xref: /linux/drivers/staging/vme_user/vme.c (revision 6c8c1406)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * VME Bridge Framework
4  *
5  * Author: Martyn Welch <martyn.welch@ge.com>
6  * Copyright 2008 GE Intelligent Platforms Embedded Systems, Inc.
7  *
8  * Based on work by Tom Armistead and Ajit Prem
9  * Copyright 2004 Motorola Inc.
10  */
11 
12 #include <linux/init.h>
13 #include <linux/export.h>
14 #include <linux/mm.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/errno.h>
18 #include <linux/pci.h>
19 #include <linux/poll.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/device.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/syscalls.h>
26 #include <linux/mutex.h>
27 #include <linux/spinlock.h>
28 #include <linux/slab.h>
29 
30 #include "vme.h"
31 #include "vme_bridge.h"
32 
33 /* Bitmask and list of registered buses both protected by common mutex */
34 static unsigned int vme_bus_numbers;
35 static LIST_HEAD(vme_bus_list);
36 static DEFINE_MUTEX(vme_buses_lock);
37 
38 static int __init vme_init(void);
39 
40 static struct vme_dev *dev_to_vme_dev(struct device *dev)
41 {
42 	return container_of(dev, struct vme_dev, dev);
43 }
44 
45 /*
46  * Find the bridge that the resource is associated with.
47  */
48 static struct vme_bridge *find_bridge(struct vme_resource *resource)
49 {
50 	/* Get list to search */
51 	switch (resource->type) {
52 	case VME_MASTER:
53 		return list_entry(resource->entry, struct vme_master_resource,
54 			list)->parent;
55 	case VME_SLAVE:
56 		return list_entry(resource->entry, struct vme_slave_resource,
57 			list)->parent;
58 	case VME_DMA:
59 		return list_entry(resource->entry, struct vme_dma_resource,
60 			list)->parent;
61 	case VME_LM:
62 		return list_entry(resource->entry, struct vme_lm_resource,
63 			list)->parent;
64 	default:
65 		printk(KERN_ERR "Unknown resource type\n");
66 		return NULL;
67 	}
68 }
69 
70 /**
71  * vme_alloc_consistent - Allocate contiguous memory.
72  * @resource: Pointer to VME resource.
73  * @size: Size of allocation required.
74  * @dma: Pointer to variable to store physical address of allocation.
75  *
76  * Allocate a contiguous block of memory for use by the driver. This is used to
77  * create the buffers for the slave windows.
78  *
79  * Return: Virtual address of allocation on success, NULL on failure.
80  */
81 void *vme_alloc_consistent(struct vme_resource *resource, size_t size,
82 	dma_addr_t *dma)
83 {
84 	struct vme_bridge *bridge;
85 
86 	if (!resource) {
87 		printk(KERN_ERR "No resource\n");
88 		return NULL;
89 	}
90 
91 	bridge = find_bridge(resource);
92 	if (!bridge) {
93 		printk(KERN_ERR "Can't find bridge\n");
94 		return NULL;
95 	}
96 
97 	if (!bridge->parent) {
98 		printk(KERN_ERR "Dev entry NULL for bridge %s\n", bridge->name);
99 		return NULL;
100 	}
101 
102 	if (!bridge->alloc_consistent) {
103 		printk(KERN_ERR "alloc_consistent not supported by bridge %s\n",
104 		       bridge->name);
105 		return NULL;
106 	}
107 
108 	return bridge->alloc_consistent(bridge->parent, size, dma);
109 }
110 EXPORT_SYMBOL(vme_alloc_consistent);
111 
112 /**
113  * vme_free_consistent - Free previously allocated memory.
114  * @resource: Pointer to VME resource.
115  * @size: Size of allocation to free.
116  * @vaddr: Virtual address of allocation.
117  * @dma: Physical address of allocation.
118  *
119  * Free previously allocated block of contiguous memory.
120  */
121 void vme_free_consistent(struct vme_resource *resource, size_t size,
122 	void *vaddr, dma_addr_t dma)
123 {
124 	struct vme_bridge *bridge;
125 
126 	if (!resource) {
127 		printk(KERN_ERR "No resource\n");
128 		return;
129 	}
130 
131 	bridge = find_bridge(resource);
132 	if (!bridge) {
133 		printk(KERN_ERR "Can't find bridge\n");
134 		return;
135 	}
136 
137 	if (!bridge->parent) {
138 		printk(KERN_ERR "Dev entry NULL for bridge %s\n", bridge->name);
139 		return;
140 	}
141 
142 	if (!bridge->free_consistent) {
143 		printk(KERN_ERR "free_consistent not supported by bridge %s\n",
144 		       bridge->name);
145 		return;
146 	}
147 
148 	bridge->free_consistent(bridge->parent, size, vaddr, dma);
149 }
150 EXPORT_SYMBOL(vme_free_consistent);
151 
152 /**
153  * vme_get_size - Helper function returning size of a VME window
154  * @resource: Pointer to VME slave or master resource.
155  *
156  * Determine the size of the VME window provided. This is a helper
157  * function, wrappering the call to vme_master_get or vme_slave_get
158  * depending on the type of window resource handed to it.
159  *
160  * Return: Size of the window on success, zero on failure.
161  */
162 size_t vme_get_size(struct vme_resource *resource)
163 {
164 	int enabled, retval;
165 	unsigned long long base, size;
166 	dma_addr_t buf_base;
167 	u32 aspace, cycle, dwidth;
168 
169 	switch (resource->type) {
170 	case VME_MASTER:
171 		retval = vme_master_get(resource, &enabled, &base, &size,
172 			&aspace, &cycle, &dwidth);
173 		if (retval)
174 			return 0;
175 
176 		return size;
177 	case VME_SLAVE:
178 		retval = vme_slave_get(resource, &enabled, &base, &size,
179 			&buf_base, &aspace, &cycle);
180 		if (retval)
181 			return 0;
182 
183 		return size;
184 	case VME_DMA:
185 		return 0;
186 	default:
187 		printk(KERN_ERR "Unknown resource type\n");
188 		return 0;
189 	}
190 }
191 EXPORT_SYMBOL(vme_get_size);
192 
193 int vme_check_window(u32 aspace, unsigned long long vme_base,
194 		     unsigned long long size)
195 {
196 	int retval = 0;
197 
198 	if (vme_base + size < size)
199 		return -EINVAL;
200 
201 	switch (aspace) {
202 	case VME_A16:
203 		if (vme_base + size > VME_A16_MAX)
204 			retval = -EFAULT;
205 		break;
206 	case VME_A24:
207 		if (vme_base + size > VME_A24_MAX)
208 			retval = -EFAULT;
209 		break;
210 	case VME_A32:
211 		if (vme_base + size > VME_A32_MAX)
212 			retval = -EFAULT;
213 		break;
214 	case VME_A64:
215 		/* The VME_A64_MAX limit is actually U64_MAX + 1 */
216 		break;
217 	case VME_CRCSR:
218 		if (vme_base + size > VME_CRCSR_MAX)
219 			retval = -EFAULT;
220 		break;
221 	case VME_USER1:
222 	case VME_USER2:
223 	case VME_USER3:
224 	case VME_USER4:
225 		/* User Defined */
226 		break;
227 	default:
228 		printk(KERN_ERR "Invalid address space\n");
229 		retval = -EINVAL;
230 		break;
231 	}
232 
233 	return retval;
234 }
235 EXPORT_SYMBOL(vme_check_window);
236 
237 static u32 vme_get_aspace(int am)
238 {
239 	switch (am) {
240 	case 0x29:
241 	case 0x2D:
242 		return VME_A16;
243 	case 0x38:
244 	case 0x39:
245 	case 0x3A:
246 	case 0x3B:
247 	case 0x3C:
248 	case 0x3D:
249 	case 0x3E:
250 	case 0x3F:
251 		return VME_A24;
252 	case 0x8:
253 	case 0x9:
254 	case 0xA:
255 	case 0xB:
256 	case 0xC:
257 	case 0xD:
258 	case 0xE:
259 	case 0xF:
260 		return VME_A32;
261 	case 0x0:
262 	case 0x1:
263 	case 0x3:
264 		return VME_A64;
265 	}
266 
267 	return 0;
268 }
269 
270 /**
271  * vme_slave_request - Request a VME slave window resource.
272  * @vdev: Pointer to VME device struct vme_dev assigned to driver instance.
273  * @address: Required VME address space.
274  * @cycle: Required VME data transfer cycle type.
275  *
276  * Request use of a VME window resource capable of being set for the requested
277  * address space and data transfer cycle.
278  *
279  * Return: Pointer to VME resource on success, NULL on failure.
280  */
281 struct vme_resource *vme_slave_request(struct vme_dev *vdev, u32 address,
282 	u32 cycle)
283 {
284 	struct vme_bridge *bridge;
285 	struct list_head *slave_pos = NULL;
286 	struct vme_slave_resource *allocated_image = NULL;
287 	struct vme_slave_resource *slave_image = NULL;
288 	struct vme_resource *resource = NULL;
289 
290 	bridge = vdev->bridge;
291 	if (!bridge) {
292 		printk(KERN_ERR "Can't find VME bus\n");
293 		goto err_bus;
294 	}
295 
296 	/* Loop through slave resources */
297 	list_for_each(slave_pos, &bridge->slave_resources) {
298 		slave_image = list_entry(slave_pos,
299 			struct vme_slave_resource, list);
300 
301 		if (!slave_image) {
302 			printk(KERN_ERR "Registered NULL Slave resource\n");
303 			continue;
304 		}
305 
306 		/* Find an unlocked and compatible image */
307 		mutex_lock(&slave_image->mtx);
308 		if (((slave_image->address_attr & address) == address) &&
309 			((slave_image->cycle_attr & cycle) == cycle) &&
310 			(slave_image->locked == 0)) {
311 
312 			slave_image->locked = 1;
313 			mutex_unlock(&slave_image->mtx);
314 			allocated_image = slave_image;
315 			break;
316 		}
317 		mutex_unlock(&slave_image->mtx);
318 	}
319 
320 	/* No free image */
321 	if (!allocated_image)
322 		goto err_image;
323 
324 	resource = kmalloc(sizeof(*resource), GFP_KERNEL);
325 	if (!resource)
326 		goto err_alloc;
327 
328 	resource->type = VME_SLAVE;
329 	resource->entry = &allocated_image->list;
330 
331 	return resource;
332 
333 err_alloc:
334 	/* Unlock image */
335 	mutex_lock(&slave_image->mtx);
336 	slave_image->locked = 0;
337 	mutex_unlock(&slave_image->mtx);
338 err_image:
339 err_bus:
340 	return NULL;
341 }
342 EXPORT_SYMBOL(vme_slave_request);
343 
344 /**
345  * vme_slave_set - Set VME slave window configuration.
346  * @resource: Pointer to VME slave resource.
347  * @enabled: State to which the window should be configured.
348  * @vme_base: Base address for the window.
349  * @size: Size of the VME window.
350  * @buf_base: Based address of buffer used to provide VME slave window storage.
351  * @aspace: VME address space for the VME window.
352  * @cycle: VME data transfer cycle type for the VME window.
353  *
354  * Set configuration for provided VME slave window.
355  *
356  * Return: Zero on success, -EINVAL if operation is not supported on this
357  *         device, if an invalid resource has been provided or invalid
358  *         attributes are provided. Hardware specific errors may also be
359  *         returned.
360  */
361 int vme_slave_set(struct vme_resource *resource, int enabled,
362 	unsigned long long vme_base, unsigned long long size,
363 	dma_addr_t buf_base, u32 aspace, u32 cycle)
364 {
365 	struct vme_bridge *bridge = find_bridge(resource);
366 	struct vme_slave_resource *image;
367 	int retval;
368 
369 	if (resource->type != VME_SLAVE) {
370 		printk(KERN_ERR "Not a slave resource\n");
371 		return -EINVAL;
372 	}
373 
374 	image = list_entry(resource->entry, struct vme_slave_resource, list);
375 
376 	if (!bridge->slave_set) {
377 		printk(KERN_ERR "Function not supported\n");
378 		return -ENOSYS;
379 	}
380 
381 	if (!(((image->address_attr & aspace) == aspace) &&
382 		((image->cycle_attr & cycle) == cycle))) {
383 		printk(KERN_ERR "Invalid attributes\n");
384 		return -EINVAL;
385 	}
386 
387 	retval = vme_check_window(aspace, vme_base, size);
388 	if (retval)
389 		return retval;
390 
391 	return bridge->slave_set(image, enabled, vme_base, size, buf_base,
392 		aspace, cycle);
393 }
394 EXPORT_SYMBOL(vme_slave_set);
395 
396 /**
397  * vme_slave_get - Retrieve VME slave window configuration.
398  * @resource: Pointer to VME slave resource.
399  * @enabled: Pointer to variable for storing state.
400  * @vme_base: Pointer to variable for storing window base address.
401  * @size: Pointer to variable for storing window size.
402  * @buf_base: Pointer to variable for storing slave buffer base address.
403  * @aspace: Pointer to variable for storing VME address space.
404  * @cycle: Pointer to variable for storing VME data transfer cycle type.
405  *
406  * Return configuration for provided VME slave window.
407  *
408  * Return: Zero on success, -EINVAL if operation is not supported on this
409  *         device or if an invalid resource has been provided.
410  */
411 int vme_slave_get(struct vme_resource *resource, int *enabled,
412 	unsigned long long *vme_base, unsigned long long *size,
413 	dma_addr_t *buf_base, u32 *aspace, u32 *cycle)
414 {
415 	struct vme_bridge *bridge = find_bridge(resource);
416 	struct vme_slave_resource *image;
417 
418 	if (resource->type != VME_SLAVE) {
419 		printk(KERN_ERR "Not a slave resource\n");
420 		return -EINVAL;
421 	}
422 
423 	image = list_entry(resource->entry, struct vme_slave_resource, list);
424 
425 	if (!bridge->slave_get) {
426 		printk(KERN_ERR "vme_slave_get not supported\n");
427 		return -EINVAL;
428 	}
429 
430 	return bridge->slave_get(image, enabled, vme_base, size, buf_base,
431 		aspace, cycle);
432 }
433 EXPORT_SYMBOL(vme_slave_get);
434 
435 /**
436  * vme_slave_free - Free VME slave window
437  * @resource: Pointer to VME slave resource.
438  *
439  * Free the provided slave resource so that it may be reallocated.
440  */
441 void vme_slave_free(struct vme_resource *resource)
442 {
443 	struct vme_slave_resource *slave_image;
444 
445 	if (resource->type != VME_SLAVE) {
446 		printk(KERN_ERR "Not a slave resource\n");
447 		return;
448 	}
449 
450 	slave_image = list_entry(resource->entry, struct vme_slave_resource,
451 		list);
452 	if (!slave_image) {
453 		printk(KERN_ERR "Can't find slave resource\n");
454 		return;
455 	}
456 
457 	/* Unlock image */
458 	mutex_lock(&slave_image->mtx);
459 	if (slave_image->locked == 0)
460 		printk(KERN_ERR "Image is already free\n");
461 
462 	slave_image->locked = 0;
463 	mutex_unlock(&slave_image->mtx);
464 
465 	/* Free up resource memory */
466 	kfree(resource);
467 }
468 EXPORT_SYMBOL(vme_slave_free);
469 
470 /**
471  * vme_master_request - Request a VME master window resource.
472  * @vdev: Pointer to VME device struct vme_dev assigned to driver instance.
473  * @address: Required VME address space.
474  * @cycle: Required VME data transfer cycle type.
475  * @dwidth: Required VME data transfer width.
476  *
477  * Request use of a VME window resource capable of being set for the requested
478  * address space, data transfer cycle and width.
479  *
480  * Return: Pointer to VME resource on success, NULL on failure.
481  */
482 struct vme_resource *vme_master_request(struct vme_dev *vdev, u32 address,
483 	u32 cycle, u32 dwidth)
484 {
485 	struct vme_bridge *bridge;
486 	struct list_head *master_pos = NULL;
487 	struct vme_master_resource *allocated_image = NULL;
488 	struct vme_master_resource *master_image = NULL;
489 	struct vme_resource *resource = NULL;
490 
491 	bridge = vdev->bridge;
492 	if (!bridge) {
493 		printk(KERN_ERR "Can't find VME bus\n");
494 		goto err_bus;
495 	}
496 
497 	/* Loop through master resources */
498 	list_for_each(master_pos, &bridge->master_resources) {
499 		master_image = list_entry(master_pos,
500 			struct vme_master_resource, list);
501 
502 		if (!master_image) {
503 			printk(KERN_WARNING "Registered NULL master resource\n");
504 			continue;
505 		}
506 
507 		/* Find an unlocked and compatible image */
508 		spin_lock(&master_image->lock);
509 		if (((master_image->address_attr & address) == address) &&
510 			((master_image->cycle_attr & cycle) == cycle) &&
511 			((master_image->width_attr & dwidth) == dwidth) &&
512 			(master_image->locked == 0)) {
513 
514 			master_image->locked = 1;
515 			spin_unlock(&master_image->lock);
516 			allocated_image = master_image;
517 			break;
518 		}
519 		spin_unlock(&master_image->lock);
520 	}
521 
522 	/* Check to see if we found a resource */
523 	if (!allocated_image) {
524 		printk(KERN_ERR "Can't find a suitable resource\n");
525 		goto err_image;
526 	}
527 
528 	resource = kmalloc(sizeof(*resource), GFP_KERNEL);
529 	if (!resource)
530 		goto err_alloc;
531 
532 	resource->type = VME_MASTER;
533 	resource->entry = &allocated_image->list;
534 
535 	return resource;
536 
537 err_alloc:
538 	/* Unlock image */
539 	spin_lock(&master_image->lock);
540 	master_image->locked = 0;
541 	spin_unlock(&master_image->lock);
542 err_image:
543 err_bus:
544 	return NULL;
545 }
546 EXPORT_SYMBOL(vme_master_request);
547 
548 /**
549  * vme_master_set - Set VME master window configuration.
550  * @resource: Pointer to VME master resource.
551  * @enabled: State to which the window should be configured.
552  * @vme_base: Base address for the window.
553  * @size: Size of the VME window.
554  * @aspace: VME address space for the VME window.
555  * @cycle: VME data transfer cycle type for the VME window.
556  * @dwidth: VME data transfer width for the VME window.
557  *
558  * Set configuration for provided VME master window.
559  *
560  * Return: Zero on success, -EINVAL if operation is not supported on this
561  *         device, if an invalid resource has been provided or invalid
562  *         attributes are provided. Hardware specific errors may also be
563  *         returned.
564  */
565 int vme_master_set(struct vme_resource *resource, int enabled,
566 	unsigned long long vme_base, unsigned long long size, u32 aspace,
567 	u32 cycle, u32 dwidth)
568 {
569 	struct vme_bridge *bridge = find_bridge(resource);
570 	struct vme_master_resource *image;
571 	int retval;
572 
573 	if (resource->type != VME_MASTER) {
574 		printk(KERN_ERR "Not a master resource\n");
575 		return -EINVAL;
576 	}
577 
578 	image = list_entry(resource->entry, struct vme_master_resource, list);
579 
580 	if (!bridge->master_set) {
581 		printk(KERN_WARNING "vme_master_set not supported\n");
582 		return -EINVAL;
583 	}
584 
585 	if (!(((image->address_attr & aspace) == aspace) &&
586 		((image->cycle_attr & cycle) == cycle) &&
587 		((image->width_attr & dwidth) == dwidth))) {
588 		printk(KERN_WARNING "Invalid attributes\n");
589 		return -EINVAL;
590 	}
591 
592 	retval = vme_check_window(aspace, vme_base, size);
593 	if (retval)
594 		return retval;
595 
596 	return bridge->master_set(image, enabled, vme_base, size, aspace,
597 		cycle, dwidth);
598 }
599 EXPORT_SYMBOL(vme_master_set);
600 
601 /**
602  * vme_master_get - Retrieve VME master window configuration.
603  * @resource: Pointer to VME master resource.
604  * @enabled: Pointer to variable for storing state.
605  * @vme_base: Pointer to variable for storing window base address.
606  * @size: Pointer to variable for storing window size.
607  * @aspace: Pointer to variable for storing VME address space.
608  * @cycle: Pointer to variable for storing VME data transfer cycle type.
609  * @dwidth: Pointer to variable for storing VME data transfer width.
610  *
611  * Return configuration for provided VME master window.
612  *
613  * Return: Zero on success, -EINVAL if operation is not supported on this
614  *         device or if an invalid resource has been provided.
615  */
616 int vme_master_get(struct vme_resource *resource, int *enabled,
617 	unsigned long long *vme_base, unsigned long long *size, u32 *aspace,
618 	u32 *cycle, u32 *dwidth)
619 {
620 	struct vme_bridge *bridge = find_bridge(resource);
621 	struct vme_master_resource *image;
622 
623 	if (resource->type != VME_MASTER) {
624 		printk(KERN_ERR "Not a master resource\n");
625 		return -EINVAL;
626 	}
627 
628 	image = list_entry(resource->entry, struct vme_master_resource, list);
629 
630 	if (!bridge->master_get) {
631 		printk(KERN_WARNING "%s not supported\n", __func__);
632 		return -EINVAL;
633 	}
634 
635 	return bridge->master_get(image, enabled, vme_base, size, aspace,
636 		cycle, dwidth);
637 }
638 EXPORT_SYMBOL(vme_master_get);
639 
640 /**
641  * vme_master_read - Read data from VME space into a buffer.
642  * @resource: Pointer to VME master resource.
643  * @buf: Pointer to buffer where data should be transferred.
644  * @count: Number of bytes to transfer.
645  * @offset: Offset into VME master window at which to start transfer.
646  *
647  * Perform read of count bytes of data from location on VME bus which maps into
648  * the VME master window at offset to buf.
649  *
650  * Return: Number of bytes read, -EINVAL if resource is not a VME master
651  *         resource or read operation is not supported. -EFAULT returned if
652  *         invalid offset is provided. Hardware specific errors may also be
653  *         returned.
654  */
655 ssize_t vme_master_read(struct vme_resource *resource, void *buf, size_t count,
656 	loff_t offset)
657 {
658 	struct vme_bridge *bridge = find_bridge(resource);
659 	struct vme_master_resource *image;
660 	size_t length;
661 
662 	if (!bridge->master_read) {
663 		printk(KERN_WARNING "Reading from resource not supported\n");
664 		return -EINVAL;
665 	}
666 
667 	if (resource->type != VME_MASTER) {
668 		printk(KERN_ERR "Not a master resource\n");
669 		return -EINVAL;
670 	}
671 
672 	image = list_entry(resource->entry, struct vme_master_resource, list);
673 
674 	length = vme_get_size(resource);
675 
676 	if (offset > length) {
677 		printk(KERN_WARNING "Invalid Offset\n");
678 		return -EFAULT;
679 	}
680 
681 	if ((offset + count) > length)
682 		count = length - offset;
683 
684 	return bridge->master_read(image, buf, count, offset);
685 
686 }
687 EXPORT_SYMBOL(vme_master_read);
688 
689 /**
690  * vme_master_write - Write data out to VME space from a buffer.
691  * @resource: Pointer to VME master resource.
692  * @buf: Pointer to buffer holding data to transfer.
693  * @count: Number of bytes to transfer.
694  * @offset: Offset into VME master window at which to start transfer.
695  *
696  * Perform write of count bytes of data from buf to location on VME bus which
697  * maps into the VME master window at offset.
698  *
699  * Return: Number of bytes written, -EINVAL if resource is not a VME master
700  *         resource or write operation is not supported. -EFAULT returned if
701  *         invalid offset is provided. Hardware specific errors may also be
702  *         returned.
703  */
704 ssize_t vme_master_write(struct vme_resource *resource, void *buf,
705 	size_t count, loff_t offset)
706 {
707 	struct vme_bridge *bridge = find_bridge(resource);
708 	struct vme_master_resource *image;
709 	size_t length;
710 
711 	if (!bridge->master_write) {
712 		printk(KERN_WARNING "Writing to resource not supported\n");
713 		return -EINVAL;
714 	}
715 
716 	if (resource->type != VME_MASTER) {
717 		printk(KERN_ERR "Not a master resource\n");
718 		return -EINVAL;
719 	}
720 
721 	image = list_entry(resource->entry, struct vme_master_resource, list);
722 
723 	length = vme_get_size(resource);
724 
725 	if (offset > length) {
726 		printk(KERN_WARNING "Invalid Offset\n");
727 		return -EFAULT;
728 	}
729 
730 	if ((offset + count) > length)
731 		count = length - offset;
732 
733 	return bridge->master_write(image, buf, count, offset);
734 }
735 EXPORT_SYMBOL(vme_master_write);
736 
737 /**
738  * vme_master_rmw - Perform read-modify-write cycle.
739  * @resource: Pointer to VME master resource.
740  * @mask: Bits to be compared and swapped in operation.
741  * @compare: Bits to be compared with data read from offset.
742  * @swap: Bits to be swapped in data read from offset.
743  * @offset: Offset into VME master window at which to perform operation.
744  *
745  * Perform read-modify-write cycle on provided location:
746  * - Location on VME bus is read.
747  * - Bits selected by mask are compared with compare.
748  * - Where a selected bit matches that in compare and are selected in swap,
749  * the bit is swapped.
750  * - Result written back to location on VME bus.
751  *
752  * Return: Bytes written on success, -EINVAL if resource is not a VME master
753  *         resource or RMW operation is not supported. Hardware specific
754  *         errors may also be returned.
755  */
756 unsigned int vme_master_rmw(struct vme_resource *resource, unsigned int mask,
757 	unsigned int compare, unsigned int swap, loff_t offset)
758 {
759 	struct vme_bridge *bridge = find_bridge(resource);
760 	struct vme_master_resource *image;
761 
762 	if (!bridge->master_rmw) {
763 		printk(KERN_WARNING "Writing to resource not supported\n");
764 		return -EINVAL;
765 	}
766 
767 	if (resource->type != VME_MASTER) {
768 		printk(KERN_ERR "Not a master resource\n");
769 		return -EINVAL;
770 	}
771 
772 	image = list_entry(resource->entry, struct vme_master_resource, list);
773 
774 	return bridge->master_rmw(image, mask, compare, swap, offset);
775 }
776 EXPORT_SYMBOL(vme_master_rmw);
777 
778 /**
779  * vme_master_mmap - Mmap region of VME master window.
780  * @resource: Pointer to VME master resource.
781  * @vma: Pointer to definition of user mapping.
782  *
783  * Memory map a region of the VME master window into user space.
784  *
785  * Return: Zero on success, -EINVAL if resource is not a VME master
786  *         resource or -EFAULT if map exceeds window size. Other generic mmap
787  *         errors may also be returned.
788  */
789 int vme_master_mmap(struct vme_resource *resource, struct vm_area_struct *vma)
790 {
791 	struct vme_master_resource *image;
792 	phys_addr_t phys_addr;
793 	unsigned long vma_size;
794 
795 	if (resource->type != VME_MASTER) {
796 		pr_err("Not a master resource\n");
797 		return -EINVAL;
798 	}
799 
800 	image = list_entry(resource->entry, struct vme_master_resource, list);
801 	phys_addr = image->bus_resource.start + (vma->vm_pgoff << PAGE_SHIFT);
802 	vma_size = vma->vm_end - vma->vm_start;
803 
804 	if (phys_addr + vma_size > image->bus_resource.end + 1) {
805 		pr_err("Map size cannot exceed the window size\n");
806 		return -EFAULT;
807 	}
808 
809 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
810 
811 	return vm_iomap_memory(vma, phys_addr, vma->vm_end - vma->vm_start);
812 }
813 EXPORT_SYMBOL(vme_master_mmap);
814 
815 /**
816  * vme_master_free - Free VME master window
817  * @resource: Pointer to VME master resource.
818  *
819  * Free the provided master resource so that it may be reallocated.
820  */
821 void vme_master_free(struct vme_resource *resource)
822 {
823 	struct vme_master_resource *master_image;
824 
825 	if (resource->type != VME_MASTER) {
826 		printk(KERN_ERR "Not a master resource\n");
827 		return;
828 	}
829 
830 	master_image = list_entry(resource->entry, struct vme_master_resource,
831 		list);
832 	if (!master_image) {
833 		printk(KERN_ERR "Can't find master resource\n");
834 		return;
835 	}
836 
837 	/* Unlock image */
838 	spin_lock(&master_image->lock);
839 	if (master_image->locked == 0)
840 		printk(KERN_ERR "Image is already free\n");
841 
842 	master_image->locked = 0;
843 	spin_unlock(&master_image->lock);
844 
845 	/* Free up resource memory */
846 	kfree(resource);
847 }
848 EXPORT_SYMBOL(vme_master_free);
849 
850 /**
851  * vme_dma_request - Request a DMA controller.
852  * @vdev: Pointer to VME device struct vme_dev assigned to driver instance.
853  * @route: Required src/destination combination.
854  *
855  * Request a VME DMA controller with capability to perform transfers bewteen
856  * requested source/destination combination.
857  *
858  * Return: Pointer to VME DMA resource on success, NULL on failure.
859  */
860 struct vme_resource *vme_dma_request(struct vme_dev *vdev, u32 route)
861 {
862 	struct vme_bridge *bridge;
863 	struct list_head *dma_pos = NULL;
864 	struct vme_dma_resource *allocated_ctrlr = NULL;
865 	struct vme_dma_resource *dma_ctrlr = NULL;
866 	struct vme_resource *resource = NULL;
867 
868 	/* XXX Not checking resource attributes */
869 	printk(KERN_ERR "No VME resource Attribute tests done\n");
870 
871 	bridge = vdev->bridge;
872 	if (!bridge) {
873 		printk(KERN_ERR "Can't find VME bus\n");
874 		goto err_bus;
875 	}
876 
877 	/* Loop through DMA resources */
878 	list_for_each(dma_pos, &bridge->dma_resources) {
879 		dma_ctrlr = list_entry(dma_pos,
880 			struct vme_dma_resource, list);
881 		if (!dma_ctrlr) {
882 			printk(KERN_ERR "Registered NULL DMA resource\n");
883 			continue;
884 		}
885 
886 		/* Find an unlocked and compatible controller */
887 		mutex_lock(&dma_ctrlr->mtx);
888 		if (((dma_ctrlr->route_attr & route) == route) &&
889 			(dma_ctrlr->locked == 0)) {
890 
891 			dma_ctrlr->locked = 1;
892 			mutex_unlock(&dma_ctrlr->mtx);
893 			allocated_ctrlr = dma_ctrlr;
894 			break;
895 		}
896 		mutex_unlock(&dma_ctrlr->mtx);
897 	}
898 
899 	/* Check to see if we found a resource */
900 	if (!allocated_ctrlr)
901 		goto err_ctrlr;
902 
903 	resource = kmalloc(sizeof(*resource), GFP_KERNEL);
904 	if (!resource)
905 		goto err_alloc;
906 
907 	resource->type = VME_DMA;
908 	resource->entry = &allocated_ctrlr->list;
909 
910 	return resource;
911 
912 err_alloc:
913 	/* Unlock image */
914 	mutex_lock(&dma_ctrlr->mtx);
915 	dma_ctrlr->locked = 0;
916 	mutex_unlock(&dma_ctrlr->mtx);
917 err_ctrlr:
918 err_bus:
919 	return NULL;
920 }
921 EXPORT_SYMBOL(vme_dma_request);
922 
923 /**
924  * vme_new_dma_list - Create new VME DMA list.
925  * @resource: Pointer to VME DMA resource.
926  *
927  * Create a new VME DMA list. It is the responsibility of the user to free
928  * the list once it is no longer required with vme_dma_list_free().
929  *
930  * Return: Pointer to new VME DMA list, NULL on allocation failure or invalid
931  *         VME DMA resource.
932  */
933 struct vme_dma_list *vme_new_dma_list(struct vme_resource *resource)
934 {
935 	struct vme_dma_list *dma_list;
936 
937 	if (resource->type != VME_DMA) {
938 		printk(KERN_ERR "Not a DMA resource\n");
939 		return NULL;
940 	}
941 
942 	dma_list = kmalloc(sizeof(*dma_list), GFP_KERNEL);
943 	if (!dma_list)
944 		return NULL;
945 
946 	INIT_LIST_HEAD(&dma_list->entries);
947 	dma_list->parent = list_entry(resource->entry,
948 				      struct vme_dma_resource,
949 				      list);
950 	mutex_init(&dma_list->mtx);
951 
952 	return dma_list;
953 }
954 EXPORT_SYMBOL(vme_new_dma_list);
955 
956 /**
957  * vme_dma_pattern_attribute - Create "Pattern" type VME DMA list attribute.
958  * @pattern: Value to use used as pattern
959  * @type: Type of pattern to be written.
960  *
961  * Create VME DMA list attribute for pattern generation. It is the
962  * responsibility of the user to free used attributes using
963  * vme_dma_free_attribute().
964  *
965  * Return: Pointer to VME DMA attribute, NULL on failure.
966  */
967 struct vme_dma_attr *vme_dma_pattern_attribute(u32 pattern, u32 type)
968 {
969 	struct vme_dma_attr *attributes;
970 	struct vme_dma_pattern *pattern_attr;
971 
972 	attributes = kmalloc(sizeof(*attributes), GFP_KERNEL);
973 	if (!attributes)
974 		goto err_attr;
975 
976 	pattern_attr = kmalloc(sizeof(*pattern_attr), GFP_KERNEL);
977 	if (!pattern_attr)
978 		goto err_pat;
979 
980 	attributes->type = VME_DMA_PATTERN;
981 	attributes->private = (void *)pattern_attr;
982 
983 	pattern_attr->pattern = pattern;
984 	pattern_attr->type = type;
985 
986 	return attributes;
987 
988 err_pat:
989 	kfree(attributes);
990 err_attr:
991 	return NULL;
992 }
993 EXPORT_SYMBOL(vme_dma_pattern_attribute);
994 
995 /**
996  * vme_dma_pci_attribute - Create "PCI" type VME DMA list attribute.
997  * @address: PCI base address for DMA transfer.
998  *
999  * Create VME DMA list attribute pointing to a location on PCI for DMA
1000  * transfers. It is the responsibility of the user to free used attributes
1001  * using vme_dma_free_attribute().
1002  *
1003  * Return: Pointer to VME DMA attribute, NULL on failure.
1004  */
1005 struct vme_dma_attr *vme_dma_pci_attribute(dma_addr_t address)
1006 {
1007 	struct vme_dma_attr *attributes;
1008 	struct vme_dma_pci *pci_attr;
1009 
1010 	/* XXX Run some sanity checks here */
1011 
1012 	attributes = kmalloc(sizeof(*attributes), GFP_KERNEL);
1013 	if (!attributes)
1014 		goto err_attr;
1015 
1016 	pci_attr = kmalloc(sizeof(*pci_attr), GFP_KERNEL);
1017 	if (!pci_attr)
1018 		goto err_pci;
1019 
1020 	attributes->type = VME_DMA_PCI;
1021 	attributes->private = (void *)pci_attr;
1022 
1023 	pci_attr->address = address;
1024 
1025 	return attributes;
1026 
1027 err_pci:
1028 	kfree(attributes);
1029 err_attr:
1030 	return NULL;
1031 }
1032 EXPORT_SYMBOL(vme_dma_pci_attribute);
1033 
1034 /**
1035  * vme_dma_vme_attribute - Create "VME" type VME DMA list attribute.
1036  * @address: VME base address for DMA transfer.
1037  * @aspace: VME address space to use for DMA transfer.
1038  * @cycle: VME bus cycle to use for DMA transfer.
1039  * @dwidth: VME data width to use for DMA transfer.
1040  *
1041  * Create VME DMA list attribute pointing to a location on the VME bus for DMA
1042  * transfers. It is the responsibility of the user to free used attributes
1043  * using vme_dma_free_attribute().
1044  *
1045  * Return: Pointer to VME DMA attribute, NULL on failure.
1046  */
1047 struct vme_dma_attr *vme_dma_vme_attribute(unsigned long long address,
1048 	u32 aspace, u32 cycle, u32 dwidth)
1049 {
1050 	struct vme_dma_attr *attributes;
1051 	struct vme_dma_vme *vme_attr;
1052 
1053 	attributes = kmalloc(sizeof(*attributes), GFP_KERNEL);
1054 	if (!attributes)
1055 		goto err_attr;
1056 
1057 	vme_attr = kmalloc(sizeof(*vme_attr), GFP_KERNEL);
1058 	if (!vme_attr)
1059 		goto err_vme;
1060 
1061 	attributes->type = VME_DMA_VME;
1062 	attributes->private = (void *)vme_attr;
1063 
1064 	vme_attr->address = address;
1065 	vme_attr->aspace = aspace;
1066 	vme_attr->cycle = cycle;
1067 	vme_attr->dwidth = dwidth;
1068 
1069 	return attributes;
1070 
1071 err_vme:
1072 	kfree(attributes);
1073 err_attr:
1074 	return NULL;
1075 }
1076 EXPORT_SYMBOL(vme_dma_vme_attribute);
1077 
1078 /**
1079  * vme_dma_free_attribute - Free DMA list attribute.
1080  * @attributes: Pointer to DMA list attribute.
1081  *
1082  * Free VME DMA list attribute. VME DMA list attributes can be safely freed
1083  * once vme_dma_list_add() has returned.
1084  */
1085 void vme_dma_free_attribute(struct vme_dma_attr *attributes)
1086 {
1087 	kfree(attributes->private);
1088 	kfree(attributes);
1089 }
1090 EXPORT_SYMBOL(vme_dma_free_attribute);
1091 
1092 /**
1093  * vme_dma_list_add - Add enty to a VME DMA list.
1094  * @list: Pointer to VME list.
1095  * @src: Pointer to DMA list attribute to use as source.
1096  * @dest: Pointer to DMA list attribute to use as destination.
1097  * @count: Number of bytes to transfer.
1098  *
1099  * Add an entry to the provided VME DMA list. Entry requires pointers to source
1100  * and destination DMA attributes and a count.
1101  *
1102  * Please note, the attributes supported as source and destinations for
1103  * transfers are hardware dependent.
1104  *
1105  * Return: Zero on success, -EINVAL if operation is not supported on this
1106  *         device or if the link list has already been submitted for execution.
1107  *         Hardware specific errors also possible.
1108  */
1109 int vme_dma_list_add(struct vme_dma_list *list, struct vme_dma_attr *src,
1110 	struct vme_dma_attr *dest, size_t count)
1111 {
1112 	struct vme_bridge *bridge = list->parent->parent;
1113 	int retval;
1114 
1115 	if (!bridge->dma_list_add) {
1116 		printk(KERN_WARNING "Link List DMA generation not supported\n");
1117 		return -EINVAL;
1118 	}
1119 
1120 	if (!mutex_trylock(&list->mtx)) {
1121 		printk(KERN_ERR "Link List already submitted\n");
1122 		return -EINVAL;
1123 	}
1124 
1125 	retval = bridge->dma_list_add(list, src, dest, count);
1126 
1127 	mutex_unlock(&list->mtx);
1128 
1129 	return retval;
1130 }
1131 EXPORT_SYMBOL(vme_dma_list_add);
1132 
1133 /**
1134  * vme_dma_list_exec - Queue a VME DMA list for execution.
1135  * @list: Pointer to VME list.
1136  *
1137  * Queue the provided VME DMA list for execution. The call will return once the
1138  * list has been executed.
1139  *
1140  * Return: Zero on success, -EINVAL if operation is not supported on this
1141  *         device. Hardware specific errors also possible.
1142  */
1143 int vme_dma_list_exec(struct vme_dma_list *list)
1144 {
1145 	struct vme_bridge *bridge = list->parent->parent;
1146 	int retval;
1147 
1148 	if (!bridge->dma_list_exec) {
1149 		printk(KERN_ERR "Link List DMA execution not supported\n");
1150 		return -EINVAL;
1151 	}
1152 
1153 	mutex_lock(&list->mtx);
1154 
1155 	retval = bridge->dma_list_exec(list);
1156 
1157 	mutex_unlock(&list->mtx);
1158 
1159 	return retval;
1160 }
1161 EXPORT_SYMBOL(vme_dma_list_exec);
1162 
1163 /**
1164  * vme_dma_list_free - Free a VME DMA list.
1165  * @list: Pointer to VME list.
1166  *
1167  * Free the provided DMA list and all its entries.
1168  *
1169  * Return: Zero on success, -EINVAL on invalid VME resource, -EBUSY if resource
1170  *         is still in use. Hardware specific errors also possible.
1171  */
1172 int vme_dma_list_free(struct vme_dma_list *list)
1173 {
1174 	struct vme_bridge *bridge = list->parent->parent;
1175 	int retval;
1176 
1177 	if (!bridge->dma_list_empty) {
1178 		printk(KERN_WARNING "Emptying of Link Lists not supported\n");
1179 		return -EINVAL;
1180 	}
1181 
1182 	if (!mutex_trylock(&list->mtx)) {
1183 		printk(KERN_ERR "Link List in use\n");
1184 		return -EBUSY;
1185 	}
1186 
1187 	/*
1188 	 * Empty out all of the entries from the DMA list. We need to go to the
1189 	 * low level driver as DMA entries are driver specific.
1190 	 */
1191 	retval = bridge->dma_list_empty(list);
1192 	if (retval) {
1193 		printk(KERN_ERR "Unable to empty link-list entries\n");
1194 		mutex_unlock(&list->mtx);
1195 		return retval;
1196 	}
1197 	mutex_unlock(&list->mtx);
1198 	kfree(list);
1199 
1200 	return retval;
1201 }
1202 EXPORT_SYMBOL(vme_dma_list_free);
1203 
1204 /**
1205  * vme_dma_free - Free a VME DMA resource.
1206  * @resource: Pointer to VME DMA resource.
1207  *
1208  * Free the provided DMA resource so that it may be reallocated.
1209  *
1210  * Return: Zero on success, -EINVAL on invalid VME resource, -EBUSY if resource
1211  *         is still active.
1212  */
1213 int vme_dma_free(struct vme_resource *resource)
1214 {
1215 	struct vme_dma_resource *ctrlr;
1216 
1217 	if (resource->type != VME_DMA) {
1218 		printk(KERN_ERR "Not a DMA resource\n");
1219 		return -EINVAL;
1220 	}
1221 
1222 	ctrlr = list_entry(resource->entry, struct vme_dma_resource, list);
1223 
1224 	if (!mutex_trylock(&ctrlr->mtx)) {
1225 		printk(KERN_ERR "Resource busy, can't free\n");
1226 		return -EBUSY;
1227 	}
1228 
1229 	if (!(list_empty(&ctrlr->pending) && list_empty(&ctrlr->running))) {
1230 		printk(KERN_WARNING "Resource still processing transfers\n");
1231 		mutex_unlock(&ctrlr->mtx);
1232 		return -EBUSY;
1233 	}
1234 
1235 	ctrlr->locked = 0;
1236 
1237 	mutex_unlock(&ctrlr->mtx);
1238 
1239 	kfree(resource);
1240 
1241 	return 0;
1242 }
1243 EXPORT_SYMBOL(vme_dma_free);
1244 
1245 void vme_bus_error_handler(struct vme_bridge *bridge,
1246 			   unsigned long long address, int am)
1247 {
1248 	struct list_head *handler_pos = NULL;
1249 	struct vme_error_handler *handler;
1250 	int handler_triggered = 0;
1251 	u32 aspace = vme_get_aspace(am);
1252 
1253 	list_for_each(handler_pos, &bridge->vme_error_handlers) {
1254 		handler = list_entry(handler_pos, struct vme_error_handler,
1255 				     list);
1256 		if ((aspace == handler->aspace) &&
1257 		    (address >= handler->start) &&
1258 		    (address < handler->end)) {
1259 			if (!handler->num_errors)
1260 				handler->first_error = address;
1261 			if (handler->num_errors != UINT_MAX)
1262 				handler->num_errors++;
1263 			handler_triggered = 1;
1264 		}
1265 	}
1266 
1267 	if (!handler_triggered)
1268 		dev_err(bridge->parent,
1269 			"Unhandled VME access error at address 0x%llx\n",
1270 			address);
1271 }
1272 EXPORT_SYMBOL(vme_bus_error_handler);
1273 
1274 struct vme_error_handler *vme_register_error_handler(
1275 	struct vme_bridge *bridge, u32 aspace,
1276 	unsigned long long address, size_t len)
1277 {
1278 	struct vme_error_handler *handler;
1279 
1280 	handler = kmalloc(sizeof(*handler), GFP_ATOMIC);
1281 	if (!handler)
1282 		return NULL;
1283 
1284 	handler->aspace = aspace;
1285 	handler->start = address;
1286 	handler->end = address + len;
1287 	handler->num_errors = 0;
1288 	handler->first_error = 0;
1289 	list_add_tail(&handler->list, &bridge->vme_error_handlers);
1290 
1291 	return handler;
1292 }
1293 EXPORT_SYMBOL(vme_register_error_handler);
1294 
1295 void vme_unregister_error_handler(struct vme_error_handler *handler)
1296 {
1297 	list_del(&handler->list);
1298 	kfree(handler);
1299 }
1300 EXPORT_SYMBOL(vme_unregister_error_handler);
1301 
1302 void vme_irq_handler(struct vme_bridge *bridge, int level, int statid)
1303 {
1304 	void (*call)(int, int, void *);
1305 	void *priv_data;
1306 
1307 	call = bridge->irq[level - 1].callback[statid].func;
1308 	priv_data = bridge->irq[level - 1].callback[statid].priv_data;
1309 	if (call)
1310 		call(level, statid, priv_data);
1311 	else
1312 		printk(KERN_WARNING "Spurious VME interrupt, level:%x, vector:%x\n",
1313 		       level, statid);
1314 }
1315 EXPORT_SYMBOL(vme_irq_handler);
1316 
1317 /**
1318  * vme_irq_request - Request a specific VME interrupt.
1319  * @vdev: Pointer to VME device struct vme_dev assigned to driver instance.
1320  * @level: Interrupt priority being requested.
1321  * @statid: Interrupt vector being requested.
1322  * @callback: Pointer to callback function called when VME interrupt/vector
1323  *            received.
1324  * @priv_data: Generic pointer that will be passed to the callback function.
1325  *
1326  * Request callback to be attached as a handler for VME interrupts with provided
1327  * level and statid.
1328  *
1329  * Return: Zero on success, -EINVAL on invalid vme device, level or if the
1330  *         function is not supported, -EBUSY if the level/statid combination is
1331  *         already in use. Hardware specific errors also possible.
1332  */
1333 int vme_irq_request(struct vme_dev *vdev, int level, int statid,
1334 	void (*callback)(int, int, void *),
1335 	void *priv_data)
1336 {
1337 	struct vme_bridge *bridge;
1338 
1339 	bridge = vdev->bridge;
1340 	if (!bridge) {
1341 		printk(KERN_ERR "Can't find VME bus\n");
1342 		return -EINVAL;
1343 	}
1344 
1345 	if ((level < 1) || (level > 7)) {
1346 		printk(KERN_ERR "Invalid interrupt level\n");
1347 		return -EINVAL;
1348 	}
1349 
1350 	if (!bridge->irq_set) {
1351 		printk(KERN_ERR "Configuring interrupts not supported\n");
1352 		return -EINVAL;
1353 	}
1354 
1355 	mutex_lock(&bridge->irq_mtx);
1356 
1357 	if (bridge->irq[level - 1].callback[statid].func) {
1358 		mutex_unlock(&bridge->irq_mtx);
1359 		printk(KERN_WARNING "VME Interrupt already taken\n");
1360 		return -EBUSY;
1361 	}
1362 
1363 	bridge->irq[level - 1].count++;
1364 	bridge->irq[level - 1].callback[statid].priv_data = priv_data;
1365 	bridge->irq[level - 1].callback[statid].func = callback;
1366 
1367 	/* Enable IRQ level */
1368 	bridge->irq_set(bridge, level, 1, 1);
1369 
1370 	mutex_unlock(&bridge->irq_mtx);
1371 
1372 	return 0;
1373 }
1374 EXPORT_SYMBOL(vme_irq_request);
1375 
1376 /**
1377  * vme_irq_free - Free a VME interrupt.
1378  * @vdev: Pointer to VME device struct vme_dev assigned to driver instance.
1379  * @level: Interrupt priority of interrupt being freed.
1380  * @statid: Interrupt vector of interrupt being freed.
1381  *
1382  * Remove previously attached callback from VME interrupt priority/vector.
1383  */
1384 void vme_irq_free(struct vme_dev *vdev, int level, int statid)
1385 {
1386 	struct vme_bridge *bridge;
1387 
1388 	bridge = vdev->bridge;
1389 	if (!bridge) {
1390 		printk(KERN_ERR "Can't find VME bus\n");
1391 		return;
1392 	}
1393 
1394 	if ((level < 1) || (level > 7)) {
1395 		printk(KERN_ERR "Invalid interrupt level\n");
1396 		return;
1397 	}
1398 
1399 	if (!bridge->irq_set) {
1400 		printk(KERN_ERR "Configuring interrupts not supported\n");
1401 		return;
1402 	}
1403 
1404 	mutex_lock(&bridge->irq_mtx);
1405 
1406 	bridge->irq[level - 1].count--;
1407 
1408 	/* Disable IRQ level if no more interrupts attached at this level*/
1409 	if (bridge->irq[level - 1].count == 0)
1410 		bridge->irq_set(bridge, level, 0, 1);
1411 
1412 	bridge->irq[level - 1].callback[statid].func = NULL;
1413 	bridge->irq[level - 1].callback[statid].priv_data = NULL;
1414 
1415 	mutex_unlock(&bridge->irq_mtx);
1416 }
1417 EXPORT_SYMBOL(vme_irq_free);
1418 
1419 /**
1420  * vme_irq_generate - Generate VME interrupt.
1421  * @vdev: Pointer to VME device struct vme_dev assigned to driver instance.
1422  * @level: Interrupt priority at which to assert the interrupt.
1423  * @statid: Interrupt vector to associate with the interrupt.
1424  *
1425  * Generate a VME interrupt of the provided level and with the provided
1426  * statid.
1427  *
1428  * Return: Zero on success, -EINVAL on invalid vme device, level or if the
1429  *         function is not supported. Hardware specific errors also possible.
1430  */
1431 int vme_irq_generate(struct vme_dev *vdev, int level, int statid)
1432 {
1433 	struct vme_bridge *bridge;
1434 
1435 	bridge = vdev->bridge;
1436 	if (!bridge) {
1437 		printk(KERN_ERR "Can't find VME bus\n");
1438 		return -EINVAL;
1439 	}
1440 
1441 	if ((level < 1) || (level > 7)) {
1442 		printk(KERN_WARNING "Invalid interrupt level\n");
1443 		return -EINVAL;
1444 	}
1445 
1446 	if (!bridge->irq_generate) {
1447 		printk(KERN_WARNING "Interrupt generation not supported\n");
1448 		return -EINVAL;
1449 	}
1450 
1451 	return bridge->irq_generate(bridge, level, statid);
1452 }
1453 EXPORT_SYMBOL(vme_irq_generate);
1454 
1455 /**
1456  * vme_lm_request - Request a VME location monitor
1457  * @vdev: Pointer to VME device struct vme_dev assigned to driver instance.
1458  *
1459  * Allocate a location monitor resource to the driver. A location monitor
1460  * allows the driver to monitor accesses to a contiguous number of
1461  * addresses on the VME bus.
1462  *
1463  * Return: Pointer to a VME resource on success or NULL on failure.
1464  */
1465 struct vme_resource *vme_lm_request(struct vme_dev *vdev)
1466 {
1467 	struct vme_bridge *bridge;
1468 	struct list_head *lm_pos = NULL;
1469 	struct vme_lm_resource *allocated_lm = NULL;
1470 	struct vme_lm_resource *lm = NULL;
1471 	struct vme_resource *resource = NULL;
1472 
1473 	bridge = vdev->bridge;
1474 	if (!bridge) {
1475 		printk(KERN_ERR "Can't find VME bus\n");
1476 		goto err_bus;
1477 	}
1478 
1479 	/* Loop through LM resources */
1480 	list_for_each(lm_pos, &bridge->lm_resources) {
1481 		lm = list_entry(lm_pos,
1482 			struct vme_lm_resource, list);
1483 		if (!lm) {
1484 			printk(KERN_ERR "Registered NULL Location Monitor resource\n");
1485 			continue;
1486 		}
1487 
1488 		/* Find an unlocked controller */
1489 		mutex_lock(&lm->mtx);
1490 		if (lm->locked == 0) {
1491 			lm->locked = 1;
1492 			mutex_unlock(&lm->mtx);
1493 			allocated_lm = lm;
1494 			break;
1495 		}
1496 		mutex_unlock(&lm->mtx);
1497 	}
1498 
1499 	/* Check to see if we found a resource */
1500 	if (!allocated_lm)
1501 		goto err_lm;
1502 
1503 	resource = kmalloc(sizeof(*resource), GFP_KERNEL);
1504 	if (!resource)
1505 		goto err_alloc;
1506 
1507 	resource->type = VME_LM;
1508 	resource->entry = &allocated_lm->list;
1509 
1510 	return resource;
1511 
1512 err_alloc:
1513 	/* Unlock image */
1514 	mutex_lock(&lm->mtx);
1515 	lm->locked = 0;
1516 	mutex_unlock(&lm->mtx);
1517 err_lm:
1518 err_bus:
1519 	return NULL;
1520 }
1521 EXPORT_SYMBOL(vme_lm_request);
1522 
1523 /**
1524  * vme_lm_count - Determine number of VME Addresses monitored
1525  * @resource: Pointer to VME location monitor resource.
1526  *
1527  * The number of contiguous addresses monitored is hardware dependent.
1528  * Return the number of contiguous addresses monitored by the
1529  * location monitor.
1530  *
1531  * Return: Count of addresses monitored or -EINVAL when provided with an
1532  *	   invalid location monitor resource.
1533  */
1534 int vme_lm_count(struct vme_resource *resource)
1535 {
1536 	struct vme_lm_resource *lm;
1537 
1538 	if (resource->type != VME_LM) {
1539 		printk(KERN_ERR "Not a Location Monitor resource\n");
1540 		return -EINVAL;
1541 	}
1542 
1543 	lm = list_entry(resource->entry, struct vme_lm_resource, list);
1544 
1545 	return lm->monitors;
1546 }
1547 EXPORT_SYMBOL(vme_lm_count);
1548 
1549 /**
1550  * vme_lm_set - Configure location monitor
1551  * @resource: Pointer to VME location monitor resource.
1552  * @lm_base: Base address to monitor.
1553  * @aspace: VME address space to monitor.
1554  * @cycle: VME bus cycle type to monitor.
1555  *
1556  * Set the base address, address space and cycle type of accesses to be
1557  * monitored by the location monitor.
1558  *
1559  * Return: Zero on success, -EINVAL when provided with an invalid location
1560  *	   monitor resource or function is not supported. Hardware specific
1561  *	   errors may also be returned.
1562  */
1563 int vme_lm_set(struct vme_resource *resource, unsigned long long lm_base,
1564 	u32 aspace, u32 cycle)
1565 {
1566 	struct vme_bridge *bridge = find_bridge(resource);
1567 	struct vme_lm_resource *lm;
1568 
1569 	if (resource->type != VME_LM) {
1570 		printk(KERN_ERR "Not a Location Monitor resource\n");
1571 		return -EINVAL;
1572 	}
1573 
1574 	lm = list_entry(resource->entry, struct vme_lm_resource, list);
1575 
1576 	if (!bridge->lm_set) {
1577 		printk(KERN_ERR "vme_lm_set not supported\n");
1578 		return -EINVAL;
1579 	}
1580 
1581 	return bridge->lm_set(lm, lm_base, aspace, cycle);
1582 }
1583 EXPORT_SYMBOL(vme_lm_set);
1584 
1585 /**
1586  * vme_lm_get - Retrieve location monitor settings
1587  * @resource: Pointer to VME location monitor resource.
1588  * @lm_base: Pointer used to output the base address monitored.
1589  * @aspace: Pointer used to output the address space monitored.
1590  * @cycle: Pointer used to output the VME bus cycle type monitored.
1591  *
1592  * Retrieve the base address, address space and cycle type of accesses to
1593  * be monitored by the location monitor.
1594  *
1595  * Return: Zero on success, -EINVAL when provided with an invalid location
1596  *	   monitor resource or function is not supported. Hardware specific
1597  *	   errors may also be returned.
1598  */
1599 int vme_lm_get(struct vme_resource *resource, unsigned long long *lm_base,
1600 	u32 *aspace, u32 *cycle)
1601 {
1602 	struct vme_bridge *bridge = find_bridge(resource);
1603 	struct vme_lm_resource *lm;
1604 
1605 	if (resource->type != VME_LM) {
1606 		printk(KERN_ERR "Not a Location Monitor resource\n");
1607 		return -EINVAL;
1608 	}
1609 
1610 	lm = list_entry(resource->entry, struct vme_lm_resource, list);
1611 
1612 	if (!bridge->lm_get) {
1613 		printk(KERN_ERR "vme_lm_get not supported\n");
1614 		return -EINVAL;
1615 	}
1616 
1617 	return bridge->lm_get(lm, lm_base, aspace, cycle);
1618 }
1619 EXPORT_SYMBOL(vme_lm_get);
1620 
1621 /**
1622  * vme_lm_attach - Provide callback for location monitor address
1623  * @resource: Pointer to VME location monitor resource.
1624  * @monitor: Offset to which callback should be attached.
1625  * @callback: Pointer to callback function called when triggered.
1626  * @data: Generic pointer that will be passed to the callback function.
1627  *
1628  * Attach a callback to the specificed offset into the location monitors
1629  * monitored addresses. A generic pointer is provided to allow data to be
1630  * passed to the callback when called.
1631  *
1632  * Return: Zero on success, -EINVAL when provided with an invalid location
1633  *	   monitor resource or function is not supported. Hardware specific
1634  *	   errors may also be returned.
1635  */
1636 int vme_lm_attach(struct vme_resource *resource, int monitor,
1637 	void (*callback)(void *), void *data)
1638 {
1639 	struct vme_bridge *bridge = find_bridge(resource);
1640 	struct vme_lm_resource *lm;
1641 
1642 	if (resource->type != VME_LM) {
1643 		printk(KERN_ERR "Not a Location Monitor resource\n");
1644 		return -EINVAL;
1645 	}
1646 
1647 	lm = list_entry(resource->entry, struct vme_lm_resource, list);
1648 
1649 	if (!bridge->lm_attach) {
1650 		printk(KERN_ERR "vme_lm_attach not supported\n");
1651 		return -EINVAL;
1652 	}
1653 
1654 	return bridge->lm_attach(lm, monitor, callback, data);
1655 }
1656 EXPORT_SYMBOL(vme_lm_attach);
1657 
1658 /**
1659  * vme_lm_detach - Remove callback for location monitor address
1660  * @resource: Pointer to VME location monitor resource.
1661  * @monitor: Offset to which callback should be removed.
1662  *
1663  * Remove the callback associated with the specificed offset into the
1664  * location monitors monitored addresses.
1665  *
1666  * Return: Zero on success, -EINVAL when provided with an invalid location
1667  *	   monitor resource or function is not supported. Hardware specific
1668  *	   errors may also be returned.
1669  */
1670 int vme_lm_detach(struct vme_resource *resource, int monitor)
1671 {
1672 	struct vme_bridge *bridge = find_bridge(resource);
1673 	struct vme_lm_resource *lm;
1674 
1675 	if (resource->type != VME_LM) {
1676 		printk(KERN_ERR "Not a Location Monitor resource\n");
1677 		return -EINVAL;
1678 	}
1679 
1680 	lm = list_entry(resource->entry, struct vme_lm_resource, list);
1681 
1682 	if (!bridge->lm_detach) {
1683 		printk(KERN_ERR "vme_lm_detach not supported\n");
1684 		return -EINVAL;
1685 	}
1686 
1687 	return bridge->lm_detach(lm, monitor);
1688 }
1689 EXPORT_SYMBOL(vme_lm_detach);
1690 
1691 /**
1692  * vme_lm_free - Free allocated VME location monitor
1693  * @resource: Pointer to VME location monitor resource.
1694  *
1695  * Free allocation of a VME location monitor.
1696  *
1697  * WARNING: This function currently expects that any callbacks that have
1698  *          been attached to the location monitor have been removed.
1699  *
1700  * Return: Zero on success, -EINVAL when provided with an invalid location
1701  *	   monitor resource.
1702  */
1703 void vme_lm_free(struct vme_resource *resource)
1704 {
1705 	struct vme_lm_resource *lm;
1706 
1707 	if (resource->type != VME_LM) {
1708 		printk(KERN_ERR "Not a Location Monitor resource\n");
1709 		return;
1710 	}
1711 
1712 	lm = list_entry(resource->entry, struct vme_lm_resource, list);
1713 
1714 	mutex_lock(&lm->mtx);
1715 
1716 	/* XXX
1717 	 * Check to see that there aren't any callbacks still attached, if
1718 	 * there are we should probably be detaching them!
1719 	 */
1720 
1721 	lm->locked = 0;
1722 
1723 	mutex_unlock(&lm->mtx);
1724 
1725 	kfree(resource);
1726 }
1727 EXPORT_SYMBOL(vme_lm_free);
1728 
1729 /**
1730  * vme_slot_num - Retrieve slot ID
1731  * @vdev: Pointer to VME device struct vme_dev assigned to driver instance.
1732  *
1733  * Retrieve the slot ID associated with the provided VME device.
1734  *
1735  * Return: The slot ID on success, -EINVAL if VME bridge cannot be determined
1736  *         or the function is not supported. Hardware specific errors may also
1737  *         be returned.
1738  */
1739 int vme_slot_num(struct vme_dev *vdev)
1740 {
1741 	struct vme_bridge *bridge;
1742 
1743 	bridge = vdev->bridge;
1744 	if (!bridge) {
1745 		printk(KERN_ERR "Can't find VME bus\n");
1746 		return -EINVAL;
1747 	}
1748 
1749 	if (!bridge->slot_get) {
1750 		printk(KERN_WARNING "vme_slot_num not supported\n");
1751 		return -EINVAL;
1752 	}
1753 
1754 	return bridge->slot_get(bridge);
1755 }
1756 EXPORT_SYMBOL(vme_slot_num);
1757 
1758 /**
1759  * vme_bus_num - Retrieve bus number
1760  * @vdev: Pointer to VME device struct vme_dev assigned to driver instance.
1761  *
1762  * Retrieve the bus enumeration associated with the provided VME device.
1763  *
1764  * Return: The bus number on success, -EINVAL if VME bridge cannot be
1765  *         determined.
1766  */
1767 int vme_bus_num(struct vme_dev *vdev)
1768 {
1769 	struct vme_bridge *bridge;
1770 
1771 	bridge = vdev->bridge;
1772 	if (!bridge) {
1773 		pr_err("Can't find VME bus\n");
1774 		return -EINVAL;
1775 	}
1776 
1777 	return bridge->num;
1778 }
1779 EXPORT_SYMBOL(vme_bus_num);
1780 
1781 /* - Bridge Registration --------------------------------------------------- */
1782 
1783 static void vme_dev_release(struct device *dev)
1784 {
1785 	kfree(dev_to_vme_dev(dev));
1786 }
1787 
1788 /* Common bridge initialization */
1789 struct vme_bridge *vme_init_bridge(struct vme_bridge *bridge)
1790 {
1791 	INIT_LIST_HEAD(&bridge->vme_error_handlers);
1792 	INIT_LIST_HEAD(&bridge->master_resources);
1793 	INIT_LIST_HEAD(&bridge->slave_resources);
1794 	INIT_LIST_HEAD(&bridge->dma_resources);
1795 	INIT_LIST_HEAD(&bridge->lm_resources);
1796 	mutex_init(&bridge->irq_mtx);
1797 
1798 	return bridge;
1799 }
1800 EXPORT_SYMBOL(vme_init_bridge);
1801 
1802 int vme_register_bridge(struct vme_bridge *bridge)
1803 {
1804 	int i;
1805 	int ret = -1;
1806 
1807 	mutex_lock(&vme_buses_lock);
1808 	for (i = 0; i < sizeof(vme_bus_numbers) * 8; i++) {
1809 		if ((vme_bus_numbers & (1 << i)) == 0) {
1810 			vme_bus_numbers |= (1 << i);
1811 			bridge->num = i;
1812 			INIT_LIST_HEAD(&bridge->devices);
1813 			list_add_tail(&bridge->bus_list, &vme_bus_list);
1814 			ret = 0;
1815 			break;
1816 		}
1817 	}
1818 	mutex_unlock(&vme_buses_lock);
1819 
1820 	return ret;
1821 }
1822 EXPORT_SYMBOL(vme_register_bridge);
1823 
1824 void vme_unregister_bridge(struct vme_bridge *bridge)
1825 {
1826 	struct vme_dev *vdev;
1827 	struct vme_dev *tmp;
1828 
1829 	mutex_lock(&vme_buses_lock);
1830 	vme_bus_numbers &= ~(1 << bridge->num);
1831 	list_for_each_entry_safe(vdev, tmp, &bridge->devices, bridge_list) {
1832 		list_del(&vdev->drv_list);
1833 		list_del(&vdev->bridge_list);
1834 		device_unregister(&vdev->dev);
1835 	}
1836 	list_del(&bridge->bus_list);
1837 	mutex_unlock(&vme_buses_lock);
1838 }
1839 EXPORT_SYMBOL(vme_unregister_bridge);
1840 
1841 /* - Driver Registration --------------------------------------------------- */
1842 
1843 static int __vme_register_driver_bus(struct vme_driver *drv,
1844 	struct vme_bridge *bridge, unsigned int ndevs)
1845 {
1846 	int err;
1847 	unsigned int i;
1848 	struct vme_dev *vdev;
1849 	struct vme_dev *tmp;
1850 
1851 	for (i = 0; i < ndevs; i++) {
1852 		vdev = kzalloc(sizeof(*vdev), GFP_KERNEL);
1853 		if (!vdev) {
1854 			err = -ENOMEM;
1855 			goto err_devalloc;
1856 		}
1857 		vdev->num = i;
1858 		vdev->bridge = bridge;
1859 		vdev->dev.platform_data = drv;
1860 		vdev->dev.release = vme_dev_release;
1861 		vdev->dev.parent = bridge->parent;
1862 		vdev->dev.bus = &vme_bus_type;
1863 		dev_set_name(&vdev->dev, "%s.%u-%u", drv->name, bridge->num,
1864 			vdev->num);
1865 
1866 		err = device_register(&vdev->dev);
1867 		if (err)
1868 			goto err_reg;
1869 
1870 		if (vdev->dev.platform_data) {
1871 			list_add_tail(&vdev->drv_list, &drv->devices);
1872 			list_add_tail(&vdev->bridge_list, &bridge->devices);
1873 		} else
1874 			device_unregister(&vdev->dev);
1875 	}
1876 	return 0;
1877 
1878 err_reg:
1879 	put_device(&vdev->dev);
1880 err_devalloc:
1881 	list_for_each_entry_safe(vdev, tmp, &drv->devices, drv_list) {
1882 		list_del(&vdev->drv_list);
1883 		list_del(&vdev->bridge_list);
1884 		device_unregister(&vdev->dev);
1885 	}
1886 	return err;
1887 }
1888 
1889 static int __vme_register_driver(struct vme_driver *drv, unsigned int ndevs)
1890 {
1891 	struct vme_bridge *bridge;
1892 	int err = 0;
1893 
1894 	mutex_lock(&vme_buses_lock);
1895 	list_for_each_entry(bridge, &vme_bus_list, bus_list) {
1896 		/*
1897 		 * This cannot cause trouble as we already have vme_buses_lock
1898 		 * and if the bridge is removed, it will have to go through
1899 		 * vme_unregister_bridge() to do it (which calls remove() on
1900 		 * the bridge which in turn tries to acquire vme_buses_lock and
1901 		 * will have to wait).
1902 		 */
1903 		err = __vme_register_driver_bus(drv, bridge, ndevs);
1904 		if (err)
1905 			break;
1906 	}
1907 	mutex_unlock(&vme_buses_lock);
1908 	return err;
1909 }
1910 
1911 /**
1912  * vme_register_driver - Register a VME driver
1913  * @drv: Pointer to VME driver structure to register.
1914  * @ndevs: Maximum number of devices to allow to be enumerated.
1915  *
1916  * Register a VME device driver with the VME subsystem.
1917  *
1918  * Return: Zero on success, error value on registration failure.
1919  */
1920 int vme_register_driver(struct vme_driver *drv, unsigned int ndevs)
1921 {
1922 	int err;
1923 
1924 	drv->driver.name = drv->name;
1925 	drv->driver.bus = &vme_bus_type;
1926 	INIT_LIST_HEAD(&drv->devices);
1927 
1928 	err = driver_register(&drv->driver);
1929 	if (err)
1930 		return err;
1931 
1932 	err = __vme_register_driver(drv, ndevs);
1933 	if (err)
1934 		driver_unregister(&drv->driver);
1935 
1936 	return err;
1937 }
1938 EXPORT_SYMBOL(vme_register_driver);
1939 
1940 /**
1941  * vme_unregister_driver - Unregister a VME driver
1942  * @drv: Pointer to VME driver structure to unregister.
1943  *
1944  * Unregister a VME device driver from the VME subsystem.
1945  */
1946 void vme_unregister_driver(struct vme_driver *drv)
1947 {
1948 	struct vme_dev *dev, *dev_tmp;
1949 
1950 	mutex_lock(&vme_buses_lock);
1951 	list_for_each_entry_safe(dev, dev_tmp, &drv->devices, drv_list) {
1952 		list_del(&dev->drv_list);
1953 		list_del(&dev->bridge_list);
1954 		device_unregister(&dev->dev);
1955 	}
1956 	mutex_unlock(&vme_buses_lock);
1957 
1958 	driver_unregister(&drv->driver);
1959 }
1960 EXPORT_SYMBOL(vme_unregister_driver);
1961 
1962 /* - Bus Registration ------------------------------------------------------ */
1963 
1964 static int vme_bus_match(struct device *dev, struct device_driver *drv)
1965 {
1966 	struct vme_driver *vme_drv;
1967 
1968 	vme_drv = container_of(drv, struct vme_driver, driver);
1969 
1970 	if (dev->platform_data == vme_drv) {
1971 		struct vme_dev *vdev = dev_to_vme_dev(dev);
1972 
1973 		if (vme_drv->match && vme_drv->match(vdev))
1974 			return 1;
1975 
1976 		dev->platform_data = NULL;
1977 	}
1978 	return 0;
1979 }
1980 
1981 static int vme_bus_probe(struct device *dev)
1982 {
1983 	struct vme_driver *driver;
1984 	struct vme_dev *vdev = dev_to_vme_dev(dev);
1985 
1986 	driver = dev->platform_data;
1987 	if (driver->probe)
1988 		return driver->probe(vdev);
1989 
1990 	return -ENODEV;
1991 }
1992 
1993 static void vme_bus_remove(struct device *dev)
1994 {
1995 	struct vme_driver *driver;
1996 	struct vme_dev *vdev = dev_to_vme_dev(dev);
1997 
1998 	driver = dev->platform_data;
1999 	if (driver->remove)
2000 		driver->remove(vdev);
2001 }
2002 
2003 struct bus_type vme_bus_type = {
2004 	.name = "vme",
2005 	.match = vme_bus_match,
2006 	.probe = vme_bus_probe,
2007 	.remove = vme_bus_remove,
2008 };
2009 EXPORT_SYMBOL(vme_bus_type);
2010 
2011 static int __init vme_init(void)
2012 {
2013 	return bus_register(&vme_bus_type);
2014 }
2015 subsys_initcall(vme_init);
2016