16 bus_num)
2550 {
2551 	struct device		*dev;
2552 	struct spi_controller	*ctlr = NULL;
2553 
2554 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
2555 				__spi_controller_match);
2556 	if (dev)
2557 		ctlr = container_of(dev, struct spi_controller, dev);
2558 	/* reference got in class_find_device */
2559 	return ctlr;
2560 }
2561 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2562 
2563 /*-------------------------------------------------------------------------*/
2564 
2565 /* Core methods for SPI resource management */
2566 
2567 /**
2568  * spi_res_alloc - allocate a spi resource that is life-cycle managed
2569  *                 during the processing of a spi_message while using
2570  *                 spi_transfer_one
2571  * @spi:     the spi device for which we allocate memory
2572  * @release: the release code to execute for this resource
2573  * @size:    size to alloc and return
2574  * @gfp:     GFP allocation flags
2575  *
2576  * Return: the pointer to the allocated data
2577  *
2578  * This may get enhanced in the future to allocate from a memory pool
2579  * of the @spi_device or @spi_controller to avoid repeated allocations.
2580  */
2581 void *spi_res_alloc(struct spi_device *spi,
2582 		    spi_res_release_t release,
2583 		    size_t size, gfp_t gfp)
2584 {
2585 	struct spi_res *sres;
2586 
2587 	sres = kzalloc(sizeof(*sres) + size, gfp);
2588 	if (!sres)
2589 		return NULL;
2590 
2591 	INIT_LIST_HEAD(&sres->entry);
2592 	sres->release = release;
2593 
2594 	return sres->data;
2595 }
2596 EXPORT_SYMBOL_GPL(spi_res_alloc);
2597 
2598 /**
2599  * spi_res_free - free an spi resource
2600  * @res: pointer to the custom data of a resource
2601  *
2602  */
2603 void spi_res_free(void *res)
2604 {
2605 	struct spi_res *sres = container_of(res, struct spi_res, data);
2606 
2607 	if (!res)
2608 		return;
2609 
2610 	WARN_ON(!list_empty(&sres->entry));
2611 	kfree(sres);
2612 }
2613 EXPORT_SYMBOL_GPL(spi_res_free);
2614 
2615 /**
2616  * spi_res_add - add a spi_res to the spi_message
2617  * @message: the spi message
2618  * @res:     the spi_resource
2619  */
2620 void spi_res_add(struct spi_message *message, void *res)
2621 {
2622 	struct spi_res *sres = container_of(res, struct spi_res, data);
2623 
2624 	WARN_ON(!list_empty(&sres->entry));
2625 	list_add_tail(&sres->entry, &message->resources);
2626 }
2627 EXPORT_SYMBOL_GPL(spi_res_add);
2628 
2629 /**
2630  * spi_res_release - release all spi resources for this message
2631  * @ctlr:  the @spi_controller
2632  * @message: the @spi_message
2633  */
2634 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2635 {
2636 	struct spi_res *res;
2637 
2638 	while (!list_empty(&message->resources)) {
2639 		res = list_last_entry(&message->resources,
2640 				      struct spi_res, entry);
2641 
2642 		if (res->release)
2643 			res->release(ctlr, message, res->data);
2644 
2645 		list_del(&res->entry);
2646 
2647 		kfree(res);
2648 	}
2649 }
2650 EXPORT_SYMBOL_GPL(spi_res_release);
2651 
2652 /*-------------------------------------------------------------------------*/
2653 
2654 /* Core methods for spi_message alterations */
2655 
2656 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2657 					    struct spi_message *msg,
2658 					    void *res)
2659 {
2660 	struct spi_replaced_transfers *rxfer = res;
2661 	size_t i;
2662 
2663 	/* call extra callback if requested */
2664 	if (rxfer->release)
2665 		rxfer->release(ctlr, msg, res);
2666 
2667 	/* insert replaced transfers back into the message */
2668 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2669 
2670 	/* remove the formerly inserted entries */
2671 	for (i = 0; i < rxfer->inserted; i++)
2672 		list_del(&rxfer->inserted_transfers[i].transfer_list);
2673 }
2674 
2675 /**
2676  * spi_replace_transfers - replace transfers with several transfers
2677  *                         and register change with spi_message.resources
2678  * @msg:           the spi_message we work upon
2679  * @xfer_first:    the first spi_transfer we want to replace
2680  * @remove:        number of transfers to remove
2681  * @insert:        the number of transfers we want to insert instead
2682  * @release:       extra release code necessary in some circumstances
2683  * @extradatasize: extra data to allocate (with alignment guarantees
2684  *                 of struct @spi_transfer)
2685  * @gfp:           gfp flags
2686  *
2687  * Returns: pointer to @spi_replaced_transfers,
2688  *          PTR_ERR(...) in case of errors.
2689  */
2690 struct spi_replaced_transfers *spi_replace_transfers(
2691 	struct spi_message *msg,
2692 	struct spi_transfer *xfer_first,
2693 	size_t remove,
2694 	size_t insert,
2695 	spi_replaced_release_t release,
2696 	size_t extradatasize,
2697 	gfp_t gfp)
2698 {
2699 	struct spi_replaced_transfers *rxfer;
2700 	struct spi_transfer *xfer;
2701 	size_t i;
2702 
2703 	/* allocate the structure using spi_res */
2704 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2705 			      insert * sizeof(struct spi_transfer)
2706 			      + sizeof(struct spi_replaced_transfers)
2707 			      + extradatasize,
2708 			      gfp);
2709 	if (!rxfer)
2710 		return ERR_PTR(-ENOMEM);
2711 
2712 	/* the release code to invoke before running the generic release */
2713 	rxfer->release = release;
2714 
2715 	/* assign extradata */
2716 	if (extradatasize)
2717 		rxfer->extradata =
2718 			&rxfer->inserted_transfers[insert];
2719 
2720 	/* init the replaced_transfers list */
2721 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
2722 
2723 	/* assign the list_entry after which we should reinsert
2724 	 * the @replaced_transfers - it may be spi_message.messages!
2725 	 */
2726 	rxfer->replaced_after = xfer_first->transfer_list.prev;
2727 
2728 	/* remove the requested number of transfers */
2729 	for (i = 0; i < remove; i++) {
2730 		/* if the entry after replaced_after it is msg->transfers
2731 		 * then we have been requested to remove more transfers
2732 		 * than are in the list
2733 		 */
2734 		if (rxfer->replaced_after->next == &msg->transfers) {
2735 			dev_err(&msg->spi->dev,
2736 				"requested to remove more spi_transfers than are available\n");
2737 			/* insert replaced transfers back into the message */
2738 			list_splice(&rxfer->replaced_transfers,
2739 				    rxfer->replaced_after);
2740 
2741 			/* free the spi_replace_transfer structure */
2742 			spi_res_free(rxfer);
2743 
2744 			/* and return with an error */
2745 			return ERR_PTR(-EINVAL);
2746 		}
2747 
2748 		/* remove the entry after replaced_after from list of
2749 		 * transfers and add it to list of replaced_transfers
2750 		 */
2751 		list_move_tail(rxfer->replaced_after->next,
2752 			       &rxfer->replaced_transfers);
2753 	}
2754 
2755 	/* create copy of the given xfer with identical settings
2756 	 * based on the first transfer to get removed
2757 	 */
2758 	for (i = 0; i < insert; i++) {
2759 		/* we need to run in reverse order */
2760 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
2761 
2762 		/* copy all spi_transfer data */
2763 		memcpy(xfer, xfer_first, sizeof(*xfer));
2764 
2765 		/* add to list */
2766 		list_add(&xfer->transfer_list, rxfer->replaced_after);
2767 
2768 		/* clear cs_change and delay_usecs for all but the last */
2769 		if (i) {
2770 			xfer->cs_change = false;
2771 			xfer->delay_usecs = 0;
2772 		}
2773 	}
2774 
2775 	/* set up inserted */
2776 	rxfer->inserted = insert;
2777 
2778 	/* and register it with spi_res/spi_message */
2779 	spi_res_add(msg, rxfer);
2780 
2781 	return rxfer;
2782 }
2783 EXPORT_SYMBOL_GPL(spi_replace_transfers);
2784 
2785 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
2786 					struct spi_message *msg,
2787 					struct spi_transfer **xferp,
2788 					size_t maxsize,
2789 					gfp_t gfp)
2790 {
2791 	struct spi_transfer *xfer = *xferp, *xfers;
2792 	struct spi_replaced_transfers *srt;
2793 	size_t offset;
2794 	size_t count, i;
2795 
2796 	/* calculate how many we have to replace */
2797 	count = DIV_ROUND_UP(xfer->len, maxsize);
2798 
2799 	/* create replacement */
2800 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2801 	if (IS_ERR(srt))
2802 		return PTR_ERR(srt);
2803 	xfers = srt->inserted_transfers;
2804 
2805 	/* now handle each of those newly inserted spi_transfers
2806 	 * note that the replacements spi_transfers all are preset
2807 	 * to the same values as *xferp, so tx_buf, rx_buf and len
2808 	 * are all identical (as well as most others)
2809 	 * so we just have to fix up len and the pointers.
2810 	 *
2811 	 * this also includes support for the depreciated
2812 	 * spi_message.is_dma_mapped interface
2813 	 */
2814 
2815 	/* the first transfer just needs the length modified, so we
2816 	 * run it outside the loop
2817 	 */
2818 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2819 
2820 	/* all the others need rx_buf/tx_buf also set */
2821 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2822 		/* update rx_buf, tx_buf and dma */
2823 		if (xfers[i].rx_buf)
2824 			xfers[i].rx_buf += offset;
2825 		if (xfers[i].rx_dma)
2826 			xfers[i].rx_dma += offset;
2827 		if (xfers[i].tx_buf)
2828 			xfers[i].tx_buf += offset;
2829 		if (xfers[i].tx_dma)
2830 			xfers[i].tx_dma += offset;
2831 
2832 		/* update length */
2833 		xfers[i].len = min(maxsize, xfers[i].len - offset);
2834 	}
2835 
2836 	/* we set up xferp to the last entry we have inserted,
2837 	 * so that we skip those already split transfers
2838 	 */
2839 	*xferp = &xfers[count - 1];
2840 
2841 	/* increment statistics counters */
2842 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
2843 				       transfers_split_maxsize);
2844 	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2845 				       transfers_split_maxsize);
2846 
2847 	return 0;
2848 }
2849 
2850 /**
2851  * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2852  *                              when an individual transfer exceeds a
2853  *                              certain size
2854  * @ctlr:    the @spi_controller for this transfer
2855  * @msg:   the @spi_message to transform
2856  * @maxsize:  the maximum when to apply this
2857  * @gfp: GFP allocation flags
2858  *
2859  * Return: status of transformation
2860  */
2861 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
2862 				struct spi_message *msg,
2863 				size_t maxsize,
2864 				gfp_t gfp)
2865 {
2866 	struct spi_transfer *xfer;
2867 	int ret;
2868 
2869 	/* iterate over the transfer_list,
2870 	 * but note that xfer is advanced to the last transfer inserted
2871 	 * to avoid checking sizes again unnecessarily (also xfer does
2872 	 * potentiall belong to a different list by the time the
2873 	 * replacement has happened
2874 	 */
2875 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2876 		if (xfer->len > maxsize) {
2877 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
2878 							   maxsize, gfp);
2879 			if (ret)
2880 				return ret;
2881 		}
2882 	}
2883 
2884 	return 0;
2885 }
2886 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2887 
2888 /*-------------------------------------------------------------------------*/
2889 
2890 /* Core methods for SPI controller protocol drivers.  Some of the
2891  * other core methods are currently defined as inline functions.
2892  */
2893 
2894 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
2895 					u8 bits_per_word)
2896 {
2897 	if (ctlr->bits_per_word_mask) {
2898 		/* Only 32 bits fit in the mask */
2899 		if (bits_per_word > 32)
2900 			return -EINVAL;
2901 		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
2902 			return -EINVAL;
2903 	}
2904 
2905 	return 0;
2906 }
2907 
2908 /**
2909  * spi_setup - setup SPI mode and clock rate
2910  * @spi: the device whose settings are being modified
2911  * Context: can sleep, and no requests are queued to the device
2912  *
2913  * SPI protocol drivers may need to update the transfer mode if the
2914  * device doesn't work with its default.  They may likewise need
2915  * to update clock rates or word sizes from initial values.  This function
2916  * changes those settings, and must be called from a context that can sleep.
2917  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2918  * effect the next time the device is selected and data is transferred to
2919  * or from it.  When this function returns, the spi device is deselected.
2920  *
2921  * Note that this call will fail if the protocol driver specifies an option
2922  * that the underlying controller or its driver does not support.  For
2923  * example, not all hardware supports wire transfers using nine bit words,
2924  * LSB-first wire encoding, or active-high chipselects.
2925  *
2926  * Return: zero on success, else a negative error code.
2927  */
2928 int spi_setup(struct spi_device *spi)
2929 {
2930 	unsigned	bad_bits, ugly_bits;
2931 	int		status;
2932 
2933 	/* check mode to prevent that DUAL and QUAD set at the same time
2934 	 */
2935 	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2936 		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2937 		dev_err(&spi->dev,
2938 		"setup: can not select dual and quad at the same time\n");
2939 		return -EINVAL;
2940 	}
2941 	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2942 	 */
2943 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
2944 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
2945 		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
2946 		return -EINVAL;
2947 	/* help drivers fail *cleanly* when they need options
2948 	 * that aren't supported with their current controller
2949 	 * SPI_CS_WORD has a fallback software implementation,
2950 	 * so it is ignored here.
2951 	 */
2952 	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD);
2953 	/* nothing prevents from working with active-high CS in case if it
2954 	 * is driven by GPIO.
2955 	 */
2956 	if (gpio_is_valid(spi->cs_gpio))
2957 		bad_bits &= ~SPI_CS_HIGH;
2958 	ugly_bits = bad_bits &
2959 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
2960 		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
2961 	if (ugly_bits) {
2962 		dev_warn(&spi->dev,
2963 			 "setup: ignoring unsupported mode bits %x\n",
2964 			 ugly_bits);
2965 		spi->mode &= ~ugly_bits;
2966 		bad_bits &= ~ugly_bits;
2967 	}
2968 	if (bad_bits) {
2969 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2970 			bad_bits);
2971 		return -EINVAL;
2972 	}
2973 
2974 	if (!spi->bits_per_word)
2975 		spi->bits_per_word = 8;
2976 
2977 	status = __spi_validate_bits_per_word(spi->controller,
2978 					      spi->bits_per_word);
2979 	if (status)
2980 		return status;
2981 
2982 	if (!spi->max_speed_hz)
2983 		spi->max_speed_hz = spi->controller->max_speed_hz;
2984 
2985 	if (spi->controller->setup)
2986 		status = spi->controller->setup(spi);
2987 
2988 	spi_set_cs(spi, false);
2989 
2990 	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2991 			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2992 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2993 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2994 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
2995 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
2996 			spi->bits_per_word, spi->max_speed_hz,
2997 			status);
2998 
2999 	return status;
3000 }
3001 EXPORT_SYMBOL_GPL(spi_setup);
3002 
3003 /**
3004  * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3005  * @spi: the device that requires specific CS timing configuration
3006  * @setup: CS setup time in terms of clock count
3007  * @hold: CS hold time in terms of clock count
3008  * @inactive_dly: CS inactive delay between transfers in terms of clock count
3009  */
3010 void spi_set_cs_timing(struct spi_device *spi, u8 setup, u8 hold,
3011 		       u8 inactive_dly)
3012 {
3013 	if (spi->controller->set_cs_timing)
3014 		spi->controller->set_cs_timing(spi, setup, hold, inactive_dly);
3015 }
3016 EXPORT_SYMBOL_GPL(spi_set_cs_timing);
3017 
3018 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3019 {
3020 	struct spi_controller *ctlr = spi->controller;
3021 	struct spi_transfer *xfer;
3022 	int w_size;
3023 
3024 	if (list_empty(&message->transfers))
3025 		return -EINVAL;
3026 
3027 	/* If an SPI controller does not support toggling the CS line on each
3028 	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3029 	 * for the CS line, we can emulate the CS-per-word hardware function by
3030 	 * splitting transfers into one-word transfers and ensuring that
3031 	 * cs_change is set for each transfer.
3032 	 */
3033 	if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3034 					  spi->cs_gpiod ||
3035 					  gpio_is_valid(spi->cs_gpio))) {
3036 		size_t maxsize;
3037 		int ret;
3038 
3039 		maxsize = (spi->bits_per_word + 7) / 8;
3040 
3041 		/* spi_split_transfers_maxsize() requires message->spi */
3042 		message->spi = spi;
3043 
3044 		ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3045 						  GFP_KERNEL);
3046 		if (ret)
3047 			return ret;
3048 
3049 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3050 			/* don't change cs_change on the last entry in the list */
3051 			if (list_is_last(&xfer->transfer_list, &message->transfers))
3052 				break;
3053 			xfer->cs_change = 1;
3054 		}
3055 	}
3056 
3057 	/* Half-duplex links include original MicroWire, and ones with
3058 	 * only one data pin like SPI_3WIRE (switches direction) or where
3059 	 * either MOSI or MISO is missing.  They can also be caused by
3060 	 * software limitations.
3061 	 */
3062 	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3063 	    (spi->mode & SPI_3WIRE)) {
3064 		unsigned flags = ctlr->flags;
3065 
3066 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3067 			if (xfer->rx_buf && xfer->tx_buf)
3068 				return -EINVAL;
3069 			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3070 				return -EINVAL;
3071 			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3072 				return -EINVAL;
3073 		}
3074 	}
3075 
3076 	/**
3077 	 * Set transfer bits_per_word and max speed as spi device default if
3078 	 * it is not set for this transfer.
3079 	 * Set transfer tx_nbits and rx_nbits as single transfer default
3080 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3081 	 * Ensure transfer word_delay is at least as long as that required by
3082 	 * device itself.
3083 	 */
3084 	message->frame_length = 0;
3085 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
3086 		message->frame_length += xfer->len;
3087 		if (!xfer->bits_per_word)
3088 			xfer->bits_per_word = spi->bits_per_word;
3089 
3090 		if (!xfer->speed_hz)
3091 			xfer->speed_hz = spi->max_speed_hz;
3092 
3093 		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3094 			xfer->speed_hz = ctlr->max_speed_hz;
3095 
3096 		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3097 			return -EINVAL;
3098 
3099 		/*
3100 		 * SPI transfer length should be multiple of SPI word size
3101 		 * where SPI word size should be power-of-two multiple
3102 		 */
3103 		if (xfer->bits_per_word <= 8)
3104 			w_size = 1;
3105 		else if (xfer->bits_per_word <= 16)
3106 			w_size = 2;
3107 		else
3108 			w_size = 4;
3109 
3110 		/* No partial transfers accepted */
3111 		if (xfer->len % w_size)
3112 			return -EINVAL;
3113 
3114 		if (xfer->speed_hz && ctlr->min_speed_hz &&
3115 		    xfer->speed_hz < ctlr->min_speed_hz)
3116 			return -EINVAL;
3117 
3118 		if (xfer->tx_buf && !xfer->tx_nbits)
3119 			xfer->tx_nbits = SPI_NBITS_SINGLE;
3120 		if (xfer->rx_buf && !xfer->rx_nbits)
3121 			xfer->rx_nbits = SPI_NBITS_SINGLE;
3122 		/* check transfer tx/rx_nbits:
3123 		 * 1. check the value matches one of single, dual and quad
3124 		 * 2. check tx/rx_nbits match the mode in spi_device
3125 		 */
3126 		if (xfer->tx_buf) {
3127 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3128 				xfer->tx_nbits != SPI_NBITS_DUAL &&
3129 				xfer->tx_nbits != SPI_NBITS_QUAD)
3130 				return -EINVAL;
3131 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3132 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3133 				return -EINVAL;
3134 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3135 				!(spi->mode & SPI_TX_QUAD))
3136 				return -EINVAL;
3137 		}
3138 		/* check transfer rx_nbits */
3139 		if (xfer->rx_buf) {
3140 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3141 				xfer->rx_nbits != SPI_NBITS_DUAL &&
3142 				xfer->rx_nbits != SPI_NBITS_QUAD)
3143 				return -EINVAL;
3144 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3145 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3146 				return -EINVAL;
3147 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3148 				!(spi->mode & SPI_RX_QUAD))
3149 				return -EINVAL;
3150 		}
3151 
3152 		if (xfer->word_delay_usecs < spi->word_delay_usecs)
3153 			xfer->word_delay_usecs = spi->word_delay_usecs;
3154 	}
3155 
3156 	message->status = -EINPROGRESS;
3157 
3158 	return 0;
3159 }
3160 
3161 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3162 {
3163 	struct spi_controller *ctlr = spi->controller;
3164 
3165 	/*
3166 	 * Some controllers do not support doing regular SPI transfers. Return
3167 	 * ENOTSUPP when this is the case.
3168 	 */
3169 	if (!ctlr->transfer)
3170 		return -ENOTSUPP;
3171 
3172 	message->spi = spi;
3173 
3174 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3175 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3176 
3177 	trace_spi_message_submit(message);
3178 
3179 	return ctlr->transfer(spi, message);
3180 }
3181 
3182 /**
3183  * spi_async - asynchronous SPI transfer
3184  * @spi: device with which data will be exchanged
3185  * @message: describes the data transfers, including completion callback
3186  * Context: any (irqs may be blocked, etc)
3187  *
3188  * This call may be used in_irq and other contexts which can't sleep,
3189  * as well as from task contexts which can sleep.
3190  *
3191  * The completion callback is invoked in a context which can't sleep.
3192  * Before that invocation, the value of message->status is undefined.
3193  * When the callback is issued, message->status holds either zero (to
3194  * indicate complete success) or a negative error code.  After that
3195  * callback returns, the driver which issued the transfer request may
3196  * deallocate the associated memory; it's no longer in use by any SPI
3197  * core or controller driver code.
3198  *
3199  * Note that although all messages to a spi_device are handled in
3200  * FIFO order, messages may go to different devices in other orders.
3201  * Some device might be higher priority, or have various "hard" access
3202  * time requirements, for example.
3203  *
3204  * On detection of any fault during the transfer, processing of
3205  * the entire message is aborted, and the device is deselected.
3206  * Until returning from the associated message completion callback,
3207  * no other spi_message queued to that device will be processed.
3208  * (This rule applies equally to all the synchronous transfer calls,
3209  * which are wrappers around this core asynchronous primitive.)
3210  *
3211  * Return: zero on success, else a negative error code.
3212  */
3213 int spi_async(struct spi_device *spi, struct spi_message *message)
3214 {
3215 	struct spi_controller *ctlr = spi->controller;
3216 	int ret;
3217 	unsigned long flags;
3218 
3219 	ret = __spi_validate(spi, message);
3220 	if (ret != 0)
3221 		return ret;
3222 
3223 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3224 
3225 	if (ctlr->bus_lock_flag)
3226 		ret = -EBUSY;
3227 	else
3228 		ret = __spi_async(spi, message);
3229 
3230 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3231 
3232 	return ret;
3233 }
3234 EXPORT_SYMBOL_GPL(spi_async);
3235 
3236 /**
3237  * spi_async_locked - version of spi_async with exclusive bus usage
3238  * @spi: device with which data will be exchanged
3239  * @message: describes the data transfers, including completion callback
3240  * Context: any (irqs may be blocked, etc)
3241  *
3242  * This call may be used in_irq and other contexts which can't sleep,
3243  * as well as from task contexts which can sleep.
3244  *
3245  * The completion callback is invoked in a context which can't sleep.
3246  * Before that invocation, the value of message->status is undefined.
3247  * When the callback is issued, message->status holds either zero (to
3248  * indicate complete success) or a negative error code.  After that
3249  * callback returns, the driver which issued the transfer request may
3250  * deallocate the associated memory; it's no longer in use by any SPI
3251  * core or controller driver code.
3252  *
3253  * Note that although all messages to a spi_device are handled in
3254  * FIFO order, messages may go to different devices in other orders.
3255  * Some device might be higher priority, or have various "hard" access
3256  * time requirements, for example.
3257  *
3258  * On detection of any fault during the transfer, processing of
3259  * the entire message is aborted, and the device is deselected.
3260  * Until returning from the associated message completion callback,
3261  * no other spi_message queued to that device will be processed.
3262  * (This rule applies equally to all the synchronous transfer calls,
3263  * which are wrappers around this core asynchronous primitive.)
3264  *
3265  * Return: zero on success, else a negative error code.
3266  */
3267 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3268 {
3269 	struct spi_controller *ctlr = spi->controller;
3270 	int ret;
3271 	unsigned long flags;
3272 
3273 	ret = __spi_validate(spi, message);
3274 	if (ret != 0)
3275 		return ret;
3276 
3277 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3278 
3279 	ret = __spi_async(spi, message);
3280 
3281 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3282 
3283 	return ret;
3284 
3285 }
3286 EXPORT_SYMBOL_GPL(spi_async_locked);
3287 
3288 /*-------------------------------------------------------------------------*/
3289 
3290 /* Utility methods for SPI protocol drivers, layered on
3291  * top of the core.  Some other utility methods are defined as
3292  * inline functions.
3293  */
3294 
3295 static void spi_complete(void *arg)
3296 {
3297 	complete(arg);
3298 }
3299 
3300 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3301 {
3302 	DECLARE_COMPLETION_ONSTACK(done);
3303 	int status;
3304 	struct spi_controller *ctlr = spi->controller;
3305 	unsigned long flags;
3306 
3307 	status = __spi_validate(spi, message);
3308 	if (status != 0)
3309 		return status;
3310 
3311 	message->complete = spi_complete;
3312 	message->context = &done;
3313 	message->spi = spi;
3314 
3315 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3316 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3317 
3318 	/* If we're not using the legacy transfer method then we will
3319 	 * try to transfer in the calling context so special case.
3320 	 * This code would be less tricky if we could remove the
3321 	 * support for driver implemented message queues.
3322 	 */
3323 	if (ctlr->transfer == spi_queued_transfer) {
3324 		spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3325 
3326 		trace_spi_message_submit(message);
3327 
3328 		status = __spi_queued_transfer(spi, message, false);
3329 
3330 		spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3331 	} else {
3332 		status = spi_async_locked(spi, message);
3333 	}
3334 
3335 	if (status == 0) {
3336 		/* Push out the messages in the calling context if we
3337 		 * can.
3338 		 */
3339 		if (ctlr->transfer == spi_queued_transfer) {
3340 			SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3341 						       spi_sync_immediate);
3342 			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3343 						       spi_sync_immediate);
3344 			__spi_pump_messages(ctlr, false);
3345 		}
3346 
3347 		wait_for_completion(&done);
3348 		status = message->status;
3349 	}
3350 	message->context = NULL;
3351 	return status;
3352 }
3353 
3354 /**
3355  * spi_sync - blocking/synchronous SPI data transfers
3356  * @spi: device with which data will be exchanged
3357  * @message: describes the data transfers
3358  * Context: can sleep
3359  *
3360  * This call may only be used from a context that may sleep.  The sleep
3361  * is non-interruptible, and has no timeout.  Low-overhead controller
3362  * drivers may DMA directly into and out of the message buffers.
3363  *
3364  * Note that the SPI device's chip select is active during the message,
3365  * and then is normally disabled between messages.  Drivers for some
3366  * frequently-used devices may want to minimize costs of selecting a chip,
3367  * by leaving it selected in anticipation that the next message will go
3368  * to the same chip.  (That may increase power usage.)
3369  *
3370  * Also, the caller is guaranteeing that the memory associated with the
3371  * message will not be freed before this call returns.
3372  *
3373  * Return: zero on success, else a negative error code.
3374  */
3375 int spi_sync(struct spi_device *spi, struct spi_message *message)
3376 {
3377 	int ret;
3378 
3379 	mutex_lock(&spi->controller->bus_lock_mutex);
3380 	ret = __spi_sync(spi, message);
3381 	mutex_unlock(&spi->controller->bus_lock_mutex);
3382 
3383 	return ret;
3384 }
3385 EXPORT_SYMBOL_GPL(spi_sync);
3386 
3387 /**
3388  * spi_sync_locked - version of spi_sync with exclusive bus usage
3389  * @spi: device with which data will be exchanged
3390  * @message: describes the data transfers
3391  * Context: can sleep
3392  *
3393  * This call may only be used from a context that may sleep.  The sleep
3394  * is non-interruptible, and has no timeout.  Low-overhead controller
3395  * drivers may DMA directly into and out of the message buffers.
3396  *
3397  * This call should be used by drivers that require exclusive access to the
3398  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3399  * be released by a spi_bus_unlock call when the exclusive access is over.
3400  *
3401  * Return: zero on success, else a negative error code.
3402  */
3403 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3404 {
3405 	return __spi_sync(spi, message);
3406 }
3407 EXPORT_SYMBOL_GPL(spi_sync_locked);
3408 
3409 /**
3410  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3411  * @ctlr: SPI bus master that should be locked for exclusive bus access
3412  * Context: can sleep
3413  *
3414  * This call may only be used from a context that may sleep.  The sleep
3415  * is non-interruptible, and has no timeout.
3416  *
3417  * This call should be used by drivers that require exclusive access to the
3418  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3419  * exclusive access is over. Data transfer must be done by spi_sync_locked
3420  * and spi_async_locked calls when the SPI bus lock is held.
3421  *
3422  * Return: always zero.
3423  */
3424 int spi_bus_lock(struct spi_controller *ctlr)
3425 {
3426 	unsigned long flags;
3427 
3428 	mutex_lock(&ctlr->bus_lock_mutex);
3429 
3430 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3431 	ctlr->bus_lock_flag = 1;
3432 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3433 
3434 	/* mutex remains locked until spi_bus_unlock is called */
3435 
3436 	return 0;
3437 }
3438 EXPORT_SYMBOL_GPL(spi_bus_lock);
3439 
3440 /**
3441  * spi_bus_unlock - release the lock for exclusive SPI bus usage
3442  * @ctlr: SPI bus master that was locked for exclusive bus access
3443  * Context: can sleep
3444  *
3445  * This call may only be used from a context that may sleep.  The sleep
3446  * is non-interruptible, and has no timeout.
3447  *
3448  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3449  * call.
3450  *
3451  * Return: always zero.
3452  */
3453 int spi_bus_unlock(struct spi_controller *ctlr)
3454 {
3455 	ctlr->bus_lock_flag = 0;
3456 
3457 	mutex_unlock(&ctlr->bus_lock_mutex);
3458 
3459 	return 0;
3460 }
3461 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3462 
3463 /* portable code must never pass more than 32 bytes */
3464 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
3465 
3466 static u8	*buf;
3467 
3468 /**
3469  * spi_write_then_read - SPI synchronous write followed by read
3470  * @spi: device with which data will be exchanged
3471  * @txbuf: data to be written (need not be dma-safe)
3472  * @n_tx: size of txbuf, in bytes
3473  * @rxbuf: buffer into which data will be read (need not be dma-safe)
3474  * @n_rx: size of rxbuf, in bytes
3475  * Context: can sleep
3476  *
3477  * This performs a half duplex MicroWire style transaction with the
3478  * device, sending txbuf and then reading rxbuf.  The return value
3479  * is zero for success, else a negative errno status code.
3480  * This call may only be used from a context that may sleep.
3481  *
3482  * Parameters to this routine are always copied using a small buffer;
3483  * portable code should never use this for more than 32 bytes.
3484  * Performance-sensitive or bulk transfer code should instead use
3485  * spi_{async,sync}() calls with dma-safe buffers.
3486  *
3487  * Return: zero on success, else a negative error code.
3488  */
3489 int spi_write_then_read(struct spi_device *spi,
3490 		const void *txbuf, unsigned n_tx,
3491 		void *rxbuf, unsigned n_rx)
3492 {
3493 	static DEFINE_MUTEX(lock);
3494 
3495 	int			status;
3496 	struct spi_message	message;
3497 	struct spi_transfer	x[2];
3498 	u8			*local_buf;
3499 
3500 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
3501 	 * copying here, (as a pure convenience thing), but we can
3502 	 * keep heap costs out of the hot path unless someone else is
3503 	 * using the pre-allocated buffer or the transfer is too large.
3504 	 */
3505 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3506 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3507 				    GFP_KERNEL | GFP_DMA);
3508 		if (!local_buf)
3509 			return -ENOMEM;
3510 	} else {
3511 		local_buf = buf;
3512 	}
3513 
3514 	spi_message_init(&message);
3515 	memset(x, 0, sizeof(x));
3516 	if (n_tx) {
3517 		x[0].len = n_tx;
3518 		spi_message_add_tail(&x[0], &message);
3519 	}
3520 	if (n_rx) {
3521 		x[1].len = n_rx;
3522 		spi_message_add_tail(&x[1], &message);
3523 	}
3524 
3525 	memcpy(local_buf, txbuf, n_tx);
3526 	x[0].tx_buf = local_buf;
3527 	x[1].rx_buf = local_buf + n_tx;
3528 
3529 	/* do the i/o */
3530 	status = spi_sync(spi, &message);
3531 	if (status == 0)
3532 		memcpy(rxbuf, x[1].rx_buf, n_rx);
3533 
3534 	if (x[0].tx_buf == buf)
3535 		mutex_unlock(&lock);
3536 	else
3537 		kfree(local_buf);
3538 
3539 	return status;
3540 }
3541 EXPORT_SYMBOL_GPL(spi_write_then_read);
3542 
3543 /*-------------------------------------------------------------------------*/
3544 
3545 #if IS_ENABLED(CONFIG_OF)
3546 static int __spi_of_device_match(struct device *dev, void *data)
3547 {
3548 	return dev->of_node == data;
3549 }
3550 
3551 /* must call put_device() when done with returned spi_device device */
3552 struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3553 {
3554 	struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3555 						__spi_of_device_match);
3556 	return dev ? to_spi_device(dev) : NULL;
3557 }
3558 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
3559 #endif /* IS_ENABLED(CONFIG_OF) */
3560 
3561 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3562 static int __spi_of_controller_match(struct device *dev, const void *data)
3563 {
3564 	return dev->of_node == data;
3565 }
3566 
3567 /* the spi controllers are not using spi_bus, so we find it with another way */
3568 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3569 {
3570 	struct device *dev;
3571 
3572 	dev = class_find_device(&spi_master_class, NULL, node,
3573 				__spi_of_controller_match);
3574 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3575 		dev = class_find_device(&spi_slave_class, NULL, node,
3576 					__spi_of_controller_match);
3577 	if (!dev)
3578 		return NULL;
3579 
3580 	/* reference got in class_find_device */
3581 	return container_of(dev, struct spi_controller, dev);
3582 }
3583 
3584 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3585 			 void *arg)
3586 {
3587 	struct of_reconfig_data *rd = arg;
3588 	struct spi_controller *ctlr;
3589 	struct spi_device *spi;
3590 
3591 	switch (of_reconfig_get_state_change(action, arg)) {
3592 	case OF_RECONFIG_CHANGE_ADD:
3593 		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3594 		if (ctlr == NULL)
3595 			return NOTIFY_OK;	/* not for us */
3596 
3597 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3598 			put_device(&ctlr->dev);
3599 			return NOTIFY_OK;
3600 		}
3601 
3602 		spi = of_register_spi_device(ctlr, rd->dn);
3603 		put_device(&ctlr->dev);
3604 
3605 		if (IS_ERR(spi)) {
3606 			pr_err("%s: failed to create for '%pOF'\n",
3607 					__func__, rd->dn);
3608 			of_node_clear_flag(rd->dn, OF_POPULATED);
3609 			return notifier_from_errno(PTR_ERR(spi));
3610 		}
3611 		break;
3612 
3613 	case OF_RECONFIG_CHANGE_REMOVE:
3614 		/* already depopulated? */
3615 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
3616 			return NOTIFY_OK;
3617 
3618 		/* find our device by node */
3619 		spi = of_find_spi_device_by_node(rd->dn);
3620 		if (spi == NULL)
3621 			return NOTIFY_OK;	/* no? not meant for us */
3622 
3623 		/* unregister takes one ref away */
3624 		spi_unregister_device(spi);
3625 
3626 		/* and put the reference of the find */
3627 		put_device(&spi->dev);
3628 		break;
3629 	}
3630 
3631 	return NOTIFY_OK;
3632 }
3633 
3634 static struct notifier_block spi_of_notifier = {
3635 	.notifier_call = of_spi_notify,
3636 };
3637 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3638 extern struct notifier_block spi_of_notifier;
3639 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3640 
3641 #if IS_ENABLED(CONFIG_ACPI)
3642 static int spi_acpi_controller_match(struct device *dev, const void *data)
3643 {
3644 	return ACPI_COMPANION(dev->parent) == data;
3645 }
3646 
3647 static int spi_acpi_device_match(struct device *dev, void *data)
3648 {
3649 	return ACPI_COMPANION(dev) == data;
3650 }
3651 
3652 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
3653 {
3654 	struct device *dev;
3655 
3656 	dev = class_find_device(&spi_master_class, NULL, adev,
3657 				spi_acpi_controller_match);
3658 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3659 		dev = class_find_device(&spi_slave_class, NULL, adev,
3660 					spi_acpi_controller_match);
3661 	if (!dev)
3662 		return NULL;
3663 
3664 	return container_of(dev, struct spi_controller, dev);
3665 }
3666 
3667 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3668 {
3669 	struct device *dev;
3670 
3671 	dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3672 
3673 	return dev ? to_spi_device(dev) : NULL;
3674 }
3675 
3676 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3677 			   void *arg)
3678 {
3679 	struct acpi_device *adev = arg;
3680 	struct spi_controller *ctlr;
3681 	struct spi_device *spi;
3682 
3683 	switch (value) {
3684 	case ACPI_RECONFIG_DEVICE_ADD:
3685 		ctlr = acpi_spi_find_controller_by_adev(adev->parent);
3686 		if (!ctlr)
3687 			break;
3688 
3689 		acpi_register_spi_device(ctlr, adev);
3690 		put_device(&ctlr->dev);
3691 		break;
3692 	case ACPI_RECONFIG_DEVICE_REMOVE:
3693 		if (!acpi_device_enumerated(adev))
3694 			break;
3695 
3696 		spi = acpi_spi_find_device_by_adev(adev);
3697 		if (!spi)
3698 			break;
3699 
3700 		spi_unregister_device(spi);
3701 		put_device(&spi->dev);
3702 		break;
3703 	}
3704 
3705 	return NOTIFY_OK;
3706 }
3707 
3708 static struct notifier_block spi_acpi_notifier = {
3709 	.notifier_call = acpi_spi_notify,
3710 };
3711 #else
3712 extern struct notifier_block spi_acpi_notifier;
3713 #endif
3714 
3715 static int __init spi_init(void)
3716 {
3717 	int	status;
3718 
3719 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3720 	if (!buf) {
3721 		status = -ENOMEM;
3722 		goto err0;
3723 	}
3724 
3725 	status = bus_register(&spi_bus_type);
3726 	if (status < 0)
3727 		goto err1;
3728 
3729 	status = class_register(&spi_master_class);
3730 	if (status < 0)
3731 		goto err2;
3732 
3733 	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
3734 		status = class_register(&spi_slave_class);
3735 		if (status < 0)
3736 			goto err3;
3737 	}
3738 
3739 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3740 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3741 	if (IS_ENABLED(CONFIG_ACPI))
3742 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3743 
3744 	return 0;
3745 
3746 err3:
3747 	class_unregister(&spi_master_class);
3748 err2:
3749 	bus_unregister(&spi_bus_type);
3750 err1:
3751 	kfree(buf);
3752 	buf = NULL;
3753 err0:
3754 	return status;
3755 }
3756 
3757 /* board_info is normally registered in arch_initcall(),
3758  * but even essential drivers wait till later
3759  *
3760  * REVISIT only boardinfo really needs static linking. the rest (device and
3761  * driver registration) _could_ be dynamically linked (modular) ... costs
3762  * include needing to have boardinfo data structures be much more public.
3763  */
3764 postcore_initcall(spi_init);
3765 
3766