xref: /linux/drivers/spi/spi.c (revision 9a6b55ac)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6 
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
36 
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
41 
42 #include "internals.h"
43 
44 static DEFINE_IDR(spi_master_idr);
45 
46 static void spidev_release(struct device *dev)
47 {
48 	struct spi_device	*spi = to_spi_device(dev);
49 
50 	/* spi controllers may cleanup for released devices */
51 	if (spi->controller->cleanup)
52 		spi->controller->cleanup(spi);
53 
54 	spi_controller_put(spi->controller);
55 	kfree(spi->driver_override);
56 	kfree(spi);
57 }
58 
59 static ssize_t
60 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
61 {
62 	const struct spi_device	*spi = to_spi_device(dev);
63 	int len;
64 
65 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
66 	if (len != -ENODEV)
67 		return len;
68 
69 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
70 }
71 static DEVICE_ATTR_RO(modalias);
72 
73 static ssize_t driver_override_store(struct device *dev,
74 				     struct device_attribute *a,
75 				     const char *buf, size_t count)
76 {
77 	struct spi_device *spi = to_spi_device(dev);
78 	const char *end = memchr(buf, '\n', count);
79 	const size_t len = end ? end - buf : count;
80 	const char *driver_override, *old;
81 
82 	/* We need to keep extra room for a newline when displaying value */
83 	if (len >= (PAGE_SIZE - 1))
84 		return -EINVAL;
85 
86 	driver_override = kstrndup(buf, len, GFP_KERNEL);
87 	if (!driver_override)
88 		return -ENOMEM;
89 
90 	device_lock(dev);
91 	old = spi->driver_override;
92 	if (len) {
93 		spi->driver_override = driver_override;
94 	} else {
95 		/* Empty string, disable driver override */
96 		spi->driver_override = NULL;
97 		kfree(driver_override);
98 	}
99 	device_unlock(dev);
100 	kfree(old);
101 
102 	return count;
103 }
104 
105 static ssize_t driver_override_show(struct device *dev,
106 				    struct device_attribute *a, char *buf)
107 {
108 	const struct spi_device *spi = to_spi_device(dev);
109 	ssize_t len;
110 
111 	device_lock(dev);
112 	len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
113 	device_unlock(dev);
114 	return len;
115 }
116 static DEVICE_ATTR_RW(driver_override);
117 
118 #define SPI_STATISTICS_ATTRS(field, file)				\
119 static ssize_t spi_controller_##field##_show(struct device *dev,	\
120 					     struct device_attribute *attr, \
121 					     char *buf)			\
122 {									\
123 	struct spi_controller *ctlr = container_of(dev,			\
124 					 struct spi_controller, dev);	\
125 	return spi_statistics_##field##_show(&ctlr->statistics, buf);	\
126 }									\
127 static struct device_attribute dev_attr_spi_controller_##field = {	\
128 	.attr = { .name = file, .mode = 0444 },				\
129 	.show = spi_controller_##field##_show,				\
130 };									\
131 static ssize_t spi_device_##field##_show(struct device *dev,		\
132 					 struct device_attribute *attr,	\
133 					char *buf)			\
134 {									\
135 	struct spi_device *spi = to_spi_device(dev);			\
136 	return spi_statistics_##field##_show(&spi->statistics, buf);	\
137 }									\
138 static struct device_attribute dev_attr_spi_device_##field = {		\
139 	.attr = { .name = file, .mode = 0444 },				\
140 	.show = spi_device_##field##_show,				\
141 }
142 
143 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
144 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
145 					    char *buf)			\
146 {									\
147 	unsigned long flags;						\
148 	ssize_t len;							\
149 	spin_lock_irqsave(&stat->lock, flags);				\
150 	len = sprintf(buf, format_string, stat->field);			\
151 	spin_unlock_irqrestore(&stat->lock, flags);			\
152 	return len;							\
153 }									\
154 SPI_STATISTICS_ATTRS(name, file)
155 
156 #define SPI_STATISTICS_SHOW(field, format_string)			\
157 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
158 				 field, format_string)
159 
160 SPI_STATISTICS_SHOW(messages, "%lu");
161 SPI_STATISTICS_SHOW(transfers, "%lu");
162 SPI_STATISTICS_SHOW(errors, "%lu");
163 SPI_STATISTICS_SHOW(timedout, "%lu");
164 
165 SPI_STATISTICS_SHOW(spi_sync, "%lu");
166 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
167 SPI_STATISTICS_SHOW(spi_async, "%lu");
168 
169 SPI_STATISTICS_SHOW(bytes, "%llu");
170 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
171 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
172 
173 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
174 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
175 				 "transfer_bytes_histo_" number,	\
176 				 transfer_bytes_histo[index],  "%lu")
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
192 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
193 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
194 
195 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
196 
197 static struct attribute *spi_dev_attrs[] = {
198 	&dev_attr_modalias.attr,
199 	&dev_attr_driver_override.attr,
200 	NULL,
201 };
202 
203 static const struct attribute_group spi_dev_group = {
204 	.attrs  = spi_dev_attrs,
205 };
206 
207 static struct attribute *spi_device_statistics_attrs[] = {
208 	&dev_attr_spi_device_messages.attr,
209 	&dev_attr_spi_device_transfers.attr,
210 	&dev_attr_spi_device_errors.attr,
211 	&dev_attr_spi_device_timedout.attr,
212 	&dev_attr_spi_device_spi_sync.attr,
213 	&dev_attr_spi_device_spi_sync_immediate.attr,
214 	&dev_attr_spi_device_spi_async.attr,
215 	&dev_attr_spi_device_bytes.attr,
216 	&dev_attr_spi_device_bytes_rx.attr,
217 	&dev_attr_spi_device_bytes_tx.attr,
218 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
219 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
220 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
221 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
222 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
223 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
224 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
225 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
226 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
227 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
228 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
229 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
230 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
231 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
232 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
233 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
234 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
235 	&dev_attr_spi_device_transfers_split_maxsize.attr,
236 	NULL,
237 };
238 
239 static const struct attribute_group spi_device_statistics_group = {
240 	.name  = "statistics",
241 	.attrs  = spi_device_statistics_attrs,
242 };
243 
244 static const struct attribute_group *spi_dev_groups[] = {
245 	&spi_dev_group,
246 	&spi_device_statistics_group,
247 	NULL,
248 };
249 
250 static struct attribute *spi_controller_statistics_attrs[] = {
251 	&dev_attr_spi_controller_messages.attr,
252 	&dev_attr_spi_controller_transfers.attr,
253 	&dev_attr_spi_controller_errors.attr,
254 	&dev_attr_spi_controller_timedout.attr,
255 	&dev_attr_spi_controller_spi_sync.attr,
256 	&dev_attr_spi_controller_spi_sync_immediate.attr,
257 	&dev_attr_spi_controller_spi_async.attr,
258 	&dev_attr_spi_controller_bytes.attr,
259 	&dev_attr_spi_controller_bytes_rx.attr,
260 	&dev_attr_spi_controller_bytes_tx.attr,
261 	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
262 	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
263 	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
264 	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
265 	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
266 	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
267 	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
268 	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
269 	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
270 	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
271 	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
272 	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
273 	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
274 	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
275 	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
276 	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
277 	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
278 	&dev_attr_spi_controller_transfers_split_maxsize.attr,
279 	NULL,
280 };
281 
282 static const struct attribute_group spi_controller_statistics_group = {
283 	.name  = "statistics",
284 	.attrs  = spi_controller_statistics_attrs,
285 };
286 
287 static const struct attribute_group *spi_master_groups[] = {
288 	&spi_controller_statistics_group,
289 	NULL,
290 };
291 
292 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
293 				       struct spi_transfer *xfer,
294 				       struct spi_controller *ctlr)
295 {
296 	unsigned long flags;
297 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
298 
299 	if (l2len < 0)
300 		l2len = 0;
301 
302 	spin_lock_irqsave(&stats->lock, flags);
303 
304 	stats->transfers++;
305 	stats->transfer_bytes_histo[l2len]++;
306 
307 	stats->bytes += xfer->len;
308 	if ((xfer->tx_buf) &&
309 	    (xfer->tx_buf != ctlr->dummy_tx))
310 		stats->bytes_tx += xfer->len;
311 	if ((xfer->rx_buf) &&
312 	    (xfer->rx_buf != ctlr->dummy_rx))
313 		stats->bytes_rx += xfer->len;
314 
315 	spin_unlock_irqrestore(&stats->lock, flags);
316 }
317 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
318 
319 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
320  * and the sysfs version makes coldplug work too.
321  */
322 
323 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
324 						const struct spi_device *sdev)
325 {
326 	while (id->name[0]) {
327 		if (!strcmp(sdev->modalias, id->name))
328 			return id;
329 		id++;
330 	}
331 	return NULL;
332 }
333 
334 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
335 {
336 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
337 
338 	return spi_match_id(sdrv->id_table, sdev);
339 }
340 EXPORT_SYMBOL_GPL(spi_get_device_id);
341 
342 static int spi_match_device(struct device *dev, struct device_driver *drv)
343 {
344 	const struct spi_device	*spi = to_spi_device(dev);
345 	const struct spi_driver	*sdrv = to_spi_driver(drv);
346 
347 	/* Check override first, and if set, only use the named driver */
348 	if (spi->driver_override)
349 		return strcmp(spi->driver_override, drv->name) == 0;
350 
351 	/* Attempt an OF style match */
352 	if (of_driver_match_device(dev, drv))
353 		return 1;
354 
355 	/* Then try ACPI */
356 	if (acpi_driver_match_device(dev, drv))
357 		return 1;
358 
359 	if (sdrv->id_table)
360 		return !!spi_match_id(sdrv->id_table, spi);
361 
362 	return strcmp(spi->modalias, drv->name) == 0;
363 }
364 
365 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
366 {
367 	const struct spi_device		*spi = to_spi_device(dev);
368 	int rc;
369 
370 	rc = acpi_device_uevent_modalias(dev, env);
371 	if (rc != -ENODEV)
372 		return rc;
373 
374 	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
375 }
376 
377 struct bus_type spi_bus_type = {
378 	.name		= "spi",
379 	.dev_groups	= spi_dev_groups,
380 	.match		= spi_match_device,
381 	.uevent		= spi_uevent,
382 };
383 EXPORT_SYMBOL_GPL(spi_bus_type);
384 
385 
386 static int spi_drv_probe(struct device *dev)
387 {
388 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
389 	struct spi_device		*spi = to_spi_device(dev);
390 	int ret;
391 
392 	ret = of_clk_set_defaults(dev->of_node, false);
393 	if (ret)
394 		return ret;
395 
396 	if (dev->of_node) {
397 		spi->irq = of_irq_get(dev->of_node, 0);
398 		if (spi->irq == -EPROBE_DEFER)
399 			return -EPROBE_DEFER;
400 		if (spi->irq < 0)
401 			spi->irq = 0;
402 	}
403 
404 	ret = dev_pm_domain_attach(dev, true);
405 	if (ret)
406 		return ret;
407 
408 	ret = sdrv->probe(spi);
409 	if (ret)
410 		dev_pm_domain_detach(dev, true);
411 
412 	return ret;
413 }
414 
415 static int spi_drv_remove(struct device *dev)
416 {
417 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
418 	int ret;
419 
420 	ret = sdrv->remove(to_spi_device(dev));
421 	dev_pm_domain_detach(dev, true);
422 
423 	return ret;
424 }
425 
426 static void spi_drv_shutdown(struct device *dev)
427 {
428 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
429 
430 	sdrv->shutdown(to_spi_device(dev));
431 }
432 
433 /**
434  * __spi_register_driver - register a SPI driver
435  * @owner: owner module of the driver to register
436  * @sdrv: the driver to register
437  * Context: can sleep
438  *
439  * Return: zero on success, else a negative error code.
440  */
441 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
442 {
443 	sdrv->driver.owner = owner;
444 	sdrv->driver.bus = &spi_bus_type;
445 	if (sdrv->probe)
446 		sdrv->driver.probe = spi_drv_probe;
447 	if (sdrv->remove)
448 		sdrv->driver.remove = spi_drv_remove;
449 	if (sdrv->shutdown)
450 		sdrv->driver.shutdown = spi_drv_shutdown;
451 	return driver_register(&sdrv->driver);
452 }
453 EXPORT_SYMBOL_GPL(__spi_register_driver);
454 
455 /*-------------------------------------------------------------------------*/
456 
457 /* SPI devices should normally not be created by SPI device drivers; that
458  * would make them board-specific.  Similarly with SPI controller drivers.
459  * Device registration normally goes into like arch/.../mach.../board-YYY.c
460  * with other readonly (flashable) information about mainboard devices.
461  */
462 
463 struct boardinfo {
464 	struct list_head	list;
465 	struct spi_board_info	board_info;
466 };
467 
468 static LIST_HEAD(board_list);
469 static LIST_HEAD(spi_controller_list);
470 
471 /*
472  * Used to protect add/del operation for board_info list and
473  * spi_controller list, and their matching process
474  * also used to protect object of type struct idr
475  */
476 static DEFINE_MUTEX(board_lock);
477 
478 /**
479  * spi_alloc_device - Allocate a new SPI device
480  * @ctlr: Controller to which device is connected
481  * Context: can sleep
482  *
483  * Allows a driver to allocate and initialize a spi_device without
484  * registering it immediately.  This allows a driver to directly
485  * fill the spi_device with device parameters before calling
486  * spi_add_device() on it.
487  *
488  * Caller is responsible to call spi_add_device() on the returned
489  * spi_device structure to add it to the SPI controller.  If the caller
490  * needs to discard the spi_device without adding it, then it should
491  * call spi_dev_put() on it.
492  *
493  * Return: a pointer to the new device, or NULL.
494  */
495 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
496 {
497 	struct spi_device	*spi;
498 
499 	if (!spi_controller_get(ctlr))
500 		return NULL;
501 
502 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
503 	if (!spi) {
504 		spi_controller_put(ctlr);
505 		return NULL;
506 	}
507 
508 	spi->master = spi->controller = ctlr;
509 	spi->dev.parent = &ctlr->dev;
510 	spi->dev.bus = &spi_bus_type;
511 	spi->dev.release = spidev_release;
512 	spi->cs_gpio = -ENOENT;
513 
514 	spin_lock_init(&spi->statistics.lock);
515 
516 	device_initialize(&spi->dev);
517 	return spi;
518 }
519 EXPORT_SYMBOL_GPL(spi_alloc_device);
520 
521 static void spi_dev_set_name(struct spi_device *spi)
522 {
523 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
524 
525 	if (adev) {
526 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
527 		return;
528 	}
529 
530 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
531 		     spi->chip_select);
532 }
533 
534 static int spi_dev_check(struct device *dev, void *data)
535 {
536 	struct spi_device *spi = to_spi_device(dev);
537 	struct spi_device *new_spi = data;
538 
539 	if (spi->controller == new_spi->controller &&
540 	    spi->chip_select == new_spi->chip_select)
541 		return -EBUSY;
542 	return 0;
543 }
544 
545 /**
546  * spi_add_device - Add spi_device allocated with spi_alloc_device
547  * @spi: spi_device to register
548  *
549  * Companion function to spi_alloc_device.  Devices allocated with
550  * spi_alloc_device can be added onto the spi bus with this function.
551  *
552  * Return: 0 on success; negative errno on failure
553  */
554 int spi_add_device(struct spi_device *spi)
555 {
556 	static DEFINE_MUTEX(spi_add_lock);
557 	struct spi_controller *ctlr = spi->controller;
558 	struct device *dev = ctlr->dev.parent;
559 	int status;
560 
561 	/* Chipselects are numbered 0..max; validate. */
562 	if (spi->chip_select >= ctlr->num_chipselect) {
563 		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
564 			ctlr->num_chipselect);
565 		return -EINVAL;
566 	}
567 
568 	/* Set the bus ID string */
569 	spi_dev_set_name(spi);
570 
571 	/* We need to make sure there's no other device with this
572 	 * chipselect **BEFORE** we call setup(), else we'll trash
573 	 * its configuration.  Lock against concurrent add() calls.
574 	 */
575 	mutex_lock(&spi_add_lock);
576 
577 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
578 	if (status) {
579 		dev_err(dev, "chipselect %d already in use\n",
580 				spi->chip_select);
581 		goto done;
582 	}
583 
584 	/* Descriptors take precedence */
585 	if (ctlr->cs_gpiods)
586 		spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
587 	else if (ctlr->cs_gpios)
588 		spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
589 
590 	/* Drivers may modify this initial i/o setup, but will
591 	 * normally rely on the device being setup.  Devices
592 	 * using SPI_CS_HIGH can't coexist well otherwise...
593 	 */
594 	status = spi_setup(spi);
595 	if (status < 0) {
596 		dev_err(dev, "can't setup %s, status %d\n",
597 				dev_name(&spi->dev), status);
598 		goto done;
599 	}
600 
601 	/* Device may be bound to an active driver when this returns */
602 	status = device_add(&spi->dev);
603 	if (status < 0)
604 		dev_err(dev, "can't add %s, status %d\n",
605 				dev_name(&spi->dev), status);
606 	else
607 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
608 
609 done:
610 	mutex_unlock(&spi_add_lock);
611 	return status;
612 }
613 EXPORT_SYMBOL_GPL(spi_add_device);
614 
615 /**
616  * spi_new_device - instantiate one new SPI device
617  * @ctlr: Controller to which device is connected
618  * @chip: Describes the SPI device
619  * Context: can sleep
620  *
621  * On typical mainboards, this is purely internal; and it's not needed
622  * after board init creates the hard-wired devices.  Some development
623  * platforms may not be able to use spi_register_board_info though, and
624  * this is exported so that for example a USB or parport based adapter
625  * driver could add devices (which it would learn about out-of-band).
626  *
627  * Return: the new device, or NULL.
628  */
629 struct spi_device *spi_new_device(struct spi_controller *ctlr,
630 				  struct spi_board_info *chip)
631 {
632 	struct spi_device	*proxy;
633 	int			status;
634 
635 	/* NOTE:  caller did any chip->bus_num checks necessary.
636 	 *
637 	 * Also, unless we change the return value convention to use
638 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
639 	 * suggests syslogged diagnostics are best here (ugh).
640 	 */
641 
642 	proxy = spi_alloc_device(ctlr);
643 	if (!proxy)
644 		return NULL;
645 
646 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
647 
648 	proxy->chip_select = chip->chip_select;
649 	proxy->max_speed_hz = chip->max_speed_hz;
650 	proxy->mode = chip->mode;
651 	proxy->irq = chip->irq;
652 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
653 	proxy->dev.platform_data = (void *) chip->platform_data;
654 	proxy->controller_data = chip->controller_data;
655 	proxy->controller_state = NULL;
656 
657 	if (chip->properties) {
658 		status = device_add_properties(&proxy->dev, chip->properties);
659 		if (status) {
660 			dev_err(&ctlr->dev,
661 				"failed to add properties to '%s': %d\n",
662 				chip->modalias, status);
663 			goto err_dev_put;
664 		}
665 	}
666 
667 	status = spi_add_device(proxy);
668 	if (status < 0)
669 		goto err_remove_props;
670 
671 	return proxy;
672 
673 err_remove_props:
674 	if (chip->properties)
675 		device_remove_properties(&proxy->dev);
676 err_dev_put:
677 	spi_dev_put(proxy);
678 	return NULL;
679 }
680 EXPORT_SYMBOL_GPL(spi_new_device);
681 
682 /**
683  * spi_unregister_device - unregister a single SPI device
684  * @spi: spi_device to unregister
685  *
686  * Start making the passed SPI device vanish. Normally this would be handled
687  * by spi_unregister_controller().
688  */
689 void spi_unregister_device(struct spi_device *spi)
690 {
691 	if (!spi)
692 		return;
693 
694 	if (spi->dev.of_node) {
695 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
696 		of_node_put(spi->dev.of_node);
697 	}
698 	if (ACPI_COMPANION(&spi->dev))
699 		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
700 	device_unregister(&spi->dev);
701 }
702 EXPORT_SYMBOL_GPL(spi_unregister_device);
703 
704 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
705 					      struct spi_board_info *bi)
706 {
707 	struct spi_device *dev;
708 
709 	if (ctlr->bus_num != bi->bus_num)
710 		return;
711 
712 	dev = spi_new_device(ctlr, bi);
713 	if (!dev)
714 		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
715 			bi->modalias);
716 }
717 
718 /**
719  * spi_register_board_info - register SPI devices for a given board
720  * @info: array of chip descriptors
721  * @n: how many descriptors are provided
722  * Context: can sleep
723  *
724  * Board-specific early init code calls this (probably during arch_initcall)
725  * with segments of the SPI device table.  Any device nodes are created later,
726  * after the relevant parent SPI controller (bus_num) is defined.  We keep
727  * this table of devices forever, so that reloading a controller driver will
728  * not make Linux forget about these hard-wired devices.
729  *
730  * Other code can also call this, e.g. a particular add-on board might provide
731  * SPI devices through its expansion connector, so code initializing that board
732  * would naturally declare its SPI devices.
733  *
734  * The board info passed can safely be __initdata ... but be careful of
735  * any embedded pointers (platform_data, etc), they're copied as-is.
736  * Device properties are deep-copied though.
737  *
738  * Return: zero on success, else a negative error code.
739  */
740 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
741 {
742 	struct boardinfo *bi;
743 	int i;
744 
745 	if (!n)
746 		return 0;
747 
748 	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
749 	if (!bi)
750 		return -ENOMEM;
751 
752 	for (i = 0; i < n; i++, bi++, info++) {
753 		struct spi_controller *ctlr;
754 
755 		memcpy(&bi->board_info, info, sizeof(*info));
756 		if (info->properties) {
757 			bi->board_info.properties =
758 					property_entries_dup(info->properties);
759 			if (IS_ERR(bi->board_info.properties))
760 				return PTR_ERR(bi->board_info.properties);
761 		}
762 
763 		mutex_lock(&board_lock);
764 		list_add_tail(&bi->list, &board_list);
765 		list_for_each_entry(ctlr, &spi_controller_list, list)
766 			spi_match_controller_to_boardinfo(ctlr,
767 							  &bi->board_info);
768 		mutex_unlock(&board_lock);
769 	}
770 
771 	return 0;
772 }
773 
774 /*-------------------------------------------------------------------------*/
775 
776 static void spi_set_cs(struct spi_device *spi, bool enable)
777 {
778 	bool enable1 = enable;
779 
780 	if (!spi->controller->set_cs_timing) {
781 		if (enable1)
782 			spi_delay_exec(&spi->controller->cs_setup, NULL);
783 		else
784 			spi_delay_exec(&spi->controller->cs_hold, NULL);
785 	}
786 
787 	if (spi->mode & SPI_CS_HIGH)
788 		enable = !enable;
789 
790 	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
791 		/*
792 		 * Honour the SPI_NO_CS flag and invert the enable line, as
793 		 * active low is default for SPI. Execution paths that handle
794 		 * polarity inversion in gpiolib (such as device tree) will
795 		 * enforce active high using the SPI_CS_HIGH resulting in a
796 		 * double inversion through the code above.
797 		 */
798 		if (!(spi->mode & SPI_NO_CS)) {
799 			if (spi->cs_gpiod)
800 				gpiod_set_value_cansleep(spi->cs_gpiod,
801 							 !enable);
802 			else
803 				gpio_set_value_cansleep(spi->cs_gpio, !enable);
804 		}
805 		/* Some SPI masters need both GPIO CS & slave_select */
806 		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
807 		    spi->controller->set_cs)
808 			spi->controller->set_cs(spi, !enable);
809 	} else if (spi->controller->set_cs) {
810 		spi->controller->set_cs(spi, !enable);
811 	}
812 
813 	if (!spi->controller->set_cs_timing) {
814 		if (!enable1)
815 			spi_delay_exec(&spi->controller->cs_inactive, NULL);
816 	}
817 }
818 
819 #ifdef CONFIG_HAS_DMA
820 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
821 		struct sg_table *sgt, void *buf, size_t len,
822 		enum dma_data_direction dir)
823 {
824 	const bool vmalloced_buf = is_vmalloc_addr(buf);
825 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
826 #ifdef CONFIG_HIGHMEM
827 	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
828 				(unsigned long)buf < (PKMAP_BASE +
829 					(LAST_PKMAP * PAGE_SIZE)));
830 #else
831 	const bool kmap_buf = false;
832 #endif
833 	int desc_len;
834 	int sgs;
835 	struct page *vm_page;
836 	struct scatterlist *sg;
837 	void *sg_buf;
838 	size_t min;
839 	int i, ret;
840 
841 	if (vmalloced_buf || kmap_buf) {
842 		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
843 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
844 	} else if (virt_addr_valid(buf)) {
845 		desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
846 		sgs = DIV_ROUND_UP(len, desc_len);
847 	} else {
848 		return -EINVAL;
849 	}
850 
851 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
852 	if (ret != 0)
853 		return ret;
854 
855 	sg = &sgt->sgl[0];
856 	for (i = 0; i < sgs; i++) {
857 
858 		if (vmalloced_buf || kmap_buf) {
859 			/*
860 			 * Next scatterlist entry size is the minimum between
861 			 * the desc_len and the remaining buffer length that
862 			 * fits in a page.
863 			 */
864 			min = min_t(size_t, desc_len,
865 				    min_t(size_t, len,
866 					  PAGE_SIZE - offset_in_page(buf)));
867 			if (vmalloced_buf)
868 				vm_page = vmalloc_to_page(buf);
869 			else
870 				vm_page = kmap_to_page(buf);
871 			if (!vm_page) {
872 				sg_free_table(sgt);
873 				return -ENOMEM;
874 			}
875 			sg_set_page(sg, vm_page,
876 				    min, offset_in_page(buf));
877 		} else {
878 			min = min_t(size_t, len, desc_len);
879 			sg_buf = buf;
880 			sg_set_buf(sg, sg_buf, min);
881 		}
882 
883 		buf += min;
884 		len -= min;
885 		sg = sg_next(sg);
886 	}
887 
888 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
889 	if (!ret)
890 		ret = -ENOMEM;
891 	if (ret < 0) {
892 		sg_free_table(sgt);
893 		return ret;
894 	}
895 
896 	sgt->nents = ret;
897 
898 	return 0;
899 }
900 
901 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
902 		   struct sg_table *sgt, enum dma_data_direction dir)
903 {
904 	if (sgt->orig_nents) {
905 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
906 		sg_free_table(sgt);
907 	}
908 }
909 
910 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
911 {
912 	struct device *tx_dev, *rx_dev;
913 	struct spi_transfer *xfer;
914 	int ret;
915 
916 	if (!ctlr->can_dma)
917 		return 0;
918 
919 	if (ctlr->dma_tx)
920 		tx_dev = ctlr->dma_tx->device->dev;
921 	else
922 		tx_dev = ctlr->dev.parent;
923 
924 	if (ctlr->dma_rx)
925 		rx_dev = ctlr->dma_rx->device->dev;
926 	else
927 		rx_dev = ctlr->dev.parent;
928 
929 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
930 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
931 			continue;
932 
933 		if (xfer->tx_buf != NULL) {
934 			ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
935 					  (void *)xfer->tx_buf, xfer->len,
936 					  DMA_TO_DEVICE);
937 			if (ret != 0)
938 				return ret;
939 		}
940 
941 		if (xfer->rx_buf != NULL) {
942 			ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
943 					  xfer->rx_buf, xfer->len,
944 					  DMA_FROM_DEVICE);
945 			if (ret != 0) {
946 				spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
947 					      DMA_TO_DEVICE);
948 				return ret;
949 			}
950 		}
951 	}
952 
953 	ctlr->cur_msg_mapped = true;
954 
955 	return 0;
956 }
957 
958 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
959 {
960 	struct spi_transfer *xfer;
961 	struct device *tx_dev, *rx_dev;
962 
963 	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
964 		return 0;
965 
966 	if (ctlr->dma_tx)
967 		tx_dev = ctlr->dma_tx->device->dev;
968 	else
969 		tx_dev = ctlr->dev.parent;
970 
971 	if (ctlr->dma_rx)
972 		rx_dev = ctlr->dma_rx->device->dev;
973 	else
974 		rx_dev = ctlr->dev.parent;
975 
976 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
977 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
978 			continue;
979 
980 		spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
981 		spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
982 	}
983 
984 	return 0;
985 }
986 #else /* !CONFIG_HAS_DMA */
987 static inline int __spi_map_msg(struct spi_controller *ctlr,
988 				struct spi_message *msg)
989 {
990 	return 0;
991 }
992 
993 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
994 				  struct spi_message *msg)
995 {
996 	return 0;
997 }
998 #endif /* !CONFIG_HAS_DMA */
999 
1000 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1001 				struct spi_message *msg)
1002 {
1003 	struct spi_transfer *xfer;
1004 
1005 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1006 		/*
1007 		 * Restore the original value of tx_buf or rx_buf if they are
1008 		 * NULL.
1009 		 */
1010 		if (xfer->tx_buf == ctlr->dummy_tx)
1011 			xfer->tx_buf = NULL;
1012 		if (xfer->rx_buf == ctlr->dummy_rx)
1013 			xfer->rx_buf = NULL;
1014 	}
1015 
1016 	return __spi_unmap_msg(ctlr, msg);
1017 }
1018 
1019 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1020 {
1021 	struct spi_transfer *xfer;
1022 	void *tmp;
1023 	unsigned int max_tx, max_rx;
1024 
1025 	if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
1026 		max_tx = 0;
1027 		max_rx = 0;
1028 
1029 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1030 			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1031 			    !xfer->tx_buf)
1032 				max_tx = max(xfer->len, max_tx);
1033 			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1034 			    !xfer->rx_buf)
1035 				max_rx = max(xfer->len, max_rx);
1036 		}
1037 
1038 		if (max_tx) {
1039 			tmp = krealloc(ctlr->dummy_tx, max_tx,
1040 				       GFP_KERNEL | GFP_DMA);
1041 			if (!tmp)
1042 				return -ENOMEM;
1043 			ctlr->dummy_tx = tmp;
1044 			memset(tmp, 0, max_tx);
1045 		}
1046 
1047 		if (max_rx) {
1048 			tmp = krealloc(ctlr->dummy_rx, max_rx,
1049 				       GFP_KERNEL | GFP_DMA);
1050 			if (!tmp)
1051 				return -ENOMEM;
1052 			ctlr->dummy_rx = tmp;
1053 		}
1054 
1055 		if (max_tx || max_rx) {
1056 			list_for_each_entry(xfer, &msg->transfers,
1057 					    transfer_list) {
1058 				if (!xfer->len)
1059 					continue;
1060 				if (!xfer->tx_buf)
1061 					xfer->tx_buf = ctlr->dummy_tx;
1062 				if (!xfer->rx_buf)
1063 					xfer->rx_buf = ctlr->dummy_rx;
1064 			}
1065 		}
1066 	}
1067 
1068 	return __spi_map_msg(ctlr, msg);
1069 }
1070 
1071 static int spi_transfer_wait(struct spi_controller *ctlr,
1072 			     struct spi_message *msg,
1073 			     struct spi_transfer *xfer)
1074 {
1075 	struct spi_statistics *statm = &ctlr->statistics;
1076 	struct spi_statistics *stats = &msg->spi->statistics;
1077 	unsigned long long ms = 1;
1078 
1079 	if (spi_controller_is_slave(ctlr)) {
1080 		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1081 			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1082 			return -EINTR;
1083 		}
1084 	} else {
1085 		ms = 8LL * 1000LL * xfer->len;
1086 		do_div(ms, xfer->speed_hz);
1087 		ms += ms + 200; /* some tolerance */
1088 
1089 		if (ms > UINT_MAX)
1090 			ms = UINT_MAX;
1091 
1092 		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1093 						 msecs_to_jiffies(ms));
1094 
1095 		if (ms == 0) {
1096 			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1097 			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1098 			dev_err(&msg->spi->dev,
1099 				"SPI transfer timed out\n");
1100 			return -ETIMEDOUT;
1101 		}
1102 	}
1103 
1104 	return 0;
1105 }
1106 
1107 static void _spi_transfer_delay_ns(u32 ns)
1108 {
1109 	if (!ns)
1110 		return;
1111 	if (ns <= 1000) {
1112 		ndelay(ns);
1113 	} else {
1114 		u32 us = DIV_ROUND_UP(ns, 1000);
1115 
1116 		if (us <= 10)
1117 			udelay(us);
1118 		else
1119 			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1120 	}
1121 }
1122 
1123 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1124 {
1125 	u32 delay = _delay->value;
1126 	u32 unit = _delay->unit;
1127 	u32 hz;
1128 
1129 	if (!delay)
1130 		return 0;
1131 
1132 	switch (unit) {
1133 	case SPI_DELAY_UNIT_USECS:
1134 		delay *= 1000;
1135 		break;
1136 	case SPI_DELAY_UNIT_NSECS: /* nothing to do here */
1137 		break;
1138 	case SPI_DELAY_UNIT_SCK:
1139 		/* clock cycles need to be obtained from spi_transfer */
1140 		if (!xfer)
1141 			return -EINVAL;
1142 		/* if there is no effective speed know, then approximate
1143 		 * by underestimating with half the requested hz
1144 		 */
1145 		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1146 		if (!hz)
1147 			return -EINVAL;
1148 		delay *= DIV_ROUND_UP(1000000000, hz);
1149 		break;
1150 	default:
1151 		return -EINVAL;
1152 	}
1153 
1154 	return delay;
1155 }
1156 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1157 
1158 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1159 {
1160 	int delay;
1161 
1162 	if (!_delay)
1163 		return -EINVAL;
1164 
1165 	delay = spi_delay_to_ns(_delay, xfer);
1166 	if (delay < 0)
1167 		return delay;
1168 
1169 	_spi_transfer_delay_ns(delay);
1170 
1171 	return 0;
1172 }
1173 EXPORT_SYMBOL_GPL(spi_delay_exec);
1174 
1175 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1176 					  struct spi_transfer *xfer)
1177 {
1178 	u32 delay = xfer->cs_change_delay.value;
1179 	u32 unit = xfer->cs_change_delay.unit;
1180 	int ret;
1181 
1182 	/* return early on "fast" mode - for everything but USECS */
1183 	if (!delay) {
1184 		if (unit == SPI_DELAY_UNIT_USECS)
1185 			_spi_transfer_delay_ns(10000);
1186 		return;
1187 	}
1188 
1189 	ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1190 	if (ret) {
1191 		dev_err_once(&msg->spi->dev,
1192 			     "Use of unsupported delay unit %i, using default of 10us\n",
1193 			     unit);
1194 		_spi_transfer_delay_ns(10000);
1195 	}
1196 }
1197 
1198 /*
1199  * spi_transfer_one_message - Default implementation of transfer_one_message()
1200  *
1201  * This is a standard implementation of transfer_one_message() for
1202  * drivers which implement a transfer_one() operation.  It provides
1203  * standard handling of delays and chip select management.
1204  */
1205 static int spi_transfer_one_message(struct spi_controller *ctlr,
1206 				    struct spi_message *msg)
1207 {
1208 	struct spi_transfer *xfer;
1209 	bool keep_cs = false;
1210 	int ret = 0;
1211 	struct spi_statistics *statm = &ctlr->statistics;
1212 	struct spi_statistics *stats = &msg->spi->statistics;
1213 
1214 	spi_set_cs(msg->spi, true);
1215 
1216 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1217 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1218 
1219 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1220 		trace_spi_transfer_start(msg, xfer);
1221 
1222 		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1223 		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1224 
1225 		if (!ctlr->ptp_sts_supported) {
1226 			xfer->ptp_sts_word_pre = 0;
1227 			ptp_read_system_prets(xfer->ptp_sts);
1228 		}
1229 
1230 		if (xfer->tx_buf || xfer->rx_buf) {
1231 			reinit_completion(&ctlr->xfer_completion);
1232 
1233 			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1234 			if (ret < 0) {
1235 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1236 							       errors);
1237 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1238 							       errors);
1239 				dev_err(&msg->spi->dev,
1240 					"SPI transfer failed: %d\n", ret);
1241 				goto out;
1242 			}
1243 
1244 			if (ret > 0) {
1245 				ret = spi_transfer_wait(ctlr, msg, xfer);
1246 				if (ret < 0)
1247 					msg->status = ret;
1248 			}
1249 		} else {
1250 			if (xfer->len)
1251 				dev_err(&msg->spi->dev,
1252 					"Bufferless transfer has length %u\n",
1253 					xfer->len);
1254 		}
1255 
1256 		if (!ctlr->ptp_sts_supported) {
1257 			ptp_read_system_postts(xfer->ptp_sts);
1258 			xfer->ptp_sts_word_post = xfer->len;
1259 		}
1260 
1261 		trace_spi_transfer_stop(msg, xfer);
1262 
1263 		if (msg->status != -EINPROGRESS)
1264 			goto out;
1265 
1266 		spi_transfer_delay_exec(xfer);
1267 
1268 		if (xfer->cs_change) {
1269 			if (list_is_last(&xfer->transfer_list,
1270 					 &msg->transfers)) {
1271 				keep_cs = true;
1272 			} else {
1273 				spi_set_cs(msg->spi, false);
1274 				_spi_transfer_cs_change_delay(msg, xfer);
1275 				spi_set_cs(msg->spi, true);
1276 			}
1277 		}
1278 
1279 		msg->actual_length += xfer->len;
1280 	}
1281 
1282 out:
1283 	if (ret != 0 || !keep_cs)
1284 		spi_set_cs(msg->spi, false);
1285 
1286 	if (msg->status == -EINPROGRESS)
1287 		msg->status = ret;
1288 
1289 	if (msg->status && ctlr->handle_err)
1290 		ctlr->handle_err(ctlr, msg);
1291 
1292 	spi_res_release(ctlr, msg);
1293 
1294 	spi_finalize_current_message(ctlr);
1295 
1296 	return ret;
1297 }
1298 
1299 /**
1300  * spi_finalize_current_transfer - report completion of a transfer
1301  * @ctlr: the controller reporting completion
1302  *
1303  * Called by SPI drivers using the core transfer_one_message()
1304  * implementation to notify it that the current interrupt driven
1305  * transfer has finished and the next one may be scheduled.
1306  */
1307 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1308 {
1309 	complete(&ctlr->xfer_completion);
1310 }
1311 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1312 
1313 /**
1314  * __spi_pump_messages - function which processes spi message queue
1315  * @ctlr: controller to process queue for
1316  * @in_kthread: true if we are in the context of the message pump thread
1317  *
1318  * This function checks if there is any spi message in the queue that
1319  * needs processing and if so call out to the driver to initialize hardware
1320  * and transfer each message.
1321  *
1322  * Note that it is called both from the kthread itself and also from
1323  * inside spi_sync(); the queue extraction handling at the top of the
1324  * function should deal with this safely.
1325  */
1326 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1327 {
1328 	struct spi_transfer *xfer;
1329 	struct spi_message *msg;
1330 	bool was_busy = false;
1331 	unsigned long flags;
1332 	int ret;
1333 
1334 	/* Lock queue */
1335 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1336 
1337 	/* Make sure we are not already running a message */
1338 	if (ctlr->cur_msg) {
1339 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1340 		return;
1341 	}
1342 
1343 	/* If another context is idling the device then defer */
1344 	if (ctlr->idling) {
1345 		kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1346 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1347 		return;
1348 	}
1349 
1350 	/* Check if the queue is idle */
1351 	if (list_empty(&ctlr->queue) || !ctlr->running) {
1352 		if (!ctlr->busy) {
1353 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1354 			return;
1355 		}
1356 
1357 		/* Only do teardown in the thread */
1358 		if (!in_kthread) {
1359 			kthread_queue_work(&ctlr->kworker,
1360 					   &ctlr->pump_messages);
1361 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1362 			return;
1363 		}
1364 
1365 		ctlr->busy = false;
1366 		ctlr->idling = true;
1367 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1368 
1369 		kfree(ctlr->dummy_rx);
1370 		ctlr->dummy_rx = NULL;
1371 		kfree(ctlr->dummy_tx);
1372 		ctlr->dummy_tx = NULL;
1373 		if (ctlr->unprepare_transfer_hardware &&
1374 		    ctlr->unprepare_transfer_hardware(ctlr))
1375 			dev_err(&ctlr->dev,
1376 				"failed to unprepare transfer hardware\n");
1377 		if (ctlr->auto_runtime_pm) {
1378 			pm_runtime_mark_last_busy(ctlr->dev.parent);
1379 			pm_runtime_put_autosuspend(ctlr->dev.parent);
1380 		}
1381 		trace_spi_controller_idle(ctlr);
1382 
1383 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1384 		ctlr->idling = false;
1385 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1386 		return;
1387 	}
1388 
1389 	/* Extract head of queue */
1390 	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1391 	ctlr->cur_msg = msg;
1392 
1393 	list_del_init(&msg->queue);
1394 	if (ctlr->busy)
1395 		was_busy = true;
1396 	else
1397 		ctlr->busy = true;
1398 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1399 
1400 	mutex_lock(&ctlr->io_mutex);
1401 
1402 	if (!was_busy && ctlr->auto_runtime_pm) {
1403 		ret = pm_runtime_get_sync(ctlr->dev.parent);
1404 		if (ret < 0) {
1405 			pm_runtime_put_noidle(ctlr->dev.parent);
1406 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1407 				ret);
1408 			mutex_unlock(&ctlr->io_mutex);
1409 			return;
1410 		}
1411 	}
1412 
1413 	if (!was_busy)
1414 		trace_spi_controller_busy(ctlr);
1415 
1416 	if (!was_busy && ctlr->prepare_transfer_hardware) {
1417 		ret = ctlr->prepare_transfer_hardware(ctlr);
1418 		if (ret) {
1419 			dev_err(&ctlr->dev,
1420 				"failed to prepare transfer hardware: %d\n",
1421 				ret);
1422 
1423 			if (ctlr->auto_runtime_pm)
1424 				pm_runtime_put(ctlr->dev.parent);
1425 
1426 			msg->status = ret;
1427 			spi_finalize_current_message(ctlr);
1428 
1429 			mutex_unlock(&ctlr->io_mutex);
1430 			return;
1431 		}
1432 	}
1433 
1434 	trace_spi_message_start(msg);
1435 
1436 	if (ctlr->prepare_message) {
1437 		ret = ctlr->prepare_message(ctlr, msg);
1438 		if (ret) {
1439 			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1440 				ret);
1441 			msg->status = ret;
1442 			spi_finalize_current_message(ctlr);
1443 			goto out;
1444 		}
1445 		ctlr->cur_msg_prepared = true;
1446 	}
1447 
1448 	ret = spi_map_msg(ctlr, msg);
1449 	if (ret) {
1450 		msg->status = ret;
1451 		spi_finalize_current_message(ctlr);
1452 		goto out;
1453 	}
1454 
1455 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1456 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1457 			xfer->ptp_sts_word_pre = 0;
1458 			ptp_read_system_prets(xfer->ptp_sts);
1459 		}
1460 	}
1461 
1462 	ret = ctlr->transfer_one_message(ctlr, msg);
1463 	if (ret) {
1464 		dev_err(&ctlr->dev,
1465 			"failed to transfer one message from queue\n");
1466 		goto out;
1467 	}
1468 
1469 out:
1470 	mutex_unlock(&ctlr->io_mutex);
1471 
1472 	/* Prod the scheduler in case transfer_one() was busy waiting */
1473 	if (!ret)
1474 		cond_resched();
1475 }
1476 
1477 /**
1478  * spi_pump_messages - kthread work function which processes spi message queue
1479  * @work: pointer to kthread work struct contained in the controller struct
1480  */
1481 static void spi_pump_messages(struct kthread_work *work)
1482 {
1483 	struct spi_controller *ctlr =
1484 		container_of(work, struct spi_controller, pump_messages);
1485 
1486 	__spi_pump_messages(ctlr, true);
1487 }
1488 
1489 /**
1490  * spi_take_timestamp_pre - helper for drivers to collect the beginning of the
1491  *			    TX timestamp for the requested byte from the SPI
1492  *			    transfer. The frequency with which this function
1493  *			    must be called (once per word, once for the whole
1494  *			    transfer, once per batch of words etc) is arbitrary
1495  *			    as long as the @tx buffer offset is greater than or
1496  *			    equal to the requested byte at the time of the
1497  *			    call. The timestamp is only taken once, at the
1498  *			    first such call. It is assumed that the driver
1499  *			    advances its @tx buffer pointer monotonically.
1500  * @ctlr: Pointer to the spi_controller structure of the driver
1501  * @xfer: Pointer to the transfer being timestamped
1502  * @tx: Pointer to the current word within the xfer->tx_buf that the driver is
1503  *	preparing to transmit right now.
1504  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1505  *	      transfer, for less jitter in time measurement. Only compatible
1506  *	      with PIO drivers. If true, must follow up with
1507  *	      spi_take_timestamp_post or otherwise system will crash.
1508  *	      WARNING: for fully predictable results, the CPU frequency must
1509  *	      also be under control (governor).
1510  */
1511 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1512 			    struct spi_transfer *xfer,
1513 			    const void *tx, bool irqs_off)
1514 {
1515 	u8 bytes_per_word = DIV_ROUND_UP(xfer->bits_per_word, 8);
1516 
1517 	if (!xfer->ptp_sts)
1518 		return;
1519 
1520 	if (xfer->timestamped_pre)
1521 		return;
1522 
1523 	if (tx < (xfer->tx_buf + xfer->ptp_sts_word_pre * bytes_per_word))
1524 		return;
1525 
1526 	/* Capture the resolution of the timestamp */
1527 	xfer->ptp_sts_word_pre = (tx - xfer->tx_buf) / bytes_per_word;
1528 
1529 	xfer->timestamped_pre = true;
1530 
1531 	if (irqs_off) {
1532 		local_irq_save(ctlr->irq_flags);
1533 		preempt_disable();
1534 	}
1535 
1536 	ptp_read_system_prets(xfer->ptp_sts);
1537 }
1538 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1539 
1540 /**
1541  * spi_take_timestamp_post - helper for drivers to collect the end of the
1542  *			     TX timestamp for the requested byte from the SPI
1543  *			     transfer. Can be called with an arbitrary
1544  *			     frequency: only the first call where @tx exceeds
1545  *			     or is equal to the requested word will be
1546  *			     timestamped.
1547  * @ctlr: Pointer to the spi_controller structure of the driver
1548  * @xfer: Pointer to the transfer being timestamped
1549  * @tx: Pointer to the current word within the xfer->tx_buf that the driver has
1550  *	just transmitted.
1551  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1552  */
1553 void spi_take_timestamp_post(struct spi_controller *ctlr,
1554 			     struct spi_transfer *xfer,
1555 			     const void *tx, bool irqs_off)
1556 {
1557 	u8 bytes_per_word = DIV_ROUND_UP(xfer->bits_per_word, 8);
1558 
1559 	if (!xfer->ptp_sts)
1560 		return;
1561 
1562 	if (xfer->timestamped_post)
1563 		return;
1564 
1565 	if (tx < (xfer->tx_buf + xfer->ptp_sts_word_post * bytes_per_word))
1566 		return;
1567 
1568 	ptp_read_system_postts(xfer->ptp_sts);
1569 
1570 	if (irqs_off) {
1571 		local_irq_restore(ctlr->irq_flags);
1572 		preempt_enable();
1573 	}
1574 
1575 	/* Capture the resolution of the timestamp */
1576 	xfer->ptp_sts_word_post = (tx - xfer->tx_buf) / bytes_per_word;
1577 
1578 	xfer->timestamped_post = true;
1579 }
1580 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1581 
1582 /**
1583  * spi_set_thread_rt - set the controller to pump at realtime priority
1584  * @ctlr: controller to boost priority of
1585  *
1586  * This can be called because the controller requested realtime priority
1587  * (by setting the ->rt value before calling spi_register_controller()) or
1588  * because a device on the bus said that its transfers needed realtime
1589  * priority.
1590  *
1591  * NOTE: at the moment if any device on a bus says it needs realtime then
1592  * the thread will be at realtime priority for all transfers on that
1593  * controller.  If this eventually becomes a problem we may see if we can
1594  * find a way to boost the priority only temporarily during relevant
1595  * transfers.
1596  */
1597 static void spi_set_thread_rt(struct spi_controller *ctlr)
1598 {
1599 	struct sched_param param = { .sched_priority = MAX_RT_PRIO / 2 };
1600 
1601 	dev_info(&ctlr->dev,
1602 		"will run message pump with realtime priority\n");
1603 	sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, &param);
1604 }
1605 
1606 static int spi_init_queue(struct spi_controller *ctlr)
1607 {
1608 	ctlr->running = false;
1609 	ctlr->busy = false;
1610 
1611 	kthread_init_worker(&ctlr->kworker);
1612 	ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1613 					 "%s", dev_name(&ctlr->dev));
1614 	if (IS_ERR(ctlr->kworker_task)) {
1615 		dev_err(&ctlr->dev, "failed to create message pump task\n");
1616 		return PTR_ERR(ctlr->kworker_task);
1617 	}
1618 	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1619 
1620 	/*
1621 	 * Controller config will indicate if this controller should run the
1622 	 * message pump with high (realtime) priority to reduce the transfer
1623 	 * latency on the bus by minimising the delay between a transfer
1624 	 * request and the scheduling of the message pump thread. Without this
1625 	 * setting the message pump thread will remain at default priority.
1626 	 */
1627 	if (ctlr->rt)
1628 		spi_set_thread_rt(ctlr);
1629 
1630 	return 0;
1631 }
1632 
1633 /**
1634  * spi_get_next_queued_message() - called by driver to check for queued
1635  * messages
1636  * @ctlr: the controller to check for queued messages
1637  *
1638  * If there are more messages in the queue, the next message is returned from
1639  * this call.
1640  *
1641  * Return: the next message in the queue, else NULL if the queue is empty.
1642  */
1643 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1644 {
1645 	struct spi_message *next;
1646 	unsigned long flags;
1647 
1648 	/* get a pointer to the next message, if any */
1649 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1650 	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1651 					queue);
1652 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1653 
1654 	return next;
1655 }
1656 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1657 
1658 /**
1659  * spi_finalize_current_message() - the current message is complete
1660  * @ctlr: the controller to return the message to
1661  *
1662  * Called by the driver to notify the core that the message in the front of the
1663  * queue is complete and can be removed from the queue.
1664  */
1665 void spi_finalize_current_message(struct spi_controller *ctlr)
1666 {
1667 	struct spi_transfer *xfer;
1668 	struct spi_message *mesg;
1669 	unsigned long flags;
1670 	int ret;
1671 
1672 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1673 	mesg = ctlr->cur_msg;
1674 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1675 
1676 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1677 		list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
1678 			ptp_read_system_postts(xfer->ptp_sts);
1679 			xfer->ptp_sts_word_post = xfer->len;
1680 		}
1681 	}
1682 
1683 	spi_unmap_msg(ctlr, mesg);
1684 
1685 	if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1686 		ret = ctlr->unprepare_message(ctlr, mesg);
1687 		if (ret) {
1688 			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1689 				ret);
1690 		}
1691 	}
1692 
1693 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1694 	ctlr->cur_msg = NULL;
1695 	ctlr->cur_msg_prepared = false;
1696 	kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1697 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1698 
1699 	trace_spi_message_done(mesg);
1700 
1701 	mesg->state = NULL;
1702 	if (mesg->complete)
1703 		mesg->complete(mesg->context);
1704 }
1705 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1706 
1707 static int spi_start_queue(struct spi_controller *ctlr)
1708 {
1709 	unsigned long flags;
1710 
1711 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1712 
1713 	if (ctlr->running || ctlr->busy) {
1714 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1715 		return -EBUSY;
1716 	}
1717 
1718 	ctlr->running = true;
1719 	ctlr->cur_msg = NULL;
1720 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1721 
1722 	kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1723 
1724 	return 0;
1725 }
1726 
1727 static int spi_stop_queue(struct spi_controller *ctlr)
1728 {
1729 	unsigned long flags;
1730 	unsigned limit = 500;
1731 	int ret = 0;
1732 
1733 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1734 
1735 	/*
1736 	 * This is a bit lame, but is optimized for the common execution path.
1737 	 * A wait_queue on the ctlr->busy could be used, but then the common
1738 	 * execution path (pump_messages) would be required to call wake_up or
1739 	 * friends on every SPI message. Do this instead.
1740 	 */
1741 	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1742 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1743 		usleep_range(10000, 11000);
1744 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1745 	}
1746 
1747 	if (!list_empty(&ctlr->queue) || ctlr->busy)
1748 		ret = -EBUSY;
1749 	else
1750 		ctlr->running = false;
1751 
1752 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1753 
1754 	if (ret) {
1755 		dev_warn(&ctlr->dev, "could not stop message queue\n");
1756 		return ret;
1757 	}
1758 	return ret;
1759 }
1760 
1761 static int spi_destroy_queue(struct spi_controller *ctlr)
1762 {
1763 	int ret;
1764 
1765 	ret = spi_stop_queue(ctlr);
1766 
1767 	/*
1768 	 * kthread_flush_worker will block until all work is done.
1769 	 * If the reason that stop_queue timed out is that the work will never
1770 	 * finish, then it does no good to call flush/stop thread, so
1771 	 * return anyway.
1772 	 */
1773 	if (ret) {
1774 		dev_err(&ctlr->dev, "problem destroying queue\n");
1775 		return ret;
1776 	}
1777 
1778 	kthread_flush_worker(&ctlr->kworker);
1779 	kthread_stop(ctlr->kworker_task);
1780 
1781 	return 0;
1782 }
1783 
1784 static int __spi_queued_transfer(struct spi_device *spi,
1785 				 struct spi_message *msg,
1786 				 bool need_pump)
1787 {
1788 	struct spi_controller *ctlr = spi->controller;
1789 	unsigned long flags;
1790 
1791 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1792 
1793 	if (!ctlr->running) {
1794 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1795 		return -ESHUTDOWN;
1796 	}
1797 	msg->actual_length = 0;
1798 	msg->status = -EINPROGRESS;
1799 
1800 	list_add_tail(&msg->queue, &ctlr->queue);
1801 	if (!ctlr->busy && need_pump)
1802 		kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1803 
1804 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1805 	return 0;
1806 }
1807 
1808 /**
1809  * spi_queued_transfer - transfer function for queued transfers
1810  * @spi: spi device which is requesting transfer
1811  * @msg: spi message which is to handled is queued to driver queue
1812  *
1813  * Return: zero on success, else a negative error code.
1814  */
1815 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1816 {
1817 	return __spi_queued_transfer(spi, msg, true);
1818 }
1819 
1820 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1821 {
1822 	int ret;
1823 
1824 	ctlr->transfer = spi_queued_transfer;
1825 	if (!ctlr->transfer_one_message)
1826 		ctlr->transfer_one_message = spi_transfer_one_message;
1827 
1828 	/* Initialize and start queue */
1829 	ret = spi_init_queue(ctlr);
1830 	if (ret) {
1831 		dev_err(&ctlr->dev, "problem initializing queue\n");
1832 		goto err_init_queue;
1833 	}
1834 	ctlr->queued = true;
1835 	ret = spi_start_queue(ctlr);
1836 	if (ret) {
1837 		dev_err(&ctlr->dev, "problem starting queue\n");
1838 		goto err_start_queue;
1839 	}
1840 
1841 	return 0;
1842 
1843 err_start_queue:
1844 	spi_destroy_queue(ctlr);
1845 err_init_queue:
1846 	return ret;
1847 }
1848 
1849 /**
1850  * spi_flush_queue - Send all pending messages in the queue from the callers'
1851  *		     context
1852  * @ctlr: controller to process queue for
1853  *
1854  * This should be used when one wants to ensure all pending messages have been
1855  * sent before doing something. Is used by the spi-mem code to make sure SPI
1856  * memory operations do not preempt regular SPI transfers that have been queued
1857  * before the spi-mem operation.
1858  */
1859 void spi_flush_queue(struct spi_controller *ctlr)
1860 {
1861 	if (ctlr->transfer == spi_queued_transfer)
1862 		__spi_pump_messages(ctlr, false);
1863 }
1864 
1865 /*-------------------------------------------------------------------------*/
1866 
1867 #if defined(CONFIG_OF)
1868 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1869 			   struct device_node *nc)
1870 {
1871 	u32 value;
1872 	int rc;
1873 
1874 	/* Mode (clock phase/polarity/etc.) */
1875 	if (of_property_read_bool(nc, "spi-cpha"))
1876 		spi->mode |= SPI_CPHA;
1877 	if (of_property_read_bool(nc, "spi-cpol"))
1878 		spi->mode |= SPI_CPOL;
1879 	if (of_property_read_bool(nc, "spi-3wire"))
1880 		spi->mode |= SPI_3WIRE;
1881 	if (of_property_read_bool(nc, "spi-lsb-first"))
1882 		spi->mode |= SPI_LSB_FIRST;
1883 	if (of_property_read_bool(nc, "spi-cs-high"))
1884 		spi->mode |= SPI_CS_HIGH;
1885 
1886 	/* Device DUAL/QUAD mode */
1887 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1888 		switch (value) {
1889 		case 1:
1890 			break;
1891 		case 2:
1892 			spi->mode |= SPI_TX_DUAL;
1893 			break;
1894 		case 4:
1895 			spi->mode |= SPI_TX_QUAD;
1896 			break;
1897 		case 8:
1898 			spi->mode |= SPI_TX_OCTAL;
1899 			break;
1900 		default:
1901 			dev_warn(&ctlr->dev,
1902 				"spi-tx-bus-width %d not supported\n",
1903 				value);
1904 			break;
1905 		}
1906 	}
1907 
1908 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1909 		switch (value) {
1910 		case 1:
1911 			break;
1912 		case 2:
1913 			spi->mode |= SPI_RX_DUAL;
1914 			break;
1915 		case 4:
1916 			spi->mode |= SPI_RX_QUAD;
1917 			break;
1918 		case 8:
1919 			spi->mode |= SPI_RX_OCTAL;
1920 			break;
1921 		default:
1922 			dev_warn(&ctlr->dev,
1923 				"spi-rx-bus-width %d not supported\n",
1924 				value);
1925 			break;
1926 		}
1927 	}
1928 
1929 	if (spi_controller_is_slave(ctlr)) {
1930 		if (!of_node_name_eq(nc, "slave")) {
1931 			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1932 				nc);
1933 			return -EINVAL;
1934 		}
1935 		return 0;
1936 	}
1937 
1938 	/* Device address */
1939 	rc = of_property_read_u32(nc, "reg", &value);
1940 	if (rc) {
1941 		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1942 			nc, rc);
1943 		return rc;
1944 	}
1945 	spi->chip_select = value;
1946 
1947 	/*
1948 	 * For descriptors associated with the device, polarity inversion is
1949 	 * handled in the gpiolib, so all gpio chip selects are "active high"
1950 	 * in the logical sense, the gpiolib will invert the line if need be.
1951 	 */
1952 	if ((ctlr->use_gpio_descriptors) && ctlr->cs_gpiods &&
1953 	    ctlr->cs_gpiods[spi->chip_select])
1954 		spi->mode |= SPI_CS_HIGH;
1955 
1956 	/* Device speed */
1957 	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1958 	if (rc) {
1959 		dev_err(&ctlr->dev,
1960 			"%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc);
1961 		return rc;
1962 	}
1963 	spi->max_speed_hz = value;
1964 
1965 	return 0;
1966 }
1967 
1968 static struct spi_device *
1969 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1970 {
1971 	struct spi_device *spi;
1972 	int rc;
1973 
1974 	/* Alloc an spi_device */
1975 	spi = spi_alloc_device(ctlr);
1976 	if (!spi) {
1977 		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
1978 		rc = -ENOMEM;
1979 		goto err_out;
1980 	}
1981 
1982 	/* Select device driver */
1983 	rc = of_modalias_node(nc, spi->modalias,
1984 				sizeof(spi->modalias));
1985 	if (rc < 0) {
1986 		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
1987 		goto err_out;
1988 	}
1989 
1990 	rc = of_spi_parse_dt(ctlr, spi, nc);
1991 	if (rc)
1992 		goto err_out;
1993 
1994 	/* Store a pointer to the node in the device structure */
1995 	of_node_get(nc);
1996 	spi->dev.of_node = nc;
1997 
1998 	/* Register the new device */
1999 	rc = spi_add_device(spi);
2000 	if (rc) {
2001 		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2002 		goto err_of_node_put;
2003 	}
2004 
2005 	return spi;
2006 
2007 err_of_node_put:
2008 	of_node_put(nc);
2009 err_out:
2010 	spi_dev_put(spi);
2011 	return ERR_PTR(rc);
2012 }
2013 
2014 /**
2015  * of_register_spi_devices() - Register child devices onto the SPI bus
2016  * @ctlr:	Pointer to spi_controller device
2017  *
2018  * Registers an spi_device for each child node of controller node which
2019  * represents a valid SPI slave.
2020  */
2021 static void of_register_spi_devices(struct spi_controller *ctlr)
2022 {
2023 	struct spi_device *spi;
2024 	struct device_node *nc;
2025 
2026 	if (!ctlr->dev.of_node)
2027 		return;
2028 
2029 	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2030 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
2031 			continue;
2032 		spi = of_register_spi_device(ctlr, nc);
2033 		if (IS_ERR(spi)) {
2034 			dev_warn(&ctlr->dev,
2035 				 "Failed to create SPI device for %pOF\n", nc);
2036 			of_node_clear_flag(nc, OF_POPULATED);
2037 		}
2038 	}
2039 }
2040 #else
2041 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2042 #endif
2043 
2044 #ifdef CONFIG_ACPI
2045 struct acpi_spi_lookup {
2046 	struct spi_controller 	*ctlr;
2047 	u32			max_speed_hz;
2048 	u32			mode;
2049 	int			irq;
2050 	u8			bits_per_word;
2051 	u8			chip_select;
2052 };
2053 
2054 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2055 					    struct acpi_spi_lookup *lookup)
2056 {
2057 	const union acpi_object *obj;
2058 
2059 	if (!x86_apple_machine)
2060 		return;
2061 
2062 	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2063 	    && obj->buffer.length >= 4)
2064 		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2065 
2066 	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2067 	    && obj->buffer.length == 8)
2068 		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2069 
2070 	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2071 	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2072 		lookup->mode |= SPI_LSB_FIRST;
2073 
2074 	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2075 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2076 		lookup->mode |= SPI_CPOL;
2077 
2078 	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2079 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2080 		lookup->mode |= SPI_CPHA;
2081 }
2082 
2083 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2084 {
2085 	struct acpi_spi_lookup *lookup = data;
2086 	struct spi_controller *ctlr = lookup->ctlr;
2087 
2088 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2089 		struct acpi_resource_spi_serialbus *sb;
2090 		acpi_handle parent_handle;
2091 		acpi_status status;
2092 
2093 		sb = &ares->data.spi_serial_bus;
2094 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2095 
2096 			status = acpi_get_handle(NULL,
2097 						 sb->resource_source.string_ptr,
2098 						 &parent_handle);
2099 
2100 			if (ACPI_FAILURE(status) ||
2101 			    ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2102 				return -ENODEV;
2103 
2104 			/*
2105 			 * ACPI DeviceSelection numbering is handled by the
2106 			 * host controller driver in Windows and can vary
2107 			 * from driver to driver. In Linux we always expect
2108 			 * 0 .. max - 1 so we need to ask the driver to
2109 			 * translate between the two schemes.
2110 			 */
2111 			if (ctlr->fw_translate_cs) {
2112 				int cs = ctlr->fw_translate_cs(ctlr,
2113 						sb->device_selection);
2114 				if (cs < 0)
2115 					return cs;
2116 				lookup->chip_select = cs;
2117 			} else {
2118 				lookup->chip_select = sb->device_selection;
2119 			}
2120 
2121 			lookup->max_speed_hz = sb->connection_speed;
2122 
2123 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2124 				lookup->mode |= SPI_CPHA;
2125 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2126 				lookup->mode |= SPI_CPOL;
2127 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2128 				lookup->mode |= SPI_CS_HIGH;
2129 		}
2130 	} else if (lookup->irq < 0) {
2131 		struct resource r;
2132 
2133 		if (acpi_dev_resource_interrupt(ares, 0, &r))
2134 			lookup->irq = r.start;
2135 	}
2136 
2137 	/* Always tell the ACPI core to skip this resource */
2138 	return 1;
2139 }
2140 
2141 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2142 					    struct acpi_device *adev)
2143 {
2144 	acpi_handle parent_handle = NULL;
2145 	struct list_head resource_list;
2146 	struct acpi_spi_lookup lookup = {};
2147 	struct spi_device *spi;
2148 	int ret;
2149 
2150 	if (acpi_bus_get_status(adev) || !adev->status.present ||
2151 	    acpi_device_enumerated(adev))
2152 		return AE_OK;
2153 
2154 	lookup.ctlr		= ctlr;
2155 	lookup.irq		= -1;
2156 
2157 	INIT_LIST_HEAD(&resource_list);
2158 	ret = acpi_dev_get_resources(adev, &resource_list,
2159 				     acpi_spi_add_resource, &lookup);
2160 	acpi_dev_free_resource_list(&resource_list);
2161 
2162 	if (ret < 0)
2163 		/* found SPI in _CRS but it points to another controller */
2164 		return AE_OK;
2165 
2166 	if (!lookup.max_speed_hz &&
2167 	    !ACPI_FAILURE(acpi_get_parent(adev->handle, &parent_handle)) &&
2168 	    ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
2169 		/* Apple does not use _CRS but nested devices for SPI slaves */
2170 		acpi_spi_parse_apple_properties(adev, &lookup);
2171 	}
2172 
2173 	if (!lookup.max_speed_hz)
2174 		return AE_OK;
2175 
2176 	spi = spi_alloc_device(ctlr);
2177 	if (!spi) {
2178 		dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
2179 			dev_name(&adev->dev));
2180 		return AE_NO_MEMORY;
2181 	}
2182 
2183 	ACPI_COMPANION_SET(&spi->dev, adev);
2184 	spi->max_speed_hz	= lookup.max_speed_hz;
2185 	spi->mode		= lookup.mode;
2186 	spi->irq		= lookup.irq;
2187 	spi->bits_per_word	= lookup.bits_per_word;
2188 	spi->chip_select	= lookup.chip_select;
2189 
2190 	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2191 			  sizeof(spi->modalias));
2192 
2193 	if (spi->irq < 0)
2194 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2195 
2196 	acpi_device_set_enumerated(adev);
2197 
2198 	adev->power.flags.ignore_parent = true;
2199 	if (spi_add_device(spi)) {
2200 		adev->power.flags.ignore_parent = false;
2201 		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2202 			dev_name(&adev->dev));
2203 		spi_dev_put(spi);
2204 	}
2205 
2206 	return AE_OK;
2207 }
2208 
2209 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2210 				       void *data, void **return_value)
2211 {
2212 	struct spi_controller *ctlr = data;
2213 	struct acpi_device *adev;
2214 
2215 	if (acpi_bus_get_device(handle, &adev))
2216 		return AE_OK;
2217 
2218 	return acpi_register_spi_device(ctlr, adev);
2219 }
2220 
2221 #define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2222 
2223 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2224 {
2225 	acpi_status status;
2226 	acpi_handle handle;
2227 
2228 	handle = ACPI_HANDLE(ctlr->dev.parent);
2229 	if (!handle)
2230 		return;
2231 
2232 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2233 				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2234 				     acpi_spi_add_device, NULL, ctlr, NULL);
2235 	if (ACPI_FAILURE(status))
2236 		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2237 }
2238 #else
2239 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2240 #endif /* CONFIG_ACPI */
2241 
2242 static void spi_controller_release(struct device *dev)
2243 {
2244 	struct spi_controller *ctlr;
2245 
2246 	ctlr = container_of(dev, struct spi_controller, dev);
2247 	kfree(ctlr);
2248 }
2249 
2250 static struct class spi_master_class = {
2251 	.name		= "spi_master",
2252 	.owner		= THIS_MODULE,
2253 	.dev_release	= spi_controller_release,
2254 	.dev_groups	= spi_master_groups,
2255 };
2256 
2257 #ifdef CONFIG_SPI_SLAVE
2258 /**
2259  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2260  *		     controller
2261  * @spi: device used for the current transfer
2262  */
2263 int spi_slave_abort(struct spi_device *spi)
2264 {
2265 	struct spi_controller *ctlr = spi->controller;
2266 
2267 	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2268 		return ctlr->slave_abort(ctlr);
2269 
2270 	return -ENOTSUPP;
2271 }
2272 EXPORT_SYMBOL_GPL(spi_slave_abort);
2273 
2274 static int match_true(struct device *dev, void *data)
2275 {
2276 	return 1;
2277 }
2278 
2279 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2280 			  char *buf)
2281 {
2282 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2283 						   dev);
2284 	struct device *child;
2285 
2286 	child = device_find_child(&ctlr->dev, NULL, match_true);
2287 	return sprintf(buf, "%s\n",
2288 		       child ? to_spi_device(child)->modalias : NULL);
2289 }
2290 
2291 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2292 			   const char *buf, size_t count)
2293 {
2294 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2295 						   dev);
2296 	struct spi_device *spi;
2297 	struct device *child;
2298 	char name[32];
2299 	int rc;
2300 
2301 	rc = sscanf(buf, "%31s", name);
2302 	if (rc != 1 || !name[0])
2303 		return -EINVAL;
2304 
2305 	child = device_find_child(&ctlr->dev, NULL, match_true);
2306 	if (child) {
2307 		/* Remove registered slave */
2308 		device_unregister(child);
2309 		put_device(child);
2310 	}
2311 
2312 	if (strcmp(name, "(null)")) {
2313 		/* Register new slave */
2314 		spi = spi_alloc_device(ctlr);
2315 		if (!spi)
2316 			return -ENOMEM;
2317 
2318 		strlcpy(spi->modalias, name, sizeof(spi->modalias));
2319 
2320 		rc = spi_add_device(spi);
2321 		if (rc) {
2322 			spi_dev_put(spi);
2323 			return rc;
2324 		}
2325 	}
2326 
2327 	return count;
2328 }
2329 
2330 static DEVICE_ATTR_RW(slave);
2331 
2332 static struct attribute *spi_slave_attrs[] = {
2333 	&dev_attr_slave.attr,
2334 	NULL,
2335 };
2336 
2337 static const struct attribute_group spi_slave_group = {
2338 	.attrs = spi_slave_attrs,
2339 };
2340 
2341 static const struct attribute_group *spi_slave_groups[] = {
2342 	&spi_controller_statistics_group,
2343 	&spi_slave_group,
2344 	NULL,
2345 };
2346 
2347 static struct class spi_slave_class = {
2348 	.name		= "spi_slave",
2349 	.owner		= THIS_MODULE,
2350 	.dev_release	= spi_controller_release,
2351 	.dev_groups	= spi_slave_groups,
2352 };
2353 #else
2354 extern struct class spi_slave_class;	/* dummy */
2355 #endif
2356 
2357 /**
2358  * __spi_alloc_controller - allocate an SPI master or slave controller
2359  * @dev: the controller, possibly using the platform_bus
2360  * @size: how much zeroed driver-private data to allocate; the pointer to this
2361  *	memory is in the driver_data field of the returned device, accessible
2362  *	with spi_controller_get_devdata(); the memory is cacheline aligned;
2363  *	drivers granting DMA access to portions of their private data need to
2364  *	round up @size using ALIGN(size, dma_get_cache_alignment()).
2365  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2366  *	slave (true) controller
2367  * Context: can sleep
2368  *
2369  * This call is used only by SPI controller drivers, which are the
2370  * only ones directly touching chip registers.  It's how they allocate
2371  * an spi_controller structure, prior to calling spi_register_controller().
2372  *
2373  * This must be called from context that can sleep.
2374  *
2375  * The caller is responsible for assigning the bus number and initializing the
2376  * controller's methods before calling spi_register_controller(); and (after
2377  * errors adding the device) calling spi_controller_put() to prevent a memory
2378  * leak.
2379  *
2380  * Return: the SPI controller structure on success, else NULL.
2381  */
2382 struct spi_controller *__spi_alloc_controller(struct device *dev,
2383 					      unsigned int size, bool slave)
2384 {
2385 	struct spi_controller	*ctlr;
2386 	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2387 
2388 	if (!dev)
2389 		return NULL;
2390 
2391 	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2392 	if (!ctlr)
2393 		return NULL;
2394 
2395 	device_initialize(&ctlr->dev);
2396 	ctlr->bus_num = -1;
2397 	ctlr->num_chipselect = 1;
2398 	ctlr->slave = slave;
2399 	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2400 		ctlr->dev.class = &spi_slave_class;
2401 	else
2402 		ctlr->dev.class = &spi_master_class;
2403 	ctlr->dev.parent = dev;
2404 	pm_suspend_ignore_children(&ctlr->dev, true);
2405 	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2406 
2407 	return ctlr;
2408 }
2409 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2410 
2411 #ifdef CONFIG_OF
2412 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2413 {
2414 	int nb, i, *cs;
2415 	struct device_node *np = ctlr->dev.of_node;
2416 
2417 	if (!np)
2418 		return 0;
2419 
2420 	nb = of_gpio_named_count(np, "cs-gpios");
2421 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2422 
2423 	/* Return error only for an incorrectly formed cs-gpios property */
2424 	if (nb == 0 || nb == -ENOENT)
2425 		return 0;
2426 	else if (nb < 0)
2427 		return nb;
2428 
2429 	cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2430 			  GFP_KERNEL);
2431 	ctlr->cs_gpios = cs;
2432 
2433 	if (!ctlr->cs_gpios)
2434 		return -ENOMEM;
2435 
2436 	for (i = 0; i < ctlr->num_chipselect; i++)
2437 		cs[i] = -ENOENT;
2438 
2439 	for (i = 0; i < nb; i++)
2440 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2441 
2442 	return 0;
2443 }
2444 #else
2445 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2446 {
2447 	return 0;
2448 }
2449 #endif
2450 
2451 /**
2452  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2453  * @ctlr: The SPI master to grab GPIO descriptors for
2454  */
2455 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2456 {
2457 	int nb, i;
2458 	struct gpio_desc **cs;
2459 	struct device *dev = &ctlr->dev;
2460 
2461 	nb = gpiod_count(dev, "cs");
2462 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2463 
2464 	/* No GPIOs at all is fine, else return the error */
2465 	if (nb == 0 || nb == -ENOENT)
2466 		return 0;
2467 	else if (nb < 0)
2468 		return nb;
2469 
2470 	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2471 			  GFP_KERNEL);
2472 	if (!cs)
2473 		return -ENOMEM;
2474 	ctlr->cs_gpiods = cs;
2475 
2476 	for (i = 0; i < nb; i++) {
2477 		/*
2478 		 * Most chipselects are active low, the inverted
2479 		 * semantics are handled by special quirks in gpiolib,
2480 		 * so initializing them GPIOD_OUT_LOW here means
2481 		 * "unasserted", in most cases this will drive the physical
2482 		 * line high.
2483 		 */
2484 		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2485 						      GPIOD_OUT_LOW);
2486 		if (IS_ERR(cs[i]))
2487 			return PTR_ERR(cs[i]);
2488 
2489 		if (cs[i]) {
2490 			/*
2491 			 * If we find a CS GPIO, name it after the device and
2492 			 * chip select line.
2493 			 */
2494 			char *gpioname;
2495 
2496 			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2497 						  dev_name(dev), i);
2498 			if (!gpioname)
2499 				return -ENOMEM;
2500 			gpiod_set_consumer_name(cs[i], gpioname);
2501 		}
2502 	}
2503 
2504 	return 0;
2505 }
2506 
2507 static int spi_controller_check_ops(struct spi_controller *ctlr)
2508 {
2509 	/*
2510 	 * The controller may implement only the high-level SPI-memory like
2511 	 * operations if it does not support regular SPI transfers, and this is
2512 	 * valid use case.
2513 	 * If ->mem_ops is NULL, we request that at least one of the
2514 	 * ->transfer_xxx() method be implemented.
2515 	 */
2516 	if (ctlr->mem_ops) {
2517 		if (!ctlr->mem_ops->exec_op)
2518 			return -EINVAL;
2519 	} else if (!ctlr->transfer && !ctlr->transfer_one &&
2520 		   !ctlr->transfer_one_message) {
2521 		return -EINVAL;
2522 	}
2523 
2524 	return 0;
2525 }
2526 
2527 /**
2528  * spi_register_controller - register SPI master or slave controller
2529  * @ctlr: initialized master, originally from spi_alloc_master() or
2530  *	spi_alloc_slave()
2531  * Context: can sleep
2532  *
2533  * SPI controllers connect to their drivers using some non-SPI bus,
2534  * such as the platform bus.  The final stage of probe() in that code
2535  * includes calling spi_register_controller() to hook up to this SPI bus glue.
2536  *
2537  * SPI controllers use board specific (often SOC specific) bus numbers,
2538  * and board-specific addressing for SPI devices combines those numbers
2539  * with chip select numbers.  Since SPI does not directly support dynamic
2540  * device identification, boards need configuration tables telling which
2541  * chip is at which address.
2542  *
2543  * This must be called from context that can sleep.  It returns zero on
2544  * success, else a negative error code (dropping the controller's refcount).
2545  * After a successful return, the caller is responsible for calling
2546  * spi_unregister_controller().
2547  *
2548  * Return: zero on success, else a negative error code.
2549  */
2550 int spi_register_controller(struct spi_controller *ctlr)
2551 {
2552 	struct device		*dev = ctlr->dev.parent;
2553 	struct boardinfo	*bi;
2554 	int			status;
2555 	int			id, first_dynamic;
2556 
2557 	if (!dev)
2558 		return -ENODEV;
2559 
2560 	/*
2561 	 * Make sure all necessary hooks are implemented before registering
2562 	 * the SPI controller.
2563 	 */
2564 	status = spi_controller_check_ops(ctlr);
2565 	if (status)
2566 		return status;
2567 
2568 	if (ctlr->bus_num >= 0) {
2569 		/* devices with a fixed bus num must check-in with the num */
2570 		mutex_lock(&board_lock);
2571 		id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2572 			ctlr->bus_num + 1, GFP_KERNEL);
2573 		mutex_unlock(&board_lock);
2574 		if (WARN(id < 0, "couldn't get idr"))
2575 			return id == -ENOSPC ? -EBUSY : id;
2576 		ctlr->bus_num = id;
2577 	} else if (ctlr->dev.of_node) {
2578 		/* allocate dynamic bus number using Linux idr */
2579 		id = of_alias_get_id(ctlr->dev.of_node, "spi");
2580 		if (id >= 0) {
2581 			ctlr->bus_num = id;
2582 			mutex_lock(&board_lock);
2583 			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2584 				       ctlr->bus_num + 1, GFP_KERNEL);
2585 			mutex_unlock(&board_lock);
2586 			if (WARN(id < 0, "couldn't get idr"))
2587 				return id == -ENOSPC ? -EBUSY : id;
2588 		}
2589 	}
2590 	if (ctlr->bus_num < 0) {
2591 		first_dynamic = of_alias_get_highest_id("spi");
2592 		if (first_dynamic < 0)
2593 			first_dynamic = 0;
2594 		else
2595 			first_dynamic++;
2596 
2597 		mutex_lock(&board_lock);
2598 		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2599 			       0, GFP_KERNEL);
2600 		mutex_unlock(&board_lock);
2601 		if (WARN(id < 0, "couldn't get idr"))
2602 			return id;
2603 		ctlr->bus_num = id;
2604 	}
2605 	INIT_LIST_HEAD(&ctlr->queue);
2606 	spin_lock_init(&ctlr->queue_lock);
2607 	spin_lock_init(&ctlr->bus_lock_spinlock);
2608 	mutex_init(&ctlr->bus_lock_mutex);
2609 	mutex_init(&ctlr->io_mutex);
2610 	ctlr->bus_lock_flag = 0;
2611 	init_completion(&ctlr->xfer_completion);
2612 	if (!ctlr->max_dma_len)
2613 		ctlr->max_dma_len = INT_MAX;
2614 
2615 	/* register the device, then userspace will see it.
2616 	 * registration fails if the bus ID is in use.
2617 	 */
2618 	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2619 
2620 	if (!spi_controller_is_slave(ctlr)) {
2621 		if (ctlr->use_gpio_descriptors) {
2622 			status = spi_get_gpio_descs(ctlr);
2623 			if (status)
2624 				return status;
2625 			/*
2626 			 * A controller using GPIO descriptors always
2627 			 * supports SPI_CS_HIGH if need be.
2628 			 */
2629 			ctlr->mode_bits |= SPI_CS_HIGH;
2630 		} else {
2631 			/* Legacy code path for GPIOs from DT */
2632 			status = of_spi_get_gpio_numbers(ctlr);
2633 			if (status)
2634 				return status;
2635 		}
2636 	}
2637 
2638 	/*
2639 	 * Even if it's just one always-selected device, there must
2640 	 * be at least one chipselect.
2641 	 */
2642 	if (!ctlr->num_chipselect)
2643 		return -EINVAL;
2644 
2645 	status = device_add(&ctlr->dev);
2646 	if (status < 0) {
2647 		/* free bus id */
2648 		mutex_lock(&board_lock);
2649 		idr_remove(&spi_master_idr, ctlr->bus_num);
2650 		mutex_unlock(&board_lock);
2651 		goto done;
2652 	}
2653 	dev_dbg(dev, "registered %s %s\n",
2654 			spi_controller_is_slave(ctlr) ? "slave" : "master",
2655 			dev_name(&ctlr->dev));
2656 
2657 	/*
2658 	 * If we're using a queued driver, start the queue. Note that we don't
2659 	 * need the queueing logic if the driver is only supporting high-level
2660 	 * memory operations.
2661 	 */
2662 	if (ctlr->transfer) {
2663 		dev_info(dev, "controller is unqueued, this is deprecated\n");
2664 	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2665 		status = spi_controller_initialize_queue(ctlr);
2666 		if (status) {
2667 			device_del(&ctlr->dev);
2668 			/* free bus id */
2669 			mutex_lock(&board_lock);
2670 			idr_remove(&spi_master_idr, ctlr->bus_num);
2671 			mutex_unlock(&board_lock);
2672 			goto done;
2673 		}
2674 	}
2675 	/* add statistics */
2676 	spin_lock_init(&ctlr->statistics.lock);
2677 
2678 	mutex_lock(&board_lock);
2679 	list_add_tail(&ctlr->list, &spi_controller_list);
2680 	list_for_each_entry(bi, &board_list, list)
2681 		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2682 	mutex_unlock(&board_lock);
2683 
2684 	/* Register devices from the device tree and ACPI */
2685 	of_register_spi_devices(ctlr);
2686 	acpi_register_spi_devices(ctlr);
2687 done:
2688 	return status;
2689 }
2690 EXPORT_SYMBOL_GPL(spi_register_controller);
2691 
2692 static void devm_spi_unregister(struct device *dev, void *res)
2693 {
2694 	spi_unregister_controller(*(struct spi_controller **)res);
2695 }
2696 
2697 /**
2698  * devm_spi_register_controller - register managed SPI master or slave
2699  *	controller
2700  * @dev:    device managing SPI controller
2701  * @ctlr: initialized controller, originally from spi_alloc_master() or
2702  *	spi_alloc_slave()
2703  * Context: can sleep
2704  *
2705  * Register a SPI device as with spi_register_controller() which will
2706  * automatically be unregistered and freed.
2707  *
2708  * Return: zero on success, else a negative error code.
2709  */
2710 int devm_spi_register_controller(struct device *dev,
2711 				 struct spi_controller *ctlr)
2712 {
2713 	struct spi_controller **ptr;
2714 	int ret;
2715 
2716 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2717 	if (!ptr)
2718 		return -ENOMEM;
2719 
2720 	ret = spi_register_controller(ctlr);
2721 	if (!ret) {
2722 		*ptr = ctlr;
2723 		devres_add(dev, ptr);
2724 	} else {
2725 		devres_free(ptr);
2726 	}
2727 
2728 	return ret;
2729 }
2730 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2731 
2732 static int __unregister(struct device *dev, void *null)
2733 {
2734 	spi_unregister_device(to_spi_device(dev));
2735 	return 0;
2736 }
2737 
2738 /**
2739  * spi_unregister_controller - unregister SPI master or slave controller
2740  * @ctlr: the controller being unregistered
2741  * Context: can sleep
2742  *
2743  * This call is used only by SPI controller drivers, which are the
2744  * only ones directly touching chip registers.
2745  *
2746  * This must be called from context that can sleep.
2747  *
2748  * Note that this function also drops a reference to the controller.
2749  */
2750 void spi_unregister_controller(struct spi_controller *ctlr)
2751 {
2752 	struct spi_controller *found;
2753 	int id = ctlr->bus_num;
2754 
2755 	/* First make sure that this controller was ever added */
2756 	mutex_lock(&board_lock);
2757 	found = idr_find(&spi_master_idr, id);
2758 	mutex_unlock(&board_lock);
2759 	if (ctlr->queued) {
2760 		if (spi_destroy_queue(ctlr))
2761 			dev_err(&ctlr->dev, "queue remove failed\n");
2762 	}
2763 	mutex_lock(&board_lock);
2764 	list_del(&ctlr->list);
2765 	mutex_unlock(&board_lock);
2766 
2767 	device_for_each_child(&ctlr->dev, NULL, __unregister);
2768 	device_unregister(&ctlr->dev);
2769 	/* free bus id */
2770 	mutex_lock(&board_lock);
2771 	if (found == ctlr)
2772 		idr_remove(&spi_master_idr, id);
2773 	mutex_unlock(&board_lock);
2774 }
2775 EXPORT_SYMBOL_GPL(spi_unregister_controller);
2776 
2777 int spi_controller_suspend(struct spi_controller *ctlr)
2778 {
2779 	int ret;
2780 
2781 	/* Basically no-ops for non-queued controllers */
2782 	if (!ctlr->queued)
2783 		return 0;
2784 
2785 	ret = spi_stop_queue(ctlr);
2786 	if (ret)
2787 		dev_err(&ctlr->dev, "queue stop failed\n");
2788 
2789 	return ret;
2790 }
2791 EXPORT_SYMBOL_GPL(spi_controller_suspend);
2792 
2793 int spi_controller_resume(struct spi_controller *ctlr)
2794 {
2795 	int ret;
2796 
2797 	if (!ctlr->queued)
2798 		return 0;
2799 
2800 	ret = spi_start_queue(ctlr);
2801 	if (ret)
2802 		dev_err(&ctlr->dev, "queue restart failed\n");
2803 
2804 	return ret;
2805 }
2806 EXPORT_SYMBOL_GPL(spi_controller_resume);
2807 
2808 static int __spi_controller_match(struct device *dev, const void *data)
2809 {
2810 	struct spi_controller *ctlr;
2811 	const u16 *bus_num = data;
2812 
2813 	ctlr = container_of(dev, struct spi_controller, dev);
2814 	return ctlr->bus_num == *bus_num;
2815 }
2816 
2817 /**
2818  * spi_busnum_to_master - look up master associated with bus_num
2819  * @bus_num: the master's bus number
2820  * Context: can sleep
2821  *
2822  * This call may be used with devices that are registered after
2823  * arch init time.  It returns a refcounted pointer to the relevant
2824  * spi_controller (which the caller must release), or NULL if there is
2825  * no such master registered.
2826  *
2827  * Return: the SPI master structure on success, else NULL.
2828  */
2829 struct spi_controller *spi_busnum_to_master(u16 bus_num)
2830 {
2831 	struct device		*dev;
2832 	struct spi_controller	*ctlr = NULL;
2833 
2834 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
2835 				__spi_controller_match);
2836 	if (dev)
2837 		ctlr = container_of(dev, struct spi_controller, dev);
2838 	/* reference got in class_find_device */
2839 	return ctlr;
2840 }
2841 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2842 
2843 /*-------------------------------------------------------------------------*/
2844 
2845 /* Core methods for SPI resource management */
2846 
2847 /**
2848  * spi_res_alloc - allocate a spi resource that is life-cycle managed
2849  *                 during the processing of a spi_message while using
2850  *                 spi_transfer_one
2851  * @spi:     the spi device for which we allocate memory
2852  * @release: the release code to execute for this resource
2853  * @size:    size to alloc and return
2854  * @gfp:     GFP allocation flags
2855  *
2856  * Return: the pointer to the allocated data
2857  *
2858  * This may get enhanced in the future to allocate from a memory pool
2859  * of the @spi_device or @spi_controller to avoid repeated allocations.
2860  */
2861 void *spi_res_alloc(struct spi_device *spi,
2862 		    spi_res_release_t release,
2863 		    size_t size, gfp_t gfp)
2864 {
2865 	struct spi_res *sres;
2866 
2867 	sres = kzalloc(sizeof(*sres) + size, gfp);
2868 	if (!sres)
2869 		return NULL;
2870 
2871 	INIT_LIST_HEAD(&sres->entry);
2872 	sres->release = release;
2873 
2874 	return sres->data;
2875 }
2876 EXPORT_SYMBOL_GPL(spi_res_alloc);
2877 
2878 /**
2879  * spi_res_free - free an spi resource
2880  * @res: pointer to the custom data of a resource
2881  *
2882  */
2883 void spi_res_free(void *res)
2884 {
2885 	struct spi_res *sres = container_of(res, struct spi_res, data);
2886 
2887 	if (!res)
2888 		return;
2889 
2890 	WARN_ON(!list_empty(&sres->entry));
2891 	kfree(sres);
2892 }
2893 EXPORT_SYMBOL_GPL(spi_res_free);
2894 
2895 /**
2896  * spi_res_add - add a spi_res to the spi_message
2897  * @message: the spi message
2898  * @res:     the spi_resource
2899  */
2900 void spi_res_add(struct spi_message *message, void *res)
2901 {
2902 	struct spi_res *sres = container_of(res, struct spi_res, data);
2903 
2904 	WARN_ON(!list_empty(&sres->entry));
2905 	list_add_tail(&sres->entry, &message->resources);
2906 }
2907 EXPORT_SYMBOL_GPL(spi_res_add);
2908 
2909 /**
2910  * spi_res_release - release all spi resources for this message
2911  * @ctlr:  the @spi_controller
2912  * @message: the @spi_message
2913  */
2914 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2915 {
2916 	struct spi_res *res, *tmp;
2917 
2918 	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
2919 		if (res->release)
2920 			res->release(ctlr, message, res->data);
2921 
2922 		list_del(&res->entry);
2923 
2924 		kfree(res);
2925 	}
2926 }
2927 EXPORT_SYMBOL_GPL(spi_res_release);
2928 
2929 /*-------------------------------------------------------------------------*/
2930 
2931 /* Core methods for spi_message alterations */
2932 
2933 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2934 					    struct spi_message *msg,
2935 					    void *res)
2936 {
2937 	struct spi_replaced_transfers *rxfer = res;
2938 	size_t i;
2939 
2940 	/* call extra callback if requested */
2941 	if (rxfer->release)
2942 		rxfer->release(ctlr, msg, res);
2943 
2944 	/* insert replaced transfers back into the message */
2945 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2946 
2947 	/* remove the formerly inserted entries */
2948 	for (i = 0; i < rxfer->inserted; i++)
2949 		list_del(&rxfer->inserted_transfers[i].transfer_list);
2950 }
2951 
2952 /**
2953  * spi_replace_transfers - replace transfers with several transfers
2954  *                         and register change with spi_message.resources
2955  * @msg:           the spi_message we work upon
2956  * @xfer_first:    the first spi_transfer we want to replace
2957  * @remove:        number of transfers to remove
2958  * @insert:        the number of transfers we want to insert instead
2959  * @release:       extra release code necessary in some circumstances
2960  * @extradatasize: extra data to allocate (with alignment guarantees
2961  *                 of struct @spi_transfer)
2962  * @gfp:           gfp flags
2963  *
2964  * Returns: pointer to @spi_replaced_transfers,
2965  *          PTR_ERR(...) in case of errors.
2966  */
2967 struct spi_replaced_transfers *spi_replace_transfers(
2968 	struct spi_message *msg,
2969 	struct spi_transfer *xfer_first,
2970 	size_t remove,
2971 	size_t insert,
2972 	spi_replaced_release_t release,
2973 	size_t extradatasize,
2974 	gfp_t gfp)
2975 {
2976 	struct spi_replaced_transfers *rxfer;
2977 	struct spi_transfer *xfer;
2978 	size_t i;
2979 
2980 	/* allocate the structure using spi_res */
2981 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2982 			      struct_size(rxfer, inserted_transfers, insert)
2983 			      + extradatasize,
2984 			      gfp);
2985 	if (!rxfer)
2986 		return ERR_PTR(-ENOMEM);
2987 
2988 	/* the release code to invoke before running the generic release */
2989 	rxfer->release = release;
2990 
2991 	/* assign extradata */
2992 	if (extradatasize)
2993 		rxfer->extradata =
2994 			&rxfer->inserted_transfers[insert];
2995 
2996 	/* init the replaced_transfers list */
2997 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
2998 
2999 	/* assign the list_entry after which we should reinsert
3000 	 * the @replaced_transfers - it may be spi_message.messages!
3001 	 */
3002 	rxfer->replaced_after = xfer_first->transfer_list.prev;
3003 
3004 	/* remove the requested number of transfers */
3005 	for (i = 0; i < remove; i++) {
3006 		/* if the entry after replaced_after it is msg->transfers
3007 		 * then we have been requested to remove more transfers
3008 		 * than are in the list
3009 		 */
3010 		if (rxfer->replaced_after->next == &msg->transfers) {
3011 			dev_err(&msg->spi->dev,
3012 				"requested to remove more spi_transfers than are available\n");
3013 			/* insert replaced transfers back into the message */
3014 			list_splice(&rxfer->replaced_transfers,
3015 				    rxfer->replaced_after);
3016 
3017 			/* free the spi_replace_transfer structure */
3018 			spi_res_free(rxfer);
3019 
3020 			/* and return with an error */
3021 			return ERR_PTR(-EINVAL);
3022 		}
3023 
3024 		/* remove the entry after replaced_after from list of
3025 		 * transfers and add it to list of replaced_transfers
3026 		 */
3027 		list_move_tail(rxfer->replaced_after->next,
3028 			       &rxfer->replaced_transfers);
3029 	}
3030 
3031 	/* create copy of the given xfer with identical settings
3032 	 * based on the first transfer to get removed
3033 	 */
3034 	for (i = 0; i < insert; i++) {
3035 		/* we need to run in reverse order */
3036 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
3037 
3038 		/* copy all spi_transfer data */
3039 		memcpy(xfer, xfer_first, sizeof(*xfer));
3040 
3041 		/* add to list */
3042 		list_add(&xfer->transfer_list, rxfer->replaced_after);
3043 
3044 		/* clear cs_change and delay for all but the last */
3045 		if (i) {
3046 			xfer->cs_change = false;
3047 			xfer->delay_usecs = 0;
3048 			xfer->delay.value = 0;
3049 		}
3050 	}
3051 
3052 	/* set up inserted */
3053 	rxfer->inserted = insert;
3054 
3055 	/* and register it with spi_res/spi_message */
3056 	spi_res_add(msg, rxfer);
3057 
3058 	return rxfer;
3059 }
3060 EXPORT_SYMBOL_GPL(spi_replace_transfers);
3061 
3062 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3063 					struct spi_message *msg,
3064 					struct spi_transfer **xferp,
3065 					size_t maxsize,
3066 					gfp_t gfp)
3067 {
3068 	struct spi_transfer *xfer = *xferp, *xfers;
3069 	struct spi_replaced_transfers *srt;
3070 	size_t offset;
3071 	size_t count, i;
3072 
3073 	/* calculate how many we have to replace */
3074 	count = DIV_ROUND_UP(xfer->len, maxsize);
3075 
3076 	/* create replacement */
3077 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3078 	if (IS_ERR(srt))
3079 		return PTR_ERR(srt);
3080 	xfers = srt->inserted_transfers;
3081 
3082 	/* now handle each of those newly inserted spi_transfers
3083 	 * note that the replacements spi_transfers all are preset
3084 	 * to the same values as *xferp, so tx_buf, rx_buf and len
3085 	 * are all identical (as well as most others)
3086 	 * so we just have to fix up len and the pointers.
3087 	 *
3088 	 * this also includes support for the depreciated
3089 	 * spi_message.is_dma_mapped interface
3090 	 */
3091 
3092 	/* the first transfer just needs the length modified, so we
3093 	 * run it outside the loop
3094 	 */
3095 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3096 
3097 	/* all the others need rx_buf/tx_buf also set */
3098 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3099 		/* update rx_buf, tx_buf and dma */
3100 		if (xfers[i].rx_buf)
3101 			xfers[i].rx_buf += offset;
3102 		if (xfers[i].rx_dma)
3103 			xfers[i].rx_dma += offset;
3104 		if (xfers[i].tx_buf)
3105 			xfers[i].tx_buf += offset;
3106 		if (xfers[i].tx_dma)
3107 			xfers[i].tx_dma += offset;
3108 
3109 		/* update length */
3110 		xfers[i].len = min(maxsize, xfers[i].len - offset);
3111 	}
3112 
3113 	/* we set up xferp to the last entry we have inserted,
3114 	 * so that we skip those already split transfers
3115 	 */
3116 	*xferp = &xfers[count - 1];
3117 
3118 	/* increment statistics counters */
3119 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3120 				       transfers_split_maxsize);
3121 	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
3122 				       transfers_split_maxsize);
3123 
3124 	return 0;
3125 }
3126 
3127 /**
3128  * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
3129  *                              when an individual transfer exceeds a
3130  *                              certain size
3131  * @ctlr:    the @spi_controller for this transfer
3132  * @msg:   the @spi_message to transform
3133  * @maxsize:  the maximum when to apply this
3134  * @gfp: GFP allocation flags
3135  *
3136  * Return: status of transformation
3137  */
3138 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3139 				struct spi_message *msg,
3140 				size_t maxsize,
3141 				gfp_t gfp)
3142 {
3143 	struct spi_transfer *xfer;
3144 	int ret;
3145 
3146 	/* iterate over the transfer_list,
3147 	 * but note that xfer is advanced to the last transfer inserted
3148 	 * to avoid checking sizes again unnecessarily (also xfer does
3149 	 * potentiall belong to a different list by the time the
3150 	 * replacement has happened
3151 	 */
3152 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3153 		if (xfer->len > maxsize) {
3154 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3155 							   maxsize, gfp);
3156 			if (ret)
3157 				return ret;
3158 		}
3159 	}
3160 
3161 	return 0;
3162 }
3163 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3164 
3165 /*-------------------------------------------------------------------------*/
3166 
3167 /* Core methods for SPI controller protocol drivers.  Some of the
3168  * other core methods are currently defined as inline functions.
3169  */
3170 
3171 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3172 					u8 bits_per_word)
3173 {
3174 	if (ctlr->bits_per_word_mask) {
3175 		/* Only 32 bits fit in the mask */
3176 		if (bits_per_word > 32)
3177 			return -EINVAL;
3178 		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3179 			return -EINVAL;
3180 	}
3181 
3182 	return 0;
3183 }
3184 
3185 /**
3186  * spi_setup - setup SPI mode and clock rate
3187  * @spi: the device whose settings are being modified
3188  * Context: can sleep, and no requests are queued to the device
3189  *
3190  * SPI protocol drivers may need to update the transfer mode if the
3191  * device doesn't work with its default.  They may likewise need
3192  * to update clock rates or word sizes from initial values.  This function
3193  * changes those settings, and must be called from a context that can sleep.
3194  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3195  * effect the next time the device is selected and data is transferred to
3196  * or from it.  When this function returns, the spi device is deselected.
3197  *
3198  * Note that this call will fail if the protocol driver specifies an option
3199  * that the underlying controller or its driver does not support.  For
3200  * example, not all hardware supports wire transfers using nine bit words,
3201  * LSB-first wire encoding, or active-high chipselects.
3202  *
3203  * Return: zero on success, else a negative error code.
3204  */
3205 int spi_setup(struct spi_device *spi)
3206 {
3207 	unsigned	bad_bits, ugly_bits;
3208 	int		status;
3209 
3210 	/* check mode to prevent that DUAL and QUAD set at the same time
3211 	 */
3212 	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
3213 		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
3214 		dev_err(&spi->dev,
3215 		"setup: can not select dual and quad at the same time\n");
3216 		return -EINVAL;
3217 	}
3218 	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3219 	 */
3220 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3221 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3222 		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3223 		return -EINVAL;
3224 	/* help drivers fail *cleanly* when they need options
3225 	 * that aren't supported with their current controller
3226 	 * SPI_CS_WORD has a fallback software implementation,
3227 	 * so it is ignored here.
3228 	 */
3229 	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD);
3230 	/* nothing prevents from working with active-high CS in case if it
3231 	 * is driven by GPIO.
3232 	 */
3233 	if (gpio_is_valid(spi->cs_gpio))
3234 		bad_bits &= ~SPI_CS_HIGH;
3235 	ugly_bits = bad_bits &
3236 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3237 		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3238 	if (ugly_bits) {
3239 		dev_warn(&spi->dev,
3240 			 "setup: ignoring unsupported mode bits %x\n",
3241 			 ugly_bits);
3242 		spi->mode &= ~ugly_bits;
3243 		bad_bits &= ~ugly_bits;
3244 	}
3245 	if (bad_bits) {
3246 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3247 			bad_bits);
3248 		return -EINVAL;
3249 	}
3250 
3251 	if (!spi->bits_per_word)
3252 		spi->bits_per_word = 8;
3253 
3254 	status = __spi_validate_bits_per_word(spi->controller,
3255 					      spi->bits_per_word);
3256 	if (status)
3257 		return status;
3258 
3259 	if (!spi->max_speed_hz)
3260 		spi->max_speed_hz = spi->controller->max_speed_hz;
3261 
3262 	if (spi->controller->setup)
3263 		status = spi->controller->setup(spi);
3264 
3265 	if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3266 		status = pm_runtime_get_sync(spi->controller->dev.parent);
3267 		if (status < 0) {
3268 			pm_runtime_put_noidle(spi->controller->dev.parent);
3269 			dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3270 				status);
3271 			return status;
3272 		}
3273 
3274 		/*
3275 		 * We do not want to return positive value from pm_runtime_get,
3276 		 * there are many instances of devices calling spi_setup() and
3277 		 * checking for a non-zero return value instead of a negative
3278 		 * return value.
3279 		 */
3280 		status = 0;
3281 
3282 		spi_set_cs(spi, false);
3283 		pm_runtime_mark_last_busy(spi->controller->dev.parent);
3284 		pm_runtime_put_autosuspend(spi->controller->dev.parent);
3285 	} else {
3286 		spi_set_cs(spi, false);
3287 	}
3288 
3289 	if (spi->rt && !spi->controller->rt) {
3290 		spi->controller->rt = true;
3291 		spi_set_thread_rt(spi->controller);
3292 	}
3293 
3294 	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3295 			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
3296 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3297 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3298 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
3299 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
3300 			spi->bits_per_word, spi->max_speed_hz,
3301 			status);
3302 
3303 	return status;
3304 }
3305 EXPORT_SYMBOL_GPL(spi_setup);
3306 
3307 /**
3308  * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3309  * @spi: the device that requires specific CS timing configuration
3310  * @setup: CS setup time specified via @spi_delay
3311  * @hold: CS hold time specified via @spi_delay
3312  * @inactive: CS inactive delay between transfers specified via @spi_delay
3313  *
3314  * Return: zero on success, else a negative error code.
3315  */
3316 int spi_set_cs_timing(struct spi_device *spi, struct spi_delay *setup,
3317 		      struct spi_delay *hold, struct spi_delay *inactive)
3318 {
3319 	size_t len;
3320 
3321 	if (spi->controller->set_cs_timing)
3322 		return spi->controller->set_cs_timing(spi, setup, hold,
3323 						      inactive);
3324 
3325 	if ((setup && setup->unit == SPI_DELAY_UNIT_SCK) ||
3326 	    (hold && hold->unit == SPI_DELAY_UNIT_SCK) ||
3327 	    (inactive && inactive->unit == SPI_DELAY_UNIT_SCK)) {
3328 		dev_err(&spi->dev,
3329 			"Clock-cycle delays for CS not supported in SW mode\n");
3330 		return -ENOTSUPP;
3331 	}
3332 
3333 	len = sizeof(struct spi_delay);
3334 
3335 	/* copy delays to controller */
3336 	if (setup)
3337 		memcpy(&spi->controller->cs_setup, setup, len);
3338 	else
3339 		memset(&spi->controller->cs_setup, 0, len);
3340 
3341 	if (hold)
3342 		memcpy(&spi->controller->cs_hold, hold, len);
3343 	else
3344 		memset(&spi->controller->cs_hold, 0, len);
3345 
3346 	if (inactive)
3347 		memcpy(&spi->controller->cs_inactive, inactive, len);
3348 	else
3349 		memset(&spi->controller->cs_inactive, 0, len);
3350 
3351 	return 0;
3352 }
3353 EXPORT_SYMBOL_GPL(spi_set_cs_timing);
3354 
3355 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3356 				       struct spi_device *spi)
3357 {
3358 	int delay1, delay2;
3359 
3360 	delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3361 	if (delay1 < 0)
3362 		return delay1;
3363 
3364 	delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3365 	if (delay2 < 0)
3366 		return delay2;
3367 
3368 	if (delay1 < delay2)
3369 		memcpy(&xfer->word_delay, &spi->word_delay,
3370 		       sizeof(xfer->word_delay));
3371 
3372 	return 0;
3373 }
3374 
3375 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3376 {
3377 	struct spi_controller *ctlr = spi->controller;
3378 	struct spi_transfer *xfer;
3379 	int w_size;
3380 
3381 	if (list_empty(&message->transfers))
3382 		return -EINVAL;
3383 
3384 	/* If an SPI controller does not support toggling the CS line on each
3385 	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3386 	 * for the CS line, we can emulate the CS-per-word hardware function by
3387 	 * splitting transfers into one-word transfers and ensuring that
3388 	 * cs_change is set for each transfer.
3389 	 */
3390 	if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3391 					  spi->cs_gpiod ||
3392 					  gpio_is_valid(spi->cs_gpio))) {
3393 		size_t maxsize;
3394 		int ret;
3395 
3396 		maxsize = (spi->bits_per_word + 7) / 8;
3397 
3398 		/* spi_split_transfers_maxsize() requires message->spi */
3399 		message->spi = spi;
3400 
3401 		ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3402 						  GFP_KERNEL);
3403 		if (ret)
3404 			return ret;
3405 
3406 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3407 			/* don't change cs_change on the last entry in the list */
3408 			if (list_is_last(&xfer->transfer_list, &message->transfers))
3409 				break;
3410 			xfer->cs_change = 1;
3411 		}
3412 	}
3413 
3414 	/* Half-duplex links include original MicroWire, and ones with
3415 	 * only one data pin like SPI_3WIRE (switches direction) or where
3416 	 * either MOSI or MISO is missing.  They can also be caused by
3417 	 * software limitations.
3418 	 */
3419 	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3420 	    (spi->mode & SPI_3WIRE)) {
3421 		unsigned flags = ctlr->flags;
3422 
3423 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3424 			if (xfer->rx_buf && xfer->tx_buf)
3425 				return -EINVAL;
3426 			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3427 				return -EINVAL;
3428 			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3429 				return -EINVAL;
3430 		}
3431 	}
3432 
3433 	/**
3434 	 * Set transfer bits_per_word and max speed as spi device default if
3435 	 * it is not set for this transfer.
3436 	 * Set transfer tx_nbits and rx_nbits as single transfer default
3437 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3438 	 * Ensure transfer word_delay is at least as long as that required by
3439 	 * device itself.
3440 	 */
3441 	message->frame_length = 0;
3442 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
3443 		xfer->effective_speed_hz = 0;
3444 		message->frame_length += xfer->len;
3445 		if (!xfer->bits_per_word)
3446 			xfer->bits_per_word = spi->bits_per_word;
3447 
3448 		if (!xfer->speed_hz)
3449 			xfer->speed_hz = spi->max_speed_hz;
3450 
3451 		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3452 			xfer->speed_hz = ctlr->max_speed_hz;
3453 
3454 		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3455 			return -EINVAL;
3456 
3457 		/*
3458 		 * SPI transfer length should be multiple of SPI word size
3459 		 * where SPI word size should be power-of-two multiple
3460 		 */
3461 		if (xfer->bits_per_word <= 8)
3462 			w_size = 1;
3463 		else if (xfer->bits_per_word <= 16)
3464 			w_size = 2;
3465 		else
3466 			w_size = 4;
3467 
3468 		/* No partial transfers accepted */
3469 		if (xfer->len % w_size)
3470 			return -EINVAL;
3471 
3472 		if (xfer->speed_hz && ctlr->min_speed_hz &&
3473 		    xfer->speed_hz < ctlr->min_speed_hz)
3474 			return -EINVAL;
3475 
3476 		if (xfer->tx_buf && !xfer->tx_nbits)
3477 			xfer->tx_nbits = SPI_NBITS_SINGLE;
3478 		if (xfer->rx_buf && !xfer->rx_nbits)
3479 			xfer->rx_nbits = SPI_NBITS_SINGLE;
3480 		/* check transfer tx/rx_nbits:
3481 		 * 1. check the value matches one of single, dual and quad
3482 		 * 2. check tx/rx_nbits match the mode in spi_device
3483 		 */
3484 		if (xfer->tx_buf) {
3485 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3486 				xfer->tx_nbits != SPI_NBITS_DUAL &&
3487 				xfer->tx_nbits != SPI_NBITS_QUAD)
3488 				return -EINVAL;
3489 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3490 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3491 				return -EINVAL;
3492 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3493 				!(spi->mode & SPI_TX_QUAD))
3494 				return -EINVAL;
3495 		}
3496 		/* check transfer rx_nbits */
3497 		if (xfer->rx_buf) {
3498 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3499 				xfer->rx_nbits != SPI_NBITS_DUAL &&
3500 				xfer->rx_nbits != SPI_NBITS_QUAD)
3501 				return -EINVAL;
3502 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3503 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3504 				return -EINVAL;
3505 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3506 				!(spi->mode & SPI_RX_QUAD))
3507 				return -EINVAL;
3508 		}
3509 
3510 		if (_spi_xfer_word_delay_update(xfer, spi))
3511 			return -EINVAL;
3512 	}
3513 
3514 	message->status = -EINPROGRESS;
3515 
3516 	return 0;
3517 }
3518 
3519 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3520 {
3521 	struct spi_controller *ctlr = spi->controller;
3522 	struct spi_transfer *xfer;
3523 
3524 	/*
3525 	 * Some controllers do not support doing regular SPI transfers. Return
3526 	 * ENOTSUPP when this is the case.
3527 	 */
3528 	if (!ctlr->transfer)
3529 		return -ENOTSUPP;
3530 
3531 	message->spi = spi;
3532 
3533 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3534 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3535 
3536 	trace_spi_message_submit(message);
3537 
3538 	if (!ctlr->ptp_sts_supported) {
3539 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3540 			xfer->ptp_sts_word_pre = 0;
3541 			ptp_read_system_prets(xfer->ptp_sts);
3542 		}
3543 	}
3544 
3545 	return ctlr->transfer(spi, message);
3546 }
3547 
3548 /**
3549  * spi_async - asynchronous SPI transfer
3550  * @spi: device with which data will be exchanged
3551  * @message: describes the data transfers, including completion callback
3552  * Context: any (irqs may be blocked, etc)
3553  *
3554  * This call may be used in_irq and other contexts which can't sleep,
3555  * as well as from task contexts which can sleep.
3556  *
3557  * The completion callback is invoked in a context which can't sleep.
3558  * Before that invocation, the value of message->status is undefined.
3559  * When the callback is issued, message->status holds either zero (to
3560  * indicate complete success) or a negative error code.  After that
3561  * callback returns, the driver which issued the transfer request may
3562  * deallocate the associated memory; it's no longer in use by any SPI
3563  * core or controller driver code.
3564  *
3565  * Note that although all messages to a spi_device are handled in
3566  * FIFO order, messages may go to different devices in other orders.
3567  * Some device might be higher priority, or have various "hard" access
3568  * time requirements, for example.
3569  *
3570  * On detection of any fault during the transfer, processing of
3571  * the entire message is aborted, and the device is deselected.
3572  * Until returning from the associated message completion callback,
3573  * no other spi_message queued to that device will be processed.
3574  * (This rule applies equally to all the synchronous transfer calls,
3575  * which are wrappers around this core asynchronous primitive.)
3576  *
3577  * Return: zero on success, else a negative error code.
3578  */
3579 int spi_async(struct spi_device *spi, struct spi_message *message)
3580 {
3581 	struct spi_controller *ctlr = spi->controller;
3582 	int ret;
3583 	unsigned long flags;
3584 
3585 	ret = __spi_validate(spi, message);
3586 	if (ret != 0)
3587 		return ret;
3588 
3589 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3590 
3591 	if (ctlr->bus_lock_flag)
3592 		ret = -EBUSY;
3593 	else
3594 		ret = __spi_async(spi, message);
3595 
3596 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3597 
3598 	return ret;
3599 }
3600 EXPORT_SYMBOL_GPL(spi_async);
3601 
3602 /**
3603  * spi_async_locked - version of spi_async with exclusive bus usage
3604  * @spi: device with which data will be exchanged
3605  * @message: describes the data transfers, including completion callback
3606  * Context: any (irqs may be blocked, etc)
3607  *
3608  * This call may be used in_irq and other contexts which can't sleep,
3609  * as well as from task contexts which can sleep.
3610  *
3611  * The completion callback is invoked in a context which can't sleep.
3612  * Before that invocation, the value of message->status is undefined.
3613  * When the callback is issued, message->status holds either zero (to
3614  * indicate complete success) or a negative error code.  After that
3615  * callback returns, the driver which issued the transfer request may
3616  * deallocate the associated memory; it's no longer in use by any SPI
3617  * core or controller driver code.
3618  *
3619  * Note that although all messages to a spi_device are handled in
3620  * FIFO order, messages may go to different devices in other orders.
3621  * Some device might be higher priority, or have various "hard" access
3622  * time requirements, for example.
3623  *
3624  * On detection of any fault during the transfer, processing of
3625  * the entire message is aborted, and the device is deselected.
3626  * Until returning from the associated message completion callback,
3627  * no other spi_message queued to that device will be processed.
3628  * (This rule applies equally to all the synchronous transfer calls,
3629  * which are wrappers around this core asynchronous primitive.)
3630  *
3631  * Return: zero on success, else a negative error code.
3632  */
3633 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3634 {
3635 	struct spi_controller *ctlr = spi->controller;
3636 	int ret;
3637 	unsigned long flags;
3638 
3639 	ret = __spi_validate(spi, message);
3640 	if (ret != 0)
3641 		return ret;
3642 
3643 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3644 
3645 	ret = __spi_async(spi, message);
3646 
3647 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3648 
3649 	return ret;
3650 
3651 }
3652 EXPORT_SYMBOL_GPL(spi_async_locked);
3653 
3654 /*-------------------------------------------------------------------------*/
3655 
3656 /* Utility methods for SPI protocol drivers, layered on
3657  * top of the core.  Some other utility methods are defined as
3658  * inline functions.
3659  */
3660 
3661 static void spi_complete(void *arg)
3662 {
3663 	complete(arg);
3664 }
3665 
3666 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3667 {
3668 	DECLARE_COMPLETION_ONSTACK(done);
3669 	int status;
3670 	struct spi_controller *ctlr = spi->controller;
3671 	unsigned long flags;
3672 
3673 	status = __spi_validate(spi, message);
3674 	if (status != 0)
3675 		return status;
3676 
3677 	message->complete = spi_complete;
3678 	message->context = &done;
3679 	message->spi = spi;
3680 
3681 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3682 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3683 
3684 	/* If we're not using the legacy transfer method then we will
3685 	 * try to transfer in the calling context so special case.
3686 	 * This code would be less tricky if we could remove the
3687 	 * support for driver implemented message queues.
3688 	 */
3689 	if (ctlr->transfer == spi_queued_transfer) {
3690 		spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3691 
3692 		trace_spi_message_submit(message);
3693 
3694 		status = __spi_queued_transfer(spi, message, false);
3695 
3696 		spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3697 	} else {
3698 		status = spi_async_locked(spi, message);
3699 	}
3700 
3701 	if (status == 0) {
3702 		/* Push out the messages in the calling context if we
3703 		 * can.
3704 		 */
3705 		if (ctlr->transfer == spi_queued_transfer) {
3706 			SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3707 						       spi_sync_immediate);
3708 			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3709 						       spi_sync_immediate);
3710 			__spi_pump_messages(ctlr, false);
3711 		}
3712 
3713 		wait_for_completion(&done);
3714 		status = message->status;
3715 	}
3716 	message->context = NULL;
3717 	return status;
3718 }
3719 
3720 /**
3721  * spi_sync - blocking/synchronous SPI data transfers
3722  * @spi: device with which data will be exchanged
3723  * @message: describes the data transfers
3724  * Context: can sleep
3725  *
3726  * This call may only be used from a context that may sleep.  The sleep
3727  * is non-interruptible, and has no timeout.  Low-overhead controller
3728  * drivers may DMA directly into and out of the message buffers.
3729  *
3730  * Note that the SPI device's chip select is active during the message,
3731  * and then is normally disabled between messages.  Drivers for some
3732  * frequently-used devices may want to minimize costs of selecting a chip,
3733  * by leaving it selected in anticipation that the next message will go
3734  * to the same chip.  (That may increase power usage.)
3735  *
3736  * Also, the caller is guaranteeing that the memory associated with the
3737  * message will not be freed before this call returns.
3738  *
3739  * Return: zero on success, else a negative error code.
3740  */
3741 int spi_sync(struct spi_device *spi, struct spi_message *message)
3742 {
3743 	int ret;
3744 
3745 	mutex_lock(&spi->controller->bus_lock_mutex);
3746 	ret = __spi_sync(spi, message);
3747 	mutex_unlock(&spi->controller->bus_lock_mutex);
3748 
3749 	return ret;
3750 }
3751 EXPORT_SYMBOL_GPL(spi_sync);
3752 
3753 /**
3754  * spi_sync_locked - version of spi_sync with exclusive bus usage
3755  * @spi: device with which data will be exchanged
3756  * @message: describes the data transfers
3757  * Context: can sleep
3758  *
3759  * This call may only be used from a context that may sleep.  The sleep
3760  * is non-interruptible, and has no timeout.  Low-overhead controller
3761  * drivers may DMA directly into and out of the message buffers.
3762  *
3763  * This call should be used by drivers that require exclusive access to the
3764  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3765  * be released by a spi_bus_unlock call when the exclusive access is over.
3766  *
3767  * Return: zero on success, else a negative error code.
3768  */
3769 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3770 {
3771 	return __spi_sync(spi, message);
3772 }
3773 EXPORT_SYMBOL_GPL(spi_sync_locked);
3774 
3775 /**
3776  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3777  * @ctlr: SPI bus master that should be locked for exclusive bus access
3778  * Context: can sleep
3779  *
3780  * This call may only be used from a context that may sleep.  The sleep
3781  * is non-interruptible, and has no timeout.
3782  *
3783  * This call should be used by drivers that require exclusive access to the
3784  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3785  * exclusive access is over. Data transfer must be done by spi_sync_locked
3786  * and spi_async_locked calls when the SPI bus lock is held.
3787  *
3788  * Return: always zero.
3789  */
3790 int spi_bus_lock(struct spi_controller *ctlr)
3791 {
3792 	unsigned long flags;
3793 
3794 	mutex_lock(&ctlr->bus_lock_mutex);
3795 
3796 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3797 	ctlr->bus_lock_flag = 1;
3798 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3799 
3800 	/* mutex remains locked until spi_bus_unlock is called */
3801 
3802 	return 0;
3803 }
3804 EXPORT_SYMBOL_GPL(spi_bus_lock);
3805 
3806 /**
3807  * spi_bus_unlock - release the lock for exclusive SPI bus usage
3808  * @ctlr: SPI bus master that was locked for exclusive bus access
3809  * Context: can sleep
3810  *
3811  * This call may only be used from a context that may sleep.  The sleep
3812  * is non-interruptible, and has no timeout.
3813  *
3814  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3815  * call.
3816  *
3817  * Return: always zero.
3818  */
3819 int spi_bus_unlock(struct spi_controller *ctlr)
3820 {
3821 	ctlr->bus_lock_flag = 0;
3822 
3823 	mutex_unlock(&ctlr->bus_lock_mutex);
3824 
3825 	return 0;
3826 }
3827 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3828 
3829 /* portable code must never pass more than 32 bytes */
3830 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
3831 
3832 static u8	*buf;
3833 
3834 /**
3835  * spi_write_then_read - SPI synchronous write followed by read
3836  * @spi: device with which data will be exchanged
3837  * @txbuf: data to be written (need not be dma-safe)
3838  * @n_tx: size of txbuf, in bytes
3839  * @rxbuf: buffer into which data will be read (need not be dma-safe)
3840  * @n_rx: size of rxbuf, in bytes
3841  * Context: can sleep
3842  *
3843  * This performs a half duplex MicroWire style transaction with the
3844  * device, sending txbuf and then reading rxbuf.  The return value
3845  * is zero for success, else a negative errno status code.
3846  * This call may only be used from a context that may sleep.
3847  *
3848  * Parameters to this routine are always copied using a small buffer;
3849  * portable code should never use this for more than 32 bytes.
3850  * Performance-sensitive or bulk transfer code should instead use
3851  * spi_{async,sync}() calls with dma-safe buffers.
3852  *
3853  * Return: zero on success, else a negative error code.
3854  */
3855 int spi_write_then_read(struct spi_device *spi,
3856 		const void *txbuf, unsigned n_tx,
3857 		void *rxbuf, unsigned n_rx)
3858 {
3859 	static DEFINE_MUTEX(lock);
3860 
3861 	int			status;
3862 	struct spi_message	message;
3863 	struct spi_transfer	x[2];
3864 	u8			*local_buf;
3865 
3866 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
3867 	 * copying here, (as a pure convenience thing), but we can
3868 	 * keep heap costs out of the hot path unless someone else is
3869 	 * using the pre-allocated buffer or the transfer is too large.
3870 	 */
3871 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3872 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3873 				    GFP_KERNEL | GFP_DMA);
3874 		if (!local_buf)
3875 			return -ENOMEM;
3876 	} else {
3877 		local_buf = buf;
3878 	}
3879 
3880 	spi_message_init(&message);
3881 	memset(x, 0, sizeof(x));
3882 	if (n_tx) {
3883 		x[0].len = n_tx;
3884 		spi_message_add_tail(&x[0], &message);
3885 	}
3886 	if (n_rx) {
3887 		x[1].len = n_rx;
3888 		spi_message_add_tail(&x[1], &message);
3889 	}
3890 
3891 	memcpy(local_buf, txbuf, n_tx);
3892 	x[0].tx_buf = local_buf;
3893 	x[1].rx_buf = local_buf + n_tx;
3894 
3895 	/* do the i/o */
3896 	status = spi_sync(spi, &message);
3897 	if (status == 0)
3898 		memcpy(rxbuf, x[1].rx_buf, n_rx);
3899 
3900 	if (x[0].tx_buf == buf)
3901 		mutex_unlock(&lock);
3902 	else
3903 		kfree(local_buf);
3904 
3905 	return status;
3906 }
3907 EXPORT_SYMBOL_GPL(spi_write_then_read);
3908 
3909 /*-------------------------------------------------------------------------*/
3910 
3911 #if IS_ENABLED(CONFIG_OF)
3912 /* must call put_device() when done with returned spi_device device */
3913 struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3914 {
3915 	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
3916 
3917 	return dev ? to_spi_device(dev) : NULL;
3918 }
3919 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
3920 #endif /* IS_ENABLED(CONFIG_OF) */
3921 
3922 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3923 /* the spi controllers are not using spi_bus, so we find it with another way */
3924 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3925 {
3926 	struct device *dev;
3927 
3928 	dev = class_find_device_by_of_node(&spi_master_class, node);
3929 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3930 		dev = class_find_device_by_of_node(&spi_slave_class, node);
3931 	if (!dev)
3932 		return NULL;
3933 
3934 	/* reference got in class_find_device */
3935 	return container_of(dev, struct spi_controller, dev);
3936 }
3937 
3938 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3939 			 void *arg)
3940 {
3941 	struct of_reconfig_data *rd = arg;
3942 	struct spi_controller *ctlr;
3943 	struct spi_device *spi;
3944 
3945 	switch (of_reconfig_get_state_change(action, arg)) {
3946 	case OF_RECONFIG_CHANGE_ADD:
3947 		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3948 		if (ctlr == NULL)
3949 			return NOTIFY_OK;	/* not for us */
3950 
3951 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3952 			put_device(&ctlr->dev);
3953 			return NOTIFY_OK;
3954 		}
3955 
3956 		spi = of_register_spi_device(ctlr, rd->dn);
3957 		put_device(&ctlr->dev);
3958 
3959 		if (IS_ERR(spi)) {
3960 			pr_err("%s: failed to create for '%pOF'\n",
3961 					__func__, rd->dn);
3962 			of_node_clear_flag(rd->dn, OF_POPULATED);
3963 			return notifier_from_errno(PTR_ERR(spi));
3964 		}
3965 		break;
3966 
3967 	case OF_RECONFIG_CHANGE_REMOVE:
3968 		/* already depopulated? */
3969 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
3970 			return NOTIFY_OK;
3971 
3972 		/* find our device by node */
3973 		spi = of_find_spi_device_by_node(rd->dn);
3974 		if (spi == NULL)
3975 			return NOTIFY_OK;	/* no? not meant for us */
3976 
3977 		/* unregister takes one ref away */
3978 		spi_unregister_device(spi);
3979 
3980 		/* and put the reference of the find */
3981 		put_device(&spi->dev);
3982 		break;
3983 	}
3984 
3985 	return NOTIFY_OK;
3986 }
3987 
3988 static struct notifier_block spi_of_notifier = {
3989 	.notifier_call = of_spi_notify,
3990 };
3991 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3992 extern struct notifier_block spi_of_notifier;
3993 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3994 
3995 #if IS_ENABLED(CONFIG_ACPI)
3996 static int spi_acpi_controller_match(struct device *dev, const void *data)
3997 {
3998 	return ACPI_COMPANION(dev->parent) == data;
3999 }
4000 
4001 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4002 {
4003 	struct device *dev;
4004 
4005 	dev = class_find_device(&spi_master_class, NULL, adev,
4006 				spi_acpi_controller_match);
4007 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4008 		dev = class_find_device(&spi_slave_class, NULL, adev,
4009 					spi_acpi_controller_match);
4010 	if (!dev)
4011 		return NULL;
4012 
4013 	return container_of(dev, struct spi_controller, dev);
4014 }
4015 
4016 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4017 {
4018 	struct device *dev;
4019 
4020 	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4021 	return dev ? to_spi_device(dev) : NULL;
4022 }
4023 
4024 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4025 			   void *arg)
4026 {
4027 	struct acpi_device *adev = arg;
4028 	struct spi_controller *ctlr;
4029 	struct spi_device *spi;
4030 
4031 	switch (value) {
4032 	case ACPI_RECONFIG_DEVICE_ADD:
4033 		ctlr = acpi_spi_find_controller_by_adev(adev->parent);
4034 		if (!ctlr)
4035 			break;
4036 
4037 		acpi_register_spi_device(ctlr, adev);
4038 		put_device(&ctlr->dev);
4039 		break;
4040 	case ACPI_RECONFIG_DEVICE_REMOVE:
4041 		if (!acpi_device_enumerated(adev))
4042 			break;
4043 
4044 		spi = acpi_spi_find_device_by_adev(adev);
4045 		if (!spi)
4046 			break;
4047 
4048 		spi_unregister_device(spi);
4049 		put_device(&spi->dev);
4050 		break;
4051 	}
4052 
4053 	return NOTIFY_OK;
4054 }
4055 
4056 static struct notifier_block spi_acpi_notifier = {
4057 	.notifier_call = acpi_spi_notify,
4058 };
4059 #else
4060 extern struct notifier_block spi_acpi_notifier;
4061 #endif
4062 
4063 static int __init spi_init(void)
4064 {
4065 	int	status;
4066 
4067 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4068 	if (!buf) {
4069 		status = -ENOMEM;
4070 		goto err0;
4071 	}
4072 
4073 	status = bus_register(&spi_bus_type);
4074 	if (status < 0)
4075 		goto err1;
4076 
4077 	status = class_register(&spi_master_class);
4078 	if (status < 0)
4079 		goto err2;
4080 
4081 	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4082 		status = class_register(&spi_slave_class);
4083 		if (status < 0)
4084 			goto err3;
4085 	}
4086 
4087 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4088 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4089 	if (IS_ENABLED(CONFIG_ACPI))
4090 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4091 
4092 	return 0;
4093 
4094 err3:
4095 	class_unregister(&spi_master_class);
4096 err2:
4097 	bus_unregister(&spi_bus_type);
4098 err1:
4099 	kfree(buf);
4100 	buf = NULL;
4101 err0:
4102 	return status;
4103 }
4104 
4105 /* board_info is normally registered in arch_initcall(),
4106  * but even essential drivers wait till later
4107  *
4108  * REVISIT only boardinfo really needs static linking. the rest (device and
4109  * driver registration) _could_ be dynamically linked (modular) ... costs
4110  * include needing to have boardinfo data structures be much more public.
4111  */
4112 postcore_initcall(spi_init);
4113