xref: /linux/drivers/thermal/devfreq_cooling.c (revision 908fc4c2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * devfreq_cooling: Thermal cooling device implementation for devices using
4  *                  devfreq
5  *
6  * Copyright (C) 2014-2015 ARM Limited
7  *
8  * TODO:
9  *    - If OPPs are added or removed after devfreq cooling has
10  *      registered, the devfreq cooling won't react to it.
11  */
12 
13 #include <linux/devfreq.h>
14 #include <linux/devfreq_cooling.h>
15 #include <linux/energy_model.h>
16 #include <linux/export.h>
17 #include <linux/slab.h>
18 #include <linux/pm_opp.h>
19 #include <linux/pm_qos.h>
20 #include <linux/thermal.h>
21 #include <linux/units.h>
22 
23 #include <trace/events/thermal.h>
24 
25 #define SCALE_ERROR_MITIGATION	100
26 
27 /**
28  * struct devfreq_cooling_device - Devfreq cooling device
29  *		devfreq_cooling_device registered.
30  * @cdev:	Pointer to associated thermal cooling device.
31  * @devfreq:	Pointer to associated devfreq device.
32  * @cooling_state:	Current cooling state.
33  * @freq_table:	Pointer to a table with the frequencies sorted in descending
34  *		order.  You can index the table by cooling device state
35  * @max_state:	It is the last index, that is, one less than the number of the
36  *		OPPs
37  * @power_ops:	Pointer to devfreq_cooling_power, a more precised model.
38  * @res_util:	Resource utilization scaling factor for the power.
39  *		It is multiplied by 100 to minimize the error. It is used
40  *		for estimation of the power budget instead of using
41  *		'utilization' (which is	'busy_time' / 'total_time').
42  *		The 'res_util' range is from 100 to power * 100	for the
43  *		corresponding 'state'.
44  * @capped_state:	index to cooling state with in dynamic power budget
45  * @req_max_freq:	PM QoS request for limiting the maximum frequency
46  *			of the devfreq device.
47  * @em_pd:		Energy Model for the associated Devfreq device
48  */
49 struct devfreq_cooling_device {
50 	struct thermal_cooling_device *cdev;
51 	struct devfreq *devfreq;
52 	unsigned long cooling_state;
53 	u32 *freq_table;
54 	size_t max_state;
55 	struct devfreq_cooling_power *power_ops;
56 	u32 res_util;
57 	int capped_state;
58 	struct dev_pm_qos_request req_max_freq;
59 	struct em_perf_domain *em_pd;
60 };
61 
62 static int devfreq_cooling_get_max_state(struct thermal_cooling_device *cdev,
63 					 unsigned long *state)
64 {
65 	struct devfreq_cooling_device *dfc = cdev->devdata;
66 
67 	*state = dfc->max_state;
68 
69 	return 0;
70 }
71 
72 static int devfreq_cooling_get_cur_state(struct thermal_cooling_device *cdev,
73 					 unsigned long *state)
74 {
75 	struct devfreq_cooling_device *dfc = cdev->devdata;
76 
77 	*state = dfc->cooling_state;
78 
79 	return 0;
80 }
81 
82 static int devfreq_cooling_set_cur_state(struct thermal_cooling_device *cdev,
83 					 unsigned long state)
84 {
85 	struct devfreq_cooling_device *dfc = cdev->devdata;
86 	struct devfreq *df = dfc->devfreq;
87 	struct device *dev = df->dev.parent;
88 	unsigned long freq;
89 	int perf_idx;
90 
91 	if (state == dfc->cooling_state)
92 		return 0;
93 
94 	dev_dbg(dev, "Setting cooling state %lu\n", state);
95 
96 	if (state > dfc->max_state)
97 		return -EINVAL;
98 
99 	if (dfc->em_pd) {
100 		perf_idx = dfc->max_state - state;
101 		freq = dfc->em_pd->table[perf_idx].frequency * 1000;
102 	} else {
103 		freq = dfc->freq_table[state];
104 	}
105 
106 	dev_pm_qos_update_request(&dfc->req_max_freq,
107 				  DIV_ROUND_UP(freq, HZ_PER_KHZ));
108 
109 	dfc->cooling_state = state;
110 
111 	return 0;
112 }
113 
114 /**
115  * get_perf_idx() - get the performance index corresponding to a frequency
116  * @em_pd:	Pointer to device's Energy Model
117  * @freq:	frequency in kHz
118  *
119  * Return: the performance index associated with the @freq, or
120  * -EINVAL if it wasn't found.
121  */
122 static int get_perf_idx(struct em_perf_domain *em_pd, unsigned long freq)
123 {
124 	int i;
125 
126 	for (i = 0; i < em_pd->nr_perf_states; i++) {
127 		if (em_pd->table[i].frequency == freq)
128 			return i;
129 	}
130 
131 	return -EINVAL;
132 }
133 
134 static unsigned long get_voltage(struct devfreq *df, unsigned long freq)
135 {
136 	struct device *dev = df->dev.parent;
137 	unsigned long voltage;
138 	struct dev_pm_opp *opp;
139 
140 	opp = dev_pm_opp_find_freq_exact(dev, freq, true);
141 	if (PTR_ERR(opp) == -ERANGE)
142 		opp = dev_pm_opp_find_freq_exact(dev, freq, false);
143 
144 	if (IS_ERR(opp)) {
145 		dev_err_ratelimited(dev, "Failed to find OPP for frequency %lu: %ld\n",
146 				    freq, PTR_ERR(opp));
147 		return 0;
148 	}
149 
150 	voltage = dev_pm_opp_get_voltage(opp) / 1000; /* mV */
151 	dev_pm_opp_put(opp);
152 
153 	if (voltage == 0) {
154 		dev_err_ratelimited(dev,
155 				    "Failed to get voltage for frequency %lu\n",
156 				    freq);
157 	}
158 
159 	return voltage;
160 }
161 
162 static void _normalize_load(struct devfreq_dev_status *status)
163 {
164 	if (status->total_time > 0xfffff) {
165 		status->total_time >>= 10;
166 		status->busy_time >>= 10;
167 	}
168 
169 	status->busy_time <<= 10;
170 	status->busy_time /= status->total_time ? : 1;
171 
172 	status->busy_time = status->busy_time ? : 1;
173 	status->total_time = 1024;
174 }
175 
176 static int devfreq_cooling_get_requested_power(struct thermal_cooling_device *cdev,
177 					       u32 *power)
178 {
179 	struct devfreq_cooling_device *dfc = cdev->devdata;
180 	struct devfreq *df = dfc->devfreq;
181 	struct devfreq_dev_status status;
182 	unsigned long state;
183 	unsigned long freq;
184 	unsigned long voltage;
185 	int res, perf_idx;
186 
187 	mutex_lock(&df->lock);
188 	status = df->last_status;
189 	mutex_unlock(&df->lock);
190 
191 	freq = status.current_frequency;
192 
193 	if (dfc->power_ops && dfc->power_ops->get_real_power) {
194 		voltage = get_voltage(df, freq);
195 		if (voltage == 0) {
196 			res = -EINVAL;
197 			goto fail;
198 		}
199 
200 		res = dfc->power_ops->get_real_power(df, power, freq, voltage);
201 		if (!res) {
202 			state = dfc->capped_state;
203 			dfc->res_util = dfc->em_pd->table[state].power;
204 			dfc->res_util *= SCALE_ERROR_MITIGATION;
205 
206 			if (*power > 1)
207 				dfc->res_util /= *power;
208 		} else {
209 			goto fail;
210 		}
211 	} else {
212 		/* Energy Model frequencies are in kHz */
213 		perf_idx = get_perf_idx(dfc->em_pd, freq / 1000);
214 		if (perf_idx < 0) {
215 			res = -EAGAIN;
216 			goto fail;
217 		}
218 
219 		_normalize_load(&status);
220 
221 		/* Scale power for utilization */
222 		*power = dfc->em_pd->table[perf_idx].power;
223 		*power *= status.busy_time;
224 		*power >>= 10;
225 	}
226 
227 	trace_thermal_power_devfreq_get_power(cdev, &status, freq, *power);
228 
229 	return 0;
230 fail:
231 	/* It is safe to set max in this case */
232 	dfc->res_util = SCALE_ERROR_MITIGATION;
233 	return res;
234 }
235 
236 static int devfreq_cooling_state2power(struct thermal_cooling_device *cdev,
237 				       unsigned long state, u32 *power)
238 {
239 	struct devfreq_cooling_device *dfc = cdev->devdata;
240 	int perf_idx;
241 
242 	if (state > dfc->max_state)
243 		return -EINVAL;
244 
245 	perf_idx = dfc->max_state - state;
246 	*power = dfc->em_pd->table[perf_idx].power;
247 
248 	return 0;
249 }
250 
251 static int devfreq_cooling_power2state(struct thermal_cooling_device *cdev,
252 				       u32 power, unsigned long *state)
253 {
254 	struct devfreq_cooling_device *dfc = cdev->devdata;
255 	struct devfreq *df = dfc->devfreq;
256 	struct devfreq_dev_status status;
257 	unsigned long freq;
258 	s32 est_power;
259 	int i;
260 
261 	mutex_lock(&df->lock);
262 	status = df->last_status;
263 	mutex_unlock(&df->lock);
264 
265 	freq = status.current_frequency;
266 
267 	if (dfc->power_ops && dfc->power_ops->get_real_power) {
268 		/* Scale for resource utilization */
269 		est_power = power * dfc->res_util;
270 		est_power /= SCALE_ERROR_MITIGATION;
271 	} else {
272 		/* Scale dynamic power for utilization */
273 		_normalize_load(&status);
274 		est_power = power << 10;
275 		est_power /= status.busy_time;
276 	}
277 
278 	/*
279 	 * Find the first cooling state that is within the power
280 	 * budget. The EM power table is sorted ascending.
281 	 */
282 	for (i = dfc->max_state; i > 0; i--)
283 		if (est_power >= dfc->em_pd->table[i].power)
284 			break;
285 
286 	*state = dfc->max_state - i;
287 	dfc->capped_state = *state;
288 
289 	trace_thermal_power_devfreq_limit(cdev, freq, *state, power);
290 	return 0;
291 }
292 
293 static struct thermal_cooling_device_ops devfreq_cooling_ops = {
294 	.get_max_state = devfreq_cooling_get_max_state,
295 	.get_cur_state = devfreq_cooling_get_cur_state,
296 	.set_cur_state = devfreq_cooling_set_cur_state,
297 };
298 
299 /**
300  * devfreq_cooling_gen_tables() - Generate frequency table.
301  * @dfc:	Pointer to devfreq cooling device.
302  * @num_opps:	Number of OPPs
303  *
304  * Generate frequency table which holds the frequencies in descending
305  * order. That way its indexed by cooling device state. This is for
306  * compatibility with drivers which do not register Energy Model.
307  *
308  * Return: 0 on success, negative error code on failure.
309  */
310 static int devfreq_cooling_gen_tables(struct devfreq_cooling_device *dfc,
311 				      int num_opps)
312 {
313 	struct devfreq *df = dfc->devfreq;
314 	struct device *dev = df->dev.parent;
315 	unsigned long freq;
316 	int i;
317 
318 	dfc->freq_table = kcalloc(num_opps, sizeof(*dfc->freq_table),
319 			     GFP_KERNEL);
320 	if (!dfc->freq_table)
321 		return -ENOMEM;
322 
323 	for (i = 0, freq = ULONG_MAX; i < num_opps; i++, freq--) {
324 		struct dev_pm_opp *opp;
325 
326 		opp = dev_pm_opp_find_freq_floor(dev, &freq);
327 		if (IS_ERR(opp)) {
328 			kfree(dfc->freq_table);
329 			return PTR_ERR(opp);
330 		}
331 
332 		dev_pm_opp_put(opp);
333 		dfc->freq_table[i] = freq;
334 	}
335 
336 	return 0;
337 }
338 
339 /**
340  * of_devfreq_cooling_register_power() - Register devfreq cooling device,
341  *                                      with OF and power information.
342  * @np:	Pointer to OF device_node.
343  * @df:	Pointer to devfreq device.
344  * @dfc_power:	Pointer to devfreq_cooling_power.
345  *
346  * Register a devfreq cooling device.  The available OPPs must be
347  * registered on the device.
348  *
349  * If @dfc_power is provided, the cooling device is registered with the
350  * power extensions.  For the power extensions to work correctly,
351  * devfreq should use the simple_ondemand governor, other governors
352  * are not currently supported.
353  */
354 struct thermal_cooling_device *
355 of_devfreq_cooling_register_power(struct device_node *np, struct devfreq *df,
356 				  struct devfreq_cooling_power *dfc_power)
357 {
358 	struct thermal_cooling_device *cdev;
359 	struct device *dev = df->dev.parent;
360 	struct devfreq_cooling_device *dfc;
361 	struct em_perf_domain *em;
362 	struct thermal_cooling_device_ops *ops;
363 	char *name;
364 	int err, num_opps;
365 
366 	ops = kmemdup(&devfreq_cooling_ops, sizeof(*ops), GFP_KERNEL);
367 	if (!ops)
368 		return ERR_PTR(-ENOMEM);
369 
370 	dfc = kzalloc(sizeof(*dfc), GFP_KERNEL);
371 	if (!dfc) {
372 		err = -ENOMEM;
373 		goto free_ops;
374 	}
375 
376 	dfc->devfreq = df;
377 
378 	em = em_pd_get(dev);
379 	if (em && !em_is_artificial(em)) {
380 		dfc->em_pd = em;
381 		ops->get_requested_power =
382 			devfreq_cooling_get_requested_power;
383 		ops->state2power = devfreq_cooling_state2power;
384 		ops->power2state = devfreq_cooling_power2state;
385 
386 		dfc->power_ops = dfc_power;
387 
388 		num_opps = em_pd_nr_perf_states(dfc->em_pd);
389 	} else {
390 		/* Backward compatibility for drivers which do not use IPA */
391 		dev_dbg(dev, "missing proper EM for cooling device\n");
392 
393 		num_opps = dev_pm_opp_get_opp_count(dev);
394 
395 		err = devfreq_cooling_gen_tables(dfc, num_opps);
396 		if (err)
397 			goto free_dfc;
398 	}
399 
400 	if (num_opps <= 0) {
401 		err = -EINVAL;
402 		goto free_dfc;
403 	}
404 
405 	/* max_state is an index, not a counter */
406 	dfc->max_state = num_opps - 1;
407 
408 	err = dev_pm_qos_add_request(dev, &dfc->req_max_freq,
409 				     DEV_PM_QOS_MAX_FREQUENCY,
410 				     PM_QOS_MAX_FREQUENCY_DEFAULT_VALUE);
411 	if (err < 0)
412 		goto free_table;
413 
414 	err = -ENOMEM;
415 	name = kasprintf(GFP_KERNEL, "devfreq-%s", dev_name(dev));
416 	if (!name)
417 		goto remove_qos_req;
418 
419 	cdev = thermal_of_cooling_device_register(np, name, dfc, ops);
420 	kfree(name);
421 
422 	if (IS_ERR(cdev)) {
423 		err = PTR_ERR(cdev);
424 		dev_err(dev,
425 			"Failed to register devfreq cooling device (%d)\n",
426 			err);
427 		goto remove_qos_req;
428 	}
429 
430 	dfc->cdev = cdev;
431 
432 	return cdev;
433 
434 remove_qos_req:
435 	dev_pm_qos_remove_request(&dfc->req_max_freq);
436 free_table:
437 	kfree(dfc->freq_table);
438 free_dfc:
439 	kfree(dfc);
440 free_ops:
441 	kfree(ops);
442 
443 	return ERR_PTR(err);
444 }
445 EXPORT_SYMBOL_GPL(of_devfreq_cooling_register_power);
446 
447 /**
448  * of_devfreq_cooling_register() - Register devfreq cooling device,
449  *                                with OF information.
450  * @np: Pointer to OF device_node.
451  * @df: Pointer to devfreq device.
452  */
453 struct thermal_cooling_device *
454 of_devfreq_cooling_register(struct device_node *np, struct devfreq *df)
455 {
456 	return of_devfreq_cooling_register_power(np, df, NULL);
457 }
458 EXPORT_SYMBOL_GPL(of_devfreq_cooling_register);
459 
460 /**
461  * devfreq_cooling_register() - Register devfreq cooling device.
462  * @df: Pointer to devfreq device.
463  */
464 struct thermal_cooling_device *devfreq_cooling_register(struct devfreq *df)
465 {
466 	return of_devfreq_cooling_register(NULL, df);
467 }
468 EXPORT_SYMBOL_GPL(devfreq_cooling_register);
469 
470 /**
471  * devfreq_cooling_em_register() - Register devfreq cooling device with
472  *		power information and automatically register Energy Model (EM)
473  * @df:		Pointer to devfreq device.
474  * @dfc_power:	Pointer to devfreq_cooling_power.
475  *
476  * Register a devfreq cooling device and automatically register EM. The
477  * available OPPs must be registered for the device.
478  *
479  * If @dfc_power is provided, the cooling device is registered with the
480  * power extensions. It is using the simple Energy Model which requires
481  * "dynamic-power-coefficient" a devicetree property. To not break drivers
482  * which miss that DT property, the function won't bail out when the EM
483  * registration failed. The cooling device will be registered if everything
484  * else is OK.
485  */
486 struct thermal_cooling_device *
487 devfreq_cooling_em_register(struct devfreq *df,
488 			    struct devfreq_cooling_power *dfc_power)
489 {
490 	struct thermal_cooling_device *cdev;
491 	struct device *dev;
492 	int ret;
493 
494 	if (IS_ERR_OR_NULL(df))
495 		return ERR_PTR(-EINVAL);
496 
497 	dev = df->dev.parent;
498 
499 	ret = dev_pm_opp_of_register_em(dev, NULL);
500 	if (ret)
501 		dev_dbg(dev, "Unable to register EM for devfreq cooling device (%d)\n",
502 			ret);
503 
504 	cdev = of_devfreq_cooling_register_power(dev->of_node, df, dfc_power);
505 
506 	if (IS_ERR_OR_NULL(cdev))
507 		em_dev_unregister_perf_domain(dev);
508 
509 	return cdev;
510 }
511 EXPORT_SYMBOL_GPL(devfreq_cooling_em_register);
512 
513 /**
514  * devfreq_cooling_unregister() - Unregister devfreq cooling device.
515  * @cdev: Pointer to devfreq cooling device to unregister.
516  *
517  * Unregisters devfreq cooling device and related Energy Model if it was
518  * present.
519  */
520 void devfreq_cooling_unregister(struct thermal_cooling_device *cdev)
521 {
522 	struct devfreq_cooling_device *dfc;
523 	const struct thermal_cooling_device_ops *ops;
524 	struct device *dev;
525 
526 	if (IS_ERR_OR_NULL(cdev))
527 		return;
528 
529 	ops = cdev->ops;
530 	dfc = cdev->devdata;
531 	dev = dfc->devfreq->dev.parent;
532 
533 	thermal_cooling_device_unregister(dfc->cdev);
534 	dev_pm_qos_remove_request(&dfc->req_max_freq);
535 
536 	em_dev_unregister_perf_domain(dev);
537 
538 	kfree(dfc->freq_table);
539 	kfree(dfc);
540 	kfree(ops);
541 }
542 EXPORT_SYMBOL_GPL(devfreq_cooling_unregister);
543