xref: /linux/drivers/thermal/tegra/soctherm.c (revision 2da68a77)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2014 - 2018, NVIDIA CORPORATION.  All rights reserved.
4  *
5  * Author:
6  *	Mikko Perttunen <mperttunen@nvidia.com>
7  *
8  * This software is licensed under the terms of the GNU General Public
9  * License version 2, as published by the Free Software Foundation, and
10  * may be copied, distributed, and modified under those terms.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  */
18 
19 #include <linux/debugfs.h>
20 #include <linux/bitops.h>
21 #include <linux/clk.h>
22 #include <linux/delay.h>
23 #include <linux/err.h>
24 #include <linux/interrupt.h>
25 #include <linux/io.h>
26 #include <linux/irq.h>
27 #include <linux/irqdomain.h>
28 #include <linux/module.h>
29 #include <linux/of.h>
30 #include <linux/platform_device.h>
31 #include <linux/reset.h>
32 #include <linux/thermal.h>
33 
34 #include <dt-bindings/thermal/tegra124-soctherm.h>
35 
36 #include "../thermal_core.h"
37 #include "soctherm.h"
38 
39 #define SENSOR_CONFIG0				0
40 #define SENSOR_CONFIG0_STOP			BIT(0)
41 #define SENSOR_CONFIG0_CPTR_OVER		BIT(2)
42 #define SENSOR_CONFIG0_OVER			BIT(3)
43 #define SENSOR_CONFIG0_TCALC_OVER		BIT(4)
44 #define SENSOR_CONFIG0_TALL_MASK		(0xfffff << 8)
45 #define SENSOR_CONFIG0_TALL_SHIFT		8
46 
47 #define SENSOR_CONFIG1				4
48 #define SENSOR_CONFIG1_TSAMPLE_MASK		0x3ff
49 #define SENSOR_CONFIG1_TSAMPLE_SHIFT		0
50 #define SENSOR_CONFIG1_TIDDQ_EN_MASK		(0x3f << 15)
51 #define SENSOR_CONFIG1_TIDDQ_EN_SHIFT		15
52 #define SENSOR_CONFIG1_TEN_COUNT_MASK		(0x3f << 24)
53 #define SENSOR_CONFIG1_TEN_COUNT_SHIFT		24
54 #define SENSOR_CONFIG1_TEMP_ENABLE		BIT(31)
55 
56 /*
57  * SENSOR_CONFIG2 is defined in soctherm.h
58  * because, it will be used by tegra_soctherm_fuse.c
59  */
60 
61 #define SENSOR_STATUS0				0xc
62 #define SENSOR_STATUS0_VALID_MASK		BIT(31)
63 #define SENSOR_STATUS0_CAPTURE_MASK		0xffff
64 
65 #define SENSOR_STATUS1				0x10
66 #define SENSOR_STATUS1_TEMP_VALID_MASK		BIT(31)
67 #define SENSOR_STATUS1_TEMP_MASK		0xffff
68 
69 #define READBACK_VALUE_MASK			0xff00
70 #define READBACK_VALUE_SHIFT			8
71 #define READBACK_ADD_HALF			BIT(7)
72 #define READBACK_NEGATE				BIT(0)
73 
74 /*
75  * THERMCTL_LEVEL0_GROUP_CPU is defined in soctherm.h
76  * because it will be used by tegraxxx_soctherm.c
77  */
78 #define THERMCTL_LVL0_CPU0_EN_MASK		BIT(8)
79 #define THERMCTL_LVL0_CPU0_CPU_THROT_MASK	(0x3 << 5)
80 #define THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT	0x1
81 #define THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY	0x2
82 #define THERMCTL_LVL0_CPU0_GPU_THROT_MASK	(0x3 << 3)
83 #define THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT	0x1
84 #define THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY	0x2
85 #define THERMCTL_LVL0_CPU0_MEM_THROT_MASK	BIT(2)
86 #define THERMCTL_LVL0_CPU0_STATUS_MASK		0x3
87 
88 #define THERMCTL_LVL0_UP_STATS			0x10
89 #define THERMCTL_LVL0_DN_STATS			0x14
90 
91 #define THERMCTL_INTR_STATUS			0x84
92 
93 #define TH_INTR_MD0_MASK			BIT(25)
94 #define TH_INTR_MU0_MASK			BIT(24)
95 #define TH_INTR_GD0_MASK			BIT(17)
96 #define TH_INTR_GU0_MASK			BIT(16)
97 #define TH_INTR_CD0_MASK			BIT(9)
98 #define TH_INTR_CU0_MASK			BIT(8)
99 #define TH_INTR_PD0_MASK			BIT(1)
100 #define TH_INTR_PU0_MASK			BIT(0)
101 #define TH_INTR_IGNORE_MASK			0xFCFCFCFC
102 
103 #define THERMCTL_STATS_CTL			0x94
104 #define STATS_CTL_CLR_DN			0x8
105 #define STATS_CTL_EN_DN				0x4
106 #define STATS_CTL_CLR_UP			0x2
107 #define STATS_CTL_EN_UP				0x1
108 
109 #define OC1_CFG					0x310
110 #define OC1_CFG_LONG_LATENCY_MASK		BIT(6)
111 #define OC1_CFG_HW_RESTORE_MASK			BIT(5)
112 #define OC1_CFG_PWR_GOOD_MASK_MASK		BIT(4)
113 #define OC1_CFG_THROTTLE_MODE_MASK		(0x3 << 2)
114 #define OC1_CFG_ALARM_POLARITY_MASK		BIT(1)
115 #define OC1_CFG_EN_THROTTLE_MASK		BIT(0)
116 
117 #define OC1_CNT_THRESHOLD			0x314
118 #define OC1_THROTTLE_PERIOD			0x318
119 #define OC1_ALARM_COUNT				0x31c
120 #define OC1_FILTER				0x320
121 #define OC1_STATS				0x3a8
122 
123 #define OC_INTR_STATUS				0x39c
124 #define OC_INTR_ENABLE				0x3a0
125 #define OC_INTR_DISABLE				0x3a4
126 #define OC_STATS_CTL				0x3c4
127 #define OC_STATS_CTL_CLR_ALL			0x2
128 #define OC_STATS_CTL_EN_ALL			0x1
129 
130 #define OC_INTR_OC1_MASK			BIT(0)
131 #define OC_INTR_OC2_MASK			BIT(1)
132 #define OC_INTR_OC3_MASK			BIT(2)
133 #define OC_INTR_OC4_MASK			BIT(3)
134 #define OC_INTR_OC5_MASK			BIT(4)
135 
136 #define THROT_GLOBAL_CFG			0x400
137 #define THROT_GLOBAL_ENB_MASK			BIT(0)
138 
139 #define CPU_PSKIP_STATUS			0x418
140 #define XPU_PSKIP_STATUS_M_MASK			(0xff << 12)
141 #define XPU_PSKIP_STATUS_N_MASK			(0xff << 4)
142 #define XPU_PSKIP_STATUS_SW_OVERRIDE_MASK	BIT(1)
143 #define XPU_PSKIP_STATUS_ENABLED_MASK		BIT(0)
144 
145 #define THROT_PRIORITY_LOCK			0x424
146 #define THROT_PRIORITY_LOCK_PRIORITY_MASK	0xff
147 
148 #define THROT_STATUS				0x428
149 #define THROT_STATUS_BREACH_MASK		BIT(12)
150 #define THROT_STATUS_STATE_MASK			(0xff << 4)
151 #define THROT_STATUS_ENABLED_MASK		BIT(0)
152 
153 #define THROT_PSKIP_CTRL_LITE_CPU		0x430
154 #define THROT_PSKIP_CTRL_ENABLE_MASK            BIT(31)
155 #define THROT_PSKIP_CTRL_DIVIDEND_MASK          (0xff << 8)
156 #define THROT_PSKIP_CTRL_DIVISOR_MASK           0xff
157 #define THROT_PSKIP_CTRL_VECT_GPU_MASK          (0x7 << 16)
158 #define THROT_PSKIP_CTRL_VECT_CPU_MASK          (0x7 << 8)
159 #define THROT_PSKIP_CTRL_VECT2_CPU_MASK         0x7
160 
161 #define THROT_VECT_NONE				0x0 /* 3'b000 */
162 #define THROT_VECT_LOW				0x1 /* 3'b001 */
163 #define THROT_VECT_MED				0x3 /* 3'b011 */
164 #define THROT_VECT_HIGH				0x7 /* 3'b111 */
165 
166 #define THROT_PSKIP_RAMP_LITE_CPU		0x434
167 #define THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK	BIT(31)
168 #define THROT_PSKIP_RAMP_DURATION_MASK		(0xffff << 8)
169 #define THROT_PSKIP_RAMP_STEP_MASK		0xff
170 
171 #define THROT_PRIORITY_LITE			0x444
172 #define THROT_PRIORITY_LITE_PRIO_MASK		0xff
173 
174 #define THROT_DELAY_LITE			0x448
175 #define THROT_DELAY_LITE_DELAY_MASK		0xff
176 
177 /* car register offsets needed for enabling HW throttling */
178 #define CAR_SUPER_CCLKG_DIVIDER			0x36c
179 #define CDIVG_USE_THERM_CONTROLS_MASK		BIT(30)
180 
181 /* ccroc register offsets needed for enabling HW throttling for Tegra132 */
182 #define CCROC_SUPER_CCLKG_DIVIDER		0x024
183 
184 #define CCROC_GLOBAL_CFG			0x148
185 
186 #define CCROC_THROT_PSKIP_RAMP_CPU		0x150
187 #define CCROC_THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK	BIT(31)
188 #define CCROC_THROT_PSKIP_RAMP_DURATION_MASK	(0xffff << 8)
189 #define CCROC_THROT_PSKIP_RAMP_STEP_MASK	0xff
190 
191 #define CCROC_THROT_PSKIP_CTRL_CPU		0x154
192 #define CCROC_THROT_PSKIP_CTRL_ENB_MASK		BIT(31)
193 #define CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK	(0xff << 8)
194 #define CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK	0xff
195 
196 /* get val from register(r) mask bits(m) */
197 #define REG_GET_MASK(r, m)	(((r) & (m)) >> (ffs(m) - 1))
198 /* set val(v) to mask bits(m) of register(r) */
199 #define REG_SET_MASK(r, m, v)	(((r) & ~(m)) | \
200 				 (((v) & (m >> (ffs(m) - 1))) << (ffs(m) - 1)))
201 
202 /* get dividend from the depth */
203 #define THROT_DEPTH_DIVIDEND(depth)	((256 * (100 - (depth)) / 100) - 1)
204 
205 /* gk20a nv_therm interface N:3 Mapping. Levels defined in tegra124-soctherm.h
206  * level	vector
207  * NONE		3'b000
208  * LOW		3'b001
209  * MED		3'b011
210  * HIGH		3'b111
211  */
212 #define THROT_LEVEL_TO_DEPTH(level)	((0x1 << (level)) - 1)
213 
214 /* get THROT_PSKIP_xxx offset per LIGHT/HEAVY throt and CPU/GPU dev */
215 #define THROT_OFFSET			0x30
216 #define THROT_PSKIP_CTRL(throt, dev)	(THROT_PSKIP_CTRL_LITE_CPU + \
217 					(THROT_OFFSET * throt) + (8 * dev))
218 #define THROT_PSKIP_RAMP(throt, dev)	(THROT_PSKIP_RAMP_LITE_CPU + \
219 					(THROT_OFFSET * throt) + (8 * dev))
220 
221 /* get THROT_xxx_CTRL offset per LIGHT/HEAVY throt */
222 #define THROT_PRIORITY_CTRL(throt)	(THROT_PRIORITY_LITE + \
223 					(THROT_OFFSET * throt))
224 #define THROT_DELAY_CTRL(throt)		(THROT_DELAY_LITE + \
225 					(THROT_OFFSET * throt))
226 
227 #define ALARM_OFFSET			0x14
228 #define ALARM_CFG(throt)		(OC1_CFG + \
229 					(ALARM_OFFSET * (throt - THROTTLE_OC1)))
230 
231 #define ALARM_CNT_THRESHOLD(throt)	(OC1_CNT_THRESHOLD + \
232 					(ALARM_OFFSET * (throt - THROTTLE_OC1)))
233 
234 #define ALARM_THROTTLE_PERIOD(throt)	(OC1_THROTTLE_PERIOD + \
235 					(ALARM_OFFSET * (throt - THROTTLE_OC1)))
236 
237 #define ALARM_ALARM_COUNT(throt)	(OC1_ALARM_COUNT + \
238 					(ALARM_OFFSET * (throt - THROTTLE_OC1)))
239 
240 #define ALARM_FILTER(throt)		(OC1_FILTER + \
241 					(ALARM_OFFSET * (throt - THROTTLE_OC1)))
242 
243 #define ALARM_STATS(throt)		(OC1_STATS + \
244 					(4 * (throt - THROTTLE_OC1)))
245 
246 /* get CCROC_THROT_PSKIP_xxx offset per HIGH/MED/LOW vect*/
247 #define CCROC_THROT_OFFSET			0x0c
248 #define CCROC_THROT_PSKIP_CTRL_CPU_REG(vect)    (CCROC_THROT_PSKIP_CTRL_CPU + \
249 						(CCROC_THROT_OFFSET * vect))
250 #define CCROC_THROT_PSKIP_RAMP_CPU_REG(vect)    (CCROC_THROT_PSKIP_RAMP_CPU + \
251 						(CCROC_THROT_OFFSET * vect))
252 
253 /* get THERMCTL_LEVELx offset per CPU/GPU/MEM/TSENSE rg and LEVEL0~3 lv */
254 #define THERMCTL_LVL_REGS_SIZE		0x20
255 #define THERMCTL_LVL_REG(rg, lv)	((rg) + ((lv) * THERMCTL_LVL_REGS_SIZE))
256 
257 #define OC_THROTTLE_MODE_DISABLED	0
258 #define OC_THROTTLE_MODE_BRIEF		2
259 
260 static const int min_low_temp = -127000;
261 static const int max_high_temp = 127000;
262 
263 enum soctherm_throttle_id {
264 	THROTTLE_LIGHT = 0,
265 	THROTTLE_HEAVY,
266 	THROTTLE_OC1,
267 	THROTTLE_OC2,
268 	THROTTLE_OC3,
269 	THROTTLE_OC4,
270 	THROTTLE_OC5, /* OC5 is reserved */
271 	THROTTLE_SIZE,
272 };
273 
274 enum soctherm_oc_irq_id {
275 	TEGRA_SOC_OC_IRQ_1,
276 	TEGRA_SOC_OC_IRQ_2,
277 	TEGRA_SOC_OC_IRQ_3,
278 	TEGRA_SOC_OC_IRQ_4,
279 	TEGRA_SOC_OC_IRQ_5,
280 	TEGRA_SOC_OC_IRQ_MAX,
281 };
282 
283 enum soctherm_throttle_dev_id {
284 	THROTTLE_DEV_CPU = 0,
285 	THROTTLE_DEV_GPU,
286 	THROTTLE_DEV_SIZE,
287 };
288 
289 static const char *const throt_names[] = {
290 	[THROTTLE_LIGHT] = "light",
291 	[THROTTLE_HEAVY] = "heavy",
292 	[THROTTLE_OC1]   = "oc1",
293 	[THROTTLE_OC2]   = "oc2",
294 	[THROTTLE_OC3]   = "oc3",
295 	[THROTTLE_OC4]   = "oc4",
296 	[THROTTLE_OC5]   = "oc5",
297 };
298 
299 struct tegra_soctherm;
300 struct tegra_thermctl_zone {
301 	void __iomem *reg;
302 	struct device *dev;
303 	struct tegra_soctherm *ts;
304 	struct thermal_zone_device *tz;
305 	const struct tegra_tsensor_group *sg;
306 };
307 
308 struct soctherm_oc_cfg {
309 	u32 active_low;
310 	u32 throt_period;
311 	u32 alarm_cnt_thresh;
312 	u32 alarm_filter;
313 	u32 mode;
314 	bool intr_en;
315 };
316 
317 struct soctherm_throt_cfg {
318 	const char *name;
319 	unsigned int id;
320 	u8 priority;
321 	u8 cpu_throt_level;
322 	u32 cpu_throt_depth;
323 	u32 gpu_throt_level;
324 	struct soctherm_oc_cfg oc_cfg;
325 	struct thermal_cooling_device *cdev;
326 	bool init;
327 };
328 
329 struct tegra_soctherm {
330 	struct reset_control *reset;
331 	struct clk *clock_tsensor;
332 	struct clk *clock_soctherm;
333 	void __iomem *regs;
334 	void __iomem *clk_regs;
335 	void __iomem *ccroc_regs;
336 
337 	int thermal_irq;
338 	int edp_irq;
339 
340 	u32 *calib;
341 	struct thermal_zone_device **thermctl_tzs;
342 	struct tegra_soctherm_soc *soc;
343 
344 	struct soctherm_throt_cfg throt_cfgs[THROTTLE_SIZE];
345 
346 	struct dentry *debugfs_dir;
347 
348 	struct mutex thermctl_lock;
349 };
350 
351 struct soctherm_oc_irq_chip_data {
352 	struct mutex		irq_lock; /* serialize OC IRQs */
353 	struct irq_chip		irq_chip;
354 	struct irq_domain	*domain;
355 	int			irq_enable;
356 };
357 
358 static struct soctherm_oc_irq_chip_data soc_irq_cdata;
359 
360 /**
361  * ccroc_writel() - writes a value to a CCROC register
362  * @ts: pointer to a struct tegra_soctherm
363  * @value: the value to write
364  * @reg: the register offset
365  *
366  * Writes @v to @reg.  No return value.
367  */
368 static inline void ccroc_writel(struct tegra_soctherm *ts, u32 value, u32 reg)
369 {
370 	writel(value, (ts->ccroc_regs + reg));
371 }
372 
373 /**
374  * ccroc_readl() - reads specified register from CCROC IP block
375  * @ts: pointer to a struct tegra_soctherm
376  * @reg: register address to be read
377  *
378  * Return: the value of the register
379  */
380 static inline u32 ccroc_readl(struct tegra_soctherm *ts, u32 reg)
381 {
382 	return readl(ts->ccroc_regs + reg);
383 }
384 
385 static void enable_tsensor(struct tegra_soctherm *tegra, unsigned int i)
386 {
387 	const struct tegra_tsensor *sensor = &tegra->soc->tsensors[i];
388 	void __iomem *base = tegra->regs + sensor->base;
389 	unsigned int val;
390 
391 	val = sensor->config->tall << SENSOR_CONFIG0_TALL_SHIFT;
392 	writel(val, base + SENSOR_CONFIG0);
393 
394 	val  = (sensor->config->tsample - 1) << SENSOR_CONFIG1_TSAMPLE_SHIFT;
395 	val |= sensor->config->tiddq_en << SENSOR_CONFIG1_TIDDQ_EN_SHIFT;
396 	val |= sensor->config->ten_count << SENSOR_CONFIG1_TEN_COUNT_SHIFT;
397 	val |= SENSOR_CONFIG1_TEMP_ENABLE;
398 	writel(val, base + SENSOR_CONFIG1);
399 
400 	writel(tegra->calib[i], base + SENSOR_CONFIG2);
401 }
402 
403 /*
404  * Translate from soctherm readback format to millicelsius.
405  * The soctherm readback format in bits is as follows:
406  *   TTTTTTTT H______N
407  * where T's contain the temperature in Celsius,
408  * H denotes an addition of 0.5 Celsius and N denotes negation
409  * of the final value.
410  */
411 static int translate_temp(u16 val)
412 {
413 	int t;
414 
415 	t = ((val & READBACK_VALUE_MASK) >> READBACK_VALUE_SHIFT) * 1000;
416 	if (val & READBACK_ADD_HALF)
417 		t += 500;
418 	if (val & READBACK_NEGATE)
419 		t *= -1;
420 
421 	return t;
422 }
423 
424 static int tegra_thermctl_get_temp(struct thermal_zone_device *tz, int *out_temp)
425 {
426 	struct tegra_thermctl_zone *zone = tz->devdata;
427 	u32 val;
428 
429 	val = readl(zone->reg);
430 	val = REG_GET_MASK(val, zone->sg->sensor_temp_mask);
431 	*out_temp = translate_temp(val);
432 
433 	return 0;
434 }
435 
436 /**
437  * enforce_temp_range() - check and enforce temperature range [min, max]
438  * @dev: struct device * of the SOC_THERM instance
439  * @trip_temp: the trip temperature to check
440  *
441  * Checks and enforces the permitted temperature range that SOC_THERM
442  * HW can support This is
443  * done while taking care of precision.
444  *
445  * Return: The precision adjusted capped temperature in millicelsius.
446  */
447 static int enforce_temp_range(struct device *dev, int trip_temp)
448 {
449 	int temp;
450 
451 	temp = clamp_val(trip_temp, min_low_temp, max_high_temp);
452 	if (temp != trip_temp)
453 		dev_dbg(dev, "soctherm: trip temperature %d forced to %d\n",
454 			trip_temp, temp);
455 	return temp;
456 }
457 
458 /**
459  * thermtrip_program() - Configures the hardware to shut down the
460  * system if a given sensor group reaches a given temperature
461  * @dev: ptr to the struct device for the SOC_THERM IP block
462  * @sg: pointer to the sensor group to set the thermtrip temperature for
463  * @trip_temp: the temperature in millicelsius to trigger the thermal trip at
464  *
465  * Sets the thermal trip threshold of the given sensor group to be the
466  * @trip_temp.  If this threshold is crossed, the hardware will shut
467  * down.
468  *
469  * Note that, although @trip_temp is specified in millicelsius, the
470  * hardware is programmed in degrees Celsius.
471  *
472  * Return: 0 upon success, or %-EINVAL upon failure.
473  */
474 static int thermtrip_program(struct device *dev,
475 			     const struct tegra_tsensor_group *sg,
476 			     int trip_temp)
477 {
478 	struct tegra_soctherm *ts = dev_get_drvdata(dev);
479 	int temp;
480 	u32 r;
481 
482 	if (!sg || !sg->thermtrip_threshold_mask)
483 		return -EINVAL;
484 
485 	temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain;
486 
487 	r = readl(ts->regs + THERMCTL_THERMTRIP_CTL);
488 	r = REG_SET_MASK(r, sg->thermtrip_threshold_mask, temp);
489 	r = REG_SET_MASK(r, sg->thermtrip_enable_mask, 1);
490 	r = REG_SET_MASK(r, sg->thermtrip_any_en_mask, 0);
491 	writel(r, ts->regs + THERMCTL_THERMTRIP_CTL);
492 
493 	return 0;
494 }
495 
496 /**
497  * throttrip_program() - Configures the hardware to throttle the
498  * pulse if a given sensor group reaches a given temperature
499  * @dev: ptr to the struct device for the SOC_THERM IP block
500  * @sg: pointer to the sensor group to set the thermtrip temperature for
501  * @stc: pointer to the throttle need to be triggered
502  * @trip_temp: the temperature in millicelsius to trigger the thermal trip at
503  *
504  * Sets the thermal trip threshold and throttle event of the given sensor
505  * group. If this threshold is crossed, the hardware will trigger the
506  * throttle.
507  *
508  * Note that, although @trip_temp is specified in millicelsius, the
509  * hardware is programmed in degrees Celsius.
510  *
511  * Return: 0 upon success, or %-EINVAL upon failure.
512  */
513 static int throttrip_program(struct device *dev,
514 			     const struct tegra_tsensor_group *sg,
515 			     struct soctherm_throt_cfg *stc,
516 			     int trip_temp)
517 {
518 	struct tegra_soctherm *ts = dev_get_drvdata(dev);
519 	int temp, cpu_throt, gpu_throt;
520 	unsigned int throt;
521 	u32 r, reg_off;
522 
523 	if (!sg || !stc || !stc->init)
524 		return -EINVAL;
525 
526 	temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain;
527 
528 	/* Hardcode LIGHT on LEVEL1 and HEAVY on LEVEL2 */
529 	throt = stc->id;
530 	reg_off = THERMCTL_LVL_REG(sg->thermctl_lvl0_offset, throt + 1);
531 
532 	if (throt == THROTTLE_LIGHT) {
533 		cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT;
534 		gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT;
535 	} else {
536 		cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY;
537 		gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY;
538 		if (throt != THROTTLE_HEAVY)
539 			dev_warn(dev,
540 				 "invalid throt id %d - assuming HEAVY",
541 				 throt);
542 	}
543 
544 	r = readl(ts->regs + reg_off);
545 	r = REG_SET_MASK(r, sg->thermctl_lvl0_up_thresh_mask, temp);
546 	r = REG_SET_MASK(r, sg->thermctl_lvl0_dn_thresh_mask, temp);
547 	r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_CPU_THROT_MASK, cpu_throt);
548 	r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_GPU_THROT_MASK, gpu_throt);
549 	r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 1);
550 	writel(r, ts->regs + reg_off);
551 
552 	return 0;
553 }
554 
555 static struct soctherm_throt_cfg *
556 find_throttle_cfg_by_name(struct tegra_soctherm *ts, const char *name)
557 {
558 	unsigned int i;
559 
560 	for (i = 0; ts->throt_cfgs[i].name; i++)
561 		if (!strcmp(ts->throt_cfgs[i].name, name))
562 			return &ts->throt_cfgs[i];
563 
564 	return NULL;
565 }
566 
567 static int tsensor_group_thermtrip_get(struct tegra_soctherm *ts, int id)
568 {
569 	int i, temp = min_low_temp;
570 	struct tsensor_group_thermtrips *tt = ts->soc->thermtrips;
571 
572 	if (id >= TEGRA124_SOCTHERM_SENSOR_NUM)
573 		return temp;
574 
575 	if (tt) {
576 		for (i = 0; i < ts->soc->num_ttgs; i++) {
577 			if (tt[i].id == id)
578 				return tt[i].temp;
579 		}
580 	}
581 
582 	return temp;
583 }
584 
585 static int tegra_thermctl_set_trip_temp(struct thermal_zone_device *tz, int trip, int temp)
586 {
587 	struct tegra_thermctl_zone *zone = tz->devdata;
588 	struct tegra_soctherm *ts = zone->ts;
589 	const struct tegra_tsensor_group *sg = zone->sg;
590 	struct device *dev = zone->dev;
591 	enum thermal_trip_type type;
592 	int ret;
593 
594 	if (!tz)
595 		return -EINVAL;
596 
597 	ret = tz->ops->get_trip_type(tz, trip, &type);
598 	if (ret)
599 		return ret;
600 
601 	if (type == THERMAL_TRIP_CRITICAL) {
602 		/*
603 		 * If thermtrips property is set in DT,
604 		 * doesn't need to program critical type trip to HW,
605 		 * if not, program critical trip to HW.
606 		 */
607 		if (min_low_temp == tsensor_group_thermtrip_get(ts, sg->id))
608 			return thermtrip_program(dev, sg, temp);
609 		else
610 			return 0;
611 
612 	} else if (type == THERMAL_TRIP_HOT) {
613 		int i;
614 
615 		for (i = 0; i < THROTTLE_SIZE; i++) {
616 			struct thermal_cooling_device *cdev;
617 			struct soctherm_throt_cfg *stc;
618 
619 			if (!ts->throt_cfgs[i].init)
620 				continue;
621 
622 			cdev = ts->throt_cfgs[i].cdev;
623 			if (get_thermal_instance(tz, cdev, trip))
624 				stc = find_throttle_cfg_by_name(ts, cdev->type);
625 			else
626 				continue;
627 
628 			return throttrip_program(dev, sg, stc, temp);
629 		}
630 	}
631 
632 	return 0;
633 }
634 
635 static void thermal_irq_enable(struct tegra_thermctl_zone *zn)
636 {
637 	u32 r;
638 
639 	/* multiple zones could be handling and setting trips at once */
640 	mutex_lock(&zn->ts->thermctl_lock);
641 	r = readl(zn->ts->regs + THERMCTL_INTR_ENABLE);
642 	r = REG_SET_MASK(r, zn->sg->thermctl_isr_mask, TH_INTR_UP_DN_EN);
643 	writel(r, zn->ts->regs + THERMCTL_INTR_ENABLE);
644 	mutex_unlock(&zn->ts->thermctl_lock);
645 }
646 
647 static void thermal_irq_disable(struct tegra_thermctl_zone *zn)
648 {
649 	u32 r;
650 
651 	/* multiple zones could be handling and setting trips at once */
652 	mutex_lock(&zn->ts->thermctl_lock);
653 	r = readl(zn->ts->regs + THERMCTL_INTR_DISABLE);
654 	r = REG_SET_MASK(r, zn->sg->thermctl_isr_mask, 0);
655 	writel(r, zn->ts->regs + THERMCTL_INTR_DISABLE);
656 	mutex_unlock(&zn->ts->thermctl_lock);
657 }
658 
659 static int tegra_thermctl_set_trips(struct thermal_zone_device *tz, int lo, int hi)
660 {
661 	struct tegra_thermctl_zone *zone = tz->devdata;
662 	u32 r;
663 
664 	thermal_irq_disable(zone);
665 
666 	r = readl(zone->ts->regs + zone->sg->thermctl_lvl0_offset);
667 	r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 0);
668 	writel(r, zone->ts->regs + zone->sg->thermctl_lvl0_offset);
669 
670 	lo = enforce_temp_range(zone->dev, lo) / zone->ts->soc->thresh_grain;
671 	hi = enforce_temp_range(zone->dev, hi) / zone->ts->soc->thresh_grain;
672 	dev_dbg(zone->dev, "%s hi:%d, lo:%d\n", __func__, hi, lo);
673 
674 	r = REG_SET_MASK(r, zone->sg->thermctl_lvl0_up_thresh_mask, hi);
675 	r = REG_SET_MASK(r, zone->sg->thermctl_lvl0_dn_thresh_mask, lo);
676 	r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 1);
677 	writel(r, zone->ts->regs + zone->sg->thermctl_lvl0_offset);
678 
679 	thermal_irq_enable(zone);
680 
681 	return 0;
682 }
683 
684 static const struct thermal_zone_device_ops tegra_of_thermal_ops = {
685 	.get_temp = tegra_thermctl_get_temp,
686 	.set_trip_temp = tegra_thermctl_set_trip_temp,
687 	.set_trips = tegra_thermctl_set_trips,
688 };
689 
690 static int get_hot_temp(struct thermal_zone_device *tz, int *trip, int *temp)
691 {
692 	int ntrips, i, ret;
693 	enum thermal_trip_type type;
694 
695 	ntrips = of_thermal_get_ntrips(tz);
696 	if (ntrips <= 0)
697 		return -EINVAL;
698 
699 	for (i = 0; i < ntrips; i++) {
700 		ret = tz->ops->get_trip_type(tz, i, &type);
701 		if (ret)
702 			return -EINVAL;
703 		if (type == THERMAL_TRIP_HOT) {
704 			ret = tz->ops->get_trip_temp(tz, i, temp);
705 			if (!ret)
706 				*trip = i;
707 
708 			return ret;
709 		}
710 	}
711 
712 	return -EINVAL;
713 }
714 
715 /**
716  * tegra_soctherm_set_hwtrips() - set HW trip point from DT data
717  * @dev: struct device * of the SOC_THERM instance
718  * @sg: pointer to the sensor group to set the thermtrip temperature for
719  * @tz: struct thermal_zone_device *
720  *
721  * Configure the SOC_THERM HW trip points, setting "THERMTRIP"
722  * "THROTTLE" trip points , using "thermtrips", "critical" or "hot"
723  * type trip_temp
724  * from thermal zone.
725  * After they have been configured, THERMTRIP or THROTTLE will take
726  * action when the configured SoC thermal sensor group reaches a
727  * certain temperature.
728  *
729  * Return: 0 upon success, or a negative error code on failure.
730  * "Success" does not mean that trips was enabled; it could also
731  * mean that no node was found in DT.
732  * THERMTRIP has been enabled successfully when a message similar to
733  * this one appears on the serial console:
734  * "thermtrip: will shut down when sensor group XXX reaches YYYYYY mC"
735  * THROTTLE has been enabled successfully when a message similar to
736  * this one appears on the serial console:
737  * ""throttrip: will throttle when sensor group XXX reaches YYYYYY mC"
738  */
739 static int tegra_soctherm_set_hwtrips(struct device *dev,
740 				      const struct tegra_tsensor_group *sg,
741 				      struct thermal_zone_device *tz)
742 {
743 	struct tegra_soctherm *ts = dev_get_drvdata(dev);
744 	struct soctherm_throt_cfg *stc;
745 	int i, trip, temperature, ret;
746 
747 	/* Get thermtrips. If missing, try to get critical trips. */
748 	temperature = tsensor_group_thermtrip_get(ts, sg->id);
749 	if (min_low_temp == temperature)
750 		if (tz->ops->get_crit_temp(tz, &temperature))
751 			temperature = max_high_temp;
752 
753 	ret = thermtrip_program(dev, sg, temperature);
754 	if (ret) {
755 		dev_err(dev, "thermtrip: %s: error during enable\n", sg->name);
756 		return ret;
757 	}
758 
759 	dev_info(dev, "thermtrip: will shut down when %s reaches %d mC\n",
760 		 sg->name, temperature);
761 
762 	ret = get_hot_temp(tz, &trip, &temperature);
763 	if (ret) {
764 		dev_info(dev, "throttrip: %s: missing hot temperature\n",
765 			 sg->name);
766 		return 0;
767 	}
768 
769 	for (i = 0; i < THROTTLE_OC1; i++) {
770 		struct thermal_cooling_device *cdev;
771 
772 		if (!ts->throt_cfgs[i].init)
773 			continue;
774 
775 		cdev = ts->throt_cfgs[i].cdev;
776 		if (get_thermal_instance(tz, cdev, trip))
777 			stc = find_throttle_cfg_by_name(ts, cdev->type);
778 		else
779 			continue;
780 
781 		ret = throttrip_program(dev, sg, stc, temperature);
782 		if (ret) {
783 			dev_err(dev, "throttrip: %s: error during enable\n",
784 				sg->name);
785 			return ret;
786 		}
787 
788 		dev_info(dev,
789 			 "throttrip: will throttle when %s reaches %d mC\n",
790 			 sg->name, temperature);
791 		break;
792 	}
793 
794 	if (i == THROTTLE_SIZE)
795 		dev_info(dev, "throttrip: %s: missing throttle cdev\n",
796 			 sg->name);
797 
798 	return 0;
799 }
800 
801 static irqreturn_t soctherm_thermal_isr(int irq, void *dev_id)
802 {
803 	struct tegra_soctherm *ts = dev_id;
804 	u32 r;
805 
806 	/* Case for no lock:
807 	 * Although interrupts are enabled in set_trips, there is still no need
808 	 * to lock here because the interrupts are disabled before programming
809 	 * new trip points. Hence there cant be a interrupt on the same sensor.
810 	 * An interrupt can however occur on a sensor while trips are being
811 	 * programmed on a different one. This beign a LEVEL interrupt won't
812 	 * cause a new interrupt but this is taken care of by the re-reading of
813 	 * the STATUS register in the thread function.
814 	 */
815 	r = readl(ts->regs + THERMCTL_INTR_STATUS);
816 	writel(r, ts->regs + THERMCTL_INTR_DISABLE);
817 
818 	return IRQ_WAKE_THREAD;
819 }
820 
821 /**
822  * soctherm_thermal_isr_thread() - Handles a thermal interrupt request
823  * @irq:       The interrupt number being requested; not used
824  * @dev_id:    Opaque pointer to tegra_soctherm;
825  *
826  * Clears the interrupt status register if there are expected
827  * interrupt bits set.
828  * The interrupt(s) are then handled by updating the corresponding
829  * thermal zones.
830  *
831  * An error is logged if any unexpected interrupt bits are set.
832  *
833  * Disabled interrupts are re-enabled.
834  *
835  * Return: %IRQ_HANDLED. Interrupt was handled and no further processing
836  * is needed.
837  */
838 static irqreturn_t soctherm_thermal_isr_thread(int irq, void *dev_id)
839 {
840 	struct tegra_soctherm *ts = dev_id;
841 	struct thermal_zone_device *tz;
842 	u32 st, ex = 0, cp = 0, gp = 0, pl = 0, me = 0;
843 
844 	st = readl(ts->regs + THERMCTL_INTR_STATUS);
845 
846 	/* deliberately clear expected interrupts handled in SW */
847 	cp |= st & TH_INTR_CD0_MASK;
848 	cp |= st & TH_INTR_CU0_MASK;
849 
850 	gp |= st & TH_INTR_GD0_MASK;
851 	gp |= st & TH_INTR_GU0_MASK;
852 
853 	pl |= st & TH_INTR_PD0_MASK;
854 	pl |= st & TH_INTR_PU0_MASK;
855 
856 	me |= st & TH_INTR_MD0_MASK;
857 	me |= st & TH_INTR_MU0_MASK;
858 
859 	ex |= cp | gp | pl | me;
860 	if (ex) {
861 		writel(ex, ts->regs + THERMCTL_INTR_STATUS);
862 		st &= ~ex;
863 
864 		if (cp) {
865 			tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_CPU];
866 			thermal_zone_device_update(tz,
867 						   THERMAL_EVENT_UNSPECIFIED);
868 		}
869 
870 		if (gp) {
871 			tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_GPU];
872 			thermal_zone_device_update(tz,
873 						   THERMAL_EVENT_UNSPECIFIED);
874 		}
875 
876 		if (pl) {
877 			tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_PLLX];
878 			thermal_zone_device_update(tz,
879 						   THERMAL_EVENT_UNSPECIFIED);
880 		}
881 
882 		if (me) {
883 			tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_MEM];
884 			thermal_zone_device_update(tz,
885 						   THERMAL_EVENT_UNSPECIFIED);
886 		}
887 	}
888 
889 	/* deliberately ignore expected interrupts NOT handled in SW */
890 	ex |= TH_INTR_IGNORE_MASK;
891 	st &= ~ex;
892 
893 	if (st) {
894 		/* Whine about any other unexpected INTR bits still set */
895 		pr_err("soctherm: Ignored unexpected INTRs 0x%08x\n", st);
896 		writel(st, ts->regs + THERMCTL_INTR_STATUS);
897 	}
898 
899 	return IRQ_HANDLED;
900 }
901 
902 /**
903  * soctherm_oc_intr_enable() - Enables the soctherm over-current interrupt
904  * @ts:		pointer to a struct tegra_soctherm
905  * @alarm:		The soctherm throttle id
906  * @enable:		Flag indicating enable the soctherm over-current
907  *			interrupt or disable it
908  *
909  * Enables a specific over-current pins @alarm to raise an interrupt if the flag
910  * is set and the alarm corresponds to OC1, OC2, OC3, or OC4.
911  */
912 static void soctherm_oc_intr_enable(struct tegra_soctherm *ts,
913 				    enum soctherm_throttle_id alarm,
914 				    bool enable)
915 {
916 	u32 r;
917 
918 	if (!enable)
919 		return;
920 
921 	r = readl(ts->regs + OC_INTR_ENABLE);
922 	switch (alarm) {
923 	case THROTTLE_OC1:
924 		r = REG_SET_MASK(r, OC_INTR_OC1_MASK, 1);
925 		break;
926 	case THROTTLE_OC2:
927 		r = REG_SET_MASK(r, OC_INTR_OC2_MASK, 1);
928 		break;
929 	case THROTTLE_OC3:
930 		r = REG_SET_MASK(r, OC_INTR_OC3_MASK, 1);
931 		break;
932 	case THROTTLE_OC4:
933 		r = REG_SET_MASK(r, OC_INTR_OC4_MASK, 1);
934 		break;
935 	default:
936 		r = 0;
937 		break;
938 	}
939 	writel(r, ts->regs + OC_INTR_ENABLE);
940 }
941 
942 /**
943  * soctherm_handle_alarm() - Handles soctherm alarms
944  * @alarm:		The soctherm throttle id
945  *
946  * "Handles" over-current alarms (OC1, OC2, OC3, and OC4) by printing
947  * a warning or informative message.
948  *
949  * Return: -EINVAL for @alarm = THROTTLE_OC3, otherwise 0 (success).
950  */
951 static int soctherm_handle_alarm(enum soctherm_throttle_id alarm)
952 {
953 	int rv = -EINVAL;
954 
955 	switch (alarm) {
956 	case THROTTLE_OC1:
957 		pr_debug("soctherm: Successfully handled OC1 alarm\n");
958 		rv = 0;
959 		break;
960 
961 	case THROTTLE_OC2:
962 		pr_debug("soctherm: Successfully handled OC2 alarm\n");
963 		rv = 0;
964 		break;
965 
966 	case THROTTLE_OC3:
967 		pr_debug("soctherm: Successfully handled OC3 alarm\n");
968 		rv = 0;
969 		break;
970 
971 	case THROTTLE_OC4:
972 		pr_debug("soctherm: Successfully handled OC4 alarm\n");
973 		rv = 0;
974 		break;
975 
976 	default:
977 		break;
978 	}
979 
980 	if (rv)
981 		pr_err("soctherm: ERROR in handling %s alarm\n",
982 		       throt_names[alarm]);
983 
984 	return rv;
985 }
986 
987 /**
988  * soctherm_edp_isr_thread() - log an over-current interrupt request
989  * @irq:	OC irq number. Currently not being used. See description
990  * @arg:	a void pointer for callback, currently not being used
991  *
992  * Over-current events are handled in hardware. This function is called to log
993  * and handle any OC events that happened. Additionally, it checks every
994  * over-current interrupt registers for registers are set but
995  * was not expected (i.e. any discrepancy in interrupt status) by the function,
996  * the discrepancy will logged.
997  *
998  * Return: %IRQ_HANDLED
999  */
1000 static irqreturn_t soctherm_edp_isr_thread(int irq, void *arg)
1001 {
1002 	struct tegra_soctherm *ts = arg;
1003 	u32 st, ex, oc1, oc2, oc3, oc4;
1004 
1005 	st = readl(ts->regs + OC_INTR_STATUS);
1006 
1007 	/* deliberately clear expected interrupts handled in SW */
1008 	oc1 = st & OC_INTR_OC1_MASK;
1009 	oc2 = st & OC_INTR_OC2_MASK;
1010 	oc3 = st & OC_INTR_OC3_MASK;
1011 	oc4 = st & OC_INTR_OC4_MASK;
1012 	ex = oc1 | oc2 | oc3 | oc4;
1013 
1014 	pr_err("soctherm: OC ALARM 0x%08x\n", ex);
1015 	if (ex) {
1016 		writel(st, ts->regs + OC_INTR_STATUS);
1017 		st &= ~ex;
1018 
1019 		if (oc1 && !soctherm_handle_alarm(THROTTLE_OC1))
1020 			soctherm_oc_intr_enable(ts, THROTTLE_OC1, true);
1021 
1022 		if (oc2 && !soctherm_handle_alarm(THROTTLE_OC2))
1023 			soctherm_oc_intr_enable(ts, THROTTLE_OC2, true);
1024 
1025 		if (oc3 && !soctherm_handle_alarm(THROTTLE_OC3))
1026 			soctherm_oc_intr_enable(ts, THROTTLE_OC3, true);
1027 
1028 		if (oc4 && !soctherm_handle_alarm(THROTTLE_OC4))
1029 			soctherm_oc_intr_enable(ts, THROTTLE_OC4, true);
1030 
1031 		if (oc1 && soc_irq_cdata.irq_enable & BIT(0))
1032 			handle_nested_irq(
1033 				irq_find_mapping(soc_irq_cdata.domain, 0));
1034 
1035 		if (oc2 && soc_irq_cdata.irq_enable & BIT(1))
1036 			handle_nested_irq(
1037 				irq_find_mapping(soc_irq_cdata.domain, 1));
1038 
1039 		if (oc3 && soc_irq_cdata.irq_enable & BIT(2))
1040 			handle_nested_irq(
1041 				irq_find_mapping(soc_irq_cdata.domain, 2));
1042 
1043 		if (oc4 && soc_irq_cdata.irq_enable & BIT(3))
1044 			handle_nested_irq(
1045 				irq_find_mapping(soc_irq_cdata.domain, 3));
1046 	}
1047 
1048 	if (st) {
1049 		pr_err("soctherm: Ignored unexpected OC ALARM 0x%08x\n", st);
1050 		writel(st, ts->regs + OC_INTR_STATUS);
1051 	}
1052 
1053 	return IRQ_HANDLED;
1054 }
1055 
1056 /**
1057  * soctherm_edp_isr() - Disables any active interrupts
1058  * @irq:	The interrupt request number
1059  * @arg:	Opaque pointer to an argument
1060  *
1061  * Writes to the OC_INTR_DISABLE register the over current interrupt status,
1062  * masking any asserted interrupts. Doing this prevents the same interrupts
1063  * from triggering this isr repeatedly. The thread woken by this isr will
1064  * handle asserted interrupts and subsequently unmask/re-enable them.
1065  *
1066  * The OC_INTR_DISABLE register indicates which OC interrupts
1067  * have been disabled.
1068  *
1069  * Return: %IRQ_WAKE_THREAD, handler requests to wake the handler thread
1070  */
1071 static irqreturn_t soctherm_edp_isr(int irq, void *arg)
1072 {
1073 	struct tegra_soctherm *ts = arg;
1074 	u32 r;
1075 
1076 	if (!ts)
1077 		return IRQ_NONE;
1078 
1079 	r = readl(ts->regs + OC_INTR_STATUS);
1080 	writel(r, ts->regs + OC_INTR_DISABLE);
1081 
1082 	return IRQ_WAKE_THREAD;
1083 }
1084 
1085 /**
1086  * soctherm_oc_irq_lock() - locks the over-current interrupt request
1087  * @data:	Interrupt request data
1088  *
1089  * Looks up the chip data from @data and locks the mutex associated with
1090  * a particular over-current interrupt request.
1091  */
1092 static void soctherm_oc_irq_lock(struct irq_data *data)
1093 {
1094 	struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
1095 
1096 	mutex_lock(&d->irq_lock);
1097 }
1098 
1099 /**
1100  * soctherm_oc_irq_sync_unlock() - Unlocks the OC interrupt request
1101  * @data:		Interrupt request data
1102  *
1103  * Looks up the interrupt request data @data and unlocks the mutex associated
1104  * with a particular over-current interrupt request.
1105  */
1106 static void soctherm_oc_irq_sync_unlock(struct irq_data *data)
1107 {
1108 	struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
1109 
1110 	mutex_unlock(&d->irq_lock);
1111 }
1112 
1113 /**
1114  * soctherm_oc_irq_enable() - Enables the SOC_THERM over-current interrupt queue
1115  * @data:       irq_data structure of the chip
1116  *
1117  * Sets the irq_enable bit of SOC_THERM allowing SOC_THERM
1118  * to respond to over-current interrupts.
1119  *
1120  */
1121 static void soctherm_oc_irq_enable(struct irq_data *data)
1122 {
1123 	struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
1124 
1125 	d->irq_enable |= BIT(data->hwirq);
1126 }
1127 
1128 /**
1129  * soctherm_oc_irq_disable() - Disables overcurrent interrupt requests
1130  * @data:	The interrupt request information
1131  *
1132  * Clears the interrupt request enable bit of the overcurrent
1133  * interrupt request chip data.
1134  *
1135  * Return: Nothing is returned (void)
1136  */
1137 static void soctherm_oc_irq_disable(struct irq_data *data)
1138 {
1139 	struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
1140 
1141 	d->irq_enable &= ~BIT(data->hwirq);
1142 }
1143 
1144 static int soctherm_oc_irq_set_type(struct irq_data *data, unsigned int type)
1145 {
1146 	return 0;
1147 }
1148 
1149 /**
1150  * soctherm_oc_irq_map() - SOC_THERM interrupt request domain mapper
1151  * @h:		Interrupt request domain
1152  * @virq:	Virtual interrupt request number
1153  * @hw:		Hardware interrupt request number
1154  *
1155  * Mapping callback function for SOC_THERM's irq_domain. When a SOC_THERM
1156  * interrupt request is called, the irq_domain takes the request's virtual
1157  * request number (much like a virtual memory address) and maps it to a
1158  * physical hardware request number.
1159  *
1160  * When a mapping doesn't already exist for a virtual request number, the
1161  * irq_domain calls this function to associate the virtual request number with
1162  * a hardware request number.
1163  *
1164  * Return: 0
1165  */
1166 static int soctherm_oc_irq_map(struct irq_domain *h, unsigned int virq,
1167 		irq_hw_number_t hw)
1168 {
1169 	struct soctherm_oc_irq_chip_data *data = h->host_data;
1170 
1171 	irq_set_chip_data(virq, data);
1172 	irq_set_chip(virq, &data->irq_chip);
1173 	irq_set_nested_thread(virq, 1);
1174 	return 0;
1175 }
1176 
1177 /**
1178  * soctherm_irq_domain_xlate_twocell() - xlate for soctherm interrupts
1179  * @d:      Interrupt request domain
1180  * @ctrlr:      Controller device tree node
1181  * @intspec:    Array of u32s from DTs "interrupt" property
1182  * @intsize:    Number of values inside the intspec array
1183  * @out_hwirq:  HW IRQ value associated with this interrupt
1184  * @out_type:   The IRQ SENSE type for this interrupt.
1185  *
1186  * This Device Tree IRQ specifier translation function will translate a
1187  * specific "interrupt" as defined by 2 DT values where the cell values map
1188  * the hwirq number + 1 and linux irq flags. Since the output is the hwirq
1189  * number, this function will subtract 1 from the value listed in DT.
1190  *
1191  * Return: 0
1192  */
1193 static int soctherm_irq_domain_xlate_twocell(struct irq_domain *d,
1194 	struct device_node *ctrlr, const u32 *intspec, unsigned int intsize,
1195 	irq_hw_number_t *out_hwirq, unsigned int *out_type)
1196 {
1197 	if (WARN_ON(intsize < 2))
1198 		return -EINVAL;
1199 
1200 	/*
1201 	 * The HW value is 1 index less than the DT IRQ values.
1202 	 * i.e. OC4 goes to HW index 3.
1203 	 */
1204 	*out_hwirq = intspec[0] - 1;
1205 	*out_type = intspec[1] & IRQ_TYPE_SENSE_MASK;
1206 	return 0;
1207 }
1208 
1209 static const struct irq_domain_ops soctherm_oc_domain_ops = {
1210 	.map	= soctherm_oc_irq_map,
1211 	.xlate	= soctherm_irq_domain_xlate_twocell,
1212 };
1213 
1214 /**
1215  * soctherm_oc_int_init() - Initial enabling of the over
1216  * current interrupts
1217  * @np:	The devicetree node for soctherm
1218  * @num_irqs:	The number of new interrupt requests
1219  *
1220  * Sets the over current interrupt request chip data
1221  *
1222  * Return: 0 on success or if overcurrent interrupts are not enabled,
1223  * -ENOMEM (out of memory), or irq_base if the function failed to
1224  * allocate the irqs
1225  */
1226 static int soctherm_oc_int_init(struct device_node *np, int num_irqs)
1227 {
1228 	if (!num_irqs) {
1229 		pr_info("%s(): OC interrupts are not enabled\n", __func__);
1230 		return 0;
1231 	}
1232 
1233 	mutex_init(&soc_irq_cdata.irq_lock);
1234 	soc_irq_cdata.irq_enable = 0;
1235 
1236 	soc_irq_cdata.irq_chip.name = "soc_therm_oc";
1237 	soc_irq_cdata.irq_chip.irq_bus_lock = soctherm_oc_irq_lock;
1238 	soc_irq_cdata.irq_chip.irq_bus_sync_unlock =
1239 		soctherm_oc_irq_sync_unlock;
1240 	soc_irq_cdata.irq_chip.irq_disable = soctherm_oc_irq_disable;
1241 	soc_irq_cdata.irq_chip.irq_enable = soctherm_oc_irq_enable;
1242 	soc_irq_cdata.irq_chip.irq_set_type = soctherm_oc_irq_set_type;
1243 	soc_irq_cdata.irq_chip.irq_set_wake = NULL;
1244 
1245 	soc_irq_cdata.domain = irq_domain_add_linear(np, num_irqs,
1246 						     &soctherm_oc_domain_ops,
1247 						     &soc_irq_cdata);
1248 
1249 	if (!soc_irq_cdata.domain) {
1250 		pr_err("%s: Failed to create IRQ domain\n", __func__);
1251 		return -ENOMEM;
1252 	}
1253 
1254 	pr_debug("%s(): OC interrupts enabled successful\n", __func__);
1255 	return 0;
1256 }
1257 
1258 #ifdef CONFIG_DEBUG_FS
1259 static int regs_show(struct seq_file *s, void *data)
1260 {
1261 	struct platform_device *pdev = s->private;
1262 	struct tegra_soctherm *ts = platform_get_drvdata(pdev);
1263 	const struct tegra_tsensor *tsensors = ts->soc->tsensors;
1264 	const struct tegra_tsensor_group **ttgs = ts->soc->ttgs;
1265 	u32 r, state;
1266 	int i, level;
1267 
1268 	seq_puts(s, "-----TSENSE (convert HW)-----\n");
1269 
1270 	for (i = 0; i < ts->soc->num_tsensors; i++) {
1271 		r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG1);
1272 		state = REG_GET_MASK(r, SENSOR_CONFIG1_TEMP_ENABLE);
1273 
1274 		seq_printf(s, "%s: ", tsensors[i].name);
1275 		seq_printf(s, "En(%d) ", state);
1276 
1277 		if (!state) {
1278 			seq_puts(s, "\n");
1279 			continue;
1280 		}
1281 
1282 		state = REG_GET_MASK(r, SENSOR_CONFIG1_TIDDQ_EN_MASK);
1283 		seq_printf(s, "tiddq(%d) ", state);
1284 		state = REG_GET_MASK(r, SENSOR_CONFIG1_TEN_COUNT_MASK);
1285 		seq_printf(s, "ten_count(%d) ", state);
1286 		state = REG_GET_MASK(r, SENSOR_CONFIG1_TSAMPLE_MASK);
1287 		seq_printf(s, "tsample(%d) ", state + 1);
1288 
1289 		r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS1);
1290 		state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_VALID_MASK);
1291 		seq_printf(s, "Temp(%d/", state);
1292 		state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_MASK);
1293 		seq_printf(s, "%d) ", translate_temp(state));
1294 
1295 		r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS0);
1296 		state = REG_GET_MASK(r, SENSOR_STATUS0_VALID_MASK);
1297 		seq_printf(s, "Capture(%d/", state);
1298 		state = REG_GET_MASK(r, SENSOR_STATUS0_CAPTURE_MASK);
1299 		seq_printf(s, "%d) ", state);
1300 
1301 		r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG0);
1302 		state = REG_GET_MASK(r, SENSOR_CONFIG0_STOP);
1303 		seq_printf(s, "Stop(%d) ", state);
1304 		state = REG_GET_MASK(r, SENSOR_CONFIG0_TALL_MASK);
1305 		seq_printf(s, "Tall(%d) ", state);
1306 		state = REG_GET_MASK(r, SENSOR_CONFIG0_TCALC_OVER);
1307 		seq_printf(s, "Over(%d/", state);
1308 		state = REG_GET_MASK(r, SENSOR_CONFIG0_OVER);
1309 		seq_printf(s, "%d/", state);
1310 		state = REG_GET_MASK(r, SENSOR_CONFIG0_CPTR_OVER);
1311 		seq_printf(s, "%d) ", state);
1312 
1313 		r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG2);
1314 		state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMA_MASK);
1315 		seq_printf(s, "Therm_A/B(%d/", state);
1316 		state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMB_MASK);
1317 		seq_printf(s, "%d)\n", (s16)state);
1318 	}
1319 
1320 	r = readl(ts->regs + SENSOR_PDIV);
1321 	seq_printf(s, "PDIV: 0x%x\n", r);
1322 
1323 	r = readl(ts->regs + SENSOR_HOTSPOT_OFF);
1324 	seq_printf(s, "HOTSPOT: 0x%x\n", r);
1325 
1326 	seq_puts(s, "\n");
1327 	seq_puts(s, "-----SOC_THERM-----\n");
1328 
1329 	r = readl(ts->regs + SENSOR_TEMP1);
1330 	state = REG_GET_MASK(r, SENSOR_TEMP1_CPU_TEMP_MASK);
1331 	seq_printf(s, "Temperatures: CPU(%d) ", translate_temp(state));
1332 	state = REG_GET_MASK(r, SENSOR_TEMP1_GPU_TEMP_MASK);
1333 	seq_printf(s, " GPU(%d) ", translate_temp(state));
1334 	r = readl(ts->regs + SENSOR_TEMP2);
1335 	state = REG_GET_MASK(r, SENSOR_TEMP2_PLLX_TEMP_MASK);
1336 	seq_printf(s, " PLLX(%d) ", translate_temp(state));
1337 	state = REG_GET_MASK(r, SENSOR_TEMP2_MEM_TEMP_MASK);
1338 	seq_printf(s, " MEM(%d)\n", translate_temp(state));
1339 
1340 	for (i = 0; i < ts->soc->num_ttgs; i++) {
1341 		seq_printf(s, "%s:\n", ttgs[i]->name);
1342 		for (level = 0; level < 4; level++) {
1343 			s32 v;
1344 			u32 mask;
1345 			u16 off = ttgs[i]->thermctl_lvl0_offset;
1346 
1347 			r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
1348 
1349 			mask = ttgs[i]->thermctl_lvl0_up_thresh_mask;
1350 			state = REG_GET_MASK(r, mask);
1351 			v = sign_extend32(state, ts->soc->bptt - 1);
1352 			v *= ts->soc->thresh_grain;
1353 			seq_printf(s, "   %d: Up/Dn(%d /", level, v);
1354 
1355 			mask = ttgs[i]->thermctl_lvl0_dn_thresh_mask;
1356 			state = REG_GET_MASK(r, mask);
1357 			v = sign_extend32(state, ts->soc->bptt - 1);
1358 			v *= ts->soc->thresh_grain;
1359 			seq_printf(s, "%d ) ", v);
1360 
1361 			mask = THERMCTL_LVL0_CPU0_EN_MASK;
1362 			state = REG_GET_MASK(r, mask);
1363 			seq_printf(s, "En(%d) ", state);
1364 
1365 			mask = THERMCTL_LVL0_CPU0_CPU_THROT_MASK;
1366 			state = REG_GET_MASK(r, mask);
1367 			seq_puts(s, "CPU Throt");
1368 			if (!state)
1369 				seq_printf(s, "(%s) ", "none");
1370 			else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT)
1371 				seq_printf(s, "(%s) ", "L");
1372 			else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY)
1373 				seq_printf(s, "(%s) ", "H");
1374 			else
1375 				seq_printf(s, "(%s) ", "H+L");
1376 
1377 			mask = THERMCTL_LVL0_CPU0_GPU_THROT_MASK;
1378 			state = REG_GET_MASK(r, mask);
1379 			seq_puts(s, "GPU Throt");
1380 			if (!state)
1381 				seq_printf(s, "(%s) ", "none");
1382 			else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT)
1383 				seq_printf(s, "(%s) ", "L");
1384 			else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY)
1385 				seq_printf(s, "(%s) ", "H");
1386 			else
1387 				seq_printf(s, "(%s) ", "H+L");
1388 
1389 			mask = THERMCTL_LVL0_CPU0_STATUS_MASK;
1390 			state = REG_GET_MASK(r, mask);
1391 			seq_printf(s, "Status(%s)\n",
1392 				   state == 0 ? "LO" :
1393 				   state == 1 ? "In" :
1394 				   state == 2 ? "Res" : "HI");
1395 		}
1396 	}
1397 
1398 	r = readl(ts->regs + THERMCTL_STATS_CTL);
1399 	seq_printf(s, "STATS: Up(%s) Dn(%s)\n",
1400 		   r & STATS_CTL_EN_UP ? "En" : "--",
1401 		   r & STATS_CTL_EN_DN ? "En" : "--");
1402 
1403 	for (level = 0; level < 4; level++) {
1404 		u16 off;
1405 
1406 		off = THERMCTL_LVL0_UP_STATS;
1407 		r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
1408 		seq_printf(s, "  Level_%d Up(%d) ", level, r);
1409 
1410 		off = THERMCTL_LVL0_DN_STATS;
1411 		r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
1412 		seq_printf(s, "Dn(%d)\n", r);
1413 	}
1414 
1415 	r = readl(ts->regs + THERMCTL_THERMTRIP_CTL);
1416 	state = REG_GET_MASK(r, ttgs[0]->thermtrip_any_en_mask);
1417 	seq_printf(s, "Thermtrip Any En(%d)\n", state);
1418 	for (i = 0; i < ts->soc->num_ttgs; i++) {
1419 		state = REG_GET_MASK(r, ttgs[i]->thermtrip_enable_mask);
1420 		seq_printf(s, "     %s En(%d) ", ttgs[i]->name, state);
1421 		state = REG_GET_MASK(r, ttgs[i]->thermtrip_threshold_mask);
1422 		state *= ts->soc->thresh_grain;
1423 		seq_printf(s, "Thresh(%d)\n", state);
1424 	}
1425 
1426 	r = readl(ts->regs + THROT_GLOBAL_CFG);
1427 	seq_puts(s, "\n");
1428 	seq_printf(s, "GLOBAL THROTTLE CONFIG: 0x%08x\n", r);
1429 
1430 	seq_puts(s, "---------------------------------------------------\n");
1431 	r = readl(ts->regs + THROT_STATUS);
1432 	state = REG_GET_MASK(r, THROT_STATUS_BREACH_MASK);
1433 	seq_printf(s, "THROT STATUS: breach(%d) ", state);
1434 	state = REG_GET_MASK(r, THROT_STATUS_STATE_MASK);
1435 	seq_printf(s, "state(%d) ", state);
1436 	state = REG_GET_MASK(r, THROT_STATUS_ENABLED_MASK);
1437 	seq_printf(s, "enabled(%d)\n", state);
1438 
1439 	r = readl(ts->regs + CPU_PSKIP_STATUS);
1440 	if (ts->soc->use_ccroc) {
1441 		state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK);
1442 		seq_printf(s, "CPU PSKIP STATUS: enabled(%d)\n", state);
1443 	} else {
1444 		state = REG_GET_MASK(r, XPU_PSKIP_STATUS_M_MASK);
1445 		seq_printf(s, "CPU PSKIP STATUS: M(%d) ", state);
1446 		state = REG_GET_MASK(r, XPU_PSKIP_STATUS_N_MASK);
1447 		seq_printf(s, "N(%d) ", state);
1448 		state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK);
1449 		seq_printf(s, "enabled(%d)\n", state);
1450 	}
1451 
1452 	return 0;
1453 }
1454 
1455 DEFINE_SHOW_ATTRIBUTE(regs);
1456 
1457 static void soctherm_debug_init(struct platform_device *pdev)
1458 {
1459 	struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
1460 	struct dentry *root;
1461 
1462 	root = debugfs_create_dir("soctherm", NULL);
1463 
1464 	tegra->debugfs_dir = root;
1465 
1466 	debugfs_create_file("reg_contents", 0644, root, pdev, &regs_fops);
1467 }
1468 #else
1469 static inline void soctherm_debug_init(struct platform_device *pdev) {}
1470 #endif
1471 
1472 static int soctherm_clk_enable(struct platform_device *pdev, bool enable)
1473 {
1474 	struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
1475 	int err;
1476 
1477 	if (!tegra->clock_soctherm || !tegra->clock_tsensor)
1478 		return -EINVAL;
1479 
1480 	reset_control_assert(tegra->reset);
1481 
1482 	if (enable) {
1483 		err = clk_prepare_enable(tegra->clock_soctherm);
1484 		if (err) {
1485 			reset_control_deassert(tegra->reset);
1486 			return err;
1487 		}
1488 
1489 		err = clk_prepare_enable(tegra->clock_tsensor);
1490 		if (err) {
1491 			clk_disable_unprepare(tegra->clock_soctherm);
1492 			reset_control_deassert(tegra->reset);
1493 			return err;
1494 		}
1495 	} else {
1496 		clk_disable_unprepare(tegra->clock_tsensor);
1497 		clk_disable_unprepare(tegra->clock_soctherm);
1498 	}
1499 
1500 	reset_control_deassert(tegra->reset);
1501 
1502 	return 0;
1503 }
1504 
1505 static int throt_get_cdev_max_state(struct thermal_cooling_device *cdev,
1506 				    unsigned long *max_state)
1507 {
1508 	*max_state = 1;
1509 	return 0;
1510 }
1511 
1512 static int throt_get_cdev_cur_state(struct thermal_cooling_device *cdev,
1513 				    unsigned long *cur_state)
1514 {
1515 	struct tegra_soctherm *ts = cdev->devdata;
1516 	u32 r;
1517 
1518 	r = readl(ts->regs + THROT_STATUS);
1519 	if (REG_GET_MASK(r, THROT_STATUS_STATE_MASK))
1520 		*cur_state = 1;
1521 	else
1522 		*cur_state = 0;
1523 
1524 	return 0;
1525 }
1526 
1527 static int throt_set_cdev_state(struct thermal_cooling_device *cdev,
1528 				unsigned long cur_state)
1529 {
1530 	return 0;
1531 }
1532 
1533 static const struct thermal_cooling_device_ops throt_cooling_ops = {
1534 	.get_max_state = throt_get_cdev_max_state,
1535 	.get_cur_state = throt_get_cdev_cur_state,
1536 	.set_cur_state = throt_set_cdev_state,
1537 };
1538 
1539 static int soctherm_thermtrips_parse(struct platform_device *pdev)
1540 {
1541 	struct device *dev = &pdev->dev;
1542 	struct tegra_soctherm *ts = dev_get_drvdata(dev);
1543 	struct tsensor_group_thermtrips *tt = ts->soc->thermtrips;
1544 	const int max_num_prop = ts->soc->num_ttgs * 2;
1545 	u32 *tlb;
1546 	int i, j, n, ret;
1547 
1548 	if (!tt)
1549 		return -ENOMEM;
1550 
1551 	n = of_property_count_u32_elems(dev->of_node, "nvidia,thermtrips");
1552 	if (n <= 0) {
1553 		dev_info(dev,
1554 			 "missing thermtrips, will use critical trips as shut down temp\n");
1555 		return n;
1556 	}
1557 
1558 	n = min(max_num_prop, n);
1559 
1560 	tlb = devm_kcalloc(&pdev->dev, max_num_prop, sizeof(u32), GFP_KERNEL);
1561 	if (!tlb)
1562 		return -ENOMEM;
1563 	ret = of_property_read_u32_array(dev->of_node, "nvidia,thermtrips",
1564 					 tlb, n);
1565 	if (ret) {
1566 		dev_err(dev, "invalid num ele: thermtrips:%d\n", ret);
1567 		return ret;
1568 	}
1569 
1570 	i = 0;
1571 	for (j = 0; j < n; j = j + 2) {
1572 		if (tlb[j] >= TEGRA124_SOCTHERM_SENSOR_NUM)
1573 			continue;
1574 
1575 		tt[i].id = tlb[j];
1576 		tt[i].temp = tlb[j + 1];
1577 		i++;
1578 	}
1579 
1580 	return 0;
1581 }
1582 
1583 static void soctherm_oc_cfg_parse(struct device *dev,
1584 				struct device_node *np_oc,
1585 				struct soctherm_throt_cfg *stc)
1586 {
1587 	u32 val;
1588 
1589 	if (of_property_read_bool(np_oc, "nvidia,polarity-active-low"))
1590 		stc->oc_cfg.active_low = 1;
1591 	else
1592 		stc->oc_cfg.active_low = 0;
1593 
1594 	if (!of_property_read_u32(np_oc, "nvidia,count-threshold", &val)) {
1595 		stc->oc_cfg.intr_en = 1;
1596 		stc->oc_cfg.alarm_cnt_thresh = val;
1597 	}
1598 
1599 	if (!of_property_read_u32(np_oc, "nvidia,throttle-period-us", &val))
1600 		stc->oc_cfg.throt_period = val;
1601 
1602 	if (!of_property_read_u32(np_oc, "nvidia,alarm-filter", &val))
1603 		stc->oc_cfg.alarm_filter = val;
1604 
1605 	/* BRIEF throttling by default, do not support STICKY */
1606 	stc->oc_cfg.mode = OC_THROTTLE_MODE_BRIEF;
1607 }
1608 
1609 static int soctherm_throt_cfg_parse(struct device *dev,
1610 				    struct device_node *np,
1611 				    struct soctherm_throt_cfg *stc)
1612 {
1613 	struct tegra_soctherm *ts = dev_get_drvdata(dev);
1614 	int ret;
1615 	u32 val;
1616 
1617 	ret = of_property_read_u32(np, "nvidia,priority", &val);
1618 	if (ret) {
1619 		dev_err(dev, "throttle-cfg: %s: invalid priority\n", stc->name);
1620 		return -EINVAL;
1621 	}
1622 	stc->priority = val;
1623 
1624 	ret = of_property_read_u32(np, ts->soc->use_ccroc ?
1625 				   "nvidia,cpu-throt-level" :
1626 				   "nvidia,cpu-throt-percent", &val);
1627 	if (!ret) {
1628 		if (ts->soc->use_ccroc &&
1629 		    val <= TEGRA_SOCTHERM_THROT_LEVEL_HIGH)
1630 			stc->cpu_throt_level = val;
1631 		else if (!ts->soc->use_ccroc && val <= 100)
1632 			stc->cpu_throt_depth = val;
1633 		else
1634 			goto err;
1635 	} else {
1636 		goto err;
1637 	}
1638 
1639 	ret = of_property_read_u32(np, "nvidia,gpu-throt-level", &val);
1640 	if (!ret && val <= TEGRA_SOCTHERM_THROT_LEVEL_HIGH)
1641 		stc->gpu_throt_level = val;
1642 	else
1643 		goto err;
1644 
1645 	return 0;
1646 
1647 err:
1648 	dev_err(dev, "throttle-cfg: %s: no throt prop or invalid prop\n",
1649 		stc->name);
1650 	return -EINVAL;
1651 }
1652 
1653 /**
1654  * soctherm_init_hw_throt_cdev() - Parse the HW throttle configurations
1655  * and register them as cooling devices.
1656  * @pdev: Pointer to platform_device struct
1657  */
1658 static void soctherm_init_hw_throt_cdev(struct platform_device *pdev)
1659 {
1660 	struct device *dev = &pdev->dev;
1661 	struct tegra_soctherm *ts = dev_get_drvdata(dev);
1662 	struct device_node *np_stc, *np_stcc;
1663 	const char *name;
1664 	int i;
1665 
1666 	for (i = 0; i < THROTTLE_SIZE; i++) {
1667 		ts->throt_cfgs[i].name = throt_names[i];
1668 		ts->throt_cfgs[i].id = i;
1669 		ts->throt_cfgs[i].init = false;
1670 	}
1671 
1672 	np_stc = of_get_child_by_name(dev->of_node, "throttle-cfgs");
1673 	if (!np_stc) {
1674 		dev_info(dev,
1675 			 "throttle-cfg: no throttle-cfgs - not enabling\n");
1676 		return;
1677 	}
1678 
1679 	for_each_child_of_node(np_stc, np_stcc) {
1680 		struct soctherm_throt_cfg *stc;
1681 		struct thermal_cooling_device *tcd;
1682 		int err;
1683 
1684 		name = np_stcc->name;
1685 		stc = find_throttle_cfg_by_name(ts, name);
1686 		if (!stc) {
1687 			dev_err(dev,
1688 				"throttle-cfg: could not find %s\n", name);
1689 			continue;
1690 		}
1691 
1692 		if (stc->init) {
1693 			dev_err(dev, "throttle-cfg: %s: redefined!\n", name);
1694 			of_node_put(np_stcc);
1695 			break;
1696 		}
1697 
1698 		err = soctherm_throt_cfg_parse(dev, np_stcc, stc);
1699 		if (err)
1700 			continue;
1701 
1702 		if (stc->id >= THROTTLE_OC1) {
1703 			soctherm_oc_cfg_parse(dev, np_stcc, stc);
1704 			stc->init = true;
1705 		} else {
1706 
1707 			tcd = thermal_of_cooling_device_register(np_stcc,
1708 							 (char *)name, ts,
1709 							 &throt_cooling_ops);
1710 			if (IS_ERR_OR_NULL(tcd)) {
1711 				dev_err(dev,
1712 					"throttle-cfg: %s: failed to register cooling device\n",
1713 					name);
1714 				continue;
1715 			}
1716 			stc->cdev = tcd;
1717 			stc->init = true;
1718 		}
1719 
1720 	}
1721 
1722 	of_node_put(np_stc);
1723 }
1724 
1725 /**
1726  * throttlectl_cpu_level_cfg() - programs CCROC NV_THERM level config
1727  * @ts: pointer to a struct tegra_soctherm
1728  * @level: describing the level LOW/MED/HIGH of throttling
1729  *
1730  * It's necessary to set up the CPU-local CCROC NV_THERM instance with
1731  * the M/N values desired for each level. This function does this.
1732  *
1733  * This function pre-programs the CCROC NV_THERM levels in terms of
1734  * pre-configured "Low", "Medium" or "Heavy" throttle levels which are
1735  * mapped to THROT_LEVEL_LOW, THROT_LEVEL_MED and THROT_LEVEL_HVY.
1736  */
1737 static void throttlectl_cpu_level_cfg(struct tegra_soctherm *ts, int level)
1738 {
1739 	u8 depth, dividend;
1740 	u32 r;
1741 
1742 	switch (level) {
1743 	case TEGRA_SOCTHERM_THROT_LEVEL_LOW:
1744 		depth = 50;
1745 		break;
1746 	case TEGRA_SOCTHERM_THROT_LEVEL_MED:
1747 		depth = 75;
1748 		break;
1749 	case TEGRA_SOCTHERM_THROT_LEVEL_HIGH:
1750 		depth = 80;
1751 		break;
1752 	case TEGRA_SOCTHERM_THROT_LEVEL_NONE:
1753 		return;
1754 	default:
1755 		return;
1756 	}
1757 
1758 	dividend = THROT_DEPTH_DIVIDEND(depth);
1759 
1760 	/* setup PSKIP in ccroc nv_therm registers */
1761 	r = ccroc_readl(ts, CCROC_THROT_PSKIP_RAMP_CPU_REG(level));
1762 	r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_DURATION_MASK, 0xff);
1763 	r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_STEP_MASK, 0xf);
1764 	ccroc_writel(ts, r, CCROC_THROT_PSKIP_RAMP_CPU_REG(level));
1765 
1766 	r = ccroc_readl(ts, CCROC_THROT_PSKIP_CTRL_CPU_REG(level));
1767 	r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_ENB_MASK, 1);
1768 	r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend);
1769 	r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff);
1770 	ccroc_writel(ts, r, CCROC_THROT_PSKIP_CTRL_CPU_REG(level));
1771 }
1772 
1773 /**
1774  * throttlectl_cpu_level_select() - program CPU pulse skipper config
1775  * @ts: pointer to a struct tegra_soctherm
1776  * @throt: the LIGHT/HEAVY of throttle event id
1777  *
1778  * Pulse skippers are used to throttle clock frequencies.  This
1779  * function programs the pulse skippers based on @throt and platform
1780  * data.  This function is used on SoCs which have CPU-local pulse
1781  * skipper control, such as T13x. It programs soctherm's interface to
1782  * Denver:CCROC NV_THERM in terms of Low, Medium and HIGH throttling
1783  * vectors. PSKIP_BYPASS mode is set as required per HW spec.
1784  */
1785 static void throttlectl_cpu_level_select(struct tegra_soctherm *ts,
1786 					 enum soctherm_throttle_id throt)
1787 {
1788 	u32 r, throt_vect;
1789 
1790 	/* Denver:CCROC NV_THERM interface N:3 Mapping */
1791 	switch (ts->throt_cfgs[throt].cpu_throt_level) {
1792 	case TEGRA_SOCTHERM_THROT_LEVEL_LOW:
1793 		throt_vect = THROT_VECT_LOW;
1794 		break;
1795 	case TEGRA_SOCTHERM_THROT_LEVEL_MED:
1796 		throt_vect = THROT_VECT_MED;
1797 		break;
1798 	case TEGRA_SOCTHERM_THROT_LEVEL_HIGH:
1799 		throt_vect = THROT_VECT_HIGH;
1800 		break;
1801 	default:
1802 		throt_vect = THROT_VECT_NONE;
1803 		break;
1804 	}
1805 
1806 	r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1807 	r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
1808 	r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT_CPU_MASK, throt_vect);
1809 	r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT2_CPU_MASK, throt_vect);
1810 	writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1811 
1812 	/* bypass sequencer in soc_therm as it is programmed in ccroc */
1813 	r = REG_SET_MASK(0, THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK, 1);
1814 	writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
1815 }
1816 
1817 /**
1818  * throttlectl_cpu_mn() - program CPU pulse skipper configuration
1819  * @ts: pointer to a struct tegra_soctherm
1820  * @throt: the LIGHT/HEAVY of throttle event id
1821  *
1822  * Pulse skippers are used to throttle clock frequencies.  This
1823  * function programs the pulse skippers based on @throt and platform
1824  * data.  This function is used for CPUs that have "remote" pulse
1825  * skipper control, e.g., the CPU pulse skipper is controlled by the
1826  * SOC_THERM IP block.  (SOC_THERM is located outside the CPU
1827  * complex.)
1828  */
1829 static void throttlectl_cpu_mn(struct tegra_soctherm *ts,
1830 			       enum soctherm_throttle_id throt)
1831 {
1832 	u32 r;
1833 	int depth;
1834 	u8 dividend;
1835 
1836 	depth = ts->throt_cfgs[throt].cpu_throt_depth;
1837 	dividend = THROT_DEPTH_DIVIDEND(depth);
1838 
1839 	r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1840 	r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
1841 	r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend);
1842 	r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff);
1843 	writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1844 
1845 	r = readl(ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
1846 	r = REG_SET_MASK(r, THROT_PSKIP_RAMP_DURATION_MASK, 0xff);
1847 	r = REG_SET_MASK(r, THROT_PSKIP_RAMP_STEP_MASK, 0xf);
1848 	writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
1849 }
1850 
1851 /**
1852  * throttlectl_gpu_level_select() - selects throttling level for GPU
1853  * @ts: pointer to a struct tegra_soctherm
1854  * @throt: the LIGHT/HEAVY of throttle event id
1855  *
1856  * This function programs soctherm's interface to GK20a NV_THERM to select
1857  * pre-configured "Low", "Medium" or "Heavy" throttle levels.
1858  *
1859  * Return: boolean true if HW was programmed
1860  */
1861 static void throttlectl_gpu_level_select(struct tegra_soctherm *ts,
1862 					 enum soctherm_throttle_id throt)
1863 {
1864 	u32 r, level, throt_vect;
1865 
1866 	level = ts->throt_cfgs[throt].gpu_throt_level;
1867 	throt_vect = THROT_LEVEL_TO_DEPTH(level);
1868 	r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_GPU));
1869 	r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
1870 	r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT_GPU_MASK, throt_vect);
1871 	writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_GPU));
1872 }
1873 
1874 static int soctherm_oc_cfg_program(struct tegra_soctherm *ts,
1875 				      enum soctherm_throttle_id throt)
1876 {
1877 	u32 r;
1878 	struct soctherm_oc_cfg *oc = &ts->throt_cfgs[throt].oc_cfg;
1879 
1880 	if (oc->mode == OC_THROTTLE_MODE_DISABLED)
1881 		return -EINVAL;
1882 
1883 	r = REG_SET_MASK(0, OC1_CFG_HW_RESTORE_MASK, 1);
1884 	r = REG_SET_MASK(r, OC1_CFG_THROTTLE_MODE_MASK, oc->mode);
1885 	r = REG_SET_MASK(r, OC1_CFG_ALARM_POLARITY_MASK, oc->active_low);
1886 	r = REG_SET_MASK(r, OC1_CFG_EN_THROTTLE_MASK, 1);
1887 	writel(r, ts->regs + ALARM_CFG(throt));
1888 	writel(oc->throt_period, ts->regs + ALARM_THROTTLE_PERIOD(throt));
1889 	writel(oc->alarm_cnt_thresh, ts->regs + ALARM_CNT_THRESHOLD(throt));
1890 	writel(oc->alarm_filter, ts->regs + ALARM_FILTER(throt));
1891 	soctherm_oc_intr_enable(ts, throt, oc->intr_en);
1892 
1893 	return 0;
1894 }
1895 
1896 /**
1897  * soctherm_throttle_program() - programs pulse skippers' configuration
1898  * @ts: pointer to a struct tegra_soctherm
1899  * @throt: the LIGHT/HEAVY of the throttle event id.
1900  *
1901  * Pulse skippers are used to throttle clock frequencies.
1902  * This function programs the pulse skippers.
1903  */
1904 static void soctherm_throttle_program(struct tegra_soctherm *ts,
1905 				      enum soctherm_throttle_id throt)
1906 {
1907 	u32 r;
1908 	struct soctherm_throt_cfg stc = ts->throt_cfgs[throt];
1909 
1910 	if (!stc.init)
1911 		return;
1912 
1913 	if ((throt >= THROTTLE_OC1) && (soctherm_oc_cfg_program(ts, throt)))
1914 		return;
1915 
1916 	/* Setup PSKIP parameters */
1917 	if (ts->soc->use_ccroc)
1918 		throttlectl_cpu_level_select(ts, throt);
1919 	else
1920 		throttlectl_cpu_mn(ts, throt);
1921 
1922 	throttlectl_gpu_level_select(ts, throt);
1923 
1924 	r = REG_SET_MASK(0, THROT_PRIORITY_LITE_PRIO_MASK, stc.priority);
1925 	writel(r, ts->regs + THROT_PRIORITY_CTRL(throt));
1926 
1927 	r = REG_SET_MASK(0, THROT_DELAY_LITE_DELAY_MASK, 0);
1928 	writel(r, ts->regs + THROT_DELAY_CTRL(throt));
1929 
1930 	r = readl(ts->regs + THROT_PRIORITY_LOCK);
1931 	r = REG_GET_MASK(r, THROT_PRIORITY_LOCK_PRIORITY_MASK);
1932 	if (r >= stc.priority)
1933 		return;
1934 	r = REG_SET_MASK(0, THROT_PRIORITY_LOCK_PRIORITY_MASK,
1935 			 stc.priority);
1936 	writel(r, ts->regs + THROT_PRIORITY_LOCK);
1937 }
1938 
1939 static void tegra_soctherm_throttle(struct device *dev)
1940 {
1941 	struct tegra_soctherm *ts = dev_get_drvdata(dev);
1942 	u32 v;
1943 	int i;
1944 
1945 	/* configure LOW, MED and HIGH levels for CCROC NV_THERM */
1946 	if (ts->soc->use_ccroc) {
1947 		throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_LOW);
1948 		throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_MED);
1949 		throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_HIGH);
1950 	}
1951 
1952 	/* Thermal HW throttle programming */
1953 	for (i = 0; i < THROTTLE_SIZE; i++)
1954 		soctherm_throttle_program(ts, i);
1955 
1956 	v = REG_SET_MASK(0, THROT_GLOBAL_ENB_MASK, 1);
1957 	if (ts->soc->use_ccroc) {
1958 		ccroc_writel(ts, v, CCROC_GLOBAL_CFG);
1959 
1960 		v = ccroc_readl(ts, CCROC_SUPER_CCLKG_DIVIDER);
1961 		v = REG_SET_MASK(v, CDIVG_USE_THERM_CONTROLS_MASK, 1);
1962 		ccroc_writel(ts, v, CCROC_SUPER_CCLKG_DIVIDER);
1963 	} else {
1964 		writel(v, ts->regs + THROT_GLOBAL_CFG);
1965 
1966 		v = readl(ts->clk_regs + CAR_SUPER_CCLKG_DIVIDER);
1967 		v = REG_SET_MASK(v, CDIVG_USE_THERM_CONTROLS_MASK, 1);
1968 		writel(v, ts->clk_regs + CAR_SUPER_CCLKG_DIVIDER);
1969 	}
1970 
1971 	/* initialize stats collection */
1972 	v = STATS_CTL_CLR_DN | STATS_CTL_EN_DN |
1973 	    STATS_CTL_CLR_UP | STATS_CTL_EN_UP;
1974 	writel(v, ts->regs + THERMCTL_STATS_CTL);
1975 }
1976 
1977 static int soctherm_interrupts_init(struct platform_device *pdev,
1978 				    struct tegra_soctherm *tegra)
1979 {
1980 	struct device_node *np = pdev->dev.of_node;
1981 	int ret;
1982 
1983 	ret = soctherm_oc_int_init(np, TEGRA_SOC_OC_IRQ_MAX);
1984 	if (ret < 0) {
1985 		dev_err(&pdev->dev, "soctherm_oc_int_init failed\n");
1986 		return ret;
1987 	}
1988 
1989 	tegra->thermal_irq = platform_get_irq(pdev, 0);
1990 	if (tegra->thermal_irq < 0) {
1991 		dev_dbg(&pdev->dev, "get 'thermal_irq' failed.\n");
1992 		return 0;
1993 	}
1994 
1995 	tegra->edp_irq = platform_get_irq(pdev, 1);
1996 	if (tegra->edp_irq < 0) {
1997 		dev_dbg(&pdev->dev, "get 'edp_irq' failed.\n");
1998 		return 0;
1999 	}
2000 
2001 	ret = devm_request_threaded_irq(&pdev->dev,
2002 					tegra->thermal_irq,
2003 					soctherm_thermal_isr,
2004 					soctherm_thermal_isr_thread,
2005 					IRQF_ONESHOT,
2006 					dev_name(&pdev->dev),
2007 					tegra);
2008 	if (ret < 0) {
2009 		dev_err(&pdev->dev, "request_irq 'thermal_irq' failed.\n");
2010 		return ret;
2011 	}
2012 
2013 	ret = devm_request_threaded_irq(&pdev->dev,
2014 					tegra->edp_irq,
2015 					soctherm_edp_isr,
2016 					soctherm_edp_isr_thread,
2017 					IRQF_ONESHOT,
2018 					"soctherm_edp",
2019 					tegra);
2020 	if (ret < 0) {
2021 		dev_err(&pdev->dev, "request_irq 'edp_irq' failed.\n");
2022 		return ret;
2023 	}
2024 
2025 	return 0;
2026 }
2027 
2028 static void soctherm_init(struct platform_device *pdev)
2029 {
2030 	struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
2031 	const struct tegra_tsensor_group **ttgs = tegra->soc->ttgs;
2032 	int i;
2033 	u32 pdiv, hotspot;
2034 
2035 	/* Initialize raw sensors */
2036 	for (i = 0; i < tegra->soc->num_tsensors; ++i)
2037 		enable_tsensor(tegra, i);
2038 
2039 	/* program pdiv and hotspot offsets per THERM */
2040 	pdiv = readl(tegra->regs + SENSOR_PDIV);
2041 	hotspot = readl(tegra->regs + SENSOR_HOTSPOT_OFF);
2042 	for (i = 0; i < tegra->soc->num_ttgs; ++i) {
2043 		pdiv = REG_SET_MASK(pdiv, ttgs[i]->pdiv_mask,
2044 				    ttgs[i]->pdiv);
2045 		/* hotspot offset from PLLX, doesn't need to configure PLLX */
2046 		if (ttgs[i]->id == TEGRA124_SOCTHERM_SENSOR_PLLX)
2047 			continue;
2048 		hotspot =  REG_SET_MASK(hotspot,
2049 					ttgs[i]->pllx_hotspot_mask,
2050 					ttgs[i]->pllx_hotspot_diff);
2051 	}
2052 	writel(pdiv, tegra->regs + SENSOR_PDIV);
2053 	writel(hotspot, tegra->regs + SENSOR_HOTSPOT_OFF);
2054 
2055 	/* Configure hw throttle */
2056 	tegra_soctherm_throttle(&pdev->dev);
2057 }
2058 
2059 static const struct of_device_id tegra_soctherm_of_match[] = {
2060 #ifdef CONFIG_ARCH_TEGRA_124_SOC
2061 	{
2062 		.compatible = "nvidia,tegra124-soctherm",
2063 		.data = &tegra124_soctherm,
2064 	},
2065 #endif
2066 #ifdef CONFIG_ARCH_TEGRA_132_SOC
2067 	{
2068 		.compatible = "nvidia,tegra132-soctherm",
2069 		.data = &tegra132_soctherm,
2070 	},
2071 #endif
2072 #ifdef CONFIG_ARCH_TEGRA_210_SOC
2073 	{
2074 		.compatible = "nvidia,tegra210-soctherm",
2075 		.data = &tegra210_soctherm,
2076 	},
2077 #endif
2078 	{ },
2079 };
2080 MODULE_DEVICE_TABLE(of, tegra_soctherm_of_match);
2081 
2082 static int tegra_soctherm_probe(struct platform_device *pdev)
2083 {
2084 	const struct of_device_id *match;
2085 	struct tegra_soctherm *tegra;
2086 	struct thermal_zone_device *z;
2087 	struct tsensor_shared_calib shared_calib;
2088 	struct tegra_soctherm_soc *soc;
2089 	unsigned int i;
2090 	int err;
2091 
2092 	match = of_match_node(tegra_soctherm_of_match, pdev->dev.of_node);
2093 	if (!match)
2094 		return -ENODEV;
2095 
2096 	soc = (struct tegra_soctherm_soc *)match->data;
2097 	if (soc->num_ttgs > TEGRA124_SOCTHERM_SENSOR_NUM)
2098 		return -EINVAL;
2099 
2100 	tegra = devm_kzalloc(&pdev->dev, sizeof(*tegra), GFP_KERNEL);
2101 	if (!tegra)
2102 		return -ENOMEM;
2103 
2104 	mutex_init(&tegra->thermctl_lock);
2105 	dev_set_drvdata(&pdev->dev, tegra);
2106 
2107 	tegra->soc = soc;
2108 
2109 	tegra->regs = devm_platform_ioremap_resource_byname(pdev, "soctherm-reg");
2110 	if (IS_ERR(tegra->regs)) {
2111 		dev_err(&pdev->dev, "can't get soctherm registers");
2112 		return PTR_ERR(tegra->regs);
2113 	}
2114 
2115 	if (!tegra->soc->use_ccroc) {
2116 		tegra->clk_regs = devm_platform_ioremap_resource_byname(pdev, "car-reg");
2117 		if (IS_ERR(tegra->clk_regs)) {
2118 			dev_err(&pdev->dev, "can't get car clk registers");
2119 			return PTR_ERR(tegra->clk_regs);
2120 		}
2121 	} else {
2122 		tegra->ccroc_regs = devm_platform_ioremap_resource_byname(pdev, "ccroc-reg");
2123 		if (IS_ERR(tegra->ccroc_regs)) {
2124 			dev_err(&pdev->dev, "can't get ccroc registers");
2125 			return PTR_ERR(tegra->ccroc_regs);
2126 		}
2127 	}
2128 
2129 	tegra->reset = devm_reset_control_get(&pdev->dev, "soctherm");
2130 	if (IS_ERR(tegra->reset)) {
2131 		dev_err(&pdev->dev, "can't get soctherm reset\n");
2132 		return PTR_ERR(tegra->reset);
2133 	}
2134 
2135 	tegra->clock_tsensor = devm_clk_get(&pdev->dev, "tsensor");
2136 	if (IS_ERR(tegra->clock_tsensor)) {
2137 		dev_err(&pdev->dev, "can't get tsensor clock\n");
2138 		return PTR_ERR(tegra->clock_tsensor);
2139 	}
2140 
2141 	tegra->clock_soctherm = devm_clk_get(&pdev->dev, "soctherm");
2142 	if (IS_ERR(tegra->clock_soctherm)) {
2143 		dev_err(&pdev->dev, "can't get soctherm clock\n");
2144 		return PTR_ERR(tegra->clock_soctherm);
2145 	}
2146 
2147 	tegra->calib = devm_kcalloc(&pdev->dev,
2148 				    soc->num_tsensors, sizeof(u32),
2149 				    GFP_KERNEL);
2150 	if (!tegra->calib)
2151 		return -ENOMEM;
2152 
2153 	/* calculate shared calibration data */
2154 	err = tegra_calc_shared_calib(soc->tfuse, &shared_calib);
2155 	if (err)
2156 		return err;
2157 
2158 	/* calculate tsensor calibration data */
2159 	for (i = 0; i < soc->num_tsensors; ++i) {
2160 		err = tegra_calc_tsensor_calib(&soc->tsensors[i],
2161 					       &shared_calib,
2162 					       &tegra->calib[i]);
2163 		if (err)
2164 			return err;
2165 	}
2166 
2167 	tegra->thermctl_tzs = devm_kcalloc(&pdev->dev,
2168 					   soc->num_ttgs, sizeof(z),
2169 					   GFP_KERNEL);
2170 	if (!tegra->thermctl_tzs)
2171 		return -ENOMEM;
2172 
2173 	err = soctherm_clk_enable(pdev, true);
2174 	if (err)
2175 		return err;
2176 
2177 	soctherm_thermtrips_parse(pdev);
2178 
2179 	soctherm_init_hw_throt_cdev(pdev);
2180 
2181 	soctherm_init(pdev);
2182 
2183 	for (i = 0; i < soc->num_ttgs; ++i) {
2184 		struct tegra_thermctl_zone *zone =
2185 			devm_kzalloc(&pdev->dev, sizeof(*zone), GFP_KERNEL);
2186 		if (!zone) {
2187 			err = -ENOMEM;
2188 			goto disable_clocks;
2189 		}
2190 
2191 		zone->reg = tegra->regs + soc->ttgs[i]->sensor_temp_offset;
2192 		zone->dev = &pdev->dev;
2193 		zone->sg = soc->ttgs[i];
2194 		zone->ts = tegra;
2195 
2196 		z = devm_thermal_of_zone_register(&pdev->dev,
2197 						  soc->ttgs[i]->id, zone,
2198 						  &tegra_of_thermal_ops);
2199 		if (IS_ERR(z)) {
2200 			err = PTR_ERR(z);
2201 			dev_err(&pdev->dev, "failed to register sensor: %d\n",
2202 				err);
2203 			goto disable_clocks;
2204 		}
2205 
2206 		zone->tz = z;
2207 		tegra->thermctl_tzs[soc->ttgs[i]->id] = z;
2208 
2209 		/* Configure hw trip points */
2210 		err = tegra_soctherm_set_hwtrips(&pdev->dev, soc->ttgs[i], z);
2211 		if (err)
2212 			goto disable_clocks;
2213 	}
2214 
2215 	err = soctherm_interrupts_init(pdev, tegra);
2216 
2217 	soctherm_debug_init(pdev);
2218 
2219 	return 0;
2220 
2221 disable_clocks:
2222 	soctherm_clk_enable(pdev, false);
2223 
2224 	return err;
2225 }
2226 
2227 static int tegra_soctherm_remove(struct platform_device *pdev)
2228 {
2229 	struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
2230 
2231 	debugfs_remove_recursive(tegra->debugfs_dir);
2232 
2233 	soctherm_clk_enable(pdev, false);
2234 
2235 	return 0;
2236 }
2237 
2238 static int __maybe_unused soctherm_suspend(struct device *dev)
2239 {
2240 	struct platform_device *pdev = to_platform_device(dev);
2241 
2242 	soctherm_clk_enable(pdev, false);
2243 
2244 	return 0;
2245 }
2246 
2247 static int __maybe_unused soctherm_resume(struct device *dev)
2248 {
2249 	struct platform_device *pdev = to_platform_device(dev);
2250 	struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
2251 	struct tegra_soctherm_soc *soc = tegra->soc;
2252 	int err, i;
2253 
2254 	err = soctherm_clk_enable(pdev, true);
2255 	if (err) {
2256 		dev_err(&pdev->dev,
2257 			"Resume failed: enable clocks failed\n");
2258 		return err;
2259 	}
2260 
2261 	soctherm_init(pdev);
2262 
2263 	for (i = 0; i < soc->num_ttgs; ++i) {
2264 		struct thermal_zone_device *tz;
2265 
2266 		tz = tegra->thermctl_tzs[soc->ttgs[i]->id];
2267 		err = tegra_soctherm_set_hwtrips(dev, soc->ttgs[i], tz);
2268 		if (err) {
2269 			dev_err(&pdev->dev,
2270 				"Resume failed: set hwtrips failed\n");
2271 			return err;
2272 		}
2273 	}
2274 
2275 	return 0;
2276 }
2277 
2278 static SIMPLE_DEV_PM_OPS(tegra_soctherm_pm, soctherm_suspend, soctherm_resume);
2279 
2280 static struct platform_driver tegra_soctherm_driver = {
2281 	.probe = tegra_soctherm_probe,
2282 	.remove = tegra_soctherm_remove,
2283 	.driver = {
2284 		.name = "tegra_soctherm",
2285 		.pm = &tegra_soctherm_pm,
2286 		.of_match_table = tegra_soctherm_of_match,
2287 	},
2288 };
2289 module_platform_driver(tegra_soctherm_driver);
2290 
2291 MODULE_AUTHOR("Mikko Perttunen <mperttunen@nvidia.com>");
2292 MODULE_DESCRIPTION("NVIDIA Tegra SOCTHERM thermal management driver");
2293 MODULE_LICENSE("GPL v2");
2294