1 // SPDX-License-Identifier: GPL-2.0
2 /******************************************************************************
3  *
4  * Copyright(c) 2007 - 2013 Realtek Corporation. All rights reserved.
5  *
6  ******************************************************************************/
7 #define _HAL_INIT_C_
8 
9 #include <linux/firmware.h>
10 #include <linux/slab.h>
11 #include <drv_types.h>
12 #include <rtw_debug.h>
13 #include <rtl8723b_hal.h>
14 #include "hal_com_h2c.h"
15 
16 static void _FWDownloadEnable(struct adapter *padapter, bool enable)
17 {
18 	u8 tmp, count = 0;
19 
20 	if (enable) {
21 		/*  8051 enable */
22 		tmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
23 		rtw_write8(padapter, REG_SYS_FUNC_EN+1, tmp|0x04);
24 
25 		tmp = rtw_read8(padapter, REG_MCUFWDL);
26 		rtw_write8(padapter, REG_MCUFWDL, tmp|0x01);
27 
28 		do {
29 			tmp = rtw_read8(padapter, REG_MCUFWDL);
30 			if (tmp & 0x01)
31 				break;
32 			rtw_write8(padapter, REG_MCUFWDL, tmp|0x01);
33 			msleep(1);
34 		} while (count++ < 100);
35 
36 		if (count > 0)
37 			DBG_871X("%s: !!!!!!!!Write 0x80 Fail!: count = %d\n", __func__, count);
38 
39 		/*  8051 reset */
40 		tmp = rtw_read8(padapter, REG_MCUFWDL+2);
41 		rtw_write8(padapter, REG_MCUFWDL+2, tmp&0xf7);
42 	} else {
43 		/*  MCU firmware download disable. */
44 		tmp = rtw_read8(padapter, REG_MCUFWDL);
45 		rtw_write8(padapter, REG_MCUFWDL, tmp&0xfe);
46 	}
47 }
48 
49 static int _BlockWrite(struct adapter *padapter, void *buffer, u32 buffSize)
50 {
51 	int ret = _SUCCESS;
52 
53 	u32 blockSize_p1 = 4; /*  (Default) Phase #1 : PCI muse use 4-byte write to download FW */
54 	u32 blockSize_p2 = 8; /*  Phase #2 : Use 8-byte, if Phase#1 use big size to write FW. */
55 	u32 blockSize_p3 = 1; /*  Phase #3 : Use 1-byte, the remnant of FW image. */
56 	u32 blockCount_p1 = 0, blockCount_p2 = 0, blockCount_p3 = 0;
57 	u32 remainSize_p1 = 0, remainSize_p2 = 0;
58 	u8 *bufferPtr = buffer;
59 	u32 i = 0, offset = 0;
60 
61 /* 	printk("====>%s %d\n", __func__, __LINE__); */
62 
63 	/* 3 Phase #1 */
64 	blockCount_p1 = buffSize / blockSize_p1;
65 	remainSize_p1 = buffSize % blockSize_p1;
66 
67 	if (blockCount_p1) {
68 		RT_TRACE(
69 			_module_hal_init_c_,
70 			_drv_notice_,
71 			(
72 				"_BlockWrite: [P1] buffSize(%d) blockSize_p1(%d) blockCount_p1(%d) remainSize_p1(%d)\n",
73 				buffSize,
74 				blockSize_p1,
75 				blockCount_p1,
76 				remainSize_p1
77 			)
78 		);
79 	}
80 
81 	for (i = 0; i < blockCount_p1; i++) {
82 		ret = rtw_write32(padapter, (FW_8723B_START_ADDRESS + i * blockSize_p1), *((u32 *)(bufferPtr + i * blockSize_p1)));
83 		if (ret == _FAIL) {
84 			printk("====>%s %d i:%d\n", __func__, __LINE__, i);
85 			goto exit;
86 		}
87 	}
88 
89 	/* 3 Phase #2 */
90 	if (remainSize_p1) {
91 		offset = blockCount_p1 * blockSize_p1;
92 
93 		blockCount_p2 = remainSize_p1/blockSize_p2;
94 		remainSize_p2 = remainSize_p1%blockSize_p2;
95 
96 		if (blockCount_p2) {
97 				RT_TRACE(
98 					_module_hal_init_c_,
99 					_drv_notice_,
100 					(
101 						"_BlockWrite: [P2] buffSize_p2(%d) blockSize_p2(%d) blockCount_p2(%d) remainSize_p2(%d)\n",
102 						(buffSize-offset),
103 						blockSize_p2,
104 						blockCount_p2,
105 						remainSize_p2
106 					)
107 				);
108 		}
109 
110 	}
111 
112 	/* 3 Phase #3 */
113 	if (remainSize_p2) {
114 		offset = (blockCount_p1 * blockSize_p1) + (blockCount_p2 * blockSize_p2);
115 
116 		blockCount_p3 = remainSize_p2 / blockSize_p3;
117 
118 		RT_TRACE(_module_hal_init_c_, _drv_notice_,
119 				("_BlockWrite: [P3] buffSize_p3(%d) blockSize_p3(%d) blockCount_p3(%d)\n",
120 				(buffSize-offset), blockSize_p3, blockCount_p3));
121 
122 		for (i = 0; i < blockCount_p3; i++) {
123 			ret = rtw_write8(padapter, (FW_8723B_START_ADDRESS + offset + i), *(bufferPtr + offset + i));
124 
125 			if (ret == _FAIL) {
126 				printk("====>%s %d i:%d\n", __func__, __LINE__, i);
127 				goto exit;
128 			}
129 		}
130 	}
131 exit:
132 	return ret;
133 }
134 
135 static int _PageWrite(
136 	struct adapter *padapter,
137 	u32 page,
138 	void *buffer,
139 	u32 size
140 )
141 {
142 	u8 value8;
143 	u8 u8Page = (u8) (page & 0x07);
144 
145 	value8 = (rtw_read8(padapter, REG_MCUFWDL+2) & 0xF8) | u8Page;
146 	rtw_write8(padapter, REG_MCUFWDL+2, value8);
147 
148 	return _BlockWrite(padapter, buffer, size);
149 }
150 
151 static int _WriteFW(struct adapter *padapter, void *buffer, u32 size)
152 {
153 	/*  Since we need dynamic decide method of dwonload fw, so we call this function to get chip version. */
154 	/*  We can remove _ReadChipVersion from ReadpadapterInfo8192C later. */
155 	int ret = _SUCCESS;
156 	u32 pageNums, remainSize;
157 	u32 page, offset;
158 	u8 *bufferPtr = buffer;
159 
160 	pageNums = size / MAX_DLFW_PAGE_SIZE;
161 	/* RT_ASSERT((pageNums <= 4), ("Page numbers should not greater then 4\n")); */
162 	remainSize = size % MAX_DLFW_PAGE_SIZE;
163 
164 	for (page = 0; page < pageNums; page++) {
165 		offset = page * MAX_DLFW_PAGE_SIZE;
166 		ret = _PageWrite(padapter, page, bufferPtr+offset, MAX_DLFW_PAGE_SIZE);
167 
168 		if (ret == _FAIL) {
169 			printk("====>%s %d\n", __func__, __LINE__);
170 			goto exit;
171 		}
172 	}
173 
174 	if (remainSize) {
175 		offset = pageNums * MAX_DLFW_PAGE_SIZE;
176 		page = pageNums;
177 		ret = _PageWrite(padapter, page, bufferPtr+offset, remainSize);
178 
179 		if (ret == _FAIL) {
180 			printk("====>%s %d\n", __func__, __LINE__);
181 			goto exit;
182 		}
183 	}
184 	RT_TRACE(_module_hal_init_c_, _drv_info_, ("_WriteFW Done- for Normal chip.\n"));
185 
186 exit:
187 	return ret;
188 }
189 
190 void _8051Reset8723(struct adapter *padapter)
191 {
192 	u8 cpu_rst;
193 	u8 io_rst;
194 
195 
196 	/*  Reset 8051(WLMCU) IO wrapper */
197 	/*  0x1c[8] = 0 */
198 	/*  Suggested by Isaac@SD1 and Gimmy@SD1, coding by Lucas@20130624 */
199 	io_rst = rtw_read8(padapter, REG_RSV_CTRL+1);
200 	io_rst &= ~BIT(0);
201 	rtw_write8(padapter, REG_RSV_CTRL+1, io_rst);
202 
203 	cpu_rst = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
204 	cpu_rst &= ~BIT(2);
205 	rtw_write8(padapter, REG_SYS_FUNC_EN+1, cpu_rst);
206 
207 	/*  Enable 8051 IO wrapper */
208 	/*  0x1c[8] = 1 */
209 	io_rst = rtw_read8(padapter, REG_RSV_CTRL+1);
210 	io_rst |= BIT(0);
211 	rtw_write8(padapter, REG_RSV_CTRL+1, io_rst);
212 
213 	cpu_rst = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
214 	cpu_rst |= BIT(2);
215 	rtw_write8(padapter, REG_SYS_FUNC_EN+1, cpu_rst);
216 
217 	DBG_8192C("%s: Finish\n", __func__);
218 }
219 
220 u8 g_fwdl_chksum_fail = 0;
221 
222 static s32 polling_fwdl_chksum(
223 	struct adapter *adapter, u32 min_cnt, u32 timeout_ms
224 )
225 {
226 	s32 ret = _FAIL;
227 	u32 value32;
228 	unsigned long start = jiffies;
229 	u32 cnt = 0;
230 
231 	/* polling CheckSum report */
232 	do {
233 		cnt++;
234 		value32 = rtw_read32(adapter, REG_MCUFWDL);
235 		if (value32 & FWDL_ChkSum_rpt || adapter->bSurpriseRemoved || adapter->bDriverStopped)
236 			break;
237 		yield();
238 	} while (jiffies_to_msecs(jiffies-start) < timeout_ms || cnt < min_cnt);
239 
240 	if (!(value32 & FWDL_ChkSum_rpt)) {
241 		goto exit;
242 	}
243 
244 	if (g_fwdl_chksum_fail) {
245 		DBG_871X("%s: fwdl test case: fwdl_chksum_fail\n", __func__);
246 		g_fwdl_chksum_fail--;
247 		goto exit;
248 	}
249 
250 	ret = _SUCCESS;
251 
252 exit:
253 	DBG_871X(
254 		"%s: Checksum report %s! (%u, %dms), REG_MCUFWDL:0x%08x\n",
255 		__func__,
256 		(ret == _SUCCESS) ? "OK" : "Fail",
257 		cnt,
258 		jiffies_to_msecs(jiffies-start),
259 		value32
260 	);
261 
262 	return ret;
263 }
264 
265 u8 g_fwdl_wintint_rdy_fail = 0;
266 
267 static s32 _FWFreeToGo(struct adapter *adapter, u32 min_cnt, u32 timeout_ms)
268 {
269 	s32 ret = _FAIL;
270 	u32 value32;
271 	unsigned long start = jiffies;
272 	u32 cnt = 0;
273 
274 	value32 = rtw_read32(adapter, REG_MCUFWDL);
275 	value32 |= MCUFWDL_RDY;
276 	value32 &= ~WINTINI_RDY;
277 	rtw_write32(adapter, REG_MCUFWDL, value32);
278 
279 	_8051Reset8723(adapter);
280 
281 	/*  polling for FW ready */
282 	do {
283 		cnt++;
284 		value32 = rtw_read32(adapter, REG_MCUFWDL);
285 		if (value32 & WINTINI_RDY || adapter->bSurpriseRemoved || adapter->bDriverStopped)
286 			break;
287 		yield();
288 	} while (jiffies_to_msecs(jiffies - start) < timeout_ms || cnt < min_cnt);
289 
290 	if (!(value32 & WINTINI_RDY)) {
291 		goto exit;
292 	}
293 
294 	if (g_fwdl_wintint_rdy_fail) {
295 		DBG_871X("%s: fwdl test case: wintint_rdy_fail\n", __func__);
296 		g_fwdl_wintint_rdy_fail--;
297 		goto exit;
298 	}
299 
300 	ret = _SUCCESS;
301 
302 exit:
303 	DBG_871X(
304 		"%s: Polling FW ready %s! (%u, %dms), REG_MCUFWDL:0x%08x\n",
305 		__func__,
306 		(ret == _SUCCESS) ? "OK" : "Fail",
307 		cnt,
308 		jiffies_to_msecs(jiffies-start),
309 		value32
310 	);
311 
312 	return ret;
313 }
314 
315 #define IS_FW_81xxC(padapter)	(((GET_HAL_DATA(padapter))->FirmwareSignature & 0xFFF0) == 0x88C0)
316 
317 void rtl8723b_FirmwareSelfReset(struct adapter *padapter)
318 {
319 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
320 	u8 u1bTmp;
321 	u8 Delay = 100;
322 
323 	if (
324 		!(IS_FW_81xxC(padapter) && ((pHalData->FirmwareVersion < 0x21) || (pHalData->FirmwareVersion == 0x21 && pHalData->FirmwareSubVersion < 0x01)))
325 	) { /*  after 88C Fw v33.1 */
326 		/* 0x1cf = 0x20. Inform 8051 to reset. 2009.12.25. tynli_test */
327 		rtw_write8(padapter, REG_HMETFR+3, 0x20);
328 
329 		u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
330 		while (u1bTmp & BIT2) {
331 			Delay--;
332 			if (Delay == 0)
333 				break;
334 			udelay(50);
335 			u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
336 		}
337 		RT_TRACE(_module_hal_init_c_, _drv_notice_, ("-%s: 8051 reset success (%d)\n", __func__, Delay));
338 
339 		if (Delay == 0) {
340 			RT_TRACE(_module_hal_init_c_, _drv_notice_, ("%s: Force 8051 reset!!!\n", __func__));
341 			/* force firmware reset */
342 			u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
343 			rtw_write8(padapter, REG_SYS_FUNC_EN+1, u1bTmp&(~BIT2));
344 		}
345 	}
346 }
347 
348 /*  */
349 /* 	Description: */
350 /* 		Download 8192C firmware code. */
351 /*  */
352 /*  */
353 s32 rtl8723b_FirmwareDownload(struct adapter *padapter, bool  bUsedWoWLANFw)
354 {
355 	s32 rtStatus = _SUCCESS;
356 	u8 write_fw = 0;
357 	unsigned long fwdl_start_time;
358 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
359 	struct rt_firmware *pFirmware;
360 	struct rt_firmware *pBTFirmware;
361 	struct rt_firmware_hdr *pFwHdr = NULL;
362 	u8 *pFirmwareBuf;
363 	u32 FirmwareLen;
364 	const struct firmware *fw;
365 	struct device *device = dvobj_to_dev(padapter->dvobj);
366 	u8 *fwfilepath;
367 	struct dvobj_priv *psdpriv = padapter->dvobj;
368 	struct debug_priv *pdbgpriv = &psdpriv->drv_dbg;
369 	u8 tmp_ps;
370 
371 	RT_TRACE(_module_hal_init_c_, _drv_info_, ("+%s\n", __func__));
372 #ifdef CONFIG_WOWLAN
373 	RT_TRACE(_module_hal_init_c_, _drv_notice_, ("+%s, bUsedWoWLANFw:%d\n", __func__, bUsedWoWLANFw));
374 #endif
375 	pFirmware = kzalloc(sizeof(struct rt_firmware), GFP_KERNEL);
376 	if (!pFirmware)
377 		return _FAIL;
378 	pBTFirmware = kzalloc(sizeof(struct rt_firmware), GFP_KERNEL);
379 	if (!pBTFirmware) {
380 		kfree(pFirmware);
381 		return _FAIL;
382 	}
383 	tmp_ps = rtw_read8(padapter, 0xa3);
384 	tmp_ps &= 0xf8;
385 	tmp_ps |= 0x02;
386 	/* 1. write 0xA3[:2:0] = 3b'010 */
387 	rtw_write8(padapter, 0xa3, tmp_ps);
388 	/* 2. read power_state = 0xA0[1:0] */
389 	tmp_ps = rtw_read8(padapter, 0xa0);
390 	tmp_ps &= 0x03;
391 	if (tmp_ps != 0x01) {
392 		DBG_871X(FUNC_ADPT_FMT" tmp_ps =%x\n", FUNC_ADPT_ARG(padapter), tmp_ps);
393 		pdbgpriv->dbg_downloadfw_pwr_state_cnt++;
394 	}
395 
396 #ifdef CONFIG_WOWLAN
397 	if (bUsedWoWLANFw)
398 		fwfilepath = "rtlwifi/rtl8723bs_wowlan.bin";
399 	else
400 #endif /*  CONFIG_WOWLAN */
401 		fwfilepath = "rtlwifi/rtl8723bs_nic.bin";
402 
403 	pr_info("rtl8723bs: acquire FW from file:%s\n", fwfilepath);
404 
405 	rtStatus = request_firmware(&fw, fwfilepath, device);
406 	if (rtStatus) {
407 		pr_err("Request firmware failed with error 0x%x\n", rtStatus);
408 		rtStatus = _FAIL;
409 		goto exit;
410 	}
411 
412 	if (!fw) {
413 		pr_err("Firmware %s not available\n", fwfilepath);
414 		rtStatus = _FAIL;
415 		goto exit;
416 	}
417 
418 	if (fw->size > FW_8723B_SIZE) {
419 		rtStatus = _FAIL;
420 		RT_TRACE(
421 			_module_hal_init_c_,
422 			_drv_err_,
423 			("Firmware size exceed 0x%X. Check it.\n", FW_8188E_SIZE)
424 		);
425 		goto exit;
426 	}
427 
428 	pFirmware->fw_buffer_sz = kmemdup(fw->data, fw->size, GFP_KERNEL);
429 	if (!pFirmware->fw_buffer_sz) {
430 		rtStatus = _FAIL;
431 		goto exit;
432 	}
433 
434 	pFirmware->fw_length = fw->size;
435 	release_firmware(fw);
436 	if (pFirmware->fw_length > FW_8723B_SIZE) {
437 		rtStatus = _FAIL;
438 		DBG_871X_LEVEL(_drv_emerg_, "Firmware size:%u exceed %u\n", pFirmware->fw_length, FW_8723B_SIZE);
439 		goto release_fw1;
440 	}
441 
442 	pFirmwareBuf = pFirmware->fw_buffer_sz;
443 	FirmwareLen = pFirmware->fw_length;
444 
445 	/*  To Check Fw header. Added by tynli. 2009.12.04. */
446 	pFwHdr = (struct rt_firmware_hdr *)pFirmwareBuf;
447 
448 	pHalData->FirmwareVersion =  le16_to_cpu(pFwHdr->version);
449 	pHalData->FirmwareSubVersion = le16_to_cpu(pFwHdr->subversion);
450 	pHalData->FirmwareSignature = le16_to_cpu(pFwHdr->signature);
451 
452 	DBG_871X(
453 		"%s: fw_ver =%x fw_subver =%04x sig = 0x%x, Month =%02x, Date =%02x, Hour =%02x, Minute =%02x\n",
454 		__func__,
455 		pHalData->FirmwareVersion,
456 		pHalData->FirmwareSubVersion,
457 		pHalData->FirmwareSignature,
458 		pFwHdr->month,
459 		pFwHdr->date,
460 		pFwHdr->hour,
461 		pFwHdr->minute
462 	);
463 
464 	if (IS_FW_HEADER_EXIST_8723B(pFwHdr)) {
465 		DBG_871X("%s(): Shift for fw header!\n", __func__);
466 		/*  Shift 32 bytes for FW header */
467 		pFirmwareBuf = pFirmwareBuf + 32;
468 		FirmwareLen = FirmwareLen - 32;
469 	}
470 
471 	/*  Suggested by Filen. If 8051 is running in RAM code, driver should inform Fw to reset by itself, */
472 	/*  or it will cause download Fw fail. 2010.02.01. by tynli. */
473 	if (rtw_read8(padapter, REG_MCUFWDL) & RAM_DL_SEL) { /* 8051 RAM code */
474 		rtw_write8(padapter, REG_MCUFWDL, 0x00);
475 		rtl8723b_FirmwareSelfReset(padapter);
476 	}
477 
478 	_FWDownloadEnable(padapter, true);
479 	fwdl_start_time = jiffies;
480 	while (
481 		!padapter->bDriverStopped &&
482 		!padapter->bSurpriseRemoved &&
483 		(write_fw++ < 3 || jiffies_to_msecs(jiffies - fwdl_start_time) < 500)
484 	) {
485 		/* reset FWDL chksum */
486 		rtw_write8(padapter, REG_MCUFWDL, rtw_read8(padapter, REG_MCUFWDL)|FWDL_ChkSum_rpt);
487 
488 		rtStatus = _WriteFW(padapter, pFirmwareBuf, FirmwareLen);
489 		if (rtStatus != _SUCCESS)
490 			continue;
491 
492 		rtStatus = polling_fwdl_chksum(padapter, 5, 50);
493 		if (rtStatus == _SUCCESS)
494 			break;
495 	}
496 	_FWDownloadEnable(padapter, false);
497 	if (_SUCCESS != rtStatus)
498 		goto fwdl_stat;
499 
500 	rtStatus = _FWFreeToGo(padapter, 10, 200);
501 	if (_SUCCESS != rtStatus)
502 		goto fwdl_stat;
503 
504 fwdl_stat:
505 	DBG_871X(
506 		"FWDL %s. write_fw:%u, %dms\n",
507 		(rtStatus == _SUCCESS)?"success":"fail",
508 		write_fw,
509 		jiffies_to_msecs(jiffies - fwdl_start_time)
510 	);
511 
512 exit:
513 	kfree(pFirmware->fw_buffer_sz);
514 	kfree(pFirmware);
515 release_fw1:
516 	kfree(pBTFirmware);
517 	DBG_871X(" <=== rtl8723b_FirmwareDownload()\n");
518 	return rtStatus;
519 }
520 
521 void rtl8723b_InitializeFirmwareVars(struct adapter *padapter)
522 {
523 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
524 
525 	/*  Init Fw LPS related. */
526 	adapter_to_pwrctl(padapter)->bFwCurrentInPSMode = false;
527 
528 	/* Init H2C cmd. */
529 	rtw_write8(padapter, REG_HMETFR, 0x0f);
530 
531 	/*  Init H2C counter. by tynli. 2009.12.09. */
532 	pHalData->LastHMEBoxNum = 0;
533 /* pHalData->H2CQueueHead = 0; */
534 /* pHalData->H2CQueueTail = 0; */
535 /* pHalData->H2CStopInsertQueue = false; */
536 }
537 
538 #if defined(CONFIG_WOWLAN) || defined(CONFIG_AP_WOWLAN)
539 /*  */
540 
541 /*  */
542 /*  Description: Prepare some information to Fw for WoWLAN. */
543 /* (1) Download wowlan Fw. */
544 /* (2) Download RSVD page packets. */
545 /* (3) Enable AP offload if needed. */
546 /*  */
547 /*  2011.04.12 by tynli. */
548 /*  */
549 void SetFwRelatedForWoWLAN8723b(
550 	struct adapter *padapter, u8 bHostIsGoingtoSleep
551 )
552 {
553 	int	status = _FAIL;
554 	/*  */
555 	/*  1. Before WoWLAN we need to re-download WoWLAN Fw. */
556 	/*  */
557 	status = rtl8723b_FirmwareDownload(padapter, bHostIsGoingtoSleep);
558 	if (status != _SUCCESS) {
559 		DBG_871X("SetFwRelatedForWoWLAN8723b(): Re-Download Firmware failed!!\n");
560 		return;
561 	} else {
562 		DBG_871X("SetFwRelatedForWoWLAN8723b(): Re-Download Firmware Success !!\n");
563 	}
564 	/*  */
565 	/*  2. Re-Init the variables about Fw related setting. */
566 	/*  */
567 	rtl8723b_InitializeFirmwareVars(padapter);
568 }
569 #endif /* CONFIG_WOWLAN */
570 
571 static void rtl8723b_free_hal_data(struct adapter *padapter)
572 {
573 }
574 
575 /*  */
576 /* 				Efuse related code */
577 /*  */
578 static u8 hal_EfuseSwitchToBank(
579 	struct adapter *padapter, u8 bank, bool bPseudoTest
580 )
581 {
582 	u8 bRet = false;
583 	u32 value32 = 0;
584 #ifdef HAL_EFUSE_MEMORY
585 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
586 	PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
587 #endif
588 
589 
590 	DBG_8192C("%s: Efuse switch bank to %d\n", __func__, bank);
591 	if (bPseudoTest) {
592 #ifdef HAL_EFUSE_MEMORY
593 		pEfuseHal->fakeEfuseBank = bank;
594 #else
595 		fakeEfuseBank = bank;
596 #endif
597 		bRet = true;
598 	} else {
599 		value32 = rtw_read32(padapter, EFUSE_TEST);
600 		bRet = true;
601 		switch (bank) {
602 		case 0:
603 			value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0);
604 			break;
605 		case 1:
606 			value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_0);
607 			break;
608 		case 2:
609 			value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_1);
610 			break;
611 		case 3:
612 			value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_2);
613 			break;
614 		default:
615 			value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0);
616 			bRet = false;
617 			break;
618 		}
619 		rtw_write32(padapter, EFUSE_TEST, value32);
620 	}
621 
622 	return bRet;
623 }
624 
625 static void Hal_GetEfuseDefinition(
626 	struct adapter *padapter,
627 	u8 efuseType,
628 	u8 type,
629 	void *pOut,
630 	bool bPseudoTest
631 )
632 {
633 	switch (type) {
634 	case TYPE_EFUSE_MAX_SECTION:
635 		{
636 			u8 *pMax_section;
637 			pMax_section = pOut;
638 
639 			if (efuseType == EFUSE_WIFI)
640 				*pMax_section = EFUSE_MAX_SECTION_8723B;
641 			else
642 				*pMax_section = EFUSE_BT_MAX_SECTION;
643 		}
644 		break;
645 
646 	case TYPE_EFUSE_REAL_CONTENT_LEN:
647 		{
648 			u16 *pu2Tmp;
649 			pu2Tmp = pOut;
650 
651 			if (efuseType == EFUSE_WIFI)
652 				*pu2Tmp = EFUSE_REAL_CONTENT_LEN_8723B;
653 			else
654 				*pu2Tmp = EFUSE_BT_REAL_CONTENT_LEN;
655 		}
656 		break;
657 
658 	case TYPE_AVAILABLE_EFUSE_BYTES_BANK:
659 		{
660 			u16 *pu2Tmp;
661 			pu2Tmp = pOut;
662 
663 			if (efuseType == EFUSE_WIFI)
664 				*pu2Tmp = (EFUSE_REAL_CONTENT_LEN_8723B-EFUSE_OOB_PROTECT_BYTES);
665 			else
666 				*pu2Tmp = (EFUSE_BT_REAL_BANK_CONTENT_LEN-EFUSE_PROTECT_BYTES_BANK);
667 		}
668 		break;
669 
670 	case TYPE_AVAILABLE_EFUSE_BYTES_TOTAL:
671 		{
672 			u16 *pu2Tmp;
673 			pu2Tmp = pOut;
674 
675 			if (efuseType == EFUSE_WIFI)
676 				*pu2Tmp = (EFUSE_REAL_CONTENT_LEN_8723B-EFUSE_OOB_PROTECT_BYTES);
677 			else
678 				*pu2Tmp = (EFUSE_BT_REAL_CONTENT_LEN-(EFUSE_PROTECT_BYTES_BANK*3));
679 		}
680 		break;
681 
682 	case TYPE_EFUSE_MAP_LEN:
683 		{
684 			u16 *pu2Tmp;
685 			pu2Tmp = pOut;
686 
687 			if (efuseType == EFUSE_WIFI)
688 				*pu2Tmp = EFUSE_MAX_MAP_LEN;
689 			else
690 				*pu2Tmp = EFUSE_BT_MAP_LEN;
691 		}
692 		break;
693 
694 	case TYPE_EFUSE_PROTECT_BYTES_BANK:
695 		{
696 			u8 *pu1Tmp;
697 			pu1Tmp = pOut;
698 
699 			if (efuseType == EFUSE_WIFI)
700 				*pu1Tmp = EFUSE_OOB_PROTECT_BYTES;
701 			else
702 				*pu1Tmp = EFUSE_PROTECT_BYTES_BANK;
703 		}
704 		break;
705 
706 	case TYPE_EFUSE_CONTENT_LEN_BANK:
707 		{
708 			u16 *pu2Tmp;
709 			pu2Tmp = pOut;
710 
711 			if (efuseType == EFUSE_WIFI)
712 				*pu2Tmp = EFUSE_REAL_CONTENT_LEN_8723B;
713 			else
714 				*pu2Tmp = EFUSE_BT_REAL_BANK_CONTENT_LEN;
715 		}
716 		break;
717 
718 	default:
719 		{
720 			u8 *pu1Tmp;
721 			pu1Tmp = pOut;
722 			*pu1Tmp = 0;
723 		}
724 		break;
725 	}
726 }
727 
728 #define VOLTAGE_V25		0x03
729 #define LDOE25_SHIFT	28
730 
731 /*  */
732 /* 	The following is for compile ok */
733 /* 	That should be merged with the original in the future */
734 /*  */
735 #define EFUSE_ACCESS_ON_8723			0x69	/*  For RTL8723 only. */
736 #define EFUSE_ACCESS_OFF_8723			0x00	/*  For RTL8723 only. */
737 #define REG_EFUSE_ACCESS_8723			0x00CF	/*  Efuse access protection for RTL8723 */
738 
739 /*  */
740 static void Hal_BT_EfusePowerSwitch(
741 	struct adapter *padapter, u8 bWrite, u8 PwrState
742 )
743 {
744 	u8 tempval;
745 	if (PwrState == true) {
746 		/*  enable BT power cut */
747 		/*  0x6A[14] = 1 */
748 		tempval = rtw_read8(padapter, 0x6B);
749 		tempval |= BIT(6);
750 		rtw_write8(padapter, 0x6B, tempval);
751 
752 		/*  Attention!! Between 0x6A[14] and 0x6A[15] setting need 100us delay */
753 		/*  So don't wirte 0x6A[14]= 1 and 0x6A[15]= 0 together! */
754 		msleep(1);
755 		/*  disable BT output isolation */
756 		/*  0x6A[15] = 0 */
757 		tempval = rtw_read8(padapter, 0x6B);
758 		tempval &= ~BIT(7);
759 		rtw_write8(padapter, 0x6B, tempval);
760 	} else {
761 		/*  enable BT output isolation */
762 		/*  0x6A[15] = 1 */
763 		tempval = rtw_read8(padapter, 0x6B);
764 		tempval |= BIT(7);
765 		rtw_write8(padapter, 0x6B, tempval);
766 
767 		/*  Attention!! Between 0x6A[14] and 0x6A[15] setting need 100us delay */
768 		/*  So don't wirte 0x6A[14]= 1 and 0x6A[15]= 0 together! */
769 
770 		/*  disable BT power cut */
771 		/*  0x6A[14] = 1 */
772 		tempval = rtw_read8(padapter, 0x6B);
773 		tempval &= ~BIT(6);
774 		rtw_write8(padapter, 0x6B, tempval);
775 	}
776 
777 }
778 static void Hal_EfusePowerSwitch(
779 	struct adapter *padapter, u8 bWrite, u8 PwrState
780 )
781 {
782 	u8 tempval;
783 	u16 tmpV16;
784 
785 
786 	if (PwrState == true) {
787 		/*  To avoid cannot access efuse regsiters after disable/enable several times during DTM test. */
788 		/*  Suggested by SD1 IsaacHsu. 2013.07.08, added by tynli. */
789 		tempval = rtw_read8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HSUS_CTRL);
790 		if (tempval & BIT(0)) { /*  SDIO local register is suspend */
791 			u8 count = 0;
792 
793 
794 			tempval &= ~BIT(0);
795 			rtw_write8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HSUS_CTRL, tempval);
796 
797 			/*  check 0x86[1:0]= 10'2h, wait power state to leave suspend */
798 			do {
799 				tempval = rtw_read8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HSUS_CTRL);
800 				tempval &= 0x3;
801 				if (tempval == 0x02)
802 					break;
803 
804 				count++;
805 				if (count >= 100)
806 					break;
807 
808 				mdelay(10);
809 			} while (1);
810 
811 			if (count >= 100) {
812 				DBG_8192C(FUNC_ADPT_FMT ": Leave SDIO local register suspend fail! Local 0x86 =%#X\n",
813 					FUNC_ADPT_ARG(padapter), tempval);
814 			} else {
815 				DBG_8192C(FUNC_ADPT_FMT ": Leave SDIO local register suspend OK! Local 0x86 =%#X\n",
816 					FUNC_ADPT_ARG(padapter), tempval);
817 			}
818 		}
819 
820 		rtw_write8(padapter, REG_EFUSE_ACCESS_8723, EFUSE_ACCESS_ON_8723);
821 
822 		/*  Reset: 0x0000h[28], default valid */
823 		tmpV16 =  rtw_read16(padapter, REG_SYS_FUNC_EN);
824 		if (!(tmpV16 & FEN_ELDR)) {
825 			tmpV16 |= FEN_ELDR;
826 			rtw_write16(padapter, REG_SYS_FUNC_EN, tmpV16);
827 		}
828 
829 		/*  Clock: Gated(0x0008h[5]) 8M(0x0008h[1]) clock from ANA, default valid */
830 		tmpV16 = rtw_read16(padapter, REG_SYS_CLKR);
831 		if ((!(tmpV16 & LOADER_CLK_EN))  || (!(tmpV16 & ANA8M))) {
832 			tmpV16 |= (LOADER_CLK_EN | ANA8M);
833 			rtw_write16(padapter, REG_SYS_CLKR, tmpV16);
834 		}
835 
836 		if (bWrite == true) {
837 			/*  Enable LDO 2.5V before read/write action */
838 			tempval = rtw_read8(padapter, EFUSE_TEST+3);
839 			tempval &= 0x0F;
840 			tempval |= (VOLTAGE_V25 << 4);
841 			rtw_write8(padapter, EFUSE_TEST+3, (tempval | 0x80));
842 
843 			/* rtw_write8(padapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_ON); */
844 		}
845 	} else {
846 		rtw_write8(padapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_OFF);
847 
848 		if (bWrite == true) {
849 			/*  Disable LDO 2.5V after read/write action */
850 			tempval = rtw_read8(padapter, EFUSE_TEST+3);
851 			rtw_write8(padapter, EFUSE_TEST+3, (tempval & 0x7F));
852 		}
853 
854 	}
855 }
856 
857 static void hal_ReadEFuse_WiFi(
858 	struct adapter *padapter,
859 	u16 _offset,
860 	u16 _size_byte,
861 	u8 *pbuf,
862 	bool bPseudoTest
863 )
864 {
865 #ifdef HAL_EFUSE_MEMORY
866 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
867 	PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
868 #endif
869 	u8 *efuseTbl = NULL;
870 	u16 eFuse_Addr = 0;
871 	u8 offset, wden;
872 	u8 efuseHeader, efuseExtHdr, efuseData;
873 	u16 i, total, used;
874 	u8 efuse_usage = 0;
875 
876 	/* DBG_871X("YJ: ====>%s():_offset =%d _size_byte =%d bPseudoTest =%d\n", __func__, _offset, _size_byte, bPseudoTest); */
877 	/*  */
878 	/*  Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10. */
879 	/*  */
880 	if ((_offset+_size_byte) > EFUSE_MAX_MAP_LEN) {
881 		DBG_8192C("%s: Invalid offset(%#x) with read bytes(%#x)!!\n", __func__, _offset, _size_byte);
882 		return;
883 	}
884 
885 	efuseTbl = rtw_malloc(EFUSE_MAX_MAP_LEN);
886 	if (!efuseTbl) {
887 		DBG_8192C("%s: alloc efuseTbl fail!\n", __func__);
888 		return;
889 	}
890 	/*  0xff will be efuse default value instead of 0x00. */
891 	memset(efuseTbl, 0xFF, EFUSE_MAX_MAP_LEN);
892 
893 
894 #ifdef DEBUG
895 if (0) {
896 	for (i = 0; i < 256; i++)
897 		efuse_OneByteRead(padapter, i, &efuseTbl[i], false);
898 	DBG_871X("Efuse Content:\n");
899 	for (i = 0; i < 256; i++) {
900 		if (i % 16 == 0)
901 			printk("\n");
902 		printk("%02X ", efuseTbl[i]);
903 	}
904 	printk("\n");
905 }
906 #endif
907 
908 
909 	/*  switch bank back to bank 0 for later BT and wifi use. */
910 	hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
911 
912 	while (AVAILABLE_EFUSE_ADDR(eFuse_Addr)) {
913 		efuse_OneByteRead(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest);
914 		if (efuseHeader == 0xFF) {
915 			DBG_8192C("%s: data end at address =%#x\n", __func__, eFuse_Addr-1);
916 			break;
917 		}
918 		/* DBG_8192C("%s: efuse[0x%X]= 0x%02X\n", __func__, eFuse_Addr-1, efuseHeader); */
919 
920 		/*  Check PG header for section num. */
921 		if (EXT_HEADER(efuseHeader)) { /* extended header */
922 			offset = GET_HDR_OFFSET_2_0(efuseHeader);
923 			/* DBG_8192C("%s: extended header offset = 0x%X\n", __func__, offset); */
924 
925 			efuse_OneByteRead(padapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest);
926 			/* DBG_8192C("%s: efuse[0x%X]= 0x%02X\n", __func__, eFuse_Addr-1, efuseExtHdr); */
927 			if (ALL_WORDS_DISABLED(efuseExtHdr))
928 				continue;
929 
930 			offset |= ((efuseExtHdr & 0xF0) >> 1);
931 			wden = (efuseExtHdr & 0x0F);
932 		} else {
933 			offset = ((efuseHeader >> 4) & 0x0f);
934 			wden = (efuseHeader & 0x0f);
935 		}
936 		/* DBG_8192C("%s: Offset =%d Worden = 0x%X\n", __func__, offset, wden); */
937 
938 		if (offset < EFUSE_MAX_SECTION_8723B) {
939 			u16 addr;
940 			/*  Get word enable value from PG header */
941 /* 			DBG_8192C("%s: Offset =%d Worden = 0x%X\n", __func__, offset, wden); */
942 
943 			addr = offset * PGPKT_DATA_SIZE;
944 			for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
945 				/*  Check word enable condition in the section */
946 				if (!(wden & (0x01<<i))) {
947 					efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
948 /* 					DBG_8192C("%s: efuse[%#X]= 0x%02X\n", __func__, eFuse_Addr-1, efuseData); */
949 					efuseTbl[addr] = efuseData;
950 
951 					efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
952 /* 					DBG_8192C("%s: efuse[%#X]= 0x%02X\n", __func__, eFuse_Addr-1, efuseData); */
953 					efuseTbl[addr+1] = efuseData;
954 				}
955 				addr += 2;
956 			}
957 		} else {
958 			DBG_8192C(KERN_ERR "%s: offset(%d) is illegal!!\n", __func__, offset);
959 			eFuse_Addr += Efuse_CalculateWordCnts(wden)*2;
960 		}
961 	}
962 
963 	/*  Copy from Efuse map to output pointer memory!!! */
964 	for (i = 0; i < _size_byte; i++)
965 		pbuf[i] = efuseTbl[_offset+i];
966 
967 #ifdef DEBUG
968 if (1) {
969 	DBG_871X("Efuse Realmap:\n");
970 	for (i = 0; i < _size_byte; i++) {
971 		if (i % 16 == 0)
972 			printk("\n");
973 		printk("%02X ", pbuf[i]);
974 	}
975 	printk("\n");
976 }
977 #endif
978 	/*  Calculate Efuse utilization */
979 	EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &total, bPseudoTest);
980 	used = eFuse_Addr - 1;
981 	efuse_usage = (u8)((used*100)/total);
982 	if (bPseudoTest) {
983 #ifdef HAL_EFUSE_MEMORY
984 		pEfuseHal->fakeEfuseUsedBytes = used;
985 #else
986 		fakeEfuseUsedBytes = used;
987 #endif
988 	} else {
989 		rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&used);
990 		rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_USAGE, (u8 *)&efuse_usage);
991 	}
992 
993 	kfree(efuseTbl);
994 }
995 
996 static void hal_ReadEFuse_BT(
997 	struct adapter *padapter,
998 	u16 _offset,
999 	u16 _size_byte,
1000 	u8 *pbuf,
1001 	bool bPseudoTest
1002 )
1003 {
1004 #ifdef HAL_EFUSE_MEMORY
1005 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1006 	PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
1007 #endif
1008 	u8 *efuseTbl;
1009 	u8 bank;
1010 	u16 eFuse_Addr;
1011 	u8 efuseHeader, efuseExtHdr, efuseData;
1012 	u8 offset, wden;
1013 	u16 i, total, used;
1014 	u8 efuse_usage;
1015 
1016 
1017 	/*  */
1018 	/*  Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10. */
1019 	/*  */
1020 	if ((_offset+_size_byte) > EFUSE_BT_MAP_LEN) {
1021 		DBG_8192C("%s: Invalid offset(%#x) with read bytes(%#x)!!\n", __func__, _offset, _size_byte);
1022 		return;
1023 	}
1024 
1025 	efuseTbl = rtw_malloc(EFUSE_BT_MAP_LEN);
1026 	if (efuseTbl == NULL) {
1027 		DBG_8192C("%s: efuseTbl malloc fail!\n", __func__);
1028 		return;
1029 	}
1030 	/*  0xff will be efuse default value instead of 0x00. */
1031 	memset(efuseTbl, 0xFF, EFUSE_BT_MAP_LEN);
1032 
1033 	EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &total, bPseudoTest);
1034 
1035 	for (bank = 1; bank < 3; bank++) { /*  8723b Max bake 0~2 */
1036 		if (hal_EfuseSwitchToBank(padapter, bank, bPseudoTest) == false) {
1037 			DBG_8192C("%s: hal_EfuseSwitchToBank Fail!!\n", __func__);
1038 			goto exit;
1039 		}
1040 
1041 		eFuse_Addr = 0;
1042 
1043 		while (AVAILABLE_EFUSE_ADDR(eFuse_Addr)) {
1044 			efuse_OneByteRead(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest);
1045 			if (efuseHeader == 0xFF)
1046 				break;
1047 			DBG_8192C("%s: efuse[%#X]= 0x%02x (header)\n", __func__, (((bank-1)*EFUSE_REAL_CONTENT_LEN_8723B)+eFuse_Addr-1), efuseHeader);
1048 
1049 			/*  Check PG header for section num. */
1050 			if (EXT_HEADER(efuseHeader)) { /* extended header */
1051 				offset = GET_HDR_OFFSET_2_0(efuseHeader);
1052 				DBG_8192C("%s: extended header offset_2_0 = 0x%X\n", __func__, offset);
1053 
1054 				efuse_OneByteRead(padapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest);
1055 				DBG_8192C("%s: efuse[%#X]= 0x%02x (ext header)\n", __func__, (((bank-1)*EFUSE_REAL_CONTENT_LEN_8723B)+eFuse_Addr-1), efuseExtHdr);
1056 				if (ALL_WORDS_DISABLED(efuseExtHdr))
1057 					continue;
1058 
1059 
1060 				offset |= ((efuseExtHdr & 0xF0) >> 1);
1061 				wden = (efuseExtHdr & 0x0F);
1062 			} else {
1063 				offset = ((efuseHeader >> 4) & 0x0f);
1064 				wden = (efuseHeader & 0x0f);
1065 			}
1066 
1067 			if (offset < EFUSE_BT_MAX_SECTION) {
1068 				u16 addr;
1069 
1070 				/*  Get word enable value from PG header */
1071 				DBG_8192C("%s: Offset =%d Worden =%#X\n", __func__, offset, wden);
1072 
1073 				addr = offset * PGPKT_DATA_SIZE;
1074 				for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
1075 					/*  Check word enable condition in the section */
1076 					if (!(wden & (0x01<<i))) {
1077 						efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
1078 						DBG_8192C("%s: efuse[%#X]= 0x%02X\n", __func__, eFuse_Addr-1, efuseData);
1079 						efuseTbl[addr] = efuseData;
1080 
1081 						efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
1082 						DBG_8192C("%s: efuse[%#X]= 0x%02X\n", __func__, eFuse_Addr-1, efuseData);
1083 						efuseTbl[addr+1] = efuseData;
1084 					}
1085 					addr += 2;
1086 				}
1087 			} else {
1088 				DBG_8192C("%s: offset(%d) is illegal!!\n", __func__, offset);
1089 				eFuse_Addr += Efuse_CalculateWordCnts(wden)*2;
1090 			}
1091 		}
1092 
1093 		if ((eFuse_Addr-1) < total) {
1094 			DBG_8192C("%s: bank(%d) data end at %#x\n", __func__, bank, eFuse_Addr-1);
1095 			break;
1096 		}
1097 	}
1098 
1099 	/*  switch bank back to bank 0 for later BT and wifi use. */
1100 	hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
1101 
1102 	/*  Copy from Efuse map to output pointer memory!!! */
1103 	for (i = 0; i < _size_byte; i++)
1104 		pbuf[i] = efuseTbl[_offset+i];
1105 
1106 	/*  */
1107 	/*  Calculate Efuse utilization. */
1108 	/*  */
1109 	EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &total, bPseudoTest);
1110 	used = (EFUSE_BT_REAL_BANK_CONTENT_LEN*(bank-1)) + eFuse_Addr - 1;
1111 	DBG_8192C("%s: bank(%d) data end at %#x , used =%d\n", __func__, bank, eFuse_Addr-1, used);
1112 	efuse_usage = (u8)((used*100)/total);
1113 	if (bPseudoTest) {
1114 #ifdef HAL_EFUSE_MEMORY
1115 		pEfuseHal->fakeBTEfuseUsedBytes = used;
1116 #else
1117 		fakeBTEfuseUsedBytes = used;
1118 #endif
1119 	} else {
1120 		rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&used);
1121 		rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BT_USAGE, (u8 *)&efuse_usage);
1122 	}
1123 
1124 exit:
1125 	kfree(efuseTbl);
1126 }
1127 
1128 static void Hal_ReadEFuse(
1129 	struct adapter *padapter,
1130 	u8 efuseType,
1131 	u16 _offset,
1132 	u16 _size_byte,
1133 	u8 *pbuf,
1134 	bool bPseudoTest
1135 )
1136 {
1137 	if (efuseType == EFUSE_WIFI)
1138 		hal_ReadEFuse_WiFi(padapter, _offset, _size_byte, pbuf, bPseudoTest);
1139 	else
1140 		hal_ReadEFuse_BT(padapter, _offset, _size_byte, pbuf, bPseudoTest);
1141 }
1142 
1143 static u16 hal_EfuseGetCurrentSize_WiFi(
1144 	struct adapter *padapter, bool bPseudoTest
1145 )
1146 {
1147 #ifdef HAL_EFUSE_MEMORY
1148 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1149 	PEFUSE_HAL		pEfuseHal = &pHalData->EfuseHal;
1150 #endif
1151 	u16 efuse_addr = 0;
1152 	u16 start_addr = 0; /*  for debug */
1153 	u8 hoffset = 0, hworden = 0;
1154 	u8 efuse_data, word_cnts = 0;
1155 	u32 count = 0; /*  for debug */
1156 
1157 
1158 	if (bPseudoTest) {
1159 #ifdef HAL_EFUSE_MEMORY
1160 		efuse_addr = (u16)pEfuseHal->fakeEfuseUsedBytes;
1161 #else
1162 		efuse_addr = (u16)fakeEfuseUsedBytes;
1163 #endif
1164 	} else
1165 		rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
1166 
1167 	start_addr = efuse_addr;
1168 	DBG_8192C("%s: start_efuse_addr = 0x%X\n", __func__, efuse_addr);
1169 
1170 	/*  switch bank back to bank 0 for later BT and wifi use. */
1171 	hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
1172 
1173 	count = 0;
1174 	while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
1175 		if (efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest) == false) {
1176 			DBG_8192C(KERN_ERR "%s: efuse_OneByteRead Fail! addr = 0x%X !!\n", __func__, efuse_addr);
1177 			goto error;
1178 		}
1179 
1180 		if (efuse_data == 0xFF)
1181 			break;
1182 
1183 		if ((start_addr != 0) && (efuse_addr == start_addr)) {
1184 			count++;
1185 			DBG_8192C(FUNC_ADPT_FMT ": [WARNING] efuse raw 0x%X = 0x%02X not 0xFF!!(%d times)\n",
1186 				FUNC_ADPT_ARG(padapter), efuse_addr, efuse_data, count);
1187 
1188 			efuse_data = 0xFF;
1189 			if (count < 4) {
1190 				/*  try again! */
1191 
1192 				if (count > 2) {
1193 					/*  try again form address 0 */
1194 					efuse_addr = 0;
1195 					start_addr = 0;
1196 				}
1197 
1198 				continue;
1199 			}
1200 
1201 			goto error;
1202 		}
1203 
1204 		if (EXT_HEADER(efuse_data)) {
1205 			hoffset = GET_HDR_OFFSET_2_0(efuse_data);
1206 			efuse_addr++;
1207 			efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest);
1208 			if (ALL_WORDS_DISABLED(efuse_data))
1209 				continue;
1210 
1211 			hoffset |= ((efuse_data & 0xF0) >> 1);
1212 			hworden = efuse_data & 0x0F;
1213 		} else {
1214 			hoffset = (efuse_data>>4) & 0x0F;
1215 			hworden = efuse_data & 0x0F;
1216 		}
1217 
1218 		word_cnts = Efuse_CalculateWordCnts(hworden);
1219 		efuse_addr += (word_cnts*2)+1;
1220 	}
1221 
1222 	if (bPseudoTest) {
1223 #ifdef HAL_EFUSE_MEMORY
1224 		pEfuseHal->fakeEfuseUsedBytes = efuse_addr;
1225 #else
1226 		fakeEfuseUsedBytes = efuse_addr;
1227 #endif
1228 	} else
1229 		rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
1230 
1231 	goto exit;
1232 
1233 error:
1234 	/*  report max size to prevent wirte efuse */
1235 	EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &efuse_addr, bPseudoTest);
1236 
1237 exit:
1238 	DBG_8192C("%s: CurrentSize =%d\n", __func__, efuse_addr);
1239 
1240 	return efuse_addr;
1241 }
1242 
1243 static u16 hal_EfuseGetCurrentSize_BT(struct adapter *padapter, u8 bPseudoTest)
1244 {
1245 #ifdef HAL_EFUSE_MEMORY
1246 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1247 	PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
1248 #endif
1249 	u16 btusedbytes;
1250 	u16 efuse_addr;
1251 	u8 bank, startBank;
1252 	u8 hoffset = 0, hworden = 0;
1253 	u8 efuse_data, word_cnts = 0;
1254 	u16 retU2 = 0;
1255 
1256 	if (bPseudoTest) {
1257 #ifdef HAL_EFUSE_MEMORY
1258 		btusedbytes = pEfuseHal->fakeBTEfuseUsedBytes;
1259 #else
1260 		btusedbytes = fakeBTEfuseUsedBytes;
1261 #endif
1262 	} else
1263 		rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&btusedbytes);
1264 
1265 	efuse_addr = (u16)((btusedbytes%EFUSE_BT_REAL_BANK_CONTENT_LEN));
1266 	startBank = (u8)(1+(btusedbytes/EFUSE_BT_REAL_BANK_CONTENT_LEN));
1267 
1268 	DBG_8192C("%s: start from bank =%d addr = 0x%X\n", __func__, startBank, efuse_addr);
1269 
1270 	EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &retU2, bPseudoTest);
1271 
1272 	for (bank = startBank; bank < 3; bank++) {
1273 		if (hal_EfuseSwitchToBank(padapter, bank, bPseudoTest) == false) {
1274 			DBG_8192C(KERN_ERR "%s: switch bank(%d) Fail!!\n", __func__, bank);
1275 			/* bank = EFUSE_MAX_BANK; */
1276 			break;
1277 		}
1278 
1279 		/*  only when bank is switched we have to reset the efuse_addr. */
1280 		if (bank != startBank)
1281 			efuse_addr = 0;
1282 #if 1
1283 
1284 		while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
1285 			if (efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest) == false) {
1286 				DBG_8192C(KERN_ERR "%s: efuse_OneByteRead Fail! addr = 0x%X !!\n", __func__, efuse_addr);
1287 				/* bank = EFUSE_MAX_BANK; */
1288 				break;
1289 			}
1290 			DBG_8192C("%s: efuse_OneByteRead ! addr = 0x%X !efuse_data = 0x%X! bank =%d\n", __func__, efuse_addr, efuse_data, bank);
1291 
1292 			if (efuse_data == 0xFF)
1293 				break;
1294 
1295 			if (EXT_HEADER(efuse_data)) {
1296 				hoffset = GET_HDR_OFFSET_2_0(efuse_data);
1297 				efuse_addr++;
1298 				efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest);
1299 				DBG_8192C("%s: efuse_OneByteRead EXT_HEADER ! addr = 0x%X !efuse_data = 0x%X! bank =%d\n", __func__, efuse_addr, efuse_data, bank);
1300 
1301 				if (ALL_WORDS_DISABLED(efuse_data)) {
1302 					efuse_addr++;
1303 					continue;
1304 				}
1305 
1306 /* 				hoffset = ((hoffset & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1); */
1307 				hoffset |= ((efuse_data & 0xF0) >> 1);
1308 				hworden = efuse_data & 0x0F;
1309 			} else {
1310 				hoffset = (efuse_data>>4) & 0x0F;
1311 				hworden =  efuse_data & 0x0F;
1312 			}
1313 
1314 			DBG_8192C(FUNC_ADPT_FMT": Offset =%d Worden =%#X\n",
1315 				FUNC_ADPT_ARG(padapter), hoffset, hworden);
1316 
1317 			word_cnts = Efuse_CalculateWordCnts(hworden);
1318 			/* read next header */
1319 			efuse_addr += (word_cnts*2)+1;
1320 		}
1321 #else
1322 	while (
1323 		bContinual &&
1324 		efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest) &&
1325 		AVAILABLE_EFUSE_ADDR(efuse_addr)
1326 	) {
1327 			if (efuse_data != 0xFF) {
1328 				if ((efuse_data&0x1F) == 0x0F) { /* extended header */
1329 					hoffset = efuse_data;
1330 					efuse_addr++;
1331 					efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest);
1332 					if ((efuse_data & 0x0F) == 0x0F) {
1333 						efuse_addr++;
1334 						continue;
1335 					} else {
1336 						hoffset = ((hoffset & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
1337 						hworden = efuse_data & 0x0F;
1338 					}
1339 				} else {
1340 					hoffset = (efuse_data>>4) & 0x0F;
1341 					hworden =  efuse_data & 0x0F;
1342 				}
1343 				word_cnts = Efuse_CalculateWordCnts(hworden);
1344 				/* read next header */
1345 				efuse_addr = efuse_addr + (word_cnts*2)+1;
1346 			} else
1347 				bContinual = false;
1348 		}
1349 #endif
1350 
1351 
1352 		/*  Check if we need to check next bank efuse */
1353 		if (efuse_addr < retU2)
1354 			break; /*  don't need to check next bank. */
1355 	}
1356 
1357 	retU2 = ((bank-1)*EFUSE_BT_REAL_BANK_CONTENT_LEN)+efuse_addr;
1358 	if (bPseudoTest) {
1359 		pEfuseHal->fakeBTEfuseUsedBytes = retU2;
1360 		/* RT_DISP(FEEPROM, EFUSE_PG, ("Hal_EfuseGetCurrentSize_BT92C(), already use %u bytes\n", pEfuseHal->fakeBTEfuseUsedBytes)); */
1361 	} else {
1362 		pEfuseHal->BTEfuseUsedBytes = retU2;
1363 		/* RT_DISP(FEEPROM, EFUSE_PG, ("Hal_EfuseGetCurrentSize_BT92C(), already use %u bytes\n", pEfuseHal->BTEfuseUsedBytes)); */
1364 	}
1365 
1366 	DBG_8192C("%s: CurrentSize =%d\n", __func__, retU2);
1367 	return retU2;
1368 }
1369 
1370 static u16 Hal_EfuseGetCurrentSize(
1371 	struct adapter *padapter, u8 efuseType, bool bPseudoTest
1372 )
1373 {
1374 	u16 ret = 0;
1375 
1376 	if (efuseType == EFUSE_WIFI)
1377 		ret = hal_EfuseGetCurrentSize_WiFi(padapter, bPseudoTest);
1378 	else
1379 		ret = hal_EfuseGetCurrentSize_BT(padapter, bPseudoTest);
1380 
1381 	return ret;
1382 }
1383 
1384 static u8 Hal_EfuseWordEnableDataWrite(
1385 	struct adapter *padapter,
1386 	u16 efuse_addr,
1387 	u8 word_en,
1388 	u8 *data,
1389 	bool bPseudoTest
1390 )
1391 {
1392 	u16 tmpaddr = 0;
1393 	u16 start_addr = efuse_addr;
1394 	u8 badworden = 0x0F;
1395 	u8 tmpdata[PGPKT_DATA_SIZE];
1396 
1397 
1398 /* 	DBG_8192C("%s: efuse_addr =%#x word_en =%#x\n", __func__, efuse_addr, word_en); */
1399 	memset(tmpdata, 0xFF, PGPKT_DATA_SIZE);
1400 
1401 	if (!(word_en & BIT(0))) {
1402 		tmpaddr = start_addr;
1403 		efuse_OneByteWrite(padapter, start_addr++, data[0], bPseudoTest);
1404 		efuse_OneByteWrite(padapter, start_addr++, data[1], bPseudoTest);
1405 
1406 		efuse_OneByteRead(padapter, tmpaddr, &tmpdata[0], bPseudoTest);
1407 		efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[1], bPseudoTest);
1408 		if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1])) {
1409 			badworden &= (~BIT(0));
1410 		}
1411 	}
1412 	if (!(word_en & BIT(1))) {
1413 		tmpaddr = start_addr;
1414 		efuse_OneByteWrite(padapter, start_addr++, data[2], bPseudoTest);
1415 		efuse_OneByteWrite(padapter, start_addr++, data[3], bPseudoTest);
1416 
1417 		efuse_OneByteRead(padapter, tmpaddr, &tmpdata[2], bPseudoTest);
1418 		efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[3], bPseudoTest);
1419 		if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3])) {
1420 			badworden &= (~BIT(1));
1421 		}
1422 	}
1423 
1424 	if (!(word_en & BIT(2))) {
1425 		tmpaddr = start_addr;
1426 		efuse_OneByteWrite(padapter, start_addr++, data[4], bPseudoTest);
1427 		efuse_OneByteWrite(padapter, start_addr++, data[5], bPseudoTest);
1428 
1429 		efuse_OneByteRead(padapter, tmpaddr, &tmpdata[4], bPseudoTest);
1430 		efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[5], bPseudoTest);
1431 		if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5])) {
1432 			badworden &= (~BIT(2));
1433 		}
1434 	}
1435 
1436 	if (!(word_en & BIT(3))) {
1437 		tmpaddr = start_addr;
1438 		efuse_OneByteWrite(padapter, start_addr++, data[6], bPseudoTest);
1439 		efuse_OneByteWrite(padapter, start_addr++, data[7], bPseudoTest);
1440 
1441 		efuse_OneByteRead(padapter, tmpaddr, &tmpdata[6], bPseudoTest);
1442 		efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[7], bPseudoTest);
1443 		if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7])) {
1444 			badworden &= (~BIT(3));
1445 		}
1446 	}
1447 
1448 	return badworden;
1449 }
1450 
1451 static s32 Hal_EfusePgPacketRead(
1452 	struct adapter *padapter,
1453 	u8 offset,
1454 	u8 *data,
1455 	bool bPseudoTest
1456 )
1457 {
1458 	u8 efuse_data, word_cnts = 0;
1459 	u16 efuse_addr = 0;
1460 	u8 hoffset = 0, hworden = 0;
1461 	u8 i;
1462 	u8 max_section = 0;
1463 	s32	ret;
1464 
1465 
1466 	if (!data)
1467 		return false;
1468 
1469 	EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_EFUSE_MAX_SECTION, &max_section, bPseudoTest);
1470 	if (offset > max_section) {
1471 		DBG_8192C("%s: Packet offset(%d) is illegal(>%d)!\n", __func__, offset, max_section);
1472 		return false;
1473 	}
1474 
1475 	memset(data, 0xFF, PGPKT_DATA_SIZE);
1476 	ret = true;
1477 
1478 	/*  */
1479 	/*  <Roger_TODO> Efuse has been pre-programmed dummy 5Bytes at the end of Efuse by CP. */
1480 	/*  Skip dummy parts to prevent unexpected data read from Efuse. */
1481 	/*  By pass right now. 2009.02.19. */
1482 	/*  */
1483 	while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
1484 		if (efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest) == false) {
1485 			ret = false;
1486 			break;
1487 		}
1488 
1489 		if (efuse_data == 0xFF)
1490 			break;
1491 
1492 		if (EXT_HEADER(efuse_data)) {
1493 			hoffset = GET_HDR_OFFSET_2_0(efuse_data);
1494 			efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest);
1495 			if (ALL_WORDS_DISABLED(efuse_data)) {
1496 				DBG_8192C("%s: Error!! All words disabled!\n", __func__);
1497 				continue;
1498 			}
1499 
1500 			hoffset |= ((efuse_data & 0xF0) >> 1);
1501 			hworden = efuse_data & 0x0F;
1502 		} else {
1503 			hoffset = (efuse_data>>4) & 0x0F;
1504 			hworden =  efuse_data & 0x0F;
1505 		}
1506 
1507 		if (hoffset == offset) {
1508 			for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
1509 				/*  Check word enable condition in the section */
1510 				if (!(hworden & (0x01<<i))) {
1511 					efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest);
1512 /* 					DBG_8192C("%s: efuse[%#X]= 0x%02X\n", __func__, efuse_addr+tmpidx, efuse_data); */
1513 					data[i*2] = efuse_data;
1514 
1515 					efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest);
1516 /* 					DBG_8192C("%s: efuse[%#X]= 0x%02X\n", __func__, efuse_addr+tmpidx, efuse_data); */
1517 					data[(i*2)+1] = efuse_data;
1518 				}
1519 			}
1520 		} else {
1521 			word_cnts = Efuse_CalculateWordCnts(hworden);
1522 			efuse_addr += word_cnts*2;
1523 		}
1524 	}
1525 
1526 	return ret;
1527 }
1528 
1529 static u8 hal_EfusePgCheckAvailableAddr(
1530 	struct adapter *padapter, u8 efuseType, u8 bPseudoTest
1531 )
1532 {
1533 	u16 max_available = 0;
1534 	u16 current_size;
1535 
1536 
1537 	EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &max_available, bPseudoTest);
1538 /* 	DBG_8192C("%s: max_available =%d\n", __func__, max_available); */
1539 
1540 	current_size = Efuse_GetCurrentSize(padapter, efuseType, bPseudoTest);
1541 	if (current_size >= max_available) {
1542 		DBG_8192C("%s: Error!! current_size(%d)>max_available(%d)\n", __func__, current_size, max_available);
1543 		return false;
1544 	}
1545 	return true;
1546 }
1547 
1548 static void hal_EfuseConstructPGPkt(
1549 	u8 offset,
1550 	u8 word_en,
1551 	u8 *pData,
1552 	PPGPKT_STRUCT pTargetPkt
1553 )
1554 {
1555 	memset(pTargetPkt->data, 0xFF, PGPKT_DATA_SIZE);
1556 	pTargetPkt->offset = offset;
1557 	pTargetPkt->word_en = word_en;
1558 	efuse_WordEnableDataRead(word_en, pData, pTargetPkt->data);
1559 	pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
1560 }
1561 
1562 static u8 hal_EfusePartialWriteCheck(
1563 	struct adapter *padapter,
1564 	u8 efuseType,
1565 	u16 *pAddr,
1566 	PPGPKT_STRUCT pTargetPkt,
1567 	u8 bPseudoTest
1568 )
1569 {
1570 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1571 	PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
1572 	u8 bRet = false;
1573 	u16 startAddr = 0, efuse_max_available_len = 0, efuse_max = 0;
1574 	u8 efuse_data = 0;
1575 
1576 	EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &efuse_max_available_len, bPseudoTest);
1577 	EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_EFUSE_CONTENT_LEN_BANK, &efuse_max, bPseudoTest);
1578 
1579 	if (efuseType == EFUSE_WIFI) {
1580 		if (bPseudoTest) {
1581 #ifdef HAL_EFUSE_MEMORY
1582 			startAddr = (u16)pEfuseHal->fakeEfuseUsedBytes;
1583 #else
1584 			startAddr = (u16)fakeEfuseUsedBytes;
1585 #endif
1586 		} else
1587 			rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&startAddr);
1588 	} else {
1589 		if (bPseudoTest) {
1590 #ifdef HAL_EFUSE_MEMORY
1591 			startAddr = (u16)pEfuseHal->fakeBTEfuseUsedBytes;
1592 #else
1593 			startAddr = (u16)fakeBTEfuseUsedBytes;
1594 #endif
1595 		} else
1596 			rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&startAddr);
1597 	}
1598 	startAddr %= efuse_max;
1599 	DBG_8192C("%s: startAddr =%#X\n", __func__, startAddr);
1600 
1601 	while (1) {
1602 		if (startAddr >= efuse_max_available_len) {
1603 			bRet = false;
1604 			DBG_8192C("%s: startAddr(%d) >= efuse_max_available_len(%d)\n", __func__, startAddr, efuse_max_available_len);
1605 			break;
1606 		}
1607 
1608 		if (efuse_OneByteRead(padapter, startAddr, &efuse_data, bPseudoTest) && (efuse_data != 0xFF)) {
1609 #if 1
1610 			bRet = false;
1611 			DBG_8192C("%s: Something Wrong! last bytes(%#X = 0x%02X) is not 0xFF\n",
1612 				__func__, startAddr, efuse_data);
1613 			break;
1614 #else
1615 			if (EXT_HEADER(efuse_data)) {
1616 				cur_header = efuse_data;
1617 				startAddr++;
1618 				efuse_OneByteRead(padapter, startAddr, &efuse_data, bPseudoTest);
1619 				if (ALL_WORDS_DISABLED(efuse_data)) {
1620 					DBG_8192C("%s: Error condition, all words disabled!", __func__);
1621 					bRet = false;
1622 					break;
1623 				} else {
1624 					curPkt.offset = ((cur_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
1625 					curPkt.word_en = efuse_data & 0x0F;
1626 				}
1627 			} else {
1628 				cur_header  =  efuse_data;
1629 				curPkt.offset = (cur_header>>4) & 0x0F;
1630 				curPkt.word_en = cur_header & 0x0F;
1631 			}
1632 
1633 			curPkt.word_cnts = Efuse_CalculateWordCnts(curPkt.word_en);
1634 			/*  if same header is found but no data followed */
1635 			/*  write some part of data followed by the header. */
1636 			if (
1637 				(curPkt.offset == pTargetPkt->offset) &&
1638 				(hal_EfuseCheckIfDatafollowed(padapter, curPkt.word_cnts, startAddr+1, bPseudoTest) == false) &&
1639 				wordEnMatched(pTargetPkt, &curPkt, &matched_wden) == true
1640 			) {
1641 				DBG_8192C("%s: Need to partial write data by the previous wrote header\n", __func__);
1642 				/*  Here to write partial data */
1643 				badworden = Efuse_WordEnableDataWrite(padapter, startAddr+1, matched_wden, pTargetPkt->data, bPseudoTest);
1644 				if (badworden != 0x0F) {
1645 					u32 PgWriteSuccess = 0;
1646 					/*  if write fail on some words, write these bad words again */
1647 					if (efuseType == EFUSE_WIFI)
1648 						PgWriteSuccess = Efuse_PgPacketWrite(padapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest);
1649 					else
1650 						PgWriteSuccess = Efuse_PgPacketWrite_BT(padapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest);
1651 
1652 					if (!PgWriteSuccess) {
1653 						bRet = false;	/*  write fail, return */
1654 						break;
1655 					}
1656 				}
1657 				/*  partial write ok, update the target packet for later use */
1658 				for (i = 0; i < 4; i++) {
1659 					if ((matched_wden & (0x1<<i)) == 0) { /*  this word has been written */
1660 						pTargetPkt->word_en |= (0x1<<i);	/*  disable the word */
1661 					}
1662 				}
1663 				pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
1664 			}
1665 			/*  read from next header */
1666 			startAddr = startAddr + (curPkt.word_cnts*2) + 1;
1667 #endif
1668 		} else {
1669 			/*  not used header, 0xff */
1670 			*pAddr = startAddr;
1671 /* 			DBG_8192C("%s: Started from unused header offset =%d\n", __func__, startAddr)); */
1672 			bRet = true;
1673 			break;
1674 		}
1675 	}
1676 
1677 	return bRet;
1678 }
1679 
1680 static u8 hal_EfusePgPacketWrite1ByteHeader(
1681 	struct adapter *padapter,
1682 	u8 efuseType,
1683 	u16 *pAddr,
1684 	PPGPKT_STRUCT pTargetPkt,
1685 	u8 bPseudoTest
1686 )
1687 {
1688 	u8 pg_header = 0, tmp_header = 0;
1689 	u16 efuse_addr = *pAddr;
1690 	u8 repeatcnt = 0;
1691 
1692 
1693 /* 	DBG_8192C("%s\n", __func__); */
1694 	pg_header = ((pTargetPkt->offset << 4) & 0xf0) | pTargetPkt->word_en;
1695 
1696 	do {
1697 		efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest);
1698 		efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest);
1699 		if (tmp_header != 0xFF)
1700 			break;
1701 		if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
1702 			DBG_8192C("%s: Repeat over limit for pg_header!!\n", __func__);
1703 			return false;
1704 		}
1705 	} while (1);
1706 
1707 	if (tmp_header != pg_header) {
1708 		DBG_8192C(KERN_ERR "%s: PG Header Fail!!(pg = 0x%02X read = 0x%02X)\n", __func__, pg_header, tmp_header);
1709 		return false;
1710 	}
1711 
1712 	*pAddr = efuse_addr;
1713 
1714 	return true;
1715 }
1716 
1717 static u8 hal_EfusePgPacketWrite2ByteHeader(
1718 	struct adapter *padapter,
1719 	u8 efuseType,
1720 	u16 *pAddr,
1721 	PPGPKT_STRUCT pTargetPkt,
1722 	u8 bPseudoTest
1723 )
1724 {
1725 	u16 efuse_addr, efuse_max_available_len = 0;
1726 	u8 pg_header = 0, tmp_header = 0;
1727 	u8 repeatcnt = 0;
1728 
1729 
1730 /* 	DBG_8192C("%s\n", __func__); */
1731 	EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &efuse_max_available_len, bPseudoTest);
1732 
1733 	efuse_addr = *pAddr;
1734 	if (efuse_addr >= efuse_max_available_len) {
1735 		DBG_8192C("%s: addr(%d) over available (%d)!!\n", __func__,
1736 			  efuse_addr, efuse_max_available_len);
1737 		return false;
1738 	}
1739 
1740 	pg_header = ((pTargetPkt->offset & 0x07) << 5) | 0x0F;
1741 /* 	DBG_8192C("%s: pg_header = 0x%x\n", __func__, pg_header); */
1742 
1743 	do {
1744 		efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest);
1745 		efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest);
1746 		if (tmp_header != 0xFF)
1747 			break;
1748 		if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
1749 			DBG_8192C("%s: Repeat over limit for pg_header!!\n", __func__);
1750 			return false;
1751 		}
1752 	} while (1);
1753 
1754 	if (tmp_header != pg_header) {
1755 		DBG_8192C(KERN_ERR "%s: PG Header Fail!!(pg = 0x%02X read = 0x%02X)\n", __func__, pg_header, tmp_header);
1756 		return false;
1757 	}
1758 
1759 	/*  to write ext_header */
1760 	efuse_addr++;
1761 	pg_header = ((pTargetPkt->offset & 0x78) << 1) | pTargetPkt->word_en;
1762 
1763 	do {
1764 		efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest);
1765 		efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest);
1766 		if (tmp_header != 0xFF)
1767 			break;
1768 		if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
1769 			DBG_8192C("%s: Repeat over limit for ext_header!!\n", __func__);
1770 			return false;
1771 		}
1772 	} while (1);
1773 
1774 	if (tmp_header != pg_header) { /* offset PG fail */
1775 		DBG_8192C(KERN_ERR "%s: PG EXT Header Fail!!(pg = 0x%02X read = 0x%02X)\n", __func__, pg_header, tmp_header);
1776 		return false;
1777 	}
1778 
1779 	*pAddr = efuse_addr;
1780 
1781 	return true;
1782 }
1783 
1784 static u8 hal_EfusePgPacketWriteHeader(
1785 	struct adapter *padapter,
1786 	u8 efuseType,
1787 	u16 *pAddr,
1788 	PPGPKT_STRUCT pTargetPkt,
1789 	u8 bPseudoTest
1790 )
1791 {
1792 	u8 bRet = false;
1793 
1794 	if (pTargetPkt->offset >= EFUSE_MAX_SECTION_BASE)
1795 		bRet = hal_EfusePgPacketWrite2ByteHeader(padapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
1796 	else
1797 		bRet = hal_EfusePgPacketWrite1ByteHeader(padapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
1798 
1799 	return bRet;
1800 }
1801 
1802 static u8 hal_EfusePgPacketWriteData(
1803 	struct adapter *padapter,
1804 	u8 efuseType,
1805 	u16 *pAddr,
1806 	PPGPKT_STRUCT pTargetPkt,
1807 	u8 bPseudoTest
1808 )
1809 {
1810 	u16 efuse_addr;
1811 	u8 badworden;
1812 
1813 
1814 	efuse_addr = *pAddr;
1815 	badworden = Efuse_WordEnableDataWrite(padapter, efuse_addr+1, pTargetPkt->word_en, pTargetPkt->data, bPseudoTest);
1816 	if (badworden != 0x0F) {
1817 		DBG_8192C("%s: Fail!!\n", __func__);
1818 		return false;
1819 	}
1820 
1821 /* 	DBG_8192C("%s: ok\n", __func__); */
1822 	return true;
1823 }
1824 
1825 static s32 Hal_EfusePgPacketWrite(
1826 	struct adapter *padapter,
1827 	u8 offset,
1828 	u8 word_en,
1829 	u8 *pData,
1830 	bool bPseudoTest
1831 )
1832 {
1833 	PGPKT_STRUCT targetPkt;
1834 	u16 startAddr = 0;
1835 	u8 efuseType = EFUSE_WIFI;
1836 
1837 	if (!hal_EfusePgCheckAvailableAddr(padapter, efuseType, bPseudoTest))
1838 		return false;
1839 
1840 	hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt);
1841 
1842 	if (!hal_EfusePartialWriteCheck(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1843 		return false;
1844 
1845 	if (!hal_EfusePgPacketWriteHeader(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1846 		return false;
1847 
1848 	if (!hal_EfusePgPacketWriteData(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1849 		return false;
1850 
1851 	return true;
1852 }
1853 
1854 static bool Hal_EfusePgPacketWrite_BT(
1855 	struct adapter *padapter,
1856 	u8 offset,
1857 	u8 word_en,
1858 	u8 *pData,
1859 	bool bPseudoTest
1860 )
1861 {
1862 	PGPKT_STRUCT targetPkt;
1863 	u16 startAddr = 0;
1864 	u8 efuseType = EFUSE_BT;
1865 
1866 	if (!hal_EfusePgCheckAvailableAddr(padapter, efuseType, bPseudoTest))
1867 		return false;
1868 
1869 	hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt);
1870 
1871 	if (!hal_EfusePartialWriteCheck(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1872 		return false;
1873 
1874 	if (!hal_EfusePgPacketWriteHeader(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1875 		return false;
1876 
1877 	if (!hal_EfusePgPacketWriteData(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1878 		return false;
1879 
1880 	return true;
1881 }
1882 
1883 static HAL_VERSION ReadChipVersion8723B(struct adapter *padapter)
1884 {
1885 	u32 value32;
1886 	HAL_VERSION ChipVersion;
1887 	struct hal_com_data *pHalData;
1888 
1889 /* YJ, TODO, move read chip type here */
1890 	pHalData = GET_HAL_DATA(padapter);
1891 
1892 	value32 = rtw_read32(padapter, REG_SYS_CFG);
1893 	ChipVersion.ICType = CHIP_8723B;
1894 	ChipVersion.ChipType = ((value32 & RTL_ID) ? TEST_CHIP : NORMAL_CHIP);
1895 	ChipVersion.RFType = RF_TYPE_1T1R;
1896 	ChipVersion.VendorType = ((value32 & VENDOR_ID) ? CHIP_VENDOR_UMC : CHIP_VENDOR_TSMC);
1897 	ChipVersion.CUTVersion = (value32 & CHIP_VER_RTL_MASK)>>CHIP_VER_RTL_SHIFT; /*  IC version (CUT) */
1898 
1899 	/*  For regulator mode. by tynli. 2011.01.14 */
1900 	pHalData->RegulatorMode = ((value32 & SPS_SEL) ? RT_LDO_REGULATOR : RT_SWITCHING_REGULATOR);
1901 
1902 	value32 = rtw_read32(padapter, REG_GPIO_OUTSTS);
1903 	ChipVersion.ROMVer = ((value32 & RF_RL_ID) >> 20);	/*  ROM code version. */
1904 
1905 	/*  For multi-function consideration. Added by Roger, 2010.10.06. */
1906 	pHalData->MultiFunc = RT_MULTI_FUNC_NONE;
1907 	value32 = rtw_read32(padapter, REG_MULTI_FUNC_CTRL);
1908 	pHalData->MultiFunc |= ((value32 & WL_FUNC_EN) ? RT_MULTI_FUNC_WIFI : 0);
1909 	pHalData->MultiFunc |= ((value32 & BT_FUNC_EN) ? RT_MULTI_FUNC_BT : 0);
1910 	pHalData->MultiFunc |= ((value32 & GPS_FUNC_EN) ? RT_MULTI_FUNC_GPS : 0);
1911 	pHalData->PolarityCtl = ((value32 & WL_HWPDN_SL) ? RT_POLARITY_HIGH_ACT : RT_POLARITY_LOW_ACT);
1912 #if 1
1913 	dump_chip_info(ChipVersion);
1914 #endif
1915 	pHalData->VersionID = ChipVersion;
1916 	if (IS_1T2R(ChipVersion))
1917 		pHalData->rf_type = RF_1T2R;
1918 	else if (IS_2T2R(ChipVersion))
1919 		pHalData->rf_type = RF_2T2R;
1920 	else
1921 		pHalData->rf_type = RF_1T1R;
1922 
1923 	MSG_8192C("RF_Type is %x!!\n", pHalData->rf_type);
1924 
1925 	return ChipVersion;
1926 }
1927 
1928 static void rtl8723b_read_chip_version(struct adapter *padapter)
1929 {
1930 	ReadChipVersion8723B(padapter);
1931 }
1932 
1933 void rtl8723b_InitBeaconParameters(struct adapter *padapter)
1934 {
1935 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1936 	u16 val16;
1937 	u8 val8;
1938 
1939 
1940 	val8 = DIS_TSF_UDT;
1941 	val16 = val8 | (val8 << 8); /*  port0 and port1 */
1942 
1943 	/*  Enable prot0 beacon function for PSTDMA */
1944 	val16 |= EN_BCN_FUNCTION;
1945 
1946 	rtw_write16(padapter, REG_BCN_CTRL, val16);
1947 
1948 	/*  TODO: Remove these magic number */
1949 	rtw_write16(padapter, REG_TBTT_PROHIBIT, 0x6404);/*  ms */
1950 	/*  Firmware will control REG_DRVERLYINT when power saving is enable, */
1951 	/*  so don't set this register on STA mode. */
1952 	if (check_fwstate(&padapter->mlmepriv, WIFI_STATION_STATE) == false)
1953 		rtw_write8(padapter, REG_DRVERLYINT, DRIVER_EARLY_INT_TIME_8723B); /*  5ms */
1954 	rtw_write8(padapter, REG_BCNDMATIM, BCN_DMA_ATIME_INT_TIME_8723B); /*  2ms */
1955 
1956 	/*  Suggested by designer timchen. Change beacon AIFS to the largest number */
1957 	/*  beacause test chip does not contension before sending beacon. by tynli. 2009.11.03 */
1958 	rtw_write16(padapter, REG_BCNTCFG, 0x660F);
1959 
1960 	pHalData->RegBcnCtrlVal = rtw_read8(padapter, REG_BCN_CTRL);
1961 	pHalData->RegTxPause = rtw_read8(padapter, REG_TXPAUSE);
1962 	pHalData->RegFwHwTxQCtrl = rtw_read8(padapter, REG_FWHW_TXQ_CTRL+2);
1963 	pHalData->RegReg542 = rtw_read8(padapter, REG_TBTT_PROHIBIT+2);
1964 	pHalData->RegCR_1 = rtw_read8(padapter, REG_CR+1);
1965 }
1966 
1967 void _InitBurstPktLen_8723BS(struct adapter *Adapter)
1968 {
1969 	struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
1970 
1971 	rtw_write8(Adapter, 0x4c7, rtw_read8(Adapter, 0x4c7)|BIT(7)); /* enable single pkt ampdu */
1972 	rtw_write8(Adapter, REG_RX_PKT_LIMIT_8723B, 0x18);		/* for VHT packet length 11K */
1973 	rtw_write8(Adapter, REG_MAX_AGGR_NUM_8723B, 0x1F);
1974 	rtw_write8(Adapter, REG_PIFS_8723B, 0x00);
1975 	rtw_write8(Adapter, REG_FWHW_TXQ_CTRL_8723B, rtw_read8(Adapter, REG_FWHW_TXQ_CTRL)&(~BIT(7)));
1976 	if (pHalData->AMPDUBurstMode)
1977 		rtw_write8(Adapter, REG_AMPDU_BURST_MODE_8723B,  0x5F);
1978 	rtw_write8(Adapter, REG_AMPDU_MAX_TIME_8723B, 0x70);
1979 
1980 	/*  ARFB table 9 for 11ac 5G 2SS */
1981 	rtw_write32(Adapter, REG_ARFR0_8723B, 0x00000010);
1982 	if (IS_NORMAL_CHIP(pHalData->VersionID))
1983 		rtw_write32(Adapter, REG_ARFR0_8723B+4, 0xfffff000);
1984 	else
1985 		rtw_write32(Adapter, REG_ARFR0_8723B+4, 0x3e0ff000);
1986 
1987 	/*  ARFB table 10 for 11ac 5G 1SS */
1988 	rtw_write32(Adapter, REG_ARFR1_8723B, 0x00000010);
1989 	rtw_write32(Adapter, REG_ARFR1_8723B+4, 0x003ff000);
1990 }
1991 
1992 static void ResumeTxBeacon(struct adapter *padapter)
1993 {
1994 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1995 
1996 
1997 	/*  2010.03.01. Marked by tynli. No need to call workitem beacause we record the value */
1998 	/*  which should be read from register to a global variable. */
1999 
2000 	RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("+ResumeTxBeacon\n"));
2001 
2002 	pHalData->RegFwHwTxQCtrl |= BIT(6);
2003 	rtw_write8(padapter, REG_FWHW_TXQ_CTRL+2, pHalData->RegFwHwTxQCtrl);
2004 	rtw_write8(padapter, REG_TBTT_PROHIBIT+1, 0xff);
2005 	pHalData->RegReg542 |= BIT(0);
2006 	rtw_write8(padapter, REG_TBTT_PROHIBIT+2, pHalData->RegReg542);
2007 }
2008 
2009 static void StopTxBeacon(struct adapter *padapter)
2010 {
2011 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2012 
2013 
2014 	/*  2010.03.01. Marked by tynli. No need to call workitem beacause we record the value */
2015 	/*  which should be read from register to a global variable. */
2016 
2017 	RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("+StopTxBeacon\n"));
2018 
2019 	pHalData->RegFwHwTxQCtrl &= ~BIT(6);
2020 	rtw_write8(padapter, REG_FWHW_TXQ_CTRL+2, pHalData->RegFwHwTxQCtrl);
2021 	rtw_write8(padapter, REG_TBTT_PROHIBIT+1, 0x64);
2022 	pHalData->RegReg542 &= ~BIT(0);
2023 	rtw_write8(padapter, REG_TBTT_PROHIBIT+2, pHalData->RegReg542);
2024 
2025 	CheckFwRsvdPageContent(padapter);  /*  2010.06.23. Added by tynli. */
2026 }
2027 
2028 static void _BeaconFunctionEnable(struct adapter *padapter, u8 Enable, u8 Linked)
2029 {
2030 	rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT | EN_BCN_FUNCTION | DIS_BCNQ_SUB);
2031 	rtw_write8(padapter, REG_RD_CTRL+1, 0x6F);
2032 }
2033 
2034 static void rtl8723b_SetBeaconRelatedRegisters(struct adapter *padapter)
2035 {
2036 	u8 val8;
2037 	u32 value32;
2038 	struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
2039 	struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info;
2040 	u32 bcn_ctrl_reg;
2041 
2042 	/* reset TSF, enable update TSF, correcting TSF On Beacon */
2043 
2044 	/* REG_BCN_INTERVAL */
2045 	/* REG_BCNDMATIM */
2046 	/* REG_ATIMWND */
2047 	/* REG_TBTT_PROHIBIT */
2048 	/* REG_DRVERLYINT */
2049 	/* REG_BCN_MAX_ERR */
2050 	/* REG_BCNTCFG (0x510) */
2051 	/* REG_DUAL_TSF_RST */
2052 	/* REG_BCN_CTRL (0x550) */
2053 
2054 
2055 	bcn_ctrl_reg = REG_BCN_CTRL;
2056 
2057 	/*  */
2058 	/*  ATIM window */
2059 	/*  */
2060 	rtw_write16(padapter, REG_ATIMWND, 2);
2061 
2062 	/*  */
2063 	/*  Beacon interval (in unit of TU). */
2064 	/*  */
2065 	rtw_write16(padapter, REG_BCN_INTERVAL, pmlmeinfo->bcn_interval);
2066 
2067 	rtl8723b_InitBeaconParameters(padapter);
2068 
2069 	rtw_write8(padapter, REG_SLOT, 0x09);
2070 
2071 	/*  */
2072 	/*  Reset TSF Timer to zero, added by Roger. 2008.06.24 */
2073 	/*  */
2074 	value32 = rtw_read32(padapter, REG_TCR);
2075 	value32 &= ~TSFRST;
2076 	rtw_write32(padapter, REG_TCR, value32);
2077 
2078 	value32 |= TSFRST;
2079 	rtw_write32(padapter, REG_TCR, value32);
2080 
2081 	/*  NOTE: Fix test chip's bug (about contention windows's randomness) */
2082 	if (check_fwstate(&padapter->mlmepriv, WIFI_ADHOC_STATE|WIFI_ADHOC_MASTER_STATE|WIFI_AP_STATE) == true) {
2083 		rtw_write8(padapter, REG_RXTSF_OFFSET_CCK, 0x50);
2084 		rtw_write8(padapter, REG_RXTSF_OFFSET_OFDM, 0x50);
2085 	}
2086 
2087 	_BeaconFunctionEnable(padapter, true, true);
2088 
2089 	ResumeTxBeacon(padapter);
2090 	val8 = rtw_read8(padapter, bcn_ctrl_reg);
2091 	val8 |= DIS_BCNQ_SUB;
2092 	rtw_write8(padapter, bcn_ctrl_reg, val8);
2093 }
2094 
2095 static void rtl8723b_GetHalODMVar(
2096 	struct adapter *Adapter,
2097 	enum HAL_ODM_VARIABLE eVariable,
2098 	void *pValue1,
2099 	void *pValue2
2100 )
2101 {
2102 	GetHalODMVar(Adapter, eVariable, pValue1, pValue2);
2103 }
2104 
2105 static void rtl8723b_SetHalODMVar(
2106 	struct adapter *Adapter,
2107 	enum HAL_ODM_VARIABLE eVariable,
2108 	void *pValue1,
2109 	bool bSet
2110 )
2111 {
2112 	SetHalODMVar(Adapter, eVariable, pValue1, bSet);
2113 }
2114 
2115 static void hal_notch_filter_8723b(struct adapter *adapter, bool enable)
2116 {
2117 	if (enable) {
2118 		DBG_871X("Enable notch filter\n");
2119 		rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) | BIT1);
2120 	} else {
2121 		DBG_871X("Disable notch filter\n");
2122 		rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) & ~BIT1);
2123 	}
2124 }
2125 
2126 static void UpdateHalRAMask8723B(struct adapter *padapter, u32 mac_id, u8 rssi_level)
2127 {
2128 	u32 mask, rate_bitmap;
2129 	u8 shortGIrate = false;
2130 	struct sta_info *psta;
2131 	struct hal_com_data	*pHalData = GET_HAL_DATA(padapter);
2132 	struct dm_priv *pdmpriv = &pHalData->dmpriv;
2133 	struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
2134 	struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
2135 
2136 	DBG_871X("%s(): mac_id =%d rssi_level =%d\n", __func__, mac_id, rssi_level);
2137 
2138 	if (mac_id >= NUM_STA) /* CAM_SIZE */
2139 		return;
2140 
2141 	psta = pmlmeinfo->FW_sta_info[mac_id].psta;
2142 	if (psta == NULL)
2143 		return;
2144 
2145 	shortGIrate = query_ra_short_GI(psta);
2146 
2147 	mask = psta->ra_mask;
2148 
2149 	rate_bitmap = 0xffffffff;
2150 	rate_bitmap = ODM_Get_Rate_Bitmap(&pHalData->odmpriv, mac_id, mask, rssi_level);
2151 	DBG_871X("%s => mac_id:%d, networkType:0x%02x, mask:0x%08x\n\t ==> rssi_level:%d, rate_bitmap:0x%08x\n",
2152 			__func__, mac_id, psta->wireless_mode, mask, rssi_level, rate_bitmap);
2153 
2154 	mask &= rate_bitmap;
2155 
2156 	rate_bitmap = rtw_btcoex_GetRaMask(padapter);
2157 	mask &= ~rate_bitmap;
2158 
2159 #ifdef CONFIG_CMCC_TEST
2160 	if (pmlmeext->cur_wireless_mode & WIRELESS_11G) {
2161 		if (mac_id == 0) {
2162 			DBG_871X("CMCC_BT update raid entry, mask = 0x%x\n", mask);
2163 			mask &= 0xffffff00; /* disable CCK & <24M OFDM rate for 11G mode for CMCC */
2164 			DBG_871X("CMCC_BT update raid entry, mask = 0x%x\n", mask);
2165 		}
2166 	}
2167 #endif
2168 
2169 	if (pHalData->fw_ractrl == true) {
2170 		rtl8723b_set_FwMacIdConfig_cmd(padapter, mac_id, psta->raid, psta->bw_mode, shortGIrate, mask);
2171 	}
2172 
2173 	/* set correct initial date rate for each mac_id */
2174 	pdmpriv->INIDATA_RATE[mac_id] = psta->init_rate;
2175 	DBG_871X("%s(): mac_id =%d raid = 0x%x bw =%d mask = 0x%x init_rate = 0x%x\n", __func__, mac_id, psta->raid, psta->bw_mode, mask, psta->init_rate);
2176 }
2177 
2178 
2179 void rtl8723b_set_hal_ops(struct hal_ops *pHalFunc)
2180 {
2181 	pHalFunc->free_hal_data = &rtl8723b_free_hal_data;
2182 
2183 	pHalFunc->dm_init = &rtl8723b_init_dm_priv;
2184 
2185 	pHalFunc->read_chip_version = &rtl8723b_read_chip_version;
2186 
2187 	pHalFunc->UpdateRAMaskHandler = &UpdateHalRAMask8723B;
2188 
2189 	pHalFunc->set_bwmode_handler = &PHY_SetBWMode8723B;
2190 	pHalFunc->set_channel_handler = &PHY_SwChnl8723B;
2191 	pHalFunc->set_chnl_bw_handler = &PHY_SetSwChnlBWMode8723B;
2192 
2193 	pHalFunc->set_tx_power_level_handler = &PHY_SetTxPowerLevel8723B;
2194 	pHalFunc->get_tx_power_level_handler = &PHY_GetTxPowerLevel8723B;
2195 
2196 	pHalFunc->hal_dm_watchdog = &rtl8723b_HalDmWatchDog;
2197 	pHalFunc->hal_dm_watchdog_in_lps = &rtl8723b_HalDmWatchDog_in_LPS;
2198 
2199 
2200 	pHalFunc->SetBeaconRelatedRegistersHandler = &rtl8723b_SetBeaconRelatedRegisters;
2201 
2202 	pHalFunc->Add_RateATid = &rtl8723b_Add_RateATid;
2203 
2204 	pHalFunc->run_thread = &rtl8723b_start_thread;
2205 	pHalFunc->cancel_thread = &rtl8723b_stop_thread;
2206 
2207 	pHalFunc->read_bbreg = &PHY_QueryBBReg_8723B;
2208 	pHalFunc->write_bbreg = &PHY_SetBBReg_8723B;
2209 	pHalFunc->read_rfreg = &PHY_QueryRFReg_8723B;
2210 	pHalFunc->write_rfreg = &PHY_SetRFReg_8723B;
2211 
2212 	/*  Efuse related function */
2213 	pHalFunc->BTEfusePowerSwitch = &Hal_BT_EfusePowerSwitch;
2214 	pHalFunc->EfusePowerSwitch = &Hal_EfusePowerSwitch;
2215 	pHalFunc->ReadEFuse = &Hal_ReadEFuse;
2216 	pHalFunc->EFUSEGetEfuseDefinition = &Hal_GetEfuseDefinition;
2217 	pHalFunc->EfuseGetCurrentSize = &Hal_EfuseGetCurrentSize;
2218 	pHalFunc->Efuse_PgPacketRead = &Hal_EfusePgPacketRead;
2219 	pHalFunc->Efuse_PgPacketWrite = &Hal_EfusePgPacketWrite;
2220 	pHalFunc->Efuse_WordEnableDataWrite = &Hal_EfuseWordEnableDataWrite;
2221 	pHalFunc->Efuse_PgPacketWrite_BT = &Hal_EfusePgPacketWrite_BT;
2222 
2223 	pHalFunc->GetHalODMVarHandler = &rtl8723b_GetHalODMVar;
2224 	pHalFunc->SetHalODMVarHandler = &rtl8723b_SetHalODMVar;
2225 
2226 	pHalFunc->xmit_thread_handler = &hal_xmit_handler;
2227 	pHalFunc->hal_notch_filter = &hal_notch_filter_8723b;
2228 
2229 	pHalFunc->c2h_handler = c2h_handler_8723b;
2230 	pHalFunc->c2h_id_filter_ccx = c2h_id_filter_ccx_8723b;
2231 
2232 	pHalFunc->fill_h2c_cmd = &FillH2CCmd8723B;
2233 }
2234 
2235 void rtl8723b_InitAntenna_Selection(struct adapter *padapter)
2236 {
2237 	struct hal_com_data *pHalData;
2238 	u8 val;
2239 
2240 
2241 	pHalData = GET_HAL_DATA(padapter);
2242 
2243 	val = rtw_read8(padapter, REG_LEDCFG2);
2244 	/*  Let 8051 take control antenna settting */
2245 	val |= BIT(7); /*  DPDT_SEL_EN, 0x4C[23] */
2246 	rtw_write8(padapter, REG_LEDCFG2, val);
2247 }
2248 
2249 void rtl8723b_init_default_value(struct adapter *padapter)
2250 {
2251 	struct hal_com_data *pHalData;
2252 	struct dm_priv *pdmpriv;
2253 	u8 i;
2254 
2255 
2256 	pHalData = GET_HAL_DATA(padapter);
2257 	pdmpriv = &pHalData->dmpriv;
2258 
2259 	padapter->registrypriv.wireless_mode = WIRELESS_11BG_24N;
2260 
2261 	/*  init default value */
2262 	pHalData->fw_ractrl = false;
2263 	pHalData->bIQKInitialized = false;
2264 	if (!adapter_to_pwrctl(padapter)->bkeepfwalive)
2265 		pHalData->LastHMEBoxNum = 0;
2266 
2267 	pHalData->bIQKInitialized = false;
2268 
2269 	/*  init dm default value */
2270 	pdmpriv->TM_Trigger = 0;/* for IQK */
2271 /* 	pdmpriv->binitialized = false; */
2272 /* 	pdmpriv->prv_traffic_idx = 3; */
2273 /* 	pdmpriv->initialize = 0; */
2274 
2275 	pdmpriv->ThermalValue_HP_index = 0;
2276 	for (i = 0; i < HP_THERMAL_NUM; i++)
2277 		pdmpriv->ThermalValue_HP[i] = 0;
2278 
2279 	/*  init Efuse variables */
2280 	pHalData->EfuseUsedBytes = 0;
2281 	pHalData->EfuseUsedPercentage = 0;
2282 #ifdef HAL_EFUSE_MEMORY
2283 	pHalData->EfuseHal.fakeEfuseBank = 0;
2284 	pHalData->EfuseHal.fakeEfuseUsedBytes = 0;
2285 	memset(pHalData->EfuseHal.fakeEfuseContent, 0xFF, EFUSE_MAX_HW_SIZE);
2286 	memset(pHalData->EfuseHal.fakeEfuseInitMap, 0xFF, EFUSE_MAX_MAP_LEN);
2287 	memset(pHalData->EfuseHal.fakeEfuseModifiedMap, 0xFF, EFUSE_MAX_MAP_LEN);
2288 	pHalData->EfuseHal.BTEfuseUsedBytes = 0;
2289 	pHalData->EfuseHal.BTEfuseUsedPercentage = 0;
2290 	memset(pHalData->EfuseHal.BTEfuseContent, 0xFF, EFUSE_MAX_BT_BANK*EFUSE_MAX_HW_SIZE);
2291 	memset(pHalData->EfuseHal.BTEfuseInitMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
2292 	memset(pHalData->EfuseHal.BTEfuseModifiedMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
2293 	pHalData->EfuseHal.fakeBTEfuseUsedBytes = 0;
2294 	memset(pHalData->EfuseHal.fakeBTEfuseContent, 0xFF, EFUSE_MAX_BT_BANK*EFUSE_MAX_HW_SIZE);
2295 	memset(pHalData->EfuseHal.fakeBTEfuseInitMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
2296 	memset(pHalData->EfuseHal.fakeBTEfuseModifiedMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
2297 #endif
2298 }
2299 
2300 u8 GetEEPROMSize8723B(struct adapter *padapter)
2301 {
2302 	u8 size = 0;
2303 	u32 cr;
2304 
2305 	cr = rtw_read16(padapter, REG_9346CR);
2306 	/*  6: EEPROM used is 93C46, 4: boot from E-Fuse. */
2307 	size = (cr & BOOT_FROM_EEPROM) ? 6 : 4;
2308 
2309 	MSG_8192C("EEPROM type is %s\n", size == 4 ? "E-FUSE" : "93C46");
2310 
2311 	return size;
2312 }
2313 
2314 /*  */
2315 /*  */
2316 /*  LLT R/W/Init function */
2317 /*  */
2318 /*  */
2319 s32 rtl8723b_InitLLTTable(struct adapter *padapter)
2320 {
2321 	unsigned long start, passing_time;
2322 	u32 val32;
2323 	s32 ret;
2324 
2325 
2326 	ret = _FAIL;
2327 
2328 	val32 = rtw_read32(padapter, REG_AUTO_LLT);
2329 	val32 |= BIT_AUTO_INIT_LLT;
2330 	rtw_write32(padapter, REG_AUTO_LLT, val32);
2331 
2332 	start = jiffies;
2333 
2334 	do {
2335 		val32 = rtw_read32(padapter, REG_AUTO_LLT);
2336 		if (!(val32 & BIT_AUTO_INIT_LLT)) {
2337 			ret = _SUCCESS;
2338 			break;
2339 		}
2340 
2341 		passing_time = jiffies_to_msecs(jiffies - start);
2342 		if (passing_time > 1000) {
2343 			DBG_8192C(
2344 				"%s: FAIL!! REG_AUTO_LLT(0x%X) =%08x\n",
2345 				__func__,
2346 				REG_AUTO_LLT,
2347 				val32
2348 			);
2349 			break;
2350 		}
2351 
2352 		msleep(1);
2353 	} while (1);
2354 
2355 	return ret;
2356 }
2357 
2358 static bool Hal_GetChnlGroup8723B(u8 Channel, u8 *pGroup)
2359 {
2360 	bool bIn24G = true;
2361 
2362 	if (Channel <= 14) {
2363 		bIn24G = true;
2364 
2365 		if (1  <= Channel && Channel <= 2)
2366 			*pGroup = 0;
2367 		else if (3  <= Channel && Channel <= 5)
2368 			*pGroup = 1;
2369 		else if (6  <= Channel && Channel <= 8)
2370 			*pGroup = 2;
2371 		else if (9  <= Channel && Channel <= 11)
2372 			*pGroup = 3;
2373 		else if (12 <= Channel && Channel <= 14)
2374 			*pGroup = 4;
2375 		else {
2376 			RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("==>Hal_GetChnlGroup8723B in 2.4 G, but Channel %d in Group not found\n", Channel));
2377 		}
2378 	} else {
2379 		bIn24G = false;
2380 
2381 		if (36   <= Channel && Channel <=  42)
2382 			*pGroup = 0;
2383 		else if (44   <= Channel && Channel <=  48)
2384 			*pGroup = 1;
2385 		else if (50   <= Channel && Channel <=  58)
2386 			*pGroup = 2;
2387 		else if (60   <= Channel && Channel <=  64)
2388 			*pGroup = 3;
2389 		else if (100  <= Channel && Channel <= 106)
2390 			*pGroup = 4;
2391 		else if (108  <= Channel && Channel <= 114)
2392 			*pGroup = 5;
2393 		else if (116  <= Channel && Channel <= 122)
2394 			*pGroup = 6;
2395 		else if (124  <= Channel && Channel <= 130)
2396 			*pGroup = 7;
2397 		else if (132  <= Channel && Channel <= 138)
2398 			*pGroup = 8;
2399 		else if (140  <= Channel && Channel <= 144)
2400 			*pGroup = 9;
2401 		else if (149  <= Channel && Channel <= 155)
2402 			*pGroup = 10;
2403 		else if (157  <= Channel && Channel <= 161)
2404 			*pGroup = 11;
2405 		else if (165  <= Channel && Channel <= 171)
2406 			*pGroup = 12;
2407 		else if (173  <= Channel && Channel <= 177)
2408 			*pGroup = 13;
2409 		else {
2410 			RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("==>Hal_GetChnlGroup8723B in 5G, but Channel %d in Group not found\n", Channel));
2411 		}
2412 
2413 	}
2414 	RT_TRACE(
2415 		_module_hci_hal_init_c_,
2416 		_drv_info_,
2417 		(
2418 			"<==Hal_GetChnlGroup8723B,  (%s) Channel = %d, Group =%d,\n",
2419 			bIn24G ? "2.4G" : "5G",
2420 			Channel,
2421 			*pGroup
2422 		)
2423 	);
2424 	return bIn24G;
2425 }
2426 
2427 void Hal_InitPGData(struct adapter *padapter, u8 *PROMContent)
2428 {
2429 	struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
2430 
2431 	if (false == pEEPROM->bautoload_fail_flag) { /*  autoload OK. */
2432 		if (!pEEPROM->EepromOrEfuse) {
2433 			/*  Read EFUSE real map to shadow. */
2434 			EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, false);
2435 			memcpy((void *)PROMContent, (void *)pEEPROM->efuse_eeprom_data, HWSET_MAX_SIZE_8723B);
2436 		}
2437 	} else {/* autoload fail */
2438 		RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("AutoLoad Fail reported from CR9346!!\n"));
2439 		if (false == pEEPROM->EepromOrEfuse)
2440 			EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, false);
2441 		memcpy((void *)PROMContent, (void *)pEEPROM->efuse_eeprom_data, HWSET_MAX_SIZE_8723B);
2442 	}
2443 }
2444 
2445 void Hal_EfuseParseIDCode(struct adapter *padapter, u8 *hwinfo)
2446 {
2447 	struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
2448 /* 	struct hal_com_data	*pHalData = GET_HAL_DATA(padapter); */
2449 	u16 EEPROMId;
2450 
2451 
2452 	/*  Checl 0x8129 again for making sure autoload status!! */
2453 	EEPROMId = le16_to_cpu(*((__le16 *)hwinfo));
2454 	if (EEPROMId != RTL_EEPROM_ID) {
2455 		DBG_8192C("EEPROM ID(%#x) is invalid!!\n", EEPROMId);
2456 		pEEPROM->bautoload_fail_flag = true;
2457 	} else
2458 		pEEPROM->bautoload_fail_flag = false;
2459 
2460 	RT_TRACE(_module_hal_init_c_, _drv_notice_, ("EEPROM ID = 0x%04x\n", EEPROMId));
2461 }
2462 
2463 static void Hal_ReadPowerValueFromPROM_8723B(
2464 	struct adapter *Adapter,
2465 	struct TxPowerInfo24G *pwrInfo24G,
2466 	u8 *PROMContent,
2467 	bool AutoLoadFail
2468 )
2469 {
2470 	struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
2471 	u32 rfPath, eeAddr = EEPROM_TX_PWR_INX_8723B, group, TxCount = 0;
2472 
2473 	memset(pwrInfo24G, 0, sizeof(struct TxPowerInfo24G));
2474 
2475 	if (0xFF == PROMContent[eeAddr+1])
2476 		AutoLoadFail = true;
2477 
2478 	if (AutoLoadFail) {
2479 		DBG_871X("%s(): Use Default value!\n", __func__);
2480 		for (rfPath = 0; rfPath < MAX_RF_PATH; rfPath++) {
2481 			/* 2.4G default value */
2482 			for (group = 0; group < MAX_CHNL_GROUP_24G; group++) {
2483 				pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
2484 				pwrInfo24G->IndexBW40_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
2485 			}
2486 
2487 			for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
2488 				if (TxCount == 0) {
2489 					pwrInfo24G->BW20_Diff[rfPath][0] = EEPROM_DEFAULT_24G_HT20_DIFF;
2490 					pwrInfo24G->OFDM_Diff[rfPath][0] = EEPROM_DEFAULT_24G_OFDM_DIFF;
2491 				} else {
2492 					pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2493 					pwrInfo24G->BW40_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2494 					pwrInfo24G->CCK_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2495 					pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2496 				}
2497 			}
2498 		}
2499 
2500 		return;
2501 	}
2502 
2503 	pHalData->bTXPowerDataReadFromEEPORM = true;		/* YJ, move, 120316 */
2504 
2505 	for (rfPath = 0; rfPath < MAX_RF_PATH; rfPath++) {
2506 		/* 2 2.4G default value */
2507 		for (group = 0; group < MAX_CHNL_GROUP_24G; group++) {
2508 			pwrInfo24G->IndexCCK_Base[rfPath][group] =	PROMContent[eeAddr++];
2509 			if (pwrInfo24G->IndexCCK_Base[rfPath][group] == 0xFF)
2510 				pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
2511 		}
2512 
2513 		for (group = 0; group < MAX_CHNL_GROUP_24G-1; group++) {
2514 			pwrInfo24G->IndexBW40_Base[rfPath][group] =	PROMContent[eeAddr++];
2515 			if (pwrInfo24G->IndexBW40_Base[rfPath][group] == 0xFF)
2516 				pwrInfo24G->IndexBW40_Base[rfPath][group] =	EEPROM_DEFAULT_24G_INDEX;
2517 		}
2518 
2519 		for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
2520 			if (TxCount == 0) {
2521 				pwrInfo24G->BW40_Diff[rfPath][TxCount] = 0;
2522 				if (PROMContent[eeAddr] == 0xFF)
2523 					pwrInfo24G->BW20_Diff[rfPath][TxCount] =	EEPROM_DEFAULT_24G_HT20_DIFF;
2524 				else {
2525 					pwrInfo24G->BW20_Diff[rfPath][TxCount] =	(PROMContent[eeAddr]&0xf0)>>4;
2526 					if (pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT3)		/* 4bit sign number to 8 bit sign number */
2527 						pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0;
2528 				}
2529 
2530 				if (PROMContent[eeAddr] == 0xFF)
2531 					pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_24G_OFDM_DIFF;
2532 				else {
2533 					pwrInfo24G->OFDM_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
2534 					if (pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT3)		/* 4bit sign number to 8 bit sign number */
2535 						pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
2536 				}
2537 				pwrInfo24G->CCK_Diff[rfPath][TxCount] = 0;
2538 				eeAddr++;
2539 			} else {
2540 				if (PROMContent[eeAddr] == 0xFF)
2541 					pwrInfo24G->BW40_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2542 				else {
2543 					pwrInfo24G->BW40_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
2544 					if (pwrInfo24G->BW40_Diff[rfPath][TxCount] & BIT3)		/* 4bit sign number to 8 bit sign number */
2545 						pwrInfo24G->BW40_Diff[rfPath][TxCount] |= 0xF0;
2546 				}
2547 
2548 				if (PROMContent[eeAddr] == 0xFF)
2549 					pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2550 				else {
2551 					pwrInfo24G->BW20_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
2552 					if (pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT3)		/* 4bit sign number to 8 bit sign number */
2553 						pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0;
2554 				}
2555 				eeAddr++;
2556 
2557 				if (PROMContent[eeAddr] == 0xFF)
2558 					pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2559 				else {
2560 					pwrInfo24G->OFDM_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
2561 					if (pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT3)		/* 4bit sign number to 8 bit sign number */
2562 						pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
2563 				}
2564 
2565 				if (PROMContent[eeAddr] == 0xFF)
2566 					pwrInfo24G->CCK_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2567 				else {
2568 					pwrInfo24G->CCK_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
2569 					if (pwrInfo24G->CCK_Diff[rfPath][TxCount] & BIT3)		/* 4bit sign number to 8 bit sign number */
2570 						pwrInfo24G->CCK_Diff[rfPath][TxCount] |= 0xF0;
2571 				}
2572 				eeAddr++;
2573 			}
2574 		}
2575 	}
2576 }
2577 
2578 
2579 void Hal_EfuseParseTxPowerInfo_8723B(
2580 	struct adapter *padapter, u8 *PROMContent, bool AutoLoadFail
2581 )
2582 {
2583 	struct hal_com_data	*pHalData = GET_HAL_DATA(padapter);
2584 	struct TxPowerInfo24G	pwrInfo24G;
2585 	u8 	rfPath, ch, TxCount = 1;
2586 
2587 	Hal_ReadPowerValueFromPROM_8723B(padapter, &pwrInfo24G, PROMContent, AutoLoadFail);
2588 	for (rfPath = 0 ; rfPath < MAX_RF_PATH ; rfPath++) {
2589 		for (ch = 0 ; ch < CHANNEL_MAX_NUMBER; ch++) {
2590 			u8 group = 0;
2591 
2592 			Hal_GetChnlGroup8723B(ch+1, &group);
2593 
2594 			if (ch == 14-1) {
2595 				pHalData->Index24G_CCK_Base[rfPath][ch] = pwrInfo24G.IndexCCK_Base[rfPath][5];
2596 				pHalData->Index24G_BW40_Base[rfPath][ch] = pwrInfo24G.IndexBW40_Base[rfPath][group];
2597 			} else {
2598 				pHalData->Index24G_CCK_Base[rfPath][ch] = pwrInfo24G.IndexCCK_Base[rfPath][group];
2599 				pHalData->Index24G_BW40_Base[rfPath][ch] = pwrInfo24G.IndexBW40_Base[rfPath][group];
2600 			}
2601 #ifdef DEBUG
2602 			RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("======= Path %d, ChannelIndex %d, Group %d =======\n", rfPath, ch, group));
2603 			RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("Index24G_CCK_Base[%d][%d] = 0x%x\n", rfPath, ch, pHalData->Index24G_CCK_Base[rfPath][ch]));
2604 			RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("Index24G_BW40_Base[%d][%d] = 0x%x\n", rfPath, ch, pHalData->Index24G_BW40_Base[rfPath][ch]));
2605 #endif
2606 		}
2607 
2608 		for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
2609 			pHalData->CCK_24G_Diff[rfPath][TxCount] = pwrInfo24G.CCK_Diff[rfPath][TxCount];
2610 			pHalData->OFDM_24G_Diff[rfPath][TxCount] = pwrInfo24G.OFDM_Diff[rfPath][TxCount];
2611 			pHalData->BW20_24G_Diff[rfPath][TxCount] = pwrInfo24G.BW20_Diff[rfPath][TxCount];
2612 			pHalData->BW40_24G_Diff[rfPath][TxCount] = pwrInfo24G.BW40_Diff[rfPath][TxCount];
2613 
2614 #ifdef DEBUG
2615 			RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("--------------------------------------- 2.4G ---------------------------------------\n"));
2616 			RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("CCK_24G_Diff[%d][%d]= %d\n", rfPath, TxCount, pHalData->CCK_24G_Diff[rfPath][TxCount]));
2617 			RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("OFDM_24G_Diff[%d][%d]= %d\n", rfPath, TxCount, pHalData->OFDM_24G_Diff[rfPath][TxCount]));
2618 			RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("BW20_24G_Diff[%d][%d]= %d\n", rfPath, TxCount, pHalData->BW20_24G_Diff[rfPath][TxCount]));
2619 			RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("BW40_24G_Diff[%d][%d]= %d\n", rfPath, TxCount, pHalData->BW40_24G_Diff[rfPath][TxCount]));
2620 #endif
2621 		}
2622 	}
2623 
2624 	/*  2010/10/19 MH Add Regulator recognize for CU. */
2625 	if (!AutoLoadFail) {
2626 		pHalData->EEPROMRegulatory = (PROMContent[EEPROM_RF_BOARD_OPTION_8723B]&0x7);	/* bit0~2 */
2627 		if (PROMContent[EEPROM_RF_BOARD_OPTION_8723B] == 0xFF)
2628 			pHalData->EEPROMRegulatory = (EEPROM_DEFAULT_BOARD_OPTION&0x7);	/* bit0~2 */
2629 	} else
2630 		pHalData->EEPROMRegulatory = 0;
2631 
2632 	RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("EEPROMRegulatory = 0x%x\n", pHalData->EEPROMRegulatory));
2633 }
2634 
2635 void Hal_EfuseParseBTCoexistInfo_8723B(
2636 	struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2637 )
2638 {
2639 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2640 	u8 tempval;
2641 	u32 tmpu4;
2642 
2643 	if (!AutoLoadFail) {
2644 		tmpu4 = rtw_read32(padapter, REG_MULTI_FUNC_CTRL);
2645 		if (tmpu4 & BT_FUNC_EN)
2646 			pHalData->EEPROMBluetoothCoexist = true;
2647 		else
2648 			pHalData->EEPROMBluetoothCoexist = false;
2649 
2650 		pHalData->EEPROMBluetoothType = BT_RTL8723B;
2651 
2652 		tempval = hwinfo[EEPROM_RF_BT_SETTING_8723B];
2653 		if (tempval != 0xFF) {
2654 			pHalData->EEPROMBluetoothAntNum = tempval & BIT(0);
2655 			/*  EFUSE_0xC3[6] == 0, S1(Main)-ODM_RF_PATH_A; */
2656 			/*  EFUSE_0xC3[6] == 1, S0(Aux)-ODM_RF_PATH_B */
2657 			pHalData->ant_path = (tempval & BIT(6))?ODM_RF_PATH_B:ODM_RF_PATH_A;
2658 		} else {
2659 			pHalData->EEPROMBluetoothAntNum = Ant_x1;
2660 			if (pHalData->PackageType == PACKAGE_QFN68)
2661 				pHalData->ant_path = ODM_RF_PATH_B;
2662 			else
2663 				pHalData->ant_path = ODM_RF_PATH_A;
2664 		}
2665 	} else {
2666 		pHalData->EEPROMBluetoothCoexist = false;
2667 		pHalData->EEPROMBluetoothType = BT_RTL8723B;
2668 		pHalData->EEPROMBluetoothAntNum = Ant_x1;
2669 		pHalData->ant_path = ODM_RF_PATH_A;
2670 	}
2671 
2672 	if (padapter->registrypriv.ant_num > 0) {
2673 		DBG_8192C(
2674 			"%s: Apply driver defined antenna number(%d) to replace origin(%d)\n",
2675 			__func__,
2676 			padapter->registrypriv.ant_num,
2677 			pHalData->EEPROMBluetoothAntNum == Ant_x2 ? 2 : 1
2678 		);
2679 
2680 		switch (padapter->registrypriv.ant_num) {
2681 		case 1:
2682 			pHalData->EEPROMBluetoothAntNum = Ant_x1;
2683 			break;
2684 		case 2:
2685 			pHalData->EEPROMBluetoothAntNum = Ant_x2;
2686 			break;
2687 		default:
2688 			DBG_8192C(
2689 				"%s: Discard invalid driver defined antenna number(%d)!\n",
2690 				__func__,
2691 				padapter->registrypriv.ant_num
2692 			);
2693 			break;
2694 		}
2695 	}
2696 
2697 	rtw_btcoex_SetBTCoexist(padapter, pHalData->EEPROMBluetoothCoexist);
2698 	rtw_btcoex_SetChipType(padapter, pHalData->EEPROMBluetoothType);
2699 	rtw_btcoex_SetPGAntNum(padapter, pHalData->EEPROMBluetoothAntNum == Ant_x2 ? 2 : 1);
2700 	if (pHalData->EEPROMBluetoothAntNum == Ant_x1)
2701 		rtw_btcoex_SetSingleAntPath(padapter, pHalData->ant_path);
2702 
2703 	DBG_8192C(
2704 		"%s: %s BT-coex, ant_num =%d\n",
2705 		__func__,
2706 		pHalData->EEPROMBluetoothCoexist == true ? "Enable" : "Disable",
2707 		pHalData->EEPROMBluetoothAntNum == Ant_x2 ? 2 : 1
2708 	);
2709 }
2710 
2711 void Hal_EfuseParseEEPROMVer_8723B(
2712 	struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2713 )
2714 {
2715 	struct hal_com_data	*pHalData = GET_HAL_DATA(padapter);
2716 
2717 /* 	RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("%s(): AutoLoadFail = %d\n", __func__, AutoLoadFail)); */
2718 	if (!AutoLoadFail)
2719 		pHalData->EEPROMVersion = hwinfo[EEPROM_VERSION_8723B];
2720 	else
2721 		pHalData->EEPROMVersion = 1;
2722 	RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("Hal_EfuseParseEEPROMVer(), EEVer = %d\n",
2723 		pHalData->EEPROMVersion));
2724 }
2725 
2726 
2727 
2728 void Hal_EfuseParsePackageType_8723B(
2729 	struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2730 )
2731 {
2732 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2733 	u8 package;
2734 	u8 efuseContent;
2735 
2736 	Efuse_PowerSwitch(padapter, false, true);
2737 	efuse_OneByteRead(padapter, 0x1FB, &efuseContent, false);
2738 	DBG_871X("%s phy efuse read 0x1FB =%x\n", __func__, efuseContent);
2739 	Efuse_PowerSwitch(padapter, false, false);
2740 
2741 	package = efuseContent & 0x7;
2742 	switch (package) {
2743 	case 0x4:
2744 		pHalData->PackageType = PACKAGE_TFBGA79;
2745 		break;
2746 	case 0x5:
2747 		pHalData->PackageType = PACKAGE_TFBGA90;
2748 		break;
2749 	case 0x6:
2750 		pHalData->PackageType = PACKAGE_QFN68;
2751 		break;
2752 	case 0x7:
2753 		pHalData->PackageType = PACKAGE_TFBGA80;
2754 		break;
2755 
2756 	default:
2757 		pHalData->PackageType = PACKAGE_DEFAULT;
2758 		break;
2759 	}
2760 
2761 	DBG_871X("PackageType = 0x%X\n", pHalData->PackageType);
2762 }
2763 
2764 
2765 void Hal_EfuseParseVoltage_8723B(
2766 	struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2767 )
2768 {
2769 	struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
2770 
2771 	/* memcpy(pEEPROM->adjuseVoltageVal, &hwinfo[EEPROM_Voltage_ADDR_8723B], 1); */
2772 	DBG_871X("%s hwinfo[EEPROM_Voltage_ADDR_8723B] =%02x\n", __func__, hwinfo[EEPROM_Voltage_ADDR_8723B]);
2773 	pEEPROM->adjuseVoltageVal = (hwinfo[EEPROM_Voltage_ADDR_8723B] & 0xf0) >> 4;
2774 	DBG_871X("%s pEEPROM->adjuseVoltageVal =%x\n", __func__, pEEPROM->adjuseVoltageVal);
2775 }
2776 
2777 void Hal_EfuseParseChnlPlan_8723B(
2778 	struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2779 )
2780 {
2781 	padapter->mlmepriv.ChannelPlan = hal_com_config_channel_plan(
2782 		padapter,
2783 		hwinfo ? hwinfo[EEPROM_ChannelPlan_8723B] : 0xFF,
2784 		padapter->registrypriv.channel_plan,
2785 		RT_CHANNEL_DOMAIN_WORLD_NULL,
2786 		AutoLoadFail
2787 	);
2788 
2789 	Hal_ChannelPlanToRegulation(padapter, padapter->mlmepriv.ChannelPlan);
2790 
2791 	RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("EEPROM ChannelPlan = 0x%02x\n", padapter->mlmepriv.ChannelPlan));
2792 }
2793 
2794 void Hal_EfuseParseCustomerID_8723B(
2795 	struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2796 )
2797 {
2798 	struct hal_com_data	*pHalData = GET_HAL_DATA(padapter);
2799 
2800 /* 	RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("%s(): AutoLoadFail = %d\n", __func__, AutoLoadFail)); */
2801 	if (!AutoLoadFail)
2802 		pHalData->EEPROMCustomerID = hwinfo[EEPROM_CustomID_8723B];
2803 	else
2804 		pHalData->EEPROMCustomerID = 0;
2805 
2806 	RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("EEPROM Customer ID: 0x%2x\n", pHalData->EEPROMCustomerID));
2807 }
2808 
2809 void Hal_EfuseParseAntennaDiversity_8723B(
2810 	struct adapter *padapter,
2811 	u8 *hwinfo,
2812 	bool AutoLoadFail
2813 )
2814 {
2815 }
2816 
2817 void Hal_EfuseParseXtal_8723B(
2818 	struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2819 )
2820 {
2821 	struct hal_com_data	*pHalData = GET_HAL_DATA(padapter);
2822 
2823 /* 	RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("%s(): AutoLoadFail = %d\n", __func__, AutoLoadFail)); */
2824 	if (!AutoLoadFail) {
2825 		pHalData->CrystalCap = hwinfo[EEPROM_XTAL_8723B];
2826 		if (pHalData->CrystalCap == 0xFF)
2827 			pHalData->CrystalCap = EEPROM_Default_CrystalCap_8723B;	   /* what value should 8812 set? */
2828 	} else
2829 		pHalData->CrystalCap = EEPROM_Default_CrystalCap_8723B;
2830 
2831 	RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("EEPROM CrystalCap: 0x%2x\n", pHalData->CrystalCap));
2832 }
2833 
2834 
2835 void Hal_EfuseParseThermalMeter_8723B(
2836 	struct adapter *padapter, u8 *PROMContent, u8 AutoLoadFail
2837 )
2838 {
2839 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2840 
2841 /* 	RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("%s(): AutoLoadFail = %d\n", __func__, AutoLoadFail)); */
2842 	/*  */
2843 	/*  ThermalMeter from EEPROM */
2844 	/*  */
2845 	if (false == AutoLoadFail)
2846 		pHalData->EEPROMThermalMeter = PROMContent[EEPROM_THERMAL_METER_8723B];
2847 	else
2848 		pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_8723B;
2849 
2850 	if ((pHalData->EEPROMThermalMeter == 0xff) || (true == AutoLoadFail)) {
2851 		pHalData->bAPKThermalMeterIgnore = true;
2852 		pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_8723B;
2853 	}
2854 
2855 	RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("EEPROM ThermalMeter = 0x%x\n", pHalData->EEPROMThermalMeter));
2856 }
2857 
2858 
2859 void Hal_ReadRFGainOffset(
2860 	struct adapter *Adapter, u8 *PROMContent, bool AutoloadFail
2861 )
2862 {
2863 	/*  */
2864 	/*  BB_RF Gain Offset from EEPROM */
2865 	/*  */
2866 
2867 	if (!AutoloadFail) {
2868 		Adapter->eeprompriv.EEPROMRFGainOffset = PROMContent[EEPROM_RF_GAIN_OFFSET];
2869 		DBG_871X("AutoloadFail =%x,\n", AutoloadFail);
2870 		Adapter->eeprompriv.EEPROMRFGainVal = EFUSE_Read1Byte(Adapter, EEPROM_RF_GAIN_VAL);
2871 		DBG_871X("Adapter->eeprompriv.EEPROMRFGainVal =%x\n", Adapter->eeprompriv.EEPROMRFGainVal);
2872 	} else {
2873 		Adapter->eeprompriv.EEPROMRFGainOffset = 0;
2874 		Adapter->eeprompriv.EEPROMRFGainVal = 0xFF;
2875 		DBG_871X("else AutoloadFail =%x,\n", AutoloadFail);
2876 	}
2877 	DBG_871X("EEPRORFGainOffset = 0x%02x\n", Adapter->eeprompriv.EEPROMRFGainOffset);
2878 }
2879 
2880 u8 BWMapping_8723B(struct adapter *Adapter, struct pkt_attrib *pattrib)
2881 {
2882 	u8 BWSettingOfDesc = 0;
2883 	struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
2884 
2885 	/* DBG_871X("BWMapping pHalData->CurrentChannelBW %d, pattrib->bwmode %d\n", pHalData->CurrentChannelBW, pattrib->bwmode); */
2886 
2887 	if (pHalData->CurrentChannelBW == CHANNEL_WIDTH_80) {
2888 		if (pattrib->bwmode == CHANNEL_WIDTH_80)
2889 			BWSettingOfDesc = 2;
2890 		else if (pattrib->bwmode == CHANNEL_WIDTH_40)
2891 			BWSettingOfDesc = 1;
2892 		else
2893 			BWSettingOfDesc = 0;
2894 	} else if (pHalData->CurrentChannelBW == CHANNEL_WIDTH_40) {
2895 		if ((pattrib->bwmode == CHANNEL_WIDTH_40) || (pattrib->bwmode == CHANNEL_WIDTH_80))
2896 			BWSettingOfDesc = 1;
2897 		else
2898 			BWSettingOfDesc = 0;
2899 	} else
2900 		BWSettingOfDesc = 0;
2901 
2902 	/* if (pTcb->bBTTxPacket) */
2903 	/* 	BWSettingOfDesc = 0; */
2904 
2905 	return BWSettingOfDesc;
2906 }
2907 
2908 u8 SCMapping_8723B(struct adapter *Adapter, struct pkt_attrib *pattrib)
2909 {
2910 	u8 SCSettingOfDesc = 0;
2911 	struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
2912 
2913 	/* DBG_871X("SCMapping: pHalData->CurrentChannelBW %d, pHalData->nCur80MhzPrimeSC %d, pHalData->nCur40MhzPrimeSC %d\n", pHalData->CurrentChannelBW, pHalData->nCur80MhzPrimeSC, pHalData->nCur40MhzPrimeSC); */
2914 
2915 	if (pHalData->CurrentChannelBW == CHANNEL_WIDTH_80) {
2916 		if (pattrib->bwmode == CHANNEL_WIDTH_80) {
2917 			SCSettingOfDesc = VHT_DATA_SC_DONOT_CARE;
2918 		} else if (pattrib->bwmode == CHANNEL_WIDTH_40) {
2919 			if (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER)
2920 				SCSettingOfDesc = VHT_DATA_SC_40_LOWER_OF_80MHZ;
2921 			else if (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER)
2922 				SCSettingOfDesc = VHT_DATA_SC_40_UPPER_OF_80MHZ;
2923 			else
2924 				DBG_871X("SCMapping: Not Correct Primary40MHz Setting\n");
2925 		} else {
2926 			if ((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER))
2927 				SCSettingOfDesc = VHT_DATA_SC_20_LOWEST_OF_80MHZ;
2928 			else if ((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER))
2929 				SCSettingOfDesc = VHT_DATA_SC_20_LOWER_OF_80MHZ;
2930 			else if ((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER))
2931 				SCSettingOfDesc = VHT_DATA_SC_20_UPPER_OF_80MHZ;
2932 			else if ((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER))
2933 				SCSettingOfDesc = VHT_DATA_SC_20_UPPERST_OF_80MHZ;
2934 			else
2935 				DBG_871X("SCMapping: Not Correct Primary40MHz Setting\n");
2936 		}
2937 	} else if (pHalData->CurrentChannelBW == CHANNEL_WIDTH_40) {
2938 		/* DBG_871X("SCMapping: HT Case: pHalData->CurrentChannelBW %d, pHalData->nCur40MhzPrimeSC %d\n", pHalData->CurrentChannelBW, pHalData->nCur40MhzPrimeSC); */
2939 
2940 		if (pattrib->bwmode == CHANNEL_WIDTH_40) {
2941 			SCSettingOfDesc = VHT_DATA_SC_DONOT_CARE;
2942 		} else if (pattrib->bwmode == CHANNEL_WIDTH_20) {
2943 			if (pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) {
2944 				SCSettingOfDesc = VHT_DATA_SC_20_UPPER_OF_80MHZ;
2945 			} else if (pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) {
2946 				SCSettingOfDesc = VHT_DATA_SC_20_LOWER_OF_80MHZ;
2947 			} else {
2948 				SCSettingOfDesc = VHT_DATA_SC_DONOT_CARE;
2949 			}
2950 		}
2951 	} else {
2952 		SCSettingOfDesc = VHT_DATA_SC_DONOT_CARE;
2953 	}
2954 
2955 	return SCSettingOfDesc;
2956 }
2957 
2958 static void rtl8723b_cal_txdesc_chksum(struct tx_desc *ptxdesc)
2959 {
2960 	u16 *usPtr = (u16 *)ptxdesc;
2961 	u32 count;
2962 	u32 index;
2963 	u16 checksum = 0;
2964 
2965 
2966 	/*  Clear first */
2967 	ptxdesc->txdw7 &= cpu_to_le32(0xffff0000);
2968 
2969 	/*  checksume is always calculated by first 32 bytes, */
2970 	/*  and it doesn't depend on TX DESC length. */
2971 	/*  Thomas, Lucas@SD4, 20130515 */
2972 	count = 16;
2973 
2974 	for (index = 0; index < count; index++) {
2975 		checksum |= le16_to_cpu(*(__le16 *)(usPtr + index));
2976 	}
2977 
2978 	ptxdesc->txdw7 |= cpu_to_le32(checksum & 0x0000ffff);
2979 }
2980 
2981 static u8 fill_txdesc_sectype(struct pkt_attrib *pattrib)
2982 {
2983 	u8 sectype = 0;
2984 	if ((pattrib->encrypt > 0) && !pattrib->bswenc) {
2985 		switch (pattrib->encrypt) {
2986 		/*  SEC_TYPE */
2987 		case _WEP40_:
2988 		case _WEP104_:
2989 		case _TKIP_:
2990 		case _TKIP_WTMIC_:
2991 			sectype = 1;
2992 			break;
2993 
2994 		case _AES_:
2995 			sectype = 3;
2996 			break;
2997 
2998 		case _NO_PRIVACY_:
2999 		default:
3000 			break;
3001 		}
3002 	}
3003 	return sectype;
3004 }
3005 
3006 static void fill_txdesc_vcs_8723b(struct adapter *padapter, struct pkt_attrib *pattrib, PTXDESC_8723B ptxdesc)
3007 {
3008 	/* DBG_8192C("cvs_mode =%d\n", pattrib->vcs_mode); */
3009 
3010 	if (pattrib->vcs_mode) {
3011 		switch (pattrib->vcs_mode) {
3012 		case RTS_CTS:
3013 			ptxdesc->rtsen = 1;
3014 			/*  ENABLE HW RTS */
3015 			ptxdesc->hw_rts_en = 1;
3016 			break;
3017 
3018 		case CTS_TO_SELF:
3019 			ptxdesc->cts2self = 1;
3020 			break;
3021 
3022 		case NONE_VCS:
3023 		default:
3024 			break;
3025 		}
3026 
3027 		ptxdesc->rtsrate = 8; /*  RTS Rate =24M */
3028 		ptxdesc->rts_ratefb_lmt = 0xF;
3029 
3030 		if (padapter->mlmeextpriv.mlmext_info.preamble_mode == PREAMBLE_SHORT)
3031 			ptxdesc->rts_short = 1;
3032 
3033 		/*  Set RTS BW */
3034 		if (pattrib->ht_en)
3035 			ptxdesc->rts_sc = SCMapping_8723B(padapter, pattrib);
3036 	}
3037 }
3038 
3039 static void fill_txdesc_phy_8723b(struct adapter *padapter, struct pkt_attrib *pattrib, PTXDESC_8723B ptxdesc)
3040 {
3041 	/* DBG_8192C("bwmode =%d, ch_off =%d\n", pattrib->bwmode, pattrib->ch_offset); */
3042 
3043 	if (pattrib->ht_en) {
3044 		ptxdesc->data_bw = BWMapping_8723B(padapter, pattrib);
3045 
3046 		ptxdesc->data_sc = SCMapping_8723B(padapter, pattrib);
3047 	}
3048 }
3049 
3050 static void rtl8723b_fill_default_txdesc(
3051 	struct xmit_frame *pxmitframe, u8 *pbuf
3052 )
3053 {
3054 	struct adapter *padapter;
3055 	struct hal_com_data *pHalData;
3056 	struct dm_priv *pdmpriv;
3057 	struct mlme_ext_priv *pmlmeext;
3058 	struct mlme_ext_info *pmlmeinfo;
3059 	struct pkt_attrib *pattrib;
3060 	PTXDESC_8723B ptxdesc;
3061 	s32 bmcst;
3062 
3063 	memset(pbuf, 0, TXDESC_SIZE);
3064 
3065 	padapter = pxmitframe->padapter;
3066 	pHalData = GET_HAL_DATA(padapter);
3067 	pdmpriv = &pHalData->dmpriv;
3068 	pmlmeext = &padapter->mlmeextpriv;
3069 	pmlmeinfo = &(pmlmeext->mlmext_info);
3070 
3071 	pattrib = &pxmitframe->attrib;
3072 	bmcst = IS_MCAST(pattrib->ra);
3073 
3074 	ptxdesc = (PTXDESC_8723B)pbuf;
3075 
3076 	if (pxmitframe->frame_tag == DATA_FRAMETAG) {
3077 		u8 drv_userate = 0;
3078 
3079 		ptxdesc->macid = pattrib->mac_id; /*  CAM_ID(MAC_ID) */
3080 		ptxdesc->rate_id = pattrib->raid;
3081 		ptxdesc->qsel = pattrib->qsel;
3082 		ptxdesc->seq = pattrib->seqnum;
3083 
3084 		ptxdesc->sectype = fill_txdesc_sectype(pattrib);
3085 		fill_txdesc_vcs_8723b(padapter, pattrib, ptxdesc);
3086 
3087 		if (pattrib->icmp_pkt == 1 && padapter->registrypriv.wifi_spec == 1)
3088 			drv_userate = 1;
3089 
3090 		if (
3091 			(pattrib->ether_type != 0x888e) &&
3092 			(pattrib->ether_type != 0x0806) &&
3093 			(pattrib->ether_type != 0x88B4) &&
3094 			(pattrib->dhcp_pkt != 1) &&
3095 			(drv_userate != 1)
3096 #ifdef CONFIG_AUTO_AP_MODE
3097 			&& (pattrib->pctrl != true)
3098 #endif
3099 		) {
3100 			/*  Non EAP & ARP & DHCP type data packet */
3101 
3102 			if (pattrib->ampdu_en == true) {
3103 				ptxdesc->agg_en = 1; /*  AGG EN */
3104 				ptxdesc->max_agg_num = 0x1f;
3105 				ptxdesc->ampdu_density = pattrib->ampdu_spacing;
3106 			} else
3107 				ptxdesc->bk = 1; /*  AGG BK */
3108 
3109 			fill_txdesc_phy_8723b(padapter, pattrib, ptxdesc);
3110 
3111 			ptxdesc->data_ratefb_lmt = 0x1F;
3112 
3113 			if (pHalData->fw_ractrl == false) {
3114 				ptxdesc->userate = 1;
3115 
3116 				if (pHalData->dmpriv.INIDATA_RATE[pattrib->mac_id] & BIT(7))
3117 					ptxdesc->data_short = 1;
3118 
3119 				ptxdesc->datarate = pHalData->dmpriv.INIDATA_RATE[pattrib->mac_id] & 0x7F;
3120 			}
3121 
3122 			if (padapter->fix_rate != 0xFF) { /*  modify data rate by iwpriv */
3123 				ptxdesc->userate = 1;
3124 				if (padapter->fix_rate & BIT(7))
3125 					ptxdesc->data_short = 1;
3126 
3127 				ptxdesc->datarate = (padapter->fix_rate & 0x7F);
3128 				ptxdesc->disdatafb = 1;
3129 			}
3130 
3131 			if (pattrib->ldpc)
3132 				ptxdesc->data_ldpc = 1;
3133 			if (pattrib->stbc)
3134 				ptxdesc->data_stbc = 1;
3135 
3136 #ifdef CONFIG_CMCC_TEST
3137 			ptxdesc->data_short = 1; /* use cck short premble */
3138 #endif
3139 		} else {
3140 			/*  EAP data packet and ARP packet. */
3141 			/*  Use the 1M data rate to send the EAP/ARP packet. */
3142 			/*  This will maybe make the handshake smooth. */
3143 
3144 			ptxdesc->bk = 1; /*  AGG BK */
3145 			ptxdesc->userate = 1; /*  driver uses rate */
3146 			if (pmlmeinfo->preamble_mode == PREAMBLE_SHORT)
3147 				ptxdesc->data_short = 1;/*  DATA_SHORT */
3148 			ptxdesc->datarate = MRateToHwRate(pmlmeext->tx_rate);
3149 			DBG_871X("YJ: %s(): ARP Data: userate =%d, datarate = 0x%x\n", __func__, ptxdesc->userate, ptxdesc->datarate);
3150 		}
3151 
3152 		ptxdesc->usb_txagg_num = pxmitframe->agg_num;
3153 	} else if (pxmitframe->frame_tag == MGNT_FRAMETAG) {
3154 /* 		RT_TRACE(_module_hal_xmit_c_, _drv_notice_, ("%s: MGNT_FRAMETAG\n", __func__)); */
3155 
3156 		ptxdesc->macid = pattrib->mac_id; /*  CAM_ID(MAC_ID) */
3157 		ptxdesc->qsel = pattrib->qsel;
3158 		ptxdesc->rate_id = pattrib->raid; /*  Rate ID */
3159 		ptxdesc->seq = pattrib->seqnum;
3160 		ptxdesc->userate = 1; /*  driver uses rate, 1M */
3161 
3162 		ptxdesc->mbssid = pattrib->mbssid & 0xF;
3163 
3164 		ptxdesc->rty_lmt_en = 1; /*  retry limit enable */
3165 		if (pattrib->retry_ctrl == true) {
3166 			ptxdesc->data_rt_lmt = 6;
3167 		} else {
3168 			ptxdesc->data_rt_lmt = 12;
3169 		}
3170 
3171 		ptxdesc->datarate = MRateToHwRate(pmlmeext->tx_rate);
3172 
3173 		/*  CCX-TXRPT ack for xmit mgmt frames. */
3174 		if (pxmitframe->ack_report) {
3175 			#ifdef DBG_CCX
3176 			DBG_8192C("%s set spe_rpt\n", __func__);
3177 			#endif
3178 			ptxdesc->spe_rpt = 1;
3179 			ptxdesc->sw_define = (u8)(GET_PRIMARY_ADAPTER(padapter)->xmitpriv.seq_no);
3180 		}
3181 	} else if (pxmitframe->frame_tag == TXAGG_FRAMETAG) {
3182 		RT_TRACE(_module_hal_xmit_c_, _drv_warning_, ("%s: TXAGG_FRAMETAG\n", __func__));
3183 	} else {
3184 		RT_TRACE(_module_hal_xmit_c_, _drv_warning_, ("%s: frame_tag = 0x%x\n", __func__, pxmitframe->frame_tag));
3185 
3186 		ptxdesc->macid = pattrib->mac_id; /*  CAM_ID(MAC_ID) */
3187 		ptxdesc->rate_id = pattrib->raid; /*  Rate ID */
3188 		ptxdesc->qsel = pattrib->qsel;
3189 		ptxdesc->seq = pattrib->seqnum;
3190 		ptxdesc->userate = 1; /*  driver uses rate */
3191 		ptxdesc->datarate = MRateToHwRate(pmlmeext->tx_rate);
3192 	}
3193 
3194 	ptxdesc->pktlen = pattrib->last_txcmdsz;
3195 	ptxdesc->offset = TXDESC_SIZE + OFFSET_SZ;
3196 
3197 	if (bmcst)
3198 		ptxdesc->bmc = 1;
3199 
3200 	/*  2009.11.05. tynli_test. Suggested by SD4 Filen for FW LPS. */
3201 	/*  (1) The sequence number of each non-Qos frame / broadcast / multicast / */
3202 	/*  mgnt frame should be controled by Hw because Fw will also send null data */
3203 	/*  which we cannot control when Fw LPS enable. */
3204 	/*  --> default enable non-Qos data sequense number. 2010.06.23. by tynli. */
3205 	/*  (2) Enable HW SEQ control for beacon packet, because we use Hw beacon. */
3206 	/*  (3) Use HW Qos SEQ to control the seq num of Ext port non-Qos packets. */
3207 	/*  2010.06.23. Added by tynli. */
3208 	if (!pattrib->qos_en) /*  Hw set sequence number */
3209 		ptxdesc->en_hwseq = 1; /*  HWSEQ_EN */
3210 }
3211 
3212 /*
3213  *Description:
3214  *
3215  *Parameters:
3216  *	pxmitframe	xmitframe
3217  *	pbuf		where to fill tx desc
3218  */
3219 void rtl8723b_update_txdesc(struct xmit_frame *pxmitframe, u8 *pbuf)
3220 {
3221 	struct tx_desc *pdesc;
3222 
3223 	rtl8723b_fill_default_txdesc(pxmitframe, pbuf);
3224 
3225 	pdesc = (struct tx_desc *)pbuf;
3226 	pdesc->txdw0 = pdesc->txdw0;
3227 	pdesc->txdw1 = pdesc->txdw1;
3228 	pdesc->txdw2 = pdesc->txdw2;
3229 	pdesc->txdw3 = pdesc->txdw3;
3230 	pdesc->txdw4 = pdesc->txdw4;
3231 	pdesc->txdw5 = pdesc->txdw5;
3232 	pdesc->txdw6 = pdesc->txdw6;
3233 	pdesc->txdw7 = pdesc->txdw7;
3234 	pdesc->txdw8 = pdesc->txdw8;
3235 	pdesc->txdw9 = pdesc->txdw9;
3236 
3237 	rtl8723b_cal_txdesc_chksum(pdesc);
3238 }
3239 
3240 /*  */
3241 /*  Description: In normal chip, we should send some packet to Hw which will be used by Fw */
3242 /* 			in FW LPS mode. The function is to fill the Tx descriptor of this packets, then */
3243 /* 			Fw can tell Hw to send these packet derectly. */
3244 /*  Added by tynli. 2009.10.15. */
3245 /*  */
3246 /* type1:pspoll, type2:null */
3247 void rtl8723b_fill_fake_txdesc(
3248 	struct adapter *padapter,
3249 	u8 *pDesc,
3250 	u32 BufferLen,
3251 	u8 IsPsPoll,
3252 	u8 IsBTQosNull,
3253 	u8 bDataFrame
3254 )
3255 {
3256 	/*  Clear all status */
3257 	memset(pDesc, 0, TXDESC_SIZE);
3258 
3259 	SET_TX_DESC_FIRST_SEG_8723B(pDesc, 1); /* bFirstSeg; */
3260 	SET_TX_DESC_LAST_SEG_8723B(pDesc, 1); /* bLastSeg; */
3261 
3262 	SET_TX_DESC_OFFSET_8723B(pDesc, 0x28); /*  Offset = 32 */
3263 
3264 	SET_TX_DESC_PKT_SIZE_8723B(pDesc, BufferLen); /*  Buffer size + command header */
3265 	SET_TX_DESC_QUEUE_SEL_8723B(pDesc, QSLT_MGNT); /*  Fixed queue of Mgnt queue */
3266 
3267 	/*  Set NAVUSEHDR to prevent Ps-poll AId filed to be changed to error vlaue by Hw. */
3268 	if (true == IsPsPoll) {
3269 		SET_TX_DESC_NAV_USE_HDR_8723B(pDesc, 1);
3270 	} else {
3271 		SET_TX_DESC_HWSEQ_EN_8723B(pDesc, 1); /*  Hw set sequence number */
3272 		SET_TX_DESC_HWSEQ_SEL_8723B(pDesc, 0);
3273 	}
3274 
3275 	if (true == IsBTQosNull) {
3276 		SET_TX_DESC_BT_INT_8723B(pDesc, 1);
3277 	}
3278 
3279 	SET_TX_DESC_USE_RATE_8723B(pDesc, 1); /*  use data rate which is set by Sw */
3280 	SET_TX_DESC_OWN_8723B((u8 *)pDesc, 1);
3281 
3282 	SET_TX_DESC_TX_RATE_8723B(pDesc, DESC8723B_RATE1M);
3283 
3284 	/*  */
3285 	/*  Encrypt the data frame if under security mode excepct null data. Suggested by CCW. */
3286 	/*  */
3287 	if (true == bDataFrame) {
3288 		u32 EncAlg;
3289 
3290 		EncAlg = padapter->securitypriv.dot11PrivacyAlgrthm;
3291 		switch (EncAlg) {
3292 		case _NO_PRIVACY_:
3293 			SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x0);
3294 			break;
3295 		case _WEP40_:
3296 		case _WEP104_:
3297 		case _TKIP_:
3298 			SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x1);
3299 			break;
3300 		case _SMS4_:
3301 			SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x2);
3302 			break;
3303 		case _AES_:
3304 			SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x3);
3305 			break;
3306 		default:
3307 			SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x0);
3308 			break;
3309 		}
3310 	}
3311 
3312 	/*  USB interface drop packet if the checksum of descriptor isn't correct. */
3313 	/*  Using this checksum can let hardware recovery from packet bulk out error (e.g. Cancel URC, Bulk out error.). */
3314 	rtl8723b_cal_txdesc_chksum((struct tx_desc *)pDesc);
3315 }
3316 
3317 static void hw_var_set_opmode(struct adapter *padapter, u8 variable, u8 *val)
3318 {
3319 	u8 val8;
3320 	u8 mode = *((u8 *)val);
3321 
3322 	{
3323 		/*  disable Port0 TSF update */
3324 		val8 = rtw_read8(padapter, REG_BCN_CTRL);
3325 		val8 |= DIS_TSF_UDT;
3326 		rtw_write8(padapter, REG_BCN_CTRL, val8);
3327 
3328 		/*  set net_type */
3329 		Set_MSR(padapter, mode);
3330 		DBG_871X("#### %s() -%d iface_type(0) mode = %d ####\n", __func__, __LINE__, mode);
3331 
3332 		if ((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_)) {
3333 			{
3334 				StopTxBeacon(padapter);
3335 #ifdef CONFIG_INTERRUPT_BASED_TXBCN
3336 #ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
3337 				rtw_write8(padapter, REG_DRVERLYINT, 0x05); /*  restore early int time to 5ms */
3338 				UpdateInterruptMask8812AU(padapter, true, 0, IMR_BCNDMAINT0_8723B);
3339 #endif /*  CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT */
3340 
3341 #ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
3342 				UpdateInterruptMask8812AU(padapter, true, 0, (IMR_TXBCN0ERR_8723B|IMR_TXBCN0OK_8723B));
3343 #endif /*  CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR */
3344 
3345 #endif /*  CONFIG_INTERRUPT_BASED_TXBCN */
3346 			}
3347 
3348 			/*  disable atim wnd */
3349 			rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT|EN_BCN_FUNCTION|DIS_ATIM);
3350 			/* rtw_write8(padapter, REG_BCN_CTRL, 0x18); */
3351 		} else if (mode == _HW_STATE_ADHOC_) {
3352 			ResumeTxBeacon(padapter);
3353 			rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT|EN_BCN_FUNCTION|DIS_BCNQ_SUB);
3354 		} else if (mode == _HW_STATE_AP_) {
3355 #ifdef CONFIG_INTERRUPT_BASED_TXBCN
3356 #ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
3357 			UpdateInterruptMask8723BU(padapter, true, IMR_BCNDMAINT0_8723B, 0);
3358 #endif /*  CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT */
3359 
3360 #ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
3361 			UpdateInterruptMask8723BU(padapter, true, (IMR_TXBCN0ERR_8723B|IMR_TXBCN0OK_8723B), 0);
3362 #endif /*  CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR */
3363 
3364 #endif /*  CONFIG_INTERRUPT_BASED_TXBCN */
3365 
3366 			ResumeTxBeacon(padapter);
3367 
3368 			rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT|DIS_BCNQ_SUB);
3369 
3370 			/* Set RCR */
3371 			rtw_write32(padapter, REG_RCR, 0x7000208e);/* CBSSID_DATA must set to 0, reject ICV_ERR packet */
3372 			/* enable to rx data frame */
3373 			rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
3374 			/* enable to rx ps-poll */
3375 			rtw_write16(padapter, REG_RXFLTMAP1, 0x0400);
3376 
3377 			/* Beacon Control related register for first time */
3378 			rtw_write8(padapter, REG_BCNDMATIM, 0x02); /*  2ms */
3379 
3380 			/* rtw_write8(padapter, REG_BCN_MAX_ERR, 0xFF); */
3381 			rtw_write8(padapter, REG_ATIMWND, 0x0a); /*  10ms */
3382 			rtw_write16(padapter, REG_BCNTCFG, 0x00);
3383 			rtw_write16(padapter, REG_TBTT_PROHIBIT, 0xff04);
3384 			rtw_write16(padapter, REG_TSFTR_SYN_OFFSET, 0x7fff);/*  +32767 (~32ms) */
3385 
3386 			/* reset TSF */
3387 			rtw_write8(padapter, REG_DUAL_TSF_RST, BIT(0));
3388 
3389 			/* enable BCN0 Function for if1 */
3390 			/* don't enable update TSF0 for if1 (due to TSF update when beacon/probe rsp are received) */
3391 			rtw_write8(padapter, REG_BCN_CTRL, (DIS_TSF_UDT|EN_BCN_FUNCTION|EN_TXBCN_RPT|DIS_BCNQ_SUB));
3392 
3393 			/* SW_BCN_SEL - Port0 */
3394 			/* rtw_write8(Adapter, REG_DWBCN1_CTRL_8192E+2, rtw_read8(Adapter, REG_DWBCN1_CTRL_8192E+2) & ~BIT4); */
3395 			rtw_hal_set_hwreg(padapter, HW_VAR_DL_BCN_SEL, NULL);
3396 
3397 			/*  select BCN on port 0 */
3398 			rtw_write8(
3399 				padapter,
3400 				REG_CCK_CHECK_8723B,
3401 				(rtw_read8(padapter, REG_CCK_CHECK_8723B)&~BIT_BCN_PORT_SEL)
3402 			);
3403 
3404 			/*  dis BCN1 ATIM  WND if if2 is station */
3405 			val8 = rtw_read8(padapter, REG_BCN_CTRL_1);
3406 			val8 |= DIS_ATIM;
3407 			rtw_write8(padapter, REG_BCN_CTRL_1, val8);
3408 		}
3409 	}
3410 }
3411 
3412 static void hw_var_set_macaddr(struct adapter *padapter, u8 variable, u8 *val)
3413 {
3414 	u8 idx = 0;
3415 	u32 reg_macid;
3416 
3417 	reg_macid = REG_MACID;
3418 
3419 	for (idx = 0 ; idx < 6; idx++)
3420 		rtw_write8(GET_PRIMARY_ADAPTER(padapter), (reg_macid+idx), val[idx]);
3421 }
3422 
3423 static void hw_var_set_bssid(struct adapter *padapter, u8 variable, u8 *val)
3424 {
3425 	u8 idx = 0;
3426 	u32 reg_bssid;
3427 
3428 	reg_bssid = REG_BSSID;
3429 
3430 	for (idx = 0 ; idx < 6; idx++)
3431 		rtw_write8(padapter, (reg_bssid+idx), val[idx]);
3432 }
3433 
3434 static void hw_var_set_bcn_func(struct adapter *padapter, u8 variable, u8 *val)
3435 {
3436 	u32 bcn_ctrl_reg;
3437 
3438 	bcn_ctrl_reg = REG_BCN_CTRL;
3439 
3440 	if (*(u8 *)val)
3441 		rtw_write8(padapter, bcn_ctrl_reg, (EN_BCN_FUNCTION | EN_TXBCN_RPT));
3442 	else {
3443 		u8 val8;
3444 		val8 = rtw_read8(padapter, bcn_ctrl_reg);
3445 		val8 &= ~(EN_BCN_FUNCTION | EN_TXBCN_RPT);
3446 
3447 		/*  Always enable port0 beacon function for PSTDMA */
3448 		if (REG_BCN_CTRL == bcn_ctrl_reg)
3449 			val8 |= EN_BCN_FUNCTION;
3450 
3451 		rtw_write8(padapter, bcn_ctrl_reg, val8);
3452 	}
3453 }
3454 
3455 static void hw_var_set_correct_tsf(struct adapter *padapter, u8 variable, u8 *val)
3456 {
3457 	u8 val8;
3458 	u64 tsf;
3459 	struct mlme_ext_priv *pmlmeext;
3460 	struct mlme_ext_info *pmlmeinfo;
3461 
3462 
3463 	pmlmeext = &padapter->mlmeextpriv;
3464 	pmlmeinfo = &pmlmeext->mlmext_info;
3465 
3466 	tsf = pmlmeext->TSFValue-rtw_modular64(pmlmeext->TSFValue, (pmlmeinfo->bcn_interval*1024))-1024; /* us */
3467 
3468 	if (
3469 		((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) ||
3470 		((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE)
3471 	)
3472 		StopTxBeacon(padapter);
3473 
3474 	{
3475 		/*  disable related TSF function */
3476 		val8 = rtw_read8(padapter, REG_BCN_CTRL);
3477 		val8 &= ~EN_BCN_FUNCTION;
3478 		rtw_write8(padapter, REG_BCN_CTRL, val8);
3479 
3480 		rtw_write32(padapter, REG_TSFTR, tsf);
3481 		rtw_write32(padapter, REG_TSFTR+4, tsf>>32);
3482 
3483 		/*  enable related TSF function */
3484 		val8 = rtw_read8(padapter, REG_BCN_CTRL);
3485 		val8 |= EN_BCN_FUNCTION;
3486 		rtw_write8(padapter, REG_BCN_CTRL, val8);
3487 	}
3488 
3489 	if (
3490 		((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) ||
3491 		((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE)
3492 	)
3493 		ResumeTxBeacon(padapter);
3494 }
3495 
3496 static void hw_var_set_mlme_disconnect(struct adapter *padapter, u8 variable, u8 *val)
3497 {
3498 	u8 val8;
3499 
3500 	/*  Set RCR to not to receive data frame when NO LINK state */
3501 	/* rtw_write32(padapter, REG_RCR, rtw_read32(padapter, REG_RCR) & ~RCR_ADF); */
3502 	/*  reject all data frames */
3503 	rtw_write16(padapter, REG_RXFLTMAP2, 0);
3504 
3505 	/*  reset TSF */
3506 	rtw_write8(padapter, REG_DUAL_TSF_RST, BIT(0));
3507 
3508 	/*  disable update TSF */
3509 	val8 = rtw_read8(padapter, REG_BCN_CTRL);
3510 	val8 |= DIS_TSF_UDT;
3511 	rtw_write8(padapter, REG_BCN_CTRL, val8);
3512 }
3513 
3514 static void hw_var_set_mlme_sitesurvey(struct adapter *padapter, u8 variable, u8 *val)
3515 {
3516 	u32 value_rcr, rcr_clear_bit, reg_bcn_ctl;
3517 	u16 value_rxfltmap2;
3518 	u8 val8;
3519 	struct hal_com_data *pHalData;
3520 	struct mlme_priv *pmlmepriv;
3521 
3522 
3523 	pHalData = GET_HAL_DATA(padapter);
3524 	pmlmepriv = &padapter->mlmepriv;
3525 
3526 	reg_bcn_ctl = REG_BCN_CTRL;
3527 
3528 	rcr_clear_bit = RCR_CBSSID_BCN;
3529 
3530 	/*  config RCR to receive different BSSID & not to receive data frame */
3531 	value_rxfltmap2 = 0;
3532 
3533 	if ((check_fwstate(pmlmepriv, WIFI_AP_STATE) == true))
3534 		rcr_clear_bit = RCR_CBSSID_BCN;
3535 
3536 	value_rcr = rtw_read32(padapter, REG_RCR);
3537 
3538 	if (*((u8 *)val)) {
3539 		/*  under sitesurvey */
3540 		value_rcr &= ~(rcr_clear_bit);
3541 		rtw_write32(padapter, REG_RCR, value_rcr);
3542 
3543 		rtw_write16(padapter, REG_RXFLTMAP2, value_rxfltmap2);
3544 
3545 		if (check_fwstate(pmlmepriv, WIFI_STATION_STATE | WIFI_ADHOC_STATE | WIFI_ADHOC_MASTER_STATE)) {
3546 			/*  disable update TSF */
3547 			val8 = rtw_read8(padapter, reg_bcn_ctl);
3548 			val8 |= DIS_TSF_UDT;
3549 			rtw_write8(padapter, reg_bcn_ctl, val8);
3550 		}
3551 
3552 		/*  Save orignal RRSR setting. */
3553 		pHalData->RegRRSR = rtw_read16(padapter, REG_RRSR);
3554 	} else {
3555 		/*  sitesurvey done */
3556 		if (check_fwstate(pmlmepriv, (_FW_LINKED|WIFI_AP_STATE)))
3557 			/*  enable to rx data frame */
3558 			rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
3559 
3560 		if (check_fwstate(pmlmepriv, WIFI_STATION_STATE | WIFI_ADHOC_STATE | WIFI_ADHOC_MASTER_STATE)) {
3561 			/*  enable update TSF */
3562 			val8 = rtw_read8(padapter, reg_bcn_ctl);
3563 			val8 &= ~DIS_TSF_UDT;
3564 			rtw_write8(padapter, reg_bcn_ctl, val8);
3565 		}
3566 
3567 		value_rcr |= rcr_clear_bit;
3568 		rtw_write32(padapter, REG_RCR, value_rcr);
3569 
3570 		/*  Restore orignal RRSR setting. */
3571 		rtw_write16(padapter, REG_RRSR, pHalData->RegRRSR);
3572 	}
3573 }
3574 
3575 static void hw_var_set_mlme_join(struct adapter *padapter, u8 variable, u8 *val)
3576 {
3577 	u8 val8;
3578 	u16 val16;
3579 	u32 val32;
3580 	u8 RetryLimit;
3581 	u8 type;
3582 	struct hal_com_data *pHalData;
3583 	struct mlme_priv *pmlmepriv;
3584 	struct eeprom_priv *pEEPROM;
3585 
3586 
3587 	RetryLimit = 0x30;
3588 	type = *(u8 *)val;
3589 	pHalData = GET_HAL_DATA(padapter);
3590 	pmlmepriv = &padapter->mlmepriv;
3591 	pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
3592 
3593 	if (type == 0) { /*  prepare to join */
3594 		/* enable to rx data frame.Accept all data frame */
3595 		/* rtw_write32(padapter, REG_RCR, rtw_read32(padapter, REG_RCR)|RCR_ADF); */
3596 		rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
3597 
3598 		val32 = rtw_read32(padapter, REG_RCR);
3599 		if (padapter->in_cta_test)
3600 			val32 &= ~(RCR_CBSSID_DATA | RCR_CBSSID_BCN);/*  RCR_ADF */
3601 		else
3602 			val32 |= RCR_CBSSID_DATA|RCR_CBSSID_BCN;
3603 		rtw_write32(padapter, REG_RCR, val32);
3604 
3605 		if (check_fwstate(pmlmepriv, WIFI_STATION_STATE) == true)
3606 			RetryLimit = (pEEPROM->CustomerID == RT_CID_CCX) ? 7 : 48;
3607 		else /*  Ad-hoc Mode */
3608 			RetryLimit = 0x7;
3609 	} else if (type == 1) /* joinbss_event call back when join res < 0 */
3610 		rtw_write16(padapter, REG_RXFLTMAP2, 0x00);
3611 	else if (type == 2) { /* sta add event call back */
3612 		/* enable update TSF */
3613 		val8 = rtw_read8(padapter, REG_BCN_CTRL);
3614 		val8 &= ~DIS_TSF_UDT;
3615 		rtw_write8(padapter, REG_BCN_CTRL, val8);
3616 
3617 		if (check_fwstate(pmlmepriv, WIFI_ADHOC_STATE|WIFI_ADHOC_MASTER_STATE))
3618 			RetryLimit = 0x7;
3619 	}
3620 
3621 	val16 = (RetryLimit << RETRY_LIMIT_SHORT_SHIFT) | (RetryLimit << RETRY_LIMIT_LONG_SHIFT);
3622 	rtw_write16(padapter, REG_RL, val16);
3623 }
3624 
3625 void CCX_FwC2HTxRpt_8723b(struct adapter *padapter, u8 *pdata, u8 len)
3626 {
3627 	u8 seq_no;
3628 
3629 #define	GET_8723B_C2H_TX_RPT_LIFE_TIME_OVER(_Header)	LE_BITS_TO_1BYTE((_Header + 0), 6, 1)
3630 #define	GET_8723B_C2H_TX_RPT_RETRY_OVER(_Header)	LE_BITS_TO_1BYTE((_Header + 0), 7, 1)
3631 
3632 	/* DBG_871X("%s, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x\n", __func__, */
3633 	/* 		*pdata, *(pdata+1), *(pdata+2), *(pdata+3), *(pdata+4), *(pdata+5), *(pdata+6), *(pdata+7)); */
3634 
3635 	seq_no = *(pdata+6);
3636 
3637 	if (GET_8723B_C2H_TX_RPT_RETRY_OVER(pdata) | GET_8723B_C2H_TX_RPT_LIFE_TIME_OVER(pdata)) {
3638 		rtw_ack_tx_done(&padapter->xmitpriv, RTW_SCTX_DONE_CCX_PKT_FAIL);
3639 	}
3640 /*
3641 	else if (seq_no != padapter->xmitpriv.seq_no) {
3642 		DBG_871X("tx_seq_no =%d, rpt_seq_no =%d\n", padapter->xmitpriv.seq_no, seq_no);
3643 		rtw_ack_tx_done(&padapter->xmitpriv, RTW_SCTX_DONE_CCX_PKT_FAIL);
3644 	}
3645 */
3646 	else
3647 		rtw_ack_tx_done(&padapter->xmitpriv, RTW_SCTX_DONE_SUCCESS);
3648 }
3649 
3650 s32 c2h_id_filter_ccx_8723b(u8 *buf)
3651 {
3652 	struct c2h_evt_hdr_88xx *c2h_evt = (struct c2h_evt_hdr_88xx *)buf;
3653 	s32 ret = false;
3654 	if (c2h_evt->id == C2H_CCX_TX_RPT)
3655 		ret = true;
3656 
3657 	return ret;
3658 }
3659 
3660 
3661 s32 c2h_handler_8723b(struct adapter *padapter, u8 *buf)
3662 {
3663 	struct c2h_evt_hdr_88xx *pC2hEvent = (struct c2h_evt_hdr_88xx *)buf;
3664 	s32 ret = _SUCCESS;
3665 	u8 index = 0;
3666 
3667 	if (!pC2hEvent) {
3668 		DBG_8192C("%s(): pC2hEventis NULL\n", __func__);
3669 		ret = _FAIL;
3670 		goto exit;
3671 	}
3672 
3673 	switch (pC2hEvent->id) {
3674 	case C2H_AP_RPT_RSP:
3675 		break;
3676 	case C2H_DBG:
3677 		{
3678 			RT_TRACE(_module_hal_init_c_, _drv_info_, ("c2h_handler_8723b: %s\n", pC2hEvent->payload));
3679 		}
3680 		break;
3681 
3682 	case C2H_CCX_TX_RPT:
3683 /* 			CCX_FwC2HTxRpt(padapter, QueueID, pC2hEvent->payload); */
3684 		break;
3685 
3686 	case C2H_EXT_RA_RPT:
3687 /* 			C2HExtRaRptHandler(padapter, pC2hEvent->payload, C2hEvent.CmdLen); */
3688 		break;
3689 
3690 	case C2H_HW_INFO_EXCH:
3691 		RT_TRACE(_module_hal_init_c_, _drv_info_, ("[BT], C2H_HW_INFO_EXCH\n"));
3692 		for (index = 0; index < pC2hEvent->plen; index++) {
3693 			RT_TRACE(_module_hal_init_c_, _drv_info_, ("[BT], tmpBuf[%d]= 0x%x\n", index, pC2hEvent->payload[index]));
3694 		}
3695 		break;
3696 
3697 	case C2H_8723B_BT_INFO:
3698 		rtw_btcoex_BtInfoNotify(padapter, pC2hEvent->plen, pC2hEvent->payload);
3699 		break;
3700 
3701 	default:
3702 		break;
3703 	}
3704 
3705 	/*  Clear event to notify FW we have read the command. */
3706 	/*  Note: */
3707 	/* 	If this field isn't clear, the FW won't update the next command message. */
3708 /* 	rtw_write8(padapter, REG_C2HEVT_CLEAR, C2H_EVT_HOST_CLOSE); */
3709 exit:
3710 	return ret;
3711 }
3712 
3713 static void process_c2h_event(struct adapter *padapter, PC2H_EVT_HDR pC2hEvent, u8 *c2hBuf)
3714 {
3715 	u8 index = 0;
3716 
3717 	if (!c2hBuf) {
3718 		DBG_8192C("%s c2hbuff is NULL\n", __func__);
3719 		return;
3720 	}
3721 
3722 	switch (pC2hEvent->CmdID) {
3723 	case C2H_AP_RPT_RSP:
3724 		break;
3725 	case C2H_DBG:
3726 		{
3727 			RT_TRACE(_module_hal_init_c_, _drv_info_, ("C2HCommandHandler: %s\n", c2hBuf));
3728 		}
3729 		break;
3730 
3731 	case C2H_CCX_TX_RPT:
3732 /* 			CCX_FwC2HTxRpt(padapter, QueueID, tmpBuf); */
3733 		break;
3734 
3735 	case C2H_EXT_RA_RPT:
3736 /* 			C2HExtRaRptHandler(padapter, tmpBuf, C2hEvent.CmdLen); */
3737 		break;
3738 
3739 	case C2H_HW_INFO_EXCH:
3740 		RT_TRACE(_module_hal_init_c_, _drv_info_, ("[BT], C2H_HW_INFO_EXCH\n"));
3741 		for (index = 0; index < pC2hEvent->CmdLen; index++) {
3742 			RT_TRACE(_module_hal_init_c_, _drv_info_, ("[BT], tmpBuf[%d]= 0x%x\n", index, c2hBuf[index]));
3743 		}
3744 		break;
3745 
3746 	case C2H_8723B_BT_INFO:
3747 		rtw_btcoex_BtInfoNotify(padapter, pC2hEvent->CmdLen, c2hBuf);
3748 		break;
3749 
3750 	default:
3751 		break;
3752 	}
3753 }
3754 
3755 void C2HPacketHandler_8723B(struct adapter *padapter, u8 *pbuffer, u16 length)
3756 {
3757 	C2H_EVT_HDR	C2hEvent;
3758 	u8 *tmpBuf = NULL;
3759 #ifdef CONFIG_WOWLAN
3760 	struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter);
3761 
3762 	if (pwrpriv->wowlan_mode == true) {
3763 		DBG_871X("%s(): return because wowolan_mode ==true! CMDID =%d\n", __func__, pbuffer[0]);
3764 		return;
3765 	}
3766 #endif
3767 	C2hEvent.CmdID = pbuffer[0];
3768 	C2hEvent.CmdSeq = pbuffer[1];
3769 	C2hEvent.CmdLen = length-2;
3770 	tmpBuf = pbuffer+2;
3771 
3772 	/* DBG_871X("%s C2hEvent.CmdID:%x C2hEvent.CmdLen:%x C2hEvent.CmdSeq:%x\n", */
3773 	/* 		__func__, C2hEvent.CmdID, C2hEvent.CmdLen, C2hEvent.CmdSeq); */
3774 	RT_PRINT_DATA(_module_hal_init_c_, _drv_notice_, "C2HPacketHandler_8723B(): Command Content:\n", tmpBuf, C2hEvent.CmdLen);
3775 
3776 	process_c2h_event(padapter, &C2hEvent, tmpBuf);
3777 	/* c2h_handler_8723b(padapter,&C2hEvent); */
3778 	return;
3779 }
3780 
3781 void SetHwReg8723B(struct adapter *padapter, u8 variable, u8 *val)
3782 {
3783 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
3784 	u8 val8;
3785 	u32 val32;
3786 
3787 	switch (variable) {
3788 	case HW_VAR_MEDIA_STATUS:
3789 		val8 = rtw_read8(padapter, MSR) & 0x0c;
3790 		val8 |= *val;
3791 		rtw_write8(padapter, MSR, val8);
3792 		break;
3793 
3794 	case HW_VAR_MEDIA_STATUS1:
3795 		val8 = rtw_read8(padapter, MSR) & 0x03;
3796 		val8 |= *val << 2;
3797 		rtw_write8(padapter, MSR, val8);
3798 		break;
3799 
3800 	case HW_VAR_SET_OPMODE:
3801 		hw_var_set_opmode(padapter, variable, val);
3802 		break;
3803 
3804 	case HW_VAR_MAC_ADDR:
3805 		hw_var_set_macaddr(padapter, variable, val);
3806 		break;
3807 
3808 	case HW_VAR_BSSID:
3809 		hw_var_set_bssid(padapter, variable, val);
3810 		break;
3811 
3812 	case HW_VAR_BASIC_RATE:
3813 	{
3814 		struct mlme_ext_info *mlmext_info = &padapter->mlmeextpriv.mlmext_info;
3815 		u16 input_b = 0, masked = 0, ioted = 0, BrateCfg = 0;
3816 		u16 rrsr_2g_force_mask = (RRSR_11M|RRSR_5_5M|RRSR_1M);
3817 		u16 rrsr_2g_allow_mask = (RRSR_24M|RRSR_12M|RRSR_6M|RRSR_CCK_RATES);
3818 
3819 		HalSetBrateCfg(padapter, val, &BrateCfg);
3820 		input_b = BrateCfg;
3821 
3822 		/* apply force and allow mask */
3823 		BrateCfg |= rrsr_2g_force_mask;
3824 		BrateCfg &= rrsr_2g_allow_mask;
3825 		masked = BrateCfg;
3826 
3827 		#ifdef CONFIG_CMCC_TEST
3828 		BrateCfg |= (RRSR_11M|RRSR_5_5M|RRSR_1M); /* use 11M to send ACK */
3829 		BrateCfg |= (RRSR_24M|RRSR_18M|RRSR_12M); /* CMCC_OFDM_ACK 12/18/24M */
3830 		#endif
3831 
3832 		/* IOT consideration */
3833 		if (mlmext_info->assoc_AP_vendor == HT_IOT_PEER_CISCO) {
3834 			/* if peer is cisco and didn't use ofdm rate, we enable 6M ack */
3835 			if ((BrateCfg & (RRSR_24M|RRSR_12M|RRSR_6M)) == 0)
3836 				BrateCfg |= RRSR_6M;
3837 		}
3838 		ioted = BrateCfg;
3839 
3840 		pHalData->BasicRateSet = BrateCfg;
3841 
3842 		DBG_8192C("HW_VAR_BASIC_RATE: %#x -> %#x -> %#x\n", input_b, masked, ioted);
3843 
3844 		/*  Set RRSR rate table. */
3845 		rtw_write16(padapter, REG_RRSR, BrateCfg);
3846 		rtw_write8(padapter, REG_RRSR+2, rtw_read8(padapter, REG_RRSR+2)&0xf0);
3847 	}
3848 		break;
3849 
3850 	case HW_VAR_TXPAUSE:
3851 		rtw_write8(padapter, REG_TXPAUSE, *val);
3852 		break;
3853 
3854 	case HW_VAR_BCN_FUNC:
3855 		hw_var_set_bcn_func(padapter, variable, val);
3856 		break;
3857 
3858 	case HW_VAR_CORRECT_TSF:
3859 		hw_var_set_correct_tsf(padapter, variable, val);
3860 		break;
3861 
3862 	case HW_VAR_CHECK_BSSID:
3863 		{
3864 			u32 val32;
3865 			val32 = rtw_read32(padapter, REG_RCR);
3866 			if (*val)
3867 				val32 |= RCR_CBSSID_DATA|RCR_CBSSID_BCN;
3868 			else
3869 				val32 &= ~(RCR_CBSSID_DATA|RCR_CBSSID_BCN);
3870 			rtw_write32(padapter, REG_RCR, val32);
3871 		}
3872 		break;
3873 
3874 	case HW_VAR_MLME_DISCONNECT:
3875 		hw_var_set_mlme_disconnect(padapter, variable, val);
3876 		break;
3877 
3878 	case HW_VAR_MLME_SITESURVEY:
3879 		hw_var_set_mlme_sitesurvey(padapter, variable,  val);
3880 
3881 		rtw_btcoex_ScanNotify(padapter, *val?true:false);
3882 		break;
3883 
3884 	case HW_VAR_MLME_JOIN:
3885 		hw_var_set_mlme_join(padapter, variable, val);
3886 
3887 		switch (*val) {
3888 		case 0:
3889 			/*  prepare to join */
3890 			rtw_btcoex_ConnectNotify(padapter, true);
3891 			break;
3892 		case 1:
3893 			/*  joinbss_event callback when join res < 0 */
3894 			rtw_btcoex_ConnectNotify(padapter, false);
3895 			break;
3896 		case 2:
3897 			/*  sta add event callback */
3898 /* 				rtw_btcoex_MediaStatusNotify(padapter, RT_MEDIA_CONNECT); */
3899 			break;
3900 		}
3901 		break;
3902 
3903 	case HW_VAR_ON_RCR_AM:
3904 		val32 = rtw_read32(padapter, REG_RCR);
3905 		val32 |= RCR_AM;
3906 		rtw_write32(padapter, REG_RCR, val32);
3907 		DBG_8192C("%s, %d, RCR = %x\n", __func__, __LINE__, rtw_read32(padapter, REG_RCR));
3908 		break;
3909 
3910 	case HW_VAR_OFF_RCR_AM:
3911 		val32 = rtw_read32(padapter, REG_RCR);
3912 		val32 &= ~RCR_AM;
3913 		rtw_write32(padapter, REG_RCR, val32);
3914 		DBG_8192C("%s, %d, RCR = %x\n", __func__, __LINE__, rtw_read32(padapter, REG_RCR));
3915 		break;
3916 
3917 	case HW_VAR_BEACON_INTERVAL:
3918 		rtw_write16(padapter, REG_BCN_INTERVAL, *((u16 *)val));
3919 		break;
3920 
3921 	case HW_VAR_SLOT_TIME:
3922 		rtw_write8(padapter, REG_SLOT, *val);
3923 		break;
3924 
3925 	case HW_VAR_RESP_SIFS:
3926 		/* SIFS_Timer = 0x0a0a0808; */
3927 		/* RESP_SIFS for CCK */
3928 		rtw_write8(padapter, REG_RESP_SIFS_CCK, val[0]); /*  SIFS_T2T_CCK (0x08) */
3929 		rtw_write8(padapter, REG_RESP_SIFS_CCK+1, val[1]); /* SIFS_R2T_CCK(0x08) */
3930 		/* RESP_SIFS for OFDM */
3931 		rtw_write8(padapter, REG_RESP_SIFS_OFDM, val[2]); /* SIFS_T2T_OFDM (0x0a) */
3932 		rtw_write8(padapter, REG_RESP_SIFS_OFDM+1, val[3]); /* SIFS_R2T_OFDM(0x0a) */
3933 		break;
3934 
3935 	case HW_VAR_ACK_PREAMBLE:
3936 		{
3937 			u8 regTmp;
3938 			u8 bShortPreamble = *val;
3939 
3940 			/*  Joseph marked out for Netgear 3500 TKIP channel 7 issue.(Temporarily) */
3941 			/* regTmp = (pHalData->nCur40MhzPrimeSC)<<5; */
3942 			regTmp = 0;
3943 			if (bShortPreamble)
3944 				regTmp |= 0x80;
3945 			rtw_write8(padapter, REG_RRSR+2, regTmp);
3946 		}
3947 		break;
3948 
3949 	case HW_VAR_CAM_EMPTY_ENTRY:
3950 		{
3951 			u8 ucIndex = *val;
3952 			u8 i;
3953 			u32 ulCommand = 0;
3954 			u32 ulContent = 0;
3955 			u32 ulEncAlgo = CAM_AES;
3956 
3957 			for (i = 0; i < CAM_CONTENT_COUNT; i++) {
3958 				/*  filled id in CAM config 2 byte */
3959 				if (i == 0) {
3960 					ulContent |= (ucIndex & 0x03) | ((u16)(ulEncAlgo)<<2);
3961 					/* ulContent |= CAM_VALID; */
3962 				} else
3963 					ulContent = 0;
3964 
3965 				/*  polling bit, and No Write enable, and address */
3966 				ulCommand = CAM_CONTENT_COUNT*ucIndex+i;
3967 				ulCommand = ulCommand | CAM_POLLINIG | CAM_WRITE;
3968 				/*  write content 0 is equall to mark invalid */
3969 				rtw_write32(padapter, WCAMI, ulContent);  /* mdelay(40); */
3970 				/* RT_TRACE(COMP_SEC, DBG_LOUD, ("CAM_empty_entry(): WRITE A4: %lx\n", ulContent)); */
3971 				rtw_write32(padapter, RWCAM, ulCommand);  /* mdelay(40); */
3972 				/* RT_TRACE(COMP_SEC, DBG_LOUD, ("CAM_empty_entry(): WRITE A0: %lx\n", ulCommand)); */
3973 			}
3974 		}
3975 		break;
3976 
3977 	case HW_VAR_CAM_INVALID_ALL:
3978 		rtw_write32(padapter, RWCAM, BIT(31)|BIT(30));
3979 		break;
3980 
3981 	case HW_VAR_CAM_WRITE:
3982 		{
3983 			u32 cmd;
3984 			u32 *cam_val = (u32 *)val;
3985 
3986 			rtw_write32(padapter, WCAMI, cam_val[0]);
3987 
3988 			cmd = CAM_POLLINIG | CAM_WRITE | cam_val[1];
3989 			rtw_write32(padapter, RWCAM, cmd);
3990 		}
3991 		break;
3992 
3993 	case HW_VAR_AC_PARAM_VO:
3994 		rtw_write32(padapter, REG_EDCA_VO_PARAM, *((u32 *)val));
3995 		break;
3996 
3997 	case HW_VAR_AC_PARAM_VI:
3998 		rtw_write32(padapter, REG_EDCA_VI_PARAM, *((u32 *)val));
3999 		break;
4000 
4001 	case HW_VAR_AC_PARAM_BE:
4002 		pHalData->AcParam_BE = ((u32 *)(val))[0];
4003 		rtw_write32(padapter, REG_EDCA_BE_PARAM, *((u32 *)val));
4004 		break;
4005 
4006 	case HW_VAR_AC_PARAM_BK:
4007 		rtw_write32(padapter, REG_EDCA_BK_PARAM, *((u32 *)val));
4008 		break;
4009 
4010 	case HW_VAR_ACM_CTRL:
4011 		{
4012 			u8 ctrl = *((u8 *)val);
4013 			u8 hwctrl = 0;
4014 
4015 			if (ctrl != 0) {
4016 				hwctrl |= AcmHw_HwEn;
4017 
4018 				if (ctrl & BIT(1)) /*  BE */
4019 					hwctrl |= AcmHw_BeqEn;
4020 
4021 				if (ctrl & BIT(2)) /*  VI */
4022 					hwctrl |= AcmHw_ViqEn;
4023 
4024 				if (ctrl & BIT(3)) /*  VO */
4025 					hwctrl |= AcmHw_VoqEn;
4026 			}
4027 
4028 			DBG_8192C("[HW_VAR_ACM_CTRL] Write 0x%02X\n", hwctrl);
4029 			rtw_write8(padapter, REG_ACMHWCTRL, hwctrl);
4030 		}
4031 		break;
4032 
4033 	case HW_VAR_AMPDU_FACTOR:
4034 		{
4035 			u32 AMPDULen =  (*((u8 *)val));
4036 
4037 			if (AMPDULen < HT_AGG_SIZE_32K)
4038 				AMPDULen = (0x2000 << (*((u8 *)val)))-1;
4039 			else
4040 				AMPDULen = 0x7fff;
4041 
4042 			rtw_write32(padapter, REG_AMPDU_MAX_LENGTH_8723B, AMPDULen);
4043 		}
4044 		break;
4045 
4046 	case HW_VAR_H2C_FW_PWRMODE:
4047 		{
4048 			u8 psmode = *val;
4049 
4050 			/*  Forece leave RF low power mode for 1T1R to prevent conficting setting in Fw power */
4051 			/*  saving sequence. 2010.06.07. Added by tynli. Suggested by SD3 yschang. */
4052 			if (psmode != PS_MODE_ACTIVE) {
4053 				ODM_RF_Saving(&pHalData->odmpriv, true);
4054 			}
4055 
4056 			/* if (psmode != PS_MODE_ACTIVE)	{ */
4057 			/* 	rtl8723b_set_lowpwr_lps_cmd(padapter, true); */
4058 			/*  else { */
4059 			/* 	rtl8723b_set_lowpwr_lps_cmd(padapter, false); */
4060 			/*  */
4061 			rtl8723b_set_FwPwrMode_cmd(padapter, psmode);
4062 		}
4063 		break;
4064 	case HW_VAR_H2C_PS_TUNE_PARAM:
4065 		rtl8723b_set_FwPsTuneParam_cmd(padapter);
4066 		break;
4067 
4068 	case HW_VAR_H2C_FW_JOINBSSRPT:
4069 		rtl8723b_set_FwJoinBssRpt_cmd(padapter, *val);
4070 		break;
4071 
4072 	case HW_VAR_INITIAL_GAIN:
4073 		{
4074 			DIG_T *pDigTable = &pHalData->odmpriv.DM_DigTable;
4075 			u32 rx_gain = *(u32 *)val;
4076 
4077 			if (rx_gain == 0xff) {/* restore rx gain */
4078 				ODM_Write_DIG(&pHalData->odmpriv, pDigTable->BackupIGValue);
4079 			} else {
4080 				pDigTable->BackupIGValue = pDigTable->CurIGValue;
4081 				ODM_Write_DIG(&pHalData->odmpriv, rx_gain);
4082 			}
4083 		}
4084 		break;
4085 
4086 	case HW_VAR_EFUSE_USAGE:
4087 		pHalData->EfuseUsedPercentage = *val;
4088 		break;
4089 
4090 	case HW_VAR_EFUSE_BYTES:
4091 		pHalData->EfuseUsedBytes = *((u16 *)val);
4092 		break;
4093 
4094 	case HW_VAR_EFUSE_BT_USAGE:
4095 #ifdef HAL_EFUSE_MEMORY
4096 		pHalData->EfuseHal.BTEfuseUsedPercentage = *val;
4097 #endif
4098 		break;
4099 
4100 	case HW_VAR_EFUSE_BT_BYTES:
4101 #ifdef HAL_EFUSE_MEMORY
4102 		pHalData->EfuseHal.BTEfuseUsedBytes = *((u16 *)val);
4103 #else
4104 		BTEfuseUsedBytes = *((u16 *)val);
4105 #endif
4106 		break;
4107 
4108 	case HW_VAR_FIFO_CLEARN_UP:
4109 		{
4110 			#define RW_RELEASE_EN		BIT(18)
4111 			#define RXDMA_IDLE			BIT(17)
4112 
4113 			struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter);
4114 			u8 trycnt = 100;
4115 
4116 			/*  pause tx */
4117 			rtw_write8(padapter, REG_TXPAUSE, 0xff);
4118 
4119 			/*  keep sn */
4120 			padapter->xmitpriv.nqos_ssn = rtw_read16(padapter, REG_NQOS_SEQ);
4121 
4122 			if (pwrpriv->bkeepfwalive != true) {
4123 				/* RX DMA stop */
4124 				val32 = rtw_read32(padapter, REG_RXPKT_NUM);
4125 				val32 |= RW_RELEASE_EN;
4126 				rtw_write32(padapter, REG_RXPKT_NUM, val32);
4127 				do {
4128 					val32 = rtw_read32(padapter, REG_RXPKT_NUM);
4129 					val32 &= RXDMA_IDLE;
4130 					if (val32)
4131 						break;
4132 
4133 					DBG_871X("%s: [HW_VAR_FIFO_CLEARN_UP] val =%x times:%d\n", __func__, val32, trycnt);
4134 				} while (--trycnt);
4135 
4136 				if (trycnt == 0) {
4137 					DBG_8192C("[HW_VAR_FIFO_CLEARN_UP] Stop RX DMA failed......\n");
4138 				}
4139 
4140 				/*  RQPN Load 0 */
4141 				rtw_write16(padapter, REG_RQPN_NPQ, 0);
4142 				rtw_write32(padapter, REG_RQPN, 0x80000000);
4143 				mdelay(2);
4144 			}
4145 		}
4146 		break;
4147 
4148 	case HW_VAR_APFM_ON_MAC:
4149 		pHalData->bMacPwrCtrlOn = *val;
4150 		DBG_8192C("%s: bMacPwrCtrlOn =%d\n", __func__, pHalData->bMacPwrCtrlOn);
4151 		break;
4152 
4153 	case HW_VAR_NAV_UPPER:
4154 		{
4155 			u32 usNavUpper = *((u32 *)val);
4156 
4157 			if (usNavUpper > HAL_NAV_UPPER_UNIT_8723B * 0xFF) {
4158 				RT_TRACE(_module_hal_init_c_, _drv_notice_, ("The setting value (0x%08X us) of NAV_UPPER is larger than (%d * 0xFF)!!!\n", usNavUpper, HAL_NAV_UPPER_UNIT_8723B));
4159 				break;
4160 			}
4161 
4162 			/*  The value of ((usNavUpper + HAL_NAV_UPPER_UNIT_8723B - 1) / HAL_NAV_UPPER_UNIT_8723B) */
4163 			/*  is getting the upper integer. */
4164 			usNavUpper = (usNavUpper + HAL_NAV_UPPER_UNIT_8723B - 1) / HAL_NAV_UPPER_UNIT_8723B;
4165 			rtw_write8(padapter, REG_NAV_UPPER, (u8)usNavUpper);
4166 		}
4167 		break;
4168 
4169 	case HW_VAR_H2C_MEDIA_STATUS_RPT:
4170 		{
4171 			u16 mstatus_rpt = (*(u16 *)val);
4172 			u8 mstatus, macId;
4173 
4174 			mstatus = (u8) (mstatus_rpt & 0xFF);
4175 			macId = (u8)(mstatus_rpt >> 8);
4176 			rtl8723b_set_FwMediaStatusRpt_cmd(padapter, mstatus, macId);
4177 		}
4178 		break;
4179 	case HW_VAR_BCN_VALID:
4180 		{
4181 			/*  BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2, write 1 to clear, Clear by sw */
4182 			val8 = rtw_read8(padapter, REG_TDECTRL+2);
4183 			val8 |= BIT(0);
4184 			rtw_write8(padapter, REG_TDECTRL+2, val8);
4185 		}
4186 		break;
4187 
4188 	case HW_VAR_DL_BCN_SEL:
4189 		{
4190 			/*  SW_BCN_SEL - Port0 */
4191 			val8 = rtw_read8(padapter, REG_DWBCN1_CTRL_8723B+2);
4192 			val8 &= ~BIT(4);
4193 			rtw_write8(padapter, REG_DWBCN1_CTRL_8723B+2, val8);
4194 		}
4195 		break;
4196 
4197 	case HW_VAR_DO_IQK:
4198 		pHalData->bNeedIQK = true;
4199 		break;
4200 
4201 	case HW_VAR_DL_RSVD_PAGE:
4202 		if (check_fwstate(&padapter->mlmepriv, WIFI_AP_STATE) == true)
4203 			rtl8723b_download_BTCoex_AP_mode_rsvd_page(padapter);
4204 		else
4205 			rtl8723b_download_rsvd_page(padapter, RT_MEDIA_CONNECT);
4206 		break;
4207 
4208 	case HW_VAR_MACID_SLEEP:
4209 		/*  Input is MACID */
4210 		val32 = *(u32 *)val;
4211 		if (val32 > 31) {
4212 			DBG_8192C(FUNC_ADPT_FMT ": [HW_VAR_MACID_SLEEP] Invalid macid(%d)\n",
4213 				FUNC_ADPT_ARG(padapter), val32);
4214 			break;
4215 		}
4216 		val8 = (u8)val32; /*  macid is between 0~31 */
4217 
4218 		val32 = rtw_read32(padapter, REG_MACID_SLEEP);
4219 		DBG_8192C(FUNC_ADPT_FMT ": [HW_VAR_MACID_SLEEP] macid =%d, org MACID_SLEEP = 0x%08X\n",
4220 			FUNC_ADPT_ARG(padapter), val8, val32);
4221 		if (val32 & BIT(val8))
4222 			break;
4223 		val32 |= BIT(val8);
4224 		rtw_write32(padapter, REG_MACID_SLEEP, val32);
4225 		break;
4226 
4227 	case HW_VAR_MACID_WAKEUP:
4228 		/*  Input is MACID */
4229 		val32 = *(u32 *)val;
4230 		if (val32 > 31) {
4231 			DBG_8192C(FUNC_ADPT_FMT ": [HW_VAR_MACID_WAKEUP] Invalid macid(%d)\n",
4232 				FUNC_ADPT_ARG(padapter), val32);
4233 			break;
4234 		}
4235 		val8 = (u8)val32; /*  macid is between 0~31 */
4236 
4237 		val32 = rtw_read32(padapter, REG_MACID_SLEEP);
4238 		DBG_8192C(FUNC_ADPT_FMT ": [HW_VAR_MACID_WAKEUP] macid =%d, org MACID_SLEEP = 0x%08X\n",
4239 			FUNC_ADPT_ARG(padapter), val8, val32);
4240 		if (!(val32 & BIT(val8)))
4241 			break;
4242 		val32 &= ~BIT(val8);
4243 		rtw_write32(padapter, REG_MACID_SLEEP, val32);
4244 		break;
4245 
4246 	default:
4247 		SetHwReg(padapter, variable, val);
4248 		break;
4249 	}
4250 }
4251 
4252 void GetHwReg8723B(struct adapter *padapter, u8 variable, u8 *val)
4253 {
4254 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
4255 	u8 val8;
4256 	u16 val16;
4257 
4258 	switch (variable) {
4259 	case HW_VAR_TXPAUSE:
4260 		*val = rtw_read8(padapter, REG_TXPAUSE);
4261 		break;
4262 
4263 	case HW_VAR_BCN_VALID:
4264 		{
4265 			/*  BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2 */
4266 			val8 = rtw_read8(padapter, REG_TDECTRL+2);
4267 			*val = (BIT(0) & val8) ? true : false;
4268 		}
4269 		break;
4270 
4271 	case HW_VAR_FWLPS_RF_ON:
4272 		{
4273 			/*  When we halt NIC, we should check if FW LPS is leave. */
4274 			u32 valRCR;
4275 
4276 			if (
4277 				(padapter->bSurpriseRemoved == true) ||
4278 				(adapter_to_pwrctl(padapter)->rf_pwrstate == rf_off)
4279 			) {
4280 				/*  If it is in HW/SW Radio OFF or IPS state, we do not check Fw LPS Leave, */
4281 				/*  because Fw is unload. */
4282 				*val = true;
4283 			} else {
4284 				valRCR = rtw_read32(padapter, REG_RCR);
4285 				valRCR &= 0x00070000;
4286 				if (valRCR)
4287 					*val = false;
4288 				else
4289 					*val = true;
4290 			}
4291 		}
4292 		break;
4293 
4294 	case HW_VAR_EFUSE_USAGE:
4295 		*val = pHalData->EfuseUsedPercentage;
4296 		break;
4297 
4298 	case HW_VAR_EFUSE_BYTES:
4299 		*((u16 *)val) = pHalData->EfuseUsedBytes;
4300 		break;
4301 
4302 	case HW_VAR_EFUSE_BT_USAGE:
4303 #ifdef HAL_EFUSE_MEMORY
4304 		*val = pHalData->EfuseHal.BTEfuseUsedPercentage;
4305 #endif
4306 		break;
4307 
4308 	case HW_VAR_EFUSE_BT_BYTES:
4309 #ifdef HAL_EFUSE_MEMORY
4310 		*((u16 *)val) = pHalData->EfuseHal.BTEfuseUsedBytes;
4311 #else
4312 		*((u16 *)val) = BTEfuseUsedBytes;
4313 #endif
4314 		break;
4315 
4316 	case HW_VAR_APFM_ON_MAC:
4317 		*val = pHalData->bMacPwrCtrlOn;
4318 		break;
4319 	case HW_VAR_CHK_HI_QUEUE_EMPTY:
4320 		val16 = rtw_read16(padapter, REG_TXPKT_EMPTY);
4321 		*val = (val16 & BIT(10)) ? true:false;
4322 		break;
4323 #ifdef CONFIG_WOWLAN
4324 	case HW_VAR_RPWM_TOG:
4325 		*val = rtw_read8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HRPWM1) & BIT7;
4326 		break;
4327 	case HW_VAR_WAKEUP_REASON:
4328 		*val = rtw_read8(padapter, REG_WOWLAN_WAKE_REASON);
4329 		if (*val == 0xEA)
4330 			*val = 0;
4331 		break;
4332 	case HW_VAR_SYS_CLKR:
4333 		*val = rtw_read8(padapter, REG_SYS_CLKR);
4334 		break;
4335 #endif
4336 	default:
4337 		GetHwReg(padapter, variable, val);
4338 		break;
4339 	}
4340 }
4341 
4342 /*
4343  *Description:
4344  *	Change default setting of specified variable.
4345  */
4346 u8 SetHalDefVar8723B(struct adapter *padapter, enum HAL_DEF_VARIABLE variable, void *pval)
4347 {
4348 	struct hal_com_data *pHalData;
4349 	u8 bResult;
4350 
4351 
4352 	pHalData = GET_HAL_DATA(padapter);
4353 	bResult = _SUCCESS;
4354 
4355 	switch (variable) {
4356 	default:
4357 		bResult = SetHalDefVar(padapter, variable, pval);
4358 		break;
4359 	}
4360 
4361 	return bResult;
4362 }
4363 
4364 /*
4365  *Description:
4366  *	Query setting of specified variable.
4367  */
4368 u8 GetHalDefVar8723B(struct adapter *padapter, enum HAL_DEF_VARIABLE variable, void *pval)
4369 {
4370 	struct hal_com_data *pHalData;
4371 	u8 bResult;
4372 
4373 
4374 	pHalData = GET_HAL_DATA(padapter);
4375 	bResult = _SUCCESS;
4376 
4377 	switch (variable) {
4378 	case HAL_DEF_MAX_RECVBUF_SZ:
4379 		*((u32 *)pval) = MAX_RECVBUF_SZ;
4380 		break;
4381 
4382 	case HAL_DEF_RX_PACKET_OFFSET:
4383 		*((u32 *)pval) = RXDESC_SIZE + DRVINFO_SZ*8;
4384 		break;
4385 
4386 	case HW_VAR_MAX_RX_AMPDU_FACTOR:
4387 		/*  Stanley@BB.SD3 suggests 16K can get stable performance */
4388 		/*  The experiment was done on SDIO interface */
4389 		/*  coding by Lucas@20130730 */
4390 		*(u32 *)pval = MAX_AMPDU_FACTOR_16K;
4391 		break;
4392 	case HAL_DEF_TX_LDPC:
4393 	case HAL_DEF_RX_LDPC:
4394 		*((u8 *)pval) = false;
4395 		break;
4396 	case HAL_DEF_TX_STBC:
4397 		*((u8 *)pval) = 0;
4398 		break;
4399 	case HAL_DEF_RX_STBC:
4400 		*((u8 *)pval) = 1;
4401 		break;
4402 	case HAL_DEF_EXPLICIT_BEAMFORMER:
4403 	case HAL_DEF_EXPLICIT_BEAMFORMEE:
4404 		*((u8 *)pval) = false;
4405 		break;
4406 
4407 	case HW_DEF_RA_INFO_DUMP:
4408 		{
4409 			u8 mac_id = *(u8 *)pval;
4410 			u32 cmd;
4411 			u32 ra_info1, ra_info2;
4412 			u32 rate_mask1, rate_mask2;
4413 			u8 curr_tx_rate, curr_tx_sgi, hight_rate, lowest_rate;
4414 
4415 			DBG_8192C("============ RA status check  Mac_id:%d ===================\n", mac_id);
4416 
4417 			cmd = 0x40000100 | mac_id;
4418 			rtw_write32(padapter, REG_HMEBOX_DBG_2_8723B, cmd);
4419 			msleep(10);
4420 			ra_info1 = rtw_read32(padapter, 0x2F0);
4421 			curr_tx_rate = ra_info1&0x7F;
4422 			curr_tx_sgi = (ra_info1>>7)&0x01;
4423 			DBG_8192C("[ ra_info1:0x%08x ] =>cur_tx_rate = %s, cur_sgi:%d, PWRSTS = 0x%02x \n",
4424 				ra_info1,
4425 				HDATA_RATE(curr_tx_rate),
4426 				curr_tx_sgi,
4427 				(ra_info1>>8)  & 0x07);
4428 
4429 			cmd = 0x40000400 | mac_id;
4430 			rtw_write32(padapter, REG_HMEBOX_DBG_2_8723B, cmd);
4431 			msleep(10);
4432 			ra_info1 = rtw_read32(padapter, 0x2F0);
4433 			ra_info2 = rtw_read32(padapter, 0x2F4);
4434 			rate_mask1 = rtw_read32(padapter, 0x2F8);
4435 			rate_mask2 = rtw_read32(padapter, 0x2FC);
4436 			hight_rate = ra_info2&0xFF;
4437 			lowest_rate = (ra_info2>>8)  & 0xFF;
4438 
4439 			DBG_8192C("[ ra_info1:0x%08x ] =>RSSI =%d, BW_setting = 0x%02x, DISRA = 0x%02x, VHT_EN = 0x%02x\n",
4440 				ra_info1,
4441 				ra_info1&0xFF,
4442 				(ra_info1>>8)  & 0xFF,
4443 				(ra_info1>>16) & 0xFF,
4444 				(ra_info1>>24) & 0xFF);
4445 
4446 			DBG_8192C("[ ra_info2:0x%08x ] =>hight_rate =%s, lowest_rate =%s, SGI = 0x%02x, RateID =%d\n",
4447 				ra_info2,
4448 				HDATA_RATE(hight_rate),
4449 				HDATA_RATE(lowest_rate),
4450 				(ra_info2>>16) & 0xFF,
4451 				(ra_info2>>24) & 0xFF);
4452 
4453 			DBG_8192C("rate_mask2 = 0x%08x, rate_mask1 = 0x%08x\n", rate_mask2, rate_mask1);
4454 
4455 		}
4456 		break;
4457 
4458 	case HAL_DEF_TX_PAGE_BOUNDARY:
4459 		if (!padapter->registrypriv.wifi_spec) {
4460 			*(u8 *)pval = TX_PAGE_BOUNDARY_8723B;
4461 		} else {
4462 			*(u8 *)pval = WMM_NORMAL_TX_PAGE_BOUNDARY_8723B;
4463 		}
4464 		break;
4465 
4466 	case HAL_DEF_MACID_SLEEP:
4467 		*(u8 *)pval = true; /*  support macid sleep */
4468 		break;
4469 
4470 	default:
4471 		bResult = GetHalDefVar(padapter, variable, pval);
4472 		break;
4473 	}
4474 
4475 	return bResult;
4476 }
4477 
4478 #ifdef CONFIG_WOWLAN
4479 void Hal_DetectWoWMode(struct adapter *padapter)
4480 {
4481 	adapter_to_pwrctl(padapter)->bSupportRemoteWakeup = true;
4482 	DBG_871X("%s\n", __func__);
4483 }
4484 #endif /* CONFIG_WOWLAN */
4485 
4486 void rtl8723b_start_thread(struct adapter *padapter)
4487 {
4488 #ifndef CONFIG_SDIO_TX_TASKLET
4489 	struct xmit_priv *xmitpriv = &padapter->xmitpriv;
4490 
4491 	xmitpriv->SdioXmitThread = kthread_run(rtl8723bs_xmit_thread, padapter, "RTWHALXT");
4492 	if (IS_ERR(xmitpriv->SdioXmitThread)) {
4493 		RT_TRACE(_module_hal_xmit_c_, _drv_err_, ("%s: start rtl8723bs_xmit_thread FAIL!!\n", __func__));
4494 	}
4495 #endif
4496 }
4497 
4498 void rtl8723b_stop_thread(struct adapter *padapter)
4499 {
4500 #ifndef CONFIG_SDIO_TX_TASKLET
4501 	struct xmit_priv *xmitpriv = &padapter->xmitpriv;
4502 
4503 	/*  stop xmit_buf_thread */
4504 	if (xmitpriv->SdioXmitThread) {
4505 		complete(&xmitpriv->SdioXmitStart);
4506 		wait_for_completion(&xmitpriv->SdioXmitTerminate);
4507 		xmitpriv->SdioXmitThread = NULL;
4508 	}
4509 #endif
4510 }
4511 
4512 #if defined(CONFIG_CHECK_BT_HANG)
4513 extern void check_bt_status_work(void *data);
4514 void rtl8723bs_init_checkbthang_workqueue(struct adapter *adapter)
4515 {
4516 	adapter->priv_checkbt_wq = alloc_workqueue("sdio_wq", 0, 0);
4517 	INIT_DELAYED_WORK(&adapter->checkbt_work, (void *)check_bt_status_work);
4518 }
4519 
4520 void rtl8723bs_free_checkbthang_workqueue(struct adapter *adapter)
4521 {
4522 	if (adapter->priv_checkbt_wq) {
4523 		cancel_delayed_work_sync(&adapter->checkbt_work);
4524 		flush_workqueue(adapter->priv_checkbt_wq);
4525 		destroy_workqueue(adapter->priv_checkbt_wq);
4526 		adapter->priv_checkbt_wq = NULL;
4527 	}
4528 }
4529 
4530 void rtl8723bs_cancle_checkbthang_workqueue(struct adapter *adapter)
4531 {
4532 	if (adapter->priv_checkbt_wq)
4533 		cancel_delayed_work_sync(&adapter->checkbt_work);
4534 }
4535 
4536 void rtl8723bs_hal_check_bt_hang(struct adapter *adapter)
4537 {
4538 	if (adapter->priv_checkbt_wq)
4539 		queue_delayed_work(adapter->priv_checkbt_wq, &(adapter->checkbt_work), 0);
4540 }
4541 #endif
4542