xref: /linux/drivers/staging/gdm724x/gdm_lte.c (revision 0be3ff0c)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2012 GCT Semiconductor, Inc. All rights reserved. */
3 
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5 
6 #include <linux/etherdevice.h>
7 #include <linux/ip.h>
8 #include <linux/ipv6.h>
9 #include <linux/udp.h>
10 #include <linux/in.h>
11 #include <linux/if_arp.h>
12 #include <linux/if_ether.h>
13 #include <linux/if_vlan.h>
14 #include <linux/in6.h>
15 #include <linux/tcp.h>
16 #include <linux/icmp.h>
17 #include <linux/icmpv6.h>
18 #include <linux/uaccess.h>
19 #include <linux/errno.h>
20 #include <net/ndisc.h>
21 
22 #include "gdm_lte.h"
23 #include "netlink_k.h"
24 #include "hci.h"
25 #include "hci_packet.h"
26 #include "gdm_endian.h"
27 
28 /*
29  * Netlink protocol number
30  */
31 #define NETLINK_LTE 30
32 
33 /*
34  * Default MTU Size
35  */
36 #define DEFAULT_MTU_SIZE 1500
37 
38 #define IP_VERSION_4	4
39 #define IP_VERSION_6	6
40 
41 static struct {
42 	int ref_cnt;
43 	struct sock *sock;
44 } lte_event;
45 
46 static struct device_type wwan_type = {
47 	.name   = "wwan",
48 };
49 
50 static int gdm_lte_open(struct net_device *dev)
51 {
52 	netif_start_queue(dev);
53 	return 0;
54 }
55 
56 static int gdm_lte_close(struct net_device *dev)
57 {
58 	netif_stop_queue(dev);
59 	return 0;
60 }
61 
62 static int gdm_lte_set_config(struct net_device *dev, struct ifmap *map)
63 {
64 	if (dev->flags & IFF_UP)
65 		return -EBUSY;
66 	return 0;
67 }
68 
69 static void tx_complete(void *arg)
70 {
71 	struct nic *nic = arg;
72 
73 	if (netif_queue_stopped(nic->netdev))
74 		netif_wake_queue(nic->netdev);
75 }
76 
77 static int gdm_lte_rx(struct sk_buff *skb, struct nic *nic, int nic_type)
78 {
79 	int ret, len;
80 
81 	len = skb->len + ETH_HLEN;
82 	ret = netif_rx(skb);
83 	if (ret == NET_RX_DROP) {
84 		nic->stats.rx_dropped++;
85 	} else {
86 		nic->stats.rx_packets++;
87 		nic->stats.rx_bytes += len;
88 	}
89 
90 	return 0;
91 }
92 
93 static int gdm_lte_emulate_arp(struct sk_buff *skb_in, u32 nic_type)
94 {
95 	struct nic *nic = netdev_priv(skb_in->dev);
96 	struct sk_buff *skb_out;
97 	struct ethhdr eth;
98 	struct vlan_ethhdr vlan_eth;
99 	struct arphdr *arp_in;
100 	struct arphdr *arp_out;
101 	struct arpdata {
102 		u8 ar_sha[ETH_ALEN];
103 		u8 ar_sip[4];
104 		u8 ar_tha[ETH_ALEN];
105 		u8 ar_tip[4];
106 	};
107 	struct arpdata *arp_data_in;
108 	struct arpdata *arp_data_out;
109 	u8 arp_temp[60];
110 	void *mac_header_data;
111 	u32 mac_header_len;
112 
113 	/* Check for skb->len, discard if empty */
114 	if (skb_in->len == 0)
115 		return -ENODATA;
116 
117 	/* Format the mac header so that it can be put to skb */
118 	if (ntohs(((struct ethhdr *)skb_in->data)->h_proto) == ETH_P_8021Q) {
119 		memcpy(&vlan_eth, skb_in->data, sizeof(struct vlan_ethhdr));
120 		mac_header_data = &vlan_eth;
121 		mac_header_len = VLAN_ETH_HLEN;
122 	} else {
123 		memcpy(&eth, skb_in->data, sizeof(struct ethhdr));
124 		mac_header_data = &eth;
125 		mac_header_len = ETH_HLEN;
126 	}
127 
128 	/* Get the pointer of the original request */
129 	arp_in = (struct arphdr *)(skb_in->data + mac_header_len);
130 	arp_data_in = (struct arpdata *)(skb_in->data + mac_header_len +
131 					sizeof(struct arphdr));
132 
133 	/* Get the pointer of the outgoing response */
134 	arp_out = (struct arphdr *)arp_temp;
135 	arp_data_out = (struct arpdata *)(arp_temp + sizeof(struct arphdr));
136 
137 	/* Copy the arp header */
138 	memcpy(arp_out, arp_in, sizeof(struct arphdr));
139 	arp_out->ar_op = htons(ARPOP_REPLY);
140 
141 	/* Copy the arp payload: based on 2 bytes of mac and fill the IP */
142 	arp_data_out->ar_sha[0] = arp_data_in->ar_sha[0];
143 	arp_data_out->ar_sha[1] = arp_data_in->ar_sha[1];
144 	memcpy(&arp_data_out->ar_sha[2], &arp_data_in->ar_tip[0], 4);
145 	memcpy(&arp_data_out->ar_sip[0], &arp_data_in->ar_tip[0], 4);
146 	memcpy(&arp_data_out->ar_tha[0], &arp_data_in->ar_sha[0], 6);
147 	memcpy(&arp_data_out->ar_tip[0], &arp_data_in->ar_sip[0], 4);
148 
149 	/* Fill the destination mac with source mac of the received packet */
150 	memcpy(mac_header_data, mac_header_data + ETH_ALEN, ETH_ALEN);
151 	/* Fill the source mac with nic's source mac */
152 	memcpy(mac_header_data + ETH_ALEN, nic->src_mac_addr, ETH_ALEN);
153 
154 	/* Alloc skb and reserve align */
155 	skb_out = dev_alloc_skb(skb_in->len);
156 	if (!skb_out)
157 		return -ENOMEM;
158 	skb_reserve(skb_out, NET_IP_ALIGN);
159 
160 	skb_put_data(skb_out, mac_header_data, mac_header_len);
161 	skb_put_data(skb_out, arp_out, sizeof(struct arphdr));
162 	skb_put_data(skb_out, arp_data_out, sizeof(struct arpdata));
163 
164 	skb_out->protocol = ((struct ethhdr *)mac_header_data)->h_proto;
165 	skb_out->dev = skb_in->dev;
166 	skb_reset_mac_header(skb_out);
167 	skb_pull(skb_out, ETH_HLEN);
168 
169 	gdm_lte_rx(skb_out, nic, nic_type);
170 
171 	return 0;
172 }
173 
174 static __sum16 icmp6_checksum(struct ipv6hdr *ipv6, u16 *ptr, int len)
175 {
176 	unsigned short *w;
177 	__wsum sum = 0;
178 	int i;
179 	u16 pa;
180 
181 	union {
182 		struct {
183 			u8 ph_src[16];
184 			u8 ph_dst[16];
185 			u32 ph_len;
186 			u8 ph_zero[3];
187 			u8 ph_nxt;
188 		} ph __packed;
189 		u16 pa[20];
190 	} pseudo_header;
191 
192 	memset(&pseudo_header, 0, sizeof(pseudo_header));
193 	memcpy(&pseudo_header.ph.ph_src, &ipv6->saddr.in6_u.u6_addr8, 16);
194 	memcpy(&pseudo_header.ph.ph_dst, &ipv6->daddr.in6_u.u6_addr8, 16);
195 	pseudo_header.ph.ph_len = be16_to_cpu(ipv6->payload_len);
196 	pseudo_header.ph.ph_nxt = ipv6->nexthdr;
197 
198 	for (i = 0; i < ARRAY_SIZE(pseudo_header.pa); i++) {
199 		pa = pseudo_header.pa[i];
200 		sum = csum_add(sum, csum_unfold((__force __sum16)pa));
201 	}
202 
203 	w = ptr;
204 	while (len > 1) {
205 		sum = csum_add(sum, csum_unfold((__force __sum16)*w++));
206 		len -= 2;
207 	}
208 
209 	return csum_fold(sum);
210 }
211 
212 static int gdm_lte_emulate_ndp(struct sk_buff *skb_in, u32 nic_type)
213 {
214 	struct nic *nic = netdev_priv(skb_in->dev);
215 	struct sk_buff *skb_out;
216 	struct ethhdr eth;
217 	struct vlan_ethhdr vlan_eth;
218 	struct neighbour_advertisement {
219 		u8 target_address[16];
220 		u8 type;
221 		u8 length;
222 		u8 link_layer_address[6];
223 	};
224 	struct neighbour_advertisement na;
225 	struct neighbour_solicitation {
226 		u8 target_address[16];
227 	};
228 	struct neighbour_solicitation *ns;
229 	struct ipv6hdr *ipv6_in;
230 	struct ipv6hdr ipv6_out;
231 	struct icmp6hdr *icmp6_in;
232 	struct icmp6hdr icmp6_out;
233 
234 	void *mac_header_data;
235 	u32 mac_header_len;
236 
237 	/* Format the mac header so that it can be put to skb */
238 	if (ntohs(((struct ethhdr *)skb_in->data)->h_proto) == ETH_P_8021Q) {
239 		memcpy(&vlan_eth, skb_in->data, sizeof(struct vlan_ethhdr));
240 		if (ntohs(vlan_eth.h_vlan_encapsulated_proto) != ETH_P_IPV6)
241 			return -EPROTONOSUPPORT;
242 		mac_header_data = &vlan_eth;
243 		mac_header_len = VLAN_ETH_HLEN;
244 	} else {
245 		memcpy(&eth, skb_in->data, sizeof(struct ethhdr));
246 		if (ntohs(eth.h_proto) != ETH_P_IPV6)
247 			return -EPROTONOSUPPORT;
248 		mac_header_data = &eth;
249 		mac_header_len = ETH_HLEN;
250 	}
251 
252 	/* Check if this is IPv6 ICMP packet */
253 	ipv6_in = (struct ipv6hdr *)(skb_in->data + mac_header_len);
254 	if (ipv6_in->version != 6 || ipv6_in->nexthdr != IPPROTO_ICMPV6)
255 		return -EPROTONOSUPPORT;
256 
257 	/* Check if this is NDP packet */
258 	icmp6_in = (struct icmp6hdr *)(skb_in->data + mac_header_len +
259 					sizeof(struct ipv6hdr));
260 	if (icmp6_in->icmp6_type == NDISC_ROUTER_SOLICITATION) { /* Check RS */
261 		return -EPROTONOSUPPORT;
262 	} else if (icmp6_in->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION) {
263 		/* Check NS */
264 		u8 icmp_na[sizeof(struct icmp6hdr) +
265 			sizeof(struct neighbour_advertisement)];
266 		u8 zero_addr8[16] = {0,};
267 
268 		if (memcmp(ipv6_in->saddr.in6_u.u6_addr8, zero_addr8, 16) == 0)
269 			/* Duplicate Address Detection: Source IP is all zero */
270 			return 0;
271 
272 		icmp6_out.icmp6_type = NDISC_NEIGHBOUR_ADVERTISEMENT;
273 		icmp6_out.icmp6_code = 0;
274 		icmp6_out.icmp6_cksum = 0;
275 		/* R=0, S=1, O=1 */
276 		icmp6_out.icmp6_dataun.un_data32[0] = htonl(0x60000000);
277 
278 		ns = (struct neighbour_solicitation *)
279 			(skb_in->data + mac_header_len +
280 			 sizeof(struct ipv6hdr) + sizeof(struct icmp6hdr));
281 		memcpy(&na.target_address, ns->target_address, 16);
282 		na.type = 0x02;
283 		na.length = 1;
284 		na.link_layer_address[0] = 0x00;
285 		na.link_layer_address[1] = 0x0a;
286 		na.link_layer_address[2] = 0x3b;
287 		na.link_layer_address[3] = 0xaf;
288 		na.link_layer_address[4] = 0x63;
289 		na.link_layer_address[5] = 0xc7;
290 
291 		memcpy(&ipv6_out, ipv6_in, sizeof(struct ipv6hdr));
292 		memcpy(ipv6_out.saddr.in6_u.u6_addr8, &na.target_address, 16);
293 		memcpy(ipv6_out.daddr.in6_u.u6_addr8,
294 		       ipv6_in->saddr.in6_u.u6_addr8, 16);
295 		ipv6_out.payload_len = htons(sizeof(struct icmp6hdr) +
296 				sizeof(struct neighbour_advertisement));
297 
298 		memcpy(icmp_na, &icmp6_out, sizeof(struct icmp6hdr));
299 		memcpy(icmp_na + sizeof(struct icmp6hdr), &na,
300 		       sizeof(struct neighbour_advertisement));
301 
302 		icmp6_out.icmp6_cksum = icmp6_checksum(&ipv6_out,
303 						       (u16 *)icmp_na,
304 						       sizeof(icmp_na));
305 	} else {
306 		return -EINVAL;
307 	}
308 
309 	/* Fill the destination mac with source mac of the received packet */
310 	memcpy(mac_header_data, mac_header_data + ETH_ALEN, ETH_ALEN);
311 	/* Fill the source mac with nic's source mac */
312 	memcpy(mac_header_data + ETH_ALEN, nic->src_mac_addr, ETH_ALEN);
313 
314 	/* Alloc skb and reserve align */
315 	skb_out = dev_alloc_skb(skb_in->len);
316 	if (!skb_out)
317 		return -ENOMEM;
318 	skb_reserve(skb_out, NET_IP_ALIGN);
319 
320 	skb_put_data(skb_out, mac_header_data, mac_header_len);
321 	skb_put_data(skb_out, &ipv6_out, sizeof(struct ipv6hdr));
322 	skb_put_data(skb_out, &icmp6_out, sizeof(struct icmp6hdr));
323 	skb_put_data(skb_out, &na, sizeof(struct neighbour_advertisement));
324 
325 	skb_out->protocol = ((struct ethhdr *)mac_header_data)->h_proto;
326 	skb_out->dev = skb_in->dev;
327 	skb_reset_mac_header(skb_out);
328 	skb_pull(skb_out, ETH_HLEN);
329 
330 	gdm_lte_rx(skb_out, nic, nic_type);
331 
332 	return 0;
333 }
334 
335 static s32 gdm_lte_tx_nic_type(struct net_device *dev, struct sk_buff *skb)
336 {
337 	struct nic *nic = netdev_priv(dev);
338 	struct ethhdr *eth;
339 	struct vlan_ethhdr *vlan_eth;
340 	struct iphdr *ip;
341 	struct ipv6hdr *ipv6;
342 	int mac_proto;
343 	void *network_data;
344 	u32 nic_type;
345 
346 	/* NIC TYPE is based on the nic_id of this net_device */
347 	nic_type = 0x00000010 | nic->nic_id;
348 
349 	/* Get ethernet protocol */
350 	eth = (struct ethhdr *)skb->data;
351 	if (ntohs(eth->h_proto) == ETH_P_8021Q) {
352 		vlan_eth = (struct vlan_ethhdr *)skb->data;
353 		mac_proto = ntohs(vlan_eth->h_vlan_encapsulated_proto);
354 		network_data = skb->data + VLAN_ETH_HLEN;
355 		nic_type |= NIC_TYPE_F_VLAN;
356 	} else {
357 		mac_proto = ntohs(eth->h_proto);
358 		network_data = skb->data + ETH_HLEN;
359 	}
360 
361 	/* Process packet for nic type */
362 	switch (mac_proto) {
363 	case ETH_P_ARP:
364 		nic_type |= NIC_TYPE_ARP;
365 		break;
366 	case ETH_P_IP:
367 		nic_type |= NIC_TYPE_F_IPV4;
368 		ip = network_data;
369 
370 		/* Check DHCPv4 */
371 		if (ip->protocol == IPPROTO_UDP) {
372 			struct udphdr *udp =
373 					network_data + sizeof(struct iphdr);
374 			if (ntohs(udp->dest) == 67 || ntohs(udp->dest) == 68)
375 				nic_type |= NIC_TYPE_F_DHCP;
376 		}
377 		break;
378 	case ETH_P_IPV6:
379 		nic_type |= NIC_TYPE_F_IPV6;
380 		ipv6 = network_data;
381 
382 		if (ipv6->nexthdr == IPPROTO_ICMPV6) /* Check NDP request */ {
383 			struct icmp6hdr *icmp6 =
384 					network_data + sizeof(struct ipv6hdr);
385 			if (icmp6->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION)
386 				nic_type |= NIC_TYPE_ICMPV6;
387 		} else if (ipv6->nexthdr == IPPROTO_UDP) /* Check DHCPv6 */ {
388 			struct udphdr *udp =
389 					network_data + sizeof(struct ipv6hdr);
390 			if (ntohs(udp->dest) == 546 || ntohs(udp->dest) == 547)
391 				nic_type |= NIC_TYPE_F_DHCP;
392 		}
393 		break;
394 	default:
395 		break;
396 	}
397 
398 	return nic_type;
399 }
400 
401 static netdev_tx_t gdm_lte_tx(struct sk_buff *skb, struct net_device *dev)
402 {
403 	struct nic *nic = netdev_priv(dev);
404 	u32 nic_type;
405 	void *data_buf;
406 	int data_len;
407 	int idx;
408 	int ret = 0;
409 
410 	nic_type = gdm_lte_tx_nic_type(dev, skb);
411 	if (nic_type == 0) {
412 		netdev_err(dev, "tx - invalid nic_type\n");
413 		return -EMEDIUMTYPE;
414 	}
415 
416 	if (nic_type & NIC_TYPE_ARP) {
417 		if (gdm_lte_emulate_arp(skb, nic_type) == 0) {
418 			dev_kfree_skb(skb);
419 			return 0;
420 		}
421 	}
422 
423 	if (nic_type & NIC_TYPE_ICMPV6) {
424 		if (gdm_lte_emulate_ndp(skb, nic_type) == 0) {
425 			dev_kfree_skb(skb);
426 			return 0;
427 		}
428 	}
429 
430 	/*
431 	 * Need byte shift (that is, remove VLAN tag) if there is one
432 	 * For the case of ARP, this breaks the offset as vlan_ethhdr+4
433 	 * is treated as ethhdr	However, it shouldn't be a problem as
434 	 * the response starts from arp_hdr and ethhdr is created by this
435 	 * driver based on the NIC mac
436 	 */
437 	if (nic_type & NIC_TYPE_F_VLAN) {
438 		struct vlan_ethhdr *vlan_eth = (struct vlan_ethhdr *)skb->data;
439 
440 		nic->vlan_id = ntohs(vlan_eth->h_vlan_TCI) & VLAN_VID_MASK;
441 		data_buf = skb->data + (VLAN_ETH_HLEN - ETH_HLEN);
442 		data_len = skb->len - (VLAN_ETH_HLEN - ETH_HLEN);
443 	} else {
444 		nic->vlan_id = 0;
445 		data_buf = skb->data;
446 		data_len = skb->len;
447 	}
448 
449 	/* If it is a ICMPV6 packet, clear all the other bits :
450 	 * for backward compatibility with the firmware
451 	 */
452 	if (nic_type & NIC_TYPE_ICMPV6)
453 		nic_type = NIC_TYPE_ICMPV6;
454 
455 	/* If it is not a dhcp packet, clear all the flag bits :
456 	 * original NIC, otherwise the special flag (IPVX | DHCP)
457 	 */
458 	if (!(nic_type & NIC_TYPE_F_DHCP))
459 		nic_type &= NIC_TYPE_MASK;
460 
461 	ret = sscanf(dev->name, "lte%d", &idx);
462 	if (ret != 1) {
463 		dev_kfree_skb(skb);
464 		return -EINVAL;
465 	}
466 
467 	ret = nic->phy_dev->send_sdu_func(nic->phy_dev->priv_dev,
468 					  data_buf, data_len,
469 					  nic->pdn_table.dft_eps_id, 0,
470 					  tx_complete, nic, idx,
471 					  nic_type);
472 
473 	if (ret == TX_NO_BUFFER || ret == TX_NO_SPC) {
474 		netif_stop_queue(dev);
475 		if (ret == TX_NO_BUFFER)
476 			ret = 0;
477 		else
478 			ret = -ENOSPC;
479 	} else if (ret == TX_NO_DEV) {
480 		ret = -ENODEV;
481 	}
482 
483 	/* Updates tx stats */
484 	if (ret) {
485 		nic->stats.tx_dropped++;
486 	} else {
487 		nic->stats.tx_packets++;
488 		nic->stats.tx_bytes += data_len;
489 	}
490 	dev_kfree_skb(skb);
491 
492 	return 0;
493 }
494 
495 static struct net_device_stats *gdm_lte_stats(struct net_device *dev)
496 {
497 	struct nic *nic = netdev_priv(dev);
498 
499 	return &nic->stats;
500 }
501 
502 static int gdm_lte_event_send(struct net_device *dev, char *buf, int len)
503 {
504 	struct phy_dev *phy_dev = ((struct nic *)netdev_priv(dev))->phy_dev;
505 	struct hci_packet *hci = (struct hci_packet *)buf;
506 	int length;
507 	int idx;
508 	int ret;
509 
510 	ret = sscanf(dev->name, "lte%d", &idx);
511 	if (ret != 1)
512 		return -EINVAL;
513 
514 	length = gdm_dev16_to_cpu(phy_dev->get_endian(phy_dev->priv_dev),
515 				  hci->len) + HCI_HEADER_SIZE;
516 	return netlink_send(lte_event.sock, idx, 0, buf, length, dev);
517 }
518 
519 static void gdm_lte_event_rcv(struct net_device *dev, u16 type,
520 			      void *msg, int len)
521 {
522 	struct nic *nic = netdev_priv(dev);
523 
524 	nic->phy_dev->send_hci_func(nic->phy_dev->priv_dev, msg, len, NULL,
525 				    NULL);
526 }
527 
528 int gdm_lte_event_init(void)
529 {
530 	if (lte_event.ref_cnt == 0)
531 		lte_event.sock = netlink_init(NETLINK_LTE, gdm_lte_event_rcv);
532 
533 	if (lte_event.sock) {
534 		lte_event.ref_cnt++;
535 		return 0;
536 	}
537 
538 	pr_err("event init failed\n");
539 	return -ENODATA;
540 }
541 
542 void gdm_lte_event_exit(void)
543 {
544 	if (lte_event.sock && --lte_event.ref_cnt == 0) {
545 		sock_release(lte_event.sock->sk_socket);
546 		lte_event.sock = NULL;
547 	}
548 }
549 
550 static int find_dev_index(u32 nic_type)
551 {
552 	u8 index;
553 
554 	index = (u8)(nic_type & 0x0000000f);
555 	if (index >= MAX_NIC_TYPE)
556 		return -EINVAL;
557 
558 	return index;
559 }
560 
561 static void gdm_lte_netif_rx(struct net_device *dev, char *buf,
562 			     int len, int flagged_nic_type)
563 {
564 	u32 nic_type;
565 	struct nic *nic;
566 	struct sk_buff *skb;
567 	struct ethhdr eth;
568 	struct vlan_ethhdr vlan_eth;
569 	void *mac_header_data;
570 	u32 mac_header_len;
571 	char ip_version = 0;
572 
573 	nic_type = flagged_nic_type & NIC_TYPE_MASK;
574 	nic = netdev_priv(dev);
575 
576 	if (flagged_nic_type & NIC_TYPE_F_DHCP) {
577 		/* Change the destination mac address
578 		 * with the one requested the IP
579 		 */
580 		if (flagged_nic_type & NIC_TYPE_F_IPV4) {
581 			struct dhcp_packet {
582 				u8 op;      /* BOOTREQUEST or BOOTREPLY */
583 				u8 htype;   /* hardware address type.
584 					     * 1 = 10mb ethernet
585 					     */
586 				u8 hlen;    /* hardware address length */
587 				u8 hops;    /* used by relay agents only */
588 				u32 xid;    /* unique id */
589 				u16 secs;   /* elapsed since client began
590 					     * acquisition/renewal
591 					     */
592 				u16 flags;  /* only one flag so far: */
593 				#define BROADCAST_FLAG 0x8000
594 				/* "I need broadcast replies" */
595 				u32 ciaddr; /* client IP (if client is in
596 					     * BOUND, RENEW or REBINDING state)
597 					     */
598 				u32 yiaddr; /* 'your' (client) IP address */
599 				/* IP address of next server to use in
600 				 * bootstrap, returned in DHCPOFFER,
601 				 * DHCPACK by server
602 				 */
603 				u32 siaddr_nip;
604 				u32 gateway_nip; /* relay agent IP address */
605 				u8 chaddr[16];   /* link-layer client hardware
606 						  * address (MAC)
607 						  */
608 				u8 sname[64];    /* server host name (ASCIZ) */
609 				u8 file[128];    /* boot file name (ASCIZ) */
610 				u32 cookie;      /* fixed first four option
611 						  * bytes (99,130,83,99 dec)
612 						  */
613 			} __packed;
614 			int offset = sizeof(struct iphdr) +
615 				     sizeof(struct udphdr) +
616 				     offsetof(struct dhcp_packet, chaddr);
617 			if (offset + ETH_ALEN > len)
618 				return;
619 			ether_addr_copy(nic->dest_mac_addr, buf + offset);
620 		}
621 	}
622 
623 	if (nic->vlan_id > 0) {
624 		mac_header_data = (void *)&vlan_eth;
625 		mac_header_len = VLAN_ETH_HLEN;
626 	} else {
627 		mac_header_data = (void *)&eth;
628 		mac_header_len = ETH_HLEN;
629 	}
630 
631 	/* Format the data so that it can be put to skb */
632 	ether_addr_copy(mac_header_data, nic->dest_mac_addr);
633 	memcpy(mac_header_data + ETH_ALEN, nic->src_mac_addr, ETH_ALEN);
634 
635 	vlan_eth.h_vlan_TCI = htons(nic->vlan_id);
636 	vlan_eth.h_vlan_proto = htons(ETH_P_8021Q);
637 
638 	if (nic_type == NIC_TYPE_ARP) {
639 		/* Should be response: Only happens because
640 		 * there was a request from the host
641 		 */
642 		eth.h_proto = htons(ETH_P_ARP);
643 		vlan_eth.h_vlan_encapsulated_proto = htons(ETH_P_ARP);
644 	} else {
645 		ip_version = buf[0] >> 4;
646 		if (ip_version == IP_VERSION_4) {
647 			eth.h_proto = htons(ETH_P_IP);
648 			vlan_eth.h_vlan_encapsulated_proto = htons(ETH_P_IP);
649 		} else if (ip_version == IP_VERSION_6) {
650 			eth.h_proto = htons(ETH_P_IPV6);
651 			vlan_eth.h_vlan_encapsulated_proto = htons(ETH_P_IPV6);
652 		} else {
653 			netdev_err(dev, "Unknown IP version %d\n", ip_version);
654 			return;
655 		}
656 	}
657 
658 	/* Alloc skb and reserve align */
659 	skb = dev_alloc_skb(len + mac_header_len + NET_IP_ALIGN);
660 	if (!skb)
661 		return;
662 	skb_reserve(skb, NET_IP_ALIGN);
663 
664 	skb_put_data(skb, mac_header_data, mac_header_len);
665 	skb_put_data(skb, buf, len);
666 
667 	skb->protocol = ((struct ethhdr *)mac_header_data)->h_proto;
668 	skb->dev = dev;
669 	skb_reset_mac_header(skb);
670 	skb_pull(skb, ETH_HLEN);
671 
672 	gdm_lte_rx(skb, nic, nic_type);
673 }
674 
675 static void gdm_lte_multi_sdu_pkt(struct phy_dev *phy_dev, char *buf, int len)
676 {
677 	struct net_device *dev;
678 	struct multi_sdu *multi_sdu = (struct multi_sdu *)buf;
679 	struct sdu *sdu = NULL;
680 	u8 endian = phy_dev->get_endian(phy_dev->priv_dev);
681 	u8 *data = (u8 *)multi_sdu->data;
682 	int copied;
683 	u16 i = 0;
684 	u16 num_packet;
685 	u16 hci_len;
686 	u16 cmd_evt;
687 	u32 nic_type;
688 	int index;
689 
690 	num_packet = gdm_dev16_to_cpu(endian, multi_sdu->num_packet);
691 
692 	for (i = 0; i < num_packet; i++) {
693 		copied = data - multi_sdu->data;
694 		if (len < copied + sizeof(*sdu)) {
695 			pr_err("rx prevent buffer overflow");
696 			return;
697 		}
698 
699 		sdu = (struct sdu *)data;
700 
701 		cmd_evt  = gdm_dev16_to_cpu(endian, sdu->cmd_evt);
702 		hci_len  = gdm_dev16_to_cpu(endian, sdu->len);
703 		nic_type = gdm_dev32_to_cpu(endian, sdu->nic_type);
704 
705 		if (cmd_evt != LTE_RX_SDU) {
706 			pr_err("rx sdu wrong hci %04x\n", cmd_evt);
707 			return;
708 		}
709 		if (hci_len < 12 ||
710 		    len < copied + sizeof(*sdu) + (hci_len - 12)) {
711 			pr_err("rx sdu invalid len %d\n", hci_len);
712 			return;
713 		}
714 
715 		index = find_dev_index(nic_type);
716 		if (index < 0) {
717 			pr_err("rx sdu invalid nic_type :%x\n", nic_type);
718 			return;
719 		}
720 		dev = phy_dev->dev[index];
721 		gdm_lte_netif_rx(dev, (char *)sdu->data,
722 				 (int)(hci_len - 12), nic_type);
723 
724 		data += ((hci_len + 3) & 0xfffc) + HCI_HEADER_SIZE;
725 	}
726 }
727 
728 static void gdm_lte_pdn_table(struct net_device *dev, char *buf, int len)
729 {
730 	struct nic *nic = netdev_priv(dev);
731 	struct hci_pdn_table_ind *pdn_table = (struct hci_pdn_table_ind *)buf;
732 	u8 ed = nic->phy_dev->get_endian(nic->phy_dev->priv_dev);
733 
734 	if (!pdn_table->activate) {
735 		memset(&nic->pdn_table, 0x00, sizeof(struct pdn_table));
736 		netdev_info(dev, "pdn deactivated\n");
737 
738 		return;
739 	}
740 
741 	nic->pdn_table.activate = pdn_table->activate;
742 	nic->pdn_table.dft_eps_id = gdm_dev32_to_cpu(ed, pdn_table->dft_eps_id);
743 	nic->pdn_table.nic_type = gdm_dev32_to_cpu(ed, pdn_table->nic_type);
744 
745 	netdev_info(dev, "pdn activated, nic_type=0x%x\n",
746 		    nic->pdn_table.nic_type);
747 }
748 
749 static int gdm_lte_receive_pkt(struct phy_dev *phy_dev, char *buf, int len)
750 {
751 	struct hci_packet *hci = (struct hci_packet *)buf;
752 	struct hci_pdn_table_ind *pdn_table = (struct hci_pdn_table_ind *)buf;
753 	struct sdu *sdu;
754 	struct net_device *dev;
755 	u8 endian = phy_dev->get_endian(phy_dev->priv_dev);
756 	int ret = 0;
757 	u16 cmd_evt;
758 	u32 nic_type;
759 	int index;
760 
761 	if (!len)
762 		return ret;
763 
764 	cmd_evt = gdm_dev16_to_cpu(endian, hci->cmd_evt);
765 
766 	dev = phy_dev->dev[0];
767 	if (!dev)
768 		return 0;
769 
770 	switch (cmd_evt) {
771 	case LTE_RX_SDU:
772 		sdu = (struct sdu *)hci->data;
773 		nic_type = gdm_dev32_to_cpu(endian, sdu->nic_type);
774 		index = find_dev_index(nic_type);
775 		if (index < 0)
776 			return index;
777 		dev = phy_dev->dev[index];
778 		gdm_lte_netif_rx(dev, hci->data, len, nic_type);
779 		break;
780 	case LTE_RX_MULTI_SDU:
781 		gdm_lte_multi_sdu_pkt(phy_dev, buf, len);
782 		break;
783 	case LTE_LINK_ON_OFF_INDICATION:
784 		netdev_info(dev, "link %s\n",
785 			    ((struct hci_connect_ind *)buf)->connect
786 			    ? "on" : "off");
787 		break;
788 	case LTE_PDN_TABLE_IND:
789 		pdn_table = (struct hci_pdn_table_ind *)buf;
790 		nic_type = gdm_dev32_to_cpu(endian, pdn_table->nic_type);
791 		index = find_dev_index(nic_type);
792 		if (index < 0)
793 			return index;
794 		dev = phy_dev->dev[index];
795 		gdm_lte_pdn_table(dev, buf, len);
796 		fallthrough;
797 	default:
798 		ret = gdm_lte_event_send(dev, buf, len);
799 		break;
800 	}
801 
802 	return ret;
803 }
804 
805 static int rx_complete(void *arg, void *data, int len, int context)
806 {
807 	struct phy_dev *phy_dev = arg;
808 
809 	return gdm_lte_receive_pkt(phy_dev, data, len);
810 }
811 
812 void start_rx_proc(struct phy_dev *phy_dev)
813 {
814 	int i;
815 
816 	for (i = 0; i < MAX_RX_SUBMIT_COUNT; i++)
817 		phy_dev->rcv_func(phy_dev->priv_dev,
818 				rx_complete, phy_dev, USB_COMPLETE);
819 }
820 
821 static const struct net_device_ops gdm_netdev_ops = {
822 	.ndo_open			= gdm_lte_open,
823 	.ndo_stop			= gdm_lte_close,
824 	.ndo_set_config			= gdm_lte_set_config,
825 	.ndo_start_xmit			= gdm_lte_tx,
826 	.ndo_get_stats			= gdm_lte_stats,
827 };
828 
829 static u8 gdm_lte_macaddr[ETH_ALEN] = {0x00, 0x0a, 0x3b, 0x00, 0x00, 0x00};
830 
831 static void form_mac_address(u8 *dev_addr, u8 *nic_src, u8 *nic_dest,
832 			     u8 *mac_address, u8 index)
833 {
834 	/* Form the dev_addr */
835 	if (!mac_address)
836 		ether_addr_copy(dev_addr, gdm_lte_macaddr);
837 	else
838 		ether_addr_copy(dev_addr, mac_address);
839 
840 	/* The last byte of the mac address
841 	 * should be less than or equal to 0xFC
842 	 */
843 	dev_addr[ETH_ALEN - 1] += index;
844 
845 	/* Create random nic src and copy the first
846 	 * 3 bytes to be the same as dev_addr
847 	 */
848 	eth_random_addr(nic_src);
849 	memcpy(nic_src, dev_addr, 3);
850 
851 	/* Copy the nic_dest from dev_addr*/
852 	ether_addr_copy(nic_dest, dev_addr);
853 }
854 
855 static void validate_mac_address(u8 *mac_address)
856 {
857 	/* if zero address or multicast bit set, restore the default value */
858 	if (is_zero_ether_addr(mac_address) || (mac_address[0] & 0x01)) {
859 		pr_err("MAC invalid, restoring default\n");
860 		memcpy(mac_address, gdm_lte_macaddr, 6);
861 	}
862 }
863 
864 int register_lte_device(struct phy_dev *phy_dev,
865 			struct device *dev, u8 *mac_address)
866 {
867 	struct nic *nic;
868 	struct net_device *net;
869 	char pdn_dev_name[16];
870 	u8 addr[ETH_ALEN];
871 	int ret = 0;
872 	u8 index;
873 
874 	validate_mac_address(mac_address);
875 
876 	for (index = 0; index < MAX_NIC_TYPE; index++) {
877 		/* Create device name lteXpdnX */
878 		sprintf(pdn_dev_name, "lte%%dpdn%d", index);
879 
880 		/* Allocate netdev */
881 		net = alloc_netdev(sizeof(struct nic), pdn_dev_name,
882 				   NET_NAME_UNKNOWN, ether_setup);
883 		if (!net) {
884 			ret = -ENOMEM;
885 			goto err;
886 		}
887 		net->netdev_ops = &gdm_netdev_ops;
888 		net->flags &= ~IFF_MULTICAST;
889 		net->mtu = DEFAULT_MTU_SIZE;
890 
891 		nic = netdev_priv(net);
892 		memset(nic, 0, sizeof(struct nic));
893 		nic->netdev = net;
894 		nic->phy_dev = phy_dev;
895 		nic->nic_id = index;
896 
897 		form_mac_address(addr,
898 				 nic->src_mac_addr,
899 				 nic->dest_mac_addr,
900 				 mac_address,
901 				 index);
902 		eth_hw_addr_set(net, addr);
903 
904 		SET_NETDEV_DEV(net, dev);
905 		SET_NETDEV_DEVTYPE(net, &wwan_type);
906 
907 		ret = register_netdev(net);
908 		if (ret)
909 			goto err;
910 
911 		netif_carrier_on(net);
912 
913 		phy_dev->dev[index] = net;
914 	}
915 
916 	return 0;
917 
918 err:
919 	unregister_lte_device(phy_dev);
920 
921 	return ret;
922 }
923 
924 void unregister_lte_device(struct phy_dev *phy_dev)
925 {
926 	struct net_device *net;
927 	int index;
928 
929 	for (index = 0; index < MAX_NIC_TYPE; index++) {
930 		net = phy_dev->dev[index];
931 		if (!net)
932 			continue;
933 
934 		unregister_netdev(net);
935 		free_netdev(net);
936 	}
937 }
938